xref: /openbmc/linux/drivers/md/dm-thin.c (revision 74629c49)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11 
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25 
26 #define	DM_MSG_PREFIX	"thin"
27 
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35 
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39 		"A percentage of time allocated for copy on write");
40 
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47 
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52 
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110 
111 /*----------------------------------------------------------------*/
112 
113 /*
114  * Key building.
115  */
116 enum lock_space {
117 	VIRTUAL,
118 	PHYSICAL
119 };
120 
121 static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124 	key->virtual = (ls == VIRTUAL);
125 	key->dev = dm_thin_dev_id(td);
126 	key->block_begin = b;
127 	key->block_end = e;
128 
129 	return dm_cell_key_has_valid_range(key);
130 }
131 
132 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133 			   struct dm_cell_key *key)
134 {
135 	(void) build_key(td, PHYSICAL, b, b + 1llu, key);
136 }
137 
138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139 			      struct dm_cell_key *key)
140 {
141 	(void) build_key(td, VIRTUAL, b, b + 1llu, key);
142 }
143 
144 /*----------------------------------------------------------------*/
145 
146 #define THROTTLE_THRESHOLD (1 * HZ)
147 
148 struct throttle {
149 	struct rw_semaphore lock;
150 	unsigned long threshold;
151 	bool throttle_applied;
152 };
153 
154 static void throttle_init(struct throttle *t)
155 {
156 	init_rwsem(&t->lock);
157 	t->throttle_applied = false;
158 }
159 
160 static void throttle_work_start(struct throttle *t)
161 {
162 	t->threshold = jiffies + THROTTLE_THRESHOLD;
163 }
164 
165 static void throttle_work_update(struct throttle *t)
166 {
167 	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168 		down_write(&t->lock);
169 		t->throttle_applied = true;
170 	}
171 }
172 
173 static void throttle_work_complete(struct throttle *t)
174 {
175 	if (t->throttle_applied) {
176 		t->throttle_applied = false;
177 		up_write(&t->lock);
178 	}
179 }
180 
181 static void throttle_lock(struct throttle *t)
182 {
183 	down_read(&t->lock);
184 }
185 
186 static void throttle_unlock(struct throttle *t)
187 {
188 	up_read(&t->lock);
189 }
190 
191 /*----------------------------------------------------------------*/
192 
193 /*
194  * A pool device ties together a metadata device and a data device.  It
195  * also provides the interface for creating and destroying internal
196  * devices.
197  */
198 struct dm_thin_new_mapping;
199 
200 /*
201  * The pool runs in various modes.  Ordered in degraded order for comparisons.
202  */
203 enum pool_mode {
204 	PM_WRITE,		/* metadata may be changed */
205 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
206 
207 	/*
208 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
209 	 */
210 	PM_OUT_OF_METADATA_SPACE,
211 	PM_READ_ONLY,		/* metadata may not be changed */
212 
213 	PM_FAIL,		/* all I/O fails */
214 };
215 
216 struct pool_features {
217 	enum pool_mode mode;
218 
219 	bool zero_new_blocks:1;
220 	bool discard_enabled:1;
221 	bool discard_passdown:1;
222 	bool error_if_no_space:1;
223 };
224 
225 struct thin_c;
226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
229 
230 #define CELL_SORT_ARRAY_SIZE 8192
231 
232 struct pool {
233 	struct list_head list;
234 	struct dm_target *ti;	/* Only set if a pool target is bound */
235 
236 	struct mapped_device *pool_md;
237 	struct block_device *data_dev;
238 	struct block_device *md_dev;
239 	struct dm_pool_metadata *pmd;
240 
241 	dm_block_t low_water_blocks;
242 	uint32_t sectors_per_block;
243 	int sectors_per_block_shift;
244 
245 	struct pool_features pf;
246 	bool low_water_triggered:1;	/* A dm event has been sent */
247 	bool suspended:1;
248 	bool out_of_data_space:1;
249 
250 	struct dm_bio_prison *prison;
251 	struct dm_kcopyd_client *copier;
252 
253 	struct work_struct worker;
254 	struct workqueue_struct *wq;
255 	struct throttle throttle;
256 	struct delayed_work waker;
257 	struct delayed_work no_space_timeout;
258 
259 	unsigned long last_commit_jiffies;
260 	unsigned int ref_count;
261 
262 	spinlock_t lock;
263 	struct bio_list deferred_flush_bios;
264 	struct bio_list deferred_flush_completions;
265 	struct list_head prepared_mappings;
266 	struct list_head prepared_discards;
267 	struct list_head prepared_discards_pt2;
268 	struct list_head active_thins;
269 
270 	struct dm_deferred_set *shared_read_ds;
271 	struct dm_deferred_set *all_io_ds;
272 
273 	struct dm_thin_new_mapping *next_mapping;
274 
275 	process_bio_fn process_bio;
276 	process_bio_fn process_discard;
277 
278 	process_cell_fn process_cell;
279 	process_cell_fn process_discard_cell;
280 
281 	process_mapping_fn process_prepared_mapping;
282 	process_mapping_fn process_prepared_discard;
283 	process_mapping_fn process_prepared_discard_pt2;
284 
285 	struct dm_bio_prison_cell **cell_sort_array;
286 
287 	mempool_t mapping_pool;
288 };
289 
290 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291 
292 static enum pool_mode get_pool_mode(struct pool *pool)
293 {
294 	return pool->pf.mode;
295 }
296 
297 static void notify_of_pool_mode_change(struct pool *pool)
298 {
299 	static const char *descs[] = {
300 		"write",
301 		"out-of-data-space",
302 		"read-only",
303 		"read-only",
304 		"fail"
305 	};
306 	const char *extra_desc = NULL;
307 	enum pool_mode mode = get_pool_mode(pool);
308 
309 	if (mode == PM_OUT_OF_DATA_SPACE) {
310 		if (!pool->pf.error_if_no_space)
311 			extra_desc = " (queue IO)";
312 		else
313 			extra_desc = " (error IO)";
314 	}
315 
316 	dm_table_event(pool->ti->table);
317 	DMINFO("%s: switching pool to %s%s mode",
318 	       dm_device_name(pool->pool_md),
319 	       descs[(int)mode], extra_desc ? : "");
320 }
321 
322 /*
323  * Target context for a pool.
324  */
325 struct pool_c {
326 	struct dm_target *ti;
327 	struct pool *pool;
328 	struct dm_dev *data_dev;
329 	struct dm_dev *metadata_dev;
330 
331 	dm_block_t low_water_blocks;
332 	struct pool_features requested_pf; /* Features requested during table load */
333 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
334 };
335 
336 /*
337  * Target context for a thin.
338  */
339 struct thin_c {
340 	struct list_head list;
341 	struct dm_dev *pool_dev;
342 	struct dm_dev *origin_dev;
343 	sector_t origin_size;
344 	dm_thin_id dev_id;
345 
346 	struct pool *pool;
347 	struct dm_thin_device *td;
348 	struct mapped_device *thin_md;
349 
350 	bool requeue_mode:1;
351 	spinlock_t lock;
352 	struct list_head deferred_cells;
353 	struct bio_list deferred_bio_list;
354 	struct bio_list retry_on_resume_list;
355 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
356 
357 	/*
358 	 * Ensures the thin is not destroyed until the worker has finished
359 	 * iterating the active_thins list.
360 	 */
361 	refcount_t refcount;
362 	struct completion can_destroy;
363 };
364 
365 /*----------------------------------------------------------------*/
366 
367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369 	return pool->sectors_per_block_shift >= 0;
370 }
371 
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374 	return block_size_is_power_of_two(pool) ?
375 		(b << pool->sectors_per_block_shift) :
376 		(b * pool->sectors_per_block);
377 }
378 
379 /*----------------------------------------------------------------*/
380 
381 struct discard_op {
382 	struct thin_c *tc;
383 	struct blk_plug plug;
384 	struct bio *parent_bio;
385 	struct bio *bio;
386 };
387 
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390 	BUG_ON(!parent);
391 
392 	op->tc = tc;
393 	blk_start_plug(&op->plug);
394 	op->parent_bio = parent;
395 	op->bio = NULL;
396 }
397 
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400 	struct thin_c *tc = op->tc;
401 	sector_t s = block_to_sectors(tc->pool, data_b);
402 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403 
404 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT,
405 				      &op->bio);
406 }
407 
408 static void end_discard(struct discard_op *op, int r)
409 {
410 	if (op->bio) {
411 		/*
412 		 * Even if one of the calls to issue_discard failed, we
413 		 * need to wait for the chain to complete.
414 		 */
415 		bio_chain(op->bio, op->parent_bio);
416 		op->bio->bi_opf = REQ_OP_DISCARD;
417 		submit_bio(op->bio);
418 	}
419 
420 	blk_finish_plug(&op->plug);
421 
422 	/*
423 	 * Even if r is set, there could be sub discards in flight that we
424 	 * need to wait for.
425 	 */
426 	if (r && !op->parent_bio->bi_status)
427 		op->parent_bio->bi_status = errno_to_blk_status(r);
428 	bio_endio(op->parent_bio);
429 }
430 
431 /*----------------------------------------------------------------*/
432 
433 /*
434  * wake_worker() is used when new work is queued and when pool_resume is
435  * ready to continue deferred IO processing.
436  */
437 static void wake_worker(struct pool *pool)
438 {
439 	queue_work(pool->wq, &pool->worker);
440 }
441 
442 /*----------------------------------------------------------------*/
443 
444 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
445 		      struct dm_bio_prison_cell **cell_result)
446 {
447 	int r;
448 	struct dm_bio_prison_cell *cell_prealloc;
449 
450 	/*
451 	 * Allocate a cell from the prison's mempool.
452 	 * This might block but it can't fail.
453 	 */
454 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
455 
456 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
457 	if (r)
458 		/*
459 		 * We reused an old cell; we can get rid of
460 		 * the new one.
461 		 */
462 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
463 
464 	return r;
465 }
466 
467 static void cell_release(struct pool *pool,
468 			 struct dm_bio_prison_cell *cell,
469 			 struct bio_list *bios)
470 {
471 	dm_cell_release(pool->prison, cell, bios);
472 	dm_bio_prison_free_cell(pool->prison, cell);
473 }
474 
475 static void cell_visit_release(struct pool *pool,
476 			       void (*fn)(void *, struct dm_bio_prison_cell *),
477 			       void *context,
478 			       struct dm_bio_prison_cell *cell)
479 {
480 	dm_cell_visit_release(pool->prison, fn, context, cell);
481 	dm_bio_prison_free_cell(pool->prison, cell);
482 }
483 
484 static void cell_release_no_holder(struct pool *pool,
485 				   struct dm_bio_prison_cell *cell,
486 				   struct bio_list *bios)
487 {
488 	dm_cell_release_no_holder(pool->prison, cell, bios);
489 	dm_bio_prison_free_cell(pool->prison, cell);
490 }
491 
492 static void cell_error_with_code(struct pool *pool,
493 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
494 {
495 	dm_cell_error(pool->prison, cell, error_code);
496 	dm_bio_prison_free_cell(pool->prison, cell);
497 }
498 
499 static blk_status_t get_pool_io_error_code(struct pool *pool)
500 {
501 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502 }
503 
504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505 {
506 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
507 }
508 
509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510 {
511 	cell_error_with_code(pool, cell, 0);
512 }
513 
514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515 {
516 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517 }
518 
519 /*----------------------------------------------------------------*/
520 
521 /*
522  * A global list of pools that uses a struct mapped_device as a key.
523  */
524 static struct dm_thin_pool_table {
525 	struct mutex mutex;
526 	struct list_head pools;
527 } dm_thin_pool_table;
528 
529 static void pool_table_init(void)
530 {
531 	mutex_init(&dm_thin_pool_table.mutex);
532 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
533 }
534 
535 static void pool_table_exit(void)
536 {
537 	mutex_destroy(&dm_thin_pool_table.mutex);
538 }
539 
540 static void __pool_table_insert(struct pool *pool)
541 {
542 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543 	list_add(&pool->list, &dm_thin_pool_table.pools);
544 }
545 
546 static void __pool_table_remove(struct pool *pool)
547 {
548 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549 	list_del(&pool->list);
550 }
551 
552 static struct pool *__pool_table_lookup(struct mapped_device *md)
553 {
554 	struct pool *pool = NULL, *tmp;
555 
556 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557 
558 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559 		if (tmp->pool_md == md) {
560 			pool = tmp;
561 			break;
562 		}
563 	}
564 
565 	return pool;
566 }
567 
568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569 {
570 	struct pool *pool = NULL, *tmp;
571 
572 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573 
574 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575 		if (tmp->md_dev == md_dev) {
576 			pool = tmp;
577 			break;
578 		}
579 	}
580 
581 	return pool;
582 }
583 
584 /*----------------------------------------------------------------*/
585 
586 struct dm_thin_endio_hook {
587 	struct thin_c *tc;
588 	struct dm_deferred_entry *shared_read_entry;
589 	struct dm_deferred_entry *all_io_entry;
590 	struct dm_thin_new_mapping *overwrite_mapping;
591 	struct rb_node rb_node;
592 	struct dm_bio_prison_cell *cell;
593 };
594 
595 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
596 {
597 	bio_list_merge(bios, master);
598 	bio_list_init(master);
599 }
600 
601 static void error_bio_list(struct bio_list *bios, blk_status_t error)
602 {
603 	struct bio *bio;
604 
605 	while ((bio = bio_list_pop(bios))) {
606 		bio->bi_status = error;
607 		bio_endio(bio);
608 	}
609 }
610 
611 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
612 		blk_status_t error)
613 {
614 	struct bio_list bios;
615 
616 	bio_list_init(&bios);
617 
618 	spin_lock_irq(&tc->lock);
619 	__merge_bio_list(&bios, master);
620 	spin_unlock_irq(&tc->lock);
621 
622 	error_bio_list(&bios, error);
623 }
624 
625 static void requeue_deferred_cells(struct thin_c *tc)
626 {
627 	struct pool *pool = tc->pool;
628 	struct list_head cells;
629 	struct dm_bio_prison_cell *cell, *tmp;
630 
631 	INIT_LIST_HEAD(&cells);
632 
633 	spin_lock_irq(&tc->lock);
634 	list_splice_init(&tc->deferred_cells, &cells);
635 	spin_unlock_irq(&tc->lock);
636 
637 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
638 		cell_requeue(pool, cell);
639 }
640 
641 static void requeue_io(struct thin_c *tc)
642 {
643 	struct bio_list bios;
644 
645 	bio_list_init(&bios);
646 
647 	spin_lock_irq(&tc->lock);
648 	__merge_bio_list(&bios, &tc->deferred_bio_list);
649 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
650 	spin_unlock_irq(&tc->lock);
651 
652 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
653 	requeue_deferred_cells(tc);
654 }
655 
656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
657 {
658 	struct thin_c *tc;
659 
660 	rcu_read_lock();
661 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
662 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
663 	rcu_read_unlock();
664 }
665 
666 static void error_retry_list(struct pool *pool)
667 {
668 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
669 }
670 
671 /*
672  * This section of code contains the logic for processing a thin device's IO.
673  * Much of the code depends on pool object resources (lists, workqueues, etc)
674  * but most is exclusively called from the thin target rather than the thin-pool
675  * target.
676  */
677 
678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679 {
680 	struct pool *pool = tc->pool;
681 	sector_t block_nr = bio->bi_iter.bi_sector;
682 
683 	if (block_size_is_power_of_two(pool))
684 		block_nr >>= pool->sectors_per_block_shift;
685 	else
686 		(void) sector_div(block_nr, pool->sectors_per_block);
687 
688 	return block_nr;
689 }
690 
691 /*
692  * Returns the _complete_ blocks that this bio covers.
