xref: /openbmc/linux/drivers/md/dm-thin.c (revision 561099a1)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 	bool out_of_data_space:1;
239 
240 	struct dm_bio_prison *prison;
241 	struct dm_kcopyd_client *copier;
242 
243 	struct workqueue_struct *wq;
244 	struct throttle throttle;
245 	struct work_struct worker;
246 	struct delayed_work waker;
247 	struct delayed_work no_space_timeout;
248 
249 	unsigned long last_commit_jiffies;
250 	unsigned ref_count;
251 
252 	spinlock_t lock;
253 	struct bio_list deferred_flush_bios;
254 	struct list_head prepared_mappings;
255 	struct list_head prepared_discards;
256 	struct list_head prepared_discards_pt2;
257 	struct list_head active_thins;
258 
259 	struct dm_deferred_set *shared_read_ds;
260 	struct dm_deferred_set *all_io_ds;
261 
262 	struct dm_thin_new_mapping *next_mapping;
263 	mempool_t *mapping_pool;
264 
265 	process_bio_fn process_bio;
266 	process_bio_fn process_discard;
267 
268 	process_cell_fn process_cell;
269 	process_cell_fn process_discard_cell;
270 
271 	process_mapping_fn process_prepared_mapping;
272 	process_mapping_fn process_prepared_discard;
273 	process_mapping_fn process_prepared_discard_pt2;
274 
275 	struct dm_bio_prison_cell **cell_sort_array;
276 };
277 
278 static enum pool_mode get_pool_mode(struct pool *pool);
279 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280 
281 /*
282  * Target context for a pool.
283  */
284 struct pool_c {
285 	struct dm_target *ti;
286 	struct pool *pool;
287 	struct dm_dev *data_dev;
288 	struct dm_dev *metadata_dev;
289 	struct dm_target_callbacks callbacks;
290 
291 	dm_block_t low_water_blocks;
292 	struct pool_features requested_pf; /* Features requested during table load */
293 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
294 };
295 
296 /*
297  * Target context for a thin.
298  */
299 struct thin_c {
300 	struct list_head list;
301 	struct dm_dev *pool_dev;
302 	struct dm_dev *origin_dev;
303 	sector_t origin_size;
304 	dm_thin_id dev_id;
305 
306 	struct pool *pool;
307 	struct dm_thin_device *td;
308 	struct mapped_device *thin_md;
309 
310 	bool requeue_mode:1;
311 	spinlock_t lock;
312 	struct list_head deferred_cells;
313 	struct bio_list deferred_bio_list;
314 	struct bio_list retry_on_resume_list;
315 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
316 
317 	/*
318 	 * Ensures the thin is not destroyed until the worker has finished
319 	 * iterating the active_thins list.
320 	 */
321 	atomic_t refcount;
322 	struct completion can_destroy;
323 };
324 
325 /*----------------------------------------------------------------*/
326 
327 static bool block_size_is_power_of_two(struct pool *pool)
328 {
329 	return pool->sectors_per_block_shift >= 0;
330 }
331 
332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
333 {
334 	return block_size_is_power_of_two(pool) ?
335 		(b << pool->sectors_per_block_shift) :
336 		(b * pool->sectors_per_block);
337 }
338 
339 /*----------------------------------------------------------------*/
340 
341 struct discard_op {
342 	struct thin_c *tc;
343 	struct blk_plug plug;
344 	struct bio *parent_bio;
345 	struct bio *bio;
346 };
347 
348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
349 {
350 	BUG_ON(!parent);
351 
352 	op->tc = tc;
353 	blk_start_plug(&op->plug);
354 	op->parent_bio = parent;
355 	op->bio = NULL;
356 }
357 
358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
359 {
360 	struct thin_c *tc = op->tc;
361 	sector_t s = block_to_sectors(tc->pool, data_b);
362 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363 
364 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365 				      GFP_NOWAIT, 0, &op->bio);
366 }
367 
368 static void end_discard(struct discard_op *op, int r)
369 {
370 	if (op->bio) {
371 		/*
372 		 * Even if one of the calls to issue_discard failed, we
373 		 * need to wait for the chain to complete.
374 		 */
375 		bio_chain(op->bio, op->parent_bio);
376 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377 		submit_bio(op->bio);
378 	}
379 
380 	blk_finish_plug(&op->plug);
381 
382 	/*
383 	 * Even if r is set, there could be sub discards in flight that we
384 	 * need to wait for.
385 	 */
386 	if (r && !op->parent_bio->bi_status)
387 		op->parent_bio->bi_status = errno_to_blk_status(r);
388 	bio_endio(op->parent_bio);
389 }
390 
391 /*----------------------------------------------------------------*/
392 
393 /*
394  * wake_worker() is used when new work is queued and when pool_resume is
395  * ready to continue deferred IO processing.
396  */
397 static void wake_worker(struct pool *pool)
398 {
399 	queue_work(pool->wq, &pool->worker);
400 }
401 
402 /*----------------------------------------------------------------*/
403 
404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405 		      struct dm_bio_prison_cell **cell_result)
406 {
407 	int r;
408 	struct dm_bio_prison_cell *cell_prealloc;
409 
410 	/*
411 	 * Allocate a cell from the prison's mempool.
412 	 * This might block but it can't fail.
413 	 */
414 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
415 
416 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417 	if (r)
418 		/*
419 		 * We reused an old cell; we can get rid of
420 		 * the new one.
421 		 */
422 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
423 
424 	return r;
425 }
426 
427 static void cell_release(struct pool *pool,
428 			 struct dm_bio_prison_cell *cell,
429 			 struct bio_list *bios)
430 {
431 	dm_cell_release(pool->prison, cell, bios);
432 	dm_bio_prison_free_cell(pool->prison, cell);
433 }
434 
435 static void cell_visit_release(struct pool *pool,
436 			       void (*fn)(void *, struct dm_bio_prison_cell *),
437 			       void *context,
438 			       struct dm_bio_prison_cell *cell)
439 {
440 	dm_cell_visit_release(pool->prison, fn, context, cell);
441 	dm_bio_prison_free_cell(pool->prison, cell);
442 }
443 
444 static void cell_release_no_holder(struct pool *pool,
445 				   struct dm_bio_prison_cell *cell,
446 				   struct bio_list *bios)
447 {
448 	dm_cell_release_no_holder(pool->prison, cell, bios);
449 	dm_bio_prison_free_cell(pool->prison, cell);
450 }
451 
452 static void cell_error_with_code(struct pool *pool,
453 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
454 {
455 	dm_cell_error(pool->prison, cell, error_code);
456 	dm_bio_prison_free_cell(pool->prison, cell);
457 }
458 
459 static blk_status_t get_pool_io_error_code(struct pool *pool)
460 {
461 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
462 }
463 
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
467 }
468 
469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
470 {
471 	cell_error_with_code(pool, cell, 0);
472 }
473 
474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
475 {
476 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
477 }
478 
479 /*----------------------------------------------------------------*/
480 
481 /*
482  * A global list of pools that uses a struct mapped_device as a key.
483  */
484 static struct dm_thin_pool_table {
485 	struct mutex mutex;
486 	struct list_head pools;
487 } dm_thin_pool_table;
488 
489 static void pool_table_init(void)
490 {
491 	mutex_init(&dm_thin_pool_table.mutex);
492 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
493 }
494 
495 static void __pool_table_insert(struct pool *pool)
496 {
497 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
498 	list_add(&pool->list, &dm_thin_pool_table.pools);
499 }
500 
501 static void __pool_table_remove(struct pool *pool)
502 {
503 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504 	list_del(&pool->list);
505 }
506 
507 static struct pool *__pool_table_lookup(struct mapped_device *md)
508 {
509 	struct pool *pool = NULL, *tmp;
510 
511 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
512 
513 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
514 		if (tmp->pool_md == md) {
515 			pool = tmp;
516 			break;
517 		}
518 	}
519 
520 	return pool;
521 }
522 
523 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
524 {
525 	struct pool *pool = NULL, *tmp;
526 
527 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
528 
529 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
530 		if (tmp->md_dev == md_dev) {
531 			pool = tmp;
532 			break;
533 		}
534 	}
535 
536 	return pool;
537 }
538 
539 /*----------------------------------------------------------------*/
540 
541 struct dm_thin_endio_hook {
542 	struct thin_c *tc;
543 	struct dm_deferred_entry *shared_read_entry;
544 	struct dm_deferred_entry *all_io_entry;
545 	struct dm_thin_new_mapping *overwrite_mapping;
546 	struct rb_node rb_node;
547 	struct dm_bio_prison_cell *cell;
548 };
549 
550 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
551 {
552 	bio_list_merge(bios, master);
553 	bio_list_init(master);
554 }
555 
556 static void error_bio_list(struct bio_list *bios, blk_status_t error)
557 {
558 	struct bio *bio;
559 
560 	while ((bio = bio_list_pop(bios))) {
561 		bio->bi_status = error;
562 		bio_endio(bio);
563 	}
564 }
565 
566 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
567 		blk_status_t error)
568 {
569 	struct bio_list bios;
570 	unsigned long flags;
571 
572 	bio_list_init(&bios);
573 
574 	spin_lock_irqsave(&tc->lock, flags);
575 	__merge_bio_list(&bios, master);
576 	spin_unlock_irqrestore(&tc->lock, flags);
577 
578 	error_bio_list(&bios, error);
579 }
580 
581 static void requeue_deferred_cells(struct thin_c *tc)
582 {
583 	struct pool *pool = tc->pool;
584 	unsigned long flags;
585 	struct list_head cells;
586 	struct dm_bio_prison_cell *cell, *tmp;
587 
588 	INIT_LIST_HEAD(&cells);
589 
590 	spin_lock_irqsave(&tc->lock, flags);
591 	list_splice_init(&tc->deferred_cells, &cells);
592 	spin_unlock_irqrestore(&tc->lock, flags);
593 
594 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
595 		cell_requeue(pool, cell);
596 }
597 
598 static void requeue_io(struct thin_c *tc)
599 {
600 	struct bio_list bios;
601 	unsigned long flags;
602 
603 	bio_list_init(&bios);
604 
605 	spin_lock_irqsave(&tc->lock, flags);
606 	__merge_bio_list(&bios, &tc->deferred_bio_list);
607 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
608 	spin_unlock_irqrestore(&tc->lock, flags);
609 
610 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
611 	requeue_deferred_cells(tc);
612 }
613 
614 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
615 {
616 	struct thin_c *tc;
617 
618 	rcu_read_lock();
619 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
620 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
621 	rcu_read_unlock();
622 }
623 
624 static void error_retry_list(struct pool *pool)
625 {
626 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
627 }
628 
629 /*
630  * This section of code contains the logic for processing a thin device's IO.
