xref: /openbmc/linux/drivers/md/dm-thin.c (revision 84d517f3)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/rculist.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/rbtree.h>
20 
21 #define	DM_MSG_PREFIX	"thin"
22 
23 /*
24  * Tunable constants
25  */
26 #define ENDIO_HOOK_POOL_SIZE 1024
27 #define MAPPING_POOL_SIZE 1024
28 #define PRISON_CELLS 1024
29 #define COMMIT_PERIOD HZ
30 #define NO_SPACE_TIMEOUT_SECS 60
31 
32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
33 
34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
35 		"A percentage of time allocated for copy on write");
36 
37 /*
38  * The block size of the device holding pool data must be
39  * between 64KB and 1GB.
40  */
41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
43 
44 /*
45  * Device id is restricted to 24 bits.
46  */
47 #define MAX_DEV_ID ((1 << 24) - 1)
48 
49 /*
50  * How do we handle breaking sharing of data blocks?
51  * =================================================
52  *
53  * We use a standard copy-on-write btree to store the mappings for the
54  * devices (note I'm talking about copy-on-write of the metadata here, not
55  * the data).  When you take an internal snapshot you clone the root node
56  * of the origin btree.  After this there is no concept of an origin or a
57  * snapshot.  They are just two device trees that happen to point to the
58  * same data blocks.
59  *
60  * When we get a write in we decide if it's to a shared data block using
61  * some timestamp magic.  If it is, we have to break sharing.
62  *
63  * Let's say we write to a shared block in what was the origin.  The
64  * steps are:
65  *
66  * i) plug io further to this physical block. (see bio_prison code).
67  *
68  * ii) quiesce any read io to that shared data block.  Obviously
69  * including all devices that share this block.  (see dm_deferred_set code)
70  *
71  * iii) copy the data block to a newly allocate block.  This step can be
72  * missed out if the io covers the block. (schedule_copy).
73  *
74  * iv) insert the new mapping into the origin's btree
75  * (process_prepared_mapping).  This act of inserting breaks some
76  * sharing of btree nodes between the two devices.  Breaking sharing only
77  * effects the btree of that specific device.  Btrees for the other
78  * devices that share the block never change.  The btree for the origin
79  * device as it was after the last commit is untouched, ie. we're using
80  * persistent data structures in the functional programming sense.
81  *
82  * v) unplug io to this physical block, including the io that triggered
83  * the breaking of sharing.
84  *
85  * Steps (ii) and (iii) occur in parallel.
86  *
87  * The metadata _doesn't_ need to be committed before the io continues.  We
88  * get away with this because the io is always written to a _new_ block.
89  * If there's a crash, then:
90  *
91  * - The origin mapping will point to the old origin block (the shared
92  * one).  This will contain the data as it was before the io that triggered
93  * the breaking of sharing came in.
94  *
95  * - The snap mapping still points to the old block.  As it would after
96  * the commit.
97  *
98  * The downside of this scheme is the timestamp magic isn't perfect, and
99  * will continue to think that data block in the snapshot device is shared
100  * even after the write to the origin has broken sharing.  I suspect data
101  * blocks will typically be shared by many different devices, so we're
102  * breaking sharing n + 1 times, rather than n, where n is the number of
103  * devices that reference this data block.  At the moment I think the
104  * benefits far, far outweigh the disadvantages.
105  */
106 
107 /*----------------------------------------------------------------*/
108 
109 /*
110  * Key building.
111  */
112 static void build_data_key(struct dm_thin_device *td,
113 			   dm_block_t b, struct dm_cell_key *key)
114 {
115 	key->virtual = 0;
116 	key->dev = dm_thin_dev_id(td);
117 	key->block = b;
118 }
119 
120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
121 			      struct dm_cell_key *key)
122 {
123 	key->virtual = 1;
124 	key->dev = dm_thin_dev_id(td);
125 	key->block = b;
126 }
127 
128 /*----------------------------------------------------------------*/
129 
130 /*
131  * A pool device ties together a metadata device and a data device.  It
132  * also provides the interface for creating and destroying internal
133  * devices.
134  */
135 struct dm_thin_new_mapping;
136 
137 /*
138  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
139  */
140 enum pool_mode {
141 	PM_WRITE,		/* metadata may be changed */
142 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
143 	PM_READ_ONLY,		/* metadata may not be changed */
144 	PM_FAIL,		/* all I/O fails */
145 };
146 
147 struct pool_features {
148 	enum pool_mode mode;
149 
150 	bool zero_new_blocks:1;
151 	bool discard_enabled:1;
152 	bool discard_passdown:1;
153 	bool error_if_no_space:1;
154 };
155 
156 struct thin_c;
157 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
158 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
159 
160 struct pool {
161 	struct list_head list;
162 	struct dm_target *ti;	/* Only set if a pool target is bound */
163 
164 	struct mapped_device *pool_md;
165 	struct block_device *md_dev;
166 	struct dm_pool_metadata *pmd;
167 
168 	dm_block_t low_water_blocks;
169 	uint32_t sectors_per_block;
170 	int sectors_per_block_shift;
171 
172 	struct pool_features pf;
173 	bool low_water_triggered:1;	/* A dm event has been sent */
174 
175 	struct dm_bio_prison *prison;
176 	struct dm_kcopyd_client *copier;
177 
178 	struct workqueue_struct *wq;
179 	struct work_struct worker;
180 	struct delayed_work waker;
181 	struct delayed_work no_space_timeout;
182 
183 	unsigned long last_commit_jiffies;
184 	unsigned ref_count;
185 
186 	spinlock_t lock;
187 	struct bio_list deferred_flush_bios;
188 	struct list_head prepared_mappings;
189 	struct list_head prepared_discards;
190 	struct list_head active_thins;
191 
192 	struct dm_deferred_set *shared_read_ds;
193 	struct dm_deferred_set *all_io_ds;
194 
195 	struct dm_thin_new_mapping *next_mapping;
196 	mempool_t *mapping_pool;
197 
198 	process_bio_fn process_bio;
199 	process_bio_fn process_discard;
200 
201 	process_mapping_fn process_prepared_mapping;
202 	process_mapping_fn process_prepared_discard;
203 };
204 
205 static enum pool_mode get_pool_mode(struct pool *pool);
206 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
207 
208 /*
209  * Target context for a pool.
210  */
211 struct pool_c {
212 	struct dm_target *ti;
213 	struct pool *pool;
214 	struct dm_dev *data_dev;
215 	struct dm_dev *metadata_dev;
216 	struct dm_target_callbacks callbacks;
217 
218 	dm_block_t low_water_blocks;
219 	struct pool_features requested_pf; /* Features requested during table load */
220 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
221 };
222 
223 /*
224  * Target context for a thin.
225  */
226 struct thin_c {
227 	struct list_head list;
228 	struct dm_dev *pool_dev;
229 	struct dm_dev *origin_dev;
230 	dm_thin_id dev_id;
231 
232 	struct pool *pool;
233 	struct dm_thin_device *td;
234 	bool requeue_mode:1;
235 	spinlock_t lock;
236 	struct bio_list deferred_bio_list;
237 	struct bio_list retry_on_resume_list;
238 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
239 
240 	/*
241 	 * Ensures the thin is not destroyed until the worker has finished
242 	 * iterating the active_thins list.
243 	 */
244 	atomic_t refcount;
245 	struct completion can_destroy;
246 };
247 
248 /*----------------------------------------------------------------*/
249 
250 /*
251  * wake_worker() is used when new work is queued and when pool_resume is
252  * ready to continue deferred IO processing.
253  */
254 static void wake_worker(struct pool *pool)
255 {
256 	queue_work(pool->wq, &pool->worker);
257 }
258 
259 /*----------------------------------------------------------------*/
260 
261 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
262 		      struct dm_bio_prison_cell **cell_result)
263 {
264 	int r;
265 	struct dm_bio_prison_cell *cell_prealloc;
266 
267 	/*
268 	 * Allocate a cell from the prison's mempool.
269 	 * This might block but it can't fail.
270 	 */
271 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
272 
273 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
274 	if (r)
275 		/*
276 		 * We reused an old cell; we can get rid of
277 		 * the new one.
278 		 */
279 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
280 
281 	return r;
282 }
283 
284 static void cell_release(struct pool *pool,
285 			 struct dm_bio_prison_cell *cell,
286 			 struct bio_list *bios)
287 {
288 	dm_cell_release(pool->prison, cell, bios);
289 	dm_bio_prison_free_cell(pool->prison, cell);
290 }
291 
292 static void cell_release_no_holder(struct pool *pool,
293 				   struct dm_bio_prison_cell *cell,
294 				   struct bio_list *bios)
295 {
296 	dm_cell_release_no_holder(pool->prison, cell, bios);
297 	dm_bio_prison_free_cell(pool->prison, cell);
298 }
299 
300 static void cell_defer_no_holder_no_free(struct thin_c *tc,
301 					 struct dm_bio_prison_cell *cell)
302 {
303 	struct pool *pool = tc->pool;
304 	unsigned long flags;
305 
306 	spin_lock_irqsave(&tc->lock, flags);
307 	dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
308 	spin_unlock_irqrestore(&tc->lock, flags);
309 
310 	wake_worker(pool);
311 }
312 
313 static void cell_error(struct pool *pool,
314 		       struct dm_bio_prison_cell *cell)
315 {
316 	dm_cell_error(pool->prison, cell);
317 	dm_bio_prison_free_cell(pool->prison, cell);
318 }
319 
320 /*----------------------------------------------------------------*/
321 
322 /*
323  * A global list of pools that uses a struct mapped_device as a key.
324  */
325 static struct dm_thin_pool_table {
326 	struct mutex mutex;
327 	struct list_head pools;
328 } dm_thin_pool_table;
329 
330 static void pool_table_init(void)
331 {
332 	mutex_init(&dm_thin_pool_table.mutex);
333 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
334 }
335 
336 static void __pool_table_insert(struct pool *pool)
337 {
338 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
339 	list_add(&pool->list, &dm_thin_pool_table.pools);
340 }
341 
342 static void __pool_table_remove(struct pool *pool)
343 {
344 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
345 	list_del(&pool->list);
346 }
347 
348 static struct pool *__pool_table_lookup(struct mapped_device *md)
349 {
350 	struct pool *pool = NULL, *tmp;
351 
352 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
353 
354 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
355 		if (tmp->pool_md == md) {
356 			pool = tmp;
357 			break;
358 		}
359 	}
360 
361 	return pool;
362 }
363 
364 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
365 {
366 	struct pool *pool = NULL, *tmp;
367 
368 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
369 
370 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
371 		if (tmp->md_dev == md_dev) {
372 			pool = tmp;
373 			break;
374 		}
375 	}
376 
377 	return pool;
378 }
379 
380 /*----------------------------------------------------------------*/
381 
382 struct dm_thin_endio_hook {
383 	struct thin_c *tc;
384 	struct dm_deferred_entry *shared_read_entry;
385 	struct dm_deferred_entry *all_io_entry;
386 	struct dm_thin_new_mapping *overwrite_mapping;
387 	struct rb_node rb_node;
388 };
389 
390 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
391 {
392 	struct bio *bio;
393 	struct bio_list bios;
394 	unsigned long flags;
395 
396 	bio_list_init(&bios);
397 
398 	spin_lock_irqsave(&tc->lock, flags);
399 	bio_list_merge(&bios, master);
400 	bio_list_init(master);
401 	spin_unlock_irqrestore(&tc->lock, flags);
402 
403 	while ((bio = bio_list_pop(&bios)))
404 		bio_endio(bio, DM_ENDIO_REQUEUE);
405 }
406 
407 static void requeue_io(struct thin_c *tc)
408 {
409 	requeue_bio_list(tc, &tc->deferred_bio_list);
410 	requeue_bio_list(tc, &tc->retry_on_resume_list);
411 }
412 
413 static void error_thin_retry_list(struct thin_c *tc)
414 {
415 	struct bio *bio;
416 	unsigned long flags;
417 	struct bio_list bios;
418 
419 	bio_list_init(&bios);
420 
421 	spin_lock_irqsave(&tc->lock, flags);
422 	bio_list_merge(&bios, &tc->retry_on_resume_list);
423 	bio_list_init(&tc->retry_on_resume_list);
424 	spin_unlock_irqrestore(&tc->lock, flags);
425 
426 	while ((bio = bio_list_pop(&bios)))
427 		bio_io_error(bio);
428 }
429 
430 static void error_retry_list(struct pool *pool)
431 {
432 	struct thin_c *tc;
433 
434 	rcu_read_lock();
435 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
436 		error_thin_retry_list(tc);
437 	rcu_read_unlock();
438 }
439 
440 /*
441  * This section of code contains the logic for processing a thin device's IO.
442  * Much of the code depends on pool object resources (lists, workqueues, etc)
443  * but most is exclusively called from the thin target rather than the thin-pool
444  * target.