693  */
694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695 				dm_block_t *begin, dm_block_t *end)
696 {
697 	struct pool *pool = tc->pool;
698 	sector_t b = bio->bi_iter.bi_sector;
699 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
700 
701 	b += pool->sectors_per_block - 1ull; /* so we round up */
702 
703 	if (block_size_is_power_of_two(pool)) {
704 		b >>= pool->sectors_per_block_shift;
705 		e >>= pool->sectors_per_block_shift;
706 	} else {
707 		(void) sector_div(b, pool->sectors_per_block);
708 		(void) sector_div(e, pool->sectors_per_block);
709 	}
710 
711 	if (e < b)
712 		/* Can happen if the bio is within a single block. */
713 		e = b;
714 
715 	*begin = b;
716 	*end = e;
717 }
718 
719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
720 {
721 	struct pool *pool = tc->pool;
722 	sector_t bi_sector = bio->bi_iter.bi_sector;
723 
724 	bio_set_dev(bio, tc->pool_dev->bdev);
725 	if (block_size_is_power_of_two(pool))
726 		bio->bi_iter.bi_sector =
727 			(block << pool->sectors_per_block_shift) |
728 			(bi_sector & (pool->sectors_per_block - 1));
729 	else
730 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
731 				 sector_div(bi_sector, pool->sectors_per_block);
732 }
733 
734 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
735 {
736 	bio_set_dev(bio, tc->origin_dev->bdev);
737 }
738 
739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
740 {
741 	return op_is_flush(bio->bi_opf) &&
742 		dm_thin_changed_this_transaction(tc->td);
743 }
744 
745 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
746 {
747 	struct dm_thin_endio_hook *h;
748 
749 	if (bio_op(bio) == REQ_OP_DISCARD)
750 		return;
751 
752 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
753 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
754 }
755 
756 static void issue(struct thin_c *tc, struct bio *bio)
757 {
758 	struct pool *pool = tc->pool;
759 
760 	if (!bio_triggers_commit(tc, bio)) {
761 		dm_submit_bio_remap(bio, NULL);
762 		return;
763 	}
764 
765 	/*
766 	 * Complete bio with an error if earlier I/O caused changes to
767 	 * the metadata that can't be committed e.g, due to I/O errors
768 	 * on the metadata device.
769 	 */
770 	if (dm_thin_aborted_changes(tc->td)) {
771 		bio_io_error(bio);
772 		return;
773 	}
774 
775 	/*
776 	 * Batch together any bios that trigger commits and then issue a
777 	 * single commit for them in process_deferred_bios().
778 	 */
779 	spin_lock_irq(&pool->lock);
780 	bio_list_add(&pool->deferred_flush_bios, bio);
781 	spin_unlock_irq(&pool->lock);
782 }
783 
784 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
785 {
786 	remap_to_origin(tc, bio);
787 	issue(tc, bio);
788 }
789 
790 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
791 			    dm_block_t block)
792 {
793 	remap(tc, bio, block);
794 	issue(tc, bio);
795 }
796 
797 /*----------------------------------------------------------------*/
798 
799 /*
800  * Bio endio functions.
801  */
802 struct dm_thin_new_mapping {
803 	struct list_head list;
804 
805 	bool pass_discard:1;
806 	bool maybe_shared:1;
807 
808 	/*
809 	 * Track quiescing, copying and zeroing preparation actions.  When this
810 	 * counter hits zero the block is prepared and can be inserted into the
811 	 * btree.
812 	 */
813 	atomic_t prepare_actions;
814 
815 	blk_status_t status;
816 	struct thin_c *tc;
817 	dm_block_t virt_begin, virt_end;
818 	dm_block_t data_block;
819 	struct dm_bio_prison_cell *cell;
820 
821 	/*
822 	 * If the bio covers the whole area of a block then we can avoid
823 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
824 	 * still be in the cell, so care has to be taken to avoid issuing
825 	 * the bio twice.
826 	 */
827 	struct bio *bio;
828 	bio_end_io_t *saved_bi_end_io;
829 };
830 
831 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
832 {
833 	struct pool *pool = m->tc->pool;
834 
835 	if (atomic_dec_and_test(&m->prepare_actions)) {
836 		list_add_tail(&m->list, &pool->prepared_mappings);
837 		wake_worker(pool);
838 	}
839 }
840 
841 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
842 {
843 	unsigned long flags;
844 	struct pool *pool = m->tc->pool;
845 
846 	spin_lock_irqsave(&pool->lock, flags);
847 	__complete_mapping_preparation(m);
848 	spin_unlock_irqrestore(&pool->lock, flags);
849 }
850 
851 static void copy_complete(int read_err, unsigned long write_err, void *context)
852 {
853 	struct dm_thin_new_mapping *m = context;
854 
855 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
856 	complete_mapping_preparation(m);
857 }
858 
859 static void overwrite_endio(struct bio *bio)
860 {
861 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
862 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
863 
864 	bio->bi_end_io = m->saved_bi_end_io;
865 
866 	m->status = bio->bi_status;
867 	complete_mapping_preparation(m);
868 }
869 
870 /*----------------------------------------------------------------*/
871 
872 /*
873  * Workqueue.
874  */
875 
876 /*
877  * Prepared mapping jobs.
878  */
879 
880 /*
881  * This sends the bios in the cell, except the original holder, back
882  * to the deferred_bios list.
883  */
884 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
885 {
886 	struct pool *pool = tc->pool;
887 	unsigned long flags;
888 	struct bio_list bios;
889 
890 	bio_list_init(&bios);
891 	cell_release_no_holder(pool, cell, &bios);
892 
893 	if (!bio_list_empty(&bios)) {
894 		spin_lock_irqsave(&tc->lock, flags);
895 		bio_list_merge(&tc->deferred_bio_list, &bios);
896 		spin_unlock_irqrestore(&tc->lock, flags);
897 		wake_worker(pool);
898 	}
899 }
900 
901 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
902 
903 struct remap_info {
904 	struct thin_c *tc;
905 	struct bio_list defer_bios;
906 	struct bio_list issue_bios;
907 };
908 
909 static void __inc_remap_and_issue_cell(void *context,
910 				       struct dm_bio_prison_cell *cell)
911 {
912 	struct remap_info *info = context;
913 	struct bio *bio;
914 
915 	while ((bio = bio_list_pop(&cell->bios))) {
916 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
917 			bio_list_add(&info->defer_bios, bio);
918 		else {
919 			inc_all_io_entry(info->tc->pool, bio);
920 
921 			/*
922 			 * We can't issue the bios with the bio prison lock
923 			 * held, so we add them to a list to issue on
924 			 * return from this function.
925 			 */
926 			bio_list_add(&info->issue_bios, bio);
927 		}
928 	}
929 }
930 
931 static void inc_remap_and_issue_cell(struct thin_c *tc,
932 				     struct dm_bio_prison_cell *cell,
933 				     dm_block_t block)
934 {
935 	struct bio *bio;
936 	struct remap_info info;
937 
938 	info.tc = tc;
939 	bio_list_init(&info.defer_bios);
940 	bio_list_init(&info.issue_bios);
941 
942 	/*
943 	 * We have to be careful to inc any bios we're about to issue
944 	 * before the cell is released, and avoid a race with new bios
945 	 * being added to the cell.
946 	 */
947 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
948 			   &info, cell);
949 
950 	while ((bio = bio_list_pop(&info.defer_bios)))
951 		thin_defer_bio(tc, bio);
952 
953 	while ((bio = bio_list_pop(&info.issue_bios)))
954 		remap_and_issue(info.tc, bio, block);
955 }
956 
957 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
958 {
959 	cell_error(m->tc->pool, m->cell);
960 	list_del(&m->list);
961 	mempool_free(m, &m->tc->pool->mapping_pool);
962 }
963 
964 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
965 {
966 	struct pool *pool = tc->pool;
967 
968 	/*
969 	 * If the bio has the REQ_FUA flag set we must commit the metadata
970 	 * before signaling its completion.
971 	 */
972 	if (!bio_triggers_commit(tc, bio)) {
973 		bio_endio(bio);
974 		return;
975 	}
976 
977 	/*
978 	 * Complete bio with an error if earlier I/O caused changes to the
979 	 * metadata that can't be committed, e.g, due to I/O errors on the
980 	 * metadata device.
981 	 */
982 	if (dm_thin_aborted_changes(tc->td)) {
983 		bio_io_error(bio);
984 		return;
985 	}
986 
987 	/*
988 	 * Batch together any bios that trigger commits and then issue a
989 	 * single commit for them in process_deferred_bios().
990 	 */
991 	spin_lock_irq(&pool->lock);
992 	bio_list_add(&pool->deferred_flush_completions, bio);
993 	spin_unlock_irq(&pool->lock);
994 }
995 
996 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
997 {
998 	struct thin_c *tc = m->tc;
999 	struct pool *pool = tc->pool;
1000 	struct bio *bio = m->bio;
1001 	int r;
1002 
1003 	if (m->status) {
1004 		cell_error(pool, m->cell);
1005 		goto out;
1006 	}
1007 
1008 	/*
1009 	 * Commit the prepared block into the mapping btree.
1010 	 * Any I/O for this block arriving after this point will get
1011 	 * remapped to it directly.
1012 	 */
1013 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1014 	if (r) {
1015 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1016 		cell_error(pool, m->cell);
1017 		goto out;
1018 	}
1019 
1020 	/*
1021 	 * Release any bios held while the block was being provisioned.
1022 	 * If we are processing a write bio that completely covers the block,
1023 	 * we already processed it so can ignore it now when processing
1024 	 * the bios in the cell.
1025 	 */
1026 	if (bio) {
1027 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1028 		complete_overwrite_bio(tc, bio);
1029 	} else {
1030 		inc_all_io_entry(tc->pool, m->cell->holder);
1031 		remap_and_issue(tc, m->cell->holder, m->data_block);
1032 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1033 	}
1034 
1035 out:
1036 	list_del(&m->list);
1037 	mempool_free(m, &pool->mapping_pool);
1038 }
1039 
1040 /*----------------------------------------------------------------*/
1041 
1042 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1043 {
1044 	struct thin_c *tc = m->tc;
1045 
1046 	if (m->cell)
1047 		cell_defer_no_holder(tc, m->cell);
1048 	mempool_free(m, &tc->pool->mapping_pool);
1049 }
1050 
1051 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1052 {
1053 	bio_io_error(m->bio);
1054 	free_discard_mapping(m);
1055 }
1056 
1057 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1058 {
1059 	bio_endio(m->bio);
1060 	free_discard_mapping(m);
1061 }
1062 
1063 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1064 {
1065 	int r;
1066 	struct thin_c *tc = m->tc;
1067 
1068 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1069 	if (r) {
1070 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1071 		bio_io_error(m->bio);
1072 	} else
1073 		bio_endio(m->bio);
1074 
1075 	cell_defer_no_holder(tc, m->cell);
1076 	mempool_free(m, &tc->pool->mapping_pool);
1077 }
1078 
1079 /*----------------------------------------------------------------*/
1080 
1081 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1082 						   struct bio *discard_parent)
1083 {
1084 	/*
1085 	 * We've already unmapped this range of blocks, but before we
1086 	 * passdown we have to check that these blocks are now unused.
1087 	 */
1088 	int r = 0;
1089 	bool shared = true;
1090 	struct thin_c *tc = m->tc;
1091 	struct pool *pool = tc->pool;
1092 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1093 	struct discard_op op;
1094 
1095 	begin_discard(&op, tc, discard_parent);
1096 	while (b != end) {
1097 		/* find start of unmapped run */
1098 		for (; b < end; b++) {
1099 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1100 			if (r)
1101 				goto out;
1102 
1103 			if (!shared)
1104 				break;
1105 		}
1106 
1107 		if (b == end)
1108 			break;
1109 
1110 		/* find end of run */
1111 		for (e = b + 1; e != end; e++) {
1112 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1113 			if (r)
1114 				goto out;
1115 
1116 			if (shared)
1117 				break;
1118 		}
1119 
1120 		r = issue_discard(&op, b, e);
1121 		if (r)
1122 			goto out;
1123 
1124 		b = e;
1125 	}
1126 out:
1127 	end_discard(&op, r);
1128 }
1129 
1130 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1131 {
1132 	unsigned long flags;
1133 	struct pool *pool = m->tc->pool;
1134 
1135 	spin_lock_irqsave(&pool->lock, flags);
1136 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1137 	spin_unlock_irqrestore(&pool->lock, flags);
1138 	wake_worker(pool);
1139 }
1140 
1141 static void passdown_endio(struct bio *bio)
1142 {
1143 	/*
1144 	 * It doesn't matter if the passdown discard failed, we still want
1145 	 * to unmap (we ignore err).
1146 	 */
1147 	queue_passdown_pt2(bio->bi_private);
1148 	bio_put(bio);
1149 }
1150 
1151 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1152 {
1153 	int r;
1154 	struct thin_c *tc = m->tc;
1155 	struct pool *pool = tc->pool;
1156 	struct bio *discard_parent;
1157 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1158 
1159 	/*
1160 	 * Only this thread allocates blocks, so we can be sure that the
1161 	 * newly unmapped blocks will not be allocated before the end of
1162 	 * the function.
1163 	 */
1164 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1165 	if (r) {
1166 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1167 		bio_io_error(m->bio);
1168 		cell_defer_no_holder(tc, m->cell);
1169 		mempool_free(m, &pool->mapping_pool);
1170 		return;
1171 	}
1172 
1173 	/*
1174 	 * Increment the unmapped blocks.  This prevents a race between the
1175 	 * passdown io and reallocation of freed blocks.
1176 	 */
1177 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1178 	if (r) {
1179 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1180 		bio_io_error(m->bio);
1181 		cell_defer_no_holder(tc, m->cell);
1182 		mempool_free(m, &pool->mapping_pool);
1183 		return;
1184 	}
1185 
1186 	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1187 	discard_parent->bi_end_io = passdown_endio;
1188 	discard_parent->bi_private = m;
1189 	if (m->maybe_shared)
1190 		passdown_double_checking_shared_status(m, discard_parent);
1191 	else {
1192 		struct discard_op op;
1193 
1194 		begin_discard(&op, tc, discard_parent);
1195 		r = issue_discard(&op, m->data_block, data_end);
1196 		end_discard(&op, r);
1197 	}
1198 }
1199 
1200 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1201 {
1202 	int r;
1203 	struct thin_c *tc = m->tc;
1204 	struct pool *pool = tc->pool;
1205 
1206 	/*
1207 	 * The passdown has completed, so now we can decrement all those
1208 	 * unmapped blocks.
1209 	 */
1210 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1211 				   m->data_block + (m->virt_end - m->virt_begin));
1212 	if (r) {
1213 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1214 		bio_io_error(m->bio);
1215 	} else
1216 		bio_endio(m->bio);
1217 
1218 	cell_defer_no_holder(tc, m->cell);
1219 	mempool_free(m, &pool->mapping_pool);
1220 }
1221 
1222 static void process_prepared(struct pool *pool, struct list_head *head,
1223 			     process_mapping_fn *fn)
1224 {
1225 	struct list_head maps;
1226 	struct dm_thin_new_mapping *m, *tmp;
1227 
1228 	INIT_LIST_HEAD(&maps);
1229 	spin_lock_irq(&pool->lock);
1230 	list_splice_init(head, &maps);
1231 	spin_unlock_irq(&pool->lock);
1232 
1233 	list_for_each_entry_safe(m, tmp, &maps, list)
1234 		(*fn)(m);
1235 }
1236 
1237 /*
1238  * Deferred bio jobs.
1239  */
1240 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1241 {
1242 	return bio->bi_iter.bi_size ==
1243 		(pool->sectors_per_block << SECTOR_SHIFT);
1244 }
1245 
1246 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1247 {
1248 	return (bio_data_dir(bio) == WRITE) &&
1249 		io_overlaps_block(pool, bio);
1250 }
1251 
1252 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1253 			       bio_end_io_t *fn)
1254 {
1255 	*save = bio->bi_end_io;
1256 	bio->bi_end_io = fn;
1257 }
1258 
1259 static int ensure_next_mapping(struct pool *pool)
1260 {
1261 	if (pool->next_mapping)
1262 		return 0;
1263 
1264 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1265 
1266 	return pool->next_mapping ? 0 : -ENOMEM;
1267 }
1268 
1269 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1270 {
1271 	struct dm_thin_new_mapping *m = pool->next_mapping;
1272 
1273 	BUG_ON(!pool->next_mapping);
1274 
1275 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1276 	INIT_LIST_HEAD(&m->list);
1277 	m->bio = NULL;
1278 
1279 	pool->next_mapping = NULL;
1280 
1281 	return m;
1282 }
1283 
1284 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1285 		    sector_t begin, sector_t end)
1286 {
1287 	struct dm_io_region to;
1288 
1289 	to.bdev = tc->pool_dev->bdev;
1290 	to.sector = begin;
1291 	to.count = end - begin;
1292 
1293 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1294 }
1295 
1296 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1297 				      dm_block_t data_begin,
1298 				      struct dm_thin_new_mapping *m)
1299 {
1300 	struct pool *pool = tc->pool;
1301 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1302 
1303 	h->overwrite_mapping = m;
1304 	m->bio = bio;
1305 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1306 	inc_all_io_entry(pool, bio);
1307 	remap_and_issue(tc, bio, data_begin);
1308 }
1309 
1310 /*
1311  * A partial copy also needs to zero the uncopied region.
