1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/sort.h> 22 #include <linux/rbtree.h> 23 24 #define DM_MSG_PREFIX "thin" 25 26 /* 27 * Tunable constants 28 */ 29 #define ENDIO_HOOK_POOL_SIZE 1024 30 #define MAPPING_POOL_SIZE 1024 31 #define COMMIT_PERIOD HZ 32 #define NO_SPACE_TIMEOUT_SECS 60 33 34 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 35 36 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 37 "A percentage of time allocated for copy on write"); 38 39 /* 40 * The block size of the device holding pool data must be 41 * between 64KB and 1GB. 42 */ 43 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 44 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 45 46 /* 47 * Device id is restricted to 24 bits. 48 */ 49 #define MAX_DEV_ID ((1 << 24) - 1) 50 51 /* 52 * How do we handle breaking sharing of data blocks? 53 * ================================================= 54 * 55 * We use a standard copy-on-write btree to store the mappings for the 56 * devices (note I'm talking about copy-on-write of the metadata here, not 57 * the data). When you take an internal snapshot you clone the root node 58 * of the origin btree. After this there is no concept of an origin or a 59 * snapshot. They are just two device trees that happen to point to the 60 * same data blocks. 61 * 62 * When we get a write in we decide if it's to a shared data block using 63 * some timestamp magic. If it is, we have to break sharing. 64 * 65 * Let's say we write to a shared block in what was the origin. The 66 * steps are: 67 * 68 * i) plug io further to this physical block. (see bio_prison code). 69 * 70 * ii) quiesce any read io to that shared data block. Obviously 71 * including all devices that share this block. (see dm_deferred_set code) 72 * 73 * iii) copy the data block to a newly allocate block. This step can be 74 * missed out if the io covers the block. (schedule_copy). 75 * 76 * iv) insert the new mapping into the origin's btree 77 * (process_prepared_mapping). This act of inserting breaks some 78 * sharing of btree nodes between the two devices. Breaking sharing only 79 * effects the btree of that specific device. Btrees for the other 80 * devices that share the block never change. The btree for the origin 81 * device as it was after the last commit is untouched, ie. we're using 82 * persistent data structures in the functional programming sense. 83 * 84 * v) unplug io to this physical block, including the io that triggered 85 * the breaking of sharing. 86 * 87 * Steps (ii) and (iii) occur in parallel. 88 * 89 * The metadata _doesn't_ need to be committed before the io continues. We 90 * get away with this because the io is always written to a _new_ block. 91 * If there's a crash, then: 92 * 93 * - The origin mapping will point to the old origin block (the shared 94 * one). This will contain the data as it was before the io that triggered 95 * the breaking of sharing came in. 96 * 97 * - The snap mapping still points to the old block. As it would after 98 * the commit. 99 * 100 * The downside of this scheme is the timestamp magic isn't perfect, and 101 * will continue to think that data block in the snapshot device is shared 102 * even after the write to the origin has broken sharing. I suspect data 103 * blocks will typically be shared by many different devices, so we're 104 * breaking sharing n + 1 times, rather than n, where n is the number of 105 * devices that reference this data block. At the moment I think the 106 * benefits far, far outweigh the disadvantages. 107 */ 108 109 /*----------------------------------------------------------------*/ 110 111 /* 112 * Key building. 113 */ 114 static void build_data_key(struct dm_thin_device *td, 115 dm_block_t b, struct dm_cell_key *key) 116 { 117 key->virtual = 0; 118 key->dev = dm_thin_dev_id(td); 119 key->block_begin = b; 120 key->block_end = b + 1ULL; 121 } 122 123 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 124 struct dm_cell_key *key) 125 { 126 key->virtual = 1; 127 key->dev = dm_thin_dev_id(td); 128 key->block_begin = b; 129 key->block_end = b + 1ULL; 130 } 131 132 /*----------------------------------------------------------------*/ 133 134 #define THROTTLE_THRESHOLD (1 * HZ) 135 136 struct throttle { 137 struct rw_semaphore lock; 138 unsigned long threshold; 139 bool throttle_applied; 140 }; 141 142 static void throttle_init(struct throttle *t) 143 { 144 init_rwsem(&t->lock); 145 t->throttle_applied = false; 146 } 147 148 static void throttle_work_start(struct throttle *t) 149 { 150 t->threshold = jiffies + THROTTLE_THRESHOLD; 151 } 152 153 static void throttle_work_update(struct throttle *t) 154 { 155 if (!t->throttle_applied && jiffies > t->threshold) { 156 down_write(&t->lock); 157 t->throttle_applied = true; 158 } 159 } 160 161 static void throttle_work_complete(struct throttle *t) 162 { 163 if (t->throttle_applied) { 164 t->throttle_applied = false; 165 up_write(&t->lock); 166 } 167 } 168 169 static void throttle_lock(struct throttle *t) 170 { 171 down_read(&t->lock); 172 } 173 174 static void throttle_unlock(struct throttle *t) 175 { 176 up_read(&t->lock); 177 } 178 179 /*----------------------------------------------------------------*/ 180 181 /* 182 * A pool device ties together a metadata device and a data device. It 183 * also provides the interface for creating and destroying internal 184 * devices. 185 */ 186 struct dm_thin_new_mapping; 187 188 /* 189 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 190 */ 191 enum pool_mode { 192 PM_WRITE, /* metadata may be changed */ 193 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 194 PM_READ_ONLY, /* metadata may not be changed */ 195 PM_FAIL, /* all I/O fails */ 196 }; 197 198 struct pool_features { 199 enum pool_mode mode; 200 201 bool zero_new_blocks:1; 202 bool discard_enabled:1; 203 bool discard_passdown:1; 204 bool error_if_no_space:1; 205 }; 206 207 struct thin_c; 208 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 209 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 210 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 211 212 #define CELL_SORT_ARRAY_SIZE 8192 213 214 struct pool { 215 struct list_head list; 216 struct dm_target *ti; /* Only set if a pool target is bound */ 217 218 struct mapped_device *pool_md; 219 struct block_device *md_dev; 220 struct dm_pool_metadata *pmd; 221 222 dm_block_t low_water_blocks; 223 uint32_t sectors_per_block; 224 int sectors_per_block_shift; 225 226 struct pool_features pf; 227 bool low_water_triggered:1; /* A dm event has been sent */ 228 bool suspended:1; 229 230 struct dm_bio_prison *prison; 231 struct dm_kcopyd_client *copier; 232 233 struct workqueue_struct *wq; 234 struct throttle throttle; 235 struct work_struct worker; 236 struct delayed_work waker; 237 struct delayed_work no_space_timeout; 238 239 unsigned long last_commit_jiffies; 240 unsigned ref_count; 241 242 spinlock_t lock; 243 struct bio_list deferred_flush_bios; 244 struct list_head prepared_mappings; 245 struct list_head prepared_discards; 246 struct list_head active_thins; 247 248 struct dm_deferred_set *shared_read_ds; 249 struct dm_deferred_set *all_io_ds; 250 251 struct dm_thin_new_mapping *next_mapping; 252 mempool_t *mapping_pool; 253 254 process_bio_fn process_bio; 255 process_bio_fn process_discard; 256 257 process_cell_fn process_cell; 258 process_cell_fn process_discard_cell; 259 260 process_mapping_fn process_prepared_mapping; 261 process_mapping_fn process_prepared_discard; 262 263 struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE]; 264 }; 265 266 static enum pool_mode get_pool_mode(struct pool *pool); 267 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 268 269 /* 270 * Target context for a pool. 271 */ 272 struct pool_c { 273 struct dm_target *ti; 274 struct pool *pool; 275 struct dm_dev *data_dev; 276 struct dm_dev *metadata_dev; 277 struct dm_target_callbacks callbacks; 278 279 dm_block_t low_water_blocks; 280 struct pool_features requested_pf; /* Features requested during table load */ 281 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 282 }; 283 284 /* 285 * Target context for a thin. 286 */ 287 struct thin_c { 288 struct list_head list; 289 struct dm_dev *pool_dev; 290 struct dm_dev *origin_dev; 291 sector_t origin_size; 292 dm_thin_id dev_id; 293 294 struct pool *pool; 295 struct dm_thin_device *td; 296 struct mapped_device *thin_md; 297 298 bool requeue_mode:1; 299 spinlock_t lock; 300 struct list_head deferred_cells; 301 struct bio_list deferred_bio_list; 302 struct bio_list retry_on_resume_list; 303 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 304 305 /* 306 * Ensures the thin is not destroyed until the worker has finished 307 * iterating the active_thins list. 308 */ 309 atomic_t refcount; 310 struct completion can_destroy; 311 }; 312 313 /*----------------------------------------------------------------*/ 314 315 /* 316 * wake_worker() is used when new work is queued and when pool_resume is 317 * ready to continue deferred IO processing. 318 */ 319 static void wake_worker(struct pool *pool) 320 { 321 queue_work(pool->wq, &pool->worker); 322 } 323 324 /*----------------------------------------------------------------*/ 325 326 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 327 struct dm_bio_prison_cell **cell_result) 328 { 329 int r; 330 struct dm_bio_prison_cell *cell_prealloc; 331 332 /* 333 * Allocate a cell from the prison's mempool. 334 * This might block but it can't fail. 335 */ 336 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 337 338 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 339 if (r) 340 /* 341 * We reused an old cell; we can get rid of 342 * the new one. 343 */ 344 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 345 346 return r; 347 } 348 349 static void cell_release(struct pool *pool, 350 struct dm_bio_prison_cell *cell, 351 struct bio_list *bios) 352 { 353 dm_cell_release(pool->prison, cell, bios); 354 dm_bio_prison_free_cell(pool->prison, cell); 355 } 356 357 static void cell_visit_release(struct pool *pool, 358 void (*fn)(void *, struct dm_bio_prison_cell *), 359 void *context, 360 struct dm_bio_prison_cell *cell) 361 { 362 dm_cell_visit_release(pool->prison, fn, context, cell); 363 dm_bio_prison_free_cell(pool->prison, cell); 364 } 365 366 static void cell_release_no_holder(struct pool *pool, 367 struct dm_bio_prison_cell *cell, 368 struct bio_list *bios) 369 { 370 dm_cell_release_no_holder(pool->prison, cell, bios); 371 dm_bio_prison_free_cell(pool->prison, cell); 372 } 373 374 static void cell_error_with_code(struct pool *pool, 375 struct dm_bio_prison_cell *cell, int error_code) 376 { 377 dm_cell_error(pool->prison, cell, error_code); 378 dm_bio_prison_free_cell(pool->prison, cell); 379 } 380 381 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 382 { 383 cell_error_with_code(pool, cell, -EIO); 384 } 385 386 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 387 { 388 cell_error_with_code(pool, cell, 0); 389 } 390 391 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 392 { 393 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE); 394 } 395 396 /*----------------------------------------------------------------*/ 397 398 /* 399 * A global list of pools that uses a struct mapped_device as a key. 400 */ 401 static struct dm_thin_pool_table { 402 struct mutex mutex; 403 struct list_head pools; 404 } dm_thin_pool_table; 405 406 static void pool_table_init(void) 407 { 408 mutex_init(&dm_thin_pool_table.mutex); 409 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 410 } 411 412 static void __pool_table_insert(struct pool *pool) 413 { 414 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 415 list_add(&pool->list, &dm_thin_pool_table.pools); 416 } 417 418 static void __pool_table_remove(struct pool *pool) 419 { 420 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 421 list_del(&pool->list); 422 } 423 424 static struct pool *__pool_table_lookup(struct mapped_device *md) 425 { 426 struct pool *pool = NULL, *tmp; 427 428 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 429 430 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 431 if (tmp->pool_md == md) { 432 pool = tmp; 433 break; 434 } 435 } 436 437 return pool; 438 } 439 440 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 441 { 442 struct pool *pool = NULL, *tmp; 443 444 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 445 446 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 447 if (tmp->md_dev == md_dev) { 448 pool = tmp; 449 break; 450 } 451 } 452 453 return pool; 454 } 455 456 /*----------------------------------------------------------------*/ 457 458 struct dm_thin_endio_hook { 459 struct thin_c *tc; 460 struct dm_deferred_entry *shared_read_entry; 461 struct dm_deferred_entry *all_io_entry; 462 struct dm_thin_new_mapping *overwrite_mapping; 463 struct rb_node rb_node; 464 }; 465 466 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 467 { 468 bio_list_merge(bios, master); 469 bio_list_init(master); 470 } 471 472 static void error_bio_list(struct bio_list *bios, int error) 473 { 474 struct bio *bio; 475 476 while ((bio = bio_list_pop(bios))) 477 bio_endio(bio, error); 478 } 479 480 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error) 481 { 482 struct bio_list bios; 483 unsigned long flags; 484 485 bio_list_init(&bios); 486 487 spin_lock_irqsave(&tc->lock, flags); 488 __merge_bio_list(&bios, master); 489 spin_unlock_irqrestore(&tc->lock, flags); 490 491 error_bio_list(&bios, error); 492 } 493 494 static void requeue_deferred_cells(struct thin_c *tc) 495 { 496 struct pool *pool = tc->pool; 497 unsigned long flags; 498 struct list_head cells; 499 struct dm_bio_prison_cell *cell, *tmp; 500 501 INIT_LIST_HEAD(&cells); 502 503 spin_lock_irqsave(&tc->lock, flags); 504 list_splice_init(&tc->deferred_cells, &cells); 505 spin_unlock_irqrestore(&tc->lock, flags); 506 507 list_for_each_entry_safe(cell, tmp, &cells, user_list) 508 cell_requeue(pool, cell); 509 } 510 511 static void requeue_io(struct thin_c *tc) 512 { 513 struct bio_list bios; 514 unsigned long flags; 515 516 bio_list_init(&bios); 517 518 spin_lock_irqsave(&tc->lock, flags); 519 __merge_bio_list(&bios, &tc->deferred_bio_list); 520 __merge_bio_list(&bios, &tc->retry_on_resume_list); 521 spin_unlock_irqrestore(&tc->lock, flags); 522 523 error_bio_list(&bios, DM_ENDIO_REQUEUE); 524 requeue_deferred_cells(tc); 525 } 526 527 static void error_retry_list(struct pool *pool) 528 { 529 struct thin_c *tc; 530 531 rcu_read_lock(); 532 list_for_each_entry_rcu(tc, &pool->active_thins, list) 533 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO); 534 rcu_read_unlock(); 535 } 536 537 /* 538 * This section of code contains the logic for processing a thin device's IO. 539 * Much of the code depends on pool object resources (lists, workqueues, etc) 540 * but most is exclusively called from the thin target rather than the thin-pool 541 * target. 