445  */
446 
447 static bool block_size_is_power_of_two(struct pool *pool)
448 {
449 	return pool->sectors_per_block_shift >= 0;
450 }
451 
452 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
453 {
454 	struct pool *pool = tc->pool;
455 	sector_t block_nr = bio->bi_iter.bi_sector;
456 
457 	if (block_size_is_power_of_two(pool))
458 		block_nr >>= pool->sectors_per_block_shift;
459 	else
460 		(void) sector_div(block_nr, pool->sectors_per_block);
461 
462 	return block_nr;
463 }
464 
465 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
466 {
467 	struct pool *pool = tc->pool;
468 	sector_t bi_sector = bio->bi_iter.bi_sector;
469 
470 	bio->bi_bdev = tc->pool_dev->bdev;
471 	if (block_size_is_power_of_two(pool))
472 		bio->bi_iter.bi_sector =
473 			(block << pool->sectors_per_block_shift) |
474 			(bi_sector & (pool->sectors_per_block - 1));
475 	else
476 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
477 				 sector_div(bi_sector, pool->sectors_per_block);
478 }
479 
480 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
481 {
482 	bio->bi_bdev = tc->origin_dev->bdev;
483 }
484 
485 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
486 {
487 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
488 		dm_thin_changed_this_transaction(tc->td);
489 }
490 
491 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
492 {
493 	struct dm_thin_endio_hook *h;
494 
495 	if (bio->bi_rw & REQ_DISCARD)
496 		return;
497 
498 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
499 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
500 }
501 
502 static void issue(struct thin_c *tc, struct bio *bio)
503 {
504 	struct pool *pool = tc->pool;
505 	unsigned long flags;
506 
507 	if (!bio_triggers_commit(tc, bio)) {
508 		generic_make_request(bio);
509 		return;
510 	}
511 
512 	/*
513 	 * Complete bio with an error if earlier I/O caused changes to
514 	 * the metadata that can't be committed e.g, due to I/O errors
515 	 * on the metadata device.
516 	 */
517 	if (dm_thin_aborted_changes(tc->td)) {
518 		bio_io_error(bio);
519 		return;
520 	}
521 
522 	/*
523 	 * Batch together any bios that trigger commits and then issue a
524 	 * single commit for them in process_deferred_bios().
525 	 */
526 	spin_lock_irqsave(&pool->lock, flags);
527 	bio_list_add(&pool->deferred_flush_bios, bio);
528 	spin_unlock_irqrestore(&pool->lock, flags);
529 }
530 
531 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
532 {
533 	remap_to_origin(tc, bio);
534 	issue(tc, bio);
535 }
536 
537 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
538 			    dm_block_t block)
539 {
540 	remap(tc, bio, block);
541 	issue(tc, bio);
542 }
543 
544 /*----------------------------------------------------------------*/
545 
546 /*
547  * Bio endio functions.
548  */
549 struct dm_thin_new_mapping {
550 	struct list_head list;
551 
552 	bool quiesced:1;
553 	bool prepared:1;
554 	bool pass_discard:1;
555 	bool definitely_not_shared:1;
556 
557 	int err;
558 	struct thin_c *tc;
559 	dm_block_t virt_block;
560 	dm_block_t data_block;
561 	struct dm_bio_prison_cell *cell, *cell2;
562 
563 	/*
564 	 * If the bio covers the whole area of a block then we can avoid
565 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
566 	 * still be in the cell, so care has to be taken to avoid issuing
567 	 * the bio twice.
568 	 */
569 	struct bio *bio;
570 	bio_end_io_t *saved_bi_end_io;
571 };
572 
573 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
574 {
575 	struct pool *pool = m->tc->pool;
576 
577 	if (m->quiesced && m->prepared) {
578 		list_add_tail(&m->list, &pool->prepared_mappings);
579 		wake_worker(pool);
580 	}
581 }
582 
583 static void copy_complete(int read_err, unsigned long write_err, void *context)
584 {
585 	unsigned long flags;
586 	struct dm_thin_new_mapping *m = context;
587 	struct pool *pool = m->tc->pool;
588 
589 	m->err = read_err || write_err ? -EIO : 0;
590 
591 	spin_lock_irqsave(&pool->lock, flags);
592 	m->prepared = true;
593 	__maybe_add_mapping(m);
594 	spin_unlock_irqrestore(&pool->lock, flags);
595 }
596 
597 static void overwrite_endio(struct bio *bio, int err)
598 {
599 	unsigned long flags;
600 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
601 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
602 	struct pool *pool = m->tc->pool;
603 
604 	m->err = err;
605 
606 	spin_lock_irqsave(&pool->lock, flags);
607 	m->prepared = true;
608 	__maybe_add_mapping(m);
609 	spin_unlock_irqrestore(&pool->lock, flags);
610 }
611 
612 /*----------------------------------------------------------------*/
613 
614 /*
615  * Workqueue.
616  */
617 
618 /*
619  * Prepared mapping jobs.
620  */
621 
622 /*
623  * This sends the bios in the cell back to the deferred_bios list.
624  */
625 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
626 {
627 	struct pool *pool = tc->pool;
628 	unsigned long flags;
629 
630 	spin_lock_irqsave(&tc->lock, flags);
631 	cell_release(pool, cell, &tc->deferred_bio_list);
632 	spin_unlock_irqrestore(&tc->lock, flags);
633 
634 	wake_worker(pool);
635 }
636 
637 /*
638  * Same as cell_defer above, except it omits the original holder of the cell.
639  */
640 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
641 {
642 	struct pool *pool = tc->pool;
643 	unsigned long flags;
644 
645 	spin_lock_irqsave(&tc->lock, flags);
646 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
647 	spin_unlock_irqrestore(&tc->lock, flags);
648 
649 	wake_worker(pool);
650 }
651 
652 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
653 {
654 	if (m->bio) {
655 		m->bio->bi_end_io = m->saved_bi_end_io;
656 		atomic_inc(&m->bio->bi_remaining);
657 	}
658 	cell_error(m->tc->pool, m->cell);
659 	list_del(&m->list);
660 	mempool_free(m, m->tc->pool->mapping_pool);
661 }
662 
663 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
664 {
665 	struct thin_c *tc = m->tc;
666 	struct pool *pool = tc->pool;
667 	struct bio *bio;
668 	int r;
669 
670 	bio = m->bio;
671 	if (bio) {
672 		bio->bi_end_io = m->saved_bi_end_io;
673 		atomic_inc(&bio->bi_remaining);
674 	}
675 
676 	if (m->err) {
677 		cell_error(pool, m->cell);
678 		goto out;
679 	}
680 
681 	/*
682 	 * Commit the prepared block into the mapping btree.
683 	 * Any I/O for this block arriving after this point will get
684 	 * remapped to it directly.
685 	 */
686 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
687 	if (r) {
688 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
689 		cell_error(pool, m->cell);
690 		goto out;
691 	}
692 
693 	/*
694 	 * Release any bios held while the block was being provisioned.
695 	 * If we are processing a write bio that completely covers the block,
696 	 * we already processed it so can ignore it now when processing
697 	 * the bios in the cell.
698 	 */
699 	if (bio) {
700 		cell_defer_no_holder(tc, m->cell);
701 		bio_endio(bio, 0);
702 	} else
703 		cell_defer(tc, m->cell);
704 
705 out:
706 	list_del(&m->list);
707 	mempool_free(m, pool->mapping_pool);
708 }
709 
710 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
711 {
712 	struct thin_c *tc = m->tc;
713 
714 	bio_io_error(m->bio);
715 	cell_defer_no_holder(tc, m->cell);
716 	cell_defer_no_holder(tc, m->cell2);
717 	mempool_free(m, tc->pool->mapping_pool);
718 }
719 
720 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
721 {
722 	struct thin_c *tc = m->tc;
723 
724 	inc_all_io_entry(tc->pool, m->bio);
725 	cell_defer_no_holder(tc, m->cell);
726 	cell_defer_no_holder(tc, m->cell2);
727 
728 	if (m->pass_discard)
729 		if (m->definitely_not_shared)
730 			remap_and_issue(tc, m->bio, m->data_block);
731 		else {
732 			bool used = false;
733 			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
734 				bio_endio(m->bio, 0);
735 			else
736 				remap_and_issue(tc, m->bio, m->data_block);
737 		}
738 	else
739 		bio_endio(m->bio, 0);
740 
741 	mempool_free(m, tc->pool->mapping_pool);
742 }
743 
744 static void process_prepared_discard(struct dm_thin_new_mapping *m)
745 {
746 	int r;
747 	struct thin_c *tc = m->tc;
748 
749 	r = dm_thin_remove_block(tc->td, m->virt_block);
750 	if (r)
751 		DMERR_LIMIT("dm_thin_remove_block() failed");
752 
753 	process_prepared_discard_passdown(m);
754 }
755 
756 static void process_prepared(struct pool *pool, struct list_head *head,
757 			     process_mapping_fn *fn)
758 {
759 	unsigned long flags;
760 	struct list_head maps;
761 	struct dm_thin_new_mapping *m, *tmp;
762 
763 	INIT_LIST_HEAD(&maps);
764 	spin_lock_irqsave(&pool->lock, flags);
765 	list_splice_init(head, &maps);
766 	spin_unlock_irqrestore(&pool->lock, flags);
767 
768 	list_for_each_entry_safe(m, tmp, &maps, list)
769 		(*fn)(m);
770 }
771 
772 /*
773  * Deferred bio jobs.
774  */
775 static int io_overlaps_block(struct pool *pool, struct bio *bio)
776 {
777 	return bio->bi_iter.bi_size ==
778 		(pool->sectors_per_block << SECTOR_SHIFT);
779 }
780 
781 static int io_overwrites_block(struct pool *pool, struct bio *bio)
782 {
783 	return (bio_data_dir(bio) == WRITE) &&
784 		io_overlaps_block(pool, bio);
785 }
786 
787 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
788 			       bio_end_io_t *fn)
789 {
790 	*save = bio->bi_end_io;
791 	bio->bi_end_io = fn;
792 }
793 
794 static int ensure_next_mapping(struct pool *pool)
795 {
796 	if (pool->next_mapping)
797 		return 0;
798 
799 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
800 
801 	return pool->next_mapping ? 0 : -ENOMEM;
802 }
803 
804 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
805 {
806 	struct dm_thin_new_mapping *m = pool->next_mapping;
807 
808 	BUG_ON(!pool->next_mapping);
809 
810 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
811 	INIT_LIST_HEAD(&m->list);
812 	m->bio = NULL;
813 
814 	pool->next_mapping = NULL;
815 
816 	return m;
817 }
818 
819 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
820 			  struct dm_dev *origin, dm_block_t data_origin,
821 			  dm_block_t data_dest,
822 			  struct dm_bio_prison_cell *cell, struct bio *bio)
823 {
824 	int r;
825 	struct pool *pool = tc->pool;
826 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
827 
828 	m->tc = tc;
829 	m->virt_block = virt_block;
830 	m->data_block = data_dest;
831 	m->cell = cell;
832 
833 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
834 		m->quiesced = true;
835 
836 	/*
837 	 * IO to pool_dev remaps to the pool target's data_dev.
838 	 *
839 	 * If the whole block of data is being overwritten, we can issue the
840 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
841 	 */
842 	if (io_overwrites_block(pool, bio)) {
843 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
844 
845 		h->overwrite_mapping = m;
846 		m->bio = bio;
847 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
848 		inc_all_io_entry(pool, bio);
849 		remap_and_issue(tc, bio, data_dest);
850 	} else {
851 		struct dm_io_region from, to;
852 
853 		from.bdev = origin->bdev;
854 		from.sector = data_origin * pool->sectors_per_block;
855 		from.count = pool->sectors_per_block;
856 
857 		to.bdev = tc->pool_dev->bdev;
858 		to.sector = data_dest * pool->sectors_per_block;
859 		to.count = pool->sectors_per_block;
860 
861 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
862 				   0, copy_complete, m);
863 		if (r < 0) {
864 			mempool_free(m, pool->mapping_pool);
865 			DMERR_LIMIT("dm_kcopyd_copy() failed");
866 			cell_error(pool, cell);
867 		}
868 	}
869 }
870 
871 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
872 				   dm_block_t data_origin, dm_block_t data_dest,
873 				   struct dm_bio_prison_cell *cell, struct bio *bio)
874 {
875 	schedule_copy(tc, virt_block, tc->pool_dev,
876 		      data_origin, data_dest, cell, bio);
877 }
878 
879 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
880 				   dm_block_t data_dest,
881 				   struct dm_bio_prison_cell *cell, struct bio *bio)
882 {
883 	schedule_copy(tc, virt_block, tc->origin_dev,
884 		      virt_block, data_dest, cell, bio);
885 }
886 
887 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
888 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
889 			  struct bio *bio)
890 {
891 	struct pool *pool = tc->pool;
892 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
893 
894 	m->quiesced = true;
895 	m->prepared = false;
896 	m->tc = tc;
897 	m->virt_block = virt_block;
898 	m->data_block = data_block;
899 	m->cell = cell;
900 
901 	/*
902 	 * If the whole block of data is being overwritten or we are not
903 	 * zeroing pre-existing data, we can issue the bio immediately.
904 	 * Otherwise we use kcopyd to zero the data first.
