xref: /openbmc/linux/drivers/md/dm-thin.c (revision 5e29a910)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include <linux/rbtree.h>
23 
24 #define	DM_MSG_PREFIX	"thin"
25 
26 /*
27  * Tunable constants
28  */
29 #define ENDIO_HOOK_POOL_SIZE 1024
30 #define MAPPING_POOL_SIZE 1024
31 #define COMMIT_PERIOD HZ
32 #define NO_SPACE_TIMEOUT_SECS 60
33 
34 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
35 
36 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
37 		"A percentage of time allocated for copy on write");
38 
39 /*
40  * The block size of the device holding pool data must be
41  * between 64KB and 1GB.
42  */
43 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
44 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
45 
46 /*
47  * Device id is restricted to 24 bits.
48  */
49 #define MAX_DEV_ID ((1 << 24) - 1)
50 
51 /*
52  * How do we handle breaking sharing of data blocks?
53  * =================================================
54  *
55  * We use a standard copy-on-write btree to store the mappings for the
56  * devices (note I'm talking about copy-on-write of the metadata here, not
57  * the data).  When you take an internal snapshot you clone the root node
58  * of the origin btree.  After this there is no concept of an origin or a
59  * snapshot.  They are just two device trees that happen to point to the
60  * same data blocks.
61  *
62  * When we get a write in we decide if it's to a shared data block using
63  * some timestamp magic.  If it is, we have to break sharing.
64  *
65  * Let's say we write to a shared block in what was the origin.  The
66  * steps are:
67  *
68  * i) plug io further to this physical block. (see bio_prison code).
69  *
70  * ii) quiesce any read io to that shared data block.  Obviously
71  * including all devices that share this block.  (see dm_deferred_set code)
72  *
73  * iii) copy the data block to a newly allocate block.  This step can be
74  * missed out if the io covers the block. (schedule_copy).
75  *
76  * iv) insert the new mapping into the origin's btree
77  * (process_prepared_mapping).  This act of inserting breaks some
78  * sharing of btree nodes between the two devices.  Breaking sharing only
79  * effects the btree of that specific device.  Btrees for the other
80  * devices that share the block never change.  The btree for the origin
81  * device as it was after the last commit is untouched, ie. we're using
82  * persistent data structures in the functional programming sense.
83  *
84  * v) unplug io to this physical block, including the io that triggered
85  * the breaking of sharing.
86  *
87  * Steps (ii) and (iii) occur in parallel.
88  *
89  * The metadata _doesn't_ need to be committed before the io continues.  We
90  * get away with this because the io is always written to a _new_ block.
91  * If there's a crash, then:
92  *
93  * - The origin mapping will point to the old origin block (the shared
94  * one).  This will contain the data as it was before the io that triggered
95  * the breaking of sharing came in.
96  *
97  * - The snap mapping still points to the old block.  As it would after
98  * the commit.
99  *
100  * The downside of this scheme is the timestamp magic isn't perfect, and
101  * will continue to think that data block in the snapshot device is shared
102  * even after the write to the origin has broken sharing.  I suspect data
103  * blocks will typically be shared by many different devices, so we're
104  * breaking sharing n + 1 times, rather than n, where n is the number of
105  * devices that reference this data block.  At the moment I think the
106  * benefits far, far outweigh the disadvantages.
107  */
108 
109 /*----------------------------------------------------------------*/
110 
111 /*
112  * Key building.
113  */
114 static void build_data_key(struct dm_thin_device *td,
115 			   dm_block_t b, struct dm_cell_key *key)
116 {
117 	key->virtual = 0;
118 	key->dev = dm_thin_dev_id(td);
119 	key->block_begin = b;
120 	key->block_end = b + 1ULL;
121 }
122 
123 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
124 			      struct dm_cell_key *key)
125 {
126 	key->virtual = 1;
127 	key->dev = dm_thin_dev_id(td);
128 	key->block_begin = b;
129 	key->block_end = b + 1ULL;
130 }
131 
132 /*----------------------------------------------------------------*/
133 
134 #define THROTTLE_THRESHOLD (1 * HZ)
135 
136 struct throttle {
137 	struct rw_semaphore lock;
138 	unsigned long threshold;
139 	bool throttle_applied;
140 };
141 
142 static void throttle_init(struct throttle *t)
143 {
144 	init_rwsem(&t->lock);
145 	t->throttle_applied = false;
146 }
147 
148 static void throttle_work_start(struct throttle *t)
149 {
150 	t->threshold = jiffies + THROTTLE_THRESHOLD;
151 }
152 
153 static void throttle_work_update(struct throttle *t)
154 {
155 	if (!t->throttle_applied && jiffies > t->threshold) {
156 		down_write(&t->lock);
157 		t->throttle_applied = true;
158 	}
159 }
160 
161 static void throttle_work_complete(struct throttle *t)
162 {
163 	if (t->throttle_applied) {
164 		t->throttle_applied = false;
165 		up_write(&t->lock);
166 	}
167 }
168 
169 static void throttle_lock(struct throttle *t)
170 {
171 	down_read(&t->lock);
172 }
173 
174 static void throttle_unlock(struct throttle *t)
175 {
176 	up_read(&t->lock);
177 }
178 
179 /*----------------------------------------------------------------*/
180 
181 /*
182  * A pool device ties together a metadata device and a data device.  It
183  * also provides the interface for creating and destroying internal
184  * devices.
185  */
186 struct dm_thin_new_mapping;
187 
188 /*
189  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
190  */
191 enum pool_mode {
192 	PM_WRITE,		/* metadata may be changed */
193 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
194 	PM_READ_ONLY,		/* metadata may not be changed */
195 	PM_FAIL,		/* all I/O fails */
196 };
197 
198 struct pool_features {
199 	enum pool_mode mode;
200 
201 	bool zero_new_blocks:1;
202 	bool discard_enabled:1;
203 	bool discard_passdown:1;
204 	bool error_if_no_space:1;
205 };
206 
207 struct thin_c;
208 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
209 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
210 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
211 
212 #define CELL_SORT_ARRAY_SIZE 8192
213 
214 struct pool {
215 	struct list_head list;
216 	struct dm_target *ti;	/* Only set if a pool target is bound */
217 
218 	struct mapped_device *pool_md;
219 	struct block_device *md_dev;
220 	struct dm_pool_metadata *pmd;
221 
222 	dm_block_t low_water_blocks;
223 	uint32_t sectors_per_block;
224 	int sectors_per_block_shift;
225 
226 	struct pool_features pf;
227 	bool low_water_triggered:1;	/* A dm event has been sent */
228 	bool suspended:1;
229 
230 	struct dm_bio_prison *prison;
231 	struct dm_kcopyd_client *copier;
232 
233 	struct workqueue_struct *wq;
234 	struct throttle throttle;
235 	struct work_struct worker;
236 	struct delayed_work waker;
237 	struct delayed_work no_space_timeout;
238 
239 	unsigned long last_commit_jiffies;
240 	unsigned ref_count;
241 
242 	spinlock_t lock;
243 	struct bio_list deferred_flush_bios;
244 	struct list_head prepared_mappings;
245 	struct list_head prepared_discards;
246 	struct list_head active_thins;
247 
248 	struct dm_deferred_set *shared_read_ds;
249 	struct dm_deferred_set *all_io_ds;
250 
251 	struct dm_thin_new_mapping *next_mapping;
252 	mempool_t *mapping_pool;
253 
254 	process_bio_fn process_bio;
255 	process_bio_fn process_discard;
256 
257 	process_cell_fn process_cell;
258 	process_cell_fn process_discard_cell;
259 
260 	process_mapping_fn process_prepared_mapping;
261 	process_mapping_fn process_prepared_discard;
262 
263 	struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
264 };
265 
266 static enum pool_mode get_pool_mode(struct pool *pool);
267 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
268 
269 /*
270  * Target context for a pool.
271  */
272 struct pool_c {
273 	struct dm_target *ti;
274 	struct pool *pool;
275 	struct dm_dev *data_dev;
276 	struct dm_dev *metadata_dev;
277 	struct dm_target_callbacks callbacks;
278 
279 	dm_block_t low_water_blocks;
280 	struct pool_features requested_pf; /* Features requested during table load */
281 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
282 };
283 
284 /*
285  * Target context for a thin.
286  */
287 struct thin_c {
288 	struct list_head list;
289 	struct dm_dev *pool_dev;
290 	struct dm_dev *origin_dev;
291 	sector_t origin_size;
292 	dm_thin_id dev_id;
293 
294 	struct pool *pool;
295 	struct dm_thin_device *td;
296 	struct mapped_device *thin_md;
297 
298 	bool requeue_mode:1;
299 	spinlock_t lock;
300 	struct list_head deferred_cells;
301 	struct bio_list deferred_bio_list;
302 	struct bio_list retry_on_resume_list;
303 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
304 
305 	/*
306 	 * Ensures the thin is not destroyed until the worker has finished
307 	 * iterating the active_thins list.
308 	 */
309 	atomic_t refcount;
310 	struct completion can_destroy;
311 };
312 
313 /*----------------------------------------------------------------*/
314 
315 /*
316  * wake_worker() is used when new work is queued and when pool_resume is
317  * ready to continue deferred IO processing.
318  */
319 static void wake_worker(struct pool *pool)
320 {
321 	queue_work(pool->wq, &pool->worker);
322 }
323 
324 /*----------------------------------------------------------------*/
325 
326 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
327 		      struct dm_bio_prison_cell **cell_result)
328 {
329 	int r;
330 	struct dm_bio_prison_cell *cell_prealloc;
331 
332 	/*
333 	 * Allocate a cell from the prison's mempool.
334 	 * This might block but it can't fail.
335 	 */
336 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
337 
338 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
339 	if (r)
340 		/*
341 		 * We reused an old cell; we can get rid of
342 		 * the new one.
343 		 */
344 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
345 
346 	return r;
347 }
348 
349 static void cell_release(struct pool *pool,
350 			 struct dm_bio_prison_cell *cell,
351 			 struct bio_list *bios)
352 {
353 	dm_cell_release(pool->prison, cell, bios);
354 	dm_bio_prison_free_cell(pool->prison, cell);
355 }
356 
357 static void cell_visit_release(struct pool *pool,
358 			       void (*fn)(void *, struct dm_bio_prison_cell *),
359 			       void *context,
360 			       struct dm_bio_prison_cell *cell)
361 {
362 	dm_cell_visit_release(pool->prison, fn, context, cell);
363 	dm_bio_prison_free_cell(pool->prison, cell);
364 }
365 
366 static void cell_release_no_holder(struct pool *pool,
367 				   struct dm_bio_prison_cell *cell,
368 				   struct bio_list *bios)
369 {
370 	dm_cell_release_no_holder(pool->prison, cell, bios);
371 	dm_bio_prison_free_cell(pool->prison, cell);
372 }
373 
374 static void cell_error_with_code(struct pool *pool,
375 				 struct dm_bio_prison_cell *cell, int error_code)
376 {
377 	dm_cell_error(pool->prison, cell, error_code);
378 	dm_bio_prison_free_cell(pool->prison, cell);
379 }
380 
381 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
382 {
383 	cell_error_with_code(pool, cell, -EIO);
384 }
385 
386 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
387 {
388 	cell_error_with_code(pool, cell, 0);
389 }
390 
391 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
392 {
393 	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
394 }
395 
396 /*----------------------------------------------------------------*/
397 
398 /*
399  * A global list of pools that uses a struct mapped_device as a key.
400  */
401 static struct dm_thin_pool_table {
402 	struct mutex mutex;
403 	struct list_head pools;
404 } dm_thin_pool_table;
405 
406 static void pool_table_init(void)
407 {
408 	mutex_init(&dm_thin_pool_table.mutex);
409 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
410 }
411 
412 static void __pool_table_insert(struct pool *pool)
413 {
414 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
415 	list_add(&pool->list, &dm_thin_pool_table.pools);
416 }
417 
418 static void __pool_table_remove(struct pool *pool)
419 {
420 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
421 	list_del(&pool->list);
422 }
423 
424 static struct pool *__pool_table_lookup(struct mapped_device *md)
425 {
426 	struct pool *pool = NULL, *tmp;
427 
428 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
429 
430 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
431 		if (tmp->pool_md == md) {
432 			pool = tmp;
433 			break;
434 		}
435 	}
436 
437 	return pool;
438 }
439 
440 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
441 {
442 	struct pool *pool = NULL, *tmp;
443 
444 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
445 
446 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
447 		if (tmp->md_dev == md_dev) {
448 			pool = tmp;
449 			break;
450 		}
451 	}
452 
453 	return pool;
454 }
455 
456 /*----------------------------------------------------------------*/
457 
458 struct dm_thin_endio_hook {
459 	struct thin_c *tc;
460 	struct dm_deferred_entry *shared_read_entry;
461 	struct dm_deferred_entry *all_io_entry;
462 	struct dm_thin_new_mapping *overwrite_mapping;
463 	struct rb_node rb_node;
464 };
465 
466 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
467 {
468 	bio_list_merge(bios, master);
469 	bio_list_init(master);
470 }
471 
472 static void error_bio_list(struct bio_list *bios, int error)
473 {
474 	struct bio *bio;
475 
476 	while ((bio = bio_list_pop(bios)))
477 		bio_endio(bio, error);
478 }
479 
480 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
481 {
482 	struct bio_list bios;
483 	unsigned long flags;
484 
485 	bio_list_init(&bios);
486 
487 	spin_lock_irqsave(&tc->lock, flags);
488 	__merge_bio_list(&bios, master);
489 	spin_unlock_irqrestore(&tc->lock, flags);
490 
491 	error_bio_list(&bios, error);
492 }
493 
494 static void requeue_deferred_cells(struct thin_c *tc)
495 {
496 	struct pool *pool = tc->pool;
497 	unsigned long flags;
498 	struct list_head cells;
499 	struct dm_bio_prison_cell *cell, *tmp;
500 
501 	INIT_LIST_HEAD(&cells);
502 
503 	spin_lock_irqsave(&tc->lock, flags);
504 	list_splice_init(&tc->deferred_cells, &cells);
505 	spin_unlock_irqrestore(&tc->lock, flags);
506 
507 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
508 		cell_requeue(pool, cell);
509 }
510 
511 static void requeue_io(struct thin_c *tc)
512 {
513 	struct bio_list bios;
514 	unsigned long flags;
515 
516 	bio_list_init(&bios);
517 
518 	spin_lock_irqsave(&tc->lock, flags);
519 	__merge_bio_list(&bios, &tc->deferred_bio_list);
520 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
521 	spin_unlock_irqrestore(&tc->lock, flags);
522 
523 	error_bio_list(&bios, DM_ENDIO_REQUEUE);
524 	requeue_deferred_cells(tc);
525 }
526 
527 static void error_retry_list(struct pool *pool)
528 {
529 	struct thin_c *tc;
530 
531 	rcu_read_lock();
532 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
533 		error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
534 	rcu_read_unlock();
535 }
536 
537 /*
538  * This section of code contains the logic for processing a thin device's IO.
539  * Much of the code depends on pool object resources (lists, workqueues, etc)
540  * but most is exclusively called from the thin target rather than the thin-pool
541  * target.