631  * Much of the code depends on pool object resources (lists, workqueues, etc)
632  * but most is exclusively called from the thin target rather than the thin-pool
633  * target.
634  */
635 
636 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
637 {
638 	struct pool *pool = tc->pool;
639 	sector_t block_nr = bio->bi_iter.bi_sector;
640 
641 	if (block_size_is_power_of_two(pool))
642 		block_nr >>= pool->sectors_per_block_shift;
643 	else
644 		(void) sector_div(block_nr, pool->sectors_per_block);
645 
646 	return block_nr;
647 }
648 
649 /*
650  * Returns the _complete_ blocks that this bio covers.
651  */
652 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
653 				dm_block_t *begin, dm_block_t *end)
654 {
655 	struct pool *pool = tc->pool;
656 	sector_t b = bio->bi_iter.bi_sector;
657 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
658 
659 	b += pool->sectors_per_block - 1ull; /* so we round up */
660 
661 	if (block_size_is_power_of_two(pool)) {
662 		b >>= pool->sectors_per_block_shift;
663 		e >>= pool->sectors_per_block_shift;
664 	} else {
665 		(void) sector_div(b, pool->sectors_per_block);
666 		(void) sector_div(e, pool->sectors_per_block);
667 	}
668 
669 	if (e < b)
670 		/* Can happen if the bio is within a single block. */
671 		e = b;
672 
673 	*begin = b;
674 	*end = e;
675 }
676 
677 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
678 {
679 	struct pool *pool = tc->pool;
680 	sector_t bi_sector = bio->bi_iter.bi_sector;
681 
682 	bio->bi_bdev = tc->pool_dev->bdev;
683 	if (block_size_is_power_of_two(pool))
684 		bio->bi_iter.bi_sector =
685 			(block << pool->sectors_per_block_shift) |
686 			(bi_sector & (pool->sectors_per_block - 1));
687 	else
688 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
689 				 sector_div(bi_sector, pool->sectors_per_block);
690 }
691 
692 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
693 {
694 	bio->bi_bdev = tc->origin_dev->bdev;
695 }
696 
697 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
698 {
699 	return op_is_flush(bio->bi_opf) &&
700 		dm_thin_changed_this_transaction(tc->td);
701 }
702 
703 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
704 {
705 	struct dm_thin_endio_hook *h;
706 
707 	if (bio_op(bio) == REQ_OP_DISCARD)
708 		return;
709 
710 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
711 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
712 }
713 
714 static void issue(struct thin_c *tc, struct bio *bio)
715 {
716 	struct pool *pool = tc->pool;
717 	unsigned long flags;
718 
719 	if (!bio_triggers_commit(tc, bio)) {
720 		generic_make_request(bio);
721 		return;
722 	}
723 
724 	/*
725 	 * Complete bio with an error if earlier I/O caused changes to
726 	 * the metadata that can't be committed e.g, due to I/O errors
727 	 * on the metadata device.
728 	 */
729 	if (dm_thin_aborted_changes(tc->td)) {
730 		bio_io_error(bio);
731 		return;
732 	}
733 
734 	/*
735 	 * Batch together any bios that trigger commits and then issue a
736 	 * single commit for them in process_deferred_bios().
737 	 */
738 	spin_lock_irqsave(&pool->lock, flags);
739 	bio_list_add(&pool->deferred_flush_bios, bio);
740 	spin_unlock_irqrestore(&pool->lock, flags);
741 }
742 
743 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
744 {
745 	remap_to_origin(tc, bio);
746 	issue(tc, bio);
747 }
748 
749 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
750 			    dm_block_t block)
751 {
752 	remap(tc, bio, block);
753 	issue(tc, bio);
754 }
755 
756 /*----------------------------------------------------------------*/
757 
758 /*
759  * Bio endio functions.
760  */
761 struct dm_thin_new_mapping {
762 	struct list_head list;
763 
764 	bool pass_discard:1;
765 	bool maybe_shared:1;
766 
767 	/*
768 	 * Track quiescing, copying and zeroing preparation actions.  When this
769 	 * counter hits zero the block is prepared and can be inserted into the
770 	 * btree.
771 	 */
772 	atomic_t prepare_actions;
773 
774 	blk_status_t status;
775 	struct thin_c *tc;
776 	dm_block_t virt_begin, virt_end;
777 	dm_block_t data_block;
778 	struct dm_bio_prison_cell *cell;
779 
780 	/*
781 	 * If the bio covers the whole area of a block then we can avoid
782 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
783 	 * still be in the cell, so care has to be taken to avoid issuing
784 	 * the bio twice.
785 	 */
786 	struct bio *bio;
787 	bio_end_io_t *saved_bi_end_io;
788 };
789 
790 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
791 {
792 	struct pool *pool = m->tc->pool;
793 
794 	if (atomic_dec_and_test(&m->prepare_actions)) {
795 		list_add_tail(&m->list, &pool->prepared_mappings);
796 		wake_worker(pool);
797 	}
798 }
799 
800 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
801 {
802 	unsigned long flags;
803 	struct pool *pool = m->tc->pool;
804 
805 	spin_lock_irqsave(&pool->lock, flags);
806 	__complete_mapping_preparation(m);
807 	spin_unlock_irqrestore(&pool->lock, flags);
808 }
809 
810 static void copy_complete(int read_err, unsigned long write_err, void *context)
811 {
812 	struct dm_thin_new_mapping *m = context;
813 
814 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
815 	complete_mapping_preparation(m);
816 }
817 
818 static void overwrite_endio(struct bio *bio)
819 {
820 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
821 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
822 
823 	bio->bi_end_io = m->saved_bi_end_io;
824 
825 	m->status = bio->bi_status;
826 	complete_mapping_preparation(m);
827 }
828 
829 /*----------------------------------------------------------------*/
830 
831 /*
832  * Workqueue.
833  */
834 
835 /*
836  * Prepared mapping jobs.
837  */
838 
839 /*
840  * This sends the bios in the cell, except the original holder, back
841  * to the deferred_bios list.
842  */
843 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
844 {
845 	struct pool *pool = tc->pool;
846 	unsigned long flags;
847 
848 	spin_lock_irqsave(&tc->lock, flags);
849 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
850 	spin_unlock_irqrestore(&tc->lock, flags);
851 
852 	wake_worker(pool);
853 }
854 
855 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
856 
857 struct remap_info {
858 	struct thin_c *tc;
859 	struct bio_list defer_bios;
860 	struct bio_list issue_bios;
861 };
862 
863 static void __inc_remap_and_issue_cell(void *context,
864 				       struct dm_bio_prison_cell *cell)
865 {
866 	struct remap_info *info = context;
867 	struct bio *bio;
868 
869 	while ((bio = bio_list_pop(&cell->bios))) {
870 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
871 			bio_list_add(&info->defer_bios, bio);
872 		else {
873 			inc_all_io_entry(info->tc->pool, bio);
874 
875 			/*
876 			 * We can't issue the bios with the bio prison lock
877 			 * held, so we add them to a list to issue on
878 			 * return from this function.
879 			 */
880 			bio_list_add(&info->issue_bios, bio);
881 		}
882 	}
883 }
884 
885 static void inc_remap_and_issue_cell(struct thin_c *tc,
886 				     struct dm_bio_prison_cell *cell,
887 				     dm_block_t block)
888 {
889 	struct bio *bio;
890 	struct remap_info info;
891 
892 	info.tc = tc;
893 	bio_list_init(&info.defer_bios);
894 	bio_list_init(&info.issue_bios);
895 
896 	/*
897 	 * We have to be careful to inc any bios we're about to issue
898 	 * before the cell is released, and avoid a race with new bios
899 	 * being added to the cell.
900 	 */
901 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
902 			   &info, cell);
903 
904 	while ((bio = bio_list_pop(&info.defer_bios)))
905 		thin_defer_bio(tc, bio);
906 
907 	while ((bio = bio_list_pop(&info.issue_bios)))
908 		remap_and_issue(info.tc, bio, block);
909 }
910 
911 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
912 {
913 	cell_error(m->tc->pool, m->cell);
914 	list_del(&m->list);
915 	mempool_free(m, m->tc->pool->mapping_pool);
916 }
917 
918 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
919 {
920 	struct thin_c *tc = m->tc;
921 	struct pool *pool = tc->pool;
922 	struct bio *bio = m->bio;
923 	int r;
924 
925 	if (m->status) {
926 		cell_error(pool, m->cell);
927 		goto out;
928 	}
929 
930 	/*
931 	 * Commit the prepared block into the mapping btree.
932 	 * Any I/O for this block arriving after this point will get
933 	 * remapped to it directly.
934 	 */
935 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
936 	if (r) {
937 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
938 		cell_error(pool, m->cell);
939 		goto out;
940 	}
941 
942 	/*
943 	 * Release any bios held while the block was being provisioned.
944 	 * If we are processing a write bio that completely covers the block,
945 	 * we already processed it so can ignore it now when processing
946 	 * the bios in the cell.