542 */ 543 544 static bool block_size_is_power_of_two(struct pool *pool) 545 { 546 return pool->sectors_per_block_shift >= 0; 547 } 548 549 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 550 { 551 struct pool *pool = tc->pool; 552 sector_t block_nr = bio->bi_iter.bi_sector; 553 554 if (block_size_is_power_of_two(pool)) 555 block_nr >>= pool->sectors_per_block_shift; 556 else 557 (void) sector_div(block_nr, pool->sectors_per_block); 558 559 return block_nr; 560 } 561 562 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 563 { 564 struct pool *pool = tc->pool; 565 sector_t bi_sector = bio->bi_iter.bi_sector; 566 567 bio->bi_bdev = tc->pool_dev->bdev; 568 if (block_size_is_power_of_two(pool)) 569 bio->bi_iter.bi_sector = 570 (block << pool->sectors_per_block_shift) | 571 (bi_sector & (pool->sectors_per_block - 1)); 572 else 573 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 574 sector_div(bi_sector, pool->sectors_per_block); 575 } 576 577 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 578 { 579 bio->bi_bdev = tc->origin_dev->bdev; 580 } 581 582 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 583 { 584 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 585 dm_thin_changed_this_transaction(tc->td); 586 } 587 588 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 589 { 590 struct dm_thin_endio_hook *h; 591 592 if (bio->bi_rw & REQ_DISCARD) 593 return; 594 595 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 596 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 597 } 598 599 static void issue(struct thin_c *tc, struct bio *bio) 600 { 601 struct pool *pool = tc->pool; 602 unsigned long flags; 603 604 if (!bio_triggers_commit(tc, bio)) { 605 generic_make_request(bio); 606 return; 607 } 608 609 /* 610 * Complete bio with an error if earlier I/O caused changes to 611 * the metadata that can't be committed e.g, due to I/O errors 612 * on the metadata device. 613 */ 614 if (dm_thin_aborted_changes(tc->td)) { 615 bio_io_error(bio); 616 return; 617 } 618 619 /* 620 * Batch together any bios that trigger commits and then issue a 621 * single commit for them in process_deferred_bios(). 622 */ 623 spin_lock_irqsave(&pool->lock, flags); 624 bio_list_add(&pool->deferred_flush_bios, bio); 625 spin_unlock_irqrestore(&pool->lock, flags); 626 } 627 628 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 629 { 630 remap_to_origin(tc, bio); 631 issue(tc, bio); 632 } 633 634 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 635 dm_block_t block) 636 { 637 remap(tc, bio, block); 638 issue(tc, bio); 639 } 640 641 /*----------------------------------------------------------------*/ 642 643 /* 644 * Bio endio functions. 645 */ 646 struct dm_thin_new_mapping { 647 struct list_head list; 648 649 bool pass_discard:1; 650 bool definitely_not_shared:1; 651 652 /* 653 * Track quiescing, copying and zeroing preparation actions. When this 654 * counter hits zero the block is prepared and can be inserted into the 655 * btree. 656 */ 657 atomic_t prepare_actions; 658 659 int err; 660 struct thin_c *tc; 661 dm_block_t virt_block; 662 dm_block_t data_block; 663 struct dm_bio_prison_cell *cell, *cell2; 664 665 /* 666 * If the bio covers the whole area of a block then we can avoid 667 * zeroing or copying. Instead this bio is hooked. The bio will 668 * still be in the cell, so care has to be taken to avoid issuing 669 * the bio twice. 670 */ 671 struct bio *bio; 672 bio_end_io_t *saved_bi_end_io; 673 }; 674 675 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 676 { 677 struct pool *pool = m->tc->pool; 678 679 if (atomic_dec_and_test(&m->prepare_actions)) { 680 list_add_tail(&m->list, &pool->prepared_mappings); 681 wake_worker(pool); 682 } 683 } 684 685 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 686 { 687 unsigned long flags; 688 struct pool *pool = m->tc->pool; 689 690 spin_lock_irqsave(&pool->lock, flags); 691 __complete_mapping_preparation(m); 692 spin_unlock_irqrestore(&pool->lock, flags); 693 } 694 695 static void copy_complete(int read_err, unsigned long write_err, void *context) 696 { 697 struct dm_thin_new_mapping *m = context; 698 699 m->err = read_err || write_err ? -EIO : 0; 700 complete_mapping_preparation(m); 701 } 702 703 static void overwrite_endio(struct bio *bio, int err) 704 { 705 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 706 struct dm_thin_new_mapping *m = h->overwrite_mapping; 707 708 m->err = err; 709 complete_mapping_preparation(m); 710 } 711 712 /*----------------------------------------------------------------*/ 713 714 /* 715 * Workqueue. 716 */ 717 718 /* 719 * Prepared mapping jobs. 720 */ 721 722 /* 723 * This sends the bios in the cell, except the original holder, back 724 * to the deferred_bios list. 725 */ 726 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 727 { 728 struct pool *pool = tc->pool; 729 unsigned long flags; 730 731 spin_lock_irqsave(&tc->lock, flags); 732 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 733 spin_unlock_irqrestore(&tc->lock, flags); 734 735 wake_worker(pool); 736 } 737 738 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 739 740 struct remap_info { 741 struct thin_c *tc; 742 struct bio_list defer_bios; 743 struct bio_list issue_bios; 744 }; 745 746 static void __inc_remap_and_issue_cell(void *context, 747 struct dm_bio_prison_cell *cell) 748 { 749 struct remap_info *info = context; 750 struct bio *bio; 751 752 while ((bio = bio_list_pop(&cell->bios))) { 753 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) 754 bio_list_add(&info->defer_bios, bio); 755 else { 756 inc_all_io_entry(info->tc->pool, bio); 757 758 /* 759 * We can't issue the bios with the bio prison lock 760 * held, so we add them to a list to issue on 761 * return from this function. 762 */ 763 bio_list_add(&info->issue_bios, bio); 764 } 765 } 766 } 767 768 static void inc_remap_and_issue_cell(struct thin_c *tc, 769 struct dm_bio_prison_cell *cell, 770 dm_block_t block) 771 { 772 struct bio *bio; 773 struct remap_info info; 774 775 info.tc = tc; 776 bio_list_init(&info.defer_bios); 777 bio_list_init(&info.issue_bios); 778 779 /* 780 * We have to be careful to inc any bios we're about to issue 781 * before the cell is released, and avoid a race with new bios 782 * being added to the cell. 783 */ 784 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 785 &info, cell); 786 787 while ((bio = bio_list_pop(&info.defer_bios))) 788 thin_defer_bio(tc, bio); 789 790 while ((bio = bio_list_pop(&info.issue_bios))) 791 remap_and_issue(info.tc, bio, block); 792 } 793 794 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 795 { 796 if (m->bio) { 797 m->bio->bi_end_io = m->saved_bi_end_io; 798 atomic_inc(&m->bio->bi_remaining); 799 } 800 cell_error(m->tc->pool, m->cell); 801 list_del(&m->list); 802 mempool_free(m, m->tc->pool->mapping_pool); 803 } 804 805 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 806 { 807 struct thin_c *tc = m->tc; 808 struct pool *pool = tc->pool; 809 struct bio *bio; 810 int r; 811 812 bio = m->bio; 813 if (bio) { 814 bio->bi_end_io = m->saved_bi_end_io; 815 atomic_inc(&bio->bi_remaining); 816 } 817 818 if (m->err) { 819 cell_error(pool, m->cell); 820 goto out; 821 } 822 823 /* 824 * Commit the prepared block into the mapping btree. 825 * Any I/O for this block arriving after this point will get 826 * remapped to it directly. 827 */ 828 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 829 if (r) { 830 metadata_operation_failed(pool, "dm_thin_insert_block", r); 831 cell_error(pool, m->cell); 832 goto out; 833 } 834 835 /* 836 * Release any bios held while the block was being provisioned. 837 * If we are processing a write bio that completely covers the block, 838 * we already processed it so can ignore it now when processing 839 * the bios in the cell. 840 */ 841 if (bio) { 842 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 843 bio_endio(bio, 0); 844 } else { 845 inc_all_io_entry(tc->pool, m->cell->holder); 846 remap_and_issue(tc, m->cell->holder, m->data_block); 847 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 848 } 849 850 out: 851 list_del(&m->list); 852 mempool_free(m, pool->mapping_pool); 853 } 854 855 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 856 { 857 struct thin_c *tc = m->tc; 858 859 bio_io_error(m->bio); 860 cell_defer_no_holder(tc, m->cell); 861 cell_defer_no_holder(tc, m->cell2); 862 mempool_free(m, tc->pool->mapping_pool); 863 } 864 865 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 866 { 867 struct thin_c *tc = m->tc; 868 869 inc_all_io_entry(tc->pool, m->bio); 870 cell_defer_no_holder(tc, m->cell); 871 cell_defer_no_holder(tc, m->cell2); 872 873 if (m->pass_discard) 874 if (m->definitely_not_shared) 875 remap_and_issue(tc, m->bio, m->data_block); 876 else { 877 bool used = false; 878 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used) 879 bio_endio(m->bio, 0); 880 else 881 remap_and_issue(tc, m->bio, m->data_block); 882 } 883 else 884 bio_endio(m->bio, 0); 885 886 mempool_free(m, tc->pool->mapping_pool); 887 } 888 889 static void process_prepared_discard(struct dm_thin_new_mapping *m) 890 { 891 int r; 892 struct thin_c *tc = m->tc; 893 894 r = dm_thin_remove_block(tc->td, m->virt_block); 895 if (r) 896 DMERR_LIMIT("dm_thin_remove_block() failed"); 897 898 process_prepared_discard_passdown(m); 899 } 900 901 static void process_prepared(struct pool *pool, struct list_head *head, 902 process_mapping_fn *fn) 903 { 904 unsigned long flags; 905 struct list_head maps; 906 struct dm_thin_new_mapping *m, *tmp; 907 908 INIT_LIST_HEAD(&maps); 909 spin_lock_irqsave(&pool->lock, flags); 910 list_splice_init(head, &maps); 911 spin_unlock_irqrestore(&pool->lock, flags); 912 913 list_for_each_entry_safe(m, tmp, &maps, list) 914 (*fn)(m); 915 } 916 917 /* 918 * Deferred bio jobs. 919 */ 920 static int io_overlaps_block(struct pool *pool, struct bio *bio) 921 { 922 return bio->bi_iter.bi_size == 923 (pool->sectors_per_block << SECTOR_SHIFT); 924 } 925 926 static int io_overwrites_block(struct pool *pool, struct bio *bio) 927 { 928 return (bio_data_dir(bio) == WRITE) && 929 io_overlaps_block(pool, bio); 930 } 931 932 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 933 bio_end_io_t *fn) 934 { 935 *save = bio->bi_end_io; 936 bio->bi_end_io = fn; 937 } 938 939 static int ensure_next_mapping(struct pool *pool) 940 { 941 if (pool->next_mapping) 942 return 0; 943 944 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 945 946 return pool->next_mapping ? 0 : -ENOMEM; 947 } 948 949 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 950 { 951 struct dm_thin_new_mapping *m = pool->next_mapping; 952 953 BUG_ON(!pool->next_mapping); 954 955 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 956 INIT_LIST_HEAD(&m->list); 957 m->bio = NULL; 958 959 pool->next_mapping = NULL; 960 961 return m; 962 } 963 964 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 965 sector_t begin, sector_t end) 966 { 967 int r; 968 struct dm_io_region to; 969 970 to.bdev = tc->pool_dev->bdev; 971 to.sector = begin; 972 to.count = end - begin; 973 974 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 975 if (r < 0) { 976 DMERR_LIMIT("dm_kcopyd_zero() failed"); 977 copy_complete(1, 1, m); 978 } 979 } 980 981 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 982 dm_block_t data_block, 983 struct dm_thin_new_mapping *m) 984 { 985 struct pool *pool = tc->pool; 986 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 987 988 h->overwrite_mapping = m; 989 m->bio = bio; 990 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 991 inc_all_io_entry(pool, bio); 992 remap_and_issue(tc, bio, data_block); 993 } 994 995 /* 996 * A partial copy also needs to zero the uncopied region. 997 */ 998 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 999 struct dm_dev *origin, dm_block_t data_origin, 1000 dm_block_t data_dest, 1001 struct dm_bio_prison_cell *cell, struct bio *bio, 1002 sector_t len) 1003 { 1004 int r; 1005 struct pool *pool = tc->pool; 1006 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1007 1008 m->tc = tc; 1009 m->virt_block = virt_block; 1010 m->data_block = data_dest; 1011 m->cell = cell; 1012 1013 /* 1014 * quiesce action + copy action + an extra reference held for the 1015 * duration of this function (we may need to inc later for a 1016 * partial zero). 1017 */ 1018 atomic_set(&m->prepare_actions, 3); 1019 1020 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1021 complete_mapping_preparation(m); /* already quiesced */ 1022 1023 /* 1024 * IO to pool_dev remaps to the pool target's data_dev. 1025 * 1026 * If the whole block of data is being overwritten, we can issue the 1027 * bio immediately. Otherwise we use kcopyd to clone the data first. 1028 */ 1029 if (io_overwrites_block(pool, bio)) 1030 remap_and_issue_overwrite(tc, bio, data_dest, m); 1031 else { 1032 struct dm_io_region from, to; 1033 1034 from.bdev = origin->bdev; 1035 from.sector = data_origin * pool->sectors_per_block; 1036 from.count = len; 1037 1038 to.bdev = tc->pool_dev->bdev; 1039 to.sector = data_dest * pool->sectors_per_block; 1040 to.count = len; 1041 1042 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1043 0, copy_complete, m); 1044 if (r < 0) { 1045 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1046 copy_complete(1, 1, m); 1047 1048 /* 1049 * We allow the zero to be issued, to simplify the 1050 * error path. Otherwise we'd need to start 1051 * worrying about decrementing the prepare_actions 1052 * counter. 