905 	 */
906 	if (!pool->pf.zero_new_blocks)
907 		process_prepared_mapping(m);
908 
909 	else if (io_overwrites_block(pool, bio)) {
910 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
911 
912 		h->overwrite_mapping = m;
913 		m->bio = bio;
914 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
915 		inc_all_io_entry(pool, bio);
916 		remap_and_issue(tc, bio, data_block);
917 	} else {
918 		int r;
919 		struct dm_io_region to;
920 
921 		to.bdev = tc->pool_dev->bdev;
922 		to.sector = data_block * pool->sectors_per_block;
923 		to.count = pool->sectors_per_block;
924 
925 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
926 		if (r < 0) {
927 			mempool_free(m, pool->mapping_pool);
928 			DMERR_LIMIT("dm_kcopyd_zero() failed");
929 			cell_error(pool, cell);
930 		}
931 	}
932 }
933 
934 /*
935  * A non-zero return indicates read_only or fail_io mode.
936  * Many callers don't care about the return value.
937  */
938 static int commit(struct pool *pool)
939 {
940 	int r;
941 
942 	if (get_pool_mode(pool) >= PM_READ_ONLY)
943 		return -EINVAL;
944 
945 	r = dm_pool_commit_metadata(pool->pmd);
946 	if (r)
947 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
948 
949 	return r;
950 }
951 
952 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
953 {
954 	unsigned long flags;
955 
956 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
957 		DMWARN("%s: reached low water mark for data device: sending event.",
958 		       dm_device_name(pool->pool_md));
959 		spin_lock_irqsave(&pool->lock, flags);
960 		pool->low_water_triggered = true;
961 		spin_unlock_irqrestore(&pool->lock, flags);
962 		dm_table_event(pool->ti->table);
963 	}
964 }
965 
966 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
967 
968 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
969 {
970 	int r;
971 	dm_block_t free_blocks;
972 	struct pool *pool = tc->pool;
973 
974 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
975 		return -EINVAL;
976 
977 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
978 	if (r) {
979 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
980 		return r;
981 	}
982 
983 	check_low_water_mark(pool, free_blocks);
984 
985 	if (!free_blocks) {
986 		/*
987 		 * Try to commit to see if that will free up some
988 		 * more space.
989 		 */
990 		r = commit(pool);
991 		if (r)
992 			return r;
993 
994 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
995 		if (r) {
996 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
997 			return r;
998 		}
999 
1000 		if (!free_blocks) {
1001 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1002 			return -ENOSPC;
1003 		}
1004 	}
1005 
1006 	r = dm_pool_alloc_data_block(pool->pmd, result);
1007 	if (r) {
1008 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1009 		return r;
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 /*
1016  * If we have run out of space, queue bios until the device is
1017  * resumed, presumably after having been reloaded with more space.
1018  */
1019 static void retry_on_resume(struct bio *bio)
1020 {
1021 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1022 	struct thin_c *tc = h->tc;
1023 	unsigned long flags;
1024 
1025 	spin_lock_irqsave(&tc->lock, flags);
1026 	bio_list_add(&tc->retry_on_resume_list, bio);
1027 	spin_unlock_irqrestore(&tc->lock, flags);
1028 }
1029 
1030 static bool should_error_unserviceable_bio(struct pool *pool)
1031 {
1032 	enum pool_mode m = get_pool_mode(pool);
1033 
1034 	switch (m) {
1035 	case PM_WRITE:
1036 		/* Shouldn't get here */
1037 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1038 		return true;
1039 
1040 	case PM_OUT_OF_DATA_SPACE:
1041 		return pool->pf.error_if_no_space;
1042 
1043 	case PM_READ_ONLY:
1044 	case PM_FAIL:
1045 		return true;
1046 	default:
1047 		/* Shouldn't get here */
1048 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1049 		return true;
1050 	}
1051 }
1052 
1053 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1054 {
1055 	if (should_error_unserviceable_bio(pool))
1056 		bio_io_error(bio);
1057 	else
1058 		retry_on_resume(bio);
1059 }
1060 
1061 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1062 {
1063 	struct bio *bio;
1064 	struct bio_list bios;
1065 
1066 	if (should_error_unserviceable_bio(pool)) {
1067 		cell_error(pool, cell);
1068 		return;
1069 	}
1070 
1071 	bio_list_init(&bios);
1072 	cell_release(pool, cell, &bios);
1073 
1074 	if (should_error_unserviceable_bio(pool))
1075 		while ((bio = bio_list_pop(&bios)))
1076 			bio_io_error(bio);
1077 	else
1078 		while ((bio = bio_list_pop(&bios)))
1079 			retry_on_resume(bio);
1080 }
1081 
1082 static void process_discard(struct thin_c *tc, struct bio *bio)
1083 {
1084 	int r;
1085 	unsigned long flags;
1086 	struct pool *pool = tc->pool;
1087 	struct dm_bio_prison_cell *cell, *cell2;
1088 	struct dm_cell_key key, key2;
1089 	dm_block_t block = get_bio_block(tc, bio);
1090 	struct dm_thin_lookup_result lookup_result;
1091 	struct dm_thin_new_mapping *m;
1092 
1093 	build_virtual_key(tc->td, block, &key);
1094 	if (bio_detain(tc->pool, &key, bio, &cell))
1095 		return;
1096 
1097 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1098 	switch (r) {
1099 	case 0:
1100 		/*
1101 		 * Check nobody is fiddling with this pool block.  This can
1102 		 * happen if someone's in the process of breaking sharing
1103 		 * on this block.
1104 		 */
1105 		build_data_key(tc->td, lookup_result.block, &key2);
1106 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1107 			cell_defer_no_holder(tc, cell);
1108 			break;
1109 		}
1110 
1111 		if (io_overlaps_block(pool, bio)) {
1112 			/*
1113 			 * IO may still be going to the destination block.  We must
1114 			 * quiesce before we can do the removal.
1115 			 */
1116 			m = get_next_mapping(pool);
1117 			m->tc = tc;
1118 			m->pass_discard = pool->pf.discard_passdown;
1119 			m->definitely_not_shared = !lookup_result.shared;
1120 			m->virt_block = block;
1121 			m->data_block = lookup_result.block;
1122 			m->cell = cell;
1123 			m->cell2 = cell2;
1124 			m->bio = bio;
1125 
1126 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1127 				spin_lock_irqsave(&pool->lock, flags);
1128 				list_add_tail(&m->list, &pool->prepared_discards);
1129 				spin_unlock_irqrestore(&pool->lock, flags);
1130 				wake_worker(pool);
1131 			}
1132 		} else {
1133 			inc_all_io_entry(pool, bio);
1134 			cell_defer_no_holder(tc, cell);
1135 			cell_defer_no_holder(tc, cell2);
1136 
1137 			/*
1138 			 * The DM core makes sure that the discard doesn't span
1139 			 * a block boundary.  So we submit the discard of a
1140 			 * partial block appropriately.
1141 			 */
1142 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1143 				remap_and_issue(tc, bio, lookup_result.block);
1144 			else
1145 				bio_endio(bio, 0);
1146 		}
1147 		break;
1148 
1149 	case -ENODATA:
1150 		/*
1151 		 * It isn't provisioned, just forget it.
1152 		 */
1153 		cell_defer_no_holder(tc, cell);
1154 		bio_endio(bio, 0);
1155 		break;
1156 
1157 	default:
1158 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1159 			    __func__, r);
1160 		cell_defer_no_holder(tc, cell);
1161 		bio_io_error(bio);
1162 		break;
1163 	}
1164 }
1165 
1166 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1167 			  struct dm_cell_key *key,
1168 			  struct dm_thin_lookup_result *lookup_result,
1169 			  struct dm_bio_prison_cell *cell)
1170 {
1171 	int r;
1172 	dm_block_t data_block;
1173 	struct pool *pool = tc->pool;
1174 
1175 	r = alloc_data_block(tc, &data_block);
1176 	switch (r) {
1177 	case 0:
1178 		schedule_internal_copy(tc, block, lookup_result->block,
1179 				       data_block, cell, bio);
1180 		break;
1181 
1182 	case -ENOSPC:
1183 		retry_bios_on_resume(pool, cell);
1184 		break;
1185 
1186 	default:
1187 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1188 			    __func__, r);
1189 		cell_error(pool, cell);
1190 		break;
1191 	}
1192 }
1193 
1194 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1195 			       dm_block_t block,
1196 			       struct dm_thin_lookup_result *lookup_result)
1197 {
1198 	struct dm_bio_prison_cell *cell;
1199 	struct pool *pool = tc->pool;
1200 	struct dm_cell_key key;
1201 
1202 	/*
1203 	 * If cell is already occupied, then sharing is already in the process
1204 	 * of being broken so we have nothing further to do here.
1205 	 */
1206 	build_data_key(tc->td, lookup_result->block, &key);
1207 	if (bio_detain(pool, &key, bio, &cell))
1208 		return;
1209 
1210 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1211 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1212 	else {
1213 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1214 
1215 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1216 		inc_all_io_entry(pool, bio);
1217 		cell_defer_no_holder(tc, cell);
1218 
1219 		remap_and_issue(tc, bio, lookup_result->block);
1220 	}
1221 }
1222 
1223 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1224 			    struct dm_bio_prison_cell *cell)
1225 {
1226 	int r;
1227 	dm_block_t data_block;
1228 	struct pool *pool = tc->pool;
1229 
1230 	/*
1231 	 * Remap empty bios (flushes) immediately, without provisioning.
1232 	 */
1233 	if (!bio->bi_iter.bi_size) {
1234 		inc_all_io_entry(pool, bio);
1235 		cell_defer_no_holder(tc, cell);
1236 
1237 		remap_and_issue(tc, bio, 0);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * Fill read bios with zeroes and complete them immediately.
1243 	 */
1244 	if (bio_data_dir(bio) == READ) {
1245 		zero_fill_bio(bio);
1246 		cell_defer_no_holder(tc, cell);
1247 		bio_endio(bio, 0);
1248 		return;
1249 	}
1250 
1251 	r = alloc_data_block(tc, &data_block);
1252 	switch (r) {
1253 	case 0:
1254 		if (tc->origin_dev)
1255 			schedule_external_copy(tc, block, data_block, cell, bio);
1256 		else
1257 			schedule_zero(tc, block, data_block, cell, bio);
1258 		break;
1259 
1260 	case -ENOSPC:
1261 		retry_bios_on_resume(pool, cell);
1262 		break;
1263 
1264 	default:
1265 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1266 			    __func__, r);
1267 		cell_error(pool, cell);
1268 		break;
1269 	}
1270 }
1271 
1272 static void process_bio(struct thin_c *tc, struct bio *bio)
1273 {
1274 	int r;
1275 	struct pool *pool = tc->pool;
1276 	dm_block_t block = get_bio_block(tc, bio);
1277 	struct dm_bio_prison_cell *cell;
1278 	struct dm_cell_key key;
1279 	struct dm_thin_lookup_result lookup_result;
1280 
1281 	/*
1282 	 * If cell is already occupied, then the block is already
1283 	 * being provisioned so we have nothing further to do here.
1284 	 */
1285 	build_virtual_key(tc->td, block, &key);
1286 	if (bio_detain(pool, &key, bio, &cell))
1287 		return;
1288 
1289 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1290 	switch (r) {
1291 	case 0:
1292 		if (lookup_result.shared) {
1293 			process_shared_bio(tc, bio, block, &lookup_result);
1294 			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1295 		} else {
1296 			inc_all_io_entry(pool, bio);
1297 			cell_defer_no_holder(tc, cell);
1298 
1299 			remap_and_issue(tc, bio, lookup_result.block);
1300 		}
1301 		break;
1302 
1303 	case -ENODATA:
1304 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1305 			inc_all_io_entry(pool, bio);
1306 			cell_defer_no_holder(tc, cell);
1307 
1308 			remap_to_origin_and_issue(tc, bio);
1309 		} else
1310 			provision_block(tc, bio, block, cell);
1311 		break;
1312 
1313 	default:
1314 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1315 			    __func__, r);
1316 		cell_defer_no_holder(tc, cell);
1317 		bio_io_error(bio);
1318 		break;
1319 	}
1320 }
1321 
1322 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1323 {
1324 	int r;
1325 	int rw = bio_data_dir(bio);
1326 	dm_block_t block = get_bio_block(tc, bio);
1327 	struct dm_thin_lookup_result lookup_result;
1328 
1329 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1330 	switch (r) {
1331 	case 0:
1332 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1333 			handle_unserviceable_bio(tc->pool, bio);
1334 		else {
1335 			inc_all_io_entry(tc->pool, bio);
1336 			remap_and_issue(tc, bio, lookup_result.block);
1337 		}
1338 		break;
1339 
1340 	case -ENODATA:
1341 		if (rw != READ) {
1342 			handle_unserviceable_bio(tc->pool, bio);
1343 			break;
1344 		}
1345 
1346 		if (tc->origin_dev) {
1347 			inc_all_io_entry(tc->pool, bio);
1348 			remap_to_origin_and_issue(tc, bio);
1349 			break;
1350 		}
1351 
1352 		zero_fill_bio(bio);
1353 		bio_endio(bio, 0);
1354 		break;
1355 
1356 	default:
1357 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1358 			    __func__, r);
1359 		bio_io_error(bio);
1360 		break;
1361 	}
1362 }
1363 
1364 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1365 {
1366 	bio_endio(bio, 0);
1367 }
1368 
1369 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1370 {
1371 	bio_io_error(bio);
1372 }
1373 
1374 /*
1375  * FIXME: should we also commit due to size of transaction, measured in
1376  * metadata blocks?
