1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison-v1.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in various modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 204 /* 205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 206 */ 207 PM_OUT_OF_METADATA_SPACE, 208 PM_READ_ONLY, /* metadata may not be changed */ 209 210 PM_FAIL, /* all I/O fails */ 211 }; 212 213 struct pool_features { 214 enum pool_mode mode; 215 216 bool zero_new_blocks:1; 217 bool discard_enabled:1; 218 bool discard_passdown:1; 219 bool error_if_no_space:1; 220 }; 221 222 struct thin_c; 223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 226 227 #define CELL_SORT_ARRAY_SIZE 8192 228 229 struct pool { 230 struct list_head list; 231 struct dm_target *ti; /* Only set if a pool target is bound */ 232 233 struct mapped_device *pool_md; 234 struct block_device *md_dev; 235 struct dm_pool_metadata *pmd; 236 237 dm_block_t low_water_blocks; 238 uint32_t sectors_per_block; 239 int sectors_per_block_shift; 240 241 struct pool_features pf; 242 bool low_water_triggered:1; /* A dm event has been sent */ 243 bool suspended:1; 244 bool out_of_data_space:1; 245 246 struct dm_bio_prison *prison; 247 struct dm_kcopyd_client *copier; 248 249 struct work_struct worker; 250 struct workqueue_struct *wq; 251 struct throttle throttle; 252 struct delayed_work waker; 253 struct delayed_work no_space_timeout; 254 255 unsigned long last_commit_jiffies; 256 unsigned ref_count; 257 258 spinlock_t lock; 259 struct bio_list deferred_flush_bios; 260 struct list_head prepared_mappings; 261 struct list_head prepared_discards; 262 struct list_head prepared_discards_pt2; 263 struct list_head active_thins; 264 265 struct dm_deferred_set *shared_read_ds; 266 struct dm_deferred_set *all_io_ds; 267 268 struct dm_thin_new_mapping *next_mapping; 269 270 process_bio_fn process_bio; 271 process_bio_fn process_discard; 272 273 process_cell_fn process_cell; 274 process_cell_fn process_discard_cell; 275 276 process_mapping_fn process_prepared_mapping; 277 process_mapping_fn process_prepared_discard; 278 process_mapping_fn process_prepared_discard_pt2; 279 280 struct dm_bio_prison_cell **cell_sort_array; 281 282 mempool_t mapping_pool; 283 }; 284 285 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 286 287 static enum pool_mode get_pool_mode(struct pool *pool) 288 { 289 return pool->pf.mode; 290 } 291 292 static void notify_of_pool_mode_change(struct pool *pool) 293 { 294 const char *descs[] = { 295 "write", 296 "out-of-data-space", 297 "read-only", 298 "read-only", 299 "fail" 300 }; 301 const char *extra_desc = NULL; 302 enum pool_mode mode = get_pool_mode(pool); 303 304 if (mode == PM_OUT_OF_DATA_SPACE) { 305 if (!pool->pf.error_if_no_space) 306 extra_desc = " (queue IO)"; 307 else 308 extra_desc = " (error IO)"; 309 } 310 311 dm_table_event(pool->ti->table); 312 DMINFO("%s: switching pool to %s%s mode", 313 dm_device_name(pool->pool_md), 314 descs[(int)mode], extra_desc ? : ""); 315 } 316 317 /* 318 * Target context for a pool. 319 */ 320 struct pool_c { 321 struct dm_target *ti; 322 struct pool *pool; 323 struct dm_dev *data_dev; 324 struct dm_dev *metadata_dev; 325 struct dm_target_callbacks callbacks; 326 327 dm_block_t low_water_blocks; 328 struct pool_features requested_pf; /* Features requested during table load */ 329 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 330 }; 331 332 /* 333 * Target context for a thin. 334 */ 335 struct thin_c { 336 struct list_head list; 337 struct dm_dev *pool_dev; 338 struct dm_dev *origin_dev; 339 sector_t origin_size; 340 dm_thin_id dev_id; 341 342 struct pool *pool; 343 struct dm_thin_device *td; 344 struct mapped_device *thin_md; 345 346 bool requeue_mode:1; 347 spinlock_t lock; 348 struct list_head deferred_cells; 349 struct bio_list deferred_bio_list; 350 struct bio_list retry_on_resume_list; 351 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 352 353 /* 354 * Ensures the thin is not destroyed until the worker has finished 355 * iterating the active_thins list. 356 */ 357 refcount_t refcount; 358 struct completion can_destroy; 359 }; 360 361 /*----------------------------------------------------------------*/ 362 363 static bool block_size_is_power_of_two(struct pool *pool) 364 { 365 return pool->sectors_per_block_shift >= 0; 366 } 367 368 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 369 { 370 return block_size_is_power_of_two(pool) ? 371 (b << pool->sectors_per_block_shift) : 372 (b * pool->sectors_per_block); 373 } 374 375 /*----------------------------------------------------------------*/ 376 377 struct discard_op { 378 struct thin_c *tc; 379 struct blk_plug plug; 380 struct bio *parent_bio; 381 struct bio *bio; 382 }; 383 384 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 385 { 386 BUG_ON(!parent); 387 388 op->tc = tc; 389 blk_start_plug(&op->plug); 390 op->parent_bio = parent; 391 op->bio = NULL; 392 } 393 394 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 395 { 396 struct thin_c *tc = op->tc; 397 sector_t s = block_to_sectors(tc->pool, data_b); 398 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 399 400 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 401 GFP_NOWAIT, 0, &op->bio); 402 } 403 404 static void end_discard(struct discard_op *op, int r) 405 { 406 if (op->bio) { 407 /* 408 * Even if one of the calls to issue_discard failed, we 409 * need to wait for the chain to complete. 410 */ 411 bio_chain(op->bio, op->parent_bio); 412 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 413 submit_bio(op->bio); 414 } 415 416 blk_finish_plug(&op->plug); 417 418 /* 419 * Even if r is set, there could be sub discards in flight that we 420 * need to wait for. 421 */ 422 if (r && !op->parent_bio->bi_status) 423 op->parent_bio->bi_status = errno_to_blk_status(r); 424 bio_endio(op->parent_bio); 425 } 426 427 /*----------------------------------------------------------------*/ 428 429 /* 430 * wake_worker() is used when new work is queued and when pool_resume is 431 * ready to continue deferred IO processing. 432 */ 433 static void wake_worker(struct pool *pool) 434 { 435 queue_work(pool->wq, &pool->worker); 436 } 437 438 /*----------------------------------------------------------------*/ 439 440 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 441 struct dm_bio_prison_cell **cell_result) 442 { 443 int r; 444 struct dm_bio_prison_cell *cell_prealloc; 445 446 /* 447 * Allocate a cell from the prison's mempool. 448 * This might block but it can't fail. 449 */ 450 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 451 452 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 453 if (r) 454 /* 455 * We reused an old cell; we can get rid of 456 * the new one. 457 */ 458 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 459 460 return r; 461 } 462 463 static void cell_release(struct pool *pool, 464 struct dm_bio_prison_cell *cell, 465 struct bio_list *bios) 466 { 467 dm_cell_release(pool->prison, cell, bios); 468 dm_bio_prison_free_cell(pool->prison, cell); 469 } 470 471 static void cell_visit_release(struct pool *pool, 472 void (*fn)(void *, struct dm_bio_prison_cell *), 473 void *context, 474 struct dm_bio_prison_cell *cell) 475 { 476 dm_cell_visit_release(pool->prison, fn, context, cell); 477 dm_bio_prison_free_cell(pool->prison, cell); 478 } 479 480 static void cell_release_no_holder(struct pool *pool, 481 struct dm_bio_prison_cell *cell, 482 struct bio_list *bios) 483 { 484 dm_cell_release_no_holder(pool->prison, cell, bios); 485 dm_bio_prison_free_cell(pool->prison, cell); 486 } 487 488 static void cell_error_with_code(struct pool *pool, 489 struct dm_bio_prison_cell *cell, blk_status_t error_code) 490 { 491 dm_cell_error(pool->prison, cell, error_code); 492 dm_bio_prison_free_cell(pool->prison, cell); 493 } 494 495 static blk_status_t get_pool_io_error_code(struct pool *pool) 496 { 497 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 498 } 499 500 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 501 { 502 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 503 } 504 505 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 506 { 507 cell_error_with_code(pool, cell, 0); 508 } 509 510 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 511 { 512 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 513 } 514 515 /*----------------------------------------------------------------*/ 516 517 /* 518 * A global list of pools that uses a struct mapped_device as a key. 519 */ 520 static struct dm_thin_pool_table { 521 struct mutex mutex; 522 struct list_head pools; 523 } dm_thin_pool_table; 524 525 static void pool_table_init(void) 526 { 527 mutex_init(&dm_thin_pool_table.mutex); 528 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 529 } 530 531 static void pool_table_exit(void) 532 { 533 mutex_destroy(&dm_thin_pool_table.mutex); 534 } 535 536 static void __pool_table_insert(struct pool *pool) 537 { 538 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 539 list_add(&pool->list, &dm_thin_pool_table.pools); 540 } 541 542 static void __pool_table_remove(struct pool *pool) 543 { 544 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 545 list_del(&pool->list); 546 } 547 548 static struct pool *__pool_table_lookup(struct mapped_device *md) 549 { 550 struct pool *pool = NULL, *tmp; 551 552 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 553 554 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 555 if (tmp->pool_md == md) { 556 pool = tmp; 557 break; 558 } 559 } 560 561 return pool; 562 } 563 564 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 565 { 566 struct pool *pool = NULL, *tmp; 567 568 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 569 570 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 571 if (tmp->md_dev == md_dev) { 572 pool = tmp; 573 break; 574 } 575 } 576 577 return pool; 578 } 579 580 /*----------------------------------------------------------------*/ 581 582 struct dm_thin_endio_hook { 583 struct thin_c *tc; 584 struct dm_deferred_entry *shared_read_entry; 585 struct dm_deferred_entry *all_io_entry; 586 struct dm_thin_new_mapping *overwrite_mapping; 587 struct rb_node rb_node; 588 struct dm_bio_prison_cell *cell; 589 }; 590 591 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 592 { 593 bio_list_merge(bios, master); 594 bio_list_init(master); 595 } 596 597 static void error_bio_list(struct bio_list *bios, blk_status_t error) 598 { 599 struct bio *bio; 600 601 while ((bio = bio_list_pop(bios))) { 602 bio->bi_status = error; 603 bio_endio(bio); 604 } 605 } 606 607 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 608 blk_status_t error) 609 { 610 struct bio_list bios; 611 unsigned long flags; 612 613 bio_list_init(&bios); 614 615 spin_lock_irqsave(&tc->lock, flags); 616 __merge_bio_list(&bios, master); 617 spin_unlock_irqrestore(&tc->lock, flags); 618 619 error_bio_list(&bios, error); 620 } 621 622 static void requeue_deferred_cells(struct thin_c *tc) 623 { 624 struct pool *pool = tc->pool; 625 unsigned long flags; 626 struct list_head cells; 627 struct dm_bio_prison_cell *cell, *tmp; 628 629 INIT_LIST_HEAD(&cells); 630 631 spin_lock_irqsave(&tc->lock, flags); 632 list_splice_init(&tc->deferred_cells, &cells); 633 spin_unlock_irqrestore(&tc->lock, flags); 634 635 list_for_each_entry_safe(cell, tmp, &cells, user_list) 636 cell_requeue(pool, cell); 637 } 638 639 static void requeue_io(struct thin_c *tc) 640 { 641 struct bio_list bios; 642 unsigned long flags; 643 644 bio_list_init(&bios); 645 646 spin_lock_irqsave(&tc->lock, flags); 647 __merge_bio_list(&bios, &tc->deferred_bio_list); 648 __merge_bio_list(&bios, &tc->retry_on_resume_list); 649 spin_unlock_irqrestore(&tc->lock, flags); 650 651 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 652 requeue_deferred_cells(tc); 653 } 654 655 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 656 { 657 struct thin_c *tc; 658 659 rcu_read_lock(); 660 list_for_each_entry_rcu(tc, &pool->active_thins, list) 661 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 662 rcu_read_unlock(); 663 } 664 665 static void error_retry_list(struct pool *pool) 666 { 667 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 668 } 669 670 /* 671 * This section of code contains the logic for processing a thin device's IO. 672 * Much of the code depends on pool object resources (lists, workqueues, etc) 673 * but most is exclusively called from the thin target rather than the thin-pool 674 * target. 675 */ 676 677 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 678 { 679 struct pool *pool = tc->pool; 680 sector_t block_nr = bio->bi_iter.bi_sector; 681 682 if (block_size_is_power_of_two(pool)) 683 block_nr >>= pool->sectors_per_block_shift; 684 else 685 (void) sector_div(block_nr, pool->sectors_per_block); 686 687 return block_nr; 688 } 689 690 /* 691 * Returns the _complete_ blocks that this bio covers. 692 */ 693 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 694 dm_block_t *begin, dm_block_t *end) 695 { 696 struct pool *pool = tc->pool; 697 sector_t b = bio->bi_iter.bi_sector; 698 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 699 700 b += pool->sectors_per_block - 1ull; /* so we round up */ 701 702 if (block_size_is_power_of_two(pool)) { 703 b >>= pool->sectors_per_block_shift; 704 e >>= pool->sectors_per_block_shift; 705 } else { 706 (void) sector_div(b, pool->sectors_per_block); 707 (void) sector_div(e, pool->sectors_per_block); 708 } 709 710 if (e < b) 711 /* Can happen if the bio is within a single block. */ 712 e = b; 713 714 *begin = b; 715 *end = e; 716 } 717 718 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 719 { 720 struct pool *pool = tc->pool; 721 sector_t bi_sector = bio->bi_iter.bi_sector; 722 723 bio_set_dev(bio, tc->pool_dev->bdev); 724 if (block_size_is_power_of_two(pool)) 725 bio->bi_iter.bi_sector = 726 (block << pool->sectors_per_block_shift) | 727 (bi_sector & (pool->sectors_per_block - 1)); 728 else 729 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 730 sector_div(bi_sector, pool->sectors_per_block); 731 } 732 733 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 734 { 735 bio_set_dev(bio, tc->origin_dev->bdev); 736 } 737 738 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 739 { 740 return op_is_flush(bio->bi_opf) && 741 dm_thin_changed_this_transaction(tc->td); 742 } 743 744 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 745 { 746 struct dm_thin_endio_hook *h; 747 748 if (bio_op(bio) == REQ_OP_DISCARD) 749 return; 750 751 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 752 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 753 } 754 755 static void issue(struct thin_c *tc, struct bio *bio) 756 { 757 struct pool *pool = tc->pool; 758 unsigned long flags; 759 760 if (!bio_triggers_commit(tc, bio)) { 761 generic_make_request(bio); 762 return; 763 } 764 765 /* 766 * Complete bio with an error if earlier I/O caused changes to 767 * the metadata that can't be committed e.g, due to I/O errors 768 * on the metadata device. 