1053 */ 1054 } 1055 1056 /* 1057 * Do we need to zero a tail region? 1058 */ 1059 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1060 atomic_inc(&m->prepare_actions); 1061 ll_zero(tc, m, 1062 data_dest * pool->sectors_per_block + len, 1063 (data_dest + 1) * pool->sectors_per_block); 1064 } 1065 } 1066 1067 complete_mapping_preparation(m); /* drop our ref */ 1068 } 1069 1070 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1071 dm_block_t data_origin, dm_block_t data_dest, 1072 struct dm_bio_prison_cell *cell, struct bio *bio) 1073 { 1074 schedule_copy(tc, virt_block, tc->pool_dev, 1075 data_origin, data_dest, cell, bio, 1076 tc->pool->sectors_per_block); 1077 } 1078 1079 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1080 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1081 struct bio *bio) 1082 { 1083 struct pool *pool = tc->pool; 1084 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1085 1086 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1087 m->tc = tc; 1088 m->virt_block = virt_block; 1089 m->data_block = data_block; 1090 m->cell = cell; 1091 1092 /* 1093 * If the whole block of data is being overwritten or we are not 1094 * zeroing pre-existing data, we can issue the bio immediately. 1095 * Otherwise we use kcopyd to zero the data first. 1096 */ 1097 if (!pool->pf.zero_new_blocks) 1098 process_prepared_mapping(m); 1099 1100 else if (io_overwrites_block(pool, bio)) 1101 remap_and_issue_overwrite(tc, bio, data_block, m); 1102 1103 else 1104 ll_zero(tc, m, 1105 data_block * pool->sectors_per_block, 1106 (data_block + 1) * pool->sectors_per_block); 1107 } 1108 1109 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1110 dm_block_t data_dest, 1111 struct dm_bio_prison_cell *cell, struct bio *bio) 1112 { 1113 struct pool *pool = tc->pool; 1114 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1115 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1116 1117 if (virt_block_end <= tc->origin_size) 1118 schedule_copy(tc, virt_block, tc->origin_dev, 1119 virt_block, data_dest, cell, bio, 1120 pool->sectors_per_block); 1121 1122 else if (virt_block_begin < tc->origin_size) 1123 schedule_copy(tc, virt_block, tc->origin_dev, 1124 virt_block, data_dest, cell, bio, 1125 tc->origin_size - virt_block_begin); 1126 1127 else 1128 schedule_zero(tc, virt_block, data_dest, cell, bio); 1129 } 1130 1131 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1132 1133 static void check_for_space(struct pool *pool) 1134 { 1135 int r; 1136 dm_block_t nr_free; 1137 1138 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1139 return; 1140 1141 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1142 if (r) 1143 return; 1144 1145 if (nr_free) 1146 set_pool_mode(pool, PM_WRITE); 1147 } 1148 1149 /* 1150 * A non-zero return indicates read_only or fail_io mode. 1151 * Many callers don't care about the return value. 1152 */ 1153 static int commit(struct pool *pool) 1154 { 1155 int r; 1156 1157 if (get_pool_mode(pool) >= PM_READ_ONLY) 1158 return -EINVAL; 1159 1160 r = dm_pool_commit_metadata(pool->pmd); 1161 if (r) 1162 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1163 else 1164 check_for_space(pool); 1165 1166 return r; 1167 } 1168 1169 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1170 { 1171 unsigned long flags; 1172 1173 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1174 DMWARN("%s: reached low water mark for data device: sending event.", 1175 dm_device_name(pool->pool_md)); 1176 spin_lock_irqsave(&pool->lock, flags); 1177 pool->low_water_triggered = true; 1178 spin_unlock_irqrestore(&pool->lock, flags); 1179 dm_table_event(pool->ti->table); 1180 } 1181 } 1182 1183 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1184 { 1185 int r; 1186 dm_block_t free_blocks; 1187 struct pool *pool = tc->pool; 1188 1189 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1190 return -EINVAL; 1191 1192 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1193 if (r) { 1194 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1195 return r; 1196 } 1197 1198 check_low_water_mark(pool, free_blocks); 1199 1200 if (!free_blocks) { 1201 /* 1202 * Try to commit to see if that will free up some 1203 * more space. 1204 */ 1205 r = commit(pool); 1206 if (r) 1207 return r; 1208 1209 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1210 if (r) { 1211 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1212 return r; 1213 } 1214 1215 if (!free_blocks) { 1216 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1217 return -ENOSPC; 1218 } 1219 } 1220 1221 r = dm_pool_alloc_data_block(pool->pmd, result); 1222 if (r) { 1223 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1224 return r; 1225 } 1226 1227 return 0; 1228 } 1229 1230 /* 1231 * If we have run out of space, queue bios until the device is 1232 * resumed, presumably after having been reloaded with more space. 1233 */ 1234 static void retry_on_resume(struct bio *bio) 1235 { 1236 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1237 struct thin_c *tc = h->tc; 1238 unsigned long flags; 1239 1240 spin_lock_irqsave(&tc->lock, flags); 1241 bio_list_add(&tc->retry_on_resume_list, bio); 1242 spin_unlock_irqrestore(&tc->lock, flags); 1243 } 1244 1245 static int should_error_unserviceable_bio(struct pool *pool) 1246 { 1247 enum pool_mode m = get_pool_mode(pool); 1248 1249 switch (m) { 1250 case PM_WRITE: 1251 /* Shouldn't get here */ 1252 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1253 return -EIO; 1254 1255 case PM_OUT_OF_DATA_SPACE: 1256 return pool->pf.error_if_no_space ? -ENOSPC : 0; 1257 1258 case PM_READ_ONLY: 1259 case PM_FAIL: 1260 return -EIO; 1261 default: 1262 /* Shouldn't get here */ 1263 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1264 return -EIO; 1265 } 1266 } 1267 1268 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1269 { 1270 int error = should_error_unserviceable_bio(pool); 1271 1272 if (error) 1273 bio_endio(bio, error); 1274 else 1275 retry_on_resume(bio); 1276 } 1277 1278 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1279 { 1280 struct bio *bio; 1281 struct bio_list bios; 1282 int error; 1283 1284 error = should_error_unserviceable_bio(pool); 1285 if (error) { 1286 cell_error_with_code(pool, cell, error); 1287 return; 1288 } 1289 1290 bio_list_init(&bios); 1291 cell_release(pool, cell, &bios); 1292 1293 while ((bio = bio_list_pop(&bios))) 1294 retry_on_resume(bio); 1295 } 1296 1297 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1298 { 1299 int r; 1300 struct bio *bio = cell->holder; 1301 struct pool *pool = tc->pool; 1302 struct dm_bio_prison_cell *cell2; 1303 struct dm_cell_key key2; 1304 dm_block_t block = get_bio_block(tc, bio); 1305 struct dm_thin_lookup_result lookup_result; 1306 struct dm_thin_new_mapping *m; 1307 1308 if (tc->requeue_mode) { 1309 cell_requeue(pool, cell); 1310 return; 1311 } 1312 1313 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1314 switch (r) { 1315 case 0: 1316 /* 1317 * Check nobody is fiddling with this pool block. This can 1318 * happen if someone's in the process of breaking sharing 1319 * on this block. 1320 */ 1321 build_data_key(tc->td, lookup_result.block, &key2); 1322 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1323 cell_defer_no_holder(tc, cell); 1324 break; 1325 } 1326 1327 if (io_overlaps_block(pool, bio)) { 1328 /* 1329 * IO may still be going to the destination block. We must 1330 * quiesce before we can do the removal. 1331 */ 1332 m = get_next_mapping(pool); 1333 m->tc = tc; 1334 m->pass_discard = pool->pf.discard_passdown; 1335 m->definitely_not_shared = !lookup_result.shared; 1336 m->virt_block = block; 1337 m->data_block = lookup_result.block; 1338 m->cell = cell; 1339 m->cell2 = cell2; 1340 m->bio = bio; 1341 1342 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1343 pool->process_prepared_discard(m); 1344 1345 } else { 1346 inc_all_io_entry(pool, bio); 1347 cell_defer_no_holder(tc, cell); 1348 cell_defer_no_holder(tc, cell2); 1349 1350 /* 1351 * The DM core makes sure that the discard doesn't span 1352 * a block boundary. So we submit the discard of a 1353 * partial block appropriately. 1354 */ 1355 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1356 remap_and_issue(tc, bio, lookup_result.block); 1357 else 1358 bio_endio(bio, 0); 1359 } 1360 break; 1361 1362 case -ENODATA: 1363 /* 1364 * It isn't provisioned, just forget it. 1365 */ 1366 cell_defer_no_holder(tc, cell); 1367 bio_endio(bio, 0); 1368 break; 1369 1370 default: 1371 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1372 __func__, r); 1373 cell_defer_no_holder(tc, cell); 1374 bio_io_error(bio); 1375 break; 1376 } 1377 } 1378 1379 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1380 { 1381 struct dm_bio_prison_cell *cell; 1382 struct dm_cell_key key; 1383 dm_block_t block = get_bio_block(tc, bio); 1384 1385 build_virtual_key(tc->td, block, &key); 1386 if (bio_detain(tc->pool, &key, bio, &cell)) 1387 return; 1388 1389 process_discard_cell(tc, cell); 1390 } 1391 1392 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1393 struct dm_cell_key *key, 1394 struct dm_thin_lookup_result *lookup_result, 1395 struct dm_bio_prison_cell *cell) 1396 { 1397 int r; 1398 dm_block_t data_block; 1399 struct pool *pool = tc->pool; 1400 1401 r = alloc_data_block(tc, &data_block); 1402 switch (r) { 1403 case 0: 1404 schedule_internal_copy(tc, block, lookup_result->block, 1405 data_block, cell, bio); 1406 break; 1407 1408 case -ENOSPC: 1409 retry_bios_on_resume(pool, cell); 1410 break; 1411 1412 default: 1413 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1414 __func__, r); 1415 cell_error(pool, cell); 1416 break; 1417 } 1418 } 1419 1420 static void __remap_and_issue_shared_cell(void *context, 1421 struct dm_bio_prison_cell *cell) 1422 { 1423 struct remap_info *info = context; 1424 struct bio *bio; 1425 1426 while ((bio = bio_list_pop(&cell->bios))) { 1427 if ((bio_data_dir(bio) == WRITE) || 1428 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))) 1429 bio_list_add(&info->defer_bios, bio); 1430 else { 1431 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));; 1432 1433 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1434 inc_all_io_entry(info->tc->pool, bio); 1435 bio_list_add(&info->issue_bios, bio); 1436 } 1437 } 1438 } 1439 1440 static void remap_and_issue_shared_cell(struct thin_c *tc, 1441 struct dm_bio_prison_cell *cell, 1442 dm_block_t block) 1443 { 1444 struct bio *bio; 1445 struct remap_info info; 1446 1447 info.tc = tc; 1448 bio_list_init(&info.defer_bios); 1449 bio_list_init(&info.issue_bios); 1450 1451 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1452 &info, cell); 1453 1454 while ((bio = bio_list_pop(&info.defer_bios))) 1455 thin_defer_bio(tc, bio); 1456 1457 while ((bio = bio_list_pop(&info.issue_bios))) 1458 remap_and_issue(tc, bio, block); 1459 } 1460 1461 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1462 dm_block_t block, 1463 struct dm_thin_lookup_result *lookup_result, 1464 struct dm_bio_prison_cell *virt_cell) 1465 { 1466 struct dm_bio_prison_cell *data_cell; 1467 struct pool *pool = tc->pool; 1468 struct dm_cell_key key; 1469 1470 /* 1471 * If cell is already occupied, then sharing is already in the process 1472 * of being broken so we have nothing further to do here. 1473 */ 1474 build_data_key(tc->td, lookup_result->block, &key); 1475 if (bio_detain(pool, &key, bio, &data_cell)) { 1476 cell_defer_no_holder(tc, virt_cell); 1477 return; 1478 } 1479 1480 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1481 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1482 cell_defer_no_holder(tc, virt_cell); 1483 } else { 1484 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1485 1486 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1487 inc_all_io_entry(pool, bio); 1488 remap_and_issue(tc, bio, lookup_result->block); 1489 1490 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1491 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1492 } 1493 } 1494 1495 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1496 struct dm_bio_prison_cell *cell) 1497 { 1498 int r; 1499 dm_block_t data_block; 1500 struct pool *pool = tc->pool; 1501 1502 /* 1503 * Remap empty bios (flushes) immediately, without provisioning. 1504 */ 1505 if (!bio->bi_iter.bi_size) { 1506 inc_all_io_entry(pool, bio); 1507 cell_defer_no_holder(tc, cell); 1508 1509 remap_and_issue(tc, bio, 0); 1510 return; 1511 } 1512 1513 /* 1514 * Fill read bios with zeroes and complete them immediately. 