947 	 */
948 	if (bio) {
949 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
950 		bio_endio(bio);
951 	} else {
952 		inc_all_io_entry(tc->pool, m->cell->holder);
953 		remap_and_issue(tc, m->cell->holder, m->data_block);
954 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
955 	}
956 
957 out:
958 	list_del(&m->list);
959 	mempool_free(m, pool->mapping_pool);
960 }
961 
962 /*----------------------------------------------------------------*/
963 
964 static void free_discard_mapping(struct dm_thin_new_mapping *m)
965 {
966 	struct thin_c *tc = m->tc;
967 	if (m->cell)
968 		cell_defer_no_holder(tc, m->cell);
969 	mempool_free(m, tc->pool->mapping_pool);
970 }
971 
972 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
973 {
974 	bio_io_error(m->bio);
975 	free_discard_mapping(m);
976 }
977 
978 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
979 {
980 	bio_endio(m->bio);
981 	free_discard_mapping(m);
982 }
983 
984 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
985 {
986 	int r;
987 	struct thin_c *tc = m->tc;
988 
989 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
990 	if (r) {
991 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
992 		bio_io_error(m->bio);
993 	} else
994 		bio_endio(m->bio);
995 
996 	cell_defer_no_holder(tc, m->cell);
997 	mempool_free(m, tc->pool->mapping_pool);
998 }
999 
1000 /*----------------------------------------------------------------*/
1001 
1002 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1003 						   struct bio *discard_parent)
1004 {
1005 	/*
1006 	 * We've already unmapped this range of blocks, but before we
1007 	 * passdown we have to check that these blocks are now unused.
1008 	 */
1009 	int r = 0;
1010 	bool used = true;
1011 	struct thin_c *tc = m->tc;
1012 	struct pool *pool = tc->pool;
1013 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1014 	struct discard_op op;
1015 
1016 	begin_discard(&op, tc, discard_parent);
1017 	while (b != end) {
1018 		/* find start of unmapped run */
1019 		for (; b < end; b++) {
1020 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1021 			if (r)
1022 				goto out;
1023 
1024 			if (!used)
1025 				break;
1026 		}
1027 
1028 		if (b == end)
1029 			break;
1030 
1031 		/* find end of run */
1032 		for (e = b + 1; e != end; e++) {
1033 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1034 			if (r)
1035 				goto out;
1036 
1037 			if (used)
1038 				break;
1039 		}
1040 
1041 		r = issue_discard(&op, b, e);
1042 		if (r)
1043 			goto out;
1044 
1045 		b = e;
1046 	}
1047 out:
1048 	end_discard(&op, r);
1049 }
1050 
1051 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1052 {
1053 	unsigned long flags;
1054 	struct pool *pool = m->tc->pool;
1055 
1056 	spin_lock_irqsave(&pool->lock, flags);
1057 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1058 	spin_unlock_irqrestore(&pool->lock, flags);
1059 	wake_worker(pool);
1060 }
1061 
1062 static void passdown_endio(struct bio *bio)
1063 {
1064 	/*
1065 	 * It doesn't matter if the passdown discard failed, we still want
1066 	 * to unmap (we ignore err).
1067 	 */
1068 	queue_passdown_pt2(bio->bi_private);
1069 	bio_put(bio);
1070 }
1071 
1072 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1073 {
1074 	int r;
1075 	struct thin_c *tc = m->tc;
1076 	struct pool *pool = tc->pool;
1077 	struct bio *discard_parent;
1078 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1079 
1080 	/*
1081 	 * Only this thread allocates blocks, so we can be sure that the
1082 	 * newly unmapped blocks will not be allocated before the end of
1083 	 * the function.
1084 	 */
1085 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1086 	if (r) {
1087 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1088 		bio_io_error(m->bio);
1089 		cell_defer_no_holder(tc, m->cell);
1090 		mempool_free(m, pool->mapping_pool);
1091 		return;
1092 	}
1093 
1094 	/*
1095 	 * Increment the unmapped blocks.  This prevents a race between the
1096 	 * passdown io and reallocation of freed blocks.
1097 	 */
1098 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1099 	if (r) {
1100 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1101 		bio_io_error(m->bio);
1102 		cell_defer_no_holder(tc, m->cell);
1103 		mempool_free(m, pool->mapping_pool);
1104 		return;
1105 	}
1106 
1107 	discard_parent = bio_alloc(GFP_NOIO, 1);
1108 	if (!discard_parent) {
1109 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1110 		       dm_device_name(tc->pool->pool_md));
1111 		queue_passdown_pt2(m);
1112 
1113 	} else {
1114 		discard_parent->bi_end_io = passdown_endio;
1115 		discard_parent->bi_private = m;
1116 
1117 		if (m->maybe_shared)
1118 			passdown_double_checking_shared_status(m, discard_parent);
1119 		else {
1120 			struct discard_op op;
1121 
1122 			begin_discard(&op, tc, discard_parent);
1123 			r = issue_discard(&op, m->data_block, data_end);
1124 			end_discard(&op, r);
1125 		}
1126 	}
1127 }
1128 
1129 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1130 {
1131 	int r;
1132 	struct thin_c *tc = m->tc;
1133 	struct pool *pool = tc->pool;
1134 
1135 	/*
1136 	 * The passdown has completed, so now we can decrement all those
1137 	 * unmapped blocks.
1138 	 */
1139 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1140 				   m->data_block + (m->virt_end - m->virt_begin));
1141 	if (r) {
1142 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1143 		bio_io_error(m->bio);
1144 	} else
1145 		bio_endio(m->bio);
1146 
1147 	cell_defer_no_holder(tc, m->cell);
1148 	mempool_free(m, pool->mapping_pool);
1149 }
1150 
1151 static void process_prepared(struct pool *pool, struct list_head *head,
1152 			     process_mapping_fn *fn)
1153 {
1154 	unsigned long flags;
1155 	struct list_head maps;
1156 	struct dm_thin_new_mapping *m, *tmp;
1157 
1158 	INIT_LIST_HEAD(&maps);
1159 	spin_lock_irqsave(&pool->lock, flags);
1160 	list_splice_init(head, &maps);
1161 	spin_unlock_irqrestore(&pool->lock, flags);
1162 
1163 	list_for_each_entry_safe(m, tmp, &maps, list)
1164 		(*fn)(m);
1165 }
1166 
1167 /*
1168  * Deferred bio jobs.
1169  */
1170 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1171 {
1172 	return bio->bi_iter.bi_size ==
1173 		(pool->sectors_per_block << SECTOR_SHIFT);
1174 }
1175 
1176 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1177 {
1178 	return (bio_data_dir(bio) == WRITE) &&
1179 		io_overlaps_block(pool, bio);
1180 }
1181 
1182 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1183 			       bio_end_io_t *fn)
1184 {
1185 	*save = bio->bi_end_io;
1186 	bio->bi_end_io = fn;
1187 }
1188 
1189 static int ensure_next_mapping(struct pool *pool)
1190 {
1191 	if (pool->next_mapping)
1192 		return 0;
1193 
1194 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1195 
1196 	return pool->next_mapping ? 0 : -ENOMEM;
1197 }
1198 
1199 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1200 {
1201 	struct dm_thin_new_mapping *m = pool->next_mapping;
1202 
1203 	BUG_ON(!pool->next_mapping);
1204 
1205 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1206 	INIT_LIST_HEAD(&m->list);
1207 	m->bio = NULL;
1208 
1209 	pool->next_mapping = NULL;
1210 
1211 	return m;
1212 }
1213 
1214 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1215 		    sector_t begin, sector_t end)
1216 {
1217 	int r;
1218 	struct dm_io_region to;
1219 
1220 	to.bdev = tc->pool_dev->bdev;
1221 	to.sector = begin;
1222 	to.count = end - begin;
1223 
1224 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1225 	if (r < 0) {
1226 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1227 		copy_complete(1, 1, m);
1228 	}
1229 }
1230 
1231 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1232 				      dm_block_t data_begin,
1233 				      struct dm_thin_new_mapping *m)
1234 {
1235 	struct pool *pool = tc->pool;
1236 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1237 
1238 	h->overwrite_mapping = m;
1239 	m->bio = bio;
1240 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1241 	inc_all_io_entry(pool, bio);
1242 	remap_and_issue(tc, bio, data_begin);
1243 }
1244 
1245 /*
1246  * A partial copy also needs to zero the uncopied region.
1247  */
1248 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1249 			  struct dm_dev *origin, dm_block_t data_origin,
1250 			  dm_block_t data_dest,
1251 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1252 			  sector_t len)
1253 {
1254 	int r;
1255 	struct pool *pool = tc->pool;
1256 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1257 
1258 	m->tc = tc;
1259 	m->virt_begin = virt_block;
1260 	m->virt_end = virt_block + 1u;
1261 	m->data_block = data_dest;
1262 	m->cell = cell;
1263 
1264 	/*
1265 	 * quiesce action + copy action + an extra reference held for the
1266 	 * duration of this function (we may need to inc later for a
1267 	 * partial zero).
1268 	 */
1269 	atomic_set(&m->prepare_actions, 3);
1270 
1271 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1272 		complete_mapping_preparation(m); /* already quiesced */
1273 
1274 	/*
1275 	 * IO to pool_dev remaps to the pool target's data_dev.
1276 	 *
1277 	 * If the whole block of data is being overwritten, we can issue the
1278 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1279 	 */
1280 	if (io_overwrites_block(pool, bio))
1281 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1282 	else {
1283 		struct dm_io_region from, to;
1284 
1285 		from.bdev = origin->bdev;
1286 		from.sector = data_origin * pool->sectors_per_block;
1287 		from.count = len;
1288 
1289 		to.bdev = tc->pool_dev->bdev;
1290 		to.sector = data_dest * pool->sectors_per_block;
1291 		to.count = len;
1292 
1293 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1294 				   0, copy_complete, m);
1295 		if (r < 0) {
1296 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1297 			copy_complete(1, 1, m);
1298 
1299 			/*
1300 			 * We allow the zero to be issued, to simplify the
1301 			 * error path.  Otherwise we'd need to start
1302 			 * worrying about decrementing the prepare_actions
1303 			 * counter.
1304 			 */
1305 		}
1306 
1307 		/*
1308 		 * Do we need to zero a tail region?