769 */ 770 if (dm_thin_aborted_changes(tc->td)) { 771 bio_io_error(bio); 772 return; 773 } 774 775 /* 776 * Batch together any bios that trigger commits and then issue a 777 * single commit for them in process_deferred_bios(). 778 */ 779 spin_lock_irqsave(&pool->lock, flags); 780 bio_list_add(&pool->deferred_flush_bios, bio); 781 spin_unlock_irqrestore(&pool->lock, flags); 782 } 783 784 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 785 { 786 remap_to_origin(tc, bio); 787 issue(tc, bio); 788 } 789 790 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 791 dm_block_t block) 792 { 793 remap(tc, bio, block); 794 issue(tc, bio); 795 } 796 797 /*----------------------------------------------------------------*/ 798 799 /* 800 * Bio endio functions. 801 */ 802 struct dm_thin_new_mapping { 803 struct list_head list; 804 805 bool pass_discard:1; 806 bool maybe_shared:1; 807 808 /* 809 * Track quiescing, copying and zeroing preparation actions. When this 810 * counter hits zero the block is prepared and can be inserted into the 811 * btree. 812 */ 813 atomic_t prepare_actions; 814 815 blk_status_t status; 816 struct thin_c *tc; 817 dm_block_t virt_begin, virt_end; 818 dm_block_t data_block; 819 struct dm_bio_prison_cell *cell; 820 821 /* 822 * If the bio covers the whole area of a block then we can avoid 823 * zeroing or copying. Instead this bio is hooked. The bio will 824 * still be in the cell, so care has to be taken to avoid issuing 825 * the bio twice. 826 */ 827 struct bio *bio; 828 bio_end_io_t *saved_bi_end_io; 829 }; 830 831 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 832 { 833 struct pool *pool = m->tc->pool; 834 835 if (atomic_dec_and_test(&m->prepare_actions)) { 836 list_add_tail(&m->list, &pool->prepared_mappings); 837 wake_worker(pool); 838 } 839 } 840 841 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 842 { 843 unsigned long flags; 844 struct pool *pool = m->tc->pool; 845 846 spin_lock_irqsave(&pool->lock, flags); 847 __complete_mapping_preparation(m); 848 spin_unlock_irqrestore(&pool->lock, flags); 849 } 850 851 static void copy_complete(int read_err, unsigned long write_err, void *context) 852 { 853 struct dm_thin_new_mapping *m = context; 854 855 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 856 complete_mapping_preparation(m); 857 } 858 859 static void overwrite_endio(struct bio *bio) 860 { 861 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 862 struct dm_thin_new_mapping *m = h->overwrite_mapping; 863 864 bio->bi_end_io = m->saved_bi_end_io; 865 866 m->status = bio->bi_status; 867 complete_mapping_preparation(m); 868 } 869 870 /*----------------------------------------------------------------*/ 871 872 /* 873 * Workqueue. 874 */ 875 876 /* 877 * Prepared mapping jobs. 878 */ 879 880 /* 881 * This sends the bios in the cell, except the original holder, back 882 * to the deferred_bios list. 883 */ 884 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 885 { 886 struct pool *pool = tc->pool; 887 unsigned long flags; 888 889 spin_lock_irqsave(&tc->lock, flags); 890 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 891 spin_unlock_irqrestore(&tc->lock, flags); 892 893 wake_worker(pool); 894 } 895 896 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 897 898 struct remap_info { 899 struct thin_c *tc; 900 struct bio_list defer_bios; 901 struct bio_list issue_bios; 902 }; 903 904 static void __inc_remap_and_issue_cell(void *context, 905 struct dm_bio_prison_cell *cell) 906 { 907 struct remap_info *info = context; 908 struct bio *bio; 909 910 while ((bio = bio_list_pop(&cell->bios))) { 911 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 912 bio_list_add(&info->defer_bios, bio); 913 else { 914 inc_all_io_entry(info->tc->pool, bio); 915 916 /* 917 * We can't issue the bios with the bio prison lock 918 * held, so we add them to a list to issue on 919 * return from this function. 920 */ 921 bio_list_add(&info->issue_bios, bio); 922 } 923 } 924 } 925 926 static void inc_remap_and_issue_cell(struct thin_c *tc, 927 struct dm_bio_prison_cell *cell, 928 dm_block_t block) 929 { 930 struct bio *bio; 931 struct remap_info info; 932 933 info.tc = tc; 934 bio_list_init(&info.defer_bios); 935 bio_list_init(&info.issue_bios); 936 937 /* 938 * We have to be careful to inc any bios we're about to issue 939 * before the cell is released, and avoid a race with new bios 940 * being added to the cell. 941 */ 942 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 943 &info, cell); 944 945 while ((bio = bio_list_pop(&info.defer_bios))) 946 thin_defer_bio(tc, bio); 947 948 while ((bio = bio_list_pop(&info.issue_bios))) 949 remap_and_issue(info.tc, bio, block); 950 } 951 952 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 953 { 954 cell_error(m->tc->pool, m->cell); 955 list_del(&m->list); 956 mempool_free(m, &m->tc->pool->mapping_pool); 957 } 958 959 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 960 { 961 struct thin_c *tc = m->tc; 962 struct pool *pool = tc->pool; 963 struct bio *bio = m->bio; 964 int r; 965 966 if (m->status) { 967 cell_error(pool, m->cell); 968 goto out; 969 } 970 971 /* 972 * Commit the prepared block into the mapping btree. 973 * Any I/O for this block arriving after this point will get 974 * remapped to it directly. 975 */ 976 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 977 if (r) { 978 metadata_operation_failed(pool, "dm_thin_insert_block", r); 979 cell_error(pool, m->cell); 980 goto out; 981 } 982 983 /* 984 * Release any bios held while the block was being provisioned. 985 * If we are processing a write bio that completely covers the block, 986 * we already processed it so can ignore it now when processing 987 * the bios in the cell. 988 */ 989 if (bio) { 990 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 991 bio_endio(bio); 992 } else { 993 inc_all_io_entry(tc->pool, m->cell->holder); 994 remap_and_issue(tc, m->cell->holder, m->data_block); 995 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 996 } 997 998 out: 999 list_del(&m->list); 1000 mempool_free(m, &pool->mapping_pool); 1001 } 1002 1003 /*----------------------------------------------------------------*/ 1004 1005 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1006 { 1007 struct thin_c *tc = m->tc; 1008 if (m->cell) 1009 cell_defer_no_holder(tc, m->cell); 1010 mempool_free(m, &tc->pool->mapping_pool); 1011 } 1012 1013 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1014 { 1015 bio_io_error(m->bio); 1016 free_discard_mapping(m); 1017 } 1018 1019 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1020 { 1021 bio_endio(m->bio); 1022 free_discard_mapping(m); 1023 } 1024 1025 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1026 { 1027 int r; 1028 struct thin_c *tc = m->tc; 1029 1030 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1031 if (r) { 1032 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1033 bio_io_error(m->bio); 1034 } else 1035 bio_endio(m->bio); 1036 1037 cell_defer_no_holder(tc, m->cell); 1038 mempool_free(m, &tc->pool->mapping_pool); 1039 } 1040 1041 /*----------------------------------------------------------------*/ 1042 1043 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1044 struct bio *discard_parent) 1045 { 1046 /* 1047 * We've already unmapped this range of blocks, but before we 1048 * passdown we have to check that these blocks are now unused. 1049 */ 1050 int r = 0; 1051 bool used = true; 1052 struct thin_c *tc = m->tc; 1053 struct pool *pool = tc->pool; 1054 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1055 struct discard_op op; 1056 1057 begin_discard(&op, tc, discard_parent); 1058 while (b != end) { 1059 /* find start of unmapped run */ 1060 for (; b < end; b++) { 1061 r = dm_pool_block_is_used(pool->pmd, b, &used); 1062 if (r) 1063 goto out; 1064 1065 if (!used) 1066 break; 1067 } 1068 1069 if (b == end) 1070 break; 1071 1072 /* find end of run */ 1073 for (e = b + 1; e != end; e++) { 1074 r = dm_pool_block_is_used(pool->pmd, e, &used); 1075 if (r) 1076 goto out; 1077 1078 if (used) 1079 break; 1080 } 1081 1082 r = issue_discard(&op, b, e); 1083 if (r) 1084 goto out; 1085 1086 b = e; 1087 } 1088 out: 1089 end_discard(&op, r); 1090 } 1091 1092 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1093 { 1094 unsigned long flags; 1095 struct pool *pool = m->tc->pool; 1096 1097 spin_lock_irqsave(&pool->lock, flags); 1098 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1099 spin_unlock_irqrestore(&pool->lock, flags); 1100 wake_worker(pool); 1101 } 1102 1103 static void passdown_endio(struct bio *bio) 1104 { 1105 /* 1106 * It doesn't matter if the passdown discard failed, we still want 1107 * to unmap (we ignore err). 1108 */ 1109 queue_passdown_pt2(bio->bi_private); 1110 bio_put(bio); 1111 } 1112 1113 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1114 { 1115 int r; 1116 struct thin_c *tc = m->tc; 1117 struct pool *pool = tc->pool; 1118 struct bio *discard_parent; 1119 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1120 1121 /* 1122 * Only this thread allocates blocks, so we can be sure that the 1123 * newly unmapped blocks will not be allocated before the end of 1124 * the function. 1125 */ 1126 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1127 if (r) { 1128 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1129 bio_io_error(m->bio); 1130 cell_defer_no_holder(tc, m->cell); 1131 mempool_free(m, &pool->mapping_pool); 1132 return; 1133 } 1134 1135 /* 1136 * Increment the unmapped blocks. This prevents a race between the 1137 * passdown io and reallocation of freed blocks. 1138 */ 1139 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1140 if (r) { 1141 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1142 bio_io_error(m->bio); 1143 cell_defer_no_holder(tc, m->cell); 1144 mempool_free(m, &pool->mapping_pool); 1145 return; 1146 } 1147 1148 discard_parent = bio_alloc(GFP_NOIO, 1); 1149 if (!discard_parent) { 1150 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1151 dm_device_name(tc->pool->pool_md)); 1152 queue_passdown_pt2(m); 1153 1154 } else { 1155 discard_parent->bi_end_io = passdown_endio; 1156 discard_parent->bi_private = m; 1157 1158 if (m->maybe_shared) 1159 passdown_double_checking_shared_status(m, discard_parent); 1160 else { 1161 struct discard_op op; 1162 1163 begin_discard(&op, tc, discard_parent); 1164 r = issue_discard(&op, m->data_block, data_end); 1165 end_discard(&op, r); 1166 } 1167 } 1168 } 1169 1170 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1171 { 1172 int r; 1173 struct thin_c *tc = m->tc; 1174 struct pool *pool = tc->pool; 1175 1176 /* 1177 * The passdown has completed, so now we can decrement all those 1178 * unmapped blocks. 1179 */ 1180 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1181 m->data_block + (m->virt_end - m->virt_begin)); 1182 if (r) { 1183 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1184 bio_io_error(m->bio); 1185 } else 1186 bio_endio(m->bio); 1187 1188 cell_defer_no_holder(tc, m->cell); 1189 mempool_free(m, &pool->mapping_pool); 1190 } 1191 1192 static void process_prepared(struct pool *pool, struct list_head *head, 1193 process_mapping_fn *fn) 1194 { 1195 unsigned long flags; 1196 struct list_head maps; 1197 struct dm_thin_new_mapping *m, *tmp; 1198 1199 INIT_LIST_HEAD(&maps); 1200 spin_lock_irqsave(&pool->lock, flags); 1201 list_splice_init(head, &maps); 1202 spin_unlock_irqrestore(&pool->lock, flags); 1203 1204 list_for_each_entry_safe(m, tmp, &maps, list) 1205 (*fn)(m); 1206 } 1207 1208 /* 1209 * Deferred bio jobs. 1210 */ 1211 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1212 { 1213 return bio->bi_iter.bi_size == 1214 (pool->sectors_per_block << SECTOR_SHIFT); 1215 } 1216 1217 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1218 { 1219 return (bio_data_dir(bio) == WRITE) && 1220 io_overlaps_block(pool, bio); 1221 } 1222 1223 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1224 bio_end_io_t *fn) 1225 { 1226 *save = bio->bi_end_io; 1227 bio->bi_end_io = fn; 1228 } 1229 1230 static int ensure_next_mapping(struct pool *pool) 1231 { 1232 if (pool->next_mapping) 1233 return 0; 1234 1235 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1236 1237 return pool->next_mapping ? 0 : -ENOMEM; 1238 } 1239 1240 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1241 { 1242 struct dm_thin_new_mapping *m = pool->next_mapping; 1243 1244 BUG_ON(!pool->next_mapping); 1245 1246 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1247 INIT_LIST_HEAD(&m->list); 1248 m->bio = NULL; 1249 1250 pool->next_mapping = NULL; 1251 1252 return m; 1253 } 1254 1255 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1256 sector_t begin, sector_t end) 1257 { 1258 struct dm_io_region to; 1259 1260 to.bdev = tc->pool_dev->bdev; 1261 to.sector = begin; 1262 to.count = end - begin; 1263 1264 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1265 } 1266 1267 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1268 dm_block_t data_begin, 1269 struct dm_thin_new_mapping *m) 1270 { 1271 struct pool *pool = tc->pool; 1272 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1273 1274 h->overwrite_mapping = m; 1275 m->bio = bio; 1276 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1277 inc_all_io_entry(pool, bio); 1278 remap_and_issue(tc, bio, data_begin); 1279 } 1280 1281 /* 1282 * A partial copy also needs to zero the uncopied region. 1283 */ 1284 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1285 struct dm_dev *origin, dm_block_t data_origin, 1286 dm_block_t data_dest, 1287 struct dm_bio_prison_cell *cell, struct bio *bio, 1288 sector_t len) 1289 { 1290 struct pool *pool = tc->pool; 1291 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1292 1293 m->tc = tc; 1294 m->virt_begin = virt_block; 1295 m->virt_end = virt_block + 1u; 1296 m->data_block = data_dest; 1297 m->cell = cell; 1298 1299 /* 1300 * quiesce action + copy action + an extra reference held for the 1301 * duration of this function (we may need to inc later for a 1302 * partial zero). 