542  */
543 
544 static bool block_size_is_power_of_two(struct pool *pool)
545 {
546 	return pool->sectors_per_block_shift >= 0;
547 }
548 
549 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
550 {
551 	struct pool *pool = tc->pool;
552 	sector_t block_nr = bio->bi_iter.bi_sector;
553 
554 	if (block_size_is_power_of_two(pool))
555 		block_nr >>= pool->sectors_per_block_shift;
556 	else
557 		(void) sector_div(block_nr, pool->sectors_per_block);
558 
559 	return block_nr;
560 }
561 
562 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
563 {
564 	struct pool *pool = tc->pool;
565 	sector_t bi_sector = bio->bi_iter.bi_sector;
566 
567 	bio->bi_bdev = tc->pool_dev->bdev;
568 	if (block_size_is_power_of_two(pool))
569 		bio->bi_iter.bi_sector =
570 			(block << pool->sectors_per_block_shift) |
571 			(bi_sector & (pool->sectors_per_block - 1));
572 	else
573 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
574 				 sector_div(bi_sector, pool->sectors_per_block);
575 }
576 
577 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
578 {
579 	bio->bi_bdev = tc->origin_dev->bdev;
580 }
581 
582 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
583 {
584 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
585 		dm_thin_changed_this_transaction(tc->td);
586 }
587 
588 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
589 {
590 	struct dm_thin_endio_hook *h;
591 
592 	if (bio->bi_rw & REQ_DISCARD)
593 		return;
594 
595 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
596 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
597 }
598 
599 static void issue(struct thin_c *tc, struct bio *bio)
600 {
601 	struct pool *pool = tc->pool;
602 	unsigned long flags;
603 
604 	if (!bio_triggers_commit(tc, bio)) {
605 		generic_make_request(bio);
606 		return;
607 	}
608 
609 	/*
610 	 * Complete bio with an error if earlier I/O caused changes to
611 	 * the metadata that can't be committed e.g, due to I/O errors
612 	 * on the metadata device.
613 	 */
614 	if (dm_thin_aborted_changes(tc->td)) {
615 		bio_io_error(bio);
616 		return;
617 	}
618 
619 	/*
620 	 * Batch together any bios that trigger commits and then issue a
621 	 * single commit for them in process_deferred_bios().
622 	 */
623 	spin_lock_irqsave(&pool->lock, flags);
624 	bio_list_add(&pool->deferred_flush_bios, bio);
625 	spin_unlock_irqrestore(&pool->lock, flags);
626 }
627 
628 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
629 {
630 	remap_to_origin(tc, bio);
631 	issue(tc, bio);
632 }
633 
634 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
635 			    dm_block_t block)
636 {
637 	remap(tc, bio, block);
638 	issue(tc, bio);
639 }
640 
641 /*----------------------------------------------------------------*/
642 
643 /*
644  * Bio endio functions.
645  */
646 struct dm_thin_new_mapping {
647 	struct list_head list;
648 
649 	bool pass_discard:1;
650 	bool definitely_not_shared:1;
651 
652 	/*
653 	 * Track quiescing, copying and zeroing preparation actions.  When this
654 	 * counter hits zero the block is prepared and can be inserted into the
655 	 * btree.
656 	 */
657 	atomic_t prepare_actions;
658 
659 	int err;
660 	struct thin_c *tc;
661 	dm_block_t virt_block;
662 	dm_block_t data_block;
663 	struct dm_bio_prison_cell *cell, *cell2;
664 
665 	/*
666 	 * If the bio covers the whole area of a block then we can avoid
667 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
668 	 * still be in the cell, so care has to be taken to avoid issuing
669 	 * the bio twice.
670 	 */
671 	struct bio *bio;
672 	bio_end_io_t *saved_bi_end_io;
673 };
674 
675 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
676 {
677 	struct pool *pool = m->tc->pool;
678 
679 	if (atomic_dec_and_test(&m->prepare_actions)) {
680 		list_add_tail(&m->list, &pool->prepared_mappings);
681 		wake_worker(pool);
682 	}
683 }
684 
685 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
686 {
687 	unsigned long flags;
688 	struct pool *pool = m->tc->pool;
689 
690 	spin_lock_irqsave(&pool->lock, flags);
691 	__complete_mapping_preparation(m);
692 	spin_unlock_irqrestore(&pool->lock, flags);
693 }
694 
695 static void copy_complete(int read_err, unsigned long write_err, void *context)
696 {
697 	struct dm_thin_new_mapping *m = context;
698 
699 	m->err = read_err || write_err ? -EIO : 0;
700 	complete_mapping_preparation(m);
701 }
702 
703 static void overwrite_endio(struct bio *bio, int err)
704 {
705 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
706 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
707 
708 	m->err = err;
709 	complete_mapping_preparation(m);
710 }
711 
712 /*----------------------------------------------------------------*/
713 
714 /*
715  * Workqueue.
716  */
717 
718 /*
719  * Prepared mapping jobs.
720  */
721 
722 /*
723  * This sends the bios in the cell, except the original holder, back
724  * to the deferred_bios list.
725  */
726 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
727 {
728 	struct pool *pool = tc->pool;
729 	unsigned long flags;
730 
731 	spin_lock_irqsave(&tc->lock, flags);
732 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
733 	spin_unlock_irqrestore(&tc->lock, flags);
734 
735 	wake_worker(pool);
736 }
737 
738 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
739 
740 struct remap_info {
741 	struct thin_c *tc;
742 	struct bio_list defer_bios;
743 	struct bio_list issue_bios;
744 };
745 
746 static void __inc_remap_and_issue_cell(void *context,
747 				       struct dm_bio_prison_cell *cell)
748 {
749 	struct remap_info *info = context;
750 	struct bio *bio;
751 
752 	while ((bio = bio_list_pop(&cell->bios))) {
753 		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
754 			bio_list_add(&info->defer_bios, bio);
755 		else {
756 			inc_all_io_entry(info->tc->pool, bio);
757 
758 			/*
759 			 * We can't issue the bios with the bio prison lock
760 			 * held, so we add them to a list to issue on
761 			 * return from this function.
762 			 */
763 			bio_list_add(&info->issue_bios, bio);
764 		}
765 	}
766 }
767 
768 static void inc_remap_and_issue_cell(struct thin_c *tc,
769 				     struct dm_bio_prison_cell *cell,
770 				     dm_block_t block)
771 {
772 	struct bio *bio;
773 	struct remap_info info;
774 
775 	info.tc = tc;
776 	bio_list_init(&info.defer_bios);
777 	bio_list_init(&info.issue_bios);
778 
779 	/*
780 	 * We have to be careful to inc any bios we're about to issue
781 	 * before the cell is released, and avoid a race with new bios
782 	 * being added to the cell.
783 	 */
784 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
785 			   &info, cell);
786 
787 	while ((bio = bio_list_pop(&info.defer_bios)))
788 		thin_defer_bio(tc, bio);
789 
790 	while ((bio = bio_list_pop(&info.issue_bios)))
791 		remap_and_issue(info.tc, bio, block);
792 }
793 
794 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
795 {
796 	if (m->bio) {
797 		m->bio->bi_end_io = m->saved_bi_end_io;
798 		atomic_inc(&m->bio->bi_remaining);
799 	}
800 	cell_error(m->tc->pool, m->cell);
801 	list_del(&m->list);
802 	mempool_free(m, m->tc->pool->mapping_pool);
803 }
804 
805 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
806 {
807 	struct thin_c *tc = m->tc;
808 	struct pool *pool = tc->pool;
809 	struct bio *bio;
810 	int r;
811 
812 	bio = m->bio;
813 	if (bio) {
814 		bio->bi_end_io = m->saved_bi_end_io;
815 		atomic_inc(&bio->bi_remaining);
816 	}
817 
818 	if (m->err) {
819 		cell_error(pool, m->cell);
820 		goto out;
821 	}
822 
823 	/*
824 	 * Commit the prepared block into the mapping btree.
825 	 * Any I/O for this block arriving after this point will get
826 	 * remapped to it directly.
827 	 */
828 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
829 	if (r) {
830 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
831 		cell_error(pool, m->cell);
832 		goto out;
833 	}
834 
835 	/*
836 	 * Release any bios held while the block was being provisioned.
837 	 * If we are processing a write bio that completely covers the block,
838 	 * we already processed it so can ignore it now when processing
839 	 * the bios in the cell.
840 	 */
841 	if (bio) {
842 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
843 		bio_endio(bio, 0);
844 	} else {
845 		inc_all_io_entry(tc->pool, m->cell->holder);
846 		remap_and_issue(tc, m->cell->holder, m->data_block);
847 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
848 	}
849 
850 out:
851 	list_del(&m->list);
852 	mempool_free(m, pool->mapping_pool);
853 }
854 
855 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
856 {
857 	struct thin_c *tc = m->tc;
858 
859 	bio_io_error(m->bio);
860 	cell_defer_no_holder(tc, m->cell);
861 	cell_defer_no_holder(tc, m->cell2);
862 	mempool_free(m, tc->pool->mapping_pool);
863 }
864 
865 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
866 {
867 	struct thin_c *tc = m->tc;
868 
869 	inc_all_io_entry(tc->pool, m->bio);
870 	cell_defer_no_holder(tc, m->cell);
871 	cell_defer_no_holder(tc, m->cell2);
872 
873 	if (m->pass_discard)
874 		if (m->definitely_not_shared)
875 			remap_and_issue(tc, m->bio, m->data_block);
876 		else {
877 			bool used = false;
878 			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
879 				bio_endio(m->bio, 0);
880 			else
881 				remap_and_issue(tc, m->bio, m->data_block);
882 		}
883 	else
884 		bio_endio(m->bio, 0);
885 
886 	mempool_free(m, tc->pool->mapping_pool);
887 }
888 
889 static void process_prepared_discard(struct dm_thin_new_mapping *m)
890 {
891 	int r;
892 	struct thin_c *tc = m->tc;
893 
894 	r = dm_thin_remove_block(tc->td, m->virt_block);
895 	if (r)
896 		DMERR_LIMIT("dm_thin_remove_block() failed");
897 
898 	process_prepared_discard_passdown(m);
899 }
900 
901 static void process_prepared(struct pool *pool, struct list_head *head,
902 			     process_mapping_fn *fn)
903 {
904 	unsigned long flags;
905 	struct list_head maps;
906 	struct dm_thin_new_mapping *m, *tmp;
907 
908 	INIT_LIST_HEAD(&maps);
909 	spin_lock_irqsave(&pool->lock, flags);
910 	list_splice_init(head, &maps);
911 	spin_unlock_irqrestore(&pool->lock, flags);
912 
913 	list_for_each_entry_safe(m, tmp, &maps, list)
914 		(*fn)(m);
915 }
916 
917 /*
918  * Deferred bio jobs.
919  */
920 static int io_overlaps_block(struct pool *pool, struct bio *bio)
921 {
922 	return bio->bi_iter.bi_size ==
923 		(pool->sectors_per_block << SECTOR_SHIFT);
924 }
925 
926 static int io_overwrites_block(struct pool *pool, struct bio *bio)
927 {
928 	return (bio_data_dir(bio) == WRITE) &&
929 		io_overlaps_block(pool, bio);
930 }
931 
932 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
933 			       bio_end_io_t *fn)
934 {
935 	*save = bio->bi_end_io;
936 	bio->bi_end_io = fn;
937 }
938 
939 static int ensure_next_mapping(struct pool *pool)
940 {
941 	if (pool->next_mapping)
942 		return 0;
943 
944 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
945 
946 	return pool->next_mapping ? 0 : -ENOMEM;
947 }
948 
949 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
950 {
951 	struct dm_thin_new_mapping *m = pool->next_mapping;
952 
953 	BUG_ON(!pool->next_mapping);
954 
955 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
956 	INIT_LIST_HEAD(&m->list);
957 	m->bio = NULL;
958 
959 	pool->next_mapping = NULL;
960 
961 	return m;
962 }
963 
964 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
965 		    sector_t begin, sector_t end)
966 {
967 	int r;
968 	struct dm_io_region to;
969 
970 	to.bdev = tc->pool_dev->bdev;
971 	to.sector = begin;
972 	to.count = end - begin;
973 
974 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
975 	if (r < 0) {
976 		DMERR_LIMIT("dm_kcopyd_zero() failed");
977 		copy_complete(1, 1, m);
978 	}
979 }
980 
981 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
982 				      dm_block_t data_block,
983 				      struct dm_thin_new_mapping *m)
984 {
985 	struct pool *pool = tc->pool;
986 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
987 
988 	h->overwrite_mapping = m;
989 	m->bio = bio;
990 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991 	inc_all_io_entry(pool, bio);
992 	remap_and_issue(tc, bio, data_block);
993 }
994 
995 /*
996  * A partial copy also needs to zero the uncopied region.
997  */
998 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
999 			  struct dm_dev *origin, dm_block_t data_origin,
1000 			  dm_block_t data_dest,
1001 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1002 			  sector_t len)
1003 {
1004 	int r;
1005 	struct pool *pool = tc->pool;
1006 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1007 
1008 	m->tc = tc;
1009 	m->virt_block = virt_block;
1010 	m->data_block = data_dest;
1011 	m->cell = cell;
1012 
1013 	/*
1014 	 * quiesce action + copy action + an extra reference held for the
1015 	 * duration of this function (we may need to inc later for a
1016 	 * partial zero).
1017 	 */
1018 	atomic_set(&m->prepare_actions, 3);
1019 
1020 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1021 		complete_mapping_preparation(m); /* already quiesced */
1022 
1023 	/*
1024 	 * IO to pool_dev remaps to the pool target's data_dev.
1025 	 *
1026 	 * If the whole block of data is being overwritten, we can issue the
1027 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1028 	 */
1029 	if (io_overwrites_block(pool, bio))
1030 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1031 	else {
1032 		struct dm_io_region from, to;
1033 
1034 		from.bdev = origin->bdev;
1035 		from.sector = data_origin * pool->sectors_per_block;
1036 		from.count = len;
1037 
1038 		to.bdev = tc->pool_dev->bdev;
1039 		to.sector = data_dest * pool->sectors_per_block;
1040 		to.count = len;
1041 
1042 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1043 				   0, copy_complete, m);
1044 		if (r < 0) {
1045 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1046 			copy_complete(1, 1, m);
1047 
1048 			/*
1049 			 * We allow the zero to be issued, to simplify the
1050 			 * error path.  Otherwise we'd need to start
1051 			 * worrying about decrementing the prepare_actions
1052 			 * counter.
1053 			 */
1054 		}
1055 
1056 		/*
1057 		 * Do we need to zero a tail region?
1058 		 */
1059 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1060 			atomic_inc(&m->prepare_actions);
1061 			ll_zero(tc, m,
1062 				data_dest * pool->sectors_per_block + len,
1063 				(data_dest + 1) * pool->sectors_per_block);
1064 		}
1065 	}
1066 
1067 	complete_mapping_preparation(m); /* drop our ref */
1068 }
1069 
1070 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1071 				   dm_block_t data_origin, dm_block_t data_dest,
1072 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1073 {
1074 	schedule_copy(tc, virt_block, tc->pool_dev,
1075 		      data_origin, data_dest, cell, bio,
1076 		      tc->pool->sectors_per_block);
1077 }
1078 
1079 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1080 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1081 			  struct bio *bio)
1082 {
1083 	struct pool *pool = tc->pool;
1084 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1085 
1086 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1087 	m->tc = tc;
1088 	m->virt_block = virt_block;
1089 	m->data_block = data_block;
1090 	m->cell = cell;
1091 
1092 	/*
1093 	 * If the whole block of data is being overwritten or we are not
1094 	 * zeroing pre-existing data, we can issue the bio immediately.