1377  */
1378 static int need_commit_due_to_time(struct pool *pool)
1379 {
1380 	return jiffies < pool->last_commit_jiffies ||
1381 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1382 }
1383 
1384 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1385 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1386 
1387 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1388 {
1389 	struct rb_node **rbp, *parent;
1390 	struct dm_thin_endio_hook *pbd;
1391 	sector_t bi_sector = bio->bi_iter.bi_sector;
1392 
1393 	rbp = &tc->sort_bio_list.rb_node;
1394 	parent = NULL;
1395 	while (*rbp) {
1396 		parent = *rbp;
1397 		pbd = thin_pbd(parent);
1398 
1399 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1400 			rbp = &(*rbp)->rb_left;
1401 		else
1402 			rbp = &(*rbp)->rb_right;
1403 	}
1404 
1405 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1406 	rb_link_node(&pbd->rb_node, parent, rbp);
1407 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1408 }
1409 
1410 static void __extract_sorted_bios(struct thin_c *tc)
1411 {
1412 	struct rb_node *node;
1413 	struct dm_thin_endio_hook *pbd;
1414 	struct bio *bio;
1415 
1416 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1417 		pbd = thin_pbd(node);
1418 		bio = thin_bio(pbd);
1419 
1420 		bio_list_add(&tc->deferred_bio_list, bio);
1421 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1422 	}
1423 
1424 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1425 }
1426 
1427 static void __sort_thin_deferred_bios(struct thin_c *tc)
1428 {
1429 	struct bio *bio;
1430 	struct bio_list bios;
1431 
1432 	bio_list_init(&bios);
1433 	bio_list_merge(&bios, &tc->deferred_bio_list);
1434 	bio_list_init(&tc->deferred_bio_list);
1435 
1436 	/* Sort deferred_bio_list using rb-tree */
1437 	while ((bio = bio_list_pop(&bios)))
1438 		__thin_bio_rb_add(tc, bio);
1439 
1440 	/*
1441 	 * Transfer the sorted bios in sort_bio_list back to
1442 	 * deferred_bio_list to allow lockless submission of
1443 	 * all bios.
1444 	 */
1445 	__extract_sorted_bios(tc);
1446 }
1447 
1448 static void process_thin_deferred_bios(struct thin_c *tc)
1449 {
1450 	struct pool *pool = tc->pool;
1451 	unsigned long flags;
1452 	struct bio *bio;
1453 	struct bio_list bios;
1454 	struct blk_plug plug;
1455 
1456 	if (tc->requeue_mode) {
1457 		requeue_bio_list(tc, &tc->deferred_bio_list);
1458 		return;
1459 	}
1460 
1461 	bio_list_init(&bios);
1462 
1463 	spin_lock_irqsave(&tc->lock, flags);
1464 
1465 	if (bio_list_empty(&tc->deferred_bio_list)) {
1466 		spin_unlock_irqrestore(&tc->lock, flags);
1467 		return;
1468 	}
1469 
1470 	__sort_thin_deferred_bios(tc);
1471 
1472 	bio_list_merge(&bios, &tc->deferred_bio_list);
1473 	bio_list_init(&tc->deferred_bio_list);
1474 
1475 	spin_unlock_irqrestore(&tc->lock, flags);
1476 
1477 	blk_start_plug(&plug);
1478 	while ((bio = bio_list_pop(&bios))) {
1479 		/*
1480 		 * If we've got no free new_mapping structs, and processing
1481 		 * this bio might require one, we pause until there are some
1482 		 * prepared mappings to process.
1483 		 */
1484 		if (ensure_next_mapping(pool)) {
1485 			spin_lock_irqsave(&tc->lock, flags);
1486 			bio_list_add(&tc->deferred_bio_list, bio);
1487 			bio_list_merge(&tc->deferred_bio_list, &bios);
1488 			spin_unlock_irqrestore(&tc->lock, flags);
1489 			break;
1490 		}
1491 
1492 		if (bio->bi_rw & REQ_DISCARD)
1493 			pool->process_discard(tc, bio);
1494 		else
1495 			pool->process_bio(tc, bio);
1496 	}
1497 	blk_finish_plug(&plug);
1498 }
1499 
1500 static void thin_get(struct thin_c *tc);
1501 static void thin_put(struct thin_c *tc);
1502 
1503 /*
1504  * We can't hold rcu_read_lock() around code that can block.  So we
1505  * find a thin with the rcu lock held; bump a refcount; then drop
1506  * the lock.
1507  */
1508 static struct thin_c *get_first_thin(struct pool *pool)
1509 {
1510 	struct thin_c *tc = NULL;
1511 
1512 	rcu_read_lock();
1513 	if (!list_empty(&pool->active_thins)) {
1514 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1515 		thin_get(tc);
1516 	}
1517 	rcu_read_unlock();
1518 
1519 	return tc;
1520 }
1521 
1522 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1523 {
1524 	struct thin_c *old_tc = tc;
1525 
1526 	rcu_read_lock();
1527 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1528 		thin_get(tc);
1529 		thin_put(old_tc);
1530 		rcu_read_unlock();
1531 		return tc;
1532 	}
1533 	thin_put(old_tc);
1534 	rcu_read_unlock();
1535 
1536 	return NULL;
1537 }
1538 
1539 static void process_deferred_bios(struct pool *pool)
1540 {
1541 	unsigned long flags;
1542 	struct bio *bio;
1543 	struct bio_list bios;
1544 	struct thin_c *tc;
1545 
1546 	tc = get_first_thin(pool);
1547 	while (tc) {
1548 		process_thin_deferred_bios(tc);
1549 		tc = get_next_thin(pool, tc);
1550 	}
1551 
1552 	/*
1553 	 * If there are any deferred flush bios, we must commit
1554 	 * the metadata before issuing them.
1555 	 */
1556 	bio_list_init(&bios);
1557 	spin_lock_irqsave(&pool->lock, flags);
1558 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1559 	bio_list_init(&pool->deferred_flush_bios);
1560 	spin_unlock_irqrestore(&pool->lock, flags);
1561 
1562 	if (bio_list_empty(&bios) &&
1563 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1564 		return;
1565 
1566 	if (commit(pool)) {
1567 		while ((bio = bio_list_pop(&bios)))
1568 			bio_io_error(bio);
1569 		return;
1570 	}
1571 	pool->last_commit_jiffies = jiffies;
1572 
1573 	while ((bio = bio_list_pop(&bios)))
1574 		generic_make_request(bio);
1575 }
1576 
1577 static void do_worker(struct work_struct *ws)
1578 {
1579 	struct pool *pool = container_of(ws, struct pool, worker);
1580 
1581 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1582 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1583 	process_deferred_bios(pool);
1584 }
1585 
1586 /*
1587  * We want to commit periodically so that not too much
1588  * unwritten data builds up.
1589  */
1590 static void do_waker(struct work_struct *ws)
1591 {
1592 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1593 	wake_worker(pool);
1594 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1595 }
1596 
1597 /*
1598  * We're holding onto IO to allow userland time to react.  After the
1599  * timeout either the pool will have been resized (and thus back in
1600  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1601  */
1602 static void do_no_space_timeout(struct work_struct *ws)
1603 {
1604 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1605 					 no_space_timeout);
1606 
1607 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1608 		set_pool_mode(pool, PM_READ_ONLY);
1609 }
1610 
1611 /*----------------------------------------------------------------*/
1612 
1613 struct noflush_work {
1614 	struct work_struct worker;
1615 	struct thin_c *tc;
1616 
1617 	atomic_t complete;
1618 	wait_queue_head_t wait;
1619 };
1620 
1621 static void complete_noflush_work(struct noflush_work *w)
1622 {
1623 	atomic_set(&w->complete, 1);
1624 	wake_up(&w->wait);
1625 }
1626 
1627 static void do_noflush_start(struct work_struct *ws)
1628 {
1629 	struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1630 	w->tc->requeue_mode = true;
1631 	requeue_io(w->tc);
1632 	complete_noflush_work(w);
1633 }
1634 
1635 static void do_noflush_stop(struct work_struct *ws)
1636 {
1637 	struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1638 	w->tc->requeue_mode = false;
1639 	complete_noflush_work(w);
1640 }
1641 
1642 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1643 {
1644 	struct noflush_work w;
1645 
1646 	INIT_WORK_ONSTACK(&w.worker, fn);
1647 	w.tc = tc;
1648 	atomic_set(&w.complete, 0);
1649 	init_waitqueue_head(&w.wait);
1650 
1651 	queue_work(tc->pool->wq, &w.worker);
1652 
1653 	wait_event(w.wait, atomic_read(&w.complete));
1654 }
1655 
1656 /*----------------------------------------------------------------*/
1657 
1658 static enum pool_mode get_pool_mode(struct pool *pool)
1659 {
1660 	return pool->pf.mode;
1661 }
1662 
1663 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1664 {
1665 	dm_table_event(pool->ti->table);
1666 	DMINFO("%s: switching pool to %s mode",
1667 	       dm_device_name(pool->pool_md), new_mode);
1668 }
1669 
1670 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1671 {
1672 	struct pool_c *pt = pool->ti->private;
1673 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1674 	enum pool_mode old_mode = get_pool_mode(pool);
1675 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1676 
1677 	/*
1678 	 * Never allow the pool to transition to PM_WRITE mode if user
1679 	 * intervention is required to verify metadata and data consistency.
1680 	 */
1681 	if (new_mode == PM_WRITE && needs_check) {
1682 		DMERR("%s: unable to switch pool to write mode until repaired.",
1683 		      dm_device_name(pool->pool_md));
1684 		if (old_mode != new_mode)
1685 			new_mode = old_mode;
1686 		else
1687 			new_mode = PM_READ_ONLY;
1688 	}
1689 	/*
1690 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1691 	 * not going to recover without a thin_repair.	So we never let the
1692 	 * pool move out of the old mode.
1693 	 */
1694 	if (old_mode == PM_FAIL)
1695 		new_mode = old_mode;
1696 
1697 	switch (new_mode) {
1698 	case PM_FAIL:
1699 		if (old_mode != new_mode)
1700 			notify_of_pool_mode_change(pool, "failure");
1701 		dm_pool_metadata_read_only(pool->pmd);
1702 		pool->process_bio = process_bio_fail;
1703 		pool->process_discard = process_bio_fail;
1704 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1705 		pool->process_prepared_discard = process_prepared_discard_fail;
1706 
1707 		error_retry_list(pool);
1708 		break;
1709 
1710 	case PM_READ_ONLY:
1711 		if (old_mode != new_mode)
1712 			notify_of_pool_mode_change(pool, "read-only");
1713 		dm_pool_metadata_read_only(pool->pmd);
1714 		pool->process_bio = process_bio_read_only;
1715 		pool->process_discard = process_bio_success;
1716 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1717 		pool->process_prepared_discard = process_prepared_discard_passdown;
1718 
1719 		error_retry_list(pool);
1720 		break;
1721 
1722 	case PM_OUT_OF_DATA_SPACE:
1723 		/*
1724 		 * Ideally we'd never hit this state; the low water mark
1725 		 * would trigger userland to extend the pool before we
1726 		 * completely run out of data space.  However, many small
1727 		 * IOs to unprovisioned space can consume data space at an
1728 		 * alarming rate.  Adjust your low water mark if you're
1729 		 * frequently seeing this mode.
1730 		 */
1731 		if (old_mode != new_mode)
1732 			notify_of_pool_mode_change(pool, "out-of-data-space");
1733 		pool->process_bio = process_bio_read_only;
1734 		pool->process_discard = process_discard;
1735 		pool->process_prepared_mapping = process_prepared_mapping;
1736 		pool->process_prepared_discard = process_prepared_discard_passdown;
1737 
1738 		if (!pool->pf.error_if_no_space && no_space_timeout)
1739 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1740 		break;
1741 
1742 	case PM_WRITE:
1743 		if (old_mode != new_mode)
1744 			notify_of_pool_mode_change(pool, "write");
1745 		dm_pool_metadata_read_write(pool->pmd);
1746 		pool->process_bio = process_bio;
1747 		pool->process_discard = process_discard;
1748 		pool->process_prepared_mapping = process_prepared_mapping;
1749 		pool->process_prepared_discard = process_prepared_discard;
1750 		break;
1751 	}
1752 
1753 	pool->pf.mode = new_mode;
1754 	/*
1755 	 * The pool mode may have changed, sync it so bind_control_target()
1756 	 * doesn't cause an unexpected mode transition on resume.
1757 	 */
1758 	pt->adjusted_pf.mode = new_mode;
1759 }
1760 
1761 static void abort_transaction(struct pool *pool)
1762 {
1763 	const char *dev_name = dm_device_name(pool->pool_md);
1764 
1765 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1766 	if (dm_pool_abort_metadata(pool->pmd)) {
1767 		DMERR("%s: failed to abort metadata transaction", dev_name);
1768 		set_pool_mode(pool, PM_FAIL);
1769 	}
1770 
1771 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1772 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1773 		set_pool_mode(pool, PM_FAIL);
1774 	}
1775 }
1776 
1777 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1778 {
1779 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1780 		    dm_device_name(pool->pool_md), op, r);
1781 
1782 	abort_transaction(pool);
1783 	set_pool_mode(pool, PM_READ_ONLY);
1784 }
1785 
1786 /*----------------------------------------------------------------*/
1787 
1788 /*
1789  * Mapping functions.