1309 		 */
1310 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1311 			atomic_inc(&m->prepare_actions);
1312 			ll_zero(tc, m,
1313 				data_dest * pool->sectors_per_block + len,
1314 				(data_dest + 1) * pool->sectors_per_block);
1315 		}
1316 	}
1317 
1318 	complete_mapping_preparation(m); /* drop our ref */
1319 }
1320 
1321 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1322 				   dm_block_t data_origin, dm_block_t data_dest,
1323 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1324 {
1325 	schedule_copy(tc, virt_block, tc->pool_dev,
1326 		      data_origin, data_dest, cell, bio,
1327 		      tc->pool->sectors_per_block);
1328 }
1329 
1330 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1331 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1332 			  struct bio *bio)
1333 {
1334 	struct pool *pool = tc->pool;
1335 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1336 
1337 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1338 	m->tc = tc;
1339 	m->virt_begin = virt_block;
1340 	m->virt_end = virt_block + 1u;
1341 	m->data_block = data_block;
1342 	m->cell = cell;
1343 
1344 	/*
1345 	 * If the whole block of data is being overwritten or we are not
1346 	 * zeroing pre-existing data, we can issue the bio immediately.
1347 	 * Otherwise we use kcopyd to zero the data first.
1348 	 */
1349 	if (pool->pf.zero_new_blocks) {
1350 		if (io_overwrites_block(pool, bio))
1351 			remap_and_issue_overwrite(tc, bio, data_block, m);
1352 		else
1353 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1354 				(data_block + 1) * pool->sectors_per_block);
1355 	} else
1356 		process_prepared_mapping(m);
1357 }
1358 
1359 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1360 				   dm_block_t data_dest,
1361 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1362 {
1363 	struct pool *pool = tc->pool;
1364 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1365 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1366 
1367 	if (virt_block_end <= tc->origin_size)
1368 		schedule_copy(tc, virt_block, tc->origin_dev,
1369 			      virt_block, data_dest, cell, bio,
1370 			      pool->sectors_per_block);
1371 
1372 	else if (virt_block_begin < tc->origin_size)
1373 		schedule_copy(tc, virt_block, tc->origin_dev,
1374 			      virt_block, data_dest, cell, bio,
1375 			      tc->origin_size - virt_block_begin);
1376 
1377 	else
1378 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1379 }
1380 
1381 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1382 
1383 static void check_for_space(struct pool *pool)
1384 {
1385 	int r;
1386 	dm_block_t nr_free;
1387 
1388 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1389 		return;
1390 
1391 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1392 	if (r)
1393 		return;
1394 
1395 	if (nr_free)
1396 		set_pool_mode(pool, PM_WRITE);
1397 }
1398 
1399 /*
1400  * A non-zero return indicates read_only or fail_io mode.
1401  * Many callers don't care about the return value.
1402  */
1403 static int commit(struct pool *pool)
1404 {
1405 	int r;
1406 
1407 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1408 		return -EINVAL;
1409 
1410 	r = dm_pool_commit_metadata(pool->pmd);
1411 	if (r)
1412 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1413 	else
1414 		check_for_space(pool);
1415 
1416 	return r;
1417 }
1418 
1419 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1420 {
1421 	unsigned long flags;
1422 
1423 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1424 		DMWARN("%s: reached low water mark for data device: sending event.",
1425 		       dm_device_name(pool->pool_md));
1426 		spin_lock_irqsave(&pool->lock, flags);
1427 		pool->low_water_triggered = true;
1428 		spin_unlock_irqrestore(&pool->lock, flags);
1429 		dm_table_event(pool->ti->table);
1430 	}
1431 }
1432 
1433 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1434 {
1435 	int r;
1436 	dm_block_t free_blocks;
1437 	struct pool *pool = tc->pool;
1438 
1439 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1440 		return -EINVAL;
1441 
1442 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1443 	if (r) {
1444 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1445 		return r;
1446 	}
1447 
1448 	check_low_water_mark(pool, free_blocks);
1449 
1450 	if (!free_blocks) {
1451 		/*
1452 		 * Try to commit to see if that will free up some
1453 		 * more space.
1454 		 */
1455 		r = commit(pool);
1456 		if (r)
1457 			return r;
1458 
1459 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1460 		if (r) {
1461 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1462 			return r;
1463 		}
1464 
1465 		if (!free_blocks) {
1466 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1467 			return -ENOSPC;
1468 		}
1469 	}
1470 
1471 	r = dm_pool_alloc_data_block(pool->pmd, result);
1472 	if (r) {
1473 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1474 		return r;
1475 	}
1476 
1477 	return 0;
1478 }
1479 
1480 /*
1481  * If we have run out of space, queue bios until the device is
1482  * resumed, presumably after having been reloaded with more space.
1483  */
1484 static void retry_on_resume(struct bio *bio)
1485 {
1486 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1487 	struct thin_c *tc = h->tc;
1488 	unsigned long flags;
1489 
1490 	spin_lock_irqsave(&tc->lock, flags);
1491 	bio_list_add(&tc->retry_on_resume_list, bio);
1492 	spin_unlock_irqrestore(&tc->lock, flags);
1493 }
1494 
1495 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1496 {
1497 	enum pool_mode m = get_pool_mode(pool);
1498 
1499 	switch (m) {
1500 	case PM_WRITE:
1501 		/* Shouldn't get here */
1502 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1503 		return BLK_STS_IOERR;
1504 
1505 	case PM_OUT_OF_DATA_SPACE:
1506 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1507 
1508 	case PM_READ_ONLY:
1509 	case PM_FAIL:
1510 		return BLK_STS_IOERR;
1511 	default:
1512 		/* Shouldn't get here */
1513 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1514 		return BLK_STS_IOERR;
1515 	}
1516 }
1517 
1518 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1519 {
1520 	blk_status_t error = should_error_unserviceable_bio(pool);
1521 
1522 	if (error) {
1523 		bio->bi_status = error;
1524 		bio_endio(bio);
1525 	} else
1526 		retry_on_resume(bio);
1527 }
1528 
1529 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1530 {
1531 	struct bio *bio;
1532 	struct bio_list bios;
1533 	blk_status_t error;
1534 
1535 	error = should_error_unserviceable_bio(pool);
1536 	if (error) {
1537 		cell_error_with_code(pool, cell, error);
1538 		return;
1539 	}
1540 
1541 	bio_list_init(&bios);
1542 	cell_release(pool, cell, &bios);
1543 
1544 	while ((bio = bio_list_pop(&bios)))
1545 		retry_on_resume(bio);
1546 }
1547 
1548 static void process_discard_cell_no_passdown(struct thin_c *tc,
1549 					     struct dm_bio_prison_cell *virt_cell)
1550 {
1551 	struct pool *pool = tc->pool;
1552 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1553 
1554 	/*
1555 	 * We don't need to lock the data blocks, since there's no
1556 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1557 	 */
1558 	m->tc = tc;
1559 	m->virt_begin = virt_cell->key.block_begin;
1560 	m->virt_end = virt_cell->key.block_end;
1561 	m->cell = virt_cell;
1562 	m->bio = virt_cell->holder;
1563 
1564 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1565 		pool->process_prepared_discard(m);
1566 }
1567 
1568 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1569 				 struct bio *bio)
1570 {
1571 	struct pool *pool = tc->pool;
1572 
1573 	int r;
1574 	bool maybe_shared;
1575 	struct dm_cell_key data_key;
1576 	struct dm_bio_prison_cell *data_cell;
1577 	struct dm_thin_new_mapping *m;
1578 	dm_block_t virt_begin, virt_end, data_begin;
1579 
1580 	while (begin != end) {
1581 		r = ensure_next_mapping(pool);
1582 		if (r)
1583 			/* we did our best */
1584 			return;
1585 
1586 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1587 					      &data_begin, &maybe_shared);
1588 		if (r)
1589 			/*
1590 			 * Silently fail, letting any mappings we've
1591 			 * created complete.
1592 			 */
1593 			break;
1594 
1595 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1596 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1597 			/* contention, we'll give up with this range */
1598 			begin = virt_end;
1599 			continue;
1600 		}
1601 
1602 		/*
1603 		 * IO may still be going to the destination block.  We must
1604 		 * quiesce before we can do the removal.
1605 		 */
1606 		m = get_next_mapping(pool);
1607 		m->tc = tc;
1608 		m->maybe_shared = maybe_shared;
1609 		m->virt_begin = virt_begin;
1610 		m->virt_end = virt_end;
1611 		m->data_block = data_begin;
1612 		m->cell = data_cell;
1613 		m->bio = bio;
1614 
1615 		/*
1616 		 * The parent bio must not complete before sub discard bios are
1617 		 * chained to it (see end_discard's bio_chain)!
1618 		 *
1619 		 * This per-mapping bi_remaining increment is paired with
1620 		 * the implicit decrement that occurs via bio_endio() in
1621 		 * end_discard().
1622 		 */
1623 		bio_inc_remaining(bio);
1624 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1625 			pool->process_prepared_discard(m);
1626 
1627 		begin = virt_end;
1628 	}
1629 }
1630 
1631 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1632 {
1633 	struct bio *bio = virt_cell->holder;
1634 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1635 
1636 	/*
1637 	 * The virt_cell will only get freed once the origin bio completes.
1638 	 * This means it will remain locked while all the individual
1639 	 * passdown bios are in flight.
1640 	 */
1641 	h->cell = virt_cell;
1642 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1643 
1644 	/*
1645 	 * We complete the bio now, knowing that the bi_remaining field
1646 	 * will prevent completion until the sub range discards have
1647 	 * completed.
1648 	 */
1649 	bio_endio(bio);
1650 }
1651 
1652 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1653 {
1654 	dm_block_t begin, end;
1655 	struct dm_cell_key virt_key;
1656 	struct dm_bio_prison_cell *virt_cell;
1657 
1658 	get_bio_block_range(tc, bio, &begin, &end);
1659 	if (begin == end) {
1660 		/*
1661 		 * The discard covers less than a block.
1662 		 */
1663 		bio_endio(bio);
1664 		return;
1665 	}
1666 
1667 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1668 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1669 		/*
1670 		 * Potential starvation issue: We're relying on the
1671 		 * fs/application being well behaved, and not trying to
1672 		 * send IO to a region at the same time as discarding it.
1673 		 * If they do this persistently then it's possible this
1674 		 * cell will never be granted.