1095 	 * Otherwise we use kcopyd to zero the data first.
1096 	 */
1097 	if (!pool->pf.zero_new_blocks)
1098 		process_prepared_mapping(m);
1099 
1100 	else if (io_overwrites_block(pool, bio))
1101 		remap_and_issue_overwrite(tc, bio, data_block, m);
1102 
1103 	else
1104 		ll_zero(tc, m,
1105 			data_block * pool->sectors_per_block,
1106 			(data_block + 1) * pool->sectors_per_block);
1107 }
1108 
1109 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1110 				   dm_block_t data_dest,
1111 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1112 {
1113 	struct pool *pool = tc->pool;
1114 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1115 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1116 
1117 	if (virt_block_end <= tc->origin_size)
1118 		schedule_copy(tc, virt_block, tc->origin_dev,
1119 			      virt_block, data_dest, cell, bio,
1120 			      pool->sectors_per_block);
1121 
1122 	else if (virt_block_begin < tc->origin_size)
1123 		schedule_copy(tc, virt_block, tc->origin_dev,
1124 			      virt_block, data_dest, cell, bio,
1125 			      tc->origin_size - virt_block_begin);
1126 
1127 	else
1128 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1129 }
1130 
1131 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1132 
1133 static void check_for_space(struct pool *pool)
1134 {
1135 	int r;
1136 	dm_block_t nr_free;
1137 
1138 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1139 		return;
1140 
1141 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1142 	if (r)
1143 		return;
1144 
1145 	if (nr_free)
1146 		set_pool_mode(pool, PM_WRITE);
1147 }
1148 
1149 /*
1150  * A non-zero return indicates read_only or fail_io mode.
1151  * Many callers don't care about the return value.
1152  */
1153 static int commit(struct pool *pool)
1154 {
1155 	int r;
1156 
1157 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1158 		return -EINVAL;
1159 
1160 	r = dm_pool_commit_metadata(pool->pmd);
1161 	if (r)
1162 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1163 	else
1164 		check_for_space(pool);
1165 
1166 	return r;
1167 }
1168 
1169 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1170 {
1171 	unsigned long flags;
1172 
1173 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1174 		DMWARN("%s: reached low water mark for data device: sending event.",
1175 		       dm_device_name(pool->pool_md));
1176 		spin_lock_irqsave(&pool->lock, flags);
1177 		pool->low_water_triggered = true;
1178 		spin_unlock_irqrestore(&pool->lock, flags);
1179 		dm_table_event(pool->ti->table);
1180 	}
1181 }
1182 
1183 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1184 {
1185 	int r;
1186 	dm_block_t free_blocks;
1187 	struct pool *pool = tc->pool;
1188 
1189 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1190 		return -EINVAL;
1191 
1192 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1193 	if (r) {
1194 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1195 		return r;
1196 	}
1197 
1198 	check_low_water_mark(pool, free_blocks);
1199 
1200 	if (!free_blocks) {
1201 		/*
1202 		 * Try to commit to see if that will free up some
1203 		 * more space.
1204 		 */
1205 		r = commit(pool);
1206 		if (r)
1207 			return r;
1208 
1209 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1210 		if (r) {
1211 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1212 			return r;
1213 		}
1214 
1215 		if (!free_blocks) {
1216 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1217 			return -ENOSPC;
1218 		}
1219 	}
1220 
1221 	r = dm_pool_alloc_data_block(pool->pmd, result);
1222 	if (r) {
1223 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1224 		return r;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 /*
1231  * If we have run out of space, queue bios until the device is
1232  * resumed, presumably after having been reloaded with more space.
1233  */
1234 static void retry_on_resume(struct bio *bio)
1235 {
1236 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1237 	struct thin_c *tc = h->tc;
1238 	unsigned long flags;
1239 
1240 	spin_lock_irqsave(&tc->lock, flags);
1241 	bio_list_add(&tc->retry_on_resume_list, bio);
1242 	spin_unlock_irqrestore(&tc->lock, flags);
1243 }
1244 
1245 static int should_error_unserviceable_bio(struct pool *pool)
1246 {
1247 	enum pool_mode m = get_pool_mode(pool);
1248 
1249 	switch (m) {
1250 	case PM_WRITE:
1251 		/* Shouldn't get here */
1252 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1253 		return -EIO;
1254 
1255 	case PM_OUT_OF_DATA_SPACE:
1256 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1257 
1258 	case PM_READ_ONLY:
1259 	case PM_FAIL:
1260 		return -EIO;
1261 	default:
1262 		/* Shouldn't get here */
1263 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1264 		return -EIO;
1265 	}
1266 }
1267 
1268 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1269 {
1270 	int error = should_error_unserviceable_bio(pool);
1271 
1272 	if (error)
1273 		bio_endio(bio, error);
1274 	else
1275 		retry_on_resume(bio);
1276 }
1277 
1278 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1279 {
1280 	struct bio *bio;
1281 	struct bio_list bios;
1282 	int error;
1283 
1284 	error = should_error_unserviceable_bio(pool);
1285 	if (error) {
1286 		cell_error_with_code(pool, cell, error);
1287 		return;
1288 	}
1289 
1290 	bio_list_init(&bios);
1291 	cell_release(pool, cell, &bios);
1292 
1293 	while ((bio = bio_list_pop(&bios)))
1294 		retry_on_resume(bio);
1295 }
1296 
1297 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1298 {
1299 	int r;
1300 	struct bio *bio = cell->holder;
1301 	struct pool *pool = tc->pool;
1302 	struct dm_bio_prison_cell *cell2;
1303 	struct dm_cell_key key2;
1304 	dm_block_t block = get_bio_block(tc, bio);
1305 	struct dm_thin_lookup_result lookup_result;
1306 	struct dm_thin_new_mapping *m;
1307 
1308 	if (tc->requeue_mode) {
1309 		cell_requeue(pool, cell);
1310 		return;
1311 	}
1312 
1313 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1314 	switch (r) {
1315 	case 0:
1316 		/*
1317 		 * Check nobody is fiddling with this pool block.  This can
1318 		 * happen if someone's in the process of breaking sharing
1319 		 * on this block.
1320 		 */
1321 		build_data_key(tc->td, lookup_result.block, &key2);
1322 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1323 			cell_defer_no_holder(tc, cell);
1324 			break;
1325 		}
1326 
1327 		if (io_overlaps_block(pool, bio)) {
1328 			/*
1329 			 * IO may still be going to the destination block.  We must
1330 			 * quiesce before we can do the removal.
1331 			 */
1332 			m = get_next_mapping(pool);
1333 			m->tc = tc;
1334 			m->pass_discard = pool->pf.discard_passdown;
1335 			m->definitely_not_shared = !lookup_result.shared;
1336 			m->virt_block = block;
1337 			m->data_block = lookup_result.block;
1338 			m->cell = cell;
1339 			m->cell2 = cell2;
1340 			m->bio = bio;
1341 
1342 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1343 				pool->process_prepared_discard(m);
1344 
1345 		} else {
1346 			inc_all_io_entry(pool, bio);
1347 			cell_defer_no_holder(tc, cell);
1348 			cell_defer_no_holder(tc, cell2);
1349 
1350 			/*
1351 			 * The DM core makes sure that the discard doesn't span
1352 			 * a block boundary.  So we submit the discard of a
1353 			 * partial block appropriately.
1354 			 */
1355 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1356 				remap_and_issue(tc, bio, lookup_result.block);
1357 			else
1358 				bio_endio(bio, 0);
1359 		}
1360 		break;
1361 
1362 	case -ENODATA:
1363 		/*
1364 		 * It isn't provisioned, just forget it.
1365 		 */
1366 		cell_defer_no_holder(tc, cell);
1367 		bio_endio(bio, 0);
1368 		break;
1369 
1370 	default:
1371 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1372 			    __func__, r);
1373 		cell_defer_no_holder(tc, cell);
1374 		bio_io_error(bio);
1375 		break;
1376 	}
1377 }
1378 
1379 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1380 {
1381 	struct dm_bio_prison_cell *cell;
1382 	struct dm_cell_key key;
1383 	dm_block_t block = get_bio_block(tc, bio);
1384 
1385 	build_virtual_key(tc->td, block, &key);
1386 	if (bio_detain(tc->pool, &key, bio, &cell))
1387 		return;
1388 
1389 	process_discard_cell(tc, cell);
1390 }
1391 
1392 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1393 			  struct dm_cell_key *key,
1394 			  struct dm_thin_lookup_result *lookup_result,
1395 			  struct dm_bio_prison_cell *cell)
1396 {
1397 	int r;
1398 	dm_block_t data_block;
1399 	struct pool *pool = tc->pool;
1400 
1401 	r = alloc_data_block(tc, &data_block);
1402 	switch (r) {
1403 	case 0:
1404 		schedule_internal_copy(tc, block, lookup_result->block,
1405 				       data_block, cell, bio);
1406 		break;
1407 
1408 	case -ENOSPC:
1409 		retry_bios_on_resume(pool, cell);
1410 		break;
1411 
1412 	default:
1413 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1414 			    __func__, r);
1415 		cell_error(pool, cell);
1416 		break;
1417 	}
1418 }
1419 
1420 static void __remap_and_issue_shared_cell(void *context,
1421 					  struct dm_bio_prison_cell *cell)
1422 {
1423 	struct remap_info *info = context;
1424 	struct bio *bio;
1425 
1426 	while ((bio = bio_list_pop(&cell->bios))) {
1427 		if ((bio_data_dir(bio) == WRITE) ||
1428 		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1429 			bio_list_add(&info->defer_bios, bio);
1430 		else {
1431 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1432 
1433 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1434 			inc_all_io_entry(info->tc->pool, bio);
1435 			bio_list_add(&info->issue_bios, bio);
1436 		}
1437 	}
1438 }
1439 
1440 static void remap_and_issue_shared_cell(struct thin_c *tc,
1441 					struct dm_bio_prison_cell *cell,
1442 					dm_block_t block)
1443 {
1444 	struct bio *bio;
1445 	struct remap_info info;
1446 
1447 	info.tc = tc;
1448 	bio_list_init(&info.defer_bios);
1449 	bio_list_init(&info.issue_bios);
1450 
1451 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1452 			   &info, cell);
1453 
1454 	while ((bio = bio_list_pop(&info.defer_bios)))
1455 		thin_defer_bio(tc, bio);
1456 
1457 	while ((bio = bio_list_pop(&info.issue_bios)))
1458 		remap_and_issue(tc, bio, block);
1459 }
1460 
1461 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1462 			       dm_block_t block,
1463 			       struct dm_thin_lookup_result *lookup_result,
1464 			       struct dm_bio_prison_cell *virt_cell)
1465 {
1466 	struct dm_bio_prison_cell *data_cell;
1467 	struct pool *pool = tc->pool;
1468 	struct dm_cell_key key;
1469 
1470 	/*
1471 	 * If cell is already occupied, then sharing is already in the process
1472 	 * of being broken so we have nothing further to do here.
1473 	 */
1474 	build_data_key(tc->td, lookup_result->block, &key);
1475 	if (bio_detain(pool, &key, bio, &data_cell)) {
1476 		cell_defer_no_holder(tc, virt_cell);
1477 		return;
1478 	}
1479 
1480 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1481 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1482 		cell_defer_no_holder(tc, virt_cell);
1483 	} else {
1484 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1485 
1486 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1487 		inc_all_io_entry(pool, bio);
1488 		remap_and_issue(tc, bio, lookup_result->block);
1489 
1490 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1491 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1492 	}
1493 }
1494 
1495 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1496 			    struct dm_bio_prison_cell *cell)
1497 {
1498 	int r;
1499 	dm_block_t data_block;
1500 	struct pool *pool = tc->pool;
1501 
1502 	/*
1503 	 * Remap empty bios (flushes) immediately, without provisioning.
1504 	 */
1505 	if (!bio->bi_iter.bi_size) {
1506 		inc_all_io_entry(pool, bio);
1507 		cell_defer_no_holder(tc, cell);
1508 
1509 		remap_and_issue(tc, bio, 0);
1510 		return;
1511 	}
1512 
1513 	/*
1514 	 * Fill read bios with zeroes and complete them immediately.
1515 	 */
1516 	if (bio_data_dir(bio) == READ) {
1517 		zero_fill_bio(bio);
1518 		cell_defer_no_holder(tc, cell);
1519 		bio_endio(bio, 0);
1520 		return;
1521 	}
1522 
1523 	r = alloc_data_block(tc, &data_block);
1524 	switch (r) {
1525 	case 0:
1526 		if (tc->origin_dev)
1527 			schedule_external_copy(tc, block, data_block, cell, bio);
1528 		else
1529 			schedule_zero(tc, block, data_block, cell, bio);
1530 		break;
1531 
1532 	case -ENOSPC:
1533 		retry_bios_on_resume(pool, cell);
1534 		break;
1535 
1536 	default:
1537 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1538 			    __func__, r);
1539 		cell_error(pool, cell);
1540 		break;
1541 	}
1542 }
1543 
1544 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1545 {
1546 	int r;
1547 	struct pool *pool = tc->pool;
1548 	struct bio *bio = cell->holder;
1549 	dm_block_t block = get_bio_block(tc, bio);
1550 	struct dm_thin_lookup_result lookup_result;
1551 
1552 	if (tc->requeue_mode) {
1553 		cell_requeue(pool, cell);
1554 		return;
1555 	}
1556 
1557 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1558 	switch (r) {
1559 	case 0:
1560 		if (lookup_result.shared)
1561 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1562 		else {
1563 			inc_all_io_entry(pool, bio);
1564 			remap_and_issue(tc, bio, lookup_result.block);
1565 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1566 		}
1567 		break;
1568 
1569 	case -ENODATA:
1570 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1571 			inc_all_io_entry(pool, bio);
1572 			cell_defer_no_holder(tc, cell);
1573 
1574 			if (bio_end_sector(bio) <= tc->origin_size)
1575 				remap_to_origin_and_issue(tc, bio);
1576 
1577 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1578 				zero_fill_bio(bio);
1579 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1580 				remap_to_origin_and_issue(tc, bio);
1581 
1582 			} else {
1583 				zero_fill_bio(bio);
1584 				bio_endio(bio, 0);
1585 			}
1586 		} else
1587 			provision_block(tc, bio, block, cell);
1588 		break;
1589 
1590 	default:
1591 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1592 			    __func__, r);
1593 		cell_defer_no_holder(tc, cell);
1594 		bio_io_error(bio);
1595 		break;
1596 	}
1597 }
1598 
1599 static void process_bio(struct thin_c *tc, struct bio *bio)
1600 {
1601 	struct pool *pool = tc->pool;
1602 	dm_block_t block = get_bio_block(tc, bio);
1603 	struct dm_bio_prison_cell *cell;
1604 	struct dm_cell_key key;
1605 
1606 	/*
1607 	 * If cell is already occupied, then the block is already
1608 	 * being provisioned so we have nothing further to do here.