1515 */ 1516 if (bio_data_dir(bio) == READ) { 1517 zero_fill_bio(bio); 1518 cell_defer_no_holder(tc, cell); 1519 bio_endio(bio, 0); 1520 return; 1521 } 1522 1523 r = alloc_data_block(tc, &data_block); 1524 switch (r) { 1525 case 0: 1526 if (tc->origin_dev) 1527 schedule_external_copy(tc, block, data_block, cell, bio); 1528 else 1529 schedule_zero(tc, block, data_block, cell, bio); 1530 break; 1531 1532 case -ENOSPC: 1533 retry_bios_on_resume(pool, cell); 1534 break; 1535 1536 default: 1537 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1538 __func__, r); 1539 cell_error(pool, cell); 1540 break; 1541 } 1542 } 1543 1544 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1545 { 1546 int r; 1547 struct pool *pool = tc->pool; 1548 struct bio *bio = cell->holder; 1549 dm_block_t block = get_bio_block(tc, bio); 1550 struct dm_thin_lookup_result lookup_result; 1551 1552 if (tc->requeue_mode) { 1553 cell_requeue(pool, cell); 1554 return; 1555 } 1556 1557 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1558 switch (r) { 1559 case 0: 1560 if (lookup_result.shared) 1561 process_shared_bio(tc, bio, block, &lookup_result, cell); 1562 else { 1563 inc_all_io_entry(pool, bio); 1564 remap_and_issue(tc, bio, lookup_result.block); 1565 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1566 } 1567 break; 1568 1569 case -ENODATA: 1570 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1571 inc_all_io_entry(pool, bio); 1572 cell_defer_no_holder(tc, cell); 1573 1574 if (bio_end_sector(bio) <= tc->origin_size) 1575 remap_to_origin_and_issue(tc, bio); 1576 1577 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1578 zero_fill_bio(bio); 1579 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1580 remap_to_origin_and_issue(tc, bio); 1581 1582 } else { 1583 zero_fill_bio(bio); 1584 bio_endio(bio, 0); 1585 } 1586 } else 1587 provision_block(tc, bio, block, cell); 1588 break; 1589 1590 default: 1591 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1592 __func__, r); 1593 cell_defer_no_holder(tc, cell); 1594 bio_io_error(bio); 1595 break; 1596 } 1597 } 1598 1599 static void process_bio(struct thin_c *tc, struct bio *bio) 1600 { 1601 struct pool *pool = tc->pool; 1602 dm_block_t block = get_bio_block(tc, bio); 1603 struct dm_bio_prison_cell *cell; 1604 struct dm_cell_key key; 1605 1606 /* 1607 * If cell is already occupied, then the block is already 1608 * being provisioned so we have nothing further to do here. 1609 */ 1610 build_virtual_key(tc->td, block, &key); 1611 if (bio_detain(pool, &key, bio, &cell)) 1612 return; 1613 1614 process_cell(tc, cell); 1615 } 1616 1617 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1618 struct dm_bio_prison_cell *cell) 1619 { 1620 int r; 1621 int rw = bio_data_dir(bio); 1622 dm_block_t block = get_bio_block(tc, bio); 1623 struct dm_thin_lookup_result lookup_result; 1624 1625 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1626 switch (r) { 1627 case 0: 1628 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1629 handle_unserviceable_bio(tc->pool, bio); 1630 if (cell) 1631 cell_defer_no_holder(tc, cell); 1632 } else { 1633 inc_all_io_entry(tc->pool, bio); 1634 remap_and_issue(tc, bio, lookup_result.block); 1635 if (cell) 1636 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1637 } 1638 break; 1639 1640 case -ENODATA: 1641 if (cell) 1642 cell_defer_no_holder(tc, cell); 1643 if (rw != READ) { 1644 handle_unserviceable_bio(tc->pool, bio); 1645 break; 1646 } 1647 1648 if (tc->origin_dev) { 1649 inc_all_io_entry(tc->pool, bio); 1650 remap_to_origin_and_issue(tc, bio); 1651 break; 1652 } 1653 1654 zero_fill_bio(bio); 1655 bio_endio(bio, 0); 1656 break; 1657 1658 default: 1659 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1660 __func__, r); 1661 if (cell) 1662 cell_defer_no_holder(tc, cell); 1663 bio_io_error(bio); 1664 break; 1665 } 1666 } 1667 1668 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1669 { 1670 __process_bio_read_only(tc, bio, NULL); 1671 } 1672 1673 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1674 { 1675 __process_bio_read_only(tc, cell->holder, cell); 1676 } 1677 1678 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1679 { 1680 bio_endio(bio, 0); 1681 } 1682 1683 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1684 { 1685 bio_io_error(bio); 1686 } 1687 1688 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1689 { 1690 cell_success(tc->pool, cell); 1691 } 1692 1693 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1694 { 1695 cell_error(tc->pool, cell); 1696 } 1697 1698 /* 1699 * FIXME: should we also commit due to size of transaction, measured in 1700 * metadata blocks? 1701 */ 1702 static int need_commit_due_to_time(struct pool *pool) 1703 { 1704 return !time_in_range(jiffies, pool->last_commit_jiffies, 1705 pool->last_commit_jiffies + COMMIT_PERIOD); 1706 } 1707 1708 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1709 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1710 1711 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 1712 { 1713 struct rb_node **rbp, *parent; 1714 struct dm_thin_endio_hook *pbd; 1715 sector_t bi_sector = bio->bi_iter.bi_sector; 1716 1717 rbp = &tc->sort_bio_list.rb_node; 1718 parent = NULL; 1719 while (*rbp) { 1720 parent = *rbp; 1721 pbd = thin_pbd(parent); 1722 1723 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 1724 rbp = &(*rbp)->rb_left; 1725 else 1726 rbp = &(*rbp)->rb_right; 1727 } 1728 1729 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1730 rb_link_node(&pbd->rb_node, parent, rbp); 1731 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 1732 } 1733 1734 static void __extract_sorted_bios(struct thin_c *tc) 1735 { 1736 struct rb_node *node; 1737 struct dm_thin_endio_hook *pbd; 1738 struct bio *bio; 1739 1740 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 1741 pbd = thin_pbd(node); 1742 bio = thin_bio(pbd); 1743 1744 bio_list_add(&tc->deferred_bio_list, bio); 1745 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 1746 } 1747 1748 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 1749 } 1750 1751 static void __sort_thin_deferred_bios(struct thin_c *tc) 1752 { 1753 struct bio *bio; 1754 struct bio_list bios; 1755 1756 bio_list_init(&bios); 1757 bio_list_merge(&bios, &tc->deferred_bio_list); 1758 bio_list_init(&tc->deferred_bio_list); 1759 1760 /* Sort deferred_bio_list using rb-tree */ 1761 while ((bio = bio_list_pop(&bios))) 1762 __thin_bio_rb_add(tc, bio); 1763 1764 /* 1765 * Transfer the sorted bios in sort_bio_list back to 1766 * deferred_bio_list to allow lockless submission of 1767 * all bios. 1768 */ 1769 __extract_sorted_bios(tc); 1770 } 1771 1772 static void process_thin_deferred_bios(struct thin_c *tc) 1773 { 1774 struct pool *pool = tc->pool; 1775 unsigned long flags; 1776 struct bio *bio; 1777 struct bio_list bios; 1778 struct blk_plug plug; 1779 unsigned count = 0; 1780 1781 if (tc->requeue_mode) { 1782 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE); 1783 return; 1784 } 1785 1786 bio_list_init(&bios); 1787 1788 spin_lock_irqsave(&tc->lock, flags); 1789 1790 if (bio_list_empty(&tc->deferred_bio_list)) { 1791 spin_unlock_irqrestore(&tc->lock, flags); 1792 return; 1793 } 1794 1795 __sort_thin_deferred_bios(tc); 1796 1797 bio_list_merge(&bios, &tc->deferred_bio_list); 1798 bio_list_init(&tc->deferred_bio_list); 1799 1800 spin_unlock_irqrestore(&tc->lock, flags); 1801 1802 blk_start_plug(&plug); 1803 while ((bio = bio_list_pop(&bios))) { 1804 /* 1805 * If we've got no free new_mapping structs, and processing 1806 * this bio might require one, we pause until there are some 1807 * prepared mappings to process. 1808 */ 1809 if (ensure_next_mapping(pool)) { 1810 spin_lock_irqsave(&tc->lock, flags); 1811 bio_list_add(&tc->deferred_bio_list, bio); 1812 bio_list_merge(&tc->deferred_bio_list, &bios); 1813 spin_unlock_irqrestore(&tc->lock, flags); 1814 break; 1815 } 1816 1817 if (bio->bi_rw & REQ_DISCARD) 1818 pool->process_discard(tc, bio); 1819 else 1820 pool->process_bio(tc, bio); 1821 1822 if ((count++ & 127) == 0) { 1823 throttle_work_update(&pool->throttle); 1824 dm_pool_issue_prefetches(pool->pmd); 1825 } 1826 } 1827 blk_finish_plug(&plug); 1828 } 1829 1830 static int cmp_cells(const void *lhs, const void *rhs) 1831 { 1832 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 1833 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 1834 1835 BUG_ON(!lhs_cell->holder); 1836 BUG_ON(!rhs_cell->holder); 1837 1838 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 1839 return -1; 1840 1841 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 1842 return 1; 1843 1844 return 0; 1845 } 1846 1847 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 1848 { 1849 unsigned count = 0; 1850 struct dm_bio_prison_cell *cell, *tmp; 1851 1852 list_for_each_entry_safe(cell, tmp, cells, user_list) { 1853 if (count >= CELL_SORT_ARRAY_SIZE) 1854 break; 1855 1856 pool->cell_sort_array[count++] = cell; 1857 list_del(&cell->user_list); 1858 } 1859 1860 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 1861 1862 return count; 1863 } 1864 1865 static void process_thin_deferred_cells(struct thin_c *tc) 1866 { 1867 struct pool *pool = tc->pool; 1868 unsigned long flags; 1869 struct list_head cells; 1870 struct dm_bio_prison_cell *cell; 1871 unsigned i, j, count; 1872 1873 INIT_LIST_HEAD(&cells); 1874 1875 spin_lock_irqsave(&tc->lock, flags); 1876 list_splice_init(&tc->deferred_cells, &cells); 1877 spin_unlock_irqrestore(&tc->lock, flags); 1878 1879 if (list_empty(&cells)) 1880 return; 1881 1882 do { 1883 count = sort_cells(tc->pool, &cells); 1884 1885 for (i = 0; i < count; i++) { 1886 cell = pool->cell_sort_array[i]; 1887 BUG_ON(!cell->holder); 1888 1889 /* 1890 * If we've got no free new_mapping structs, and processing 1891 * this bio might require one, we pause until there are some 1892 * prepared mappings to process. 1893 */ 1894 if (ensure_next_mapping(pool)) { 1895 for (j = i; j < count; j++) 1896 list_add(&pool->cell_sort_array[j]->user_list, &cells); 1897 1898 spin_lock_irqsave(&tc->lock, flags); 1899 list_splice(&cells, &tc->deferred_cells); 1900 spin_unlock_irqrestore(&tc->lock, flags); 1901 return; 1902 } 1903 1904 if (cell->holder->bi_rw & REQ_DISCARD) 1905 pool->process_discard_cell(tc, cell); 1906 else 1907 pool->process_cell(tc, cell); 1908 } 1909 } while (!list_empty(&cells)); 1910 } 1911 1912 static void thin_get(struct thin_c *tc); 1913 static void thin_put(struct thin_c *tc); 1914 1915 /* 1916 * We can't hold rcu_read_lock() around code that can block. So we 1917 * find a thin with the rcu lock held; bump a refcount; then drop 1918 * the lock. 1919 */ 1920 static struct thin_c *get_first_thin(struct pool *pool) 1921 { 1922 struct thin_c *tc = NULL; 1923 1924 rcu_read_lock(); 1925 if (!list_empty(&pool->active_thins)) { 1926 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 1927 thin_get(tc); 1928 } 1929 rcu_read_unlock(); 1930 1931 return tc; 1932 } 1933 1934 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 1935 { 1936 struct thin_c *old_tc = tc; 1937 1938 rcu_read_lock(); 1939 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 1940 thin_get(tc); 1941 thin_put(old_tc); 1942 rcu_read_unlock(); 1943 return tc; 1944 } 1945 thin_put(old_tc); 1946 rcu_read_unlock(); 1947 1948 return NULL; 1949 } 1950 1951 static void process_deferred_bios(struct pool *pool) 1952 { 1953 unsigned long flags; 1954 struct bio *bio; 1955 struct bio_list bios; 1956 struct thin_c *tc; 1957 1958 tc = get_first_thin(pool); 1959 while (tc) { 1960 process_thin_deferred_cells(tc); 1961 process_thin_deferred_bios(tc); 1962 tc = get_next_thin(pool, tc); 1963 } 1964 1965 /* 1966 * If there are any deferred flush bios, we must commit 1967 * the metadata before issuing them. 1968 */ 1969 bio_list_init(&bios); 1970 spin_lock_irqsave(&pool->lock, flags); 1971 bio_list_merge(&bios, &pool->deferred_flush_bios); 1972 bio_list_init(&pool->deferred_flush_bios); 1973 spin_unlock_irqrestore(&pool->lock, flags); 1974 1975 if (bio_list_empty(&bios) && 1976 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 1977 return; 1978 1979 if (commit(pool)) { 1980 while ((bio = bio_list_pop(&bios))) 1981 bio_io_error(bio); 1982 return; 1983 } 1984 pool->last_commit_jiffies = jiffies; 1985 1986 while ((bio = bio_list_pop(&bios))) 1987 generic_make_request(bio); 1988 } 1989 1990 static void do_worker(struct work_struct *ws) 1991 { 1992 struct pool *pool = container_of(ws, struct pool, worker); 1993 1994 throttle_work_start(&pool->throttle); 1995 dm_pool_issue_prefetches(pool->pmd); 1996 throttle_work_update(&pool->throttle); 1997 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1998 throttle_work_update(&pool->throttle); 1999 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2000 throttle_work_update(&pool->throttle); 2001 process_deferred_bios(pool); 2002 throttle_work_complete(&pool->throttle); 2003 } 2004 2005 /* 2006 * We want to commit periodically so that not too much 2007 * unwritten data builds up. 2008 */ 2009 static void do_waker(struct work_struct *ws) 2010 { 2011 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2012 wake_worker(pool); 2013 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2014 } 2015 2016 /* 2017 * We're holding onto IO to allow userland time to react. After the 2018 * timeout either the pool will have been resized (and thus back in 2019 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO. 2020 */ 2021 static void do_no_space_timeout(struct work_struct *ws) 2022 { 2023 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2024 no_space_timeout); 2025 2026 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) 2027 set_pool_mode(pool, PM_READ_ONLY); 2028 } 2029 2030 /*----------------------------------------------------------------*/ 2031 2032 struct pool_work { 2033 struct work_struct worker; 2034 struct completion complete; 2035 }; 2036 2037 static struct pool_work *to_pool_work(struct work_struct *ws) 2038 { 2039 return container_of(ws, struct pool_work, worker); 2040 } 2041 2042 static void pool_work_complete(struct pool_work *pw) 2043 { 2044 complete(&pw->complete); 2045 } 2046 2047 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2048 void (*fn)(struct work_struct *)) 2049 { 2050 INIT_WORK_ONSTACK(&pw->worker, fn); 2051 init_completion(&pw->complete); 2052 queue_work(pool->wq, &pw->worker); 2053 wait_for_completion(&pw->complete); 2054 } 2055 2056 /*----------------------------------------------------------------*/ 2057 2058 struct noflush_work { 2059 struct pool_work pw; 2060 struct thin_c *tc; 2061 }; 2062 2063 static struct noflush_work *to_noflush(struct work_struct *ws) 2064 { 2065 return container_of(to_pool_work(ws), struct noflush_work, pw); 2066 } 2067 2068 static void do_noflush_start(struct work_struct *ws) 2069 { 2070 struct noflush_work *w = to_noflush(ws); 2071 w->tc->requeue_mode = true; 2072 requeue_io(w->tc); 2073 pool_work_complete(&w->pw); 2074 } 2075 2076 static void do_noflush_stop(struct work_struct *ws) 2077 { 2078 struct noflush_work *w = to_noflush(ws); 2079 w->tc->requeue_mode = false; 2080 pool_work_complete(&w->pw); 2081 } 2082 2083 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2084 { 2085 struct noflush_work w; 2086 2087 w.tc = tc; 2088 pool_work_wait(&w.pw, tc->pool, fn); 2089 } 2090 2091 /*----------------------------------------------------------------*/ 2092 2093 static enum pool_mode get_pool_mode(struct pool *pool) 2094 { 2095 return pool->pf.mode; 2096 } 2097 2098 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2099 { 2100 dm_table_event(pool->ti->table); 2101 DMINFO("%s: switching pool to %s mode", 2102 dm_device_name(pool->pool_md), new_mode); 2103 } 2104 2105 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2106 { 2107 struct pool_c *pt = pool->ti->private; 2108 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2109 enum pool_mode old_mode = get_pool_mode(pool); 2110 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 2111 2112 /* 2113 * Never allow the pool to transition to PM_WRITE mode if user 2114 * intervention is required to verify metadata and data consistency. 