1303 */ 1304 atomic_set(&m->prepare_actions, 3); 1305 1306 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1307 complete_mapping_preparation(m); /* already quiesced */ 1308 1309 /* 1310 * IO to pool_dev remaps to the pool target's data_dev. 1311 * 1312 * If the whole block of data is being overwritten, we can issue the 1313 * bio immediately. Otherwise we use kcopyd to clone the data first. 1314 */ 1315 if (io_overwrites_block(pool, bio)) 1316 remap_and_issue_overwrite(tc, bio, data_dest, m); 1317 else { 1318 struct dm_io_region from, to; 1319 1320 from.bdev = origin->bdev; 1321 from.sector = data_origin * pool->sectors_per_block; 1322 from.count = len; 1323 1324 to.bdev = tc->pool_dev->bdev; 1325 to.sector = data_dest * pool->sectors_per_block; 1326 to.count = len; 1327 1328 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1329 0, copy_complete, m); 1330 1331 /* 1332 * Do we need to zero a tail region? 1333 */ 1334 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1335 atomic_inc(&m->prepare_actions); 1336 ll_zero(tc, m, 1337 data_dest * pool->sectors_per_block + len, 1338 (data_dest + 1) * pool->sectors_per_block); 1339 } 1340 } 1341 1342 complete_mapping_preparation(m); /* drop our ref */ 1343 } 1344 1345 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1346 dm_block_t data_origin, dm_block_t data_dest, 1347 struct dm_bio_prison_cell *cell, struct bio *bio) 1348 { 1349 schedule_copy(tc, virt_block, tc->pool_dev, 1350 data_origin, data_dest, cell, bio, 1351 tc->pool->sectors_per_block); 1352 } 1353 1354 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1355 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1356 struct bio *bio) 1357 { 1358 struct pool *pool = tc->pool; 1359 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1360 1361 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1362 m->tc = tc; 1363 m->virt_begin = virt_block; 1364 m->virt_end = virt_block + 1u; 1365 m->data_block = data_block; 1366 m->cell = cell; 1367 1368 /* 1369 * If the whole block of data is being overwritten or we are not 1370 * zeroing pre-existing data, we can issue the bio immediately. 1371 * Otherwise we use kcopyd to zero the data first. 1372 */ 1373 if (pool->pf.zero_new_blocks) { 1374 if (io_overwrites_block(pool, bio)) 1375 remap_and_issue_overwrite(tc, bio, data_block, m); 1376 else 1377 ll_zero(tc, m, data_block * pool->sectors_per_block, 1378 (data_block + 1) * pool->sectors_per_block); 1379 } else 1380 process_prepared_mapping(m); 1381 } 1382 1383 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1384 dm_block_t data_dest, 1385 struct dm_bio_prison_cell *cell, struct bio *bio) 1386 { 1387 struct pool *pool = tc->pool; 1388 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1389 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1390 1391 if (virt_block_end <= tc->origin_size) 1392 schedule_copy(tc, virt_block, tc->origin_dev, 1393 virt_block, data_dest, cell, bio, 1394 pool->sectors_per_block); 1395 1396 else if (virt_block_begin < tc->origin_size) 1397 schedule_copy(tc, virt_block, tc->origin_dev, 1398 virt_block, data_dest, cell, bio, 1399 tc->origin_size - virt_block_begin); 1400 1401 else 1402 schedule_zero(tc, virt_block, data_dest, cell, bio); 1403 } 1404 1405 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1406 1407 static void requeue_bios(struct pool *pool); 1408 1409 static bool is_read_only_pool_mode(enum pool_mode mode) 1410 { 1411 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1412 } 1413 1414 static bool is_read_only(struct pool *pool) 1415 { 1416 return is_read_only_pool_mode(get_pool_mode(pool)); 1417 } 1418 1419 static void check_for_metadata_space(struct pool *pool) 1420 { 1421 int r; 1422 const char *ooms_reason = NULL; 1423 dm_block_t nr_free; 1424 1425 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1426 if (r) 1427 ooms_reason = "Could not get free metadata blocks"; 1428 else if (!nr_free) 1429 ooms_reason = "No free metadata blocks"; 1430 1431 if (ooms_reason && !is_read_only(pool)) { 1432 DMERR("%s", ooms_reason); 1433 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1434 } 1435 } 1436 1437 static void check_for_data_space(struct pool *pool) 1438 { 1439 int r; 1440 dm_block_t nr_free; 1441 1442 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1443 return; 1444 1445 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1446 if (r) 1447 return; 1448 1449 if (nr_free) { 1450 set_pool_mode(pool, PM_WRITE); 1451 requeue_bios(pool); 1452 } 1453 } 1454 1455 /* 1456 * A non-zero return indicates read_only or fail_io mode. 1457 * Many callers don't care about the return value. 1458 */ 1459 static int commit(struct pool *pool) 1460 { 1461 int r; 1462 1463 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1464 return -EINVAL; 1465 1466 r = dm_pool_commit_metadata(pool->pmd); 1467 if (r) 1468 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1469 else { 1470 check_for_metadata_space(pool); 1471 check_for_data_space(pool); 1472 } 1473 1474 return r; 1475 } 1476 1477 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1478 { 1479 unsigned long flags; 1480 1481 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1482 DMWARN("%s: reached low water mark for data device: sending event.", 1483 dm_device_name(pool->pool_md)); 1484 spin_lock_irqsave(&pool->lock, flags); 1485 pool->low_water_triggered = true; 1486 spin_unlock_irqrestore(&pool->lock, flags); 1487 dm_table_event(pool->ti->table); 1488 } 1489 } 1490 1491 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1492 { 1493 int r; 1494 dm_block_t free_blocks; 1495 struct pool *pool = tc->pool; 1496 1497 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1498 return -EINVAL; 1499 1500 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1501 if (r) { 1502 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1503 return r; 1504 } 1505 1506 check_low_water_mark(pool, free_blocks); 1507 1508 if (!free_blocks) { 1509 /* 1510 * Try to commit to see if that will free up some 1511 * more space. 1512 */ 1513 r = commit(pool); 1514 if (r) 1515 return r; 1516 1517 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1518 if (r) { 1519 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1520 return r; 1521 } 1522 1523 if (!free_blocks) { 1524 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1525 return -ENOSPC; 1526 } 1527 } 1528 1529 r = dm_pool_alloc_data_block(pool->pmd, result); 1530 if (r) { 1531 if (r == -ENOSPC) 1532 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1533 else 1534 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1535 return r; 1536 } 1537 1538 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1539 if (r) { 1540 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1541 return r; 1542 } 1543 1544 if (!free_blocks) { 1545 /* Let's commit before we use up the metadata reserve. */ 1546 r = commit(pool); 1547 if (r) 1548 return r; 1549 } 1550 1551 return 0; 1552 } 1553 1554 /* 1555 * If we have run out of space, queue bios until the device is 1556 * resumed, presumably after having been reloaded with more space. 1557 */ 1558 static void retry_on_resume(struct bio *bio) 1559 { 1560 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1561 struct thin_c *tc = h->tc; 1562 unsigned long flags; 1563 1564 spin_lock_irqsave(&tc->lock, flags); 1565 bio_list_add(&tc->retry_on_resume_list, bio); 1566 spin_unlock_irqrestore(&tc->lock, flags); 1567 } 1568 1569 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1570 { 1571 enum pool_mode m = get_pool_mode(pool); 1572 1573 switch (m) { 1574 case PM_WRITE: 1575 /* Shouldn't get here */ 1576 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1577 return BLK_STS_IOERR; 1578 1579 case PM_OUT_OF_DATA_SPACE: 1580 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1581 1582 case PM_OUT_OF_METADATA_SPACE: 1583 case PM_READ_ONLY: 1584 case PM_FAIL: 1585 return BLK_STS_IOERR; 1586 default: 1587 /* Shouldn't get here */ 1588 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1589 return BLK_STS_IOERR; 1590 } 1591 } 1592 1593 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1594 { 1595 blk_status_t error = should_error_unserviceable_bio(pool); 1596 1597 if (error) { 1598 bio->bi_status = error; 1599 bio_endio(bio); 1600 } else 1601 retry_on_resume(bio); 1602 } 1603 1604 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1605 { 1606 struct bio *bio; 1607 struct bio_list bios; 1608 blk_status_t error; 1609 1610 error = should_error_unserviceable_bio(pool); 1611 if (error) { 1612 cell_error_with_code(pool, cell, error); 1613 return; 1614 } 1615 1616 bio_list_init(&bios); 1617 cell_release(pool, cell, &bios); 1618 1619 while ((bio = bio_list_pop(&bios))) 1620 retry_on_resume(bio); 1621 } 1622 1623 static void process_discard_cell_no_passdown(struct thin_c *tc, 1624 struct dm_bio_prison_cell *virt_cell) 1625 { 1626 struct pool *pool = tc->pool; 1627 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1628 1629 /* 1630 * We don't need to lock the data blocks, since there's no 1631 * passdown. We only lock data blocks for allocation and breaking sharing. 1632 */ 1633 m->tc = tc; 1634 m->virt_begin = virt_cell->key.block_begin; 1635 m->virt_end = virt_cell->key.block_end; 1636 m->cell = virt_cell; 1637 m->bio = virt_cell->holder; 1638 1639 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1640 pool->process_prepared_discard(m); 1641 } 1642 1643 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1644 struct bio *bio) 1645 { 1646 struct pool *pool = tc->pool; 1647 1648 int r; 1649 bool maybe_shared; 1650 struct dm_cell_key data_key; 1651 struct dm_bio_prison_cell *data_cell; 1652 struct dm_thin_new_mapping *m; 1653 dm_block_t virt_begin, virt_end, data_begin; 1654 1655 while (begin != end) { 1656 r = ensure_next_mapping(pool); 1657 if (r) 1658 /* we did our best */ 1659 return; 1660 1661 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1662 &data_begin, &maybe_shared); 1663 if (r) 1664 /* 1665 * Silently fail, letting any mappings we've 1666 * created complete. 1667 */ 1668 break; 1669 1670 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1671 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1672 /* contention, we'll give up with this range */ 1673 begin = virt_end; 1674 continue; 1675 } 1676 1677 /* 1678 * IO may still be going to the destination block. We must 1679 * quiesce before we can do the removal. 1680 */ 1681 m = get_next_mapping(pool); 1682 m->tc = tc; 1683 m->maybe_shared = maybe_shared; 1684 m->virt_begin = virt_begin; 1685 m->virt_end = virt_end; 1686 m->data_block = data_begin; 1687 m->cell = data_cell; 1688 m->bio = bio; 1689 1690 /* 1691 * The parent bio must not complete before sub discard bios are 1692 * chained to it (see end_discard's bio_chain)! 1693 * 1694 * This per-mapping bi_remaining increment is paired with 1695 * the implicit decrement that occurs via bio_endio() in 1696 * end_discard(). 1697 */ 1698 bio_inc_remaining(bio); 1699 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1700 pool->process_prepared_discard(m); 1701 1702 begin = virt_end; 1703 } 1704 } 1705 1706 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1707 { 1708 struct bio *bio = virt_cell->holder; 1709 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1710 1711 /* 1712 * The virt_cell will only get freed once the origin bio completes. 1713 * This means it will remain locked while all the individual 1714 * passdown bios are in flight. 1715 */ 1716 h->cell = virt_cell; 1717 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1718 1719 /* 1720 * We complete the bio now, knowing that the bi_remaining field 1721 * will prevent completion until the sub range discards have 1722 * completed. 1723 */ 1724 bio_endio(bio); 1725 } 1726 1727 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1728 { 1729 dm_block_t begin, end; 1730 struct dm_cell_key virt_key; 1731 struct dm_bio_prison_cell *virt_cell; 1732 1733 get_bio_block_range(tc, bio, &begin, &end); 1734 if (begin == end) { 1735 /* 1736 * The discard covers less than a block. 1737 */ 1738 bio_endio(bio); 1739 return; 1740 } 1741 1742 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1743 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1744 /* 1745 * Potential starvation issue: We're relying on the 1746 * fs/application being well behaved, and not trying to 1747 * send IO to a region at the same time as discarding it. 1748 * If they do this persistently then it's possible this 1749 * cell will never be granted. 1750 */ 1751 return; 1752 1753 tc->pool->process_discard_cell(tc, virt_cell); 1754 } 1755 1756 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1757 struct dm_cell_key *key, 1758 struct dm_thin_lookup_result *lookup_result, 1759 struct dm_bio_prison_cell *cell) 1760 { 1761 int r; 1762 dm_block_t data_block; 1763 struct pool *pool = tc->pool; 1764 1765 r = alloc_data_block(tc, &data_block); 1766 switch (r) { 1767 case 0: 1768 schedule_internal_copy(tc, block, lookup_result->block, 1769 data_block, cell, bio); 1770 break; 1771 1772 case -ENOSPC: 1773 retry_bios_on_resume(pool, cell); 1774 break; 1775 1776 default: 1777 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1778 __func__, r); 1779 cell_error(pool, cell); 1780 break; 1781 } 1782 } 1783 1784 static void __remap_and_issue_shared_cell(void *context, 1785 struct dm_bio_prison_cell *cell) 1786 { 1787 struct remap_info *info = context; 1788 struct bio *bio; 1789 1790 while ((bio = bio_list_pop(&cell->bios))) { 1791 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1792 bio_op(bio) == REQ_OP_DISCARD) 1793 bio_list_add(&info->defer_bios, bio); 1794 else { 1795 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1796 1797 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1798 inc_all_io_entry(info->tc->pool, bio); 1799 bio_list_add(&info->issue_bios, bio); 1800 } 1801 } 1802 } 1803 1804 static void remap_and_issue_shared_cell(struct thin_c *tc, 1805 struct dm_bio_prison_cell *cell, 1806 dm_block_t block) 1807 { 1808 struct bio *bio; 1809 struct remap_info info; 1810 1811 info.tc = tc; 1812 bio_list_init(&info.defer_bios); 1813 bio_list_init(&info.issue_bios); 1814 1815 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1816 &info, cell); 1817 1818 while ((bio = bio_list_pop(&info.defer_bios))) 1819 thin_defer_bio(tc, bio); 1820 1821 while ((bio = bio_list_pop(&info.issue_bios))) 1822 remap_and_issue(tc, bio, block); 1823 } 1824 1825 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1826 dm_block_t block, 1827 struct dm_thin_lookup_result *lookup_result, 1828 struct dm_bio_prison_cell *virt_cell) 1829 { 1830 struct dm_bio_prison_cell *data_cell; 1831 struct pool *pool = tc->pool; 1832 struct dm_cell_key key; 1833 1834 /* 1835 * If cell is already occupied, then sharing is already in the process 1836 * of being broken so we have nothing further to do here. 1837 */ 1838 build_data_key(tc->td, lookup_result->block, &key); 1839 if (bio_detain(pool, &key, bio, &data_cell)) { 1840 cell_defer_no_holder(tc, virt_cell); 1841 return; 1842 } 1843 1844 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1845 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1846 cell_defer_no_holder(tc, virt_cell); 1847 } else { 1848 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1849 1850 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1851 inc_all_io_entry(pool, bio); 1852 remap_and_issue(tc, bio, lookup_result->block); 1853 1854 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1855 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1856 } 1857 } 1858 1859 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1860 struct dm_bio_prison_cell *cell) 1861 { 1862 int r; 1863 dm_block_t data_block; 1864 struct pool *pool = tc->pool; 1865 1866 /* 1867 * Remap empty bios (flushes) immediately, without provisioning. 