1609 	 */
1610 	build_virtual_key(tc->td, block, &key);
1611 	if (bio_detain(pool, &key, bio, &cell))
1612 		return;
1613 
1614 	process_cell(tc, cell);
1615 }
1616 
1617 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1618 				    struct dm_bio_prison_cell *cell)
1619 {
1620 	int r;
1621 	int rw = bio_data_dir(bio);
1622 	dm_block_t block = get_bio_block(tc, bio);
1623 	struct dm_thin_lookup_result lookup_result;
1624 
1625 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1626 	switch (r) {
1627 	case 0:
1628 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1629 			handle_unserviceable_bio(tc->pool, bio);
1630 			if (cell)
1631 				cell_defer_no_holder(tc, cell);
1632 		} else {
1633 			inc_all_io_entry(tc->pool, bio);
1634 			remap_and_issue(tc, bio, lookup_result.block);
1635 			if (cell)
1636 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1637 		}
1638 		break;
1639 
1640 	case -ENODATA:
1641 		if (cell)
1642 			cell_defer_no_holder(tc, cell);
1643 		if (rw != READ) {
1644 			handle_unserviceable_bio(tc->pool, bio);
1645 			break;
1646 		}
1647 
1648 		if (tc->origin_dev) {
1649 			inc_all_io_entry(tc->pool, bio);
1650 			remap_to_origin_and_issue(tc, bio);
1651 			break;
1652 		}
1653 
1654 		zero_fill_bio(bio);
1655 		bio_endio(bio, 0);
1656 		break;
1657 
1658 	default:
1659 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1660 			    __func__, r);
1661 		if (cell)
1662 			cell_defer_no_holder(tc, cell);
1663 		bio_io_error(bio);
1664 		break;
1665 	}
1666 }
1667 
1668 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1669 {
1670 	__process_bio_read_only(tc, bio, NULL);
1671 }
1672 
1673 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1674 {
1675 	__process_bio_read_only(tc, cell->holder, cell);
1676 }
1677 
1678 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1679 {
1680 	bio_endio(bio, 0);
1681 }
1682 
1683 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1684 {
1685 	bio_io_error(bio);
1686 }
1687 
1688 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1689 {
1690 	cell_success(tc->pool, cell);
1691 }
1692 
1693 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1694 {
1695 	cell_error(tc->pool, cell);
1696 }
1697 
1698 /*
1699  * FIXME: should we also commit due to size of transaction, measured in
1700  * metadata blocks?
1701  */
1702 static int need_commit_due_to_time(struct pool *pool)
1703 {
1704 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1705 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1706 }
1707 
1708 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1709 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1710 
1711 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1712 {
1713 	struct rb_node **rbp, *parent;
1714 	struct dm_thin_endio_hook *pbd;
1715 	sector_t bi_sector = bio->bi_iter.bi_sector;
1716 
1717 	rbp = &tc->sort_bio_list.rb_node;
1718 	parent = NULL;
1719 	while (*rbp) {
1720 		parent = *rbp;
1721 		pbd = thin_pbd(parent);
1722 
1723 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1724 			rbp = &(*rbp)->rb_left;
1725 		else
1726 			rbp = &(*rbp)->rb_right;
1727 	}
1728 
1729 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1730 	rb_link_node(&pbd->rb_node, parent, rbp);
1731 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1732 }
1733 
1734 static void __extract_sorted_bios(struct thin_c *tc)
1735 {
1736 	struct rb_node *node;
1737 	struct dm_thin_endio_hook *pbd;
1738 	struct bio *bio;
1739 
1740 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1741 		pbd = thin_pbd(node);
1742 		bio = thin_bio(pbd);
1743 
1744 		bio_list_add(&tc->deferred_bio_list, bio);
1745 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1746 	}
1747 
1748 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1749 }
1750 
1751 static void __sort_thin_deferred_bios(struct thin_c *tc)
1752 {
1753 	struct bio *bio;
1754 	struct bio_list bios;
1755 
1756 	bio_list_init(&bios);
1757 	bio_list_merge(&bios, &tc->deferred_bio_list);
1758 	bio_list_init(&tc->deferred_bio_list);
1759 
1760 	/* Sort deferred_bio_list using rb-tree */
1761 	while ((bio = bio_list_pop(&bios)))
1762 		__thin_bio_rb_add(tc, bio);
1763 
1764 	/*
1765 	 * Transfer the sorted bios in sort_bio_list back to
1766 	 * deferred_bio_list to allow lockless submission of
1767 	 * all bios.
1768 	 */
1769 	__extract_sorted_bios(tc);
1770 }
1771 
1772 static void process_thin_deferred_bios(struct thin_c *tc)
1773 {
1774 	struct pool *pool = tc->pool;
1775 	unsigned long flags;
1776 	struct bio *bio;
1777 	struct bio_list bios;
1778 	struct blk_plug plug;
1779 	unsigned count = 0;
1780 
1781 	if (tc->requeue_mode) {
1782 		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
1783 		return;
1784 	}
1785 
1786 	bio_list_init(&bios);
1787 
1788 	spin_lock_irqsave(&tc->lock, flags);
1789 
1790 	if (bio_list_empty(&tc->deferred_bio_list)) {
1791 		spin_unlock_irqrestore(&tc->lock, flags);
1792 		return;
1793 	}
1794 
1795 	__sort_thin_deferred_bios(tc);
1796 
1797 	bio_list_merge(&bios, &tc->deferred_bio_list);
1798 	bio_list_init(&tc->deferred_bio_list);
1799 
1800 	spin_unlock_irqrestore(&tc->lock, flags);
1801 
1802 	blk_start_plug(&plug);
1803 	while ((bio = bio_list_pop(&bios))) {
1804 		/*
1805 		 * If we've got no free new_mapping structs, and processing
1806 		 * this bio might require one, we pause until there are some
1807 		 * prepared mappings to process.
1808 		 */
1809 		if (ensure_next_mapping(pool)) {
1810 			spin_lock_irqsave(&tc->lock, flags);
1811 			bio_list_add(&tc->deferred_bio_list, bio);
1812 			bio_list_merge(&tc->deferred_bio_list, &bios);
1813 			spin_unlock_irqrestore(&tc->lock, flags);
1814 			break;
1815 		}
1816 
1817 		if (bio->bi_rw & REQ_DISCARD)
1818 			pool->process_discard(tc, bio);
1819 		else
1820 			pool->process_bio(tc, bio);
1821 
1822 		if ((count++ & 127) == 0) {
1823 			throttle_work_update(&pool->throttle);
1824 			dm_pool_issue_prefetches(pool->pmd);
1825 		}
1826 	}
1827 	blk_finish_plug(&plug);
1828 }
1829 
1830 static int cmp_cells(const void *lhs, const void *rhs)
1831 {
1832 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
1833 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
1834 
1835 	BUG_ON(!lhs_cell->holder);
1836 	BUG_ON(!rhs_cell->holder);
1837 
1838 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
1839 		return -1;
1840 
1841 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
1842 		return 1;
1843 
1844 	return 0;
1845 }
1846 
1847 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
1848 {
1849 	unsigned count = 0;
1850 	struct dm_bio_prison_cell *cell, *tmp;
1851 
1852 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
1853 		if (count >= CELL_SORT_ARRAY_SIZE)
1854 			break;
1855 
1856 		pool->cell_sort_array[count++] = cell;
1857 		list_del(&cell->user_list);
1858 	}
1859 
1860 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
1861 
1862 	return count;
1863 }
1864 
1865 static void process_thin_deferred_cells(struct thin_c *tc)
1866 {
1867 	struct pool *pool = tc->pool;
1868 	unsigned long flags;
1869 	struct list_head cells;
1870 	struct dm_bio_prison_cell *cell;
1871 	unsigned i, j, count;
1872 
1873 	INIT_LIST_HEAD(&cells);
1874 
1875 	spin_lock_irqsave(&tc->lock, flags);
1876 	list_splice_init(&tc->deferred_cells, &cells);
1877 	spin_unlock_irqrestore(&tc->lock, flags);
1878 
1879 	if (list_empty(&cells))
1880 		return;
1881 
1882 	do {
1883 		count = sort_cells(tc->pool, &cells);
1884 
1885 		for (i = 0; i < count; i++) {
1886 			cell = pool->cell_sort_array[i];
1887 			BUG_ON(!cell->holder);
1888 
1889 			/*
1890 			 * If we've got no free new_mapping structs, and processing
1891 			 * this bio might require one, we pause until there are some
1892 			 * prepared mappings to process.
1893 			 */
1894 			if (ensure_next_mapping(pool)) {
1895 				for (j = i; j < count; j++)
1896 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
1897 
1898 				spin_lock_irqsave(&tc->lock, flags);
1899 				list_splice(&cells, &tc->deferred_cells);
1900 				spin_unlock_irqrestore(&tc->lock, flags);
1901 				return;
1902 			}
1903 
1904 			if (cell->holder->bi_rw & REQ_DISCARD)
1905 				pool->process_discard_cell(tc, cell);
1906 			else
1907 				pool->process_cell(tc, cell);
1908 		}
1909 	} while (!list_empty(&cells));
1910 }
1911 
1912 static void thin_get(struct thin_c *tc);
1913 static void thin_put(struct thin_c *tc);
1914 
1915 /*
1916  * We can't hold rcu_read_lock() around code that can block.  So we
1917  * find a thin with the rcu lock held; bump a refcount; then drop
1918  * the lock.
1919  */
1920 static struct thin_c *get_first_thin(struct pool *pool)
1921 {
1922 	struct thin_c *tc = NULL;
1923 
1924 	rcu_read_lock();
1925 	if (!list_empty(&pool->active_thins)) {
1926 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1927 		thin_get(tc);
1928 	}
1929 	rcu_read_unlock();
1930 
1931 	return tc;
1932 }
1933 
1934 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1935 {
1936 	struct thin_c *old_tc = tc;
1937 
1938 	rcu_read_lock();
1939 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1940 		thin_get(tc);
1941 		thin_put(old_tc);
1942 		rcu_read_unlock();
1943 		return tc;
1944 	}
1945 	thin_put(old_tc);
1946 	rcu_read_unlock();
1947 
1948 	return NULL;
1949 }
1950 
1951 static void process_deferred_bios(struct pool *pool)
1952 {
1953 	unsigned long flags;
1954 	struct bio *bio;
1955 	struct bio_list bios;
1956 	struct thin_c *tc;
1957 
1958 	tc = get_first_thin(pool);
1959 	while (tc) {
1960 		process_thin_deferred_cells(tc);
1961 		process_thin_deferred_bios(tc);
1962 		tc = get_next_thin(pool, tc);
1963 	}
1964 
1965 	/*
1966 	 * If there are any deferred flush bios, we must commit
1967 	 * the metadata before issuing them.
1968 	 */
1969 	bio_list_init(&bios);
1970 	spin_lock_irqsave(&pool->lock, flags);
1971 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1972 	bio_list_init(&pool->deferred_flush_bios);
1973 	spin_unlock_irqrestore(&pool->lock, flags);
1974 
1975 	if (bio_list_empty(&bios) &&
1976 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1977 		return;
1978 
1979 	if (commit(pool)) {
1980 		while ((bio = bio_list_pop(&bios)))
1981 			bio_io_error(bio);
1982 		return;
1983 	}
1984 	pool->last_commit_jiffies = jiffies;
1985 
1986 	while ((bio = bio_list_pop(&bios)))
1987 		generic_make_request(bio);
1988 }
1989 
1990 static void do_worker(struct work_struct *ws)
1991 {
1992 	struct pool *pool = container_of(ws, struct pool, worker);
1993 
1994 	throttle_work_start(&pool->throttle);
1995 	dm_pool_issue_prefetches(pool->pmd);
1996 	throttle_work_update(&pool->throttle);
1997 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1998 	throttle_work_update(&pool->throttle);
1999 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2000 	throttle_work_update(&pool->throttle);
2001 	process_deferred_bios(pool);
2002 	throttle_work_complete(&pool->throttle);
2003 }
2004 
2005 /*
2006  * We want to commit periodically so that not too much
2007  * unwritten data builds up.
2008  */
2009 static void do_waker(struct work_struct *ws)
2010 {
2011 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2012 	wake_worker(pool);
2013 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2014 }
2015 
2016 /*
2017  * We're holding onto IO to allow userland time to react.  After the
2018  * timeout either the pool will have been resized (and thus back in
2019  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2020  */
2021 static void do_no_space_timeout(struct work_struct *ws)
2022 {
2023 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2024 					 no_space_timeout);
2025 
2026 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2027 		set_pool_mode(pool, PM_READ_ONLY);
2028 }
2029 
2030 /*----------------------------------------------------------------*/
2031 
2032 struct pool_work {
2033 	struct work_struct worker;
2034 	struct completion complete;
2035 };
2036 
2037 static struct pool_work *to_pool_work(struct work_struct *ws)
2038 {
2039 	return container_of(ws, struct pool_work, worker);
2040 }
2041 
2042 static void pool_work_complete(struct pool_work *pw)
2043 {
2044 	complete(&pw->complete);
2045 }
2046 
2047 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2048 			   void (*fn)(struct work_struct *))
2049 {
2050 	INIT_WORK_ONSTACK(&pw->worker, fn);
2051 	init_completion(&pw->complete);
2052 	queue_work(pool->wq, &pw->worker);
2053 	wait_for_completion(&pw->complete);
2054 }
2055 
2056 /*----------------------------------------------------------------*/
2057 
2058 struct noflush_work {
2059 	struct pool_work pw;
2060 	struct thin_c *tc;
2061 };
2062 
2063 static struct noflush_work *to_noflush(struct work_struct *ws)
2064 {
2065 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2066 }
2067 
2068 static void do_noflush_start(struct work_struct *ws)
2069 {
2070 	struct noflush_work *w = to_noflush(ws);
2071 	w->tc->requeue_mode = true;
2072 	requeue_io(w->tc);
2073 	pool_work_complete(&w->pw);
2074 }
2075 
2076 static void do_noflush_stop(struct work_struct *ws)
2077 {
2078 	struct noflush_work *w = to_noflush(ws);
2079 	w->tc->requeue_mode = false;
2080 	pool_work_complete(&w->pw);
2081 }
2082 
2083 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2084 {
2085 	struct noflush_work w;
2086 
2087 	w.tc = tc;
2088 	pool_work_wait(&w.pw, tc->pool, fn);
2089 }
2090 
2091 /*----------------------------------------------------------------*/
2092 
2093 static enum pool_mode get_pool_mode(struct pool *pool)
2094 {
2095 	return pool->pf.mode;
2096 }
2097 
2098 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2099 {
2100 	dm_table_event(pool->ti->table);
2101 	DMINFO("%s: switching pool to %s mode",
2102 	       dm_device_name(pool->pool_md), new_mode);
2103 }
2104 
2105 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2106 {
2107 	struct pool_c *pt = pool->ti->private;
2108 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2109 	enum pool_mode old_mode = get_pool_mode(pool);
2110 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2111 
2112 	/*
2113 	 * Never allow the pool to transition to PM_WRITE mode if user
2114 	 * intervention is required to verify metadata and data consistency.