2115 */ 2116 if (new_mode == PM_WRITE && needs_check) { 2117 DMERR("%s: unable to switch pool to write mode until repaired.", 2118 dm_device_name(pool->pool_md)); 2119 if (old_mode != new_mode) 2120 new_mode = old_mode; 2121 else 2122 new_mode = PM_READ_ONLY; 2123 } 2124 /* 2125 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2126 * not going to recover without a thin_repair. So we never let the 2127 * pool move out of the old mode. 2128 */ 2129 if (old_mode == PM_FAIL) 2130 new_mode = old_mode; 2131 2132 switch (new_mode) { 2133 case PM_FAIL: 2134 if (old_mode != new_mode) 2135 notify_of_pool_mode_change(pool, "failure"); 2136 dm_pool_metadata_read_only(pool->pmd); 2137 pool->process_bio = process_bio_fail; 2138 pool->process_discard = process_bio_fail; 2139 pool->process_cell = process_cell_fail; 2140 pool->process_discard_cell = process_cell_fail; 2141 pool->process_prepared_mapping = process_prepared_mapping_fail; 2142 pool->process_prepared_discard = process_prepared_discard_fail; 2143 2144 error_retry_list(pool); 2145 break; 2146 2147 case PM_READ_ONLY: 2148 if (old_mode != new_mode) 2149 notify_of_pool_mode_change(pool, "read-only"); 2150 dm_pool_metadata_read_only(pool->pmd); 2151 pool->process_bio = process_bio_read_only; 2152 pool->process_discard = process_bio_success; 2153 pool->process_cell = process_cell_read_only; 2154 pool->process_discard_cell = process_cell_success; 2155 pool->process_prepared_mapping = process_prepared_mapping_fail; 2156 pool->process_prepared_discard = process_prepared_discard_passdown; 2157 2158 error_retry_list(pool); 2159 break; 2160 2161 case PM_OUT_OF_DATA_SPACE: 2162 /* 2163 * Ideally we'd never hit this state; the low water mark 2164 * would trigger userland to extend the pool before we 2165 * completely run out of data space. However, many small 2166 * IOs to unprovisioned space can consume data space at an 2167 * alarming rate. Adjust your low water mark if you're 2168 * frequently seeing this mode. 2169 */ 2170 if (old_mode != new_mode) 2171 notify_of_pool_mode_change(pool, "out-of-data-space"); 2172 pool->process_bio = process_bio_read_only; 2173 pool->process_discard = process_discard_bio; 2174 pool->process_cell = process_cell_read_only; 2175 pool->process_discard_cell = process_discard_cell; 2176 pool->process_prepared_mapping = process_prepared_mapping; 2177 pool->process_prepared_discard = process_prepared_discard; 2178 2179 if (!pool->pf.error_if_no_space && no_space_timeout) 2180 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2181 break; 2182 2183 case PM_WRITE: 2184 if (old_mode != new_mode) 2185 notify_of_pool_mode_change(pool, "write"); 2186 dm_pool_metadata_read_write(pool->pmd); 2187 pool->process_bio = process_bio; 2188 pool->process_discard = process_discard_bio; 2189 pool->process_cell = process_cell; 2190 pool->process_discard_cell = process_discard_cell; 2191 pool->process_prepared_mapping = process_prepared_mapping; 2192 pool->process_prepared_discard = process_prepared_discard; 2193 break; 2194 } 2195 2196 pool->pf.mode = new_mode; 2197 /* 2198 * The pool mode may have changed, sync it so bind_control_target() 2199 * doesn't cause an unexpected mode transition on resume. 2200 */ 2201 pt->adjusted_pf.mode = new_mode; 2202 } 2203 2204 static void abort_transaction(struct pool *pool) 2205 { 2206 const char *dev_name = dm_device_name(pool->pool_md); 2207 2208 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2209 if (dm_pool_abort_metadata(pool->pmd)) { 2210 DMERR("%s: failed to abort metadata transaction", dev_name); 2211 set_pool_mode(pool, PM_FAIL); 2212 } 2213 2214 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2215 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2216 set_pool_mode(pool, PM_FAIL); 2217 } 2218 } 2219 2220 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2221 { 2222 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2223 dm_device_name(pool->pool_md), op, r); 2224 2225 abort_transaction(pool); 2226 set_pool_mode(pool, PM_READ_ONLY); 2227 } 2228 2229 /*----------------------------------------------------------------*/ 2230 2231 /* 2232 * Mapping functions. 2233 */ 2234 2235 /* 2236 * Called only while mapping a thin bio to hand it over to the workqueue. 2237 */ 2238 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2239 { 2240 unsigned long flags; 2241 struct pool *pool = tc->pool; 2242 2243 spin_lock_irqsave(&tc->lock, flags); 2244 bio_list_add(&tc->deferred_bio_list, bio); 2245 spin_unlock_irqrestore(&tc->lock, flags); 2246 2247 wake_worker(pool); 2248 } 2249 2250 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2251 { 2252 struct pool *pool = tc->pool; 2253 2254 throttle_lock(&pool->throttle); 2255 thin_defer_bio(tc, bio); 2256 throttle_unlock(&pool->throttle); 2257 } 2258 2259 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2260 { 2261 unsigned long flags; 2262 struct pool *pool = tc->pool; 2263 2264 throttle_lock(&pool->throttle); 2265 spin_lock_irqsave(&tc->lock, flags); 2266 list_add_tail(&cell->user_list, &tc->deferred_cells); 2267 spin_unlock_irqrestore(&tc->lock, flags); 2268 throttle_unlock(&pool->throttle); 2269 2270 wake_worker(pool); 2271 } 2272 2273 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2274 { 2275 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2276 2277 h->tc = tc; 2278 h->shared_read_entry = NULL; 2279 h->all_io_entry = NULL; 2280 h->overwrite_mapping = NULL; 2281 } 2282 2283 /* 2284 * Non-blocking function called from the thin target's map function. 2285 */ 2286 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2287 { 2288 int r; 2289 struct thin_c *tc = ti->private; 2290 dm_block_t block = get_bio_block(tc, bio); 2291 struct dm_thin_device *td = tc->td; 2292 struct dm_thin_lookup_result result; 2293 struct dm_bio_prison_cell *virt_cell, *data_cell; 2294 struct dm_cell_key key; 2295 2296 thin_hook_bio(tc, bio); 2297 2298 if (tc->requeue_mode) { 2299 bio_endio(bio, DM_ENDIO_REQUEUE); 2300 return DM_MAPIO_SUBMITTED; 2301 } 2302 2303 if (get_pool_mode(tc->pool) == PM_FAIL) { 2304 bio_io_error(bio); 2305 return DM_MAPIO_SUBMITTED; 2306 } 2307 2308 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 2309 thin_defer_bio_with_throttle(tc, bio); 2310 return DM_MAPIO_SUBMITTED; 2311 } 2312 2313 /* 2314 * We must hold the virtual cell before doing the lookup, otherwise 2315 * there's a race with discard. 2316 */ 2317 build_virtual_key(tc->td, block, &key); 2318 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2319 return DM_MAPIO_SUBMITTED; 2320 2321 r = dm_thin_find_block(td, block, 0, &result); 2322 2323 /* 2324 * Note that we defer readahead too. 2325 */ 2326 switch (r) { 2327 case 0: 2328 if (unlikely(result.shared)) { 2329 /* 2330 * We have a race condition here between the 2331 * result.shared value returned by the lookup and 2332 * snapshot creation, which may cause new 2333 * sharing. 2334 * 2335 * To avoid this always quiesce the origin before 2336 * taking the snap. You want to do this anyway to 2337 * ensure a consistent application view 2338 * (i.e. lockfs). 2339 * 2340 * More distant ancestors are irrelevant. The 2341 * shared flag will be set in their case. 2342 */ 2343 thin_defer_cell(tc, virt_cell); 2344 return DM_MAPIO_SUBMITTED; 2345 } 2346 2347 build_data_key(tc->td, result.block, &key); 2348 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2349 cell_defer_no_holder(tc, virt_cell); 2350 return DM_MAPIO_SUBMITTED; 2351 } 2352 2353 inc_all_io_entry(tc->pool, bio); 2354 cell_defer_no_holder(tc, data_cell); 2355 cell_defer_no_holder(tc, virt_cell); 2356 2357 remap(tc, bio, result.block); 2358 return DM_MAPIO_REMAPPED; 2359 2360 case -ENODATA: 2361 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 2362 /* 2363 * This block isn't provisioned, and we have no way 2364 * of doing so. 2365 */ 2366 handle_unserviceable_bio(tc->pool, bio); 2367 cell_defer_no_holder(tc, virt_cell); 2368 return DM_MAPIO_SUBMITTED; 2369 } 2370 /* fall through */ 2371 2372 case -EWOULDBLOCK: 2373 thin_defer_cell(tc, virt_cell); 2374 return DM_MAPIO_SUBMITTED; 2375 2376 default: 2377 /* 2378 * Must always call bio_io_error on failure. 2379 * dm_thin_find_block can fail with -EINVAL if the 2380 * pool is switched to fail-io mode. 2381 */ 2382 bio_io_error(bio); 2383 cell_defer_no_holder(tc, virt_cell); 2384 return DM_MAPIO_SUBMITTED; 2385 } 2386 } 2387 2388 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2389 { 2390 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2391 struct request_queue *q; 2392 2393 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2394 return 1; 2395 2396 q = bdev_get_queue(pt->data_dev->bdev); 2397 return bdi_congested(&q->backing_dev_info, bdi_bits); 2398 } 2399 2400 static void requeue_bios(struct pool *pool) 2401 { 2402 unsigned long flags; 2403 struct thin_c *tc; 2404 2405 rcu_read_lock(); 2406 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2407 spin_lock_irqsave(&tc->lock, flags); 2408 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2409 bio_list_init(&tc->retry_on_resume_list); 2410 spin_unlock_irqrestore(&tc->lock, flags); 2411 } 2412 rcu_read_unlock(); 2413 } 2414 2415 /*---------------------------------------------------------------- 2416 * Binding of control targets to a pool object 2417 *--------------------------------------------------------------*/ 2418 static bool data_dev_supports_discard(struct pool_c *pt) 2419 { 2420 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2421 2422 return q && blk_queue_discard(q); 2423 } 2424 2425 static bool is_factor(sector_t block_size, uint32_t n) 2426 { 2427 return !sector_div(block_size, n); 2428 } 2429 2430 /* 2431 * If discard_passdown was enabled verify that the data device 2432 * supports discards. Disable discard_passdown if not. 2433 */ 2434 static void disable_passdown_if_not_supported(struct pool_c *pt) 2435 { 2436 struct pool *pool = pt->pool; 2437 struct block_device *data_bdev = pt->data_dev->bdev; 2438 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2439 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 2440 const char *reason = NULL; 2441 char buf[BDEVNAME_SIZE]; 2442 2443 if (!pt->adjusted_pf.discard_passdown) 2444 return; 2445 2446 if (!data_dev_supports_discard(pt)) 2447 reason = "discard unsupported"; 2448 2449 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2450 reason = "max discard sectors smaller than a block"; 2451 2452 else if (data_limits->discard_granularity > block_size) 2453 reason = "discard granularity larger than a block"; 2454 2455 else if (!is_factor(block_size, data_limits->discard_granularity)) 2456 reason = "discard granularity not a factor of block size"; 2457 2458 if (reason) { 2459 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2460 pt->adjusted_pf.discard_passdown = false; 2461 } 2462 } 2463 2464 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2465 { 2466 struct pool_c *pt = ti->private; 2467 2468 /* 2469 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2470 */ 2471 enum pool_mode old_mode = get_pool_mode(pool); 2472 enum pool_mode new_mode = pt->adjusted_pf.mode; 2473 2474 /* 2475 * Don't change the pool's mode until set_pool_mode() below. 2476 * Otherwise the pool's process_* function pointers may 2477 * not match the desired pool mode. 2478 */ 2479 pt->adjusted_pf.mode = old_mode; 2480 2481 pool->ti = ti; 2482 pool->pf = pt->adjusted_pf; 2483 pool->low_water_blocks = pt->low_water_blocks; 2484 2485 set_pool_mode(pool, new_mode); 2486 2487 return 0; 2488 } 2489 2490 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2491 { 2492 if (pool->ti == ti) 2493 pool->ti = NULL; 2494 } 2495 2496 /*---------------------------------------------------------------- 2497 * Pool creation 2498 *--------------------------------------------------------------*/ 2499 /* Initialize pool features. */ 2500 static void pool_features_init(struct pool_features *pf) 2501 { 2502 pf->mode = PM_WRITE; 2503 pf->zero_new_blocks = true; 2504 pf->discard_enabled = true; 2505 pf->discard_passdown = true; 2506 pf->error_if_no_space = false; 2507 } 2508 2509 static void __pool_destroy(struct pool *pool) 2510 { 2511 __pool_table_remove(pool); 2512 2513 if (dm_pool_metadata_close(pool->pmd) < 0) 2514 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2515 2516 dm_bio_prison_destroy(pool->prison); 2517 dm_kcopyd_client_destroy(pool->copier); 2518 2519 if (pool->wq) 2520 destroy_workqueue(pool->wq); 2521 2522 if (pool->next_mapping) 2523 mempool_free(pool->next_mapping, pool->mapping_pool); 2524 mempool_destroy(pool->mapping_pool); 2525 dm_deferred_set_destroy(pool->shared_read_ds); 2526 dm_deferred_set_destroy(pool->all_io_ds); 2527 kfree(pool); 2528 } 2529 2530 static struct kmem_cache *_new_mapping_cache; 2531 2532 static struct pool *pool_create(struct mapped_device *pool_md, 2533 struct block_device *metadata_dev, 2534 unsigned long block_size, 2535 int read_only, char **error) 2536 { 2537 int r; 2538 void *err_p; 2539 struct pool *pool; 2540 struct dm_pool_metadata *pmd; 2541 bool format_device = read_only ? false : true; 2542 2543 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2544 if (IS_ERR(pmd)) { 2545 *error = "Error creating metadata object"; 2546 return (struct pool *)pmd; 2547 } 2548 2549 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2550 if (!pool) { 2551 *error = "Error allocating memory for pool"; 2552 err_p = ERR_PTR(-ENOMEM); 2553 goto bad_pool; 2554 } 2555 2556 pool->pmd = pmd; 2557 pool->sectors_per_block = block_size; 2558 if (block_size & (block_size - 1)) 2559 pool->sectors_per_block_shift = -1; 2560 else 2561 pool->sectors_per_block_shift = __ffs(block_size); 2562 pool->low_water_blocks = 0; 2563 pool_features_init(&pool->pf); 2564 pool->prison = dm_bio_prison_create(); 2565 if (!pool->prison) { 2566 *error = "Error creating pool's bio prison"; 2567 err_p = ERR_PTR(-ENOMEM); 2568 goto bad_prison; 2569 } 2570 2571 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2572 if (IS_ERR(pool->copier)) { 2573 r = PTR_ERR(pool->copier); 2574 *error = "Error creating pool's kcopyd client"; 2575 err_p = ERR_PTR(r); 2576 goto bad_kcopyd_client; 2577 } 2578 2579 /* 2580 * Create singlethreaded workqueue that will service all devices 2581 * that use this metadata. 