1868 */ 1869 if (!bio->bi_iter.bi_size) { 1870 inc_all_io_entry(pool, bio); 1871 cell_defer_no_holder(tc, cell); 1872 1873 remap_and_issue(tc, bio, 0); 1874 return; 1875 } 1876 1877 /* 1878 * Fill read bios with zeroes and complete them immediately. 1879 */ 1880 if (bio_data_dir(bio) == READ) { 1881 zero_fill_bio(bio); 1882 cell_defer_no_holder(tc, cell); 1883 bio_endio(bio); 1884 return; 1885 } 1886 1887 r = alloc_data_block(tc, &data_block); 1888 switch (r) { 1889 case 0: 1890 if (tc->origin_dev) 1891 schedule_external_copy(tc, block, data_block, cell, bio); 1892 else 1893 schedule_zero(tc, block, data_block, cell, bio); 1894 break; 1895 1896 case -ENOSPC: 1897 retry_bios_on_resume(pool, cell); 1898 break; 1899 1900 default: 1901 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1902 __func__, r); 1903 cell_error(pool, cell); 1904 break; 1905 } 1906 } 1907 1908 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1909 { 1910 int r; 1911 struct pool *pool = tc->pool; 1912 struct bio *bio = cell->holder; 1913 dm_block_t block = get_bio_block(tc, bio); 1914 struct dm_thin_lookup_result lookup_result; 1915 1916 if (tc->requeue_mode) { 1917 cell_requeue(pool, cell); 1918 return; 1919 } 1920 1921 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1922 switch (r) { 1923 case 0: 1924 if (lookup_result.shared) 1925 process_shared_bio(tc, bio, block, &lookup_result, cell); 1926 else { 1927 inc_all_io_entry(pool, bio); 1928 remap_and_issue(tc, bio, lookup_result.block); 1929 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1930 } 1931 break; 1932 1933 case -ENODATA: 1934 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1935 inc_all_io_entry(pool, bio); 1936 cell_defer_no_holder(tc, cell); 1937 1938 if (bio_end_sector(bio) <= tc->origin_size) 1939 remap_to_origin_and_issue(tc, bio); 1940 1941 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1942 zero_fill_bio(bio); 1943 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1944 remap_to_origin_and_issue(tc, bio); 1945 1946 } else { 1947 zero_fill_bio(bio); 1948 bio_endio(bio); 1949 } 1950 } else 1951 provision_block(tc, bio, block, cell); 1952 break; 1953 1954 default: 1955 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1956 __func__, r); 1957 cell_defer_no_holder(tc, cell); 1958 bio_io_error(bio); 1959 break; 1960 } 1961 } 1962 1963 static void process_bio(struct thin_c *tc, struct bio *bio) 1964 { 1965 struct pool *pool = tc->pool; 1966 dm_block_t block = get_bio_block(tc, bio); 1967 struct dm_bio_prison_cell *cell; 1968 struct dm_cell_key key; 1969 1970 /* 1971 * If cell is already occupied, then the block is already 1972 * being provisioned so we have nothing further to do here. 1973 */ 1974 build_virtual_key(tc->td, block, &key); 1975 if (bio_detain(pool, &key, bio, &cell)) 1976 return; 1977 1978 process_cell(tc, cell); 1979 } 1980 1981 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1982 struct dm_bio_prison_cell *cell) 1983 { 1984 int r; 1985 int rw = bio_data_dir(bio); 1986 dm_block_t block = get_bio_block(tc, bio); 1987 struct dm_thin_lookup_result lookup_result; 1988 1989 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1990 switch (r) { 1991 case 0: 1992 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1993 handle_unserviceable_bio(tc->pool, bio); 1994 if (cell) 1995 cell_defer_no_holder(tc, cell); 1996 } else { 1997 inc_all_io_entry(tc->pool, bio); 1998 remap_and_issue(tc, bio, lookup_result.block); 1999 if (cell) 2000 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2001 } 2002 break; 2003 2004 case -ENODATA: 2005 if (cell) 2006 cell_defer_no_holder(tc, cell); 2007 if (rw != READ) { 2008 handle_unserviceable_bio(tc->pool, bio); 2009 break; 2010 } 2011 2012 if (tc->origin_dev) { 2013 inc_all_io_entry(tc->pool, bio); 2014 remap_to_origin_and_issue(tc, bio); 2015 break; 2016 } 2017 2018 zero_fill_bio(bio); 2019 bio_endio(bio); 2020 break; 2021 2022 default: 2023 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2024 __func__, r); 2025 if (cell) 2026 cell_defer_no_holder(tc, cell); 2027 bio_io_error(bio); 2028 break; 2029 } 2030 } 2031 2032 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2033 { 2034 __process_bio_read_only(tc, bio, NULL); 2035 } 2036 2037 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2038 { 2039 __process_bio_read_only(tc, cell->holder, cell); 2040 } 2041 2042 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2043 { 2044 bio_endio(bio); 2045 } 2046 2047 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2048 { 2049 bio_io_error(bio); 2050 } 2051 2052 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2053 { 2054 cell_success(tc->pool, cell); 2055 } 2056 2057 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2058 { 2059 cell_error(tc->pool, cell); 2060 } 2061 2062 /* 2063 * FIXME: should we also commit due to size of transaction, measured in 2064 * metadata blocks? 2065 */ 2066 static int need_commit_due_to_time(struct pool *pool) 2067 { 2068 return !time_in_range(jiffies, pool->last_commit_jiffies, 2069 pool->last_commit_jiffies + COMMIT_PERIOD); 2070 } 2071 2072 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2073 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2074 2075 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2076 { 2077 struct rb_node **rbp, *parent; 2078 struct dm_thin_endio_hook *pbd; 2079 sector_t bi_sector = bio->bi_iter.bi_sector; 2080 2081 rbp = &tc->sort_bio_list.rb_node; 2082 parent = NULL; 2083 while (*rbp) { 2084 parent = *rbp; 2085 pbd = thin_pbd(parent); 2086 2087 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2088 rbp = &(*rbp)->rb_left; 2089 else 2090 rbp = &(*rbp)->rb_right; 2091 } 2092 2093 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2094 rb_link_node(&pbd->rb_node, parent, rbp); 2095 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2096 } 2097 2098 static void __extract_sorted_bios(struct thin_c *tc) 2099 { 2100 struct rb_node *node; 2101 struct dm_thin_endio_hook *pbd; 2102 struct bio *bio; 2103 2104 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2105 pbd = thin_pbd(node); 2106 bio = thin_bio(pbd); 2107 2108 bio_list_add(&tc->deferred_bio_list, bio); 2109 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2110 } 2111 2112 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2113 } 2114 2115 static void __sort_thin_deferred_bios(struct thin_c *tc) 2116 { 2117 struct bio *bio; 2118 struct bio_list bios; 2119 2120 bio_list_init(&bios); 2121 bio_list_merge(&bios, &tc->deferred_bio_list); 2122 bio_list_init(&tc->deferred_bio_list); 2123 2124 /* Sort deferred_bio_list using rb-tree */ 2125 while ((bio = bio_list_pop(&bios))) 2126 __thin_bio_rb_add(tc, bio); 2127 2128 /* 2129 * Transfer the sorted bios in sort_bio_list back to 2130 * deferred_bio_list to allow lockless submission of 2131 * all bios. 2132 */ 2133 __extract_sorted_bios(tc); 2134 } 2135 2136 static void process_thin_deferred_bios(struct thin_c *tc) 2137 { 2138 struct pool *pool = tc->pool; 2139 unsigned long flags; 2140 struct bio *bio; 2141 struct bio_list bios; 2142 struct blk_plug plug; 2143 unsigned count = 0; 2144 2145 if (tc->requeue_mode) { 2146 error_thin_bio_list(tc, &tc->deferred_bio_list, 2147 BLK_STS_DM_REQUEUE); 2148 return; 2149 } 2150 2151 bio_list_init(&bios); 2152 2153 spin_lock_irqsave(&tc->lock, flags); 2154 2155 if (bio_list_empty(&tc->deferred_bio_list)) { 2156 spin_unlock_irqrestore(&tc->lock, flags); 2157 return; 2158 } 2159 2160 __sort_thin_deferred_bios(tc); 2161 2162 bio_list_merge(&bios, &tc->deferred_bio_list); 2163 bio_list_init(&tc->deferred_bio_list); 2164 2165 spin_unlock_irqrestore(&tc->lock, flags); 2166 2167 blk_start_plug(&plug); 2168 while ((bio = bio_list_pop(&bios))) { 2169 /* 2170 * If we've got no free new_mapping structs, and processing 2171 * this bio might require one, we pause until there are some 2172 * prepared mappings to process. 2173 */ 2174 if (ensure_next_mapping(pool)) { 2175 spin_lock_irqsave(&tc->lock, flags); 2176 bio_list_add(&tc->deferred_bio_list, bio); 2177 bio_list_merge(&tc->deferred_bio_list, &bios); 2178 spin_unlock_irqrestore(&tc->lock, flags); 2179 break; 2180 } 2181 2182 if (bio_op(bio) == REQ_OP_DISCARD) 2183 pool->process_discard(tc, bio); 2184 else 2185 pool->process_bio(tc, bio); 2186 2187 if ((count++ & 127) == 0) { 2188 throttle_work_update(&pool->throttle); 2189 dm_pool_issue_prefetches(pool->pmd); 2190 } 2191 } 2192 blk_finish_plug(&plug); 2193 } 2194 2195 static int cmp_cells(const void *lhs, const void *rhs) 2196 { 2197 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2198 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2199 2200 BUG_ON(!lhs_cell->holder); 2201 BUG_ON(!rhs_cell->holder); 2202 2203 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2204 return -1; 2205 2206 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2207 return 1; 2208 2209 return 0; 2210 } 2211 2212 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2213 { 2214 unsigned count = 0; 2215 struct dm_bio_prison_cell *cell, *tmp; 2216 2217 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2218 if (count >= CELL_SORT_ARRAY_SIZE) 2219 break; 2220 2221 pool->cell_sort_array[count++] = cell; 2222 list_del(&cell->user_list); 2223 } 2224 2225 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2226 2227 return count; 2228 } 2229 2230 static void process_thin_deferred_cells(struct thin_c *tc) 2231 { 2232 struct pool *pool = tc->pool; 2233 unsigned long flags; 2234 struct list_head cells; 2235 struct dm_bio_prison_cell *cell; 2236 unsigned i, j, count; 2237 2238 INIT_LIST_HEAD(&cells); 2239 2240 spin_lock_irqsave(&tc->lock, flags); 2241 list_splice_init(&tc->deferred_cells, &cells); 2242 spin_unlock_irqrestore(&tc->lock, flags); 2243 2244 if (list_empty(&cells)) 2245 return; 2246 2247 do { 2248 count = sort_cells(tc->pool, &cells); 2249 2250 for (i = 0; i < count; i++) { 2251 cell = pool->cell_sort_array[i]; 2252 BUG_ON(!cell->holder); 2253 2254 /* 2255 * If we've got no free new_mapping structs, and processing 2256 * this bio might require one, we pause until there are some 2257 * prepared mappings to process. 2258 */ 2259 if (ensure_next_mapping(pool)) { 2260 for (j = i; j < count; j++) 2261 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2262 2263 spin_lock_irqsave(&tc->lock, flags); 2264 list_splice(&cells, &tc->deferred_cells); 2265 spin_unlock_irqrestore(&tc->lock, flags); 2266 return; 2267 } 2268 2269 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2270 pool->process_discard_cell(tc, cell); 2271 else 2272 pool->process_cell(tc, cell); 2273 } 2274 } while (!list_empty(&cells)); 2275 } 2276 2277 static void thin_get(struct thin_c *tc); 2278 static void thin_put(struct thin_c *tc); 2279 2280 /* 2281 * We can't hold rcu_read_lock() around code that can block. So we 2282 * find a thin with the rcu lock held; bump a refcount; then drop 2283 * the lock. 2284 */ 2285 static struct thin_c *get_first_thin(struct pool *pool) 2286 { 2287 struct thin_c *tc = NULL; 2288 2289 rcu_read_lock(); 2290 if (!list_empty(&pool->active_thins)) { 2291 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2292 thin_get(tc); 2293 } 2294 rcu_read_unlock(); 2295 2296 return tc; 2297 } 2298 2299 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2300 { 2301 struct thin_c *old_tc = tc; 2302 2303 rcu_read_lock(); 2304 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2305 thin_get(tc); 2306 thin_put(old_tc); 2307 rcu_read_unlock(); 2308 return tc; 2309 } 2310 thin_put(old_tc); 2311 rcu_read_unlock(); 2312 2313 return NULL; 2314 } 2315 2316 static void process_deferred_bios(struct pool *pool) 2317 { 2318 unsigned long flags; 2319 struct bio *bio; 2320 struct bio_list bios; 2321 struct thin_c *tc; 2322 2323 tc = get_first_thin(pool); 2324 while (tc) { 2325 process_thin_deferred_cells(tc); 2326 process_thin_deferred_bios(tc); 2327 tc = get_next_thin(pool, tc); 2328 } 2329 2330 /* 2331 * If there are any deferred flush bios, we must commit 2332 * the metadata before issuing them. 2333 */ 2334 bio_list_init(&bios); 2335 spin_lock_irqsave(&pool->lock, flags); 2336 bio_list_merge(&bios, &pool->deferred_flush_bios); 2337 bio_list_init(&pool->deferred_flush_bios); 2338 spin_unlock_irqrestore(&pool->lock, flags); 2339 2340 if (bio_list_empty(&bios) && 2341 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2342 return; 2343 2344 if (commit(pool)) { 2345 while ((bio = bio_list_pop(&bios))) 2346 bio_io_error(bio); 2347 return; 2348 } 2349 pool->last_commit_jiffies = jiffies; 2350 2351 while ((bio = bio_list_pop(&bios))) 2352 generic_make_request(bio); 2353 } 2354 2355 static void do_worker(struct work_struct *ws) 2356 { 2357 struct pool *pool = container_of(ws, struct pool, worker); 2358 2359 throttle_work_start(&pool->throttle); 2360 dm_pool_issue_prefetches(pool->pmd); 2361 throttle_work_update(&pool->throttle); 2362 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2363 throttle_work_update(&pool->throttle); 2364 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2365 throttle_work_update(&pool->throttle); 2366 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2367 throttle_work_update(&pool->throttle); 2368 process_deferred_bios(pool); 2369 throttle_work_complete(&pool->throttle); 2370 } 2371 2372 /* 2373 * We want to commit periodically so that not too much 2374 * unwritten data builds up. 2375 */ 2376 static void do_waker(struct work_struct *ws) 2377 { 2378 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2379 wake_worker(pool); 2380 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2381 } 2382 2383 /* 2384 * We're holding onto IO to allow userland time to react. After the 