1790  */
1791 
1792 /*
1793  * Called only while mapping a thin bio to hand it over to the workqueue.
1794  */
1795 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1796 {
1797 	unsigned long flags;
1798 	struct pool *pool = tc->pool;
1799 
1800 	spin_lock_irqsave(&tc->lock, flags);
1801 	bio_list_add(&tc->deferred_bio_list, bio);
1802 	spin_unlock_irqrestore(&tc->lock, flags);
1803 
1804 	wake_worker(pool);
1805 }
1806 
1807 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1808 {
1809 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1810 
1811 	h->tc = tc;
1812 	h->shared_read_entry = NULL;
1813 	h->all_io_entry = NULL;
1814 	h->overwrite_mapping = NULL;
1815 }
1816 
1817 /*
1818  * Non-blocking function called from the thin target's map function.
1819  */
1820 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1821 {
1822 	int r;
1823 	struct thin_c *tc = ti->private;
1824 	dm_block_t block = get_bio_block(tc, bio);
1825 	struct dm_thin_device *td = tc->td;
1826 	struct dm_thin_lookup_result result;
1827 	struct dm_bio_prison_cell cell1, cell2;
1828 	struct dm_bio_prison_cell *cell_result;
1829 	struct dm_cell_key key;
1830 
1831 	thin_hook_bio(tc, bio);
1832 
1833 	if (tc->requeue_mode) {
1834 		bio_endio(bio, DM_ENDIO_REQUEUE);
1835 		return DM_MAPIO_SUBMITTED;
1836 	}
1837 
1838 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1839 		bio_io_error(bio);
1840 		return DM_MAPIO_SUBMITTED;
1841 	}
1842 
1843 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1844 		thin_defer_bio(tc, bio);
1845 		return DM_MAPIO_SUBMITTED;
1846 	}
1847 
1848 	r = dm_thin_find_block(td, block, 0, &result);
1849 
1850 	/*
1851 	 * Note that we defer readahead too.
1852 	 */
1853 	switch (r) {
1854 	case 0:
1855 		if (unlikely(result.shared)) {
1856 			/*
1857 			 * We have a race condition here between the
1858 			 * result.shared value returned by the lookup and
1859 			 * snapshot creation, which may cause new
1860 			 * sharing.
1861 			 *
1862 			 * To avoid this always quiesce the origin before
1863 			 * taking the snap.  You want to do this anyway to
1864 			 * ensure a consistent application view
1865 			 * (i.e. lockfs).
1866 			 *
1867 			 * More distant ancestors are irrelevant. The
1868 			 * shared flag will be set in their case.
1869 			 */
1870 			thin_defer_bio(tc, bio);
1871 			return DM_MAPIO_SUBMITTED;
1872 		}
1873 
1874 		build_virtual_key(tc->td, block, &key);
1875 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1876 			return DM_MAPIO_SUBMITTED;
1877 
1878 		build_data_key(tc->td, result.block, &key);
1879 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1880 			cell_defer_no_holder_no_free(tc, &cell1);
1881 			return DM_MAPIO_SUBMITTED;
1882 		}
1883 
1884 		inc_all_io_entry(tc->pool, bio);
1885 		cell_defer_no_holder_no_free(tc, &cell2);
1886 		cell_defer_no_holder_no_free(tc, &cell1);
1887 
1888 		remap(tc, bio, result.block);
1889 		return DM_MAPIO_REMAPPED;
1890 
1891 	case -ENODATA:
1892 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1893 			/*
1894 			 * This block isn't provisioned, and we have no way
1895 			 * of doing so.
1896 			 */
1897 			handle_unserviceable_bio(tc->pool, bio);
1898 			return DM_MAPIO_SUBMITTED;
1899 		}
1900 		/* fall through */
1901 
1902 	case -EWOULDBLOCK:
1903 		/*
1904 		 * In future, the failed dm_thin_find_block above could
1905 		 * provide the hint to load the metadata into cache.
1906 		 */
1907 		thin_defer_bio(tc, bio);
1908 		return DM_MAPIO_SUBMITTED;
1909 
1910 	default:
1911 		/*
1912 		 * Must always call bio_io_error on failure.
1913 		 * dm_thin_find_block can fail with -EINVAL if the
1914 		 * pool is switched to fail-io mode.
1915 		 */
1916 		bio_io_error(bio);
1917 		return DM_MAPIO_SUBMITTED;
1918 	}
1919 }
1920 
1921 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1922 {
1923 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1924 	struct request_queue *q;
1925 
1926 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1927 		return 1;
1928 
1929 	q = bdev_get_queue(pt->data_dev->bdev);
1930 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1931 }
1932 
1933 static void requeue_bios(struct pool *pool)
1934 {
1935 	unsigned long flags;
1936 	struct thin_c *tc;
1937 
1938 	rcu_read_lock();
1939 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
1940 		spin_lock_irqsave(&tc->lock, flags);
1941 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
1942 		bio_list_init(&tc->retry_on_resume_list);
1943 		spin_unlock_irqrestore(&tc->lock, flags);
1944 	}
1945 	rcu_read_unlock();
1946 }
1947 
1948 /*----------------------------------------------------------------
1949  * Binding of control targets to a pool object
1950  *--------------------------------------------------------------*/
1951 static bool data_dev_supports_discard(struct pool_c *pt)
1952 {
1953 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1954 
1955 	return q && blk_queue_discard(q);
1956 }
1957 
1958 static bool is_factor(sector_t block_size, uint32_t n)
1959 {
1960 	return !sector_div(block_size, n);
1961 }
1962 
1963 /*
1964  * If discard_passdown was enabled verify that the data device
1965  * supports discards.  Disable discard_passdown if not.
1966  */
1967 static void disable_passdown_if_not_supported(struct pool_c *pt)
1968 {
1969 	struct pool *pool = pt->pool;
1970 	struct block_device *data_bdev = pt->data_dev->bdev;
1971 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1972 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1973 	const char *reason = NULL;
1974 	char buf[BDEVNAME_SIZE];
1975 
1976 	if (!pt->adjusted_pf.discard_passdown)
1977 		return;
1978 
1979 	if (!data_dev_supports_discard(pt))
1980 		reason = "discard unsupported";
1981 
1982 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1983 		reason = "max discard sectors smaller than a block";
1984 
1985 	else if (data_limits->discard_granularity > block_size)
1986 		reason = "discard granularity larger than a block";
1987 
1988 	else if (!is_factor(block_size, data_limits->discard_granularity))
1989 		reason = "discard granularity not a factor of block size";
1990 
1991 	if (reason) {
1992 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1993 		pt->adjusted_pf.discard_passdown = false;
1994 	}
1995 }
1996 
1997 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1998 {
1999 	struct pool_c *pt = ti->private;
2000 
2001 	/*
2002 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2003 	 */
2004 	enum pool_mode old_mode = get_pool_mode(pool);
2005 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2006 
2007 	/*
2008 	 * Don't change the pool's mode until set_pool_mode() below.
2009 	 * Otherwise the pool's process_* function pointers may
2010 	 * not match the desired pool mode.
2011 	 */
2012 	pt->adjusted_pf.mode = old_mode;
2013 
2014 	pool->ti = ti;
2015 	pool->pf = pt->adjusted_pf;
2016 	pool->low_water_blocks = pt->low_water_blocks;
2017 
2018 	set_pool_mode(pool, new_mode);
2019 
2020 	return 0;
2021 }
2022 
2023 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2024 {
2025 	if (pool->ti == ti)
2026 		pool->ti = NULL;
2027 }
2028 
2029 /*----------------------------------------------------------------
2030  * Pool creation
2031  *--------------------------------------------------------------*/
2032 /* Initialize pool features. */
2033 static void pool_features_init(struct pool_features *pf)
2034 {
2035 	pf->mode = PM_WRITE;
2036 	pf->zero_new_blocks = true;
2037 	pf->discard_enabled = true;
2038 	pf->discard_passdown = true;
2039 	pf->error_if_no_space = false;
2040 }
2041 
2042 static void __pool_destroy(struct pool *pool)
2043 {
2044 	__pool_table_remove(pool);
2045 
2046 	if (dm_pool_metadata_close(pool->pmd) < 0)
2047 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2048 
2049 	dm_bio_prison_destroy(pool->prison);
2050 	dm_kcopyd_client_destroy(pool->copier);
2051 
2052 	if (pool->wq)
2053 		destroy_workqueue(pool->wq);
2054 
2055 	if (pool->next_mapping)
2056 		mempool_free(pool->next_mapping, pool->mapping_pool);
2057 	mempool_destroy(pool->mapping_pool);
2058 	dm_deferred_set_destroy(pool->shared_read_ds);
2059 	dm_deferred_set_destroy(pool->all_io_ds);
2060 	kfree(pool);
2061 }
2062 
2063 static struct kmem_cache *_new_mapping_cache;
2064 
2065 static struct pool *pool_create(struct mapped_device *pool_md,
2066 				struct block_device *metadata_dev,
2067 				unsigned long block_size,
2068 				int read_only, char **error)
2069 {
2070 	int r;
2071 	void *err_p;
2072 	struct pool *pool;
2073 	struct dm_pool_metadata *pmd;
2074 	bool format_device = read_only ? false : true;
2075 
2076 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2077 	if (IS_ERR(pmd)) {
2078 		*error = "Error creating metadata object";
2079 		return (struct pool *)pmd;
2080 	}
2081 
2082 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2083 	if (!pool) {
2084 		*error = "Error allocating memory for pool";
2085 		err_p = ERR_PTR(-ENOMEM);
2086 		goto bad_pool;
2087 	}
2088 
2089 	pool->pmd = pmd;
2090 	pool->sectors_per_block = block_size;
2091 	if (block_size & (block_size - 1))
2092 		pool->sectors_per_block_shift = -1;
2093 	else
2094 		pool->sectors_per_block_shift = __ffs(block_size);
2095 	pool->low_water_blocks = 0;
2096 	pool_features_init(&pool->pf);
2097 	pool->prison = dm_bio_prison_create(PRISON_CELLS);
2098 	if (!pool->prison) {
2099 		*error = "Error creating pool's bio prison";
2100 		err_p = ERR_PTR(-ENOMEM);
2101 		goto bad_prison;
2102 	}
2103 
2104 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2105 	if (IS_ERR(pool->copier)) {
2106 		r = PTR_ERR(pool->copier);
2107 		*error = "Error creating pool's kcopyd client";
2108 		err_p = ERR_PTR(r);
2109 		goto bad_kcopyd_client;
2110 	}
2111 
2112 	/*
2113 	 * Create singlethreaded workqueue that will service all devices
2114 	 * that use this metadata.
2115 	 */
2116 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2117 	if (!pool->wq) {
2118 		*error = "Error creating pool's workqueue";
2119 		err_p = ERR_PTR(-ENOMEM);
2120 		goto bad_wq;
2121 	}
2122 
2123 	INIT_WORK(&pool->worker, do_worker);
2124 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2125 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2126 	spin_lock_init(&pool->lock);
2127 	bio_list_init(&pool->deferred_flush_bios);
2128 	INIT_LIST_HEAD(&pool->prepared_mappings);
2129 	INIT_LIST_HEAD(&pool->prepared_discards);
2130 	INIT_LIST_HEAD(&pool->active_thins);
2131 	pool->low_water_triggered = false;
2132 
2133 	pool->shared_read_ds = dm_deferred_set_create();
2134 	if (!pool->shared_read_ds) {
2135 		*error = "Error creating pool's shared read deferred set";
2136 		err_p = ERR_PTR(-ENOMEM);
2137 		goto bad_shared_read_ds;
2138 	}
2139 
2140 	pool->all_io_ds = dm_deferred_set_create();
2141 	if (!pool->all_io_ds) {
2142 		*error = "Error creating pool's all io deferred set";
2143 		err_p = ERR_PTR(-ENOMEM);
2144 		goto bad_all_io_ds;
2145 	}
2146 
2147 	pool->next_mapping = NULL;
2148 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2149 						      _new_mapping_cache);
2150 	if (!pool->mapping_pool) {
2151 		*error = "Error creating pool's mapping mempool";
2152 		err_p = ERR_PTR(-ENOMEM);
2153 		goto bad_mapping_pool;
2154 	}
2155 
2156 	pool->ref_count = 1;
2157 	pool->last_commit_jiffies = jiffies;
2158 	pool->pool_md = pool_md;
2159 	pool->md_dev = metadata_dev;
2160 	__pool_table_insert(pool);
2161 
2162 	return pool;
2163 
2164 bad_mapping_pool:
2165 	dm_deferred_set_destroy(pool->all_io_ds);
2166 bad_all_io_ds:
2167 	dm_deferred_set_destroy(pool->shared_read_ds);
2168 bad_shared_read_ds:
2169 	destroy_workqueue(pool->wq);
2170 bad_wq:
2171 	dm_kcopyd_client_destroy(pool->copier);
2172 bad_kcopyd_client:
2173 	dm_bio_prison_destroy(pool->prison);
2174 bad_prison:
2175 	kfree(pool);
2176 bad_pool:
2177 	if (dm_pool_metadata_close(pmd))
2178 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2179 
2180 	return err_p;
2181 }
2182 
2183 static void __pool_inc(struct pool *pool)
2184 {
2185 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2186 	pool->ref_count++;
2187 }
2188 
2189 static void __pool_dec(struct pool *pool)
2190 {
2191 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2192 	BUG_ON(!pool->ref_count);
2193 	if (!--pool->ref_count)
2194 		__pool_destroy(pool);
2195 }
2196 
2197 static struct pool *__pool_find(struct mapped_device *pool_md,
2198 				struct block_device *metadata_dev,
2199 				unsigned long block_size, int read_only,
2200 				char **error, int *created)
2201 {
2202 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2203 
2204 	if (pool) {
2205 		if (pool->pool_md != pool_md) {
2206 			*error = "metadata device already in use by a pool";
2207 			return ERR_PTR(-EBUSY);
2208 		}
2209 		__pool_inc(pool);
2210 
2211 	} else {
2212 		pool = __pool_table_lookup(pool_md);
2213 		if (pool) {
2214 			if (pool->md_dev != metadata_dev) {
2215 				*error = "different pool cannot replace a pool";
2216 				return ERR_PTR(-EINVAL);
2217 			}
2218 			__pool_inc(pool);
2219 
2220 		} else {
2221 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2222 			*created = 1;
2223 		}
2224 	}
2225 
2226 	return pool;
2227 }
2228 
2229 /*----------------------------------------------------------------
2230  * Pool target methods
2231  *--------------------------------------------------------------*/
2232 static void pool_dtr(struct dm_target *ti)
2233 {
2234 	struct pool_c *pt = ti->private;
2235 
2236 	mutex_lock(&dm_thin_pool_table.mutex);
2237 
2238 	unbind_control_target(pt->pool, ti);
2239 	__pool_dec(pt->pool);
2240 	dm_put_device(ti, pt->metadata_dev);
2241 	dm_put_device(ti, pt->data_dev);
2242 	kfree(pt);
2243 
2244 	mutex_unlock(&dm_thin_pool_table.mutex);
2245 }
2246 
2247 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2248 			       struct dm_target *ti)
2249 {
2250 	int r;
2251 	unsigned argc;
2252 	const char *arg_name;
2253 
2254 	static struct dm_arg _args[] = {
2255 		{0, 4, "Invalid number of pool feature arguments"},
2256 	};
2257 
2258 	/*
2259 	 * No feature arguments supplied.