2115 	 */
2116 	if (new_mode == PM_WRITE && needs_check) {
2117 		DMERR("%s: unable to switch pool to write mode until repaired.",
2118 		      dm_device_name(pool->pool_md));
2119 		if (old_mode != new_mode)
2120 			new_mode = old_mode;
2121 		else
2122 			new_mode = PM_READ_ONLY;
2123 	}
2124 	/*
2125 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2126 	 * not going to recover without a thin_repair.	So we never let the
2127 	 * pool move out of the old mode.
2128 	 */
2129 	if (old_mode == PM_FAIL)
2130 		new_mode = old_mode;
2131 
2132 	switch (new_mode) {
2133 	case PM_FAIL:
2134 		if (old_mode != new_mode)
2135 			notify_of_pool_mode_change(pool, "failure");
2136 		dm_pool_metadata_read_only(pool->pmd);
2137 		pool->process_bio = process_bio_fail;
2138 		pool->process_discard = process_bio_fail;
2139 		pool->process_cell = process_cell_fail;
2140 		pool->process_discard_cell = process_cell_fail;
2141 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2142 		pool->process_prepared_discard = process_prepared_discard_fail;
2143 
2144 		error_retry_list(pool);
2145 		break;
2146 
2147 	case PM_READ_ONLY:
2148 		if (old_mode != new_mode)
2149 			notify_of_pool_mode_change(pool, "read-only");
2150 		dm_pool_metadata_read_only(pool->pmd);
2151 		pool->process_bio = process_bio_read_only;
2152 		pool->process_discard = process_bio_success;
2153 		pool->process_cell = process_cell_read_only;
2154 		pool->process_discard_cell = process_cell_success;
2155 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2156 		pool->process_prepared_discard = process_prepared_discard_passdown;
2157 
2158 		error_retry_list(pool);
2159 		break;
2160 
2161 	case PM_OUT_OF_DATA_SPACE:
2162 		/*
2163 		 * Ideally we'd never hit this state; the low water mark
2164 		 * would trigger userland to extend the pool before we
2165 		 * completely run out of data space.  However, many small
2166 		 * IOs to unprovisioned space can consume data space at an
2167 		 * alarming rate.  Adjust your low water mark if you're
2168 		 * frequently seeing this mode.
2169 		 */
2170 		if (old_mode != new_mode)
2171 			notify_of_pool_mode_change(pool, "out-of-data-space");
2172 		pool->process_bio = process_bio_read_only;
2173 		pool->process_discard = process_discard_bio;
2174 		pool->process_cell = process_cell_read_only;
2175 		pool->process_discard_cell = process_discard_cell;
2176 		pool->process_prepared_mapping = process_prepared_mapping;
2177 		pool->process_prepared_discard = process_prepared_discard;
2178 
2179 		if (!pool->pf.error_if_no_space && no_space_timeout)
2180 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2181 		break;
2182 
2183 	case PM_WRITE:
2184 		if (old_mode != new_mode)
2185 			notify_of_pool_mode_change(pool, "write");
2186 		dm_pool_metadata_read_write(pool->pmd);
2187 		pool->process_bio = process_bio;
2188 		pool->process_discard = process_discard_bio;
2189 		pool->process_cell = process_cell;
2190 		pool->process_discard_cell = process_discard_cell;
2191 		pool->process_prepared_mapping = process_prepared_mapping;
2192 		pool->process_prepared_discard = process_prepared_discard;
2193 		break;
2194 	}
2195 
2196 	pool->pf.mode = new_mode;
2197 	/*
2198 	 * The pool mode may have changed, sync it so bind_control_target()
2199 	 * doesn't cause an unexpected mode transition on resume.
2200 	 */
2201 	pt->adjusted_pf.mode = new_mode;
2202 }
2203 
2204 static void abort_transaction(struct pool *pool)
2205 {
2206 	const char *dev_name = dm_device_name(pool->pool_md);
2207 
2208 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2209 	if (dm_pool_abort_metadata(pool->pmd)) {
2210 		DMERR("%s: failed to abort metadata transaction", dev_name);
2211 		set_pool_mode(pool, PM_FAIL);
2212 	}
2213 
2214 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2215 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2216 		set_pool_mode(pool, PM_FAIL);
2217 	}
2218 }
2219 
2220 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2221 {
2222 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2223 		    dm_device_name(pool->pool_md), op, r);
2224 
2225 	abort_transaction(pool);
2226 	set_pool_mode(pool, PM_READ_ONLY);
2227 }
2228 
2229 /*----------------------------------------------------------------*/
2230 
2231 /*
2232  * Mapping functions.
2233  */
2234 
2235 /*
2236  * Called only while mapping a thin bio to hand it over to the workqueue.
2237  */
2238 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2239 {
2240 	unsigned long flags;
2241 	struct pool *pool = tc->pool;
2242 
2243 	spin_lock_irqsave(&tc->lock, flags);
2244 	bio_list_add(&tc->deferred_bio_list, bio);
2245 	spin_unlock_irqrestore(&tc->lock, flags);
2246 
2247 	wake_worker(pool);
2248 }
2249 
2250 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2251 {
2252 	struct pool *pool = tc->pool;
2253 
2254 	throttle_lock(&pool->throttle);
2255 	thin_defer_bio(tc, bio);
2256 	throttle_unlock(&pool->throttle);
2257 }
2258 
2259 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2260 {
2261 	unsigned long flags;
2262 	struct pool *pool = tc->pool;
2263 
2264 	throttle_lock(&pool->throttle);
2265 	spin_lock_irqsave(&tc->lock, flags);
2266 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2267 	spin_unlock_irqrestore(&tc->lock, flags);
2268 	throttle_unlock(&pool->throttle);
2269 
2270 	wake_worker(pool);
2271 }
2272 
2273 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2274 {
2275 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2276 
2277 	h->tc = tc;
2278 	h->shared_read_entry = NULL;
2279 	h->all_io_entry = NULL;
2280 	h->overwrite_mapping = NULL;
2281 }
2282 
2283 /*
2284  * Non-blocking function called from the thin target's map function.
2285  */
2286 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2287 {
2288 	int r;
2289 	struct thin_c *tc = ti->private;
2290 	dm_block_t block = get_bio_block(tc, bio);
2291 	struct dm_thin_device *td = tc->td;
2292 	struct dm_thin_lookup_result result;
2293 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2294 	struct dm_cell_key key;
2295 
2296 	thin_hook_bio(tc, bio);
2297 
2298 	if (tc->requeue_mode) {
2299 		bio_endio(bio, DM_ENDIO_REQUEUE);
2300 		return DM_MAPIO_SUBMITTED;
2301 	}
2302 
2303 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2304 		bio_io_error(bio);
2305 		return DM_MAPIO_SUBMITTED;
2306 	}
2307 
2308 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2309 		thin_defer_bio_with_throttle(tc, bio);
2310 		return DM_MAPIO_SUBMITTED;
2311 	}
2312 
2313 	/*
2314 	 * We must hold the virtual cell before doing the lookup, otherwise
2315 	 * there's a race with discard.
2316 	 */
2317 	build_virtual_key(tc->td, block, &key);
2318 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2319 		return DM_MAPIO_SUBMITTED;
2320 
2321 	r = dm_thin_find_block(td, block, 0, &result);
2322 
2323 	/*
2324 	 * Note that we defer readahead too.
2325 	 */
2326 	switch (r) {
2327 	case 0:
2328 		if (unlikely(result.shared)) {
2329 			/*
2330 			 * We have a race condition here between the
2331 			 * result.shared value returned by the lookup and
2332 			 * snapshot creation, which may cause new
2333 			 * sharing.
2334 			 *
2335 			 * To avoid this always quiesce the origin before
2336 			 * taking the snap.  You want to do this anyway to
2337 			 * ensure a consistent application view
2338 			 * (i.e. lockfs).
2339 			 *
2340 			 * More distant ancestors are irrelevant. The
2341 			 * shared flag will be set in their case.
2342 			 */
2343 			thin_defer_cell(tc, virt_cell);
2344 			return DM_MAPIO_SUBMITTED;
2345 		}
2346 
2347 		build_data_key(tc->td, result.block, &key);
2348 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2349 			cell_defer_no_holder(tc, virt_cell);
2350 			return DM_MAPIO_SUBMITTED;
2351 		}
2352 
2353 		inc_all_io_entry(tc->pool, bio);
2354 		cell_defer_no_holder(tc, data_cell);
2355 		cell_defer_no_holder(tc, virt_cell);
2356 
2357 		remap(tc, bio, result.block);
2358 		return DM_MAPIO_REMAPPED;
2359 
2360 	case -ENODATA:
2361 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
2362 			/*
2363 			 * This block isn't provisioned, and we have no way
2364 			 * of doing so.
2365 			 */
2366 			handle_unserviceable_bio(tc->pool, bio);
2367 			cell_defer_no_holder(tc, virt_cell);
2368 			return DM_MAPIO_SUBMITTED;
2369 		}
2370 		/* fall through */
2371 
2372 	case -EWOULDBLOCK:
2373 		thin_defer_cell(tc, virt_cell);
2374 		return DM_MAPIO_SUBMITTED;
2375 
2376 	default:
2377 		/*
2378 		 * Must always call bio_io_error on failure.
2379 		 * dm_thin_find_block can fail with -EINVAL if the
2380 		 * pool is switched to fail-io mode.
2381 		 */
2382 		bio_io_error(bio);
2383 		cell_defer_no_holder(tc, virt_cell);
2384 		return DM_MAPIO_SUBMITTED;
2385 	}
2386 }
2387 
2388 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2389 {
2390 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2391 	struct request_queue *q;
2392 
2393 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2394 		return 1;
2395 
2396 	q = bdev_get_queue(pt->data_dev->bdev);
2397 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2398 }
2399 
2400 static void requeue_bios(struct pool *pool)
2401 {
2402 	unsigned long flags;
2403 	struct thin_c *tc;
2404 
2405 	rcu_read_lock();
2406 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2407 		spin_lock_irqsave(&tc->lock, flags);
2408 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2409 		bio_list_init(&tc->retry_on_resume_list);
2410 		spin_unlock_irqrestore(&tc->lock, flags);
2411 	}
2412 	rcu_read_unlock();
2413 }
2414 
2415 /*----------------------------------------------------------------
2416  * Binding of control targets to a pool object
2417  *--------------------------------------------------------------*/
2418 static bool data_dev_supports_discard(struct pool_c *pt)
2419 {
2420 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2421 
2422 	return q && blk_queue_discard(q);
2423 }
2424 
2425 static bool is_factor(sector_t block_size, uint32_t n)
2426 {
2427 	return !sector_div(block_size, n);
2428 }
2429 
2430 /*
2431  * If discard_passdown was enabled verify that the data device
2432  * supports discards.  Disable discard_passdown if not.
2433  */
2434 static void disable_passdown_if_not_supported(struct pool_c *pt)
2435 {
2436 	struct pool *pool = pt->pool;
2437 	struct block_device *data_bdev = pt->data_dev->bdev;
2438 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2439 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
2440 	const char *reason = NULL;
2441 	char buf[BDEVNAME_SIZE];
2442 
2443 	if (!pt->adjusted_pf.discard_passdown)
2444 		return;
2445 
2446 	if (!data_dev_supports_discard(pt))
2447 		reason = "discard unsupported";
2448 
2449 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2450 		reason = "max discard sectors smaller than a block";
2451 
2452 	else if (data_limits->discard_granularity > block_size)
2453 		reason = "discard granularity larger than a block";
2454 
2455 	else if (!is_factor(block_size, data_limits->discard_granularity))
2456 		reason = "discard granularity not a factor of block size";
2457 
2458 	if (reason) {
2459 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2460 		pt->adjusted_pf.discard_passdown = false;
2461 	}
2462 }
2463 
2464 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2465 {
2466 	struct pool_c *pt = ti->private;
2467 
2468 	/*
2469 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2470 	 */
2471 	enum pool_mode old_mode = get_pool_mode(pool);
2472 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2473 
2474 	/*
2475 	 * Don't change the pool's mode until set_pool_mode() below.
2476 	 * Otherwise the pool's process_* function pointers may
2477 	 * not match the desired pool mode.
2478 	 */
2479 	pt->adjusted_pf.mode = old_mode;
2480 
2481 	pool->ti = ti;
2482 	pool->pf = pt->adjusted_pf;
2483 	pool->low_water_blocks = pt->low_water_blocks;
2484 
2485 	set_pool_mode(pool, new_mode);
2486 
2487 	return 0;
2488 }
2489 
2490 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2491 {
2492 	if (pool->ti == ti)
2493 		pool->ti = NULL;
2494 }
2495 
2496 /*----------------------------------------------------------------
2497  * Pool creation
2498  *--------------------------------------------------------------*/
2499 /* Initialize pool features. */
2500 static void pool_features_init(struct pool_features *pf)
2501 {
2502 	pf->mode = PM_WRITE;
2503 	pf->zero_new_blocks = true;
2504 	pf->discard_enabled = true;
2505 	pf->discard_passdown = true;
2506 	pf->error_if_no_space = false;
2507 }
2508 
2509 static void __pool_destroy(struct pool *pool)
2510 {
2511 	__pool_table_remove(pool);
2512 
2513 	if (dm_pool_metadata_close(pool->pmd) < 0)
2514 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2515 
2516 	dm_bio_prison_destroy(pool->prison);
2517 	dm_kcopyd_client_destroy(pool->copier);
2518 
2519 	if (pool->wq)
2520 		destroy_workqueue(pool->wq);
2521 
2522 	if (pool->next_mapping)
2523 		mempool_free(pool->next_mapping, pool->mapping_pool);
2524 	mempool_destroy(pool->mapping_pool);
2525 	dm_deferred_set_destroy(pool->shared_read_ds);
2526 	dm_deferred_set_destroy(pool->all_io_ds);
2527 	kfree(pool);
2528 }
2529 
2530 static struct kmem_cache *_new_mapping_cache;
2531 
2532 static struct pool *pool_create(struct mapped_device *pool_md,
2533 				struct block_device *metadata_dev,
2534 				unsigned long block_size,
2535 				int read_only, char **error)
2536 {
2537 	int r;
2538 	void *err_p;
2539 	struct pool *pool;
2540 	struct dm_pool_metadata *pmd;
2541 	bool format_device = read_only ? false : true;
2542 
2543 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2544 	if (IS_ERR(pmd)) {
2545 		*error = "Error creating metadata object";
2546 		return (struct pool *)pmd;
2547 	}
2548 
2549 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2550 	if (!pool) {
2551 		*error = "Error allocating memory for pool";
2552 		err_p = ERR_PTR(-ENOMEM);
2553 		goto bad_pool;
2554 	}
2555 
2556 	pool->pmd = pmd;
2557 	pool->sectors_per_block = block_size;
2558 	if (block_size & (block_size - 1))
2559 		pool->sectors_per_block_shift = -1;
2560 	else
2561 		pool->sectors_per_block_shift = __ffs(block_size);
2562 	pool->low_water_blocks = 0;
2563 	pool_features_init(&pool->pf);
2564 	pool->prison = dm_bio_prison_create();
2565 	if (!pool->prison) {
2566 		*error = "Error creating pool's bio prison";
2567 		err_p = ERR_PTR(-ENOMEM);
2568 		goto bad_prison;
2569 	}
2570 
2571 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2572 	if (IS_ERR(pool->copier)) {
2573 		r = PTR_ERR(pool->copier);
2574 		*error = "Error creating pool's kcopyd client";
2575 		err_p = ERR_PTR(r);
2576 		goto bad_kcopyd_client;
2577 	}
2578 
2579 	/*
2580 	 * Create singlethreaded workqueue that will service all devices
2581 	 * that use this metadata.