2385 * timeout either the pool will have been resized (and thus back in 2386 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2387 */ 2388 static void do_no_space_timeout(struct work_struct *ws) 2389 { 2390 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2391 no_space_timeout); 2392 2393 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2394 pool->pf.error_if_no_space = true; 2395 notify_of_pool_mode_change(pool); 2396 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2397 } 2398 } 2399 2400 /*----------------------------------------------------------------*/ 2401 2402 struct pool_work { 2403 struct work_struct worker; 2404 struct completion complete; 2405 }; 2406 2407 static struct pool_work *to_pool_work(struct work_struct *ws) 2408 { 2409 return container_of(ws, struct pool_work, worker); 2410 } 2411 2412 static void pool_work_complete(struct pool_work *pw) 2413 { 2414 complete(&pw->complete); 2415 } 2416 2417 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2418 void (*fn)(struct work_struct *)) 2419 { 2420 INIT_WORK_ONSTACK(&pw->worker, fn); 2421 init_completion(&pw->complete); 2422 queue_work(pool->wq, &pw->worker); 2423 wait_for_completion(&pw->complete); 2424 } 2425 2426 /*----------------------------------------------------------------*/ 2427 2428 struct noflush_work { 2429 struct pool_work pw; 2430 struct thin_c *tc; 2431 }; 2432 2433 static struct noflush_work *to_noflush(struct work_struct *ws) 2434 { 2435 return container_of(to_pool_work(ws), struct noflush_work, pw); 2436 } 2437 2438 static void do_noflush_start(struct work_struct *ws) 2439 { 2440 struct noflush_work *w = to_noflush(ws); 2441 w->tc->requeue_mode = true; 2442 requeue_io(w->tc); 2443 pool_work_complete(&w->pw); 2444 } 2445 2446 static void do_noflush_stop(struct work_struct *ws) 2447 { 2448 struct noflush_work *w = to_noflush(ws); 2449 w->tc->requeue_mode = false; 2450 pool_work_complete(&w->pw); 2451 } 2452 2453 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2454 { 2455 struct noflush_work w; 2456 2457 w.tc = tc; 2458 pool_work_wait(&w.pw, tc->pool, fn); 2459 } 2460 2461 /*----------------------------------------------------------------*/ 2462 2463 static bool passdown_enabled(struct pool_c *pt) 2464 { 2465 return pt->adjusted_pf.discard_passdown; 2466 } 2467 2468 static void set_discard_callbacks(struct pool *pool) 2469 { 2470 struct pool_c *pt = pool->ti->private; 2471 2472 if (passdown_enabled(pt)) { 2473 pool->process_discard_cell = process_discard_cell_passdown; 2474 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2475 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2476 } else { 2477 pool->process_discard_cell = process_discard_cell_no_passdown; 2478 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2479 } 2480 } 2481 2482 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2483 { 2484 struct pool_c *pt = pool->ti->private; 2485 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2486 enum pool_mode old_mode = get_pool_mode(pool); 2487 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2488 2489 /* 2490 * Never allow the pool to transition to PM_WRITE mode if user 2491 * intervention is required to verify metadata and data consistency. 2492 */ 2493 if (new_mode == PM_WRITE && needs_check) { 2494 DMERR("%s: unable to switch pool to write mode until repaired.", 2495 dm_device_name(pool->pool_md)); 2496 if (old_mode != new_mode) 2497 new_mode = old_mode; 2498 else 2499 new_mode = PM_READ_ONLY; 2500 } 2501 /* 2502 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2503 * not going to recover without a thin_repair. So we never let the 2504 * pool move out of the old mode. 2505 */ 2506 if (old_mode == PM_FAIL) 2507 new_mode = old_mode; 2508 2509 switch (new_mode) { 2510 case PM_FAIL: 2511 dm_pool_metadata_read_only(pool->pmd); 2512 pool->process_bio = process_bio_fail; 2513 pool->process_discard = process_bio_fail; 2514 pool->process_cell = process_cell_fail; 2515 pool->process_discard_cell = process_cell_fail; 2516 pool->process_prepared_mapping = process_prepared_mapping_fail; 2517 pool->process_prepared_discard = process_prepared_discard_fail; 2518 2519 error_retry_list(pool); 2520 break; 2521 2522 case PM_OUT_OF_METADATA_SPACE: 2523 case PM_READ_ONLY: 2524 dm_pool_metadata_read_only(pool->pmd); 2525 pool->process_bio = process_bio_read_only; 2526 pool->process_discard = process_bio_success; 2527 pool->process_cell = process_cell_read_only; 2528 pool->process_discard_cell = process_cell_success; 2529 pool->process_prepared_mapping = process_prepared_mapping_fail; 2530 pool->process_prepared_discard = process_prepared_discard_success; 2531 2532 error_retry_list(pool); 2533 break; 2534 2535 case PM_OUT_OF_DATA_SPACE: 2536 /* 2537 * Ideally we'd never hit this state; the low water mark 2538 * would trigger userland to extend the pool before we 2539 * completely run out of data space. However, many small 2540 * IOs to unprovisioned space can consume data space at an 2541 * alarming rate. Adjust your low water mark if you're 2542 * frequently seeing this mode. 2543 */ 2544 pool->out_of_data_space = true; 2545 pool->process_bio = process_bio_read_only; 2546 pool->process_discard = process_discard_bio; 2547 pool->process_cell = process_cell_read_only; 2548 pool->process_prepared_mapping = process_prepared_mapping; 2549 set_discard_callbacks(pool); 2550 2551 if (!pool->pf.error_if_no_space && no_space_timeout) 2552 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2553 break; 2554 2555 case PM_WRITE: 2556 if (old_mode == PM_OUT_OF_DATA_SPACE) 2557 cancel_delayed_work_sync(&pool->no_space_timeout); 2558 pool->out_of_data_space = false; 2559 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2560 dm_pool_metadata_read_write(pool->pmd); 2561 pool->process_bio = process_bio; 2562 pool->process_discard = process_discard_bio; 2563 pool->process_cell = process_cell; 2564 pool->process_prepared_mapping = process_prepared_mapping; 2565 set_discard_callbacks(pool); 2566 break; 2567 } 2568 2569 pool->pf.mode = new_mode; 2570 /* 2571 * The pool mode may have changed, sync it so bind_control_target() 2572 * doesn't cause an unexpected mode transition on resume. 2573 */ 2574 pt->adjusted_pf.mode = new_mode; 2575 2576 if (old_mode != new_mode) 2577 notify_of_pool_mode_change(pool); 2578 } 2579 2580 static void abort_transaction(struct pool *pool) 2581 { 2582 const char *dev_name = dm_device_name(pool->pool_md); 2583 2584 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2585 if (dm_pool_abort_metadata(pool->pmd)) { 2586 DMERR("%s: failed to abort metadata transaction", dev_name); 2587 set_pool_mode(pool, PM_FAIL); 2588 } 2589 2590 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2591 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2592 set_pool_mode(pool, PM_FAIL); 2593 } 2594 } 2595 2596 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2597 { 2598 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2599 dm_device_name(pool->pool_md), op, r); 2600 2601 abort_transaction(pool); 2602 set_pool_mode(pool, PM_READ_ONLY); 2603 } 2604 2605 /*----------------------------------------------------------------*/ 2606 2607 /* 2608 * Mapping functions. 2609 */ 2610 2611 /* 2612 * Called only while mapping a thin bio to hand it over to the workqueue. 2613 */ 2614 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2615 { 2616 unsigned long flags; 2617 struct pool *pool = tc->pool; 2618 2619 spin_lock_irqsave(&tc->lock, flags); 2620 bio_list_add(&tc->deferred_bio_list, bio); 2621 spin_unlock_irqrestore(&tc->lock, flags); 2622 2623 wake_worker(pool); 2624 } 2625 2626 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2627 { 2628 struct pool *pool = tc->pool; 2629 2630 throttle_lock(&pool->throttle); 2631 thin_defer_bio(tc, bio); 2632 throttle_unlock(&pool->throttle); 2633 } 2634 2635 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2636 { 2637 unsigned long flags; 2638 struct pool *pool = tc->pool; 2639 2640 throttle_lock(&pool->throttle); 2641 spin_lock_irqsave(&tc->lock, flags); 2642 list_add_tail(&cell->user_list, &tc->deferred_cells); 2643 spin_unlock_irqrestore(&tc->lock, flags); 2644 throttle_unlock(&pool->throttle); 2645 2646 wake_worker(pool); 2647 } 2648 2649 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2650 { 2651 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2652 2653 h->tc = tc; 2654 h->shared_read_entry = NULL; 2655 h->all_io_entry = NULL; 2656 h->overwrite_mapping = NULL; 2657 h->cell = NULL; 2658 } 2659 2660 /* 2661 * Non-blocking function called from the thin target's map function. 2662 */ 2663 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2664 { 2665 int r; 2666 struct thin_c *tc = ti->private; 2667 dm_block_t block = get_bio_block(tc, bio); 2668 struct dm_thin_device *td = tc->td; 2669 struct dm_thin_lookup_result result; 2670 struct dm_bio_prison_cell *virt_cell, *data_cell; 2671 struct dm_cell_key key; 2672 2673 thin_hook_bio(tc, bio); 2674 2675 if (tc->requeue_mode) { 2676 bio->bi_status = BLK_STS_DM_REQUEUE; 2677 bio_endio(bio); 2678 return DM_MAPIO_SUBMITTED; 2679 } 2680 2681 if (get_pool_mode(tc->pool) == PM_FAIL) { 2682 bio_io_error(bio); 2683 return DM_MAPIO_SUBMITTED; 2684 } 2685 2686 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2687 thin_defer_bio_with_throttle(tc, bio); 2688 return DM_MAPIO_SUBMITTED; 2689 } 2690 2691 /* 2692 * We must hold the virtual cell before doing the lookup, otherwise 2693 * there's a race with discard. 2694 */ 2695 build_virtual_key(tc->td, block, &key); 2696 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2697 return DM_MAPIO_SUBMITTED; 2698 2699 r = dm_thin_find_block(td, block, 0, &result); 2700 2701 /* 2702 * Note that we defer readahead too. 2703 */ 2704 switch (r) { 2705 case 0: 2706 if (unlikely(result.shared)) { 2707 /* 2708 * We have a race condition here between the 2709 * result.shared value returned by the lookup and 2710 * snapshot creation, which may cause new 2711 * sharing. 2712 * 2713 * To avoid this always quiesce the origin before 2714 * taking the snap. You want to do this anyway to 2715 * ensure a consistent application view 2716 * (i.e. lockfs). 2717 * 2718 * More distant ancestors are irrelevant. The 2719 * shared flag will be set in their case. 2720 */ 2721 thin_defer_cell(tc, virt_cell); 2722 return DM_MAPIO_SUBMITTED; 2723 } 2724 2725 build_data_key(tc->td, result.block, &key); 2726 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2727 cell_defer_no_holder(tc, virt_cell); 2728 return DM_MAPIO_SUBMITTED; 2729 } 2730 2731 inc_all_io_entry(tc->pool, bio); 2732 cell_defer_no_holder(tc, data_cell); 2733 cell_defer_no_holder(tc, virt_cell); 2734 2735 remap(tc, bio, result.block); 2736 return DM_MAPIO_REMAPPED; 2737 2738 case -ENODATA: 2739 case -EWOULDBLOCK: 2740 thin_defer_cell(tc, virt_cell); 2741 return DM_MAPIO_SUBMITTED; 2742 2743 default: 2744 /* 2745 * Must always call bio_io_error on failure. 2746 * dm_thin_find_block can fail with -EINVAL if the 2747 * pool is switched to fail-io mode. 2748 */ 2749 bio_io_error(bio); 2750 cell_defer_no_holder(tc, virt_cell); 2751 return DM_MAPIO_SUBMITTED; 2752 } 2753 } 2754 2755 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2756 { 2757 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2758 struct request_queue *q; 2759 2760 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2761 return 1; 2762 2763 q = bdev_get_queue(pt->data_dev->bdev); 2764 return bdi_congested(q->backing_dev_info, bdi_bits); 2765 } 2766 2767 static void requeue_bios(struct pool *pool) 2768 { 2769 unsigned long flags; 2770 struct thin_c *tc; 2771 2772 rcu_read_lock(); 2773 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2774 spin_lock_irqsave(&tc->lock, flags); 2775 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2776 bio_list_init(&tc->retry_on_resume_list); 2777 spin_unlock_irqrestore(&tc->lock, flags); 2778 } 2779 rcu_read_unlock(); 2780 } 2781 2782 /*---------------------------------------------------------------- 2783 * Binding of control targets to a pool object 2784 *--------------------------------------------------------------*/ 2785 static bool data_dev_supports_discard(struct pool_c *pt) 2786 { 2787 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2788 2789 return q && blk_queue_discard(q); 2790 } 2791 2792 static bool is_factor(sector_t block_size, uint32_t n) 2793 { 2794 return !sector_div(block_size, n); 2795 } 2796 2797 /* 2798 * If discard_passdown was enabled verify that the data device 2799 * supports discards. Disable discard_passdown if not. 2800 */ 2801 static void disable_passdown_if_not_supported(struct pool_c *pt) 2802 { 2803 struct pool *pool = pt->pool; 2804 struct block_device *data_bdev = pt->data_dev->bdev; 2805 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2806 const char *reason = NULL; 2807 char buf[BDEVNAME_SIZE]; 2808 2809 if (!pt->adjusted_pf.discard_passdown) 2810 return; 2811 2812 if (!data_dev_supports_discard(pt)) 2813 reason = "discard unsupported"; 2814 2815 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2816 reason = "max discard sectors smaller than a block"; 2817 2818 if (reason) { 2819 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2820 pt->adjusted_pf.discard_passdown = false; 2821 } 2822 } 2823 2824 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2825 { 2826 struct pool_c *pt = ti->private; 2827 2828 /* 2829 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2830 */ 2831 enum pool_mode old_mode = get_pool_mode(pool); 2832 enum pool_mode new_mode = pt->adjusted_pf.mode; 2833 2834 /* 2835 * Don't change the pool's mode until set_pool_mode() below. 