1312  */
1313 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1314 			  struct dm_dev *origin, dm_block_t data_origin,
1315 			  dm_block_t data_dest,
1316 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1317 			  sector_t len)
1318 {
1319 	struct pool *pool = tc->pool;
1320 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1321 
1322 	m->tc = tc;
1323 	m->virt_begin = virt_block;
1324 	m->virt_end = virt_block + 1u;
1325 	m->data_block = data_dest;
1326 	m->cell = cell;
1327 
1328 	/*
1329 	 * quiesce action + copy action + an extra reference held for the
1330 	 * duration of this function (we may need to inc later for a
1331 	 * partial zero).
1332 	 */
1333 	atomic_set(&m->prepare_actions, 3);
1334 
1335 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1336 		complete_mapping_preparation(m); /* already quiesced */
1337 
1338 	/*
1339 	 * IO to pool_dev remaps to the pool target's data_dev.
1340 	 *
1341 	 * If the whole block of data is being overwritten, we can issue the
1342 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1343 	 */
1344 	if (io_overwrites_block(pool, bio))
1345 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1346 	else {
1347 		struct dm_io_region from, to;
1348 
1349 		from.bdev = origin->bdev;
1350 		from.sector = data_origin * pool->sectors_per_block;
1351 		from.count = len;
1352 
1353 		to.bdev = tc->pool_dev->bdev;
1354 		to.sector = data_dest * pool->sectors_per_block;
1355 		to.count = len;
1356 
1357 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1358 			       0, copy_complete, m);
1359 
1360 		/*
1361 		 * Do we need to zero a tail region?
1362 		 */
1363 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1364 			atomic_inc(&m->prepare_actions);
1365 			ll_zero(tc, m,
1366 				data_dest * pool->sectors_per_block + len,
1367 				(data_dest + 1) * pool->sectors_per_block);
1368 		}
1369 	}
1370 
1371 	complete_mapping_preparation(m); /* drop our ref */
1372 }
1373 
1374 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1375 				   dm_block_t data_origin, dm_block_t data_dest,
1376 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1377 {
1378 	schedule_copy(tc, virt_block, tc->pool_dev,
1379 		      data_origin, data_dest, cell, bio,
1380 		      tc->pool->sectors_per_block);
1381 }
1382 
1383 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1384 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1385 			  struct bio *bio)
1386 {
1387 	struct pool *pool = tc->pool;
1388 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1389 
1390 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1391 	m->tc = tc;
1392 	m->virt_begin = virt_block;
1393 	m->virt_end = virt_block + 1u;
1394 	m->data_block = data_block;
1395 	m->cell = cell;
1396 
1397 	/*
1398 	 * If the whole block of data is being overwritten or we are not
1399 	 * zeroing pre-existing data, we can issue the bio immediately.
1400 	 * Otherwise we use kcopyd to zero the data first.
1401 	 */
1402 	if (pool->pf.zero_new_blocks) {
1403 		if (io_overwrites_block(pool, bio))
1404 			remap_and_issue_overwrite(tc, bio, data_block, m);
1405 		else
1406 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1407 				(data_block + 1) * pool->sectors_per_block);
1408 	} else
1409 		process_prepared_mapping(m);
1410 }
1411 
1412 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1413 				   dm_block_t data_dest,
1414 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1415 {
1416 	struct pool *pool = tc->pool;
1417 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1418 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1419 
1420 	if (virt_block_end <= tc->origin_size)
1421 		schedule_copy(tc, virt_block, tc->origin_dev,
1422 			      virt_block, data_dest, cell, bio,
1423 			      pool->sectors_per_block);
1424 
1425 	else if (virt_block_begin < tc->origin_size)
1426 		schedule_copy(tc, virt_block, tc->origin_dev,
1427 			      virt_block, data_dest, cell, bio,
1428 			      tc->origin_size - virt_block_begin);
1429 
1430 	else
1431 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1432 }
1433 
1434 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1435 
1436 static void requeue_bios(struct pool *pool);
1437 
1438 static bool is_read_only_pool_mode(enum pool_mode mode)
1439 {
1440 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1441 }
1442 
1443 static bool is_read_only(struct pool *pool)
1444 {
1445 	return is_read_only_pool_mode(get_pool_mode(pool));
1446 }
1447 
1448 static void check_for_metadata_space(struct pool *pool)
1449 {
1450 	int r;
1451 	const char *ooms_reason = NULL;
1452 	dm_block_t nr_free;
1453 
1454 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1455 	if (r)
1456 		ooms_reason = "Could not get free metadata blocks";
1457 	else if (!nr_free)
1458 		ooms_reason = "No free metadata blocks";
1459 
1460 	if (ooms_reason && !is_read_only(pool)) {
1461 		DMERR("%s", ooms_reason);
1462 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1463 	}
1464 }
1465 
1466 static void check_for_data_space(struct pool *pool)
1467 {
1468 	int r;
1469 	dm_block_t nr_free;
1470 
1471 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1472 		return;
1473 
1474 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1475 	if (r)
1476 		return;
1477 
1478 	if (nr_free) {
1479 		set_pool_mode(pool, PM_WRITE);
1480 		requeue_bios(pool);
1481 	}
1482 }
1483 
1484 /*
1485  * A non-zero return indicates read_only or fail_io mode.
1486  * Many callers don't care about the return value.
1487  */
1488 static int commit(struct pool *pool)
1489 {
1490 	int r;
1491 
1492 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1493 		return -EINVAL;
1494 
1495 	r = dm_pool_commit_metadata(pool->pmd);
1496 	if (r)
1497 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1498 	else {
1499 		check_for_metadata_space(pool);
1500 		check_for_data_space(pool);
1501 	}
1502 
1503 	return r;
1504 }
1505 
1506 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1507 {
1508 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1509 		DMWARN("%s: reached low water mark for data device: sending event.",
1510 		       dm_device_name(pool->pool_md));
1511 		spin_lock_irq(&pool->lock);
1512 		pool->low_water_triggered = true;
1513 		spin_unlock_irq(&pool->lock);
1514 		dm_table_event(pool->ti->table);
1515 	}
1516 }
1517 
1518 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1519 {
1520 	int r;
1521 	dm_block_t free_blocks;
1522 	struct pool *pool = tc->pool;
1523 
1524 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1525 		return -EINVAL;
1526 
1527 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1528 	if (r) {
1529 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1530 		return r;
1531 	}
1532 
1533 	check_low_water_mark(pool, free_blocks);
1534 
1535 	if (!free_blocks) {
1536 		/*
1537 		 * Try to commit to see if that will free up some
1538 		 * more space.
1539 		 */
1540 		r = commit(pool);
1541 		if (r)
1542 			return r;
1543 
1544 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1545 		if (r) {
1546 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1547 			return r;
1548 		}
1549 
1550 		if (!free_blocks) {
1551 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1552 			return -ENOSPC;
1553 		}
1554 	}
1555 
1556 	r = dm_pool_alloc_data_block(pool->pmd, result);
1557 	if (r) {
1558 		if (r == -ENOSPC)
1559 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1560 		else
1561 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1562 		return r;
1563 	}
1564 
1565 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1566 	if (r) {
1567 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1568 		return r;
1569 	}
1570 
1571 	if (!free_blocks) {
1572 		/* Let's commit before we use up the metadata reserve. */
1573 		r = commit(pool);
1574 		if (r)
1575 			return r;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 /*
1582  * If we have run out of space, queue bios until the device is
1583  * resumed, presumably after having been reloaded with more space.
1584  */
1585 static void retry_on_resume(struct bio *bio)
1586 {
1587 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1588 	struct thin_c *tc = h->tc;
1589 
1590 	spin_lock_irq(&tc->lock);
1591 	bio_list_add(&tc->retry_on_resume_list, bio);
1592 	spin_unlock_irq(&tc->lock);
1593 }
1594 
1595 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1596 {
1597 	enum pool_mode m = get_pool_mode(pool);
1598 
1599 	switch (m) {
1600 	case PM_WRITE:
1601 		/* Shouldn't get here */
1602 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1603 		return BLK_STS_IOERR;
1604 
1605 	case PM_OUT_OF_DATA_SPACE:
1606 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1607 
1608 	case PM_OUT_OF_METADATA_SPACE:
1609 	case PM_READ_ONLY:
1610 	case PM_FAIL:
1611 		return BLK_STS_IOERR;
1612 	default:
1613 		/* Shouldn't get here */
1614 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1615 		return BLK_STS_IOERR;
1616 	}
1617 }
1618 
1619 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1620 {
1621 	blk_status_t error = should_error_unserviceable_bio(pool);
1622 
1623 	if (error) {
1624 		bio->bi_status = error;
1625 		bio_endio(bio);
1626 	} else
1627 		retry_on_resume(bio);
1628 }
1629 
1630 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1631 {
1632 	struct bio *bio;
1633 	struct bio_list bios;
1634 	blk_status_t error;
1635 
1636 	error = should_error_unserviceable_bio(pool);
1637 	if (error) {
1638 		cell_error_with_code(pool, cell, error);
1639 		return;
1640 	}
1641 
1642 	bio_list_init(&bios);
1643 	cell_release(pool, cell, &bios);
1644 
1645 	while ((bio = bio_list_pop(&bios)))
1646 		retry_on_resume(bio);
1647 }
1648 
1649 static void process_discard_cell_no_passdown(struct thin_c *tc,
1650 					     struct dm_bio_prison_cell *virt_cell)
1651 {
1652 	struct pool *pool = tc->pool;
1653 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1654 
1655 	/*
1656 	 * We don't need to lock the data blocks, since there's no
1657 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1658 	 */
1659 	m->tc = tc;
1660 	m->virt_begin = virt_cell->key.block_begin;
1661 	m->virt_end = virt_cell->key.block_end;
1662 	m->cell = virt_cell;
1663 	m->bio = virt_cell->holder;
1664 
1665 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1666 		pool->process_prepared_discard(m);
1667 }
1668 
1669 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1670 				 struct bio *bio)
1671 {
1672 	struct pool *pool = tc->pool;
1673 
1674 	int r;
1675 	bool maybe_shared;
1676 	struct dm_cell_key data_key;
1677 	struct dm_bio_prison_cell *data_cell;
1678 	struct dm_thin_new_mapping *m;
1679 	dm_block_t virt_begin, virt_end, data_begin, data_end;
1680 	dm_block_t len, next_boundary;
1681 
1682 	while (begin != end) {
1683 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1684 					      &data_begin, &maybe_shared);
1685 		if (r) {
1686 			/*
1687 			 * Silently fail, letting any mappings we've
1688 			 * created complete.
1689 			 */
1690 			break;
1691 		}
1692 
1693 		data_end = data_begin + (virt_end - virt_begin);
1694 
1695 		/*
1696 		 * Make sure the data region obeys the bio prison restrictions.
1697 		 */
1698 		while (data_begin < data_end) {
1699 			r = ensure_next_mapping(pool);
1700 			if (r)
1701 				return; /* we did our best */
1702 
1703 			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1704 				<< BIO_PRISON_MAX_RANGE_SHIFT;
1705 			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1706 
1707 			/* This key is certainly within range given the above splitting */
1708 			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1709 			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1710 				/* contention, we'll give up with this range */
1711 				data_begin += len;
1712 				continue;
1713 			}
1714 
1715 			/*
1716 			 * IO may still be going to the destination block.  We must
1717 			 * quiesce before we can do the removal.
1718 			 */
1719 			m = get_next_mapping(pool);
1720 			m->tc = tc;
1721 			m->maybe_shared = maybe_shared;
1722 			m->virt_begin = virt_begin;
1723 			m->virt_end = virt_begin + len;
1724 			m->data_block = data_begin;
1725 			m->cell = data_cell;
1726 			m->bio = bio;
1727 
1728 			/*
1729 			 * The parent bio must not complete before sub discard bios are
1730 			 * chained to it (see end_discard's bio_chain)!
1731 			 *
1732 			 * This per-mapping bi_remaining increment is paired with
1733 			 * the implicit decrement that occurs via bio_endio() in
1734 			 * end_discard().
1735 			 */
1736 			bio_inc_remaining(bio);
1737 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1738 				pool->process_prepared_discard(m);
1739 
1740 			virt_begin += len;
1741 			data_begin += len;
1742 		}
1743 
1744 		begin = virt_end;
1745 	}
1746 }
1747 
1748 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1749 {
1750 	struct bio *bio = virt_cell->holder;
1751 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1752 
1753 	/*
1754 	 * The virt_cell will only get freed once the origin bio completes.
1755 	 * This means it will remain locked while all the individual
1756 	 * passdown bios are in flight.
1757 	 */
1758 	h->cell = virt_cell;
1759 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1760 
1761 	/*
1762 	 * We complete the bio now, knowing that the bi_remaining field
1763 	 * will prevent completion until the sub range discards have
1764 	 * completed.
1765 	 */
1766 	bio_endio(bio);
1767 }
1768 
1769 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1770 {
1771 	dm_block_t begin, end;
1772 	struct dm_cell_key virt_key;
1773 	struct dm_bio_prison_cell *virt_cell;
1774 
1775 	get_bio_block_range(tc, bio, &begin, &end);
1776 	if (begin == end) {
1777 		/*
1778 		 * The discard covers less than a block.
1779 		 */
1780 		bio_endio(bio);
1781 		return;
1782 	}
1783 
1784 	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1785 		DMERR_LIMIT("Discard doesn't respect bio prison limits");
1786 		bio_endio(bio);
1787 		return;
1788 	}
1789 
1790 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1791 		/*
1792 		 * Potential starvation issue: We're relying on the
1793 		 * fs/application being well behaved, and not trying to
1794 		 * send IO to a region at the same time as discarding it.
1795 		 * If they do this persistently then it's possible this
1796 		 * cell will never be granted.
1797 		 */
1798 		return;
1799 	}
1800 
1801 	tc->pool->process_discard_cell(tc, virt_cell);
1802 }
1803 
1804 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1805 			  struct dm_cell_key *key,
1806 			  struct dm_thin_lookup_result *lookup_result,
1807 			  struct dm_bio_prison_cell *cell)
1808 {
1809 	int r;
1810 	dm_block_t data_block;
1811 	struct pool *pool = tc->pool;
1812 
1813 	r = alloc_data_block(tc, &data_block);
1814 	switch (r) {
1815 	case 0:
1816 		schedule_internal_copy(tc, block, lookup_result->block,
1817 				       data_block, cell, bio);
1818 		break;
1819 
1820 	case -ENOSPC:
1821 		retry_bios_on_resume(pool, cell);
1822 		break;
1823 
1824 	default:
1825 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1826 			    __func__, r);
1827 		cell_error(pool, cell);
1828 		break;
1829 	}
1830 }
1831 
1832 static void __remap_and_issue_shared_cell(void *context,
1833 					  struct dm_bio_prison_cell *cell)
1834 {
1835 	struct remap_info *info = context;
1836 	struct bio *bio;
1837 
1838 	while ((bio = bio_list_pop(&cell->bios))) {
1839 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1840 		    bio_op(bio) == REQ_OP_DISCARD)
1841 			bio_list_add(&info->defer_bios, bio);
1842 		else {
1843 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1844 
1845 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1846 			inc_all_io_entry(info->tc->pool, bio);
1847 			bio_list_add(&info->issue_bios, bio);
1848 		}
1849 	}
1850 }
1851 
1852 static void remap_and_issue_shared_cell(struct thin_c *tc,
1853 					struct dm_bio_prison_cell *cell,
1854 					dm_block_t block)
1855 {
1856 	struct bio *bio;
1857 	struct remap_info info;
1858 
1859 	info.tc = tc;
1860 	bio_list_init(&info.defer_bios);
1861 	bio_list_init(&info.issue_bios);
1862 
1863 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1864 			   &info, cell);
1865 
1866 	while ((bio = bio_list_pop(&info.defer_bios)))
1867 		thin_defer_bio(tc, bio);
1868 
1869 	while ((bio = bio_list_pop(&info.issue_bios)))
1870 		remap_and_issue(tc, bio, block);
1871 }
1872 
1873 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1874 			       dm_block_t block,
1875 			       struct dm_thin_lookup_result *lookup_result,
1876 			       struct dm_bio_prison_cell *virt_cell)
1877 {
1878 	struct dm_bio_prison_cell *data_cell;
1879 	struct pool *pool = tc->pool;
1880 	struct dm_cell_key key;
1881 
1882 	/*
1883 	 * If cell is already occupied, then sharing is already in the process
1884 	 * of being broken so we have nothing further to do here.