2582 	 */
2583 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2584 	if (!pool->wq) {
2585 		*error = "Error creating pool's workqueue";
2586 		err_p = ERR_PTR(-ENOMEM);
2587 		goto bad_wq;
2588 	}
2589 
2590 	throttle_init(&pool->throttle);
2591 	INIT_WORK(&pool->worker, do_worker);
2592 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2593 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2594 	spin_lock_init(&pool->lock);
2595 	bio_list_init(&pool->deferred_flush_bios);
2596 	INIT_LIST_HEAD(&pool->prepared_mappings);
2597 	INIT_LIST_HEAD(&pool->prepared_discards);
2598 	INIT_LIST_HEAD(&pool->active_thins);
2599 	pool->low_water_triggered = false;
2600 	pool->suspended = true;
2601 
2602 	pool->shared_read_ds = dm_deferred_set_create();
2603 	if (!pool->shared_read_ds) {
2604 		*error = "Error creating pool's shared read deferred set";
2605 		err_p = ERR_PTR(-ENOMEM);
2606 		goto bad_shared_read_ds;
2607 	}
2608 
2609 	pool->all_io_ds = dm_deferred_set_create();
2610 	if (!pool->all_io_ds) {
2611 		*error = "Error creating pool's all io deferred set";
2612 		err_p = ERR_PTR(-ENOMEM);
2613 		goto bad_all_io_ds;
2614 	}
2615 
2616 	pool->next_mapping = NULL;
2617 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2618 						      _new_mapping_cache);
2619 	if (!pool->mapping_pool) {
2620 		*error = "Error creating pool's mapping mempool";
2621 		err_p = ERR_PTR(-ENOMEM);
2622 		goto bad_mapping_pool;
2623 	}
2624 
2625 	pool->ref_count = 1;
2626 	pool->last_commit_jiffies = jiffies;
2627 	pool->pool_md = pool_md;
2628 	pool->md_dev = metadata_dev;
2629 	__pool_table_insert(pool);
2630 
2631 	return pool;
2632 
2633 bad_mapping_pool:
2634 	dm_deferred_set_destroy(pool->all_io_ds);
2635 bad_all_io_ds:
2636 	dm_deferred_set_destroy(pool->shared_read_ds);
2637 bad_shared_read_ds:
2638 	destroy_workqueue(pool->wq);
2639 bad_wq:
2640 	dm_kcopyd_client_destroy(pool->copier);
2641 bad_kcopyd_client:
2642 	dm_bio_prison_destroy(pool->prison);
2643 bad_prison:
2644 	kfree(pool);
2645 bad_pool:
2646 	if (dm_pool_metadata_close(pmd))
2647 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2648 
2649 	return err_p;
2650 }
2651 
2652 static void __pool_inc(struct pool *pool)
2653 {
2654 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2655 	pool->ref_count++;
2656 }
2657 
2658 static void __pool_dec(struct pool *pool)
2659 {
2660 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2661 	BUG_ON(!pool->ref_count);
2662 	if (!--pool->ref_count)
2663 		__pool_destroy(pool);
2664 }
2665 
2666 static struct pool *__pool_find(struct mapped_device *pool_md,
2667 				struct block_device *metadata_dev,
2668 				unsigned long block_size, int read_only,
2669 				char **error, int *created)
2670 {
2671 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2672 
2673 	if (pool) {
2674 		if (pool->pool_md != pool_md) {
2675 			*error = "metadata device already in use by a pool";
2676 			return ERR_PTR(-EBUSY);
2677 		}
2678 		__pool_inc(pool);
2679 
2680 	} else {
2681 		pool = __pool_table_lookup(pool_md);
2682 		if (pool) {
2683 			if (pool->md_dev != metadata_dev) {
2684 				*error = "different pool cannot replace a pool";
2685 				return ERR_PTR(-EINVAL);
2686 			}
2687 			__pool_inc(pool);
2688 
2689 		} else {
2690 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2691 			*created = 1;
2692 		}
2693 	}
2694 
2695 	return pool;
2696 }
2697 
2698 /*----------------------------------------------------------------
2699  * Pool target methods
2700  *--------------------------------------------------------------*/
2701 static void pool_dtr(struct dm_target *ti)
2702 {
2703 	struct pool_c *pt = ti->private;
2704 
2705 	mutex_lock(&dm_thin_pool_table.mutex);
2706 
2707 	unbind_control_target(pt->pool, ti);
2708 	__pool_dec(pt->pool);
2709 	dm_put_device(ti, pt->metadata_dev);
2710 	dm_put_device(ti, pt->data_dev);
2711 	kfree(pt);
2712 
2713 	mutex_unlock(&dm_thin_pool_table.mutex);
2714 }
2715 
2716 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2717 			       struct dm_target *ti)
2718 {
2719 	int r;
2720 	unsigned argc;
2721 	const char *arg_name;
2722 
2723 	static struct dm_arg _args[] = {
2724 		{0, 4, "Invalid number of pool feature arguments"},
2725 	};
2726 
2727 	/*
2728 	 * No feature arguments supplied.
2729 	 */
2730 	if (!as->argc)
2731 		return 0;
2732 
2733 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2734 	if (r)
2735 		return -EINVAL;
2736 
2737 	while (argc && !r) {
2738 		arg_name = dm_shift_arg(as);
2739 		argc--;
2740 
2741 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2742 			pf->zero_new_blocks = false;
2743 
2744 		else if (!strcasecmp(arg_name, "ignore_discard"))
2745 			pf->discard_enabled = false;
2746 
2747 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2748 			pf->discard_passdown = false;
2749 
2750 		else if (!strcasecmp(arg_name, "read_only"))
2751 			pf->mode = PM_READ_ONLY;
2752 
2753 		else if (!strcasecmp(arg_name, "error_if_no_space"))
2754 			pf->error_if_no_space = true;
2755 
2756 		else {
2757 			ti->error = "Unrecognised pool feature requested";
2758 			r = -EINVAL;
2759 			break;
2760 		}
2761 	}
2762 
2763 	return r;
2764 }
2765 
2766 static void metadata_low_callback(void *context)
2767 {
2768 	struct pool *pool = context;
2769 
2770 	DMWARN("%s: reached low water mark for metadata device: sending event.",
2771 	       dm_device_name(pool->pool_md));
2772 
2773 	dm_table_event(pool->ti->table);
2774 }
2775 
2776 static sector_t get_dev_size(struct block_device *bdev)
2777 {
2778 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2779 }
2780 
2781 static void warn_if_metadata_device_too_big(struct block_device *bdev)
2782 {
2783 	sector_t metadata_dev_size = get_dev_size(bdev);
2784 	char buffer[BDEVNAME_SIZE];
2785 
2786 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2787 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2788 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2789 }
2790 
2791 static sector_t get_metadata_dev_size(struct block_device *bdev)
2792 {
2793 	sector_t metadata_dev_size = get_dev_size(bdev);
2794 
2795 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2796 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2797 
2798 	return metadata_dev_size;
2799 }
2800 
2801 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2802 {
2803 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2804 
2805 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2806 
2807 	return metadata_dev_size;
2808 }
2809 
2810 /*
2811  * When a metadata threshold is crossed a dm event is triggered, and
2812  * userland should respond by growing the metadata device.  We could let
2813  * userland set the threshold, like we do with the data threshold, but I'm
2814  * not sure they know enough to do this well.
2815  */
2816 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2817 {
2818 	/*
2819 	 * 4M is ample for all ops with the possible exception of thin
2820 	 * device deletion which is harmless if it fails (just retry the
2821 	 * delete after you've grown the device).
2822 	 */
2823 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2824 	return min((dm_block_t)1024ULL /* 4M */, quarter);
2825 }
2826 
2827 /*
2828  * thin-pool <metadata dev> <data dev>
2829  *	     <data block size (sectors)>
2830  *	     <low water mark (blocks)>
2831  *	     [<#feature args> [<arg>]*]
2832  *
2833  * Optional feature arguments are:
2834  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2835  *	     ignore_discard: disable discard
2836  *	     no_discard_passdown: don't pass discards down to the data device
2837  *	     read_only: Don't allow any changes to be made to the pool metadata.
2838  *	     error_if_no_space: error IOs, instead of queueing, if no space.
2839  */
2840 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2841 {
2842 	int r, pool_created = 0;
2843 	struct pool_c *pt;
2844 	struct pool *pool;
2845 	struct pool_features pf;
2846 	struct dm_arg_set as;
2847 	struct dm_dev *data_dev;
2848 	unsigned long block_size;
2849 	dm_block_t low_water_blocks;
2850 	struct dm_dev *metadata_dev;
2851 	fmode_t metadata_mode;
2852 
2853 	/*
2854 	 * FIXME Remove validation from scope of lock.
2855 	 */
2856 	mutex_lock(&dm_thin_pool_table.mutex);
2857 
2858 	if (argc < 4) {
2859 		ti->error = "Invalid argument count";
2860 		r = -EINVAL;
2861 		goto out_unlock;
2862 	}
2863 
2864 	as.argc = argc;
2865 	as.argv = argv;
2866 
2867 	/*
2868 	 * Set default pool features.
2869 	 */
2870 	pool_features_init(&pf);
2871 
2872 	dm_consume_args(&as, 4);
2873 	r = parse_pool_features(&as, &pf, ti);
2874 	if (r)
2875 		goto out_unlock;
2876 
2877 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2878 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2879 	if (r) {
2880 		ti->error = "Error opening metadata block device";
2881 		goto out_unlock;
2882 	}
2883 	warn_if_metadata_device_too_big(metadata_dev->bdev);
2884 
2885 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2886 	if (r) {
2887 		ti->error = "Error getting data device";
2888 		goto out_metadata;
2889 	}
2890 
2891 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2892 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2893 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2894 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2895 		ti->error = "Invalid block size";
2896 		r = -EINVAL;
2897 		goto out;
2898 	}
2899 
2900 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2901 		ti->error = "Invalid low water mark";
2902 		r = -EINVAL;
2903 		goto out;
2904 	}
2905 
2906 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2907 	if (!pt) {
2908 		r = -ENOMEM;
2909 		goto out;
2910 	}
2911 
2912 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2913 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2914 	if (IS_ERR(pool)) {
2915 		r = PTR_ERR(pool);
2916 		goto out_free_pt;
2917 	}
2918 
2919 	/*
2920 	 * 'pool_created' reflects whether this is the first table load.
2921 	 * Top level discard support is not allowed to be changed after
2922 	 * initial load.  This would require a pool reload to trigger thin
2923 	 * device changes.
2924 	 */
2925 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2926 		ti->error = "Discard support cannot be disabled once enabled";
2927 		r = -EINVAL;
2928 		goto out_flags_changed;
2929 	}
2930 
2931 	pt->pool = pool;
2932 	pt->ti = ti;
2933 	pt->metadata_dev = metadata_dev;
2934 	pt->data_dev = data_dev;
2935 	pt->low_water_blocks = low_water_blocks;
2936 	pt->adjusted_pf = pt->requested_pf = pf;
2937 	ti->num_flush_bios = 1;
2938 
2939 	/*
2940 	 * Only need to enable discards if the pool should pass
2941 	 * them down to the data device.  The thin device's discard
2942 	 * processing will cause mappings to be removed from the btree.
2943 	 */
2944 	ti->discard_zeroes_data_unsupported = true;
2945 	if (pf.discard_enabled && pf.discard_passdown) {
2946 		ti->num_discard_bios = 1;
2947 
2948 		/*
2949 		 * Setting 'discards_supported' circumvents the normal
2950 		 * stacking of discard limits (this keeps the pool and
2951 		 * thin devices' discard limits consistent).
2952 		 */
2953 		ti->discards_supported = true;
2954 	}
2955 	ti->private = pt;
2956 
2957 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2958 						calc_metadata_threshold(pt),
2959 						metadata_low_callback,
2960 						pool);
2961 	if (r)
2962 		goto out_free_pt;
2963 
2964 	pt->callbacks.congested_fn = pool_is_congested;
2965 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2966 
2967 	mutex_unlock(&dm_thin_pool_table.mutex);
2968 
2969 	return 0;
2970 
2971 out_flags_changed:
2972 	__pool_dec(pool);
2973 out_free_pt:
2974 	kfree(pt);
2975 out:
2976 	dm_put_device(ti, data_dev);
2977 out_metadata:
2978 	dm_put_device(ti, metadata_dev);
2979 out_unlock:
2980 	mutex_unlock(&dm_thin_pool_table.mutex);
2981 
2982 	return r;
2983 }
2984 
2985 static int pool_map(struct dm_target *ti, struct bio *bio)
2986 {
2987 	int r;
2988 	struct pool_c *pt = ti->private;
2989 	struct pool *pool = pt->pool;
2990 	unsigned long flags;
2991 
2992 	/*
2993 	 * As this is a singleton target, ti->begin is always zero.
2994 	 */
2995 	spin_lock_irqsave(&pool->lock, flags);
2996 	bio->bi_bdev = pt->data_dev->bdev;
2997 	r = DM_MAPIO_REMAPPED;
2998 	spin_unlock_irqrestore(&pool->lock, flags);
2999 
3000 	return r;
3001 }
3002 
3003 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3004 {
3005 	int r;
3006 	struct pool_c *pt = ti->private;
3007 	struct pool *pool = pt->pool;
3008 	sector_t data_size = ti->len;
3009 	dm_block_t sb_data_size;
3010 
3011 	*need_commit = false;
3012 
3013 	(void) sector_div(data_size, pool->sectors_per_block);
3014 
3015 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3016 	if (r) {
3017 		DMERR("%s: failed to retrieve data device size",
3018 		      dm_device_name(pool->pool_md));
3019 		return r;
3020 	}
3021 
3022 	if (data_size < sb_data_size) {
3023 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3024 		      dm_device_name(pool->pool_md),
3025 		      (unsigned long long)data_size, sb_data_size);
3026 		return -EINVAL;
3027 
3028 	} else if (data_size > sb_data_size) {
3029 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3030 			DMERR("%s: unable to grow the data device until repaired.",
3031 			      dm_device_name(pool->pool_md));
3032 			return 0;
3033 		}
3034 
3035 		if (sb_data_size)
3036 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3037 			       dm_device_name(pool->pool_md),
3038 			       sb_data_size, (unsigned long long)data_size);
3039 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3040 		if (r) {
3041 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3042 			return r;
3043 		}
3044 
3045 		*need_commit = true;
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3052 {
3053 	int r;
3054 	struct pool_c *pt = ti->private;
3055 	struct pool *pool = pt->pool;
3056 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3057 
3058 	*need_commit = false;
3059 
3060 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3061 
3062 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3063 	if (r) {
3064 		DMERR("%s: failed to retrieve metadata device size",
3065 		      dm_device_name(pool->pool_md));
3066 		return r;
3067 	}
3068 
3069 	if (metadata_dev_size < sb_metadata_dev_size) {
3070 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3071 		      dm_device_name(pool->pool_md),
3072 		      metadata_dev_size, sb_metadata_dev_size);
3073 		return -EINVAL;
3074 
3075 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3076 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3077 			DMERR("%s: unable to grow the metadata device until repaired.",
3078 			      dm_device_name(pool->pool_md));
3079 			return 0;
3080 		}
3081 
3082 		warn_if_metadata_device_too_big(pool->md_dev);
3083 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3084 		       dm_device_name(pool->pool_md),
3085 		       sb_metadata_dev_size, metadata_dev_size);
3086 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3087 		if (r) {
3088 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3089 			return r;
3090 		}
3091 
3092 		*need_commit = true;
3093 	}
3094 
3095 	return 0;
3096 }
3097 
3098 /*
3099  * Retrieves the number of blocks of the data device from
3100  * the superblock and compares it to the actual device size,
3101  * thus resizing the data device in case it has grown.