2582 */ 2583 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2584 if (!pool->wq) { 2585 *error = "Error creating pool's workqueue"; 2586 err_p = ERR_PTR(-ENOMEM); 2587 goto bad_wq; 2588 } 2589 2590 throttle_init(&pool->throttle); 2591 INIT_WORK(&pool->worker, do_worker); 2592 INIT_DELAYED_WORK(&pool->waker, do_waker); 2593 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2594 spin_lock_init(&pool->lock); 2595 bio_list_init(&pool->deferred_flush_bios); 2596 INIT_LIST_HEAD(&pool->prepared_mappings); 2597 INIT_LIST_HEAD(&pool->prepared_discards); 2598 INIT_LIST_HEAD(&pool->active_thins); 2599 pool->low_water_triggered = false; 2600 pool->suspended = true; 2601 2602 pool->shared_read_ds = dm_deferred_set_create(); 2603 if (!pool->shared_read_ds) { 2604 *error = "Error creating pool's shared read deferred set"; 2605 err_p = ERR_PTR(-ENOMEM); 2606 goto bad_shared_read_ds; 2607 } 2608 2609 pool->all_io_ds = dm_deferred_set_create(); 2610 if (!pool->all_io_ds) { 2611 *error = "Error creating pool's all io deferred set"; 2612 err_p = ERR_PTR(-ENOMEM); 2613 goto bad_all_io_ds; 2614 } 2615 2616 pool->next_mapping = NULL; 2617 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2618 _new_mapping_cache); 2619 if (!pool->mapping_pool) { 2620 *error = "Error creating pool's mapping mempool"; 2621 err_p = ERR_PTR(-ENOMEM); 2622 goto bad_mapping_pool; 2623 } 2624 2625 pool->ref_count = 1; 2626 pool->last_commit_jiffies = jiffies; 2627 pool->pool_md = pool_md; 2628 pool->md_dev = metadata_dev; 2629 __pool_table_insert(pool); 2630 2631 return pool; 2632 2633 bad_mapping_pool: 2634 dm_deferred_set_destroy(pool->all_io_ds); 2635 bad_all_io_ds: 2636 dm_deferred_set_destroy(pool->shared_read_ds); 2637 bad_shared_read_ds: 2638 destroy_workqueue(pool->wq); 2639 bad_wq: 2640 dm_kcopyd_client_destroy(pool->copier); 2641 bad_kcopyd_client: 2642 dm_bio_prison_destroy(pool->prison); 2643 bad_prison: 2644 kfree(pool); 2645 bad_pool: 2646 if (dm_pool_metadata_close(pmd)) 2647 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2648 2649 return err_p; 2650 } 2651 2652 static void __pool_inc(struct pool *pool) 2653 { 2654 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2655 pool->ref_count++; 2656 } 2657 2658 static void __pool_dec(struct pool *pool) 2659 { 2660 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2661 BUG_ON(!pool->ref_count); 2662 if (!--pool->ref_count) 2663 __pool_destroy(pool); 2664 } 2665 2666 static struct pool *__pool_find(struct mapped_device *pool_md, 2667 struct block_device *metadata_dev, 2668 unsigned long block_size, int read_only, 2669 char **error, int *created) 2670 { 2671 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2672 2673 if (pool) { 2674 if (pool->pool_md != pool_md) { 2675 *error = "metadata device already in use by a pool"; 2676 return ERR_PTR(-EBUSY); 2677 } 2678 __pool_inc(pool); 2679 2680 } else { 2681 pool = __pool_table_lookup(pool_md); 2682 if (pool) { 2683 if (pool->md_dev != metadata_dev) { 2684 *error = "different pool cannot replace a pool"; 2685 return ERR_PTR(-EINVAL); 2686 } 2687 __pool_inc(pool); 2688 2689 } else { 2690 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2691 *created = 1; 2692 } 2693 } 2694 2695 return pool; 2696 } 2697 2698 /*---------------------------------------------------------------- 2699 * Pool target methods 2700 *--------------------------------------------------------------*/ 2701 static void pool_dtr(struct dm_target *ti) 2702 { 2703 struct pool_c *pt = ti->private; 2704 2705 mutex_lock(&dm_thin_pool_table.mutex); 2706 2707 unbind_control_target(pt->pool, ti); 2708 __pool_dec(pt->pool); 2709 dm_put_device(ti, pt->metadata_dev); 2710 dm_put_device(ti, pt->data_dev); 2711 kfree(pt); 2712 2713 mutex_unlock(&dm_thin_pool_table.mutex); 2714 } 2715 2716 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2717 struct dm_target *ti) 2718 { 2719 int r; 2720 unsigned argc; 2721 const char *arg_name; 2722 2723 static struct dm_arg _args[] = { 2724 {0, 4, "Invalid number of pool feature arguments"}, 2725 }; 2726 2727 /* 2728 * No feature arguments supplied. 2729 */ 2730 if (!as->argc) 2731 return 0; 2732 2733 r = dm_read_arg_group(_args, as, &argc, &ti->error); 2734 if (r) 2735 return -EINVAL; 2736 2737 while (argc && !r) { 2738 arg_name = dm_shift_arg(as); 2739 argc--; 2740 2741 if (!strcasecmp(arg_name, "skip_block_zeroing")) 2742 pf->zero_new_blocks = false; 2743 2744 else if (!strcasecmp(arg_name, "ignore_discard")) 2745 pf->discard_enabled = false; 2746 2747 else if (!strcasecmp(arg_name, "no_discard_passdown")) 2748 pf->discard_passdown = false; 2749 2750 else if (!strcasecmp(arg_name, "read_only")) 2751 pf->mode = PM_READ_ONLY; 2752 2753 else if (!strcasecmp(arg_name, "error_if_no_space")) 2754 pf->error_if_no_space = true; 2755 2756 else { 2757 ti->error = "Unrecognised pool feature requested"; 2758 r = -EINVAL; 2759 break; 2760 } 2761 } 2762 2763 return r; 2764 } 2765 2766 static void metadata_low_callback(void *context) 2767 { 2768 struct pool *pool = context; 2769 2770 DMWARN("%s: reached low water mark for metadata device: sending event.", 2771 dm_device_name(pool->pool_md)); 2772 2773 dm_table_event(pool->ti->table); 2774 } 2775 2776 static sector_t get_dev_size(struct block_device *bdev) 2777 { 2778 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 2779 } 2780 2781 static void warn_if_metadata_device_too_big(struct block_device *bdev) 2782 { 2783 sector_t metadata_dev_size = get_dev_size(bdev); 2784 char buffer[BDEVNAME_SIZE]; 2785 2786 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 2787 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2788 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 2789 } 2790 2791 static sector_t get_metadata_dev_size(struct block_device *bdev) 2792 { 2793 sector_t metadata_dev_size = get_dev_size(bdev); 2794 2795 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 2796 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 2797 2798 return metadata_dev_size; 2799 } 2800 2801 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 2802 { 2803 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 2804 2805 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 2806 2807 return metadata_dev_size; 2808 } 2809 2810 /* 2811 * When a metadata threshold is crossed a dm event is triggered, and 2812 * userland should respond by growing the metadata device. We could let 2813 * userland set the threshold, like we do with the data threshold, but I'm 2814 * not sure they know enough to do this well. 2815 */ 2816 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 2817 { 2818 /* 2819 * 4M is ample for all ops with the possible exception of thin 2820 * device deletion which is harmless if it fails (just retry the 2821 * delete after you've grown the device). 2822 */ 2823 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 2824 return min((dm_block_t)1024ULL /* 4M */, quarter); 2825 } 2826 2827 /* 2828 * thin-pool <metadata dev> <data dev> 2829 * <data block size (sectors)> 2830 * <low water mark (blocks)> 2831 * [<#feature args> [<arg>]*] 2832 * 2833 * Optional feature arguments are: 2834 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 2835 * ignore_discard: disable discard 2836 * no_discard_passdown: don't pass discards down to the data device 2837 * read_only: Don't allow any changes to be made to the pool metadata. 2838 * error_if_no_space: error IOs, instead of queueing, if no space. 2839 */ 2840 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 2841 { 2842 int r, pool_created = 0; 2843 struct pool_c *pt; 2844 struct pool *pool; 2845 struct pool_features pf; 2846 struct dm_arg_set as; 2847 struct dm_dev *data_dev; 2848 unsigned long block_size; 2849 dm_block_t low_water_blocks; 2850 struct dm_dev *metadata_dev; 2851 fmode_t metadata_mode; 2852 2853 /* 2854 * FIXME Remove validation from scope of lock. 2855 */ 2856 mutex_lock(&dm_thin_pool_table.mutex); 2857 2858 if (argc < 4) { 2859 ti->error = "Invalid argument count"; 2860 r = -EINVAL; 2861 goto out_unlock; 2862 } 2863 2864 as.argc = argc; 2865 as.argv = argv; 2866 2867 /* 2868 * Set default pool features. 2869 */ 2870 pool_features_init(&pf); 2871 2872 dm_consume_args(&as, 4); 2873 r = parse_pool_features(&as, &pf, ti); 2874 if (r) 2875 goto out_unlock; 2876 2877 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 2878 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 2879 if (r) { 2880 ti->error = "Error opening metadata block device"; 2881 goto out_unlock; 2882 } 2883 warn_if_metadata_device_too_big(metadata_dev->bdev); 2884 2885 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 2886 if (r) { 2887 ti->error = "Error getting data device"; 2888 goto out_metadata; 2889 } 2890 2891 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 2892 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2893 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2894 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2895 ti->error = "Invalid block size"; 2896 r = -EINVAL; 2897 goto out; 2898 } 2899 2900 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 2901 ti->error = "Invalid low water mark"; 2902 r = -EINVAL; 2903 goto out; 2904 } 2905 2906 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 2907 if (!pt) { 2908 r = -ENOMEM; 2909 goto out; 2910 } 2911 2912 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 2913 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2914 if (IS_ERR(pool)) { 2915 r = PTR_ERR(pool); 2916 goto out_free_pt; 2917 } 2918 2919 /* 2920 * 'pool_created' reflects whether this is the first table load. 2921 * Top level discard support is not allowed to be changed after 2922 * initial load. This would require a pool reload to trigger thin 2923 * device changes. 2924 */ 2925 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2926 ti->error = "Discard support cannot be disabled once enabled"; 2927 r = -EINVAL; 2928 goto out_flags_changed; 2929 } 2930 2931 pt->pool = pool; 2932 pt->ti = ti; 2933 pt->metadata_dev = metadata_dev; 2934 pt->data_dev = data_dev; 2935 pt->low_water_blocks = low_water_blocks; 2936 pt->adjusted_pf = pt->requested_pf = pf; 2937 ti->num_flush_bios = 1; 2938 2939 /* 2940 * Only need to enable discards if the pool should pass 2941 * them down to the data device. The thin device's discard 2942 * processing will cause mappings to be removed from the btree. 2943 */ 2944 ti->discard_zeroes_data_unsupported = true; 2945 if (pf.discard_enabled && pf.discard_passdown) { 2946 ti->num_discard_bios = 1; 2947 2948 /* 2949 * Setting 'discards_supported' circumvents the normal 2950 * stacking of discard limits (this keeps the pool and 2951 * thin devices' discard limits consistent). 2952 */ 2953 ti->discards_supported = true; 2954 } 2955 ti->private = pt; 2956 2957 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 2958 calc_metadata_threshold(pt), 2959 metadata_low_callback, 2960 pool); 2961 if (r) 2962 goto out_free_pt; 2963 2964 pt->callbacks.congested_fn = pool_is_congested; 2965 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2966 2967 mutex_unlock(&dm_thin_pool_table.mutex); 2968 2969 return 0; 2970 2971 out_flags_changed: 2972 __pool_dec(pool); 2973 out_free_pt: 2974 kfree(pt); 2975 out: 2976 dm_put_device(ti, data_dev); 2977 out_metadata: 2978 dm_put_device(ti, metadata_dev); 2979 out_unlock: 2980 mutex_unlock(&dm_thin_pool_table.mutex); 2981 2982 return r; 2983 } 2984 2985 static int pool_map(struct dm_target *ti, struct bio *bio) 2986 { 2987 int r; 2988 struct pool_c *pt = ti->private; 2989 struct pool *pool = pt->pool; 2990 unsigned long flags; 2991 2992 /* 2993 * As this is a singleton target, ti->begin is always zero. 2994 */ 2995 spin_lock_irqsave(&pool->lock, flags); 2996 bio->bi_bdev = pt->data_dev->bdev; 2997 r = DM_MAPIO_REMAPPED; 2998 spin_unlock_irqrestore(&pool->lock, flags); 2999 3000 return r; 3001 } 3002 3003 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3004 { 3005 int r; 3006 struct pool_c *pt = ti->private; 3007 struct pool *pool = pt->pool; 3008 sector_t data_size = ti->len; 3009 dm_block_t sb_data_size; 3010 3011 *need_commit = false; 3012 3013 (void) sector_div(data_size, pool->sectors_per_block); 3014 3015 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3016 if (r) { 3017 DMERR("%s: failed to retrieve data device size", 3018 dm_device_name(pool->pool_md)); 3019 return r; 3020 } 3021 3022 if (data_size < sb_data_size) { 3023 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3024 dm_device_name(pool->pool_md), 3025 (unsigned long long)data_size, sb_data_size); 3026 return -EINVAL; 3027 3028 } else if (data_size > sb_data_size) { 3029 if (dm_pool_metadata_needs_check(pool->pmd)) { 3030 DMERR("%s: unable to grow the data device until repaired.", 3031 dm_device_name(pool->pool_md)); 3032 return 0; 3033 } 3034 3035 if (sb_data_size) 3036 DMINFO("%s: growing the data device from %llu to %llu blocks", 3037 dm_device_name(pool->pool_md), 3038 sb_data_size, (unsigned long long)data_size); 3039 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3040 if (r) { 3041 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3042 return r; 3043 } 3044 3045 *need_commit = true; 3046 } 3047 3048 return 0; 3049 } 3050 3051 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3052 { 3053 int r; 3054 struct pool_c *pt = ti->private; 3055 struct pool *pool = pt->pool; 3056 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3057 3058 *need_commit = false; 3059 3060 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3061 3062 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3063 if (r) { 3064 DMERR("%s: failed to retrieve metadata device size", 3065 dm_device_name(pool->pool_md)); 3066 return r; 3067 } 3068 3069 if (metadata_dev_size < sb_metadata_dev_size) { 3070 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3071 dm_device_name(pool->pool_md), 3072 metadata_dev_size, sb_metadata_dev_size); 3073 return -EINVAL; 3074 3075 } else if (metadata_dev_size > sb_metadata_dev_size) { 3076 if (dm_pool_metadata_needs_check(pool->pmd)) { 3077 DMERR("%s: unable to grow the metadata device until repaired.", 3078 dm_device_name(pool->pool_md)); 3079 return 0; 3080 } 3081 3082 warn_if_metadata_device_too_big(pool->md_dev); 3083 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3084 dm_device_name(pool->pool_md), 3085 sb_metadata_dev_size, metadata_dev_size); 3086 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3087 if (r) { 3088 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3089 return r; 3090 } 3091 3092 *need_commit = true; 3093 } 3094 3095 return 0; 3096 } 3097 3098 /* 3099 * Retrieves the number of blocks of the data device from 3100 * the superblock and compares it to the actual device size, 3101 * thus resizing the data device in case it has grown. 