1885 	 */
1886 	build_data_key(tc->td, lookup_result->block, &key);
1887 	if (bio_detain(pool, &key, bio, &data_cell)) {
1888 		cell_defer_no_holder(tc, virt_cell);
1889 		return;
1890 	}
1891 
1892 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1893 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1894 		cell_defer_no_holder(tc, virt_cell);
1895 	} else {
1896 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1897 
1898 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1899 		inc_all_io_entry(pool, bio);
1900 		remap_and_issue(tc, bio, lookup_result->block);
1901 
1902 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1903 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1904 	}
1905 }
1906 
1907 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1908 			    struct dm_bio_prison_cell *cell)
1909 {
1910 	int r;
1911 	dm_block_t data_block;
1912 	struct pool *pool = tc->pool;
1913 
1914 	/*
1915 	 * Remap empty bios (flushes) immediately, without provisioning.
1916 	 */
1917 	if (!bio->bi_iter.bi_size) {
1918 		inc_all_io_entry(pool, bio);
1919 		cell_defer_no_holder(tc, cell);
1920 
1921 		remap_and_issue(tc, bio, 0);
1922 		return;
1923 	}
1924 
1925 	/*
1926 	 * Fill read bios with zeroes and complete them immediately.
1927 	 */
1928 	if (bio_data_dir(bio) == READ) {
1929 		zero_fill_bio(bio);
1930 		cell_defer_no_holder(tc, cell);
1931 		bio_endio(bio);
1932 		return;
1933 	}
1934 
1935 	r = alloc_data_block(tc, &data_block);
1936 	switch (r) {
1937 	case 0:
1938 		if (tc->origin_dev)
1939 			schedule_external_copy(tc, block, data_block, cell, bio);
1940 		else
1941 			schedule_zero(tc, block, data_block, cell, bio);
1942 		break;
1943 
1944 	case -ENOSPC:
1945 		retry_bios_on_resume(pool, cell);
1946 		break;
1947 
1948 	default:
1949 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1950 			    __func__, r);
1951 		cell_error(pool, cell);
1952 		break;
1953 	}
1954 }
1955 
1956 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1957 {
1958 	int r;
1959 	struct pool *pool = tc->pool;
1960 	struct bio *bio = cell->holder;
1961 	dm_block_t block = get_bio_block(tc, bio);
1962 	struct dm_thin_lookup_result lookup_result;
1963 
1964 	if (tc->requeue_mode) {
1965 		cell_requeue(pool, cell);
1966 		return;
1967 	}
1968 
1969 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1970 	switch (r) {
1971 	case 0:
1972 		if (lookup_result.shared)
1973 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1974 		else {
1975 			inc_all_io_entry(pool, bio);
1976 			remap_and_issue(tc, bio, lookup_result.block);
1977 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1978 		}
1979 		break;
1980 
1981 	case -ENODATA:
1982 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1983 			inc_all_io_entry(pool, bio);
1984 			cell_defer_no_holder(tc, cell);
1985 
1986 			if (bio_end_sector(bio) <= tc->origin_size)
1987 				remap_to_origin_and_issue(tc, bio);
1988 
1989 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1990 				zero_fill_bio(bio);
1991 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1992 				remap_to_origin_and_issue(tc, bio);
1993 
1994 			} else {
1995 				zero_fill_bio(bio);
1996 				bio_endio(bio);
1997 			}
1998 		} else
1999 			provision_block(tc, bio, block, cell);
2000 		break;
2001 
2002 	default:
2003 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2004 			    __func__, r);
2005 		cell_defer_no_holder(tc, cell);
2006 		bio_io_error(bio);
2007 		break;
2008 	}
2009 }
2010 
2011 static void process_bio(struct thin_c *tc, struct bio *bio)
2012 {
2013 	struct pool *pool = tc->pool;
2014 	dm_block_t block = get_bio_block(tc, bio);
2015 	struct dm_bio_prison_cell *cell;
2016 	struct dm_cell_key key;
2017 
2018 	/*
2019 	 * If cell is already occupied, then the block is already
2020 	 * being provisioned so we have nothing further to do here.
2021 	 */
2022 	build_virtual_key(tc->td, block, &key);
2023 	if (bio_detain(pool, &key, bio, &cell))
2024 		return;
2025 
2026 	process_cell(tc, cell);
2027 }
2028 
2029 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2030 				    struct dm_bio_prison_cell *cell)
2031 {
2032 	int r;
2033 	int rw = bio_data_dir(bio);
2034 	dm_block_t block = get_bio_block(tc, bio);
2035 	struct dm_thin_lookup_result lookup_result;
2036 
2037 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2038 	switch (r) {
2039 	case 0:
2040 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2041 			handle_unserviceable_bio(tc->pool, bio);
2042 			if (cell)
2043 				cell_defer_no_holder(tc, cell);
2044 		} else {
2045 			inc_all_io_entry(tc->pool, bio);
2046 			remap_and_issue(tc, bio, lookup_result.block);
2047 			if (cell)
2048 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2049 		}
2050 		break;
2051 
2052 	case -ENODATA:
2053 		if (cell)
2054 			cell_defer_no_holder(tc, cell);
2055 		if (rw != READ) {
2056 			handle_unserviceable_bio(tc->pool, bio);
2057 			break;
2058 		}
2059 
2060 		if (tc->origin_dev) {
2061 			inc_all_io_entry(tc->pool, bio);
2062 			remap_to_origin_and_issue(tc, bio);
2063 			break;
2064 		}
2065 
2066 		zero_fill_bio(bio);
2067 		bio_endio(bio);
2068 		break;
2069 
2070 	default:
2071 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2072 			    __func__, r);
2073 		if (cell)
2074 			cell_defer_no_holder(tc, cell);
2075 		bio_io_error(bio);
2076 		break;
2077 	}
2078 }
2079 
2080 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2081 {
2082 	__process_bio_read_only(tc, bio, NULL);
2083 }
2084 
2085 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2086 {
2087 	__process_bio_read_only(tc, cell->holder, cell);
2088 }
2089 
2090 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2091 {
2092 	bio_endio(bio);
2093 }
2094 
2095 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2096 {
2097 	bio_io_error(bio);
2098 }
2099 
2100 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2101 {
2102 	cell_success(tc->pool, cell);
2103 }
2104 
2105 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2106 {
2107 	cell_error(tc->pool, cell);
2108 }
2109 
2110 /*
2111  * FIXME: should we also commit due to size of transaction, measured in
2112  * metadata blocks?
2113  */
2114 static int need_commit_due_to_time(struct pool *pool)
2115 {
2116 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2117 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2118 }
2119 
2120 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2121 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2122 
2123 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2124 {
2125 	struct rb_node **rbp, *parent;
2126 	struct dm_thin_endio_hook *pbd;
2127 	sector_t bi_sector = bio->bi_iter.bi_sector;
2128 
2129 	rbp = &tc->sort_bio_list.rb_node;
2130 	parent = NULL;
2131 	while (*rbp) {
2132 		parent = *rbp;
2133 		pbd = thin_pbd(parent);
2134 
2135 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2136 			rbp = &(*rbp)->rb_left;
2137 		else
2138 			rbp = &(*rbp)->rb_right;
2139 	}
2140 
2141 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2142 	rb_link_node(&pbd->rb_node, parent, rbp);
2143 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2144 }
2145 
2146 static void __extract_sorted_bios(struct thin_c *tc)
2147 {
2148 	struct rb_node *node;
2149 	struct dm_thin_endio_hook *pbd;
2150 	struct bio *bio;
2151 
2152 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2153 		pbd = thin_pbd(node);
2154 		bio = thin_bio(pbd);
2155 
2156 		bio_list_add(&tc->deferred_bio_list, bio);
2157 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2158 	}
2159 
2160 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2161 }
2162 
2163 static void __sort_thin_deferred_bios(struct thin_c *tc)
2164 {
2165 	struct bio *bio;
2166 	struct bio_list bios;
2167 
2168 	bio_list_init(&bios);
2169 	bio_list_merge(&bios, &tc->deferred_bio_list);
2170 	bio_list_init(&tc->deferred_bio_list);
2171 
2172 	/* Sort deferred_bio_list using rb-tree */
2173 	while ((bio = bio_list_pop(&bios)))
2174 		__thin_bio_rb_add(tc, bio);
2175 
2176 	/*
2177 	 * Transfer the sorted bios in sort_bio_list back to
2178 	 * deferred_bio_list to allow lockless submission of
2179 	 * all bios.
2180 	 */
2181 	__extract_sorted_bios(tc);
2182 }
2183 
2184 static void process_thin_deferred_bios(struct thin_c *tc)
2185 {
2186 	struct pool *pool = tc->pool;
2187 	struct bio *bio;
2188 	struct bio_list bios;
2189 	struct blk_plug plug;
2190 	unsigned int count = 0;
2191 
2192 	if (tc->requeue_mode) {
2193 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2194 				BLK_STS_DM_REQUEUE);
2195 		return;
2196 	}
2197 
2198 	bio_list_init(&bios);
2199 
2200 	spin_lock_irq(&tc->lock);
2201 
2202 	if (bio_list_empty(&tc->deferred_bio_list)) {
2203 		spin_unlock_irq(&tc->lock);
2204 		return;
2205 	}
2206 
2207 	__sort_thin_deferred_bios(tc);
2208 
2209 	bio_list_merge(&bios, &tc->deferred_bio_list);
2210 	bio_list_init(&tc->deferred_bio_list);
2211 
2212 	spin_unlock_irq(&tc->lock);
2213 
2214 	blk_start_plug(&plug);
2215 	while ((bio = bio_list_pop(&bios))) {
2216 		/*
2217 		 * If we've got no free new_mapping structs, and processing
2218 		 * this bio might require one, we pause until there are some
2219 		 * prepared mappings to process.
2220 		 */
2221 		if (ensure_next_mapping(pool)) {
2222 			spin_lock_irq(&tc->lock);
2223 			bio_list_add(&tc->deferred_bio_list, bio);
2224 			bio_list_merge(&tc->deferred_bio_list, &bios);
2225 			spin_unlock_irq(&tc->lock);
2226 			break;
2227 		}
2228 
2229 		if (bio_op(bio) == REQ_OP_DISCARD)
2230 			pool->process_discard(tc, bio);
2231 		else
2232 			pool->process_bio(tc, bio);
2233 
2234 		if ((count++ & 127) == 0) {
2235 			throttle_work_update(&pool->throttle);
2236 			dm_pool_issue_prefetches(pool->pmd);
2237 		}
2238 		cond_resched();
2239 	}
2240 	blk_finish_plug(&plug);
2241 }
2242 
2243 static int cmp_cells(const void *lhs, const void *rhs)
2244 {
2245 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2246 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2247 
2248 	BUG_ON(!lhs_cell->holder);
2249 	BUG_ON(!rhs_cell->holder);
2250 
2251 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2252 		return -1;
2253 
2254 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2255 		return 1;
2256 
2257 	return 0;
2258 }
2259 
2260 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2261 {
2262 	unsigned int count = 0;
2263 	struct dm_bio_prison_cell *cell, *tmp;
2264 
2265 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2266 		if (count >= CELL_SORT_ARRAY_SIZE)
2267 			break;
2268 
2269 		pool->cell_sort_array[count++] = cell;
2270 		list_del(&cell->user_list);
2271 	}
2272 
2273 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2274 
2275 	return count;
2276 }
2277 
2278 static void process_thin_deferred_cells(struct thin_c *tc)
2279 {
2280 	struct pool *pool = tc->pool;
2281 	struct list_head cells;
2282 	struct dm_bio_prison_cell *cell;
2283 	unsigned int i, j, count;
2284 
2285 	INIT_LIST_HEAD(&cells);
2286 
2287 	spin_lock_irq(&tc->lock);
2288 	list_splice_init(&tc->deferred_cells, &cells);
2289 	spin_unlock_irq(&tc->lock);
2290 
2291 	if (list_empty(&cells))
2292 		return;
2293 
2294 	do {
2295 		count = sort_cells(tc->pool, &cells);
2296 
2297 		for (i = 0; i < count; i++) {
2298 			cell = pool->cell_sort_array[i];
2299 			BUG_ON(!cell->holder);
2300 
2301 			/*
2302 			 * If we've got no free new_mapping structs, and processing
2303 			 * this bio might require one, we pause until there are some
2304 			 * prepared mappings to process.
2305 			 */
2306 			if (ensure_next_mapping(pool)) {
2307 				for (j = i; j < count; j++)
2308 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2309 
2310 				spin_lock_irq(&tc->lock);
2311 				list_splice(&cells, &tc->deferred_cells);
2312 				spin_unlock_irq(&tc->lock);
2313 				return;
2314 			}
2315 
2316 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2317 				pool->process_discard_cell(tc, cell);
2318 			else
2319 				pool->process_cell(tc, cell);
2320 		}
2321 		cond_resched();
2322 	} while (!list_empty(&cells));
2323 }
2324 
2325 static void thin_get(struct thin_c *tc);
2326 static void thin_put(struct thin_c *tc);
2327 
2328 /*
2329  * We can't hold rcu_read_lock() around code that can block.  So we
2330  * find a thin with the rcu lock held; bump a refcount; then drop
2331  * the lock.
2332  */
2333 static struct thin_c *get_first_thin(struct pool *pool)
2334 {
2335 	struct thin_c *tc = NULL;
2336 
2337 	rcu_read_lock();
2338 	if (!list_empty(&pool->active_thins)) {
2339 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2340 		thin_get(tc);
2341 	}
2342 	rcu_read_unlock();
2343 
2344 	return tc;
2345 }
2346 
2347 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2348 {
2349 	struct thin_c *old_tc = tc;
2350 
2351 	rcu_read_lock();
2352 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2353 		thin_get(tc);
2354 		thin_put(old_tc);
2355 		rcu_read_unlock();
2356 		return tc;
2357 	}
2358 	thin_put(old_tc);
2359 	rcu_read_unlock();
2360 
2361 	return NULL;
2362 }
2363 
2364 static void process_deferred_bios(struct pool *pool)
2365 {
2366 	struct bio *bio;
2367 	struct bio_list bios, bio_completions;
2368 	struct thin_c *tc;
2369 
2370 	tc = get_first_thin(pool);
2371 	while (tc) {
2372 		process_thin_deferred_cells(tc);
2373 		process_thin_deferred_bios(tc);
2374 		tc = get_next_thin(pool, tc);
2375 	}
2376 
2377 	/*
2378 	 * If there are any deferred flush bios, we must commit the metadata
2379 	 * before issuing them or signaling their completion.
2380 	 */
2381 	bio_list_init(&bios);
2382 	bio_list_init(&bio_completions);
2383 
2384 	spin_lock_irq(&pool->lock);
2385 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2386 	bio_list_init(&pool->deferred_flush_bios);
2387 
2388 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2389 	bio_list_init(&pool->deferred_flush_completions);
2390 	spin_unlock_irq(&pool->lock);
2391 
2392 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2393 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2394 		return;
2395 
2396 	if (commit(pool)) {
2397 		bio_list_merge(&bios, &bio_completions);
2398 
2399 		while ((bio = bio_list_pop(&bios)))
2400 			bio_io_error(bio);
2401 		return;
2402 	}
2403 	pool->last_commit_jiffies = jiffies;
2404 
2405 	while ((bio = bio_list_pop(&bio_completions)))
2406 		bio_endio(bio);
2407 
2408 	while ((bio = bio_list_pop(&bios))) {
2409 		/*
2410 		 * The data device was flushed as part of metadata commit,
2411 		 * so complete redundant flushes immediately.