3102  *
3103  * This both copes with opening preallocated data devices in the ctr
3104  * being followed by a resume
3105  * -and-
3106  * calling the resume method individually after userspace has
3107  * grown the data device in reaction to a table event.
3108  */
3109 static int pool_preresume(struct dm_target *ti)
3110 {
3111 	int r;
3112 	bool need_commit1, need_commit2;
3113 	struct pool_c *pt = ti->private;
3114 	struct pool *pool = pt->pool;
3115 
3116 	/*
3117 	 * Take control of the pool object.
3118 	 */
3119 	r = bind_control_target(pool, ti);
3120 	if (r)
3121 		return r;
3122 
3123 	r = maybe_resize_data_dev(ti, &need_commit1);
3124 	if (r)
3125 		return r;
3126 
3127 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3128 	if (r)
3129 		return r;
3130 
3131 	if (need_commit1 || need_commit2)
3132 		(void) commit(pool);
3133 
3134 	return 0;
3135 }
3136 
3137 static void pool_suspend_active_thins(struct pool *pool)
3138 {
3139 	struct thin_c *tc;
3140 
3141 	/* Suspend all active thin devices */
3142 	tc = get_first_thin(pool);
3143 	while (tc) {
3144 		dm_internal_suspend_noflush(tc->thin_md);
3145 		tc = get_next_thin(pool, tc);
3146 	}
3147 }
3148 
3149 static void pool_resume_active_thins(struct pool *pool)
3150 {
3151 	struct thin_c *tc;
3152 
3153 	/* Resume all active thin devices */
3154 	tc = get_first_thin(pool);
3155 	while (tc) {
3156 		dm_internal_resume(tc->thin_md);
3157 		tc = get_next_thin(pool, tc);
3158 	}
3159 }
3160 
3161 static void pool_resume(struct dm_target *ti)
3162 {
3163 	struct pool_c *pt = ti->private;
3164 	struct pool *pool = pt->pool;
3165 	unsigned long flags;
3166 
3167 	/*
3168 	 * Must requeue active_thins' bios and then resume
3169 	 * active_thins _before_ clearing 'suspend' flag.
3170 	 */
3171 	requeue_bios(pool);
3172 	pool_resume_active_thins(pool);
3173 
3174 	spin_lock_irqsave(&pool->lock, flags);
3175 	pool->low_water_triggered = false;
3176 	pool->suspended = false;
3177 	spin_unlock_irqrestore(&pool->lock, flags);
3178 
3179 	do_waker(&pool->waker.work);
3180 }
3181 
3182 static void pool_presuspend(struct dm_target *ti)
3183 {
3184 	struct pool_c *pt = ti->private;
3185 	struct pool *pool = pt->pool;
3186 	unsigned long flags;
3187 
3188 	spin_lock_irqsave(&pool->lock, flags);
3189 	pool->suspended = true;
3190 	spin_unlock_irqrestore(&pool->lock, flags);
3191 
3192 	pool_suspend_active_thins(pool);
3193 }
3194 
3195 static void pool_presuspend_undo(struct dm_target *ti)
3196 {
3197 	struct pool_c *pt = ti->private;
3198 	struct pool *pool = pt->pool;
3199 	unsigned long flags;
3200 
3201 	pool_resume_active_thins(pool);
3202 
3203 	spin_lock_irqsave(&pool->lock, flags);
3204 	pool->suspended = false;
3205 	spin_unlock_irqrestore(&pool->lock, flags);
3206 }
3207 
3208 static void pool_postsuspend(struct dm_target *ti)
3209 {
3210 	struct pool_c *pt = ti->private;
3211 	struct pool *pool = pt->pool;
3212 
3213 	cancel_delayed_work(&pool->waker);
3214 	cancel_delayed_work(&pool->no_space_timeout);
3215 	flush_workqueue(pool->wq);
3216 	(void) commit(pool);
3217 }
3218 
3219 static int check_arg_count(unsigned argc, unsigned args_required)
3220 {
3221 	if (argc != args_required) {
3222 		DMWARN("Message received with %u arguments instead of %u.",
3223 		       argc, args_required);
3224 		return -EINVAL;
3225 	}
3226 
3227 	return 0;
3228 }
3229 
3230 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3231 {
3232 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3233 	    *dev_id <= MAX_DEV_ID)
3234 		return 0;
3235 
3236 	if (warning)
3237 		DMWARN("Message received with invalid device id: %s", arg);
3238 
3239 	return -EINVAL;
3240 }
3241 
3242 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3243 {
3244 	dm_thin_id dev_id;
3245 	int r;
3246 
3247 	r = check_arg_count(argc, 2);
3248 	if (r)
3249 		return r;
3250 
3251 	r = read_dev_id(argv[1], &dev_id, 1);
3252 	if (r)
3253 		return r;
3254 
3255 	r = dm_pool_create_thin(pool->pmd, dev_id);
3256 	if (r) {
3257 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3258 		       argv[1]);
3259 		return r;
3260 	}
3261 
3262 	return 0;
3263 }
3264 
3265 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3266 {
3267 	dm_thin_id dev_id;
3268 	dm_thin_id origin_dev_id;
3269 	int r;
3270 
3271 	r = check_arg_count(argc, 3);
3272 	if (r)
3273 		return r;
3274 
3275 	r = read_dev_id(argv[1], &dev_id, 1);
3276 	if (r)
3277 		return r;
3278 
3279 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3280 	if (r)
3281 		return r;
3282 
3283 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3284 	if (r) {
3285 		DMWARN("Creation of new snapshot %s of device %s failed.",
3286 		       argv[1], argv[2]);
3287 		return r;
3288 	}
3289 
3290 	return 0;
3291 }
3292 
3293 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3294 {
3295 	dm_thin_id dev_id;
3296 	int r;
3297 
3298 	r = check_arg_count(argc, 2);
3299 	if (r)
3300 		return r;
3301 
3302 	r = read_dev_id(argv[1], &dev_id, 1);
3303 	if (r)
3304 		return r;
3305 
3306 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3307 	if (r)
3308 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3309 
3310 	return r;
3311 }
3312 
3313 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3314 {
3315 	dm_thin_id old_id, new_id;
3316 	int r;
3317 
3318 	r = check_arg_count(argc, 3);
3319 	if (r)
3320 		return r;
3321 
3322 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3323 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3324 		return -EINVAL;
3325 	}
3326 
3327 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3328 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3329 		return -EINVAL;
3330 	}
3331 
3332 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3333 	if (r) {
3334 		DMWARN("Failed to change transaction id from %s to %s.",
3335 		       argv[1], argv[2]);
3336 		return r;
3337 	}
3338 
3339 	return 0;
3340 }
3341 
3342 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3343 {
3344 	int r;
3345 
3346 	r = check_arg_count(argc, 1);
3347 	if (r)
3348 		return r;
3349 
3350 	(void) commit(pool);
3351 
3352 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3353 	if (r)
3354 		DMWARN("reserve_metadata_snap message failed.");
3355 
3356 	return r;
3357 }
3358 
3359 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3360 {
3361 	int r;
3362 
3363 	r = check_arg_count(argc, 1);
3364 	if (r)
3365 		return r;
3366 
3367 	r = dm_pool_release_metadata_snap(pool->pmd);
3368 	if (r)
3369 		DMWARN("release_metadata_snap message failed.");
3370 
3371 	return r;
3372 }
3373 
3374 /*
3375  * Messages supported:
3376  *   create_thin	<dev_id>
3377  *   create_snap	<dev_id> <origin_id>
3378  *   delete		<dev_id>
3379  *   set_transaction_id <current_trans_id> <new_trans_id>
3380  *   reserve_metadata_snap
3381  *   release_metadata_snap
3382  */
3383 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3384 {
3385 	int r = -EINVAL;
3386 	struct pool_c *pt = ti->private;
3387 	struct pool *pool = pt->pool;
3388 
3389 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3390 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3391 		      dm_device_name(pool->pool_md));
3392 		return -EINVAL;
3393 	}
3394 
3395 	if (!strcasecmp(argv[0], "create_thin"))
3396 		r = process_create_thin_mesg(argc, argv, pool);
3397 
3398 	else if (!strcasecmp(argv[0], "create_snap"))
3399 		r = process_create_snap_mesg(argc, argv, pool);
3400 
3401 	else if (!strcasecmp(argv[0], "delete"))
3402 		r = process_delete_mesg(argc, argv, pool);
3403 
3404 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3405 		r = process_set_transaction_id_mesg(argc, argv, pool);
3406 
3407 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3408 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3409 
3410 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3411 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3412 
3413 	else
3414 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3415 
3416 	if (!r)
3417 		(void) commit(pool);
3418 
3419 	return r;
3420 }
3421 
3422 static void emit_flags(struct pool_features *pf, char *result,
3423 		       unsigned sz, unsigned maxlen)
3424 {
3425 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3426 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3427 		pf->error_if_no_space;
3428 	DMEMIT("%u ", count);
3429 
3430 	if (!pf->zero_new_blocks)
3431 		DMEMIT("skip_block_zeroing ");
3432 
3433 	if (!pf->discard_enabled)
3434 		DMEMIT("ignore_discard ");
3435 
3436 	if (!pf->discard_passdown)
3437 		DMEMIT("no_discard_passdown ");
3438 
3439 	if (pf->mode == PM_READ_ONLY)
3440 		DMEMIT("read_only ");
3441 
3442 	if (pf->error_if_no_space)
3443 		DMEMIT("error_if_no_space ");
3444 }
3445 
3446 /*
3447  * Status line is:
3448  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3449  *    <used data sectors>/<total data sectors> <held metadata root>
3450  */
3451 static void pool_status(struct dm_target *ti, status_type_t type,
3452 			unsigned status_flags, char *result, unsigned maxlen)
3453 {
3454 	int r;
3455 	unsigned sz = 0;
3456 	uint64_t transaction_id;
3457 	dm_block_t nr_free_blocks_data;
3458 	dm_block_t nr_free_blocks_metadata;
3459 	dm_block_t nr_blocks_data;
3460 	dm_block_t nr_blocks_metadata;
3461 	dm_block_t held_root;
3462 	char buf[BDEVNAME_SIZE];
3463 	char buf2[BDEVNAME_SIZE];
3464 	struct pool_c *pt = ti->private;
3465 	struct pool *pool = pt->pool;
3466 
3467 	switch (type) {
3468 	case STATUSTYPE_INFO:
3469 		if (get_pool_mode(pool) == PM_FAIL) {
3470 			DMEMIT("Fail");
3471 			break;
3472 		}
3473 
3474 		/* Commit to ensure statistics aren't out-of-date */
3475 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3476 			(void) commit(pool);
3477 
3478 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3479 		if (r) {
3480 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3481 			      dm_device_name(pool->pool_md), r);
3482 			goto err;
3483 		}
3484 
3485 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3486 		if (r) {
3487 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3488 			      dm_device_name(pool->pool_md), r);
3489 			goto err;
3490 		}
3491 
3492 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3493 		if (r) {
3494 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3495 			      dm_device_name(pool->pool_md), r);
3496 			goto err;
3497 		}
3498 
3499 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3500 		if (r) {
3501 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3502 			      dm_device_name(pool->pool_md), r);
3503 			goto err;
3504 		}
3505 
3506 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3507 		if (r) {
3508 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3509 			      dm_device_name(pool->pool_md), r);
3510 			goto err;
3511 		}
3512 
3513 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3514 		if (r) {
3515 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3516 			      dm_device_name(pool->pool_md), r);
3517 			goto err;
3518 		}
3519 
3520 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3521 		       (unsigned long long)transaction_id,
3522 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3523 		       (unsigned long long)nr_blocks_metadata,
3524 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3525 		       (unsigned long long)nr_blocks_data);
3526 
3527 		if (held_root)
3528 			DMEMIT("%llu ", held_root);
3529 		else
3530 			DMEMIT("- ");
3531 
3532 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3533 			DMEMIT("out_of_data_space ");
3534 		else if (pool->pf.mode == PM_READ_ONLY)
3535 			DMEMIT("ro ");
3536 		else
3537 			DMEMIT("rw ");
3538 
3539 		if (!pool->pf.discard_enabled)
3540 			DMEMIT("ignore_discard ");
3541 		else if (pool->pf.discard_passdown)
3542 			DMEMIT("discard_passdown ");
3543 		else
3544 			DMEMIT("no_discard_passdown ");
3545 
3546 		if (pool->pf.error_if_no_space)
3547 			DMEMIT("error_if_no_space ");
3548 		else
3549 			DMEMIT("queue_if_no_space ");
3550 
3551 		break;
3552 
3553 	case STATUSTYPE_TABLE:
3554 		DMEMIT("%s %s %lu %llu ",
3555 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3556 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3557 		       (unsigned long)pool->sectors_per_block,
3558 		       (unsigned long long)pt->low_water_blocks);
3559 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3560 		break;
3561 	}
3562 	return;
3563 
3564 err:
3565 	DMEMIT("Error");
3566 }
3567 
3568 static int pool_iterate_devices(struct dm_target *ti,
3569 				iterate_devices_callout_fn fn, void *data)
3570 {
3571 	struct pool_c *pt = ti->private;
3572 
3573 	return fn(ti, pt->data_dev, 0, ti->len, data);
3574 }
3575 
3576 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3577 		      struct bio_vec *biovec, int max_size)
3578 {
3579 	struct pool_c *pt = ti->private;
3580 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3581 
3582 	if (!q->merge_bvec_fn)
3583 		return max_size;
3584 
3585 	bvm->bi_bdev = pt->data_dev->bdev;
3586 
3587 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3588 }
3589 
3590 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3591 {
3592 	struct pool *pool = pt->pool;
3593 	struct queue_limits *data_limits;
3594 
3595 	limits->max_discard_sectors = pool->sectors_per_block;
3596 
3597 	/*
3598 	 * discard_granularity is just a hint, and not enforced.
3599 	 */
3600 	if (pt->adjusted_pf.discard_passdown) {
3601 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3602 		limits->discard_granularity = max(data_limits->discard_granularity,
3603 						  pool->sectors_per_block << SECTOR_SHIFT);
3604 	} else
3605 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3606 }
3607 
3608 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3609 {
3610 	struct pool_c *pt = ti->private;
3611 	struct pool *pool = pt->pool;
3612 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3613 
3614 	/*
3615 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3616 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3617 	 * This is especially beneficial when the pool's data device is a RAID
3618 	 * device that has a full stripe width that matches pool->sectors_per_block
3619 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3620 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3621 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3622 	 */
3623 	if (limits->max_sectors < pool->sectors_per_block) {
3624 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3625 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3626 				limits->max_sectors--;
3627 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3628 		}
3629 	}
3630 
3631 	/*
3632 	 * If the system-determined stacked limits are compatible with the
3633 	 * pool's blocksize (io_opt is a factor) do not override them.