2260 	 */
2261 	if (!as->argc)
2262 		return 0;
2263 
2264 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2265 	if (r)
2266 		return -EINVAL;
2267 
2268 	while (argc && !r) {
2269 		arg_name = dm_shift_arg(as);
2270 		argc--;
2271 
2272 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2273 			pf->zero_new_blocks = false;
2274 
2275 		else if (!strcasecmp(arg_name, "ignore_discard"))
2276 			pf->discard_enabled = false;
2277 
2278 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2279 			pf->discard_passdown = false;
2280 
2281 		else if (!strcasecmp(arg_name, "read_only"))
2282 			pf->mode = PM_READ_ONLY;
2283 
2284 		else if (!strcasecmp(arg_name, "error_if_no_space"))
2285 			pf->error_if_no_space = true;
2286 
2287 		else {
2288 			ti->error = "Unrecognised pool feature requested";
2289 			r = -EINVAL;
2290 			break;
2291 		}
2292 	}
2293 
2294 	return r;
2295 }
2296 
2297 static void metadata_low_callback(void *context)
2298 {
2299 	struct pool *pool = context;
2300 
2301 	DMWARN("%s: reached low water mark for metadata device: sending event.",
2302 	       dm_device_name(pool->pool_md));
2303 
2304 	dm_table_event(pool->ti->table);
2305 }
2306 
2307 static sector_t get_dev_size(struct block_device *bdev)
2308 {
2309 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2310 }
2311 
2312 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2313 {
2314 	sector_t metadata_dev_size = get_dev_size(bdev);
2315 	char buffer[BDEVNAME_SIZE];
2316 
2317 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2318 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2319 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2320 }
2321 
2322 static sector_t get_metadata_dev_size(struct block_device *bdev)
2323 {
2324 	sector_t metadata_dev_size = get_dev_size(bdev);
2325 
2326 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2327 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2328 
2329 	return metadata_dev_size;
2330 }
2331 
2332 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2333 {
2334 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2335 
2336 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2337 
2338 	return metadata_dev_size;
2339 }
2340 
2341 /*
2342  * When a metadata threshold is crossed a dm event is triggered, and
2343  * userland should respond by growing the metadata device.  We could let
2344  * userland set the threshold, like we do with the data threshold, but I'm
2345  * not sure they know enough to do this well.
2346  */
2347 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2348 {
2349 	/*
2350 	 * 4M is ample for all ops with the possible exception of thin
2351 	 * device deletion which is harmless if it fails (just retry the
2352 	 * delete after you've grown the device).
2353 	 */
2354 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2355 	return min((dm_block_t)1024ULL /* 4M */, quarter);
2356 }
2357 
2358 /*
2359  * thin-pool <metadata dev> <data dev>
2360  *	     <data block size (sectors)>
2361  *	     <low water mark (blocks)>
2362  *	     [<#feature args> [<arg>]*]
2363  *
2364  * Optional feature arguments are:
2365  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2366  *	     ignore_discard: disable discard
2367  *	     no_discard_passdown: don't pass discards down to the data device
2368  *	     read_only: Don't allow any changes to be made to the pool metadata.
2369  *	     error_if_no_space: error IOs, instead of queueing, if no space.
2370  */
2371 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2372 {
2373 	int r, pool_created = 0;
2374 	struct pool_c *pt;
2375 	struct pool *pool;
2376 	struct pool_features pf;
2377 	struct dm_arg_set as;
2378 	struct dm_dev *data_dev;
2379 	unsigned long block_size;
2380 	dm_block_t low_water_blocks;
2381 	struct dm_dev *metadata_dev;
2382 	fmode_t metadata_mode;
2383 
2384 	/*
2385 	 * FIXME Remove validation from scope of lock.
2386 	 */
2387 	mutex_lock(&dm_thin_pool_table.mutex);
2388 
2389 	if (argc < 4) {
2390 		ti->error = "Invalid argument count";
2391 		r = -EINVAL;
2392 		goto out_unlock;
2393 	}
2394 
2395 	as.argc = argc;
2396 	as.argv = argv;
2397 
2398 	/*
2399 	 * Set default pool features.
2400 	 */
2401 	pool_features_init(&pf);
2402 
2403 	dm_consume_args(&as, 4);
2404 	r = parse_pool_features(&as, &pf, ti);
2405 	if (r)
2406 		goto out_unlock;
2407 
2408 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2409 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2410 	if (r) {
2411 		ti->error = "Error opening metadata block device";
2412 		goto out_unlock;
2413 	}
2414 	warn_if_metadata_device_too_big(metadata_dev->bdev);
2415 
2416 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2417 	if (r) {
2418 		ti->error = "Error getting data device";
2419 		goto out_metadata;
2420 	}
2421 
2422 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2423 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2424 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2425 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2426 		ti->error = "Invalid block size";
2427 		r = -EINVAL;
2428 		goto out;
2429 	}
2430 
2431 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2432 		ti->error = "Invalid low water mark";
2433 		r = -EINVAL;
2434 		goto out;
2435 	}
2436 
2437 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2438 	if (!pt) {
2439 		r = -ENOMEM;
2440 		goto out;
2441 	}
2442 
2443 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2444 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2445 	if (IS_ERR(pool)) {
2446 		r = PTR_ERR(pool);
2447 		goto out_free_pt;
2448 	}
2449 
2450 	/*
2451 	 * 'pool_created' reflects whether this is the first table load.
2452 	 * Top level discard support is not allowed to be changed after
2453 	 * initial load.  This would require a pool reload to trigger thin
2454 	 * device changes.
2455 	 */
2456 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2457 		ti->error = "Discard support cannot be disabled once enabled";
2458 		r = -EINVAL;
2459 		goto out_flags_changed;
2460 	}
2461 
2462 	pt->pool = pool;
2463 	pt->ti = ti;
2464 	pt->metadata_dev = metadata_dev;
2465 	pt->data_dev = data_dev;
2466 	pt->low_water_blocks = low_water_blocks;
2467 	pt->adjusted_pf = pt->requested_pf = pf;
2468 	ti->num_flush_bios = 1;
2469 
2470 	/*
2471 	 * Only need to enable discards if the pool should pass
2472 	 * them down to the data device.  The thin device's discard
2473 	 * processing will cause mappings to be removed from the btree.
2474 	 */
2475 	ti->discard_zeroes_data_unsupported = true;
2476 	if (pf.discard_enabled && pf.discard_passdown) {
2477 		ti->num_discard_bios = 1;
2478 
2479 		/*
2480 		 * Setting 'discards_supported' circumvents the normal
2481 		 * stacking of discard limits (this keeps the pool and
2482 		 * thin devices' discard limits consistent).
2483 		 */
2484 		ti->discards_supported = true;
2485 	}
2486 	ti->private = pt;
2487 
2488 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2489 						calc_metadata_threshold(pt),
2490 						metadata_low_callback,
2491 						pool);
2492 	if (r)
2493 		goto out_free_pt;
2494 
2495 	pt->callbacks.congested_fn = pool_is_congested;
2496 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2497 
2498 	mutex_unlock(&dm_thin_pool_table.mutex);
2499 
2500 	return 0;
2501 
2502 out_flags_changed:
2503 	__pool_dec(pool);
2504 out_free_pt:
2505 	kfree(pt);
2506 out:
2507 	dm_put_device(ti, data_dev);
2508 out_metadata:
2509 	dm_put_device(ti, metadata_dev);
2510 out_unlock:
2511 	mutex_unlock(&dm_thin_pool_table.mutex);
2512 
2513 	return r;
2514 }
2515 
2516 static int pool_map(struct dm_target *ti, struct bio *bio)
2517 {
2518 	int r;
2519 	struct pool_c *pt = ti->private;
2520 	struct pool *pool = pt->pool;
2521 	unsigned long flags;
2522 
2523 	/*
2524 	 * As this is a singleton target, ti->begin is always zero.
2525 	 */
2526 	spin_lock_irqsave(&pool->lock, flags);
2527 	bio->bi_bdev = pt->data_dev->bdev;
2528 	r = DM_MAPIO_REMAPPED;
2529 	spin_unlock_irqrestore(&pool->lock, flags);
2530 
2531 	return r;
2532 }
2533 
2534 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2535 {
2536 	int r;
2537 	struct pool_c *pt = ti->private;
2538 	struct pool *pool = pt->pool;
2539 	sector_t data_size = ti->len;
2540 	dm_block_t sb_data_size;
2541 
2542 	*need_commit = false;
2543 
2544 	(void) sector_div(data_size, pool->sectors_per_block);
2545 
2546 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2547 	if (r) {
2548 		DMERR("%s: failed to retrieve data device size",
2549 		      dm_device_name(pool->pool_md));
2550 		return r;
2551 	}
2552 
2553 	if (data_size < sb_data_size) {
2554 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2555 		      dm_device_name(pool->pool_md),
2556 		      (unsigned long long)data_size, sb_data_size);
2557 		return -EINVAL;
2558 
2559 	} else if (data_size > sb_data_size) {
2560 		if (dm_pool_metadata_needs_check(pool->pmd)) {
2561 			DMERR("%s: unable to grow the data device until repaired.",
2562 			      dm_device_name(pool->pool_md));
2563 			return 0;
2564 		}
2565 
2566 		if (sb_data_size)
2567 			DMINFO("%s: growing the data device from %llu to %llu blocks",
2568 			       dm_device_name(pool->pool_md),
2569 			       sb_data_size, (unsigned long long)data_size);
2570 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2571 		if (r) {
2572 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2573 			return r;
2574 		}
2575 
2576 		*need_commit = true;
2577 	}
2578 
2579 	return 0;
2580 }
2581 
2582 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2583 {
2584 	int r;
2585 	struct pool_c *pt = ti->private;
2586 	struct pool *pool = pt->pool;
2587 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2588 
2589 	*need_commit = false;
2590 
2591 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2592 
2593 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2594 	if (r) {
2595 		DMERR("%s: failed to retrieve metadata device size",
2596 		      dm_device_name(pool->pool_md));
2597 		return r;
2598 	}
2599 
2600 	if (metadata_dev_size < sb_metadata_dev_size) {
2601 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2602 		      dm_device_name(pool->pool_md),
2603 		      metadata_dev_size, sb_metadata_dev_size);
2604 		return -EINVAL;
2605 
2606 	} else if (metadata_dev_size > sb_metadata_dev_size) {
2607 		if (dm_pool_metadata_needs_check(pool->pmd)) {
2608 			DMERR("%s: unable to grow the metadata device until repaired.",
2609 			      dm_device_name(pool->pool_md));
2610 			return 0;
2611 		}
2612 
2613 		warn_if_metadata_device_too_big(pool->md_dev);
2614 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2615 		       dm_device_name(pool->pool_md),
2616 		       sb_metadata_dev_size, metadata_dev_size);
2617 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2618 		if (r) {
2619 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2620 			return r;
2621 		}
2622 
2623 		*need_commit = true;
2624 	}
2625 
2626 	return 0;
2627 }
2628 
2629 /*
2630  * Retrieves the number of blocks of the data device from
2631  * the superblock and compares it to the actual device size,
2632  * thus resizing the data device in case it has grown.