2412 		 */
2413 		if (bio->bi_opf & REQ_PREFLUSH)
2414 			bio_endio(bio);
2415 		else
2416 			dm_submit_bio_remap(bio, NULL);
2417 	}
2418 }
2419 
2420 static void do_worker(struct work_struct *ws)
2421 {
2422 	struct pool *pool = container_of(ws, struct pool, worker);
2423 
2424 	throttle_work_start(&pool->throttle);
2425 	dm_pool_issue_prefetches(pool->pmd);
2426 	throttle_work_update(&pool->throttle);
2427 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2428 	throttle_work_update(&pool->throttle);
2429 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2430 	throttle_work_update(&pool->throttle);
2431 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2432 	throttle_work_update(&pool->throttle);
2433 	process_deferred_bios(pool);
2434 	throttle_work_complete(&pool->throttle);
2435 }
2436 
2437 /*
2438  * We want to commit periodically so that not too much
2439  * unwritten data builds up.
2440  */
2441 static void do_waker(struct work_struct *ws)
2442 {
2443 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2444 
2445 	wake_worker(pool);
2446 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2447 }
2448 
2449 /*
2450  * We're holding onto IO to allow userland time to react.  After the
2451  * timeout either the pool will have been resized (and thus back in
2452  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2453  */
2454 static void do_no_space_timeout(struct work_struct *ws)
2455 {
2456 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2457 					 no_space_timeout);
2458 
2459 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2460 		pool->pf.error_if_no_space = true;
2461 		notify_of_pool_mode_change(pool);
2462 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2463 	}
2464 }
2465 
2466 /*----------------------------------------------------------------*/
2467 
2468 struct pool_work {
2469 	struct work_struct worker;
2470 	struct completion complete;
2471 };
2472 
2473 static struct pool_work *to_pool_work(struct work_struct *ws)
2474 {
2475 	return container_of(ws, struct pool_work, worker);
2476 }
2477 
2478 static void pool_work_complete(struct pool_work *pw)
2479 {
2480 	complete(&pw->complete);
2481 }
2482 
2483 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2484 			   void (*fn)(struct work_struct *))
2485 {
2486 	INIT_WORK_ONSTACK(&pw->worker, fn);
2487 	init_completion(&pw->complete);
2488 	queue_work(pool->wq, &pw->worker);
2489 	wait_for_completion(&pw->complete);
2490 }
2491 
2492 /*----------------------------------------------------------------*/
2493 
2494 struct noflush_work {
2495 	struct pool_work pw;
2496 	struct thin_c *tc;
2497 };
2498 
2499 static struct noflush_work *to_noflush(struct work_struct *ws)
2500 {
2501 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2502 }
2503 
2504 static void do_noflush_start(struct work_struct *ws)
2505 {
2506 	struct noflush_work *w = to_noflush(ws);
2507 
2508 	w->tc->requeue_mode = true;
2509 	requeue_io(w->tc);
2510 	pool_work_complete(&w->pw);
2511 }
2512 
2513 static void do_noflush_stop(struct work_struct *ws)
2514 {
2515 	struct noflush_work *w = to_noflush(ws);
2516 
2517 	w->tc->requeue_mode = false;
2518 	pool_work_complete(&w->pw);
2519 }
2520 
2521 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2522 {
2523 	struct noflush_work w;
2524 
2525 	w.tc = tc;
2526 	pool_work_wait(&w.pw, tc->pool, fn);
2527 }
2528 
2529 /*----------------------------------------------------------------*/
2530 
2531 static bool passdown_enabled(struct pool_c *pt)
2532 {
2533 	return pt->adjusted_pf.discard_passdown;
2534 }
2535 
2536 static void set_discard_callbacks(struct pool *pool)
2537 {
2538 	struct pool_c *pt = pool->ti->private;
2539 
2540 	if (passdown_enabled(pt)) {
2541 		pool->process_discard_cell = process_discard_cell_passdown;
2542 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2543 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2544 	} else {
2545 		pool->process_discard_cell = process_discard_cell_no_passdown;
2546 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2547 	}
2548 }
2549 
2550 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2551 {
2552 	struct pool_c *pt = pool->ti->private;
2553 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2554 	enum pool_mode old_mode = get_pool_mode(pool);
2555 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2556 
2557 	/*
2558 	 * Never allow the pool to transition to PM_WRITE mode if user
2559 	 * intervention is required to verify metadata and data consistency.
2560 	 */
2561 	if (new_mode == PM_WRITE && needs_check) {
2562 		DMERR("%s: unable to switch pool to write mode until repaired.",
2563 		      dm_device_name(pool->pool_md));
2564 		if (old_mode != new_mode)
2565 			new_mode = old_mode;
2566 		else
2567 			new_mode = PM_READ_ONLY;
2568 	}
2569 	/*
2570 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2571 	 * not going to recover without a thin_repair.	So we never let the
2572 	 * pool move out of the old mode.
2573 	 */
2574 	if (old_mode == PM_FAIL)
2575 		new_mode = old_mode;
2576 
2577 	switch (new_mode) {
2578 	case PM_FAIL:
2579 		dm_pool_metadata_read_only(pool->pmd);
2580 		pool->process_bio = process_bio_fail;
2581 		pool->process_discard = process_bio_fail;
2582 		pool->process_cell = process_cell_fail;
2583 		pool->process_discard_cell = process_cell_fail;
2584 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2585 		pool->process_prepared_discard = process_prepared_discard_fail;
2586 
2587 		error_retry_list(pool);
2588 		break;
2589 
2590 	case PM_OUT_OF_METADATA_SPACE:
2591 	case PM_READ_ONLY:
2592 		dm_pool_metadata_read_only(pool->pmd);
2593 		pool->process_bio = process_bio_read_only;
2594 		pool->process_discard = process_bio_success;
2595 		pool->process_cell = process_cell_read_only;
2596 		pool->process_discard_cell = process_cell_success;
2597 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2598 		pool->process_prepared_discard = process_prepared_discard_success;
2599 
2600 		error_retry_list(pool);
2601 		break;
2602 
2603 	case PM_OUT_OF_DATA_SPACE:
2604 		/*
2605 		 * Ideally we'd never hit this state; the low water mark
2606 		 * would trigger userland to extend the pool before we
2607 		 * completely run out of data space.  However, many small
2608 		 * IOs to unprovisioned space can consume data space at an
2609 		 * alarming rate.  Adjust your low water mark if you're
2610 		 * frequently seeing this mode.
2611 		 */
2612 		pool->out_of_data_space = true;
2613 		pool->process_bio = process_bio_read_only;
2614 		pool->process_discard = process_discard_bio;
2615 		pool->process_cell = process_cell_read_only;
2616 		pool->process_prepared_mapping = process_prepared_mapping;
2617 		set_discard_callbacks(pool);
2618 
2619 		if (!pool->pf.error_if_no_space && no_space_timeout)
2620 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2621 		break;
2622 
2623 	case PM_WRITE:
2624 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2625 			cancel_delayed_work_sync(&pool->no_space_timeout);
2626 		pool->out_of_data_space = false;
2627 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2628 		dm_pool_metadata_read_write(pool->pmd);
2629 		pool->process_bio = process_bio;
2630 		pool->process_discard = process_discard_bio;
2631 		pool->process_cell = process_cell;
2632 		pool->process_prepared_mapping = process_prepared_mapping;
2633 		set_discard_callbacks(pool);
2634 		break;
2635 	}
2636 
2637 	pool->pf.mode = new_mode;
2638 	/*
2639 	 * The pool mode may have changed, sync it so bind_control_target()
2640 	 * doesn't cause an unexpected mode transition on resume.
2641 	 */
2642 	pt->adjusted_pf.mode = new_mode;
2643 
2644 	if (old_mode != new_mode)
2645 		notify_of_pool_mode_change(pool);
2646 }
2647 
2648 static void abort_transaction(struct pool *pool)
2649 {
2650 	const char *dev_name = dm_device_name(pool->pool_md);
2651 
2652 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2653 	if (dm_pool_abort_metadata(pool->pmd)) {
2654 		DMERR("%s: failed to abort metadata transaction", dev_name);
2655 		set_pool_mode(pool, PM_FAIL);
2656 	}
2657 
2658 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2659 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2660 		set_pool_mode(pool, PM_FAIL);
2661 	}
2662 }
2663 
2664 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2665 {
2666 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2667 		    dm_device_name(pool->pool_md), op, r);
2668 
2669 	abort_transaction(pool);
2670 	set_pool_mode(pool, PM_READ_ONLY);
2671 }
2672 
2673 /*----------------------------------------------------------------*/
2674 
2675 /*
2676  * Mapping functions.
2677  */
2678 
2679 /*
2680  * Called only while mapping a thin bio to hand it over to the workqueue.
2681  */
2682 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2683 {
2684 	struct pool *pool = tc->pool;
2685 
2686 	spin_lock_irq(&tc->lock);
2687 	bio_list_add(&tc->deferred_bio_list, bio);
2688 	spin_unlock_irq(&tc->lock);
2689 
2690 	wake_worker(pool);
2691 }
2692 
2693 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2694 {
2695 	struct pool *pool = tc->pool;
2696 
2697 	throttle_lock(&pool->throttle);
2698 	thin_defer_bio(tc, bio);
2699 	throttle_unlock(&pool->throttle);
2700 }
2701 
2702 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2703 {
2704 	struct pool *pool = tc->pool;
2705 
2706 	throttle_lock(&pool->throttle);
2707 	spin_lock_irq(&tc->lock);
2708 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2709 	spin_unlock_irq(&tc->lock);
2710 	throttle_unlock(&pool->throttle);
2711 
2712 	wake_worker(pool);
2713 }
2714 
2715 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2716 {
2717 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2718 
2719 	h->tc = tc;
2720 	h->shared_read_entry = NULL;
2721 	h->all_io_entry = NULL;
2722 	h->overwrite_mapping = NULL;
2723 	h->cell = NULL;
2724 }
2725 
2726 /*
2727  * Non-blocking function called from the thin target's map function.
2728  */
2729 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2730 {
2731 	int r;
2732 	struct thin_c *tc = ti->private;
2733 	dm_block_t block = get_bio_block(tc, bio);
2734 	struct dm_thin_device *td = tc->td;
2735 	struct dm_thin_lookup_result result;
2736 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2737 	struct dm_cell_key key;
2738 
2739 	thin_hook_bio(tc, bio);
2740 
2741 	if (tc->requeue_mode) {
2742 		bio->bi_status = BLK_STS_DM_REQUEUE;
2743 		bio_endio(bio);
2744 		return DM_MAPIO_SUBMITTED;
2745 	}
2746 
2747 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2748 		bio_io_error(bio);
2749 		return DM_MAPIO_SUBMITTED;
2750 	}
2751 
2752 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2753 		thin_defer_bio_with_throttle(tc, bio);
2754 		return DM_MAPIO_SUBMITTED;
2755 	}
2756 
2757 	/*
2758 	 * We must hold the virtual cell before doing the lookup, otherwise
2759 	 * there's a race with discard.
2760 	 */
2761 	build_virtual_key(tc->td, block, &key);
2762 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2763 		return DM_MAPIO_SUBMITTED;
2764 
2765 	r = dm_thin_find_block(td, block, 0, &result);
2766 
2767 	/*
2768 	 * Note that we defer readahead too.
2769 	 */
2770 	switch (r) {
2771 	case 0:
2772 		if (unlikely(result.shared)) {
2773 			/*
2774 			 * We have a race condition here between the
2775 			 * result.shared value returned by the lookup and
2776 			 * snapshot creation, which may cause new
2777 			 * sharing.
2778 			 *
2779 			 * To avoid this always quiesce the origin before
2780 			 * taking the snap.  You want to do this anyway to
2781 			 * ensure a consistent application view
2782 			 * (i.e. lockfs).
2783 			 *
2784 			 * More distant ancestors are irrelevant. The
2785 			 * shared flag will be set in their case.
2786 			 */
2787 			thin_defer_cell(tc, virt_cell);
2788 			return DM_MAPIO_SUBMITTED;
2789 		}
2790 
2791 		build_data_key(tc->td, result.block, &key);
2792 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2793 			cell_defer_no_holder(tc, virt_cell);
2794 			return DM_MAPIO_SUBMITTED;
2795 		}
2796 
2797 		inc_all_io_entry(tc->pool, bio);
2798 		cell_defer_no_holder(tc, data_cell);
2799 		cell_defer_no_holder(tc, virt_cell);
2800 
2801 		remap(tc, bio, result.block);
2802 		return DM_MAPIO_REMAPPED;
2803 
2804 	case -ENODATA:
2805 	case -EWOULDBLOCK:
2806 		thin_defer_cell(tc, virt_cell);
2807 		return DM_MAPIO_SUBMITTED;
2808 
2809 	default:
2810 		/*
2811 		 * Must always call bio_io_error on failure.
2812 		 * dm_thin_find_block can fail with -EINVAL if the
2813 		 * pool is switched to fail-io mode.
2814 		 */
2815 		bio_io_error(bio);
2816 		cell_defer_no_holder(tc, virt_cell);
2817 		return DM_MAPIO_SUBMITTED;
2818 	}
2819 }
2820 
2821 static void requeue_bios(struct pool *pool)
2822 {
2823 	struct thin_c *tc;
2824 
2825 	rcu_read_lock();
2826 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2827 		spin_lock_irq(&tc->lock);
2828 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2829 		bio_list_init(&tc->retry_on_resume_list);
2830 		spin_unlock_irq(&tc->lock);
2831 	}
2832 	rcu_read_unlock();
2833 }
2834 
2835 /*
2836  *--------------------------------------------------------------
2837  * Binding of control targets to a pool object
2838  *--------------------------------------------------------------
2839  */
2840 static bool is_factor(sector_t block_size, uint32_t n)
2841 {
2842 	return !sector_div(block_size, n);
2843 }
2844 
2845 /*
2846  * If discard_passdown was enabled verify that the data device
2847  * supports discards.  Disable discard_passdown if not.
2848  */
2849 static void disable_passdown_if_not_supported(struct pool_c *pt)
2850 {
2851 	struct pool *pool = pt->pool;
2852 	struct block_device *data_bdev = pt->data_dev->bdev;
2853 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2854 	const char *reason = NULL;
2855 
2856 	if (!pt->adjusted_pf.discard_passdown)
2857 		return;
2858 
2859 	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2860 		reason = "discard unsupported";
2861 
2862 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2863 		reason = "max discard sectors smaller than a block";
2864 
2865 	if (reason) {
2866 		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2867 		pt->adjusted_pf.discard_passdown = false;
2868 	}
2869 }
2870 
2871 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2872 {
2873 	struct pool_c *pt = ti->private;
2874 
2875 	/*
2876 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2877 	 */
2878 	enum pool_mode old_mode = get_pool_mode(pool);
2879 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2880 
2881 	/*
2882 	 * Don't change the pool's mode until set_pool_mode() below.
2883 	 * Otherwise the pool's process_* function pointers may
2884 	 * not match the desired pool mode.