2836 * Otherwise the pool's process_* function pointers may 2837 * not match the desired pool mode. 2838 */ 2839 pt->adjusted_pf.mode = old_mode; 2840 2841 pool->ti = ti; 2842 pool->pf = pt->adjusted_pf; 2843 pool->low_water_blocks = pt->low_water_blocks; 2844 2845 set_pool_mode(pool, new_mode); 2846 2847 return 0; 2848 } 2849 2850 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2851 { 2852 if (pool->ti == ti) 2853 pool->ti = NULL; 2854 } 2855 2856 /*---------------------------------------------------------------- 2857 * Pool creation 2858 *--------------------------------------------------------------*/ 2859 /* Initialize pool features. */ 2860 static void pool_features_init(struct pool_features *pf) 2861 { 2862 pf->mode = PM_WRITE; 2863 pf->zero_new_blocks = true; 2864 pf->discard_enabled = true; 2865 pf->discard_passdown = true; 2866 pf->error_if_no_space = false; 2867 } 2868 2869 static void __pool_destroy(struct pool *pool) 2870 { 2871 __pool_table_remove(pool); 2872 2873 vfree(pool->cell_sort_array); 2874 if (dm_pool_metadata_close(pool->pmd) < 0) 2875 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2876 2877 dm_bio_prison_destroy(pool->prison); 2878 dm_kcopyd_client_destroy(pool->copier); 2879 2880 if (pool->wq) 2881 destroy_workqueue(pool->wq); 2882 2883 if (pool->next_mapping) 2884 mempool_free(pool->next_mapping, &pool->mapping_pool); 2885 mempool_exit(&pool->mapping_pool); 2886 dm_deferred_set_destroy(pool->shared_read_ds); 2887 dm_deferred_set_destroy(pool->all_io_ds); 2888 kfree(pool); 2889 } 2890 2891 static struct kmem_cache *_new_mapping_cache; 2892 2893 static struct pool *pool_create(struct mapped_device *pool_md, 2894 struct block_device *metadata_dev, 2895 unsigned long block_size, 2896 int read_only, char **error) 2897 { 2898 int r; 2899 void *err_p; 2900 struct pool *pool; 2901 struct dm_pool_metadata *pmd; 2902 bool format_device = read_only ? false : true; 2903 2904 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2905 if (IS_ERR(pmd)) { 2906 *error = "Error creating metadata object"; 2907 return (struct pool *)pmd; 2908 } 2909 2910 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2911 if (!pool) { 2912 *error = "Error allocating memory for pool"; 2913 err_p = ERR_PTR(-ENOMEM); 2914 goto bad_pool; 2915 } 2916 2917 pool->pmd = pmd; 2918 pool->sectors_per_block = block_size; 2919 if (block_size & (block_size - 1)) 2920 pool->sectors_per_block_shift = -1; 2921 else 2922 pool->sectors_per_block_shift = __ffs(block_size); 2923 pool->low_water_blocks = 0; 2924 pool_features_init(&pool->pf); 2925 pool->prison = dm_bio_prison_create(); 2926 if (!pool->prison) { 2927 *error = "Error creating pool's bio prison"; 2928 err_p = ERR_PTR(-ENOMEM); 2929 goto bad_prison; 2930 } 2931 2932 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2933 if (IS_ERR(pool->copier)) { 2934 r = PTR_ERR(pool->copier); 2935 *error = "Error creating pool's kcopyd client"; 2936 err_p = ERR_PTR(r); 2937 goto bad_kcopyd_client; 2938 } 2939 2940 /* 2941 * Create singlethreaded workqueue that will service all devices 2942 * that use this metadata. 2943 */ 2944 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2945 if (!pool->wq) { 2946 *error = "Error creating pool's workqueue"; 2947 err_p = ERR_PTR(-ENOMEM); 2948 goto bad_wq; 2949 } 2950 2951 throttle_init(&pool->throttle); 2952 INIT_WORK(&pool->worker, do_worker); 2953 INIT_DELAYED_WORK(&pool->waker, do_waker); 2954 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2955 spin_lock_init(&pool->lock); 2956 bio_list_init(&pool->deferred_flush_bios); 2957 INIT_LIST_HEAD(&pool->prepared_mappings); 2958 INIT_LIST_HEAD(&pool->prepared_discards); 2959 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2960 INIT_LIST_HEAD(&pool->active_thins); 2961 pool->low_water_triggered = false; 2962 pool->suspended = true; 2963 pool->out_of_data_space = false; 2964 2965 pool->shared_read_ds = dm_deferred_set_create(); 2966 if (!pool->shared_read_ds) { 2967 *error = "Error creating pool's shared read deferred set"; 2968 err_p = ERR_PTR(-ENOMEM); 2969 goto bad_shared_read_ds; 2970 } 2971 2972 pool->all_io_ds = dm_deferred_set_create(); 2973 if (!pool->all_io_ds) { 2974 *error = "Error creating pool's all io deferred set"; 2975 err_p = ERR_PTR(-ENOMEM); 2976 goto bad_all_io_ds; 2977 } 2978 2979 pool->next_mapping = NULL; 2980 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 2981 _new_mapping_cache); 2982 if (r) { 2983 *error = "Error creating pool's mapping mempool"; 2984 err_p = ERR_PTR(r); 2985 goto bad_mapping_pool; 2986 } 2987 2988 pool->cell_sort_array = 2989 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 2990 sizeof(*pool->cell_sort_array))); 2991 if (!pool->cell_sort_array) { 2992 *error = "Error allocating cell sort array"; 2993 err_p = ERR_PTR(-ENOMEM); 2994 goto bad_sort_array; 2995 } 2996 2997 pool->ref_count = 1; 2998 pool->last_commit_jiffies = jiffies; 2999 pool->pool_md = pool_md; 3000 pool->md_dev = metadata_dev; 3001 __pool_table_insert(pool); 3002 3003 return pool; 3004 3005 bad_sort_array: 3006 mempool_exit(&pool->mapping_pool); 3007 bad_mapping_pool: 3008 dm_deferred_set_destroy(pool->all_io_ds); 3009 bad_all_io_ds: 3010 dm_deferred_set_destroy(pool->shared_read_ds); 3011 bad_shared_read_ds: 3012 destroy_workqueue(pool->wq); 3013 bad_wq: 3014 dm_kcopyd_client_destroy(pool->copier); 3015 bad_kcopyd_client: 3016 dm_bio_prison_destroy(pool->prison); 3017 bad_prison: 3018 kfree(pool); 3019 bad_pool: 3020 if (dm_pool_metadata_close(pmd)) 3021 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3022 3023 return err_p; 3024 } 3025 3026 static void __pool_inc(struct pool *pool) 3027 { 3028 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3029 pool->ref_count++; 3030 } 3031 3032 static void __pool_dec(struct pool *pool) 3033 { 3034 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3035 BUG_ON(!pool->ref_count); 3036 if (!--pool->ref_count) 3037 __pool_destroy(pool); 3038 } 3039 3040 static struct pool *__pool_find(struct mapped_device *pool_md, 3041 struct block_device *metadata_dev, 3042 unsigned long block_size, int read_only, 3043 char **error, int *created) 3044 { 3045 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3046 3047 if (pool) { 3048 if (pool->pool_md != pool_md) { 3049 *error = "metadata device already in use by a pool"; 3050 return ERR_PTR(-EBUSY); 3051 } 3052 __pool_inc(pool); 3053 3054 } else { 3055 pool = __pool_table_lookup(pool_md); 3056 if (pool) { 3057 if (pool->md_dev != metadata_dev) { 3058 *error = "different pool cannot replace a pool"; 3059 return ERR_PTR(-EINVAL); 3060 } 3061 __pool_inc(pool); 3062 3063 } else { 3064 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 3065 *created = 1; 3066 } 3067 } 3068 3069 return pool; 3070 } 3071 3072 /*---------------------------------------------------------------- 3073 * Pool target methods 3074 *--------------------------------------------------------------*/ 3075 static void pool_dtr(struct dm_target *ti) 3076 { 3077 struct pool_c *pt = ti->private; 3078 3079 mutex_lock(&dm_thin_pool_table.mutex); 3080 3081 unbind_control_target(pt->pool, ti); 3082 __pool_dec(pt->pool); 3083 dm_put_device(ti, pt->metadata_dev); 3084 dm_put_device(ti, pt->data_dev); 3085 kfree(pt); 3086 3087 mutex_unlock(&dm_thin_pool_table.mutex); 3088 } 3089 3090 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3091 struct dm_target *ti) 3092 { 3093 int r; 3094 unsigned argc; 3095 const char *arg_name; 3096 3097 static const struct dm_arg _args[] = { 3098 {0, 4, "Invalid number of pool feature arguments"}, 3099 }; 3100 3101 /* 3102 * No feature arguments supplied. 3103 */ 3104 if (!as->argc) 3105 return 0; 3106 3107 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3108 if (r) 3109 return -EINVAL; 3110 3111 while (argc && !r) { 3112 arg_name = dm_shift_arg(as); 3113 argc--; 3114 3115 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3116 pf->zero_new_blocks = false; 3117 3118 else if (!strcasecmp(arg_name, "ignore_discard")) 3119 pf->discard_enabled = false; 3120 3121 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3122 pf->discard_passdown = false; 3123 3124 else if (!strcasecmp(arg_name, "read_only")) 3125 pf->mode = PM_READ_ONLY; 3126 3127 else if (!strcasecmp(arg_name, "error_if_no_space")) 3128 pf->error_if_no_space = true; 3129 3130 else { 3131 ti->error = "Unrecognised pool feature requested"; 3132 r = -EINVAL; 3133 break; 3134 } 3135 } 3136 3137 return r; 3138 } 3139 3140 static void metadata_low_callback(void *context) 3141 { 3142 struct pool *pool = context; 3143 3144 DMWARN("%s: reached low water mark for metadata device: sending event.", 3145 dm_device_name(pool->pool_md)); 3146 3147 dm_table_event(pool->ti->table); 3148 } 3149 3150 static sector_t get_dev_size(struct block_device *bdev) 3151 { 3152 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3153 } 3154 3155 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3156 { 3157 sector_t metadata_dev_size = get_dev_size(bdev); 3158 char buffer[BDEVNAME_SIZE]; 3159 3160 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3161 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3162 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3163 } 3164 3165 static sector_t get_metadata_dev_size(struct block_device *bdev) 3166 { 3167 sector_t metadata_dev_size = get_dev_size(bdev); 3168 3169 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3170 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3171 3172 return metadata_dev_size; 3173 } 3174 3175 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3176 { 3177 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3178 3179 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3180 3181 return metadata_dev_size; 3182 } 3183 3184 /* 3185 * When a metadata threshold is crossed a dm event is triggered, and 3186 * userland should respond by growing the metadata device. We could let 3187 * userland set the threshold, like we do with the data threshold, but I'm 3188 * not sure they know enough to do this well. 3189 */ 3190 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3191 { 3192 /* 3193 * 4M is ample for all ops with the possible exception of thin 3194 * device deletion which is harmless if it fails (just retry the 3195 * delete after you've grown the device). 3196 */ 3197 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3198 return min((dm_block_t)1024ULL /* 4M */, quarter); 3199 } 3200 3201 /* 3202 * thin-pool <metadata dev> <data dev> 3203 * <data block size (sectors)> 3204 * <low water mark (blocks)> 3205 * [<#feature args> [<arg>]*] 3206 * 3207 * Optional feature arguments are: 3208 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3209 * ignore_discard: disable discard 3210 * no_discard_passdown: don't pass discards down to the data device 3211 * read_only: Don't allow any changes to be made to the pool metadata. 3212 * error_if_no_space: error IOs, instead of queueing, if no space. 3213 */ 3214 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3215 { 3216 int r, pool_created = 0; 3217 struct pool_c *pt; 3218 struct pool *pool; 3219 struct pool_features pf; 3220 struct dm_arg_set as; 3221 struct dm_dev *data_dev; 3222 unsigned long block_size; 3223 dm_block_t low_water_blocks; 3224 struct dm_dev *metadata_dev; 3225 fmode_t metadata_mode; 3226 3227 /* 3228 * FIXME Remove validation from scope of lock. 3229 */ 3230 mutex_lock(&dm_thin_pool_table.mutex); 3231 3232 if (argc < 4) { 3233 ti->error = "Invalid argument count"; 3234 r = -EINVAL; 3235 goto out_unlock; 3236 } 3237 3238 as.argc = argc; 3239 as.argv = argv; 3240 3241 /* 3242 * Set default pool features. 3243 */ 3244 pool_features_init(&pf); 3245 3246 dm_consume_args(&as, 4); 3247 r = parse_pool_features(&as, &pf, ti); 3248 if (r) 3249 goto out_unlock; 3250 3251 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3252 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3253 if (r) { 3254 ti->error = "Error opening metadata block device"; 3255 goto out_unlock; 3256 } 3257 warn_if_metadata_device_too_big(metadata_dev->bdev); 3258 3259 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3260 if (r) { 3261 ti->error = "Error getting data device"; 3262 goto out_metadata; 3263 } 3264 3265 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3266 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3267 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3268 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3269 ti->error = "Invalid block size"; 3270 r = -EINVAL; 3271 goto out; 3272 } 3273 3274 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3275 ti->error = "Invalid low water mark"; 3276 r = -EINVAL; 3277 goto out; 3278 } 3279 3280 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3281 if (!pt) { 3282 r = -ENOMEM; 3283 goto out; 3284 } 3285 3286 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3287 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3288 if (IS_ERR(pool)) { 3289 r = PTR_ERR(pool); 3290 goto out_free_pt; 3291 } 3292 3293 /* 3294 * 'pool_created' reflects whether this is the first table load. 3295 * Top level discard support is not allowed to be changed after 3296 * initial load. This would require a pool reload to trigger thin 3297 * device changes. 3298 */ 3299 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3300 ti->error = "Discard support cannot be disabled once enabled"; 3301 r = -EINVAL; 3302 goto out_flags_changed; 3303 } 3304 3305 pt->pool = pool; 3306 pt->ti = ti; 3307 pt->metadata_dev = metadata_dev; 3308 pt->data_dev = data_dev; 3309 pt->low_water_blocks = low_water_blocks; 3310 pt->adjusted_pf = pt->requested_pf = pf; 3311 ti->num_flush_bios = 1; 3312 3313 /* 3314 * Only need to enable discards if the pool should pass 3315 * them down to the data device. The thin device's discard 3316 * processing will cause mappings to be removed from the btree. 3317 */ 3318 if (pf.discard_enabled && pf.discard_passdown) { 3319 ti->num_discard_bios = 1; 3320 3321 /* 3322 * Setting 'discards_supported' circumvents the normal 3323 * stacking of discard limits (this keeps the pool and 3324 * thin devices' discard limits consistent). 