3102 * 3103 * This both copes with opening preallocated data devices in the ctr 3104 * being followed by a resume 3105 * -and- 3106 * calling the resume method individually after userspace has 3107 * grown the data device in reaction to a table event. 3108 */ 3109 static int pool_preresume(struct dm_target *ti) 3110 { 3111 int r; 3112 bool need_commit1, need_commit2; 3113 struct pool_c *pt = ti->private; 3114 struct pool *pool = pt->pool; 3115 3116 /* 3117 * Take control of the pool object. 3118 */ 3119 r = bind_control_target(pool, ti); 3120 if (r) 3121 return r; 3122 3123 r = maybe_resize_data_dev(ti, &need_commit1); 3124 if (r) 3125 return r; 3126 3127 r = maybe_resize_metadata_dev(ti, &need_commit2); 3128 if (r) 3129 return r; 3130 3131 if (need_commit1 || need_commit2) 3132 (void) commit(pool); 3133 3134 return 0; 3135 } 3136 3137 static void pool_suspend_active_thins(struct pool *pool) 3138 { 3139 struct thin_c *tc; 3140 3141 /* Suspend all active thin devices */ 3142 tc = get_first_thin(pool); 3143 while (tc) { 3144 dm_internal_suspend_noflush(tc->thin_md); 3145 tc = get_next_thin(pool, tc); 3146 } 3147 } 3148 3149 static void pool_resume_active_thins(struct pool *pool) 3150 { 3151 struct thin_c *tc; 3152 3153 /* Resume all active thin devices */ 3154 tc = get_first_thin(pool); 3155 while (tc) { 3156 dm_internal_resume(tc->thin_md); 3157 tc = get_next_thin(pool, tc); 3158 } 3159 } 3160 3161 static void pool_resume(struct dm_target *ti) 3162 { 3163 struct pool_c *pt = ti->private; 3164 struct pool *pool = pt->pool; 3165 unsigned long flags; 3166 3167 /* 3168 * Must requeue active_thins' bios and then resume 3169 * active_thins _before_ clearing 'suspend' flag. 3170 */ 3171 requeue_bios(pool); 3172 pool_resume_active_thins(pool); 3173 3174 spin_lock_irqsave(&pool->lock, flags); 3175 pool->low_water_triggered = false; 3176 pool->suspended = false; 3177 spin_unlock_irqrestore(&pool->lock, flags); 3178 3179 do_waker(&pool->waker.work); 3180 } 3181 3182 static void pool_presuspend(struct dm_target *ti) 3183 { 3184 struct pool_c *pt = ti->private; 3185 struct pool *pool = pt->pool; 3186 unsigned long flags; 3187 3188 spin_lock_irqsave(&pool->lock, flags); 3189 pool->suspended = true; 3190 spin_unlock_irqrestore(&pool->lock, flags); 3191 3192 pool_suspend_active_thins(pool); 3193 } 3194 3195 static void pool_presuspend_undo(struct dm_target *ti) 3196 { 3197 struct pool_c *pt = ti->private; 3198 struct pool *pool = pt->pool; 3199 unsigned long flags; 3200 3201 pool_resume_active_thins(pool); 3202 3203 spin_lock_irqsave(&pool->lock, flags); 3204 pool->suspended = false; 3205 spin_unlock_irqrestore(&pool->lock, flags); 3206 } 3207 3208 static void pool_postsuspend(struct dm_target *ti) 3209 { 3210 struct pool_c *pt = ti->private; 3211 struct pool *pool = pt->pool; 3212 3213 cancel_delayed_work(&pool->waker); 3214 cancel_delayed_work(&pool->no_space_timeout); 3215 flush_workqueue(pool->wq); 3216 (void) commit(pool); 3217 } 3218 3219 static int check_arg_count(unsigned argc, unsigned args_required) 3220 { 3221 if (argc != args_required) { 3222 DMWARN("Message received with %u arguments instead of %u.", 3223 argc, args_required); 3224 return -EINVAL; 3225 } 3226 3227 return 0; 3228 } 3229 3230 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3231 { 3232 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3233 *dev_id <= MAX_DEV_ID) 3234 return 0; 3235 3236 if (warning) 3237 DMWARN("Message received with invalid device id: %s", arg); 3238 3239 return -EINVAL; 3240 } 3241 3242 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3243 { 3244 dm_thin_id dev_id; 3245 int r; 3246 3247 r = check_arg_count(argc, 2); 3248 if (r) 3249 return r; 3250 3251 r = read_dev_id(argv[1], &dev_id, 1); 3252 if (r) 3253 return r; 3254 3255 r = dm_pool_create_thin(pool->pmd, dev_id); 3256 if (r) { 3257 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3258 argv[1]); 3259 return r; 3260 } 3261 3262 return 0; 3263 } 3264 3265 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3266 { 3267 dm_thin_id dev_id; 3268 dm_thin_id origin_dev_id; 3269 int r; 3270 3271 r = check_arg_count(argc, 3); 3272 if (r) 3273 return r; 3274 3275 r = read_dev_id(argv[1], &dev_id, 1); 3276 if (r) 3277 return r; 3278 3279 r = read_dev_id(argv[2], &origin_dev_id, 1); 3280 if (r) 3281 return r; 3282 3283 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3284 if (r) { 3285 DMWARN("Creation of new snapshot %s of device %s failed.", 3286 argv[1], argv[2]); 3287 return r; 3288 } 3289 3290 return 0; 3291 } 3292 3293 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3294 { 3295 dm_thin_id dev_id; 3296 int r; 3297 3298 r = check_arg_count(argc, 2); 3299 if (r) 3300 return r; 3301 3302 r = read_dev_id(argv[1], &dev_id, 1); 3303 if (r) 3304 return r; 3305 3306 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3307 if (r) 3308 DMWARN("Deletion of thin device %s failed.", argv[1]); 3309 3310 return r; 3311 } 3312 3313 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3314 { 3315 dm_thin_id old_id, new_id; 3316 int r; 3317 3318 r = check_arg_count(argc, 3); 3319 if (r) 3320 return r; 3321 3322 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3323 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3324 return -EINVAL; 3325 } 3326 3327 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3328 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3329 return -EINVAL; 3330 } 3331 3332 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3333 if (r) { 3334 DMWARN("Failed to change transaction id from %s to %s.", 3335 argv[1], argv[2]); 3336 return r; 3337 } 3338 3339 return 0; 3340 } 3341 3342 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3343 { 3344 int r; 3345 3346 r = check_arg_count(argc, 1); 3347 if (r) 3348 return r; 3349 3350 (void) commit(pool); 3351 3352 r = dm_pool_reserve_metadata_snap(pool->pmd); 3353 if (r) 3354 DMWARN("reserve_metadata_snap message failed."); 3355 3356 return r; 3357 } 3358 3359 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3360 { 3361 int r; 3362 3363 r = check_arg_count(argc, 1); 3364 if (r) 3365 return r; 3366 3367 r = dm_pool_release_metadata_snap(pool->pmd); 3368 if (r) 3369 DMWARN("release_metadata_snap message failed."); 3370 3371 return r; 3372 } 3373 3374 /* 3375 * Messages supported: 3376 * create_thin <dev_id> 3377 * create_snap <dev_id> <origin_id> 3378 * delete <dev_id> 3379 * set_transaction_id <current_trans_id> <new_trans_id> 3380 * reserve_metadata_snap 3381 * release_metadata_snap 3382 */ 3383 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 3384 { 3385 int r = -EINVAL; 3386 struct pool_c *pt = ti->private; 3387 struct pool *pool = pt->pool; 3388 3389 if (get_pool_mode(pool) >= PM_READ_ONLY) { 3390 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3391 dm_device_name(pool->pool_md)); 3392 return -EINVAL; 3393 } 3394 3395 if (!strcasecmp(argv[0], "create_thin")) 3396 r = process_create_thin_mesg(argc, argv, pool); 3397 3398 else if (!strcasecmp(argv[0], "create_snap")) 3399 r = process_create_snap_mesg(argc, argv, pool); 3400 3401 else if (!strcasecmp(argv[0], "delete")) 3402 r = process_delete_mesg(argc, argv, pool); 3403 3404 else if (!strcasecmp(argv[0], "set_transaction_id")) 3405 r = process_set_transaction_id_mesg(argc, argv, pool); 3406 3407 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3408 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3409 3410 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3411 r = process_release_metadata_snap_mesg(argc, argv, pool); 3412 3413 else 3414 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3415 3416 if (!r) 3417 (void) commit(pool); 3418 3419 return r; 3420 } 3421 3422 static void emit_flags(struct pool_features *pf, char *result, 3423 unsigned sz, unsigned maxlen) 3424 { 3425 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3426 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3427 pf->error_if_no_space; 3428 DMEMIT("%u ", count); 3429 3430 if (!pf->zero_new_blocks) 3431 DMEMIT("skip_block_zeroing "); 3432 3433 if (!pf->discard_enabled) 3434 DMEMIT("ignore_discard "); 3435 3436 if (!pf->discard_passdown) 3437 DMEMIT("no_discard_passdown "); 3438 3439 if (pf->mode == PM_READ_ONLY) 3440 DMEMIT("read_only "); 3441 3442 if (pf->error_if_no_space) 3443 DMEMIT("error_if_no_space "); 3444 } 3445 3446 /* 3447 * Status line is: 3448 * <transaction id> <used metadata sectors>/<total metadata sectors> 3449 * <used data sectors>/<total data sectors> <held metadata root> 3450 */ 3451 static void pool_status(struct dm_target *ti, status_type_t type, 3452 unsigned status_flags, char *result, unsigned maxlen) 3453 { 3454 int r; 3455 unsigned sz = 0; 3456 uint64_t transaction_id; 3457 dm_block_t nr_free_blocks_data; 3458 dm_block_t nr_free_blocks_metadata; 3459 dm_block_t nr_blocks_data; 3460 dm_block_t nr_blocks_metadata; 3461 dm_block_t held_root; 3462 char buf[BDEVNAME_SIZE]; 3463 char buf2[BDEVNAME_SIZE]; 3464 struct pool_c *pt = ti->private; 3465 struct pool *pool = pt->pool; 3466 3467 switch (type) { 3468 case STATUSTYPE_INFO: 3469 if (get_pool_mode(pool) == PM_FAIL) { 3470 DMEMIT("Fail"); 3471 break; 3472 } 3473 3474 /* Commit to ensure statistics aren't out-of-date */ 3475 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3476 (void) commit(pool); 3477 3478 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3479 if (r) { 3480 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3481 dm_device_name(pool->pool_md), r); 3482 goto err; 3483 } 3484 3485 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3486 if (r) { 3487 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3488 dm_device_name(pool->pool_md), r); 3489 goto err; 3490 } 3491 3492 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3493 if (r) { 3494 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3495 dm_device_name(pool->pool_md), r); 3496 goto err; 3497 } 3498 3499 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3500 if (r) { 3501 DMERR("%s: dm_pool_get_free_block_count returned %d", 3502 dm_device_name(pool->pool_md), r); 3503 goto err; 3504 } 3505 3506 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3507 if (r) { 3508 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3509 dm_device_name(pool->pool_md), r); 3510 goto err; 3511 } 3512 3513 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3514 if (r) { 3515 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3516 dm_device_name(pool->pool_md), r); 3517 goto err; 3518 } 3519 3520 DMEMIT("%llu %llu/%llu %llu/%llu ", 3521 (unsigned long long)transaction_id, 3522 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3523 (unsigned long long)nr_blocks_metadata, 3524 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3525 (unsigned long long)nr_blocks_data); 3526 3527 if (held_root) 3528 DMEMIT("%llu ", held_root); 3529 else 3530 DMEMIT("- "); 3531 3532 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3533 DMEMIT("out_of_data_space "); 3534 else if (pool->pf.mode == PM_READ_ONLY) 3535 DMEMIT("ro "); 3536 else 3537 DMEMIT("rw "); 3538 3539 if (!pool->pf.discard_enabled) 3540 DMEMIT("ignore_discard "); 3541 else if (pool->pf.discard_passdown) 3542 DMEMIT("discard_passdown "); 3543 else 3544 DMEMIT("no_discard_passdown "); 3545 3546 if (pool->pf.error_if_no_space) 3547 DMEMIT("error_if_no_space "); 3548 else 3549 DMEMIT("queue_if_no_space "); 3550 3551 break; 3552 3553 case STATUSTYPE_TABLE: 3554 DMEMIT("%s %s %lu %llu ", 3555 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3556 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3557 (unsigned long)pool->sectors_per_block, 3558 (unsigned long long)pt->low_water_blocks); 3559 emit_flags(&pt->requested_pf, result, sz, maxlen); 3560 break; 3561 } 3562 return; 3563 3564 err: 3565 DMEMIT("Error"); 3566 } 3567 3568 static int pool_iterate_devices(struct dm_target *ti, 3569 iterate_devices_callout_fn fn, void *data) 3570 { 3571 struct pool_c *pt = ti->private; 3572 3573 return fn(ti, pt->data_dev, 0, ti->len, data); 3574 } 3575 3576 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 3577 struct bio_vec *biovec, int max_size) 3578 { 3579 struct pool_c *pt = ti->private; 3580 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 3581 3582 if (!q->merge_bvec_fn) 3583 return max_size; 3584 3585 bvm->bi_bdev = pt->data_dev->bdev; 3586 3587 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 3588 } 3589 3590 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 3591 { 3592 struct pool *pool = pt->pool; 3593 struct queue_limits *data_limits; 3594 3595 limits->max_discard_sectors = pool->sectors_per_block; 3596 3597 /* 3598 * discard_granularity is just a hint, and not enforced. 