2885 	 */
2886 	pt->adjusted_pf.mode = old_mode;
2887 
2888 	pool->ti = ti;
2889 	pool->pf = pt->adjusted_pf;
2890 	pool->low_water_blocks = pt->low_water_blocks;
2891 
2892 	set_pool_mode(pool, new_mode);
2893 
2894 	return 0;
2895 }
2896 
2897 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2898 {
2899 	if (pool->ti == ti)
2900 		pool->ti = NULL;
2901 }
2902 
2903 /*
2904  *--------------------------------------------------------------
2905  * Pool creation
2906  *--------------------------------------------------------------
2907  */
2908 /* Initialize pool features. */
2909 static void pool_features_init(struct pool_features *pf)
2910 {
2911 	pf->mode = PM_WRITE;
2912 	pf->zero_new_blocks = true;
2913 	pf->discard_enabled = true;
2914 	pf->discard_passdown = true;
2915 	pf->error_if_no_space = false;
2916 }
2917 
2918 static void __pool_destroy(struct pool *pool)
2919 {
2920 	__pool_table_remove(pool);
2921 
2922 	vfree(pool->cell_sort_array);
2923 	if (dm_pool_metadata_close(pool->pmd) < 0)
2924 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2925 
2926 	dm_bio_prison_destroy(pool->prison);
2927 	dm_kcopyd_client_destroy(pool->copier);
2928 
2929 	cancel_delayed_work_sync(&pool->waker);
2930 	cancel_delayed_work_sync(&pool->no_space_timeout);
2931 	if (pool->wq)
2932 		destroy_workqueue(pool->wq);
2933 
2934 	if (pool->next_mapping)
2935 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2936 	mempool_exit(&pool->mapping_pool);
2937 	dm_deferred_set_destroy(pool->shared_read_ds);
2938 	dm_deferred_set_destroy(pool->all_io_ds);
2939 	kfree(pool);
2940 }
2941 
2942 static struct kmem_cache *_new_mapping_cache;
2943 
2944 static struct pool *pool_create(struct mapped_device *pool_md,
2945 				struct block_device *metadata_dev,
2946 				struct block_device *data_dev,
2947 				unsigned long block_size,
2948 				int read_only, char **error)
2949 {
2950 	int r;
2951 	void *err_p;
2952 	struct pool *pool;
2953 	struct dm_pool_metadata *pmd;
2954 	bool format_device = read_only ? false : true;
2955 
2956 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2957 	if (IS_ERR(pmd)) {
2958 		*error = "Error creating metadata object";
2959 		return (struct pool *)pmd;
2960 	}
2961 
2962 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2963 	if (!pool) {
2964 		*error = "Error allocating memory for pool";
2965 		err_p = ERR_PTR(-ENOMEM);
2966 		goto bad_pool;
2967 	}
2968 
2969 	pool->pmd = pmd;
2970 	pool->sectors_per_block = block_size;
2971 	if (block_size & (block_size - 1))
2972 		pool->sectors_per_block_shift = -1;
2973 	else
2974 		pool->sectors_per_block_shift = __ffs(block_size);
2975 	pool->low_water_blocks = 0;
2976 	pool_features_init(&pool->pf);
2977 	pool->prison = dm_bio_prison_create();
2978 	if (!pool->prison) {
2979 		*error = "Error creating pool's bio prison";
2980 		err_p = ERR_PTR(-ENOMEM);
2981 		goto bad_prison;
2982 	}
2983 
2984 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2985 	if (IS_ERR(pool->copier)) {
2986 		r = PTR_ERR(pool->copier);
2987 		*error = "Error creating pool's kcopyd client";
2988 		err_p = ERR_PTR(r);
2989 		goto bad_kcopyd_client;
2990 	}
2991 
2992 	/*
2993 	 * Create singlethreaded workqueue that will service all devices
2994 	 * that use this metadata.
2995 	 */
2996 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2997 	if (!pool->wq) {
2998 		*error = "Error creating pool's workqueue";
2999 		err_p = ERR_PTR(-ENOMEM);
3000 		goto bad_wq;
3001 	}
3002 
3003 	throttle_init(&pool->throttle);
3004 	INIT_WORK(&pool->worker, do_worker);
3005 	INIT_DELAYED_WORK(&pool->waker, do_waker);
3006 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3007 	spin_lock_init(&pool->lock);
3008 	bio_list_init(&pool->deferred_flush_bios);
3009 	bio_list_init(&pool->deferred_flush_completions);
3010 	INIT_LIST_HEAD(&pool->prepared_mappings);
3011 	INIT_LIST_HEAD(&pool->prepared_discards);
3012 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3013 	INIT_LIST_HEAD(&pool->active_thins);
3014 	pool->low_water_triggered = false;
3015 	pool->suspended = true;
3016 	pool->out_of_data_space = false;
3017 
3018 	pool->shared_read_ds = dm_deferred_set_create();
3019 	if (!pool->shared_read_ds) {
3020 		*error = "Error creating pool's shared read deferred set";
3021 		err_p = ERR_PTR(-ENOMEM);
3022 		goto bad_shared_read_ds;
3023 	}
3024 
3025 	pool->all_io_ds = dm_deferred_set_create();
3026 	if (!pool->all_io_ds) {
3027 		*error = "Error creating pool's all io deferred set";
3028 		err_p = ERR_PTR(-ENOMEM);
3029 		goto bad_all_io_ds;
3030 	}
3031 
3032 	pool->next_mapping = NULL;
3033 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3034 				   _new_mapping_cache);
3035 	if (r) {
3036 		*error = "Error creating pool's mapping mempool";
3037 		err_p = ERR_PTR(r);
3038 		goto bad_mapping_pool;
3039 	}
3040 
3041 	pool->cell_sort_array =
3042 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3043 				   sizeof(*pool->cell_sort_array)));
3044 	if (!pool->cell_sort_array) {
3045 		*error = "Error allocating cell sort array";
3046 		err_p = ERR_PTR(-ENOMEM);
3047 		goto bad_sort_array;
3048 	}
3049 
3050 	pool->ref_count = 1;
3051 	pool->last_commit_jiffies = jiffies;
3052 	pool->pool_md = pool_md;
3053 	pool->md_dev = metadata_dev;
3054 	pool->data_dev = data_dev;
3055 	__pool_table_insert(pool);
3056 
3057 	return pool;
3058 
3059 bad_sort_array:
3060 	mempool_exit(&pool->mapping_pool);
3061 bad_mapping_pool:
3062 	dm_deferred_set_destroy(pool->all_io_ds);
3063 bad_all_io_ds:
3064 	dm_deferred_set_destroy(pool->shared_read_ds);
3065 bad_shared_read_ds:
3066 	destroy_workqueue(pool->wq);
3067 bad_wq:
3068 	dm_kcopyd_client_destroy(pool->copier);
3069 bad_kcopyd_client:
3070 	dm_bio_prison_destroy(pool->prison);
3071 bad_prison:
3072 	kfree(pool);
3073 bad_pool:
3074 	if (dm_pool_metadata_close(pmd))
3075 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3076 
3077 	return err_p;
3078 }
3079 
3080 static void __pool_inc(struct pool *pool)
3081 {
3082 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3083 	pool->ref_count++;
3084 }
3085 
3086 static void __pool_dec(struct pool *pool)
3087 {
3088 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3089 	BUG_ON(!pool->ref_count);
3090 	if (!--pool->ref_count)
3091 		__pool_destroy(pool);
3092 }
3093 
3094 static struct pool *__pool_find(struct mapped_device *pool_md,
3095 				struct block_device *metadata_dev,
3096 				struct block_device *data_dev,
3097 				unsigned long block_size, int read_only,
3098 				char **error, int *created)
3099 {
3100 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3101 
3102 	if (pool) {
3103 		if (pool->pool_md != pool_md) {
3104 			*error = "metadata device already in use by a pool";
3105 			return ERR_PTR(-EBUSY);
3106 		}
3107 		if (pool->data_dev != data_dev) {
3108 			*error = "data device already in use by a pool";
3109 			return ERR_PTR(-EBUSY);
3110 		}
3111 		__pool_inc(pool);
3112 
3113 	} else {
3114 		pool = __pool_table_lookup(pool_md);
3115 		if (pool) {
3116 			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3117 				*error = "different pool cannot replace a pool";
3118 				return ERR_PTR(-EINVAL);
3119 			}
3120 			__pool_inc(pool);
3121 
3122 		} else {
3123 			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3124 			*created = 1;
3125 		}
3126 	}
3127 
3128 	return pool;
3129 }
3130 
3131 /*
3132  *--------------------------------------------------------------
3133  * Pool target methods
3134  *--------------------------------------------------------------
3135  */
3136 static void pool_dtr(struct dm_target *ti)
3137 {
3138 	struct pool_c *pt = ti->private;
3139 
3140 	mutex_lock(&dm_thin_pool_table.mutex);
3141 
3142 	unbind_control_target(pt->pool, ti);
3143 	__pool_dec(pt->pool);
3144 	dm_put_device(ti, pt->metadata_dev);
3145 	dm_put_device(ti, pt->data_dev);
3146 	kfree(pt);
3147 
3148 	mutex_unlock(&dm_thin_pool_table.mutex);
3149 }
3150 
3151 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3152 			       struct dm_target *ti)
3153 {
3154 	int r;
3155 	unsigned int argc;
3156 	const char *arg_name;
3157 
3158 	static const struct dm_arg _args[] = {
3159 		{0, 4, "Invalid number of pool feature arguments"},
3160 	};
3161 
3162 	/*
3163 	 * No feature arguments supplied.
3164 	 */
3165 	if (!as->argc)
3166 		return 0;
3167 
3168 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3169 	if (r)
3170 		return -EINVAL;
3171 
3172 	while (argc && !r) {
3173 		arg_name = dm_shift_arg(as);
3174 		argc--;
3175 
3176 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3177 			pf->zero_new_blocks = false;
3178 
3179 		else if (!strcasecmp(arg_name, "ignore_discard"))
3180 			pf->discard_enabled = false;
3181 
3182 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3183 			pf->discard_passdown = false;
3184 
3185 		else if (!strcasecmp(arg_name, "read_only"))
3186 			pf->mode = PM_READ_ONLY;
3187 
3188 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3189 			pf->error_if_no_space = true;
3190 
3191 		else {
3192 			ti->error = "Unrecognised pool feature requested";
3193 			r = -EINVAL;
3194 			break;
3195 		}
3196 	}
3197 
3198 	return r;
3199 }
3200 
3201 static void metadata_low_callback(void *context)
3202 {
3203 	struct pool *pool = context;
3204 
3205 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3206 	       dm_device_name(pool->pool_md));
3207 
3208 	dm_table_event(pool->ti->table);
3209 }
3210 
3211 /*
3212  * We need to flush the data device **before** committing the metadata.
3213  *
3214  * This ensures that the data blocks of any newly inserted mappings are
3215  * properly written to non-volatile storage and won't be lost in case of a
3216  * crash.
3217  *
3218  * Failure to do so can result in data corruption in the case of internal or
3219  * external snapshots and in the case of newly provisioned blocks, when block
3220  * zeroing is enabled.
3221  */
3222 static int metadata_pre_commit_callback(void *context)
3223 {
3224 	struct pool *pool = context;
3225 
3226 	return blkdev_issue_flush(pool->data_dev);
3227 }
3228 
3229 static sector_t get_dev_size(struct block_device *bdev)
3230 {
3231 	return bdev_nr_sectors(bdev);
3232 }
3233 
3234 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3235 {
3236 	sector_t metadata_dev_size = get_dev_size(bdev);
3237 
3238 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3239 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3240 		       bdev, THIN_METADATA_MAX_SECTORS);
3241 }
3242 
3243 static sector_t get_metadata_dev_size(struct block_device *bdev)
3244 {
3245 	sector_t metadata_dev_size = get_dev_size(bdev);
3246 
3247 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3248 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3249 
3250 	return metadata_dev_size;
3251 }
3252 
3253 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3254 {
3255 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3256 
3257 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3258 
3259 	return metadata_dev_size;
3260 }
3261 
3262 /*
3263  * When a metadata threshold is crossed a dm event is triggered, and
3264  * userland should respond by growing the metadata device.  We could let
3265  * userland set the threshold, like we do with the data threshold, but I'm
3266  * not sure they know enough to do this well.
3267  */
3268 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3269 {
3270 	/*
3271 	 * 4M is ample for all ops with the possible exception of thin
3272 	 * device deletion which is harmless if it fails (just retry the
3273 	 * delete after you've grown the device).
3274 	 */
3275 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3276 
3277 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3278 }
3279 
3280 /*
3281  * thin-pool <metadata dev> <data dev>
3282  *	     <data block size (sectors)>
3283  *	     <low water mark (blocks)>
3284  *	     [<#feature args> [<arg>]*]
3285  *
3286  * Optional feature arguments are:
3287  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3288  *	     ignore_discard: disable discard
3289  *	     no_discard_passdown: don't pass discards down to the data device
3290  *	     read_only: Don't allow any changes to be made to the pool metadata.
3291  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3292  */
3293 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3294 {
3295 	int r, pool_created = 0;
3296 	struct pool_c *pt;
3297 	struct pool *pool;
3298 	struct pool_features pf;
3299 	struct dm_arg_set as;
3300 	struct dm_dev *data_dev;
3301 	unsigned long block_size;
3302 	dm_block_t low_water_blocks;
3303 	struct dm_dev *metadata_dev;
3304 	fmode_t metadata_mode;
3305 
3306 	/*
3307 	 * FIXME Remove validation from scope of lock.
3308 	 */
3309 	mutex_lock(&dm_thin_pool_table.mutex);
3310 
3311 	if (argc < 4) {
3312 		ti->error = "Invalid argument count";
3313 		r = -EINVAL;
3314 		goto out_unlock;
3315 	}
3316 
3317 	as.argc = argc;
3318 	as.argv = argv;
3319 
3320 	/* make sure metadata and data are different devices */
3321 	if (!strcmp(argv[0], argv[1])) {
3322 		ti->error = "Error setting metadata or data device";
3323 		r = -EINVAL;
3324 		goto out_unlock;
3325 	}
3326 
3327 	/*
3328 	 * Set default pool features.
3329 	 */
3330 	pool_features_init(&pf);
3331 
3332 	dm_consume_args(&as, 4);
3333 	r = parse_pool_features(&as, &pf, ti);
3334 	if (r)
3335 		goto out_unlock;
3336 
3337 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3338 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3339 	if (r) {
3340 		ti->error = "Error opening metadata block device";
3341 		goto out_unlock;
3342 	}
3343 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3344 
3345 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3346 	if (r) {
3347 		ti->error = "Error getting data device";
3348 		goto out_metadata;
3349 	}
3350 
3351 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3352 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3353 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3354 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3355 		ti->error = "Invalid block size";
3356 		r = -EINVAL;
3357 		goto out;
3358 	}
3359 
3360 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3361 		ti->error = "Invalid low water mark";
3362 		r = -EINVAL;
3363 		goto out;
3364 	}
3365 
3366 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3367 	if (!pt) {
3368 		r = -ENOMEM;
3369 		goto out;
3370 	}
3371 
3372 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3373 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3374 	if (IS_ERR(pool)) {
3375 		r = PTR_ERR(pool);
3376 		goto out_free_pt;
3377 	}
3378 
3379 	/*
3380 	 * 'pool_created' reflects whether this is the first table load.
3381 	 * Top level discard support is not allowed to be changed after
3382 	 * initial load.  This would require a pool reload to trigger thin
3383 	 * device changes.
3384 	 */
3385 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3386 		ti->error = "Discard support cannot be disabled once enabled";
3387 		r = -EINVAL;
3388 		goto out_flags_changed;
3389 	}
3390 
3391 	pt->pool = pool;
3392 	pt->ti = ti;
3393 	pt->metadata_dev = metadata_dev;
3394 	pt->data_dev = data_dev;
3395 	pt->low_water_blocks = low_water_blocks;
3396 	pt->adjusted_pf = pt->requested_pf = pf;
3397 	ti->num_flush_bios = 1;
3398 	ti->limit_swap_bios = true;
3399 
3400 	/*
3401 	 * Only need to enable discards if the pool should pass
3402 	 * them down to the data device.  The thin device's discard
3403 	 * processing will cause mappings to be removed from the btree.
3404 	 */
3405 	if (pf.discard_enabled && pf.discard_passdown) {
3406 		ti->num_discard_bios = 1;
3407 		/*
3408 		 * Setting 'discards_supported' circumvents the normal
3409 		 * stacking of discard limits (this keeps the pool and
3410 		 * thin devices' discard limits consistent).
3411 		 */
3412 		ti->discards_supported = true;
3413 		ti->max_discard_granularity = true;
3414 	}
3415 	ti->private = pt;
3416 
3417 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3418 						calc_metadata_threshold(pt),
3419 						metadata_low_callback,
3420 						pool);
3421 	if (r) {
3422 		ti->error = "Error registering metadata threshold";
3423 		goto out_flags_changed;
3424 	}
3425 
3426 	dm_pool_register_pre_commit_callback(pool->pmd,
3427 					     metadata_pre_commit_callback, pool);
3428 
3429 	mutex_unlock(&dm_thin_pool_table.mutex);
3430 
3431 	return 0;
3432 
3433 out_flags_changed:
3434 	__pool_dec(pool);
3435 out_free_pt:
3436 	kfree(pt);
3437 out:
3438 	dm_put_device(ti, data_dev);
3439 out_metadata:
3440 	dm_put_device(ti, metadata_dev);
3441 out_unlock:
3442 	mutex_unlock(&dm_thin_pool_table.mutex);
3443 
3444 	return r;
3445 }
3446 
3447 static int pool_map(struct dm_target *ti, struct bio *bio)
3448 {
3449 	int r;
3450 	struct pool_c *pt = ti->private;
3451 	struct pool *pool = pt->pool;
3452 
3453 	/*
3454 	 * As this is a singleton target, ti->begin is always zero.