1675 		 */
1676 		return;
1677 
1678 	tc->pool->process_discard_cell(tc, virt_cell);
1679 }
1680 
1681 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1682 			  struct dm_cell_key *key,
1683 			  struct dm_thin_lookup_result *lookup_result,
1684 			  struct dm_bio_prison_cell *cell)
1685 {
1686 	int r;
1687 	dm_block_t data_block;
1688 	struct pool *pool = tc->pool;
1689 
1690 	r = alloc_data_block(tc, &data_block);
1691 	switch (r) {
1692 	case 0:
1693 		schedule_internal_copy(tc, block, lookup_result->block,
1694 				       data_block, cell, bio);
1695 		break;
1696 
1697 	case -ENOSPC:
1698 		retry_bios_on_resume(pool, cell);
1699 		break;
1700 
1701 	default:
1702 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1703 			    __func__, r);
1704 		cell_error(pool, cell);
1705 		break;
1706 	}
1707 }
1708 
1709 static void __remap_and_issue_shared_cell(void *context,
1710 					  struct dm_bio_prison_cell *cell)
1711 {
1712 	struct remap_info *info = context;
1713 	struct bio *bio;
1714 
1715 	while ((bio = bio_list_pop(&cell->bios))) {
1716 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1717 		    bio_op(bio) == REQ_OP_DISCARD)
1718 			bio_list_add(&info->defer_bios, bio);
1719 		else {
1720 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1721 
1722 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1723 			inc_all_io_entry(info->tc->pool, bio);
1724 			bio_list_add(&info->issue_bios, bio);
1725 		}
1726 	}
1727 }
1728 
1729 static void remap_and_issue_shared_cell(struct thin_c *tc,
1730 					struct dm_bio_prison_cell *cell,
1731 					dm_block_t block)
1732 {
1733 	struct bio *bio;
1734 	struct remap_info info;
1735 
1736 	info.tc = tc;
1737 	bio_list_init(&info.defer_bios);
1738 	bio_list_init(&info.issue_bios);
1739 
1740 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1741 			   &info, cell);
1742 
1743 	while ((bio = bio_list_pop(&info.defer_bios)))
1744 		thin_defer_bio(tc, bio);
1745 
1746 	while ((bio = bio_list_pop(&info.issue_bios)))
1747 		remap_and_issue(tc, bio, block);
1748 }
1749 
1750 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1751 			       dm_block_t block,
1752 			       struct dm_thin_lookup_result *lookup_result,
1753 			       struct dm_bio_prison_cell *virt_cell)
1754 {
1755 	struct dm_bio_prison_cell *data_cell;
1756 	struct pool *pool = tc->pool;
1757 	struct dm_cell_key key;
1758 
1759 	/*
1760 	 * If cell is already occupied, then sharing is already in the process
1761 	 * of being broken so we have nothing further to do here.
1762 	 */
1763 	build_data_key(tc->td, lookup_result->block, &key);
1764 	if (bio_detain(pool, &key, bio, &data_cell)) {
1765 		cell_defer_no_holder(tc, virt_cell);
1766 		return;
1767 	}
1768 
1769 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1770 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1771 		cell_defer_no_holder(tc, virt_cell);
1772 	} else {
1773 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1774 
1775 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1776 		inc_all_io_entry(pool, bio);
1777 		remap_and_issue(tc, bio, lookup_result->block);
1778 
1779 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1780 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1781 	}
1782 }
1783 
1784 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1785 			    struct dm_bio_prison_cell *cell)
1786 {
1787 	int r;
1788 	dm_block_t data_block;
1789 	struct pool *pool = tc->pool;
1790 
1791 	/*
1792 	 * Remap empty bios (flushes) immediately, without provisioning.
1793 	 */
1794 	if (!bio->bi_iter.bi_size) {
1795 		inc_all_io_entry(pool, bio);
1796 		cell_defer_no_holder(tc, cell);
1797 
1798 		remap_and_issue(tc, bio, 0);
1799 		return;
1800 	}
1801 
1802 	/*
1803 	 * Fill read bios with zeroes and complete them immediately.
1804 	 */
1805 	if (bio_data_dir(bio) == READ) {
1806 		zero_fill_bio(bio);
1807 		cell_defer_no_holder(tc, cell);
1808 		bio_endio(bio);
1809 		return;
1810 	}
1811 
1812 	r = alloc_data_block(tc, &data_block);
1813 	switch (r) {
1814 	case 0:
1815 		if (tc->origin_dev)
1816 			schedule_external_copy(tc, block, data_block, cell, bio);
1817 		else
1818 			schedule_zero(tc, block, data_block, cell, bio);
1819 		break;
1820 
1821 	case -ENOSPC:
1822 		retry_bios_on_resume(pool, cell);
1823 		break;
1824 
1825 	default:
1826 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1827 			    __func__, r);
1828 		cell_error(pool, cell);
1829 		break;
1830 	}
1831 }
1832 
1833 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1834 {
1835 	int r;
1836 	struct pool *pool = tc->pool;
1837 	struct bio *bio = cell->holder;
1838 	dm_block_t block = get_bio_block(tc, bio);
1839 	struct dm_thin_lookup_result lookup_result;
1840 
1841 	if (tc->requeue_mode) {
1842 		cell_requeue(pool, cell);
1843 		return;
1844 	}
1845 
1846 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1847 	switch (r) {
1848 	case 0:
1849 		if (lookup_result.shared)
1850 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1851 		else {
1852 			inc_all_io_entry(pool, bio);
1853 			remap_and_issue(tc, bio, lookup_result.block);
1854 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1855 		}
1856 		break;
1857 
1858 	case -ENODATA:
1859 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1860 			inc_all_io_entry(pool, bio);
1861 			cell_defer_no_holder(tc, cell);
1862 
1863 			if (bio_end_sector(bio) <= tc->origin_size)
1864 				remap_to_origin_and_issue(tc, bio);
1865 
1866 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1867 				zero_fill_bio(bio);
1868 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1869 				remap_to_origin_and_issue(tc, bio);
1870 
1871 			} else {
1872 				zero_fill_bio(bio);
1873 				bio_endio(bio);
1874 			}
1875 		} else
1876 			provision_block(tc, bio, block, cell);
1877 		break;
1878 
1879 	default:
1880 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1881 			    __func__, r);
1882 		cell_defer_no_holder(tc, cell);
1883 		bio_io_error(bio);
1884 		break;
1885 	}
1886 }
1887 
1888 static void process_bio(struct thin_c *tc, struct bio *bio)
1889 {
1890 	struct pool *pool = tc->pool;
1891 	dm_block_t block = get_bio_block(tc, bio);
1892 	struct dm_bio_prison_cell *cell;
1893 	struct dm_cell_key key;
1894 
1895 	/*
1896 	 * If cell is already occupied, then the block is already
1897 	 * being provisioned so we have nothing further to do here.
1898 	 */
1899 	build_virtual_key(tc->td, block, &key);
1900 	if (bio_detain(pool, &key, bio, &cell))
1901 		return;
1902 
1903 	process_cell(tc, cell);
1904 }
1905 
1906 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1907 				    struct dm_bio_prison_cell *cell)
1908 {
1909 	int r;
1910 	int rw = bio_data_dir(bio);
1911 	dm_block_t block = get_bio_block(tc, bio);
1912 	struct dm_thin_lookup_result lookup_result;
1913 
1914 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1915 	switch (r) {
1916 	case 0:
1917 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1918 			handle_unserviceable_bio(tc->pool, bio);
1919 			if (cell)
1920 				cell_defer_no_holder(tc, cell);
1921 		} else {
1922 			inc_all_io_entry(tc->pool, bio);
1923 			remap_and_issue(tc, bio, lookup_result.block);
1924 			if (cell)
1925 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1926 		}
1927 		break;
1928 
1929 	case -ENODATA:
1930 		if (cell)
1931 			cell_defer_no_holder(tc, cell);
1932 		if (rw != READ) {
1933 			handle_unserviceable_bio(tc->pool, bio);
1934 			break;
1935 		}
1936 
1937 		if (tc->origin_dev) {
1938 			inc_all_io_entry(tc->pool, bio);
1939 			remap_to_origin_and_issue(tc, bio);
1940 			break;
1941 		}
1942 
1943 		zero_fill_bio(bio);
1944 		bio_endio(bio);
1945 		break;
1946 
1947 	default:
1948 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1949 			    __func__, r);
1950 		if (cell)
1951 			cell_defer_no_holder(tc, cell);
1952 		bio_io_error(bio);
1953 		break;
1954 	}
1955 }
1956 
1957 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1958 {
1959 	__process_bio_read_only(tc, bio, NULL);
1960 }
1961 
1962 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1963 {
1964 	__process_bio_read_only(tc, cell->holder, cell);
1965 }
1966 
1967 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1968 {
1969 	bio_endio(bio);
1970 }
1971 
1972 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1973 {
1974 	bio_io_error(bio);
1975 }
1976 
1977 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1978 {
1979 	cell_success(tc->pool, cell);
1980 }
1981 
1982 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1983 {
1984 	cell_error(tc->pool, cell);
1985 }
1986 
1987 /*
1988  * FIXME: should we also commit due to size of transaction, measured in
1989  * metadata blocks?