3325 */ 3326 ti->discards_supported = true; 3327 } 3328 ti->private = pt; 3329 3330 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3331 calc_metadata_threshold(pt), 3332 metadata_low_callback, 3333 pool); 3334 if (r) 3335 goto out_flags_changed; 3336 3337 pt->callbacks.congested_fn = pool_is_congested; 3338 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3339 3340 mutex_unlock(&dm_thin_pool_table.mutex); 3341 3342 return 0; 3343 3344 out_flags_changed: 3345 __pool_dec(pool); 3346 out_free_pt: 3347 kfree(pt); 3348 out: 3349 dm_put_device(ti, data_dev); 3350 out_metadata: 3351 dm_put_device(ti, metadata_dev); 3352 out_unlock: 3353 mutex_unlock(&dm_thin_pool_table.mutex); 3354 3355 return r; 3356 } 3357 3358 static int pool_map(struct dm_target *ti, struct bio *bio) 3359 { 3360 int r; 3361 struct pool_c *pt = ti->private; 3362 struct pool *pool = pt->pool; 3363 unsigned long flags; 3364 3365 /* 3366 * As this is a singleton target, ti->begin is always zero. 3367 */ 3368 spin_lock_irqsave(&pool->lock, flags); 3369 bio_set_dev(bio, pt->data_dev->bdev); 3370 r = DM_MAPIO_REMAPPED; 3371 spin_unlock_irqrestore(&pool->lock, flags); 3372 3373 return r; 3374 } 3375 3376 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3377 { 3378 int r; 3379 struct pool_c *pt = ti->private; 3380 struct pool *pool = pt->pool; 3381 sector_t data_size = ti->len; 3382 dm_block_t sb_data_size; 3383 3384 *need_commit = false; 3385 3386 (void) sector_div(data_size, pool->sectors_per_block); 3387 3388 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3389 if (r) { 3390 DMERR("%s: failed to retrieve data device size", 3391 dm_device_name(pool->pool_md)); 3392 return r; 3393 } 3394 3395 if (data_size < sb_data_size) { 3396 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3397 dm_device_name(pool->pool_md), 3398 (unsigned long long)data_size, sb_data_size); 3399 return -EINVAL; 3400 3401 } else if (data_size > sb_data_size) { 3402 if (dm_pool_metadata_needs_check(pool->pmd)) { 3403 DMERR("%s: unable to grow the data device until repaired.", 3404 dm_device_name(pool->pool_md)); 3405 return 0; 3406 } 3407 3408 if (sb_data_size) 3409 DMINFO("%s: growing the data device from %llu to %llu blocks", 3410 dm_device_name(pool->pool_md), 3411 sb_data_size, (unsigned long long)data_size); 3412 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3413 if (r) { 3414 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3415 return r; 3416 } 3417 3418 *need_commit = true; 3419 } 3420 3421 return 0; 3422 } 3423 3424 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3425 { 3426 int r; 3427 struct pool_c *pt = ti->private; 3428 struct pool *pool = pt->pool; 3429 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3430 3431 *need_commit = false; 3432 3433 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3434 3435 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3436 if (r) { 3437 DMERR("%s: failed to retrieve metadata device size", 3438 dm_device_name(pool->pool_md)); 3439 return r; 3440 } 3441 3442 if (metadata_dev_size < sb_metadata_dev_size) { 3443 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3444 dm_device_name(pool->pool_md), 3445 metadata_dev_size, sb_metadata_dev_size); 3446 return -EINVAL; 3447 3448 } else if (metadata_dev_size > sb_metadata_dev_size) { 3449 if (dm_pool_metadata_needs_check(pool->pmd)) { 3450 DMERR("%s: unable to grow the metadata device until repaired.", 3451 dm_device_name(pool->pool_md)); 3452 return 0; 3453 } 3454 3455 warn_if_metadata_device_too_big(pool->md_dev); 3456 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3457 dm_device_name(pool->pool_md), 3458 sb_metadata_dev_size, metadata_dev_size); 3459 3460 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3461 set_pool_mode(pool, PM_WRITE); 3462 3463 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3464 if (r) { 3465 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3466 return r; 3467 } 3468 3469 *need_commit = true; 3470 } 3471 3472 return 0; 3473 } 3474 3475 /* 3476 * Retrieves the number of blocks of the data device from 3477 * the superblock and compares it to the actual device size, 3478 * thus resizing the data device in case it has grown. 3479 * 3480 * This both copes with opening preallocated data devices in the ctr 3481 * being followed by a resume 3482 * -and- 3483 * calling the resume method individually after userspace has 3484 * grown the data device in reaction to a table event. 3485 */ 3486 static int pool_preresume(struct dm_target *ti) 3487 { 3488 int r; 3489 bool need_commit1, need_commit2; 3490 struct pool_c *pt = ti->private; 3491 struct pool *pool = pt->pool; 3492 3493 /* 3494 * Take control of the pool object. 3495 */ 3496 r = bind_control_target(pool, ti); 3497 if (r) 3498 return r; 3499 3500 r = maybe_resize_data_dev(ti, &need_commit1); 3501 if (r) 3502 return r; 3503 3504 r = maybe_resize_metadata_dev(ti, &need_commit2); 3505 if (r) 3506 return r; 3507 3508 if (need_commit1 || need_commit2) 3509 (void) commit(pool); 3510 3511 return 0; 3512 } 3513 3514 static void pool_suspend_active_thins(struct pool *pool) 3515 { 3516 struct thin_c *tc; 3517 3518 /* Suspend all active thin devices */ 3519 tc = get_first_thin(pool); 3520 while (tc) { 3521 dm_internal_suspend_noflush(tc->thin_md); 3522 tc = get_next_thin(pool, tc); 3523 } 3524 } 3525 3526 static void pool_resume_active_thins(struct pool *pool) 3527 { 3528 struct thin_c *tc; 3529 3530 /* Resume all active thin devices */ 3531 tc = get_first_thin(pool); 3532 while (tc) { 3533 dm_internal_resume(tc->thin_md); 3534 tc = get_next_thin(pool, tc); 3535 } 3536 } 3537 3538 static void pool_resume(struct dm_target *ti) 3539 { 3540 struct pool_c *pt = ti->private; 3541 struct pool *pool = pt->pool; 3542 unsigned long flags; 3543 3544 /* 3545 * Must requeue active_thins' bios and then resume 3546 * active_thins _before_ clearing 'suspend' flag. 3547 */ 3548 requeue_bios(pool); 3549 pool_resume_active_thins(pool); 3550 3551 spin_lock_irqsave(&pool->lock, flags); 3552 pool->low_water_triggered = false; 3553 pool->suspended = false; 3554 spin_unlock_irqrestore(&pool->lock, flags); 3555 3556 do_waker(&pool->waker.work); 3557 } 3558 3559 static void pool_presuspend(struct dm_target *ti) 3560 { 3561 struct pool_c *pt = ti->private; 3562 struct pool *pool = pt->pool; 3563 unsigned long flags; 3564 3565 spin_lock_irqsave(&pool->lock, flags); 3566 pool->suspended = true; 3567 spin_unlock_irqrestore(&pool->lock, flags); 3568 3569 pool_suspend_active_thins(pool); 3570 } 3571 3572 static void pool_presuspend_undo(struct dm_target *ti) 3573 { 3574 struct pool_c *pt = ti->private; 3575 struct pool *pool = pt->pool; 3576 unsigned long flags; 3577 3578 pool_resume_active_thins(pool); 3579 3580 spin_lock_irqsave(&pool->lock, flags); 3581 pool->suspended = false; 3582 spin_unlock_irqrestore(&pool->lock, flags); 3583 } 3584 3585 static void pool_postsuspend(struct dm_target *ti) 3586 { 3587 struct pool_c *pt = ti->private; 3588 struct pool *pool = pt->pool; 3589 3590 cancel_delayed_work_sync(&pool->waker); 3591 cancel_delayed_work_sync(&pool->no_space_timeout); 3592 flush_workqueue(pool->wq); 3593 (void) commit(pool); 3594 } 3595 3596 static int check_arg_count(unsigned argc, unsigned args_required) 3597 { 3598 if (argc != args_required) { 3599 DMWARN("Message received with %u arguments instead of %u.", 3600 argc, args_required); 3601 return -EINVAL; 3602 } 3603 3604 return 0; 3605 } 3606 3607 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3608 { 3609 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3610 *dev_id <= MAX_DEV_ID) 3611 return 0; 3612 3613 if (warning) 3614 DMWARN("Message received with invalid device id: %s", arg); 3615 3616 return -EINVAL; 3617 } 3618 3619 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3620 { 3621 dm_thin_id dev_id; 3622 int r; 3623 3624 r = check_arg_count(argc, 2); 3625 if (r) 3626 return r; 3627 3628 r = read_dev_id(argv[1], &dev_id, 1); 3629 if (r) 3630 return r; 3631 3632 r = dm_pool_create_thin(pool->pmd, dev_id); 3633 if (r) { 3634 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3635 argv[1]); 3636 return r; 3637 } 3638 3639 return 0; 3640 } 3641 3642 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3643 { 3644 dm_thin_id dev_id; 3645 dm_thin_id origin_dev_id; 3646 int r; 3647 3648 r = check_arg_count(argc, 3); 3649 if (r) 3650 return r; 3651 3652 r = read_dev_id(argv[1], &dev_id, 1); 3653 if (r) 3654 return r; 3655 3656 r = read_dev_id(argv[2], &origin_dev_id, 1); 3657 if (r) 3658 return r; 3659 3660 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3661 if (r) { 3662 DMWARN("Creation of new snapshot %s of device %s failed.", 3663 argv[1], argv[2]); 3664 return r; 3665 } 3666 3667 return 0; 3668 } 3669 3670 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3671 { 3672 dm_thin_id dev_id; 3673 int r; 3674 3675 r = check_arg_count(argc, 2); 3676 if (r) 3677 return r; 3678 3679 r = read_dev_id(argv[1], &dev_id, 1); 3680 if (r) 3681 return r; 3682 3683 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3684 if (r) 3685 DMWARN("Deletion of thin device %s failed.", argv[1]); 3686 3687 return r; 3688 } 3689 3690 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3691 { 3692 dm_thin_id old_id, new_id; 3693 int r; 3694 3695 r = check_arg_count(argc, 3); 3696 if (r) 3697 return r; 3698 3699 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3700 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3701 return -EINVAL; 3702 } 3703 3704 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3705 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3706 return -EINVAL; 3707 } 3708 3709 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3710 if (r) { 3711 DMWARN("Failed to change transaction id from %s to %s.", 3712 argv[1], argv[2]); 3713 return r; 3714 } 3715 3716 return 0; 3717 } 3718 3719 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3720 { 3721 int r; 3722 3723 r = check_arg_count(argc, 1); 3724 if (r) 3725 return r; 3726 3727 (void) commit(pool); 3728 3729 r = dm_pool_reserve_metadata_snap(pool->pmd); 3730 if (r) 3731 DMWARN("reserve_metadata_snap message failed."); 3732 3733 return r; 3734 } 3735 3736 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3737 { 3738 int r; 3739 3740 r = check_arg_count(argc, 1); 3741 if (r) 3742 return r; 3743 3744 r = dm_pool_release_metadata_snap(pool->pmd); 3745 if (r) 3746 DMWARN("release_metadata_snap message failed."); 3747 3748 return r; 3749 } 3750 3751 /* 3752 * Messages supported: 3753 * create_thin <dev_id> 3754 * create_snap <dev_id> <origin_id> 3755 * delete <dev_id> 3756 * set_transaction_id <current_trans_id> <new_trans_id> 3757 * reserve_metadata_snap 3758 * release_metadata_snap 3759 */ 3760 static int pool_message(struct dm_target *ti, unsigned argc, char **argv, 3761 char *result, unsigned maxlen) 3762 { 3763 int r = -EINVAL; 3764 struct pool_c *pt = ti->private; 3765 struct pool *pool = pt->pool; 3766 3767 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3768 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3769 dm_device_name(pool->pool_md)); 3770 return -EOPNOTSUPP; 3771 } 3772 3773 if (!strcasecmp(argv[0], "create_thin")) 3774 r = process_create_thin_mesg(argc, argv, pool); 3775 3776 else if (!strcasecmp(argv[0], "create_snap")) 3777 r = process_create_snap_mesg(argc, argv, pool); 3778 3779 else if (!strcasecmp(argv[0], "delete")) 3780 r = process_delete_mesg(argc, argv, pool); 3781 3782 else if (!strcasecmp(argv[0], "set_transaction_id")) 3783 r = process_set_transaction_id_mesg(argc, argv, pool); 3784 3785 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3786 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3787 3788 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3789 r = process_release_metadata_snap_mesg(argc, argv, pool); 3790 3791 else 3792 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3793 3794 if (!r) 3795 (void) commit(pool); 3796 3797 return r; 3798 } 3799 3800 static void emit_flags(struct pool_features *pf, char *result, 3801 unsigned sz, unsigned maxlen) 3802 { 3803 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3804 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3805 pf->error_if_no_space; 3806 DMEMIT("%u ", count); 3807 3808 if (!pf->zero_new_blocks) 3809 DMEMIT("skip_block_zeroing "); 3810 3811 if (!pf->discard_enabled) 3812 DMEMIT("ignore_discard "); 3813 3814 if (!pf->discard_passdown) 3815 DMEMIT("no_discard_passdown "); 3816 3817 if (pf->mode == PM_READ_ONLY) 3818 DMEMIT("read_only "); 3819 3820 if (pf->error_if_no_space) 3821 DMEMIT("error_if_no_space "); 3822 } 3823 3824 /* 3825 * Status line is: 3826 * <transaction id> <used metadata sectors>/<total metadata sectors> 3827 * <used data sectors>/<total data sectors> <held metadata root> 3828 * <pool mode> <discard config> <no space config> <needs_check> 3829 */ 3830 static void pool_status(struct dm_target *ti, status_type_t type, 3831 unsigned status_flags, char *result, unsigned maxlen) 3832 { 3833 int r; 3834 unsigned sz = 0; 3835 uint64_t transaction_id; 3836 dm_block_t nr_free_blocks_data; 3837 dm_block_t nr_free_blocks_metadata; 3838 dm_block_t nr_blocks_data; 3839 dm_block_t nr_blocks_metadata; 3840 dm_block_t held_root; 3841 enum pool_mode mode; 3842 char buf[BDEVNAME_SIZE]; 3843 char buf2[BDEVNAME_SIZE]; 3844 struct pool_c *pt = ti->private; 3845 struct pool *pool = pt->pool; 3846 3847 switch (type) { 3848 case STATUSTYPE_INFO: 3849 if (get_pool_mode(pool) == PM_FAIL) { 3850 DMEMIT("Fail"); 3851 break; 3852 } 3853 3854 /* Commit to ensure statistics aren't out-of-date */ 3855 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3856 (void) commit(pool); 3857 3858 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3859 if (r) { 3860 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3861 dm_device_name(pool->pool_md), r); 3862 goto err; 3863 } 3864 3865 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3866 if (r) { 3867 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3868 dm_device_name(pool->pool_md), r); 3869 goto err; 3870 } 3871 3872 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3873 if (r) { 3874 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3875 dm_device_name(pool->pool_md), r); 3876 goto err; 3877 } 3878 3879 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3880 if (r) { 3881 DMERR("%s: dm_pool_get_free_block_count returned %d", 3882 dm_device_name(pool->pool_md), r); 3883 goto err; 3884 } 3885 3886 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3887 if (r) { 3888 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3889 dm_device_name(pool->pool_md), r); 3890 goto err; 3891 } 3892 3893 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3894 if (r) { 3895 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3896 dm_device_name(pool->pool_md), r); 3897 goto err; 3898 } 3899 3900 DMEMIT("%llu %llu/%llu %llu/%llu ", 3901 (unsigned long long)transaction_id, 3902 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3903 (unsigned long long)nr_blocks_metadata, 3904 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3905 (unsigned long long)nr_blocks_data); 3906 3907 if (held_root) 3908 DMEMIT("%llu ", held_root); 3909 else 3910 DMEMIT("- "); 3911 3912 mode = get_pool_mode(pool); 3913 if (mode == PM_OUT_OF_DATA_SPACE) 3914 DMEMIT("out_of_data_space "); 3915 else if (is_read_only_pool_mode(mode)) 3916 DMEMIT("ro "); 3917 else 3918 DMEMIT("rw "); 3919 3920 if (!pool->pf.discard_enabled) 3921 DMEMIT("ignore_discard "); 3922 else if (pool->pf.discard_passdown) 3923 DMEMIT("discard_passdown "); 3924 else 3925 DMEMIT("no_discard_passdown "); 3926 3927 if (pool->pf.error_if_no_space) 3928 DMEMIT("error_if_no_space "); 3929 else 3930 DMEMIT("queue_if_no_space "); 3931 3932 if (dm_pool_metadata_needs_check(pool->pmd)) 3933 DMEMIT("needs_check "); 3934 else 3935 DMEMIT("- "); 3936 3937 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 3938 3939 break; 3940 3941 case STATUSTYPE_TABLE: 3942 DMEMIT("%s %s %lu %llu ", 3943 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3944 