3599 */ 3600 if (pt->adjusted_pf.discard_passdown) { 3601 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 3602 limits->discard_granularity = max(data_limits->discard_granularity, 3603 pool->sectors_per_block << SECTOR_SHIFT); 3604 } else 3605 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 3606 } 3607 3608 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3609 { 3610 struct pool_c *pt = ti->private; 3611 struct pool *pool = pt->pool; 3612 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3613 3614 /* 3615 * If max_sectors is smaller than pool->sectors_per_block adjust it 3616 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3617 * This is especially beneficial when the pool's data device is a RAID 3618 * device that has a full stripe width that matches pool->sectors_per_block 3619 * -- because even though partial RAID stripe-sized IOs will be issued to a 3620 * single RAID stripe; when aggregated they will end on a full RAID stripe 3621 * boundary.. which avoids additional partial RAID stripe writes cascading 3622 */ 3623 if (limits->max_sectors < pool->sectors_per_block) { 3624 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3625 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3626 limits->max_sectors--; 3627 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3628 } 3629 } 3630 3631 /* 3632 * If the system-determined stacked limits are compatible with the 3633 * pool's blocksize (io_opt is a factor) do not override them. 3634 */ 3635 if (io_opt_sectors < pool->sectors_per_block || 3636 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3637 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3638 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3639 else 3640 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3641 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3642 } 3643 3644 /* 3645 * pt->adjusted_pf is a staging area for the actual features to use. 3646 * They get transferred to the live pool in bind_control_target() 3647 * called from pool_preresume(). 3648 */ 3649 if (!pt->adjusted_pf.discard_enabled) { 3650 /* 3651 * Must explicitly disallow stacking discard limits otherwise the 3652 * block layer will stack them if pool's data device has support. 3653 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3654 * user to see that, so make sure to set all discard limits to 0. 3655 */ 3656 limits->discard_granularity = 0; 3657 return; 3658 } 3659 3660 disable_passdown_if_not_supported(pt); 3661 3662 set_discard_limits(pt, limits); 3663 } 3664 3665 static struct target_type pool_target = { 3666 .name = "thin-pool", 3667 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3668 DM_TARGET_IMMUTABLE, 3669 .version = {1, 14, 0}, 3670 .module = THIS_MODULE, 3671 .ctr = pool_ctr, 3672 .dtr = pool_dtr, 3673 .map = pool_map, 3674 .presuspend = pool_presuspend, 3675 .presuspend_undo = pool_presuspend_undo, 3676 .postsuspend = pool_postsuspend, 3677 .preresume = pool_preresume, 3678 .resume = pool_resume, 3679 .message = pool_message, 3680 .status = pool_status, 3681 .merge = pool_merge, 3682 .iterate_devices = pool_iterate_devices, 3683 .io_hints = pool_io_hints, 3684 }; 3685 3686 /*---------------------------------------------------------------- 3687 * Thin target methods 3688 *--------------------------------------------------------------*/ 3689 static void thin_get(struct thin_c *tc) 3690 { 3691 atomic_inc(&tc->refcount); 3692 } 3693 3694 static void thin_put(struct thin_c *tc) 3695 { 3696 if (atomic_dec_and_test(&tc->refcount)) 3697 complete(&tc->can_destroy); 3698 } 3699 3700 static void thin_dtr(struct dm_target *ti) 3701 { 3702 struct thin_c *tc = ti->private; 3703 unsigned long flags; 3704 3705 spin_lock_irqsave(&tc->pool->lock, flags); 3706 list_del_rcu(&tc->list); 3707 spin_unlock_irqrestore(&tc->pool->lock, flags); 3708 synchronize_rcu(); 3709 3710 thin_put(tc); 3711 wait_for_completion(&tc->can_destroy); 3712 3713 mutex_lock(&dm_thin_pool_table.mutex); 3714 3715 __pool_dec(tc->pool); 3716 dm_pool_close_thin_device(tc->td); 3717 dm_put_device(ti, tc->pool_dev); 3718 if (tc->origin_dev) 3719 dm_put_device(ti, tc->origin_dev); 3720 kfree(tc); 3721 3722 mutex_unlock(&dm_thin_pool_table.mutex); 3723 } 3724 3725 /* 3726 * Thin target parameters: 3727 * 3728 * <pool_dev> <dev_id> [origin_dev] 3729 * 3730 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 3731 * dev_id: the internal device identifier 3732 * origin_dev: a device external to the pool that should act as the origin 3733 * 3734 * If the pool device has discards disabled, they get disabled for the thin 3735 * device as well. 3736 */ 3737 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 3738 { 3739 int r; 3740 struct thin_c *tc; 3741 struct dm_dev *pool_dev, *origin_dev; 3742 struct mapped_device *pool_md; 3743 unsigned long flags; 3744 3745 mutex_lock(&dm_thin_pool_table.mutex); 3746 3747 if (argc != 2 && argc != 3) { 3748 ti->error = "Invalid argument count"; 3749 r = -EINVAL; 3750 goto out_unlock; 3751 } 3752 3753 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 3754 if (!tc) { 3755 ti->error = "Out of memory"; 3756 r = -ENOMEM; 3757 goto out_unlock; 3758 } 3759 tc->thin_md = dm_table_get_md(ti->table); 3760 spin_lock_init(&tc->lock); 3761 INIT_LIST_HEAD(&tc->deferred_cells); 3762 bio_list_init(&tc->deferred_bio_list); 3763 bio_list_init(&tc->retry_on_resume_list); 3764 tc->sort_bio_list = RB_ROOT; 3765 3766 if (argc == 3) { 3767 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 3768 if (r) { 3769 ti->error = "Error opening origin device"; 3770 goto bad_origin_dev; 3771 } 3772 tc->origin_dev = origin_dev; 3773 } 3774 3775 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 3776 if (r) { 3777 ti->error = "Error opening pool device"; 3778 goto bad_pool_dev; 3779 } 3780 tc->pool_dev = pool_dev; 3781 3782 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 3783 ti->error = "Invalid device id"; 3784 r = -EINVAL; 3785 goto bad_common; 3786 } 3787 3788 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 3789 if (!pool_md) { 3790 ti->error = "Couldn't get pool mapped device"; 3791 r = -EINVAL; 3792 goto bad_common; 3793 } 3794 3795 tc->pool = __pool_table_lookup(pool_md); 3796 if (!tc->pool) { 3797 ti->error = "Couldn't find pool object"; 3798 r = -EINVAL; 3799 goto bad_pool_lookup; 3800 } 3801 __pool_inc(tc->pool); 3802 3803 if (get_pool_mode(tc->pool) == PM_FAIL) { 3804 ti->error = "Couldn't open thin device, Pool is in fail mode"; 3805 r = -EINVAL; 3806 goto bad_pool; 3807 } 3808 3809 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 3810 if (r) { 3811 ti->error = "Couldn't open thin internal device"; 3812 goto bad_pool; 3813 } 3814 3815 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 3816 if (r) 3817 goto bad; 3818 3819 ti->num_flush_bios = 1; 3820 ti->flush_supported = true; 3821 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 3822 3823 /* In case the pool supports discards, pass them on. */ 3824 ti->discard_zeroes_data_unsupported = true; 3825 if (tc->pool->pf.discard_enabled) { 3826 ti->discards_supported = true; 3827 ti->num_discard_bios = 1; 3828 /* Discard bios must be split on a block boundary */ 3829 ti->split_discard_bios = true; 3830 } 3831 3832 mutex_unlock(&dm_thin_pool_table.mutex); 3833 3834 spin_lock_irqsave(&tc->pool->lock, flags); 3835 if (tc->pool->suspended) { 3836 spin_unlock_irqrestore(&tc->pool->lock, flags); 3837 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 3838 ti->error = "Unable to activate thin device while pool is suspended"; 3839 r = -EINVAL; 3840 goto bad; 3841 } 3842 atomic_set(&tc->refcount, 1); 3843 init_completion(&tc->can_destroy); 3844 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 3845 spin_unlock_irqrestore(&tc->pool->lock, flags); 3846 /* 3847 * This synchronize_rcu() call is needed here otherwise we risk a 3848 * wake_worker() call finding no bios to process (because the newly 3849 * added tc isn't yet visible). So this reduces latency since we 3850 * aren't then dependent on the periodic commit to wake_worker(). 3851 */ 3852 synchronize_rcu(); 3853 3854 dm_put(pool_md); 3855 3856 return 0; 3857 3858 bad: 3859 dm_pool_close_thin_device(tc->td); 3860 bad_pool: 3861 __pool_dec(tc->pool); 3862 bad_pool_lookup: 3863 dm_put(pool_md); 3864 bad_common: 3865 dm_put_device(ti, tc->pool_dev); 3866 bad_pool_dev: 3867 if (tc->origin_dev) 3868 dm_put_device(ti, tc->origin_dev); 3869 bad_origin_dev: 3870 kfree(tc); 3871 out_unlock: 3872 mutex_unlock(&dm_thin_pool_table.mutex); 3873 3874 return r; 3875 } 3876 3877 static int thin_map(struct dm_target *ti, struct bio *bio) 3878 { 3879 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 3880 3881 return thin_bio_map(ti, bio); 3882 } 3883 3884 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 3885 { 3886 unsigned long flags; 3887 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 3888 struct list_head work; 3889 struct dm_thin_new_mapping *m, *tmp; 3890 struct pool *pool = h->tc->pool; 3891 3892 if (h->shared_read_entry) { 3893 INIT_LIST_HEAD(&work); 3894 dm_deferred_entry_dec(h->shared_read_entry, &work); 3895 3896 spin_lock_irqsave(&pool->lock, flags); 3897 list_for_each_entry_safe(m, tmp, &work, list) { 3898 list_del(&m->list); 3899 __complete_mapping_preparation(m); 3900 } 3901 spin_unlock_irqrestore(&pool->lock, flags); 3902 } 3903 3904 if (h->all_io_entry) { 3905 INIT_LIST_HEAD(&work); 3906 dm_deferred_entry_dec(h->all_io_entry, &work); 3907 if (!list_empty(&work)) { 3908 spin_lock_irqsave(&pool->lock, flags); 3909 list_for_each_entry_safe(m, tmp, &work, list) 3910 list_add_tail(&m->list, &pool->prepared_discards); 3911 spin_unlock_irqrestore(&pool->lock, flags); 3912 wake_worker(pool); 3913 } 3914 } 3915 3916 return 0; 3917 } 3918 3919 static void thin_presuspend(struct dm_target *ti) 3920 { 3921 struct thin_c *tc = ti->private; 3922 3923 if (dm_noflush_suspending(ti)) 3924 noflush_work(tc, do_noflush_start); 3925 } 3926 3927 static void thin_postsuspend(struct dm_target *ti) 3928 { 3929 struct thin_c *tc = ti->private; 3930 3931 /* 3932 * The dm_noflush_suspending flag has been cleared by now, so 3933 * unfortunately we must always run this. 3934 */ 3935 noflush_work(tc, do_noflush_stop); 3936 } 3937 3938 static int thin_preresume(struct dm_target *ti) 3939 { 3940 struct thin_c *tc = ti->private; 3941 3942 if (tc->origin_dev) 3943 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 3944 3945 return 0; 3946 } 3947 3948 /* 3949 * <nr mapped sectors> <highest mapped sector> 3950 */ 3951 static void thin_status(struct dm_target *ti, status_type_t type, 3952 unsigned status_flags, char *result, unsigned maxlen) 3953 { 3954 int r; 3955 ssize_t sz = 0; 3956 dm_block_t mapped, highest; 3957 char buf[BDEVNAME_SIZE]; 3958 struct thin_c *tc = ti->private; 3959 3960 if (get_pool_mode(tc->pool) == PM_FAIL) { 3961 DMEMIT("Fail"); 3962 return; 3963 } 3964 3965 if (!tc->td) 3966 DMEMIT("-"); 3967 else { 3968 switch (type) { 3969 case STATUSTYPE_INFO: 3970 r = dm_thin_get_mapped_count(tc->td, &mapped); 3971 if (r) { 3972 DMERR("dm_thin_get_mapped_count returned %d", r); 3973 goto err; 3974 } 3975 3976 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 3977 if (r < 0) { 3978 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 3979 goto err; 3980 } 3981 3982 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 3983 if (r) 3984 DMEMIT("%llu", ((highest + 1) * 3985 tc->pool->sectors_per_block) - 1); 3986 else 3987 DMEMIT("-"); 3988 break; 3989 3990 case STATUSTYPE_TABLE: 3991 DMEMIT("%s %lu", 3992 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 3993 (unsigned long) tc->dev_id); 3994 if (tc->origin_dev) 3995 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 3996 break; 3997 } 3998 } 3999 4000 return; 4001 4002 err: 4003 DMEMIT("Error"); 4004 } 4005 4006 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 4007 struct bio_vec *biovec, int max_size) 4008 { 4009 struct thin_c *tc = ti->private; 4010 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev); 4011 4012 if (!q->merge_bvec_fn) 4013 return max_size; 4014 4015 bvm->bi_bdev = tc->pool_dev->bdev; 4016 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector); 4017 4018 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 4019 } 4020 4021 static int thin_iterate_devices(struct dm_target *ti, 4022 iterate_devices_callout_fn fn, void *data) 4023 { 4024 sector_t blocks; 4025 struct thin_c *tc = ti->private; 4026 struct pool *pool = tc->pool; 4027 4028 /* 4029 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4030 * we follow a more convoluted path through to the pool's target. 4031 */ 4032 if (!pool->ti) 4033 return 0; /* nothing is bound */ 4034 4035 blocks = pool->ti->len; 4036 (void) sector_div(blocks, pool->sectors_per_block); 4037 if (blocks) 4038 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4039 4040 return 0; 4041 } 4042 4043 static struct target_type thin_target = { 4044 .name = "thin", 4045 .version = {1, 14, 0}, 4046 .module = THIS_MODULE, 4047 .ctr = thin_ctr, 4048 .dtr = thin_dtr, 4049 .map = thin_map, 4050 .end_io = thin_endio, 4051 .preresume = thin_preresume, 4052 .presuspend = thin_presuspend, 4053 .postsuspend = thin_postsuspend, 4054 .status = thin_status, 4055 .merge = thin_merge, 4056 .iterate_devices = thin_iterate_devices, 4057 }; 4058 4059 /*----------------------------------------------------------------*/ 4060 4061 static int __init dm_thin_init(void) 4062 { 4063 int r; 4064 4065 pool_table_init(); 4066 4067 r = dm_register_target(&thin_target); 4068 if (r) 4069 return r; 4070 4071 r = dm_register_target(&pool_target); 4072 if (r) 4073 goto bad_pool_target; 4074 4075 r = -ENOMEM; 4076 4077 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4078 if (!_new_mapping_cache) 4079 goto bad_new_mapping_cache; 4080 4081 return 0; 4082 4083 bad_new_mapping_cache: 4084 dm_unregister_target(&pool_target); 4085 bad_pool_target: 4086 dm_unregister_target(&thin_target); 4087 4088 return r; 4089 } 4090 4091 static void dm_thin_exit(void) 4092 { 4093 dm_unregister_target(&thin_target); 4094 dm_unregister_target(&pool_target); 4095 4096 kmem_cache_destroy(_new_mapping_cache); 4097 } 4098 4099 module_init(dm_thin_init); 4100 module_exit(dm_thin_exit); 4101 4102 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4103 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4104 4105 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4106 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4107 MODULE_LICENSE("GPL"); 4108