1990  */
1991 static int need_commit_due_to_time(struct pool *pool)
1992 {
1993 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1994 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1995 }
1996 
1997 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1998 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1999 
2000 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2001 {
2002 	struct rb_node **rbp, *parent;
2003 	struct dm_thin_endio_hook *pbd;
2004 	sector_t bi_sector = bio->bi_iter.bi_sector;
2005 
2006 	rbp = &tc->sort_bio_list.rb_node;
2007 	parent = NULL;
2008 	while (*rbp) {
2009 		parent = *rbp;
2010 		pbd = thin_pbd(parent);
2011 
2012 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2013 			rbp = &(*rbp)->rb_left;
2014 		else
2015 			rbp = &(*rbp)->rb_right;
2016 	}
2017 
2018 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2019 	rb_link_node(&pbd->rb_node, parent, rbp);
2020 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2021 }
2022 
2023 static void __extract_sorted_bios(struct thin_c *tc)
2024 {
2025 	struct rb_node *node;
2026 	struct dm_thin_endio_hook *pbd;
2027 	struct bio *bio;
2028 
2029 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2030 		pbd = thin_pbd(node);
2031 		bio = thin_bio(pbd);
2032 
2033 		bio_list_add(&tc->deferred_bio_list, bio);
2034 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2035 	}
2036 
2037 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2038 }
2039 
2040 static void __sort_thin_deferred_bios(struct thin_c *tc)
2041 {
2042 	struct bio *bio;
2043 	struct bio_list bios;
2044 
2045 	bio_list_init(&bios);
2046 	bio_list_merge(&bios, &tc->deferred_bio_list);
2047 	bio_list_init(&tc->deferred_bio_list);
2048 
2049 	/* Sort deferred_bio_list using rb-tree */
2050 	while ((bio = bio_list_pop(&bios)))
2051 		__thin_bio_rb_add(tc, bio);
2052 
2053 	/*
2054 	 * Transfer the sorted bios in sort_bio_list back to
2055 	 * deferred_bio_list to allow lockless submission of
2056 	 * all bios.
2057 	 */
2058 	__extract_sorted_bios(tc);
2059 }
2060 
2061 static void process_thin_deferred_bios(struct thin_c *tc)
2062 {
2063 	struct pool *pool = tc->pool;
2064 	unsigned long flags;
2065 	struct bio *bio;
2066 	struct bio_list bios;
2067 	struct blk_plug plug;
2068 	unsigned count = 0;
2069 
2070 	if (tc->requeue_mode) {
2071 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2072 				BLK_STS_DM_REQUEUE);
2073 		return;
2074 	}
2075 
2076 	bio_list_init(&bios);
2077 
2078 	spin_lock_irqsave(&tc->lock, flags);
2079 
2080 	if (bio_list_empty(&tc->deferred_bio_list)) {
2081 		spin_unlock_irqrestore(&tc->lock, flags);
2082 		return;
2083 	}
2084 
2085 	__sort_thin_deferred_bios(tc);
2086 
2087 	bio_list_merge(&bios, &tc->deferred_bio_list);
2088 	bio_list_init(&tc->deferred_bio_list);
2089 
2090 	spin_unlock_irqrestore(&tc->lock, flags);
2091 
2092 	blk_start_plug(&plug);
2093 	while ((bio = bio_list_pop(&bios))) {
2094 		/*
2095 		 * If we've got no free new_mapping structs, and processing
2096 		 * this bio might require one, we pause until there are some
2097 		 * prepared mappings to process.
2098 		 */
2099 		if (ensure_next_mapping(pool)) {
2100 			spin_lock_irqsave(&tc->lock, flags);
2101 			bio_list_add(&tc->deferred_bio_list, bio);
2102 			bio_list_merge(&tc->deferred_bio_list, &bios);
2103 			spin_unlock_irqrestore(&tc->lock, flags);
2104 			break;
2105 		}
2106 
2107 		if (bio_op(bio) == REQ_OP_DISCARD)
2108 			pool->process_discard(tc, bio);
2109 		else
2110 			pool->process_bio(tc, bio);
2111 
2112 		if ((count++ & 127) == 0) {
2113 			throttle_work_update(&pool->throttle);
2114 			dm_pool_issue_prefetches(pool->pmd);
2115 		}
2116 	}
2117 	blk_finish_plug(&plug);
2118 }
2119 
2120 static int cmp_cells(const void *lhs, const void *rhs)
2121 {
2122 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2123 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2124 
2125 	BUG_ON(!lhs_cell->holder);
2126 	BUG_ON(!rhs_cell->holder);
2127 
2128 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2129 		return -1;
2130 
2131 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2132 		return 1;
2133 
2134 	return 0;
2135 }
2136 
2137 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2138 {
2139 	unsigned count = 0;
2140 	struct dm_bio_prison_cell *cell, *tmp;
2141 
2142 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2143 		if (count >= CELL_SORT_ARRAY_SIZE)
2144 			break;
2145 
2146 		pool->cell_sort_array[count++] = cell;
2147 		list_del(&cell->user_list);
2148 	}
2149 
2150 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2151 
2152 	return count;
2153 }
2154 
2155 static void process_thin_deferred_cells(struct thin_c *tc)
2156 {
2157 	struct pool *pool = tc->pool;
2158 	unsigned long flags;
2159 	struct list_head cells;
2160 	struct dm_bio_prison_cell *cell;
2161 	unsigned i, j, count;
2162 
2163 	INIT_LIST_HEAD(&cells);
2164 
2165 	spin_lock_irqsave(&tc->lock, flags);
2166 	list_splice_init(&tc->deferred_cells, &cells);
2167 	spin_unlock_irqrestore(&tc->lock, flags);
2168 
2169 	if (list_empty(&cells))
2170 		return;
2171 
2172 	do {
2173 		count = sort_cells(tc->pool, &cells);
2174 
2175 		for (i = 0; i < count; i++) {
2176 			cell = pool->cell_sort_array[i];
2177 			BUG_ON(!cell->holder);
2178 
2179 			/*
2180 			 * If we've got no free new_mapping structs, and processing
2181 			 * this bio might require one, we pause until there are some
2182 			 * prepared mappings to process.
2183 			 */
2184 			if (ensure_next_mapping(pool)) {
2185 				for (j = i; j < count; j++)
2186 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2187 
2188 				spin_lock_irqsave(&tc->lock, flags);
2189 				list_splice(&cells, &tc->deferred_cells);
2190 				spin_unlock_irqrestore(&tc->lock, flags);
2191 				return;
2192 			}
2193 
2194 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2195 				pool->process_discard_cell(tc, cell);
2196 			else
2197 				pool->process_cell(tc, cell);
2198 		}
2199 	} while (!list_empty(&cells));
2200 }
2201 
2202 static void thin_get(struct thin_c *tc);
2203 static void thin_put(struct thin_c *tc);
2204 
2205 /*
2206  * We can't hold rcu_read_lock() around code that can block.  So we
2207  * find a thin with the rcu lock held; bump a refcount; then drop
2208  * the lock.
2209  */
2210 static struct thin_c *get_first_thin(struct pool *pool)
2211 {
2212 	struct thin_c *tc = NULL;
2213 
2214 	rcu_read_lock();
2215 	if (!list_empty(&pool->active_thins)) {
2216 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2217 		thin_get(tc);
2218 	}
2219 	rcu_read_unlock();
2220 
2221 	return tc;
2222 }
2223 
2224 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2225 {
2226 	struct thin_c *old_tc = tc;
2227 
2228 	rcu_read_lock();
2229 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2230 		thin_get(tc);
2231 		thin_put(old_tc);
2232 		rcu_read_unlock();
2233 		return tc;
2234 	}
2235 	thin_put(old_tc);
2236 	rcu_read_unlock();
2237 
2238 	return NULL;
2239 }
2240 
2241 static void process_deferred_bios(struct pool *pool)
2242 {
2243 	unsigned long flags;
2244 	struct bio *bio;
2245 	struct bio_list bios;
2246 	struct thin_c *tc;
2247 
2248 	tc = get_first_thin(pool);
2249 	while (tc) {
2250 		process_thin_deferred_cells(tc);
2251 		process_thin_deferred_bios(tc);
2252 		tc = get_next_thin(pool, tc);
2253 	}
2254 
2255 	/*
2256 	 * If there are any deferred flush bios, we must commit
2257 	 * the metadata before issuing them.
2258 	 */
2259 	bio_list_init(&bios);
2260 	spin_lock_irqsave(&pool->lock, flags);
2261 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2262 	bio_list_init(&pool->deferred_flush_bios);
2263 	spin_unlock_irqrestore(&pool->lock, flags);
2264 
2265 	if (bio_list_empty(&bios) &&
2266 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2267 		return;
2268 
2269 	if (commit(pool)) {
2270 		while ((bio = bio_list_pop(&bios)))
2271 			bio_io_error(bio);
2272 		return;
2273 	}
2274 	pool->last_commit_jiffies = jiffies;
2275 
2276 	while ((bio = bio_list_pop(&bios)))
2277 		generic_make_request(bio);
2278 }
2279 
2280 static void do_worker(struct work_struct *ws)
2281 {
2282 	struct pool *pool = container_of(ws, struct pool, worker);
2283 
2284 	throttle_work_start(&pool->throttle);
2285 	dm_pool_issue_prefetches(pool->pmd);
2286 	throttle_work_update(&pool->throttle);
2287 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2288 	throttle_work_update(&pool->throttle);
2289 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2290 	throttle_work_update(&pool->throttle);
2291 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2292 	throttle_work_update(&pool->throttle);
2293 	process_deferred_bios(pool);
2294 	throttle_work_complete(&pool->throttle);
2295 }
2296 
2297 /*
2298  * We want to commit periodically so that not too much
2299  * unwritten data builds up.