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3945 (unsigned long)pool->sectors_per_block, 3946 (unsigned long long)pt->low_water_blocks); 3947 emit_flags(&pt->requested_pf, result, sz, maxlen); 3948 break; 3949 } 3950 return; 3951 3952 err: 3953 DMEMIT("Error"); 3954 } 3955 3956 static int pool_iterate_devices(struct dm_target *ti, 3957 iterate_devices_callout_fn fn, void *data) 3958 { 3959 struct pool_c *pt = ti->private; 3960 3961 return fn(ti, pt->data_dev, 0, ti->len, data); 3962 } 3963 3964 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3965 { 3966 struct pool_c *pt = ti->private; 3967 struct pool *pool = pt->pool; 3968 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3969 3970 /* 3971 * If max_sectors is smaller than pool->sectors_per_block adjust it 3972 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3973 * This is especially beneficial when the pool's data device is a RAID 3974 * device that has a full stripe width that matches pool->sectors_per_block 3975 * -- because even though partial RAID stripe-sized IOs will be issued to a 3976 * single RAID stripe; when aggregated they will end on a full RAID stripe 3977 * boundary.. which avoids additional partial RAID stripe writes cascading 3978 */ 3979 if (limits->max_sectors < pool->sectors_per_block) { 3980 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3981 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3982 limits->max_sectors--; 3983 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3984 } 3985 } 3986 3987 /* 3988 * If the system-determined stacked limits are compatible with the 3989 * pool's blocksize (io_opt is a factor) do not override them. 3990 */ 3991 if (io_opt_sectors < pool->sectors_per_block || 3992 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3993 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3994 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3995 else 3996 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3997 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3998 } 3999 4000 /* 4001 * pt->adjusted_pf is a staging area for the actual features to use. 4002 * They get transferred to the live pool in bind_control_target() 4003 * called from pool_preresume(). 4004 */ 4005 if (!pt->adjusted_pf.discard_enabled) { 4006 /* 4007 * Must explicitly disallow stacking discard limits otherwise the 4008 * block layer will stack them if pool's data device has support. 4009 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 4010 * user to see that, so make sure to set all discard limits to 0. 4011 */ 4012 limits->discard_granularity = 0; 4013 return; 4014 } 4015 4016 disable_passdown_if_not_supported(pt); 4017 4018 /* 4019 * The pool uses the same discard limits as the underlying data 4020 * device. DM core has already set this up. 4021 */ 4022 } 4023 4024 static struct target_type pool_target = { 4025 .name = "thin-pool", 4026 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4027 DM_TARGET_IMMUTABLE, 4028 .version = {1, 21, 0}, 4029 .module = THIS_MODULE, 4030 .ctr = pool_ctr, 4031 .dtr = pool_dtr, 4032 .map = pool_map, 4033 .presuspend = pool_presuspend, 4034 .presuspend_undo = pool_presuspend_undo, 4035 .postsuspend = pool_postsuspend, 4036 .preresume = pool_preresume, 4037 .resume = pool_resume, 4038 .message = pool_message, 4039 .status = pool_status, 4040 .iterate_devices = pool_iterate_devices, 4041 .io_hints = pool_io_hints, 4042 }; 4043 4044 /*---------------------------------------------------------------- 4045 * Thin target methods 4046 *--------------------------------------------------------------*/ 4047 static void thin_get(struct thin_c *tc) 4048 { 4049 refcount_inc(&tc->refcount); 4050 } 4051 4052 static void thin_put(struct thin_c *tc) 4053 { 4054 if (refcount_dec_and_test(&tc->refcount)) 4055 complete(&tc->can_destroy); 4056 } 4057 4058 static void thin_dtr(struct dm_target *ti) 4059 { 4060 struct thin_c *tc = ti->private; 4061 unsigned long flags; 4062 4063 spin_lock_irqsave(&tc->pool->lock, flags); 4064 list_del_rcu(&tc->list); 4065 spin_unlock_irqrestore(&tc->pool->lock, flags); 4066 synchronize_rcu(); 4067 4068 thin_put(tc); 4069 wait_for_completion(&tc->can_destroy); 4070 4071 mutex_lock(&dm_thin_pool_table.mutex); 4072 4073 __pool_dec(tc->pool); 4074 dm_pool_close_thin_device(tc->td); 4075 dm_put_device(ti, tc->pool_dev); 4076 if (tc->origin_dev) 4077 dm_put_device(ti, tc->origin_dev); 4078 kfree(tc); 4079 4080 mutex_unlock(&dm_thin_pool_table.mutex); 4081 } 4082 4083 /* 4084 * Thin target parameters: 4085 * 4086 * <pool_dev> <dev_id> [origin_dev] 4087 * 4088 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4089 * dev_id: the internal device identifier 4090 * origin_dev: a device external to the pool that should act as the origin 4091 * 4092 * If the pool device has discards disabled, they get disabled for the thin 4093 * device as well. 4094 */ 4095 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4096 { 4097 int r; 4098 struct thin_c *tc; 4099 struct dm_dev *pool_dev, *origin_dev; 4100 struct mapped_device *pool_md; 4101 unsigned long flags; 4102 4103 mutex_lock(&dm_thin_pool_table.mutex); 4104 4105 if (argc != 2 && argc != 3) { 4106 ti->error = "Invalid argument count"; 4107 r = -EINVAL; 4108 goto out_unlock; 4109 } 4110 4111 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4112 if (!tc) { 4113 ti->error = "Out of memory"; 4114 r = -ENOMEM; 4115 goto out_unlock; 4116 } 4117 tc->thin_md = dm_table_get_md(ti->table); 4118 spin_lock_init(&tc->lock); 4119 INIT_LIST_HEAD(&tc->deferred_cells); 4120 bio_list_init(&tc->deferred_bio_list); 4121 bio_list_init(&tc->retry_on_resume_list); 4122 tc->sort_bio_list = RB_ROOT; 4123 4124 if (argc == 3) { 4125 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4126 if (r) { 4127 ti->error = "Error opening origin device"; 4128 goto bad_origin_dev; 4129 } 4130 tc->origin_dev = origin_dev; 4131 } 4132 4133 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4134 if (r) { 4135 ti->error = "Error opening pool device"; 4136 goto bad_pool_dev; 4137 } 4138 tc->pool_dev = pool_dev; 4139 4140 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4141 ti->error = "Invalid device id"; 4142 r = -EINVAL; 4143 goto bad_common; 4144 } 4145 4146 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4147 if (!pool_md) { 4148 ti->error = "Couldn't get pool mapped device"; 4149 r = -EINVAL; 4150 goto bad_common; 4151 } 4152 4153 tc->pool = __pool_table_lookup(pool_md); 4154 if (!tc->pool) { 4155 ti->error = "Couldn't find pool object"; 4156 r = -EINVAL; 4157 goto bad_pool_lookup; 4158 } 4159 __pool_inc(tc->pool); 4160 4161 if (get_pool_mode(tc->pool) == PM_FAIL) { 4162 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4163 r = -EINVAL; 4164 goto bad_pool; 4165 } 4166 4167 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4168 if (r) { 4169 ti->error = "Couldn't open thin internal device"; 4170 goto bad_pool; 4171 } 4172 4173 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4174 if (r) 4175 goto bad; 4176 4177 ti->num_flush_bios = 1; 4178 ti->flush_supported = true; 4179 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4180 4181 /* In case the pool supports discards, pass them on. */ 4182 if (tc->pool->pf.discard_enabled) { 4183 ti->discards_supported = true; 4184 ti->num_discard_bios = 1; 4185 ti->split_discard_bios = false; 4186 } 4187 4188 mutex_unlock(&dm_thin_pool_table.mutex); 4189 4190 spin_lock_irqsave(&tc->pool->lock, flags); 4191 if (tc->pool->suspended) { 4192 spin_unlock_irqrestore(&tc->pool->lock, flags); 4193 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4194 ti->error = "Unable to activate thin device while pool is suspended"; 4195 r = -EINVAL; 4196 goto bad; 4197 } 4198 refcount_set(&tc->refcount, 1); 4199 init_completion(&tc->can_destroy); 4200 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4201 spin_unlock_irqrestore(&tc->pool->lock, flags); 4202 /* 4203 * This synchronize_rcu() call is needed here otherwise we risk a 4204 * wake_worker() call finding no bios to process (because the newly 4205 * added tc isn't yet visible). So this reduces latency since we 4206 * aren't then dependent on the periodic commit to wake_worker(). 4207 */ 4208 synchronize_rcu(); 4209 4210 dm_put(pool_md); 4211 4212 return 0; 4213 4214 bad: 4215 dm_pool_close_thin_device(tc->td); 4216 bad_pool: 4217 __pool_dec(tc->pool); 4218 bad_pool_lookup: 4219 dm_put(pool_md); 4220 bad_common: 4221 dm_put_device(ti, tc->pool_dev); 4222 bad_pool_dev: 4223 if (tc->origin_dev) 4224 dm_put_device(ti, tc->origin_dev); 4225 bad_origin_dev: 4226 kfree(tc); 4227 out_unlock: 4228 mutex_unlock(&dm_thin_pool_table.mutex); 4229 4230 return r; 4231 } 4232 4233 static int thin_map(struct dm_target *ti, struct bio *bio) 4234 { 4235 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4236 4237 return thin_bio_map(ti, bio); 4238 } 4239 4240 static int thin_endio(struct dm_target *ti, struct bio *bio, 4241 blk_status_t *err) 4242 { 4243 unsigned long flags; 4244 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4245 struct list_head work; 4246 struct dm_thin_new_mapping *m, *tmp; 4247 struct pool *pool = h->tc->pool; 4248 4249 if (h->shared_read_entry) { 4250 INIT_LIST_HEAD(&work); 4251 dm_deferred_entry_dec(h->shared_read_entry, &work); 4252 4253 spin_lock_irqsave(&pool->lock, flags); 4254 list_for_each_entry_safe(m, tmp, &work, list) { 4255 list_del(&m->list); 4256 __complete_mapping_preparation(m); 4257 } 4258 spin_unlock_irqrestore(&pool->lock, flags); 4259 } 4260 4261 if (h->all_io_entry) { 4262 INIT_LIST_HEAD(&work); 4263 dm_deferred_entry_dec(h->all_io_entry, &work); 4264 if (!list_empty(&work)) { 4265 spin_lock_irqsave(&pool->lock, flags); 4266 list_for_each_entry_safe(m, tmp, &work, list) 4267 list_add_tail(&m->list, &pool->prepared_discards); 4268 spin_unlock_irqrestore(&pool->lock, flags); 4269 wake_worker(pool); 4270 } 4271 } 4272 4273 if (h->cell) 4274 cell_defer_no_holder(h->tc, h->cell); 4275 4276 return DM_ENDIO_DONE; 4277 } 4278 4279 static void thin_presuspend(struct dm_target *ti) 4280 { 4281 struct thin_c *tc = ti->private; 4282 4283 if (dm_noflush_suspending(ti)) 4284 noflush_work(tc, do_noflush_start); 4285 } 4286 4287 static void thin_postsuspend(struct dm_target *ti) 4288 { 4289 struct thin_c *tc = ti->private; 4290 4291 /* 4292 * The dm_noflush_suspending flag has been cleared by now, so 4293 * unfortunately we must always run this. 4294 */ 4295 noflush_work(tc, do_noflush_stop); 4296 } 4297 4298 static int thin_preresume(struct dm_target *ti) 4299 { 4300 struct thin_c *tc = ti->private; 4301 4302 if (tc->origin_dev) 4303 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4304 4305 return 0; 4306 } 4307 4308 /* 4309 * <nr mapped sectors> <highest mapped sector> 4310 */ 4311 static void thin_status(struct dm_target *ti, status_type_t type, 4312 unsigned status_flags, char *result, unsigned maxlen) 4313 { 4314 int r; 4315 ssize_t sz = 0; 4316 dm_block_t mapped, highest; 4317 char buf[BDEVNAME_SIZE]; 4318 struct thin_c *tc = ti->private; 4319 4320 if (get_pool_mode(tc->pool) == PM_FAIL) { 4321 DMEMIT("Fail"); 4322 return; 4323 } 4324 4325 if (!tc->td) 4326 DMEMIT("-"); 4327 else { 4328 switch (type) { 4329 case STATUSTYPE_INFO: 4330 r = dm_thin_get_mapped_count(tc->td, &mapped); 4331 if (r) { 4332 DMERR("dm_thin_get_mapped_count returned %d", r); 4333 goto err; 4334 } 4335 4336 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4337 if (r < 0) { 4338 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4339 goto err; 4340 } 4341 4342 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4343 if (r) 4344 DMEMIT("%llu", ((highest + 1) * 4345 tc->pool->sectors_per_block) - 1); 4346 else 4347 DMEMIT("-"); 4348 break; 4349 4350 case STATUSTYPE_TABLE: 4351 DMEMIT("%s %lu", 4352 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4353 (unsigned long) tc->dev_id); 4354 if (tc->origin_dev) 4355 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4356 break; 4357 } 4358 } 4359 4360 return; 4361 4362 err: 4363 DMEMIT("Error"); 4364 } 4365 4366 static int thin_iterate_devices(struct dm_target *ti, 4367 iterate_devices_callout_fn fn, void *data) 4368 { 4369 sector_t blocks; 4370 struct thin_c *tc = ti->private; 4371 struct pool *pool = tc->pool; 4372 4373 /* 4374 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4375 * we follow a more convoluted path through to the pool's target. 4376 */ 4377 if (!pool->ti) 4378 return 0; /* nothing is bound */ 4379 4380 blocks = pool->ti->len; 4381 (void) sector_div(blocks, pool->sectors_per_block); 4382 if (blocks) 4383 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4384 4385 return 0; 4386 } 4387 4388 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4389 { 4390 struct thin_c *tc = ti->private; 4391 struct pool *pool = tc->pool; 4392 4393 if (!pool->pf.discard_enabled) 4394 return; 4395 4396 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4397 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4398 } 4399 4400 static struct target_type thin_target = { 4401 .name = "thin", 4402 .version = {1, 21, 0}, 4403 .module = THIS_MODULE, 4404 .ctr = thin_ctr, 4405 .dtr = thin_dtr, 4406 .map = thin_map, 4407 .end_io = thin_endio, 4408 .preresume = thin_preresume, 4409 .presuspend = thin_presuspend, 4410 .postsuspend = thin_postsuspend, 4411 .status = thin_status, 4412 .iterate_devices = thin_iterate_devices, 4413 .io_hints = thin_io_hints, 4414 }; 4415 4416 /*----------------------------------------------------------------*/ 4417 4418 static int __init dm_thin_init(void) 4419 { 4420 int r = -ENOMEM; 4421 4422 pool_table_init(); 4423 4424 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4425 if (!_new_mapping_cache) 4426 return r; 4427 4428 r = dm_register_target(&thin_target); 4429 if (r) 4430 goto bad_new_mapping_cache; 4431 4432 r = dm_register_target(&pool_target); 4433 if (r) 4434 goto bad_thin_target; 4435 4436 return 0; 4437 4438 bad_thin_target: 4439 dm_unregister_target(&thin_target); 4440 bad_new_mapping_cache: 4441 kmem_cache_destroy(_new_mapping_cache); 4442 4443 return r; 4444 } 4445 4446 static void dm_thin_exit(void) 4447 { 4448 dm_unregister_target(&thin_target); 4449 dm_unregister_target(&pool_target); 4450 4451 kmem_cache_destroy(_new_mapping_cache); 4452 4453 pool_table_exit(); 4454 } 4455 4456 module_init(dm_thin_init); 4457 module_exit(dm_thin_exit); 4458 4459 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4460 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4461 4462 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4463 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4464 MODULE_LICENSE("GPL"); 4465