2633  *
2634  * This both copes with opening preallocated data devices in the ctr
2635  * being followed by a resume
2636  * -and-
2637  * calling the resume method individually after userspace has
2638  * grown the data device in reaction to a table event.
2639  */
2640 static int pool_preresume(struct dm_target *ti)
2641 {
2642 	int r;
2643 	bool need_commit1, need_commit2;
2644 	struct pool_c *pt = ti->private;
2645 	struct pool *pool = pt->pool;
2646 
2647 	/*
2648 	 * Take control of the pool object.
2649 	 */
2650 	r = bind_control_target(pool, ti);
2651 	if (r)
2652 		return r;
2653 
2654 	r = maybe_resize_data_dev(ti, &need_commit1);
2655 	if (r)
2656 		return r;
2657 
2658 	r = maybe_resize_metadata_dev(ti, &need_commit2);
2659 	if (r)
2660 		return r;
2661 
2662 	if (need_commit1 || need_commit2)
2663 		(void) commit(pool);
2664 
2665 	return 0;
2666 }
2667 
2668 static void pool_resume(struct dm_target *ti)
2669 {
2670 	struct pool_c *pt = ti->private;
2671 	struct pool *pool = pt->pool;
2672 	unsigned long flags;
2673 
2674 	spin_lock_irqsave(&pool->lock, flags);
2675 	pool->low_water_triggered = false;
2676 	spin_unlock_irqrestore(&pool->lock, flags);
2677 	requeue_bios(pool);
2678 
2679 	do_waker(&pool->waker.work);
2680 }
2681 
2682 static void pool_postsuspend(struct dm_target *ti)
2683 {
2684 	struct pool_c *pt = ti->private;
2685 	struct pool *pool = pt->pool;
2686 
2687 	cancel_delayed_work(&pool->waker);
2688 	cancel_delayed_work(&pool->no_space_timeout);
2689 	flush_workqueue(pool->wq);
2690 	(void) commit(pool);
2691 }
2692 
2693 static int check_arg_count(unsigned argc, unsigned args_required)
2694 {
2695 	if (argc != args_required) {
2696 		DMWARN("Message received with %u arguments instead of %u.",
2697 		       argc, args_required);
2698 		return -EINVAL;
2699 	}
2700 
2701 	return 0;
2702 }
2703 
2704 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2705 {
2706 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2707 	    *dev_id <= MAX_DEV_ID)
2708 		return 0;
2709 
2710 	if (warning)
2711 		DMWARN("Message received with invalid device id: %s", arg);
2712 
2713 	return -EINVAL;
2714 }
2715 
2716 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2717 {
2718 	dm_thin_id dev_id;
2719 	int r;
2720 
2721 	r = check_arg_count(argc, 2);
2722 	if (r)
2723 		return r;
2724 
2725 	r = read_dev_id(argv[1], &dev_id, 1);
2726 	if (r)
2727 		return r;
2728 
2729 	r = dm_pool_create_thin(pool->pmd, dev_id);
2730 	if (r) {
2731 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2732 		       argv[1]);
2733 		return r;
2734 	}
2735 
2736 	return 0;
2737 }
2738 
2739 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2740 {
2741 	dm_thin_id dev_id;
2742 	dm_thin_id origin_dev_id;
2743 	int r;
2744 
2745 	r = check_arg_count(argc, 3);
2746 	if (r)
2747 		return r;
2748 
2749 	r = read_dev_id(argv[1], &dev_id, 1);
2750 	if (r)
2751 		return r;
2752 
2753 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2754 	if (r)
2755 		return r;
2756 
2757 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2758 	if (r) {
2759 		DMWARN("Creation of new snapshot %s of device %s failed.",
2760 		       argv[1], argv[2]);
2761 		return r;
2762 	}
2763 
2764 	return 0;
2765 }
2766 
2767 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2768 {
2769 	dm_thin_id dev_id;
2770 	int r;
2771 
2772 	r = check_arg_count(argc, 2);
2773 	if (r)
2774 		return r;
2775 
2776 	r = read_dev_id(argv[1], &dev_id, 1);
2777 	if (r)
2778 		return r;
2779 
2780 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2781 	if (r)
2782 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2783 
2784 	return r;
2785 }
2786 
2787 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2788 {
2789 	dm_thin_id old_id, new_id;
2790 	int r;
2791 
2792 	r = check_arg_count(argc, 3);
2793 	if (r)
2794 		return r;
2795 
2796 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2797 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2798 		return -EINVAL;
2799 	}
2800 
2801 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2802 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2803 		return -EINVAL;
2804 	}
2805 
2806 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2807 	if (r) {
2808 		DMWARN("Failed to change transaction id from %s to %s.",
2809 		       argv[1], argv[2]);
2810 		return r;
2811 	}
2812 
2813 	return 0;
2814 }
2815 
2816 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2817 {
2818 	int r;
2819 
2820 	r = check_arg_count(argc, 1);
2821 	if (r)
2822 		return r;
2823 
2824 	(void) commit(pool);
2825 
2826 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2827 	if (r)
2828 		DMWARN("reserve_metadata_snap message failed.");
2829 
2830 	return r;
2831 }
2832 
2833 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2834 {
2835 	int r;
2836 
2837 	r = check_arg_count(argc, 1);
2838 	if (r)
2839 		return r;
2840 
2841 	r = dm_pool_release_metadata_snap(pool->pmd);
2842 	if (r)
2843 		DMWARN("release_metadata_snap message failed.");
2844 
2845 	return r;
2846 }
2847 
2848 /*
2849  * Messages supported:
2850  *   create_thin	<dev_id>
2851  *   create_snap	<dev_id> <origin_id>
2852  *   delete		<dev_id>
2853  *   trim		<dev_id> <new_size_in_sectors>
2854  *   set_transaction_id <current_trans_id> <new_trans_id>
2855  *   reserve_metadata_snap
2856  *   release_metadata_snap
2857  */
2858 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2859 {
2860 	int r = -EINVAL;
2861 	struct pool_c *pt = ti->private;
2862 	struct pool *pool = pt->pool;
2863 
2864 	if (!strcasecmp(argv[0], "create_thin"))
2865 		r = process_create_thin_mesg(argc, argv, pool);
2866 
2867 	else if (!strcasecmp(argv[0], "create_snap"))
2868 		r = process_create_snap_mesg(argc, argv, pool);
2869 
2870 	else if (!strcasecmp(argv[0], "delete"))
2871 		r = process_delete_mesg(argc, argv, pool);
2872 
2873 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2874 		r = process_set_transaction_id_mesg(argc, argv, pool);
2875 
2876 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2877 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2878 
2879 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2880 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2881 
2882 	else
2883 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2884 
2885 	if (!r)
2886 		(void) commit(pool);
2887 
2888 	return r;
2889 }
2890 
2891 static void emit_flags(struct pool_features *pf, char *result,
2892 		       unsigned sz, unsigned maxlen)
2893 {
2894 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2895 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2896 		pf->error_if_no_space;
2897 	DMEMIT("%u ", count);
2898 
2899 	if (!pf->zero_new_blocks)
2900 		DMEMIT("skip_block_zeroing ");
2901 
2902 	if (!pf->discard_enabled)
2903 		DMEMIT("ignore_discard ");
2904 
2905 	if (!pf->discard_passdown)
2906 		DMEMIT("no_discard_passdown ");
2907 
2908 	if (pf->mode == PM_READ_ONLY)
2909 		DMEMIT("read_only ");
2910 
2911 	if (pf->error_if_no_space)
2912 		DMEMIT("error_if_no_space ");
2913 }
2914 
2915 /*
2916  * Status line is:
2917  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2918  *    <used data sectors>/<total data sectors> <held metadata root>
2919  */
2920 static void pool_status(struct dm_target *ti, status_type_t type,
2921 			unsigned status_flags, char *result, unsigned maxlen)
2922 {
2923 	int r;
2924 	unsigned sz = 0;
2925 	uint64_t transaction_id;
2926 	dm_block_t nr_free_blocks_data;
2927 	dm_block_t nr_free_blocks_metadata;
2928 	dm_block_t nr_blocks_data;
2929 	dm_block_t nr_blocks_metadata;
2930 	dm_block_t held_root;
2931 	char buf[BDEVNAME_SIZE];
2932 	char buf2[BDEVNAME_SIZE];
2933 	struct pool_c *pt = ti->private;
2934 	struct pool *pool = pt->pool;
2935 
2936 	switch (type) {
2937 	case STATUSTYPE_INFO:
2938 		if (get_pool_mode(pool) == PM_FAIL) {
2939 			DMEMIT("Fail");
2940 			break;
2941 		}
2942 
2943 		/* Commit to ensure statistics aren't out-of-date */
2944 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2945 			(void) commit(pool);
2946 
2947 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2948 		if (r) {
2949 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2950 			      dm_device_name(pool->pool_md), r);
2951 			goto err;
2952 		}
2953 
2954 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2955 		if (r) {
2956 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2957 			      dm_device_name(pool->pool_md), r);
2958 			goto err;
2959 		}
2960 
2961 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2962 		if (r) {
2963 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2964 			      dm_device_name(pool->pool_md), r);
2965 			goto err;
2966 		}
2967 
2968 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2969 		if (r) {
2970 			DMERR("%s: dm_pool_get_free_block_count returned %d",
2971 			      dm_device_name(pool->pool_md), r);
2972 			goto err;
2973 		}
2974 
2975 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2976 		if (r) {
2977 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
2978 			      dm_device_name(pool->pool_md), r);
2979 			goto err;
2980 		}
2981 
2982 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2983 		if (r) {
2984 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
2985 			      dm_device_name(pool->pool_md), r);
2986 			goto err;
2987 		}
2988 
2989 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2990 		       (unsigned long long)transaction_id,
2991 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2992 		       (unsigned long long)nr_blocks_metadata,
2993 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2994 		       (unsigned long long)nr_blocks_data);
2995 
2996 		if (held_root)
2997 			DMEMIT("%llu ", held_root);
2998 		else
2999 			DMEMIT("- ");
3000 
3001 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3002 			DMEMIT("out_of_data_space ");
3003 		else if (pool->pf.mode == PM_READ_ONLY)
3004 			DMEMIT("ro ");
3005 		else
3006 			DMEMIT("rw ");
3007 
3008 		if (!pool->pf.discard_enabled)
3009 			DMEMIT("ignore_discard ");
3010 		else if (pool->pf.discard_passdown)
3011 			DMEMIT("discard_passdown ");
3012 		else
3013 			DMEMIT("no_discard_passdown ");
3014 
3015 		if (pool->pf.error_if_no_space)
3016 			DMEMIT("error_if_no_space ");
3017 		else
3018 			DMEMIT("queue_if_no_space ");
3019 
3020 		break;
3021 
3022 	case STATUSTYPE_TABLE:
3023 		DMEMIT("%s %s %lu %llu ",
3024 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3025 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3026 		       (unsigned long)pool->sectors_per_block,
3027 		       (unsigned long long)pt->low_water_blocks);
3028 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3029 		break;
3030 	}
3031 	return;
3032 
3033 err:
3034 	DMEMIT("Error");
3035 }
3036 
3037 static int pool_iterate_devices(struct dm_target *ti,
3038 				iterate_devices_callout_fn fn, void *data)
3039 {
3040 	struct pool_c *pt = ti->private;
3041 
3042 	return fn(ti, pt->data_dev, 0, ti->len, data);
3043 }
3044 
3045 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3046 		      struct bio_vec *biovec, int max_size)
3047 {
3048 	struct pool_c *pt = ti->private;
3049 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3050 
3051 	if (!q->merge_bvec_fn)
3052 		return max_size;
3053 
3054 	bvm->bi_bdev = pt->data_dev->bdev;
3055 
3056 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3057 }
3058 
3059 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3060 {
3061 	struct pool *pool = pt->pool;
3062 	struct queue_limits *data_limits;
3063 
3064 	limits->max_discard_sectors = pool->sectors_per_block;
3065 
3066 	/*
3067 	 * discard_granularity is just a hint, and not enforced.
3068 	 */
3069 	if (pt->adjusted_pf.discard_passdown) {
3070 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3071 		limits->discard_granularity = data_limits->discard_granularity;
3072 	} else
3073 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3074 }
3075 
3076 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3077 {
3078 	struct pool_c *pt = ti->private;
3079 	struct pool *pool = pt->pool;
3080 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3081 
3082 	/*
3083 	 * If the system-determined stacked limits are compatible with the
3084 	 * pool's blocksize (io_opt is a factor) do not override them.
3085 	 */
3086 	if (io_opt_sectors < pool->sectors_per_block ||
3087 	    do_div(io_opt_sectors, pool->sectors_per_block)) {
3088 		blk_limits_io_min(limits, 0);
3089 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3090 	}
3091 
3092 	/*
3093 	 * pt->adjusted_pf is a staging area for the actual features to use.
3094 	 * They get transferred to the live pool in bind_control_target()
3095 	 * called from pool_preresume().
3096 	 */
3097 	if (!pt->adjusted_pf.discard_enabled) {
3098 		/*
3099 		 * Must explicitly disallow stacking discard limits otherwise the
3100 		 * block layer will stack them if pool's data device has support.