2300  */
2301 static void do_waker(struct work_struct *ws)
2302 {
2303 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2304 	wake_worker(pool);
2305 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2306 }
2307 
2308 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2309 
2310 /*
2311  * We're holding onto IO to allow userland time to react.  After the
2312  * timeout either the pool will have been resized (and thus back in
2313  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2314  */
2315 static void do_no_space_timeout(struct work_struct *ws)
2316 {
2317 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2318 					 no_space_timeout);
2319 
2320 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2321 		pool->pf.error_if_no_space = true;
2322 		notify_of_pool_mode_change_to_oods(pool);
2323 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2324 	}
2325 }
2326 
2327 /*----------------------------------------------------------------*/
2328 
2329 struct pool_work {
2330 	struct work_struct worker;
2331 	struct completion complete;
2332 };
2333 
2334 static struct pool_work *to_pool_work(struct work_struct *ws)
2335 {
2336 	return container_of(ws, struct pool_work, worker);
2337 }
2338 
2339 static void pool_work_complete(struct pool_work *pw)
2340 {
2341 	complete(&pw->complete);
2342 }
2343 
2344 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2345 			   void (*fn)(struct work_struct *))
2346 {
2347 	INIT_WORK_ONSTACK(&pw->worker, fn);
2348 	init_completion(&pw->complete);
2349 	queue_work(pool->wq, &pw->worker);
2350 	wait_for_completion(&pw->complete);
2351 }
2352 
2353 /*----------------------------------------------------------------*/
2354 
2355 struct noflush_work {
2356 	struct pool_work pw;
2357 	struct thin_c *tc;
2358 };
2359 
2360 static struct noflush_work *to_noflush(struct work_struct *ws)
2361 {
2362 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2363 }
2364 
2365 static void do_noflush_start(struct work_struct *ws)
2366 {
2367 	struct noflush_work *w = to_noflush(ws);
2368 	w->tc->requeue_mode = true;
2369 	requeue_io(w->tc);
2370 	pool_work_complete(&w->pw);
2371 }
2372 
2373 static void do_noflush_stop(struct work_struct *ws)
2374 {
2375 	struct noflush_work *w = to_noflush(ws);
2376 	w->tc->requeue_mode = false;
2377 	pool_work_complete(&w->pw);
2378 }
2379 
2380 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2381 {
2382 	struct noflush_work w;
2383 
2384 	w.tc = tc;
2385 	pool_work_wait(&w.pw, tc->pool, fn);
2386 }
2387 
2388 /*----------------------------------------------------------------*/
2389 
2390 static enum pool_mode get_pool_mode(struct pool *pool)
2391 {
2392 	return pool->pf.mode;
2393 }
2394 
2395 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2396 {
2397 	dm_table_event(pool->ti->table);
2398 	DMINFO("%s: switching pool to %s mode",
2399 	       dm_device_name(pool->pool_md), new_mode);
2400 }
2401 
2402 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2403 {
2404 	if (!pool->pf.error_if_no_space)
2405 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2406 	else
2407 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2408 }
2409 
2410 static bool passdown_enabled(struct pool_c *pt)
2411 {
2412 	return pt->adjusted_pf.discard_passdown;
2413 }
2414 
2415 static void set_discard_callbacks(struct pool *pool)
2416 {
2417 	struct pool_c *pt = pool->ti->private;
2418 
2419 	if (passdown_enabled(pt)) {
2420 		pool->process_discard_cell = process_discard_cell_passdown;
2421 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2422 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2423 	} else {
2424 		pool->process_discard_cell = process_discard_cell_no_passdown;
2425 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2426 	}
2427 }
2428 
2429 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2430 {
2431 	struct pool_c *pt = pool->ti->private;
2432 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2433 	enum pool_mode old_mode = get_pool_mode(pool);
2434 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2435 
2436 	/*
2437 	 * Never allow the pool to transition to PM_WRITE mode if user
2438 	 * intervention is required to verify metadata and data consistency.
2439 	 */
2440 	if (new_mode == PM_WRITE && needs_check) {
2441 		DMERR("%s: unable to switch pool to write mode until repaired.",
2442 		      dm_device_name(pool->pool_md));
2443 		if (old_mode != new_mode)
2444 			new_mode = old_mode;
2445 		else
2446 			new_mode = PM_READ_ONLY;
2447 	}
2448 	/*
2449 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2450 	 * not going to recover without a thin_repair.	So we never let the
2451 	 * pool move out of the old mode.
2452 	 */
2453 	if (old_mode == PM_FAIL)
2454 		new_mode = old_mode;
2455 
2456 	switch (new_mode) {
2457 	case PM_FAIL:
2458 		if (old_mode != new_mode)
2459 			notify_of_pool_mode_change(pool, "failure");
2460 		dm_pool_metadata_read_only(pool->pmd);
2461 		pool->process_bio = process_bio_fail;
2462 		pool->process_discard = process_bio_fail;
2463 		pool->process_cell = process_cell_fail;
2464 		pool->process_discard_cell = process_cell_fail;
2465 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2466 		pool->process_prepared_discard = process_prepared_discard_fail;
2467 
2468 		error_retry_list(pool);
2469 		break;
2470 
2471 	case PM_READ_ONLY:
2472 		if (old_mode != new_mode)
2473 			notify_of_pool_mode_change(pool, "read-only");
2474 		dm_pool_metadata_read_only(pool->pmd);
2475 		pool->process_bio = process_bio_read_only;
2476 		pool->process_discard = process_bio_success;
2477 		pool->process_cell = process_cell_read_only;
2478 		pool->process_discard_cell = process_cell_success;
2479 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2480 		pool->process_prepared_discard = process_prepared_discard_success;
2481 
2482 		error_retry_list(pool);
2483 		break;
2484 
2485 	case PM_OUT_OF_DATA_SPACE:
2486 		/*
2487 		 * Ideally we'd never hit this state; the low water mark
2488 		 * would trigger userland to extend the pool before we
2489 		 * completely run out of data space.  However, many small
2490 		 * IOs to unprovisioned space can consume data space at an
2491 		 * alarming rate.  Adjust your low water mark if you're
2492 		 * frequently seeing this mode.
2493 		 */
2494 		if (old_mode != new_mode)
2495 			notify_of_pool_mode_change_to_oods(pool);
2496 		pool->out_of_data_space = true;
2497 		pool->process_bio = process_bio_read_only;
2498 		pool->process_discard = process_discard_bio;
2499 		pool->process_cell = process_cell_read_only;
2500 		pool->process_prepared_mapping = process_prepared_mapping;
2501 		set_discard_callbacks(pool);
2502 
2503 		if (!pool->pf.error_if_no_space && no_space_timeout)
2504 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2505 		break;
2506 
2507 	case PM_WRITE:
2508 		if (old_mode != new_mode)
2509 			notify_of_pool_mode_change(pool, "write");
2510 		pool->out_of_data_space = false;
2511 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2512 		dm_pool_metadata_read_write(pool->pmd);
2513 		pool->process_bio = process_bio;
2514 		pool->process_discard = process_discard_bio;
2515 		pool->process_cell = process_cell;
2516 		pool->process_prepared_mapping = process_prepared_mapping;
2517 		set_discard_callbacks(pool);
2518 		break;
2519 	}
2520 
2521 	pool->pf.mode = new_mode;
2522 	/*
2523 	 * The pool mode may have changed, sync it so bind_control_target()
2524 	 * doesn't cause an unexpected mode transition on resume.
2525 	 */
2526 	pt->adjusted_pf.mode = new_mode;
2527 }
2528 
2529 static void abort_transaction(struct pool *pool)
2530 {
2531 	const char *dev_name = dm_device_name(pool->pool_md);
2532 
2533 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2534 	if (dm_pool_abort_metadata(pool->pmd)) {
2535 		DMERR("%s: failed to abort metadata transaction", dev_name);
2536 		set_pool_mode(pool, PM_FAIL);
2537 	}
2538 
2539 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2540 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2541 		set_pool_mode(pool, PM_FAIL);
2542 	}
2543 }
2544 
2545 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2546 {
2547 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2548 		    dm_device_name(pool->pool_md), op, r);
2549 
2550 	abort_transaction(pool);
2551 	set_pool_mode(pool, PM_READ_ONLY);
2552 }
2553 
2554 /*----------------------------------------------------------------*/
2555 
2556 /*
2557  * Mapping functions.
2558  */
2559 
2560 /*
2561  * Called only while mapping a thin bio to hand it over to the workqueue.
2562  */
2563 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2564 {
2565 	unsigned long flags;
2566 	struct pool *pool = tc->pool;
2567 
2568 	spin_lock_irqsave(&tc->lock, flags);
2569 	bio_list_add(&tc->deferred_bio_list, bio);
2570 	spin_unlock_irqrestore(&tc->lock, flags);
2571 
2572 	wake_worker(pool);
2573 }
2574 
2575 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2576 {
2577 	struct pool *pool = tc->pool;
2578 
2579 	throttle_lock(&pool->throttle);
2580 	thin_defer_bio(tc, bio);
2581 	throttle_unlock(&pool->throttle);
2582 }
2583 
2584 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2585 {
2586 	unsigned long flags;
2587 	struct pool *pool = tc->pool;
2588 
2589 	throttle_lock(&pool->throttle);
2590 	spin_lock_irqsave(&tc->lock, flags);
2591 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2592 	spin_unlock_irqrestore(&tc->lock, flags);
2593 	throttle_unlock(&pool->throttle);
2594 
2595 	wake_worker(pool);
2596 }
2597 
2598 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2599 {
2600 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2601 
2602 	h->tc = tc;
2603 	h->shared_read_entry = NULL;
2604 	h->all_io_entry = NULL;
2605 	h->overwrite_mapping = NULL;
2606 	h->cell = NULL;
2607 }
2608 
2609 /*
2610  * Non-blocking function called from the thin target's map function.
2611  */
2612 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2613 {
2614 	int r;
2615 	struct thin_c *tc = ti->private;
2616 	dm_block_t block = get_bio_block(tc, bio);
2617 	struct dm_thin_device *td = tc->td;
2618 	struct dm_thin_lookup_result result;
2619 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2620 	struct dm_cell_key key;
2621 
2622 	thin_hook_bio(tc, bio);
2623 
2624 	if (tc->requeue_mode) {
2625 		bio->bi_status = BLK_STS_DM_REQUEUE;
2626 		bio_endio(bio);
2627 		return DM_MAPIO_SUBMITTED;
2628 	}
2629 
2630 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2631 		bio_io_error(bio);
2632 		return DM_MAPIO_SUBMITTED;
2633 	}
2634 
2635 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2636 		thin_defer_bio_with_throttle(tc, bio);
2637 		return DM_MAPIO_SUBMITTED;
2638 	}
2639 
2640 	/*
2641 	 * We must hold the virtual cell before doing the lookup, otherwise
2642 	 * there's a race with discard.
2643 	 */
2644 	build_virtual_key(tc->td, block, &key);
2645 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2646 		return DM_MAPIO_SUBMITTED;
2647 
2648 	r = dm_thin_find_block(td, block, 0, &result);
2649 
2650 	/*
2651 	 * Note that we defer readahead too.
2652 	 */
2653 	switch (r) {
2654 	case 0:
2655 		if (unlikely(result.shared)) {
2656 			/*
2657 			 * We have a race condition here between the
2658 			 * result.shared value returned by the lookup and
2659 			 * snapshot creation, which may cause new
2660 			 * sharing.