3455 	 */
3456 	spin_lock_irq(&pool->lock);
3457 	bio_set_dev(bio, pt->data_dev->bdev);
3458 	r = DM_MAPIO_REMAPPED;
3459 	spin_unlock_irq(&pool->lock);
3460 
3461 	return r;
3462 }
3463 
3464 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3465 {
3466 	int r;
3467 	struct pool_c *pt = ti->private;
3468 	struct pool *pool = pt->pool;
3469 	sector_t data_size = ti->len;
3470 	dm_block_t sb_data_size;
3471 
3472 	*need_commit = false;
3473 
3474 	(void) sector_div(data_size, pool->sectors_per_block);
3475 
3476 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3477 	if (r) {
3478 		DMERR("%s: failed to retrieve data device size",
3479 		      dm_device_name(pool->pool_md));
3480 		return r;
3481 	}
3482 
3483 	if (data_size < sb_data_size) {
3484 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3485 		      dm_device_name(pool->pool_md),
3486 		      (unsigned long long)data_size, sb_data_size);
3487 		return -EINVAL;
3488 
3489 	} else if (data_size > sb_data_size) {
3490 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3491 			DMERR("%s: unable to grow the data device until repaired.",
3492 			      dm_device_name(pool->pool_md));
3493 			return 0;
3494 		}
3495 
3496 		if (sb_data_size)
3497 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3498 			       dm_device_name(pool->pool_md),
3499 			       sb_data_size, (unsigned long long)data_size);
3500 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3501 		if (r) {
3502 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3503 			return r;
3504 		}
3505 
3506 		*need_commit = true;
3507 	}
3508 
3509 	return 0;
3510 }
3511 
3512 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3513 {
3514 	int r;
3515 	struct pool_c *pt = ti->private;
3516 	struct pool *pool = pt->pool;
3517 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3518 
3519 	*need_commit = false;
3520 
3521 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3522 
3523 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3524 	if (r) {
3525 		DMERR("%s: failed to retrieve metadata device size",
3526 		      dm_device_name(pool->pool_md));
3527 		return r;
3528 	}
3529 
3530 	if (metadata_dev_size < sb_metadata_dev_size) {
3531 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3532 		      dm_device_name(pool->pool_md),
3533 		      metadata_dev_size, sb_metadata_dev_size);
3534 		return -EINVAL;
3535 
3536 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3537 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3538 			DMERR("%s: unable to grow the metadata device until repaired.",
3539 			      dm_device_name(pool->pool_md));
3540 			return 0;
3541 		}
3542 
3543 		warn_if_metadata_device_too_big(pool->md_dev);
3544 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3545 		       dm_device_name(pool->pool_md),
3546 		       sb_metadata_dev_size, metadata_dev_size);
3547 
3548 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3549 			set_pool_mode(pool, PM_WRITE);
3550 
3551 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3552 		if (r) {
3553 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3554 			return r;
3555 		}
3556 
3557 		*need_commit = true;
3558 	}
3559 
3560 	return 0;
3561 }
3562 
3563 /*
3564  * Retrieves the number of blocks of the data device from
3565  * the superblock and compares it to the actual device size,
3566  * thus resizing the data device in case it has grown.
3567  *
3568  * This both copes with opening preallocated data devices in the ctr
3569  * being followed by a resume
3570  * -and-
3571  * calling the resume method individually after userspace has
3572  * grown the data device in reaction to a table event.
3573  */
3574 static int pool_preresume(struct dm_target *ti)
3575 {
3576 	int r;
3577 	bool need_commit1, need_commit2;
3578 	struct pool_c *pt = ti->private;
3579 	struct pool *pool = pt->pool;
3580 
3581 	/*
3582 	 * Take control of the pool object.
3583 	 */
3584 	r = bind_control_target(pool, ti);
3585 	if (r)
3586 		goto out;
3587 
3588 	r = maybe_resize_data_dev(ti, &need_commit1);
3589 	if (r)
3590 		goto out;
3591 
3592 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3593 	if (r)
3594 		goto out;
3595 
3596 	if (need_commit1 || need_commit2)
3597 		(void) commit(pool);
3598 out:
3599 	/*
3600 	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3601 	 * bio is in deferred list. Therefore need to return 0
3602 	 * to allow pool_resume() to flush IO.
3603 	 */
3604 	if (r && get_pool_mode(pool) == PM_FAIL)
3605 		r = 0;
3606 
3607 	return r;
3608 }
3609 
3610 static void pool_suspend_active_thins(struct pool *pool)
3611 {
3612 	struct thin_c *tc;
3613 
3614 	/* Suspend all active thin devices */
3615 	tc = get_first_thin(pool);
3616 	while (tc) {
3617 		dm_internal_suspend_noflush(tc->thin_md);
3618 		tc = get_next_thin(pool, tc);
3619 	}
3620 }
3621 
3622 static void pool_resume_active_thins(struct pool *pool)
3623 {
3624 	struct thin_c *tc;
3625 
3626 	/* Resume all active thin devices */
3627 	tc = get_first_thin(pool);
3628 	while (tc) {
3629 		dm_internal_resume(tc->thin_md);
3630 		tc = get_next_thin(pool, tc);
3631 	}
3632 }
3633 
3634 static void pool_resume(struct dm_target *ti)
3635 {
3636 	struct pool_c *pt = ti->private;
3637 	struct pool *pool = pt->pool;
3638 
3639 	/*
3640 	 * Must requeue active_thins' bios and then resume
3641 	 * active_thins _before_ clearing 'suspend' flag.
3642 	 */
3643 	requeue_bios(pool);
3644 	pool_resume_active_thins(pool);
3645 
3646 	spin_lock_irq(&pool->lock);
3647 	pool->low_water_triggered = false;
3648 	pool->suspended = false;
3649 	spin_unlock_irq(&pool->lock);
3650 
3651 	do_waker(&pool->waker.work);
3652 }
3653 
3654 static void pool_presuspend(struct dm_target *ti)
3655 {
3656 	struct pool_c *pt = ti->private;
3657 	struct pool *pool = pt->pool;
3658 
3659 	spin_lock_irq(&pool->lock);
3660 	pool->suspended = true;
3661 	spin_unlock_irq(&pool->lock);
3662 
3663 	pool_suspend_active_thins(pool);
3664 }
3665 
3666 static void pool_presuspend_undo(struct dm_target *ti)
3667 {
3668 	struct pool_c *pt = ti->private;
3669 	struct pool *pool = pt->pool;
3670 
3671 	pool_resume_active_thins(pool);
3672 
3673 	spin_lock_irq(&pool->lock);
3674 	pool->suspended = false;
3675 	spin_unlock_irq(&pool->lock);
3676 }
3677 
3678 static void pool_postsuspend(struct dm_target *ti)
3679 {
3680 	struct pool_c *pt = ti->private;
3681 	struct pool *pool = pt->pool;
3682 
3683 	cancel_delayed_work_sync(&pool->waker);
3684 	cancel_delayed_work_sync(&pool->no_space_timeout);
3685 	flush_workqueue(pool->wq);
3686 	(void) commit(pool);
3687 }
3688 
3689 static int check_arg_count(unsigned int argc, unsigned int args_required)
3690 {
3691 	if (argc != args_required) {
3692 		DMWARN("Message received with %u arguments instead of %u.",
3693 		       argc, args_required);
3694 		return -EINVAL;
3695 	}
3696 
3697 	return 0;
3698 }
3699 
3700 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3701 {
3702 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3703 	    *dev_id <= MAX_DEV_ID)
3704 		return 0;
3705 
3706 	if (warning)
3707 		DMWARN("Message received with invalid device id: %s", arg);
3708 
3709 	return -EINVAL;
3710 }
3711 
3712 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3713 {
3714 	dm_thin_id dev_id;
3715 	int r;
3716 
3717 	r = check_arg_count(argc, 2);
3718 	if (r)
3719 		return r;
3720 
3721 	r = read_dev_id(argv[1], &dev_id, 1);
3722 	if (r)
3723 		return r;
3724 
3725 	r = dm_pool_create_thin(pool->pmd, dev_id);
3726 	if (r) {
3727 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3728 		       argv[1]);
3729 		return r;
3730 	}
3731 
3732 	return 0;
3733 }
3734 
3735 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3736 {
3737 	dm_thin_id dev_id;
3738 	dm_thin_id origin_dev_id;
3739 	int r;
3740 
3741 	r = check_arg_count(argc, 3);
3742 	if (r)
3743 		return r;
3744 
3745 	r = read_dev_id(argv[1], &dev_id, 1);
3746 	if (r)
3747 		return r;
3748 
3749 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3750 	if (r)
3751 		return r;
3752 
3753 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3754 	if (r) {
3755 		DMWARN("Creation of new snapshot %s of device %s failed.",
3756 		       argv[1], argv[2]);
3757 		return r;
3758 	}
3759 
3760 	return 0;
3761 }
3762 
3763 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3764 {
3765 	dm_thin_id dev_id;
3766 	int r;
3767 
3768 	r = check_arg_count(argc, 2);
3769 	if (r)
3770 		return r;
3771 
3772 	r = read_dev_id(argv[1], &dev_id, 1);
3773 	if (r)
3774 		return r;
3775 
3776 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3777 	if (r)
3778 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3779 
3780 	return r;
3781 }
3782 
3783 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3784 {
3785 	dm_thin_id old_id, new_id;
3786 	int r;
3787 
3788 	r = check_arg_count(argc, 3);
3789 	if (r)
3790 		return r;
3791 
3792 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3793 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3794 		return -EINVAL;
3795 	}
3796 
3797 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3798 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3799 		return -EINVAL;
3800 	}
3801 
3802 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3803 	if (r) {
3804 		DMWARN("Failed to change transaction id from %s to %s.",
3805 		       argv[1], argv[2]);
3806 		return r;
3807 	}
3808 
3809 	return 0;
3810 }
3811 
3812 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3813 {
3814 	int r;
3815 
3816 	r = check_arg_count(argc, 1);
3817 	if (r)
3818 		return r;
3819 
3820 	(void) commit(pool);
3821 
3822 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3823 	if (r)
3824 		DMWARN("reserve_metadata_snap message failed.");
3825 
3826 	return r;
3827 }
3828 
3829 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3830 {
3831 	int r;
3832 
3833 	r = check_arg_count(argc, 1);
3834 	if (r)
3835 		return r;
3836 
3837 	r = dm_pool_release_metadata_snap(pool->pmd);
3838 	if (r)
3839 		DMWARN("release_metadata_snap message failed.");
3840 
3841 	return r;
3842 }
3843 
3844 /*
3845  * Messages supported:
3846  *   create_thin	<dev_id>
3847  *   create_snap	<dev_id> <origin_id>
3848  *   delete		<dev_id>
3849  *   set_transaction_id <current_trans_id> <new_trans_id>
3850  *   reserve_metadata_snap
3851  *   release_metadata_snap
3852  */
3853 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3854 			char *result, unsigned int maxlen)
3855 {
3856 	int r = -EINVAL;
3857 	struct pool_c *pt = ti->private;
3858 	struct pool *pool = pt->pool;
3859 
3860 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3861 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3862 		      dm_device_name(pool->pool_md));
3863 		return -EOPNOTSUPP;
3864 	}
3865 
3866 	if (!strcasecmp(argv[0], "create_thin"))
3867 		r = process_create_thin_mesg(argc, argv, pool);
3868 
3869 	else if (!strcasecmp(argv[0], "create_snap"))
3870 		r = process_create_snap_mesg(argc, argv, pool);
3871 
3872 	else if (!strcasecmp(argv[0], "delete"))
3873 		r = process_delete_mesg(argc, argv, pool);
3874 
3875 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3876 		r = process_set_transaction_id_mesg(argc, argv, pool);
3877 
3878 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3879 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3880 
3881 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3882 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3883 
3884 	else
3885 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3886 
3887 	if (!r)
3888 		(void) commit(pool);
3889 
3890 	return r;
3891 }
3892 
3893 static void emit_flags(struct pool_features *pf, char *result,
3894 		       unsigned int sz, unsigned int maxlen)
3895 {
3896 	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3897 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3898 		pf->error_if_no_space;
3899 	DMEMIT("%u ", count);
3900 
3901 	if (!pf->zero_new_blocks)
3902 		DMEMIT("skip_block_zeroing ");
3903 
3904 	if (!pf->discard_enabled)
3905 		DMEMIT("ignore_discard ");
3906 
3907 	if (!pf->discard_passdown)
3908 		DMEMIT("no_discard_passdown ");
3909 
3910 	if (pf->mode == PM_READ_ONLY)
3911 		DMEMIT("read_only ");
3912 
3913 	if (pf->error_if_no_space)
3914 		DMEMIT("error_if_no_space ");
3915 }
3916 
3917 /*
3918  * Status line is:
3919  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3920  *    <used data sectors>/<total data sectors> <held metadata root>
3921  *    <pool mode> <discard config> <no space config> <needs_check>
3922  */
3923 static void pool_status(struct dm_target *ti, status_type_t type,
3924 			unsigned int status_flags, char *result, unsigned int maxlen)
3925 {
3926 	int r;
3927 	unsigned int sz = 0;
3928 	uint64_t transaction_id;
3929 	dm_block_t nr_free_blocks_data;
3930 	dm_block_t nr_free_blocks_metadata;
3931 	dm_block_t nr_blocks_data;
3932 	dm_block_t nr_blocks_metadata;
3933 	dm_block_t held_root;
3934 	enum pool_mode mode;
3935 	char buf[BDEVNAME_SIZE];
3936 	char buf2[BDEVNAME_SIZE];
3937 	struct pool_c *pt = ti->private;
3938 	struct pool *pool = pt->pool;
3939 
3940 	switch (type) {
3941 	case STATUSTYPE_INFO:
3942 		if (get_pool_mode(pool) == PM_FAIL) {
3943 			DMEMIT("Fail");
3944 			break;
3945 		}
3946 
3947 		/* Commit to ensure statistics aren't out-of-date */
3948 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3949 			(void) commit(pool);
3950 
3951 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3952 		if (r) {
3953 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3954 			      dm_device_name(pool->pool_md), r);
3955 			goto err;
3956 		}
3957 
3958 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3959 		if (r) {
3960 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3961 			      dm_device_name(pool->pool_md), r);
3962 			goto err;
3963 		}
3964 
3965 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3966 		if (r) {
3967 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3968 			      dm_device_name(pool->pool_md), r);
3969 			goto err;
3970 		}
3971 
3972 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3973 		if (r) {
3974 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3975 			      dm_device_name(pool->pool_md), r);
3976 			goto err;
3977 		}
3978 
3979 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3980 		if (r) {
3981 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3982 			      dm_device_name(pool->pool_md), r);
3983 			goto err;
3984 		}
3985 
3986 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3987 		if (r) {
3988 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3989 			      dm_device_name(pool->pool_md), r);
3990 			goto err;
3991 		}
3992 
3993 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3994 		       (unsigned long long)transaction_id,
3995 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3996 		       (unsigned long long)nr_blocks_metadata,
3997 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3998 		       (unsigned long long)nr_blocks_data);
3999 
4000 		if (held_root)
4001 			DMEMIT("%llu ", held_root);
4002 		else
4003 			DMEMIT("- ");
4004 
4005 		mode = get_pool_mode(pool);
4006 		if (mode == PM_OUT_OF_DATA_SPACE)
4007 			DMEMIT("out_of_data_space ");
4008 		else if (is_read_only_pool_mode(mode))
4009 			DMEMIT("ro ");
4010 		else
4011 			DMEMIT("rw ");
4012 
4013 		if (!pool->pf.discard_enabled)
4014 			DMEMIT("ignore_discard ");
4015 		else if (pool->pf.discard_passdown)
4016 			DMEMIT("discard_passdown ");
4017 		else
4018 			DMEMIT("no_discard_passdown ");
4019 
4020 		if (pool->pf.error_if_no_space)
4021 			DMEMIT("error_if_no_space ");
4022 		else
4023 			DMEMIT("queue_if_no_space ");
4024 
4025 		if (dm_pool_metadata_needs_check(pool->pmd))
4026 			DMEMIT("needs_check ");
4027 		else
4028 			DMEMIT("- ");
4029 
4030 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4031 
4032 		break;
4033 
4034 	case STATUSTYPE_TABLE:
4035 		DMEMIT("%s %s %lu %llu ",
4036 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4037 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4038 		       (unsigned long)pool->sectors_per_block,
4039 		       (unsigned long long)pt->low_water_blocks);
4040 		emit_flags(&pt->requested_pf, result, sz, maxlen);
4041 		break;
4042 
4043 	case STATUSTYPE_IMA:
4044 		*result = '\0';
4045 		break;
4046 	}
4047 	return;
4048 
4049 err:
4050 	DMEMIT("Error");
4051 }
4052 
4053 static int pool_iterate_devices(struct dm_target *ti,
4054 				iterate_devices_callout_fn fn, void *data)
4055 {
4056 	struct pool_c *pt = ti->private;
4057 
4058 	return fn(ti, pt->data_dev, 0, ti->len, data);
4059 }
4060 
4061 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4062 {
4063 	struct pool_c *pt = ti->private;
4064 	struct pool *pool = pt->pool;
4065 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4066 
4067 	/*
4068 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4069 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4070 	 * This is especially beneficial when the pool's data device is a RAID
4071 	 * device that has a full stripe width that matches pool->sectors_per_block
4072 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4073 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4074 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4075 	 */
4076 	if (limits->max_sectors < pool->sectors_per_block) {
4077 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4078 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4079 				limits->max_sectors--;
4080 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4081 		}
4082 	}
4083 
4084 	/*
4085 	 * If the system-determined stacked limits are compatible with the
4086 	 * pool's blocksize (io_opt is a factor) do not override them.