3101 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3102 		 * user to see that, so make sure to set all discard limits to 0.
3103 		 */
3104 		limits->discard_granularity = 0;
3105 		return;
3106 	}
3107 
3108 	disable_passdown_if_not_supported(pt);
3109 
3110 	set_discard_limits(pt, limits);
3111 }
3112 
3113 static struct target_type pool_target = {
3114 	.name = "thin-pool",
3115 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3116 		    DM_TARGET_IMMUTABLE,
3117 	.version = {1, 12, 0},
3118 	.module = THIS_MODULE,
3119 	.ctr = pool_ctr,
3120 	.dtr = pool_dtr,
3121 	.map = pool_map,
3122 	.postsuspend = pool_postsuspend,
3123 	.preresume = pool_preresume,
3124 	.resume = pool_resume,
3125 	.message = pool_message,
3126 	.status = pool_status,
3127 	.merge = pool_merge,
3128 	.iterate_devices = pool_iterate_devices,
3129 	.io_hints = pool_io_hints,
3130 };
3131 
3132 /*----------------------------------------------------------------
3133  * Thin target methods
3134  *--------------------------------------------------------------*/
3135 static void thin_get(struct thin_c *tc)
3136 {
3137 	atomic_inc(&tc->refcount);
3138 }
3139 
3140 static void thin_put(struct thin_c *tc)
3141 {
3142 	if (atomic_dec_and_test(&tc->refcount))
3143 		complete(&tc->can_destroy);
3144 }
3145 
3146 static void thin_dtr(struct dm_target *ti)
3147 {
3148 	struct thin_c *tc = ti->private;
3149 	unsigned long flags;
3150 
3151 	thin_put(tc);
3152 	wait_for_completion(&tc->can_destroy);
3153 
3154 	spin_lock_irqsave(&tc->pool->lock, flags);
3155 	list_del_rcu(&tc->list);
3156 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3157 	synchronize_rcu();
3158 
3159 	mutex_lock(&dm_thin_pool_table.mutex);
3160 
3161 	__pool_dec(tc->pool);
3162 	dm_pool_close_thin_device(tc->td);
3163 	dm_put_device(ti, tc->pool_dev);
3164 	if (tc->origin_dev)
3165 		dm_put_device(ti, tc->origin_dev);
3166 	kfree(tc);
3167 
3168 	mutex_unlock(&dm_thin_pool_table.mutex);
3169 }
3170 
3171 /*
3172  * Thin target parameters:
3173  *
3174  * <pool_dev> <dev_id> [origin_dev]
3175  *
3176  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3177  * dev_id: the internal device identifier
3178  * origin_dev: a device external to the pool that should act as the origin
3179  *
3180  * If the pool device has discards disabled, they get disabled for the thin
3181  * device as well.
3182  */
3183 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3184 {
3185 	int r;
3186 	struct thin_c *tc;
3187 	struct dm_dev *pool_dev, *origin_dev;
3188 	struct mapped_device *pool_md;
3189 	unsigned long flags;
3190 
3191 	mutex_lock(&dm_thin_pool_table.mutex);
3192 
3193 	if (argc != 2 && argc != 3) {
3194 		ti->error = "Invalid argument count";
3195 		r = -EINVAL;
3196 		goto out_unlock;
3197 	}
3198 
3199 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3200 	if (!tc) {
3201 		ti->error = "Out of memory";
3202 		r = -ENOMEM;
3203 		goto out_unlock;
3204 	}
3205 	spin_lock_init(&tc->lock);
3206 	bio_list_init(&tc->deferred_bio_list);
3207 	bio_list_init(&tc->retry_on_resume_list);
3208 	tc->sort_bio_list = RB_ROOT;
3209 
3210 	if (argc == 3) {
3211 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3212 		if (r) {
3213 			ti->error = "Error opening origin device";
3214 			goto bad_origin_dev;
3215 		}
3216 		tc->origin_dev = origin_dev;
3217 	}
3218 
3219 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3220 	if (r) {
3221 		ti->error = "Error opening pool device";
3222 		goto bad_pool_dev;
3223 	}
3224 	tc->pool_dev = pool_dev;
3225 
3226 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3227 		ti->error = "Invalid device id";
3228 		r = -EINVAL;
3229 		goto bad_common;
3230 	}
3231 
3232 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3233 	if (!pool_md) {
3234 		ti->error = "Couldn't get pool mapped device";
3235 		r = -EINVAL;
3236 		goto bad_common;
3237 	}
3238 
3239 	tc->pool = __pool_table_lookup(pool_md);
3240 	if (!tc->pool) {
3241 		ti->error = "Couldn't find pool object";
3242 		r = -EINVAL;
3243 		goto bad_pool_lookup;
3244 	}
3245 	__pool_inc(tc->pool);
3246 
3247 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3248 		ti->error = "Couldn't open thin device, Pool is in fail mode";
3249 		r = -EINVAL;
3250 		goto bad_thin_open;
3251 	}
3252 
3253 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3254 	if (r) {
3255 		ti->error = "Couldn't open thin internal device";
3256 		goto bad_thin_open;
3257 	}
3258 
3259 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3260 	if (r)
3261 		goto bad_target_max_io_len;
3262 
3263 	ti->num_flush_bios = 1;
3264 	ti->flush_supported = true;
3265 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3266 
3267 	/* In case the pool supports discards, pass them on. */
3268 	ti->discard_zeroes_data_unsupported = true;
3269 	if (tc->pool->pf.discard_enabled) {
3270 		ti->discards_supported = true;
3271 		ti->num_discard_bios = 1;
3272 		/* Discard bios must be split on a block boundary */
3273 		ti->split_discard_bios = true;
3274 	}
3275 
3276 	dm_put(pool_md);
3277 
3278 	mutex_unlock(&dm_thin_pool_table.mutex);
3279 
3280 	atomic_set(&tc->refcount, 1);
3281 	init_completion(&tc->can_destroy);
3282 
3283 	spin_lock_irqsave(&tc->pool->lock, flags);
3284 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3285 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3286 	/*
3287 	 * This synchronize_rcu() call is needed here otherwise we risk a
3288 	 * wake_worker() call finding no bios to process (because the newly
3289 	 * added tc isn't yet visible).  So this reduces latency since we
3290 	 * aren't then dependent on the periodic commit to wake_worker().
3291 	 */
3292 	synchronize_rcu();
3293 
3294 	return 0;
3295 
3296 bad_target_max_io_len:
3297 	dm_pool_close_thin_device(tc->td);
3298 bad_thin_open:
3299 	__pool_dec(tc->pool);
3300 bad_pool_lookup:
3301 	dm_put(pool_md);
3302 bad_common:
3303 	dm_put_device(ti, tc->pool_dev);
3304 bad_pool_dev:
3305 	if (tc->origin_dev)
3306 		dm_put_device(ti, tc->origin_dev);
3307 bad_origin_dev:
3308 	kfree(tc);
3309 out_unlock:
3310 	mutex_unlock(&dm_thin_pool_table.mutex);
3311 
3312 	return r;
3313 }
3314 
3315 static int thin_map(struct dm_target *ti, struct bio *bio)
3316 {
3317 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3318 
3319 	return thin_bio_map(ti, bio);
3320 }
3321 
3322 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3323 {
3324 	unsigned long flags;
3325 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3326 	struct list_head work;
3327 	struct dm_thin_new_mapping *m, *tmp;
3328 	struct pool *pool = h->tc->pool;
3329 
3330 	if (h->shared_read_entry) {
3331 		INIT_LIST_HEAD(&work);
3332 		dm_deferred_entry_dec(h->shared_read_entry, &work);
3333 
3334 		spin_lock_irqsave(&pool->lock, flags);
3335 		list_for_each_entry_safe(m, tmp, &work, list) {
3336 			list_del(&m->list);
3337 			m->quiesced = true;
3338 			__maybe_add_mapping(m);
3339 		}
3340 		spin_unlock_irqrestore(&pool->lock, flags);
3341 	}
3342 
3343 	if (h->all_io_entry) {
3344 		INIT_LIST_HEAD(&work);
3345 		dm_deferred_entry_dec(h->all_io_entry, &work);
3346 		if (!list_empty(&work)) {
3347 			spin_lock_irqsave(&pool->lock, flags);
3348 			list_for_each_entry_safe(m, tmp, &work, list)
3349 				list_add_tail(&m->list, &pool->prepared_discards);
3350 			spin_unlock_irqrestore(&pool->lock, flags);
3351 			wake_worker(pool);
3352 		}
3353 	}
3354 
3355 	return 0;
3356 }
3357 
3358 static void thin_presuspend(struct dm_target *ti)
3359 {
3360 	struct thin_c *tc = ti->private;
3361 
3362 	if (dm_noflush_suspending(ti))
3363 		noflush_work(tc, do_noflush_start);
3364 }
3365 
3366 static void thin_postsuspend(struct dm_target *ti)
3367 {
3368 	struct thin_c *tc = ti->private;
3369 
3370 	/*
3371 	 * The dm_noflush_suspending flag has been cleared by now, so
3372 	 * unfortunately we must always run this.
3373 	 */
3374 	noflush_work(tc, do_noflush_stop);
3375 }
3376 
3377 /*
3378  * <nr mapped sectors> <highest mapped sector>
3379  */
3380 static void thin_status(struct dm_target *ti, status_type_t type,
3381 			unsigned status_flags, char *result, unsigned maxlen)
3382 {
3383 	int r;
3384 	ssize_t sz = 0;
3385 	dm_block_t mapped, highest;
3386 	char buf[BDEVNAME_SIZE];
3387 	struct thin_c *tc = ti->private;
3388 
3389 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3390 		DMEMIT("Fail");
3391 		return;
3392 	}
3393 
3394 	if (!tc->td)
3395 		DMEMIT("-");
3396 	else {
3397 		switch (type) {
3398 		case STATUSTYPE_INFO:
3399 			r = dm_thin_get_mapped_count(tc->td, &mapped);
3400 			if (r) {
3401 				DMERR("dm_thin_get_mapped_count returned %d", r);
3402 				goto err;
3403 			}
3404 
3405 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3406 			if (r < 0) {
3407 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3408 				goto err;
3409 			}
3410 
3411 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3412 			if (r)
3413 				DMEMIT("%llu", ((highest + 1) *
3414 						tc->pool->sectors_per_block) - 1);
3415 			else
3416 				DMEMIT("-");
3417 			break;
3418 
3419 		case STATUSTYPE_TABLE:
3420 			DMEMIT("%s %lu",
3421 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3422 			       (unsigned long) tc->dev_id);
3423 			if (tc->origin_dev)
3424 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3425 			break;
3426 		}
3427 	}
3428 
3429 	return;
3430 
3431 err:
3432 	DMEMIT("Error");
3433 }
3434 
3435 static int thin_iterate_devices(struct dm_target *ti,
3436 				iterate_devices_callout_fn fn, void *data)
3437 {
3438 	sector_t blocks;
3439 	struct thin_c *tc = ti->private;
3440 	struct pool *pool = tc->pool;
3441 
3442 	/*
3443 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3444 	 * we follow a more convoluted path through to the pool's target.
3445 	 */
3446 	if (!pool->ti)
3447 		return 0;	/* nothing is bound */
3448 
3449 	blocks = pool->ti->len;
3450 	(void) sector_div(blocks, pool->sectors_per_block);
3451 	if (blocks)
3452 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3453 
3454 	return 0;
3455 }
3456 
3457 static struct target_type thin_target = {
3458 	.name = "thin",
3459 	.version = {1, 12, 0},
3460 	.module	= THIS_MODULE,
3461 	.ctr = thin_ctr,
3462 	.dtr = thin_dtr,
3463 	.map = thin_map,
3464 	.end_io = thin_endio,
3465 	.presuspend = thin_presuspend,
3466 	.postsuspend = thin_postsuspend,
3467 	.status = thin_status,
3468 	.iterate_devices = thin_iterate_devices,
3469 };
3470 
3471 /*----------------------------------------------------------------*/
3472 
3473 static int __init dm_thin_init(void)
3474 {
3475 	int r;
3476 
3477 	pool_table_init();
3478 
3479 	r = dm_register_target(&thin_target);
3480 	if (r)
3481 		return r;
3482 
3483 	r = dm_register_target(&pool_target);
3484 	if (r)
3485 		goto bad_pool_target;
3486 
3487 	r = -ENOMEM;
3488 
3489 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3490 	if (!_new_mapping_cache)
3491 		goto bad_new_mapping_cache;
3492 
3493 	return 0;
3494 
3495 bad_new_mapping_cache:
3496 	dm_unregister_target(&pool_target);
3497 bad_pool_target:
3498 	dm_unregister_target(&thin_target);
3499 
3500 	return r;
3501 }
3502 
3503 static void dm_thin_exit(void)
3504 {
3505 	dm_unregister_target(&thin_target);
3506 	dm_unregister_target(&pool_target);
3507 
3508 	kmem_cache_destroy(_new_mapping_cache);
3509 }
3510 
3511 module_init(dm_thin_init);
3512 module_exit(dm_thin_exit);
3513 
3514 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3515 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3516 
3517 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3518 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3519 MODULE_LICENSE("GPL");
3520