3634 	 */
3635 	if (io_opt_sectors < pool->sectors_per_block ||
3636 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3637 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3638 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3639 		else
3640 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3641 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3642 	}
3643 
3644 	/*
3645 	 * pt->adjusted_pf is a staging area for the actual features to use.
3646 	 * They get transferred to the live pool in bind_control_target()
3647 	 * called from pool_preresume().
3648 	 */
3649 	if (!pt->adjusted_pf.discard_enabled) {
3650 		/*
3651 		 * Must explicitly disallow stacking discard limits otherwise the
3652 		 * block layer will stack them if pool's data device has support.
3653 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3654 		 * user to see that, so make sure to set all discard limits to 0.
3655 		 */
3656 		limits->discard_granularity = 0;
3657 		return;
3658 	}
3659 
3660 	disable_passdown_if_not_supported(pt);
3661 
3662 	set_discard_limits(pt, limits);
3663 }
3664 
3665 static struct target_type pool_target = {
3666 	.name = "thin-pool",
3667 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3668 		    DM_TARGET_IMMUTABLE,
3669 	.version = {1, 14, 0},
3670 	.module = THIS_MODULE,
3671 	.ctr = pool_ctr,
3672 	.dtr = pool_dtr,
3673 	.map = pool_map,
3674 	.presuspend = pool_presuspend,
3675 	.presuspend_undo = pool_presuspend_undo,
3676 	.postsuspend = pool_postsuspend,
3677 	.preresume = pool_preresume,
3678 	.resume = pool_resume,
3679 	.message = pool_message,
3680 	.status = pool_status,
3681 	.merge = pool_merge,
3682 	.iterate_devices = pool_iterate_devices,
3683 	.io_hints = pool_io_hints,
3684 };
3685 
3686 /*----------------------------------------------------------------
3687  * Thin target methods
3688  *--------------------------------------------------------------*/
3689 static void thin_get(struct thin_c *tc)
3690 {
3691 	atomic_inc(&tc->refcount);
3692 }
3693 
3694 static void thin_put(struct thin_c *tc)
3695 {
3696 	if (atomic_dec_and_test(&tc->refcount))
3697 		complete(&tc->can_destroy);
3698 }
3699 
3700 static void thin_dtr(struct dm_target *ti)
3701 {
3702 	struct thin_c *tc = ti->private;
3703 	unsigned long flags;
3704 
3705 	spin_lock_irqsave(&tc->pool->lock, flags);
3706 	list_del_rcu(&tc->list);
3707 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3708 	synchronize_rcu();
3709 
3710 	thin_put(tc);
3711 	wait_for_completion(&tc->can_destroy);
3712 
3713 	mutex_lock(&dm_thin_pool_table.mutex);
3714 
3715 	__pool_dec(tc->pool);
3716 	dm_pool_close_thin_device(tc->td);
3717 	dm_put_device(ti, tc->pool_dev);
3718 	if (tc->origin_dev)
3719 		dm_put_device(ti, tc->origin_dev);
3720 	kfree(tc);
3721 
3722 	mutex_unlock(&dm_thin_pool_table.mutex);
3723 }
3724 
3725 /*
3726  * Thin target parameters:
3727  *
3728  * <pool_dev> <dev_id> [origin_dev]
3729  *
3730  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3731  * dev_id: the internal device identifier
3732  * origin_dev: a device external to the pool that should act as the origin
3733  *
3734  * If the pool device has discards disabled, they get disabled for the thin
3735  * device as well.
3736  */
3737 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3738 {
3739 	int r;
3740 	struct thin_c *tc;
3741 	struct dm_dev *pool_dev, *origin_dev;
3742 	struct mapped_device *pool_md;
3743 	unsigned long flags;
3744 
3745 	mutex_lock(&dm_thin_pool_table.mutex);
3746 
3747 	if (argc != 2 && argc != 3) {
3748 		ti->error = "Invalid argument count";
3749 		r = -EINVAL;
3750 		goto out_unlock;
3751 	}
3752 
3753 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3754 	if (!tc) {
3755 		ti->error = "Out of memory";
3756 		r = -ENOMEM;
3757 		goto out_unlock;
3758 	}
3759 	tc->thin_md = dm_table_get_md(ti->table);
3760 	spin_lock_init(&tc->lock);
3761 	INIT_LIST_HEAD(&tc->deferred_cells);
3762 	bio_list_init(&tc->deferred_bio_list);
3763 	bio_list_init(&tc->retry_on_resume_list);
3764 	tc->sort_bio_list = RB_ROOT;
3765 
3766 	if (argc == 3) {
3767 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3768 		if (r) {
3769 			ti->error = "Error opening origin device";
3770 			goto bad_origin_dev;
3771 		}
3772 		tc->origin_dev = origin_dev;
3773 	}
3774 
3775 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3776 	if (r) {
3777 		ti->error = "Error opening pool device";
3778 		goto bad_pool_dev;
3779 	}
3780 	tc->pool_dev = pool_dev;
3781 
3782 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3783 		ti->error = "Invalid device id";
3784 		r = -EINVAL;
3785 		goto bad_common;
3786 	}
3787 
3788 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3789 	if (!pool_md) {
3790 		ti->error = "Couldn't get pool mapped device";
3791 		r = -EINVAL;
3792 		goto bad_common;
3793 	}
3794 
3795 	tc->pool = __pool_table_lookup(pool_md);
3796 	if (!tc->pool) {
3797 		ti->error = "Couldn't find pool object";
3798 		r = -EINVAL;
3799 		goto bad_pool_lookup;
3800 	}
3801 	__pool_inc(tc->pool);
3802 
3803 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3804 		ti->error = "Couldn't open thin device, Pool is in fail mode";
3805 		r = -EINVAL;
3806 		goto bad_pool;
3807 	}
3808 
3809 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3810 	if (r) {
3811 		ti->error = "Couldn't open thin internal device";
3812 		goto bad_pool;
3813 	}
3814 
3815 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3816 	if (r)
3817 		goto bad;
3818 
3819 	ti->num_flush_bios = 1;
3820 	ti->flush_supported = true;
3821 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3822 
3823 	/* In case the pool supports discards, pass them on. */
3824 	ti->discard_zeroes_data_unsupported = true;
3825 	if (tc->pool->pf.discard_enabled) {
3826 		ti->discards_supported = true;
3827 		ti->num_discard_bios = 1;
3828 		/* Discard bios must be split on a block boundary */
3829 		ti->split_discard_bios = true;
3830 	}
3831 
3832 	mutex_unlock(&dm_thin_pool_table.mutex);
3833 
3834 	spin_lock_irqsave(&tc->pool->lock, flags);
3835 	if (tc->pool->suspended) {
3836 		spin_unlock_irqrestore(&tc->pool->lock, flags);
3837 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
3838 		ti->error = "Unable to activate thin device while pool is suspended";
3839 		r = -EINVAL;
3840 		goto bad;
3841 	}
3842 	atomic_set(&tc->refcount, 1);
3843 	init_completion(&tc->can_destroy);
3844 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3845 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3846 	/*
3847 	 * This synchronize_rcu() call is needed here otherwise we risk a
3848 	 * wake_worker() call finding no bios to process (because the newly
3849 	 * added tc isn't yet visible).  So this reduces latency since we
3850 	 * aren't then dependent on the periodic commit to wake_worker().
3851 	 */
3852 	synchronize_rcu();
3853 
3854 	dm_put(pool_md);
3855 
3856 	return 0;
3857 
3858 bad:
3859 	dm_pool_close_thin_device(tc->td);
3860 bad_pool:
3861 	__pool_dec(tc->pool);
3862 bad_pool_lookup:
3863 	dm_put(pool_md);
3864 bad_common:
3865 	dm_put_device(ti, tc->pool_dev);
3866 bad_pool_dev:
3867 	if (tc->origin_dev)
3868 		dm_put_device(ti, tc->origin_dev);
3869 bad_origin_dev:
3870 	kfree(tc);
3871 out_unlock:
3872 	mutex_unlock(&dm_thin_pool_table.mutex);
3873 
3874 	return r;
3875 }
3876 
3877 static int thin_map(struct dm_target *ti, struct bio *bio)
3878 {
3879 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3880 
3881 	return thin_bio_map(ti, bio);
3882 }
3883 
3884 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3885 {
3886 	unsigned long flags;
3887 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3888 	struct list_head work;
3889 	struct dm_thin_new_mapping *m, *tmp;
3890 	struct pool *pool = h->tc->pool;
3891 
3892 	if (h->shared_read_entry) {
3893 		INIT_LIST_HEAD(&work);
3894 		dm_deferred_entry_dec(h->shared_read_entry, &work);
3895 
3896 		spin_lock_irqsave(&pool->lock, flags);
3897 		list_for_each_entry_safe(m, tmp, &work, list) {
3898 			list_del(&m->list);
3899 			__complete_mapping_preparation(m);
3900 		}
3901 		spin_unlock_irqrestore(&pool->lock, flags);
3902 	}
3903 
3904 	if (h->all_io_entry) {
3905 		INIT_LIST_HEAD(&work);
3906 		dm_deferred_entry_dec(h->all_io_entry, &work);
3907 		if (!list_empty(&work)) {
3908 			spin_lock_irqsave(&pool->lock, flags);
3909 			list_for_each_entry_safe(m, tmp, &work, list)
3910 				list_add_tail(&m->list, &pool->prepared_discards);
3911 			spin_unlock_irqrestore(&pool->lock, flags);
3912 			wake_worker(pool);
3913 		}
3914 	}
3915 
3916 	return 0;
3917 }
3918 
3919 static void thin_presuspend(struct dm_target *ti)
3920 {
3921 	struct thin_c *tc = ti->private;
3922 
3923 	if (dm_noflush_suspending(ti))
3924 		noflush_work(tc, do_noflush_start);
3925 }
3926 
3927 static void thin_postsuspend(struct dm_target *ti)
3928 {
3929 	struct thin_c *tc = ti->private;
3930 
3931 	/*
3932 	 * The dm_noflush_suspending flag has been cleared by now, so
3933 	 * unfortunately we must always run this.
3934 	 */
3935 	noflush_work(tc, do_noflush_stop);
3936 }
3937 
3938 static int thin_preresume(struct dm_target *ti)
3939 {
3940 	struct thin_c *tc = ti->private;
3941 
3942 	if (tc->origin_dev)
3943 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
3944 
3945 	return 0;
3946 }
3947 
3948 /*
3949  * <nr mapped sectors> <highest mapped sector>
3950  */
3951 static void thin_status(struct dm_target *ti, status_type_t type,
3952 			unsigned status_flags, char *result, unsigned maxlen)
3953 {
3954 	int r;
3955 	ssize_t sz = 0;
3956 	dm_block_t mapped, highest;
3957 	char buf[BDEVNAME_SIZE];
3958 	struct thin_c *tc = ti->private;
3959 
3960 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3961 		DMEMIT("Fail");
3962 		return;
3963 	}
3964 
3965 	if (!tc->td)
3966 		DMEMIT("-");
3967 	else {
3968 		switch (type) {
3969 		case STATUSTYPE_INFO:
3970 			r = dm_thin_get_mapped_count(tc->td, &mapped);
3971 			if (r) {
3972 				DMERR("dm_thin_get_mapped_count returned %d", r);
3973 				goto err;
3974 			}
3975 
3976 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3977 			if (r < 0) {
3978 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3979 				goto err;
3980 			}
3981 
3982 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3983 			if (r)
3984 				DMEMIT("%llu", ((highest + 1) *
3985 						tc->pool->sectors_per_block) - 1);
3986 			else
3987 				DMEMIT("-");
3988 			break;
3989 
3990 		case STATUSTYPE_TABLE:
3991 			DMEMIT("%s %lu",
3992 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3993 			       (unsigned long) tc->dev_id);
3994 			if (tc->origin_dev)
3995 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3996 			break;
3997 		}
3998 	}
3999 
4000 	return;
4001 
4002 err:
4003 	DMEMIT("Error");
4004 }
4005 
4006 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4007 		      struct bio_vec *biovec, int max_size)
4008 {
4009 	struct thin_c *tc = ti->private;
4010 	struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4011 
4012 	if (!q->merge_bvec_fn)
4013 		return max_size;
4014 
4015 	bvm->bi_bdev = tc->pool_dev->bdev;
4016 	bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4017 
4018 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4019 }
4020 
4021 static int thin_iterate_devices(struct dm_target *ti,
4022 				iterate_devices_callout_fn fn, void *data)
4023 {
4024 	sector_t blocks;
4025 	struct thin_c *tc = ti->private;
4026 	struct pool *pool = tc->pool;
4027 
4028 	/*
4029 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4030 	 * we follow a more convoluted path through to the pool's target.
4031 	 */
4032 	if (!pool->ti)
4033 		return 0;	/* nothing is bound */
4034 
4035 	blocks = pool->ti->len;
4036 	(void) sector_div(blocks, pool->sectors_per_block);
4037 	if (blocks)
4038 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4039 
4040 	return 0;
4041 }
4042 
4043 static struct target_type thin_target = {
4044 	.name = "thin",
4045 	.version = {1, 14, 0},
4046 	.module	= THIS_MODULE,
4047 	.ctr = thin_ctr,
4048 	.dtr = thin_dtr,
4049 	.map = thin_map,
4050 	.end_io = thin_endio,
4051 	.preresume = thin_preresume,
4052 	.presuspend = thin_presuspend,
4053 	.postsuspend = thin_postsuspend,
4054 	.status = thin_status,
4055 	.merge = thin_merge,
4056 	.iterate_devices = thin_iterate_devices,
4057 };
4058 
4059 /*----------------------------------------------------------------*/
4060 
4061 static int __init dm_thin_init(void)
4062 {
4063 	int r;
4064 
4065 	pool_table_init();
4066 
4067 	r = dm_register_target(&thin_target);
4068 	if (r)
4069 		return r;
4070 
4071 	r = dm_register_target(&pool_target);
4072 	if (r)
4073 		goto bad_pool_target;
4074 
4075 	r = -ENOMEM;
4076 
4077 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4078 	if (!_new_mapping_cache)
4079 		goto bad_new_mapping_cache;
4080 
4081 	return 0;
4082 
4083 bad_new_mapping_cache:
4084 	dm_unregister_target(&pool_target);
4085 bad_pool_target:
4086 	dm_unregister_target(&thin_target);
4087 
4088 	return r;
4089 }
4090 
4091 static void dm_thin_exit(void)
4092 {
4093 	dm_unregister_target(&thin_target);
4094 	dm_unregister_target(&pool_target);
4095 
4096 	kmem_cache_destroy(_new_mapping_cache);
4097 }
4098 
4099 module_init(dm_thin_init);
4100 module_exit(dm_thin_exit);
4101 
4102 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4103 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4104 
4105 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4106 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4107 MODULE_LICENSE("GPL");
4108