4087 	 */
4088 	if (io_opt_sectors < pool->sectors_per_block ||
4089 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4090 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4091 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4092 		else
4093 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4094 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4095 	}
4096 
4097 	/*
4098 	 * pt->adjusted_pf is a staging area for the actual features to use.
4099 	 * They get transferred to the live pool in bind_control_target()
4100 	 * called from pool_preresume().
4101 	 */
4102 	if (!pt->adjusted_pf.discard_enabled) {
4103 		/*
4104 		 * Must explicitly disallow stacking discard limits otherwise the
4105 		 * block layer will stack them if pool's data device has support.
4106 		 */
4107 		limits->discard_granularity = 0;
4108 		return;
4109 	}
4110 
4111 	disable_passdown_if_not_supported(pt);
4112 
4113 	/*
4114 	 * The pool uses the same discard limits as the underlying data
4115 	 * device.  DM core has already set this up.
4116 	 */
4117 }
4118 
4119 static struct target_type pool_target = {
4120 	.name = "thin-pool",
4121 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4122 		    DM_TARGET_IMMUTABLE,
4123 	.version = {1, 23, 0},
4124 	.module = THIS_MODULE,
4125 	.ctr = pool_ctr,
4126 	.dtr = pool_dtr,
4127 	.map = pool_map,
4128 	.presuspend = pool_presuspend,
4129 	.presuspend_undo = pool_presuspend_undo,
4130 	.postsuspend = pool_postsuspend,
4131 	.preresume = pool_preresume,
4132 	.resume = pool_resume,
4133 	.message = pool_message,
4134 	.status = pool_status,
4135 	.iterate_devices = pool_iterate_devices,
4136 	.io_hints = pool_io_hints,
4137 };
4138 
4139 /*
4140  *--------------------------------------------------------------
4141  * Thin target methods
4142  *--------------------------------------------------------------
4143  */
4144 static void thin_get(struct thin_c *tc)
4145 {
4146 	refcount_inc(&tc->refcount);
4147 }
4148 
4149 static void thin_put(struct thin_c *tc)
4150 {
4151 	if (refcount_dec_and_test(&tc->refcount))
4152 		complete(&tc->can_destroy);
4153 }
4154 
4155 static void thin_dtr(struct dm_target *ti)
4156 {
4157 	struct thin_c *tc = ti->private;
4158 
4159 	spin_lock_irq(&tc->pool->lock);
4160 	list_del_rcu(&tc->list);
4161 	spin_unlock_irq(&tc->pool->lock);
4162 	synchronize_rcu();
4163 
4164 	thin_put(tc);
4165 	wait_for_completion(&tc->can_destroy);
4166 
4167 	mutex_lock(&dm_thin_pool_table.mutex);
4168 
4169 	__pool_dec(tc->pool);
4170 	dm_pool_close_thin_device(tc->td);
4171 	dm_put_device(ti, tc->pool_dev);
4172 	if (tc->origin_dev)
4173 		dm_put_device(ti, tc->origin_dev);
4174 	kfree(tc);
4175 
4176 	mutex_unlock(&dm_thin_pool_table.mutex);
4177 }
4178 
4179 /*
4180  * Thin target parameters:
4181  *
4182  * <pool_dev> <dev_id> [origin_dev]
4183  *
4184  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4185  * dev_id: the internal device identifier
4186  * origin_dev: a device external to the pool that should act as the origin
4187  *
4188  * If the pool device has discards disabled, they get disabled for the thin
4189  * device as well.
4190  */
4191 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4192 {
4193 	int r;
4194 	struct thin_c *tc;
4195 	struct dm_dev *pool_dev, *origin_dev;
4196 	struct mapped_device *pool_md;
4197 
4198 	mutex_lock(&dm_thin_pool_table.mutex);
4199 
4200 	if (argc != 2 && argc != 3) {
4201 		ti->error = "Invalid argument count";
4202 		r = -EINVAL;
4203 		goto out_unlock;
4204 	}
4205 
4206 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4207 	if (!tc) {
4208 		ti->error = "Out of memory";
4209 		r = -ENOMEM;
4210 		goto out_unlock;
4211 	}
4212 	tc->thin_md = dm_table_get_md(ti->table);
4213 	spin_lock_init(&tc->lock);
4214 	INIT_LIST_HEAD(&tc->deferred_cells);
4215 	bio_list_init(&tc->deferred_bio_list);
4216 	bio_list_init(&tc->retry_on_resume_list);
4217 	tc->sort_bio_list = RB_ROOT;
4218 
4219 	if (argc == 3) {
4220 		if (!strcmp(argv[0], argv[2])) {
4221 			ti->error = "Error setting origin device";
4222 			r = -EINVAL;
4223 			goto bad_origin_dev;
4224 		}
4225 
4226 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4227 		if (r) {
4228 			ti->error = "Error opening origin device";
4229 			goto bad_origin_dev;
4230 		}
4231 		tc->origin_dev = origin_dev;
4232 	}
4233 
4234 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4235 	if (r) {
4236 		ti->error = "Error opening pool device";
4237 		goto bad_pool_dev;
4238 	}
4239 	tc->pool_dev = pool_dev;
4240 
4241 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4242 		ti->error = "Invalid device id";
4243 		r = -EINVAL;
4244 		goto bad_common;
4245 	}
4246 
4247 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4248 	if (!pool_md) {
4249 		ti->error = "Couldn't get pool mapped device";
4250 		r = -EINVAL;
4251 		goto bad_common;
4252 	}
4253 
4254 	tc->pool = __pool_table_lookup(pool_md);
4255 	if (!tc->pool) {
4256 		ti->error = "Couldn't find pool object";
4257 		r = -EINVAL;
4258 		goto bad_pool_lookup;
4259 	}
4260 	__pool_inc(tc->pool);
4261 
4262 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4263 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4264 		r = -EINVAL;
4265 		goto bad_pool;
4266 	}
4267 
4268 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4269 	if (r) {
4270 		ti->error = "Couldn't open thin internal device";
4271 		goto bad_pool;
4272 	}
4273 
4274 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4275 	if (r)
4276 		goto bad;
4277 
4278 	ti->num_flush_bios = 1;
4279 	ti->limit_swap_bios = true;
4280 	ti->flush_supported = true;
4281 	ti->accounts_remapped_io = true;
4282 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4283 
4284 	/* In case the pool supports discards, pass them on. */
4285 	if (tc->pool->pf.discard_enabled) {
4286 		ti->discards_supported = true;
4287 		ti->num_discard_bios = 1;
4288 		ti->max_discard_granularity = true;
4289 	}
4290 
4291 	mutex_unlock(&dm_thin_pool_table.mutex);
4292 
4293 	spin_lock_irq(&tc->pool->lock);
4294 	if (tc->pool->suspended) {
4295 		spin_unlock_irq(&tc->pool->lock);
4296 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4297 		ti->error = "Unable to activate thin device while pool is suspended";
4298 		r = -EINVAL;
4299 		goto bad;
4300 	}
4301 	refcount_set(&tc->refcount, 1);
4302 	init_completion(&tc->can_destroy);
4303 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4304 	spin_unlock_irq(&tc->pool->lock);
4305 	/*
4306 	 * This synchronize_rcu() call is needed here otherwise we risk a
4307 	 * wake_worker() call finding no bios to process (because the newly
4308 	 * added tc isn't yet visible).  So this reduces latency since we
4309 	 * aren't then dependent on the periodic commit to wake_worker().
4310 	 */
4311 	synchronize_rcu();
4312 
4313 	dm_put(pool_md);
4314 
4315 	return 0;
4316 
4317 bad:
4318 	dm_pool_close_thin_device(tc->td);
4319 bad_pool:
4320 	__pool_dec(tc->pool);
4321 bad_pool_lookup:
4322 	dm_put(pool_md);
4323 bad_common:
4324 	dm_put_device(ti, tc->pool_dev);
4325 bad_pool_dev:
4326 	if (tc->origin_dev)
4327 		dm_put_device(ti, tc->origin_dev);
4328 bad_origin_dev:
4329 	kfree(tc);
4330 out_unlock:
4331 	mutex_unlock(&dm_thin_pool_table.mutex);
4332 
4333 	return r;
4334 }
4335 
4336 static int thin_map(struct dm_target *ti, struct bio *bio)
4337 {
4338 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4339 
4340 	return thin_bio_map(ti, bio);
4341 }
4342 
4343 static int thin_endio(struct dm_target *ti, struct bio *bio,
4344 		blk_status_t *err)
4345 {
4346 	unsigned long flags;
4347 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4348 	struct list_head work;
4349 	struct dm_thin_new_mapping *m, *tmp;
4350 	struct pool *pool = h->tc->pool;
4351 
4352 	if (h->shared_read_entry) {
4353 		INIT_LIST_HEAD(&work);
4354 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4355 
4356 		spin_lock_irqsave(&pool->lock, flags);
4357 		list_for_each_entry_safe(m, tmp, &work, list) {
4358 			list_del(&m->list);
4359 			__complete_mapping_preparation(m);
4360 		}
4361 		spin_unlock_irqrestore(&pool->lock, flags);
4362 	}
4363 
4364 	if (h->all_io_entry) {
4365 		INIT_LIST_HEAD(&work);
4366 		dm_deferred_entry_dec(h->all_io_entry, &work);
4367 		if (!list_empty(&work)) {
4368 			spin_lock_irqsave(&pool->lock, flags);
4369 			list_for_each_entry_safe(m, tmp, &work, list)
4370 				list_add_tail(&m->list, &pool->prepared_discards);
4371 			spin_unlock_irqrestore(&pool->lock, flags);
4372 			wake_worker(pool);
4373 		}
4374 	}
4375 
4376 	if (h->cell)
4377 		cell_defer_no_holder(h->tc, h->cell);
4378 
4379 	return DM_ENDIO_DONE;
4380 }
4381 
4382 static void thin_presuspend(struct dm_target *ti)
4383 {
4384 	struct thin_c *tc = ti->private;
4385 
4386 	if (dm_noflush_suspending(ti))
4387 		noflush_work(tc, do_noflush_start);
4388 }
4389 
4390 static void thin_postsuspend(struct dm_target *ti)
4391 {
4392 	struct thin_c *tc = ti->private;
4393 
4394 	/*
4395 	 * The dm_noflush_suspending flag has been cleared by now, so
4396 	 * unfortunately we must always run this.
4397 	 */
4398 	noflush_work(tc, do_noflush_stop);
4399 }
4400 
4401 static int thin_preresume(struct dm_target *ti)
4402 {
4403 	struct thin_c *tc = ti->private;
4404 
4405 	if (tc->origin_dev)
4406 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4407 
4408 	return 0;
4409 }
4410 
4411 /*
4412  * <nr mapped sectors> <highest mapped sector>
4413  */
4414 static void thin_status(struct dm_target *ti, status_type_t type,
4415 			unsigned int status_flags, char *result, unsigned int maxlen)
4416 {
4417 	int r;
4418 	ssize_t sz = 0;
4419 	dm_block_t mapped, highest;
4420 	char buf[BDEVNAME_SIZE];
4421 	struct thin_c *tc = ti->private;
4422 
4423 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4424 		DMEMIT("Fail");
4425 		return;
4426 	}
4427 
4428 	if (!tc->td)
4429 		DMEMIT("-");
4430 	else {
4431 		switch (type) {
4432 		case STATUSTYPE_INFO:
4433 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4434 			if (r) {
4435 				DMERR("dm_thin_get_mapped_count returned %d", r);
4436 				goto err;
4437 			}
4438 
4439 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4440 			if (r < 0) {
4441 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4442 				goto err;
4443 			}
4444 
4445 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4446 			if (r)
4447 				DMEMIT("%llu", ((highest + 1) *
4448 						tc->pool->sectors_per_block) - 1);
4449 			else
4450 				DMEMIT("-");
4451 			break;
4452 
4453 		case STATUSTYPE_TABLE:
4454 			DMEMIT("%s %lu",
4455 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4456 			       (unsigned long) tc->dev_id);
4457 			if (tc->origin_dev)
4458 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4459 			break;
4460 
4461 		case STATUSTYPE_IMA:
4462 			*result = '\0';
4463 			break;
4464 		}
4465 	}
4466 
4467 	return;
4468 
4469 err:
4470 	DMEMIT("Error");
4471 }
4472 
4473 static int thin_iterate_devices(struct dm_target *ti,
4474 				iterate_devices_callout_fn fn, void *data)
4475 {
4476 	sector_t blocks;
4477 	struct thin_c *tc = ti->private;
4478 	struct pool *pool = tc->pool;
4479 
4480 	/*
4481 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4482 	 * we follow a more convoluted path through to the pool's target.
4483 	 */
4484 	if (!pool->ti)
4485 		return 0;	/* nothing is bound */
4486 
4487 	blocks = pool->ti->len;
4488 	(void) sector_div(blocks, pool->sectors_per_block);
4489 	if (blocks)
4490 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4491 
4492 	return 0;
4493 }
4494 
4495 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4496 {
4497 	struct thin_c *tc = ti->private;
4498 	struct pool *pool = tc->pool;
4499 
4500 	if (!pool->pf.discard_enabled)
4501 		return;
4502 
4503 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4504 	limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4505 }
4506 
4507 static struct target_type thin_target = {
4508 	.name = "thin",
4509 	.version = {1, 23, 0},
4510 	.module	= THIS_MODULE,
4511 	.ctr = thin_ctr,
4512 	.dtr = thin_dtr,
4513 	.map = thin_map,
4514 	.end_io = thin_endio,
4515 	.preresume = thin_preresume,
4516 	.presuspend = thin_presuspend,
4517 	.postsuspend = thin_postsuspend,
4518 	.status = thin_status,
4519 	.iterate_devices = thin_iterate_devices,
4520 	.io_hints = thin_io_hints,
4521 };
4522 
4523 /*----------------------------------------------------------------*/
4524 
4525 static int __init dm_thin_init(void)
4526 {
4527 	int r = -ENOMEM;
4528 
4529 	pool_table_init();
4530 
4531 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4532 	if (!_new_mapping_cache)
4533 		return r;
4534 
4535 	r = dm_register_target(&thin_target);
4536 	if (r)
4537 		goto bad_new_mapping_cache;
4538 
4539 	r = dm_register_target(&pool_target);
4540 	if (r)
4541 		goto bad_thin_target;
4542 
4543 	return 0;
4544 
4545 bad_thin_target:
4546 	dm_unregister_target(&thin_target);
4547 bad_new_mapping_cache:
4548 	kmem_cache_destroy(_new_mapping_cache);
4549 
4550 	return r;
4551 }
4552 
4553 static void dm_thin_exit(void)
4554 {
4555 	dm_unregister_target(&thin_target);
4556 	dm_unregister_target(&pool_target);
4557 
4558 	kmem_cache_destroy(_new_mapping_cache);
4559 
4560 	pool_table_exit();
4561 }
4562 
4563 module_init(dm_thin_init);
4564 module_exit(dm_thin_exit);
4565 
4566 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4567 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4568 
4569 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4570 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4571 MODULE_LICENSE("GPL");
4572