2661 			 *
2662 			 * To avoid this always quiesce the origin before
2663 			 * taking the snap.  You want to do this anyway to
2664 			 * ensure a consistent application view
2665 			 * (i.e. lockfs).
2666 			 *
2667 			 * More distant ancestors are irrelevant. The
2668 			 * shared flag will be set in their case.
2669 			 */
2670 			thin_defer_cell(tc, virt_cell);
2671 			return DM_MAPIO_SUBMITTED;
2672 		}
2673 
2674 		build_data_key(tc->td, result.block, &key);
2675 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2676 			cell_defer_no_holder(tc, virt_cell);
2677 			return DM_MAPIO_SUBMITTED;
2678 		}
2679 
2680 		inc_all_io_entry(tc->pool, bio);
2681 		cell_defer_no_holder(tc, data_cell);
2682 		cell_defer_no_holder(tc, virt_cell);
2683 
2684 		remap(tc, bio, result.block);
2685 		return DM_MAPIO_REMAPPED;
2686 
2687 	case -ENODATA:
2688 	case -EWOULDBLOCK:
2689 		thin_defer_cell(tc, virt_cell);
2690 		return DM_MAPIO_SUBMITTED;
2691 
2692 	default:
2693 		/*
2694 		 * Must always call bio_io_error on failure.
2695 		 * dm_thin_find_block can fail with -EINVAL if the
2696 		 * pool is switched to fail-io mode.
2697 		 */
2698 		bio_io_error(bio);
2699 		cell_defer_no_holder(tc, virt_cell);
2700 		return DM_MAPIO_SUBMITTED;
2701 	}
2702 }
2703 
2704 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2705 {
2706 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2707 	struct request_queue *q;
2708 
2709 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2710 		return 1;
2711 
2712 	q = bdev_get_queue(pt->data_dev->bdev);
2713 	return bdi_congested(q->backing_dev_info, bdi_bits);
2714 }
2715 
2716 static void requeue_bios(struct pool *pool)
2717 {
2718 	unsigned long flags;
2719 	struct thin_c *tc;
2720 
2721 	rcu_read_lock();
2722 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2723 		spin_lock_irqsave(&tc->lock, flags);
2724 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2725 		bio_list_init(&tc->retry_on_resume_list);
2726 		spin_unlock_irqrestore(&tc->lock, flags);
2727 	}
2728 	rcu_read_unlock();
2729 }
2730 
2731 /*----------------------------------------------------------------
2732  * Binding of control targets to a pool object
2733  *--------------------------------------------------------------*/
2734 static bool data_dev_supports_discard(struct pool_c *pt)
2735 {
2736 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2737 
2738 	return q && blk_queue_discard(q);
2739 }
2740 
2741 static bool is_factor(sector_t block_size, uint32_t n)
2742 {
2743 	return !sector_div(block_size, n);
2744 }
2745 
2746 /*
2747  * If discard_passdown was enabled verify that the data device
2748  * supports discards.  Disable discard_passdown if not.
2749  */
2750 static void disable_passdown_if_not_supported(struct pool_c *pt)
2751 {
2752 	struct pool *pool = pt->pool;
2753 	struct block_device *data_bdev = pt->data_dev->bdev;
2754 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2755 	const char *reason = NULL;
2756 	char buf[BDEVNAME_SIZE];
2757 
2758 	if (!pt->adjusted_pf.discard_passdown)
2759 		return;
2760 
2761 	if (!data_dev_supports_discard(pt))
2762 		reason = "discard unsupported";
2763 
2764 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2765 		reason = "max discard sectors smaller than a block";
2766 
2767 	if (reason) {
2768 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2769 		pt->adjusted_pf.discard_passdown = false;
2770 	}
2771 }
2772 
2773 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2774 {
2775 	struct pool_c *pt = ti->private;
2776 
2777 	/*
2778 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2779 	 */
2780 	enum pool_mode old_mode = get_pool_mode(pool);
2781 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2782 
2783 	/*
2784 	 * Don't change the pool's mode until set_pool_mode() below.
2785 	 * Otherwise the pool's process_* function pointers may
2786 	 * not match the desired pool mode.
2787 	 */
2788 	pt->adjusted_pf.mode = old_mode;
2789 
2790 	pool->ti = ti;
2791 	pool->pf = pt->adjusted_pf;
2792 	pool->low_water_blocks = pt->low_water_blocks;
2793 
2794 	set_pool_mode(pool, new_mode);
2795 
2796 	return 0;
2797 }
2798 
2799 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2800 {
2801 	if (pool->ti == ti)
2802 		pool->ti = NULL;
2803 }
2804 
2805 /*----------------------------------------------------------------
2806  * Pool creation
2807  *--------------------------------------------------------------*/
2808 /* Initialize pool features. */
2809 static void pool_features_init(struct pool_features *pf)
2810 {
2811 	pf->mode = PM_WRITE;
2812 	pf->zero_new_blocks = true;
2813 	pf->discard_enabled = true;
2814 	pf->discard_passdown = true;
2815 	pf->error_if_no_space = false;
2816 }
2817 
2818 static void __pool_destroy(struct pool *pool)
2819 {
2820 	__pool_table_remove(pool);
2821 
2822 	vfree(pool->cell_sort_array);
2823 	if (dm_pool_metadata_close(pool->pmd) < 0)
2824 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2825 
2826 	dm_bio_prison_destroy(pool->prison);
2827 	dm_kcopyd_client_destroy(pool->copier);
2828 
2829 	if (pool->wq)
2830 		destroy_workqueue(pool->wq);
2831 
2832 	if (pool->next_mapping)
2833 		mempool_free(pool->next_mapping, pool->mapping_pool);
2834 	mempool_destroy(pool->mapping_pool);
2835 	dm_deferred_set_destroy(pool->shared_read_ds);
2836 	dm_deferred_set_destroy(pool->all_io_ds);
2837 	kfree(pool);
2838 }
2839 
2840 static struct kmem_cache *_new_mapping_cache;
2841 
2842 static struct pool *pool_create(struct mapped_device *pool_md,
2843 				struct block_device *metadata_dev,
2844 				unsigned long block_size,
2845 				int read_only, char **error)
2846 {
2847 	int r;
2848 	void *err_p;
2849 	struct pool *pool;
2850 	struct dm_pool_metadata *pmd;
2851 	bool format_device = read_only ? false : true;
2852 
2853 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2854 	if (IS_ERR(pmd)) {
2855 		*error = "Error creating metadata object";
2856 		return (struct pool *)pmd;
2857 	}
2858 
2859 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2860 	if (!pool) {
2861 		*error = "Error allocating memory for pool";
2862 		err_p = ERR_PTR(-ENOMEM);
2863 		goto bad_pool;
2864 	}
2865 
2866 	pool->pmd = pmd;
2867 	pool->sectors_per_block = block_size;
2868 	if (block_size & (block_size - 1))
2869 		pool->sectors_per_block_shift = -1;
2870 	else
2871 		pool->sectors_per_block_shift = __ffs(block_size);
2872 	pool->low_water_blocks = 0;
2873 	pool_features_init(&pool->pf);
2874 	pool->prison = dm_bio_prison_create();
2875 	if (!pool->prison) {
2876 		*error = "Error creating pool's bio prison";
2877 		err_p = ERR_PTR(-ENOMEM);
2878 		goto bad_prison;
2879 	}
2880 
2881 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2882 	if (IS_ERR(pool->copier)) {
2883 		r = PTR_ERR(pool->copier);
2884 		*error = "Error creating pool's kcopyd client";
2885 		err_p = ERR_PTR(r);
2886 		goto bad_kcopyd_client;
2887 	}
2888 
2889 	/*
2890 	 * Create singlethreaded workqueue that will service all devices
2891 	 * that use this metadata.
2892 	 */
2893 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2894 	if (!pool->wq) {
2895 		*error = "Error creating pool's workqueue";
2896 		err_p = ERR_PTR(-ENOMEM);
2897 		goto bad_wq;
2898 	}
2899 
2900 	throttle_init(&pool->throttle);
2901 	INIT_WORK(&pool->worker, do_worker);
2902 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2903 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2904 	spin_lock_init(&pool->lock);
2905 	bio_list_init(&pool->deferred_flush_bios);
2906 	INIT_LIST_HEAD(&pool->prepared_mappings);
2907 	INIT_LIST_HEAD(&pool->prepared_discards);
2908 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2909 	INIT_LIST_HEAD(&pool->active_thins);
2910 	pool->low_water_triggered = false;
2911 	pool->suspended = true;
2912 	pool->out_of_data_space = false;
2913 
2914 	pool->shared_read_ds = dm_deferred_set_create();
2915 	if (!pool->shared_read_ds) {
2916 		*error = "Error creating pool's shared read deferred set";
2917 		err_p = ERR_PTR(-ENOMEM);
2918 		goto bad_shared_read_ds;
2919 	}
2920 
2921 	pool->all_io_ds = dm_deferred_set_create();
2922 	if (!pool->all_io_ds) {
2923 		*error = "Error creating pool's all io deferred set";
2924 		err_p = ERR_PTR(-ENOMEM);
2925 		goto bad_all_io_ds;
2926 	}
2927 
2928 	pool->next_mapping = NULL;
2929 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2930 						      _new_mapping_cache);
2931 	if (!pool->mapping_pool) {
2932 		*error = "Error creating pool's mapping mempool";
2933 		err_p = ERR_PTR(-ENOMEM);
2934 		goto bad_mapping_pool;
2935 	}
2936 
2937 	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2938 	if (!pool->cell_sort_array) {
2939 		*error = "Error allocating cell sort array";
2940 		err_p = ERR_PTR(-ENOMEM);
2941 		goto bad_sort_array;
2942 	}
2943 
2944 	pool->ref_count = 1;
2945 	pool->last_commit_jiffies = jiffies;
2946 	pool->pool_md = pool_md;
2947 	pool->md_dev = metadata_dev;
2948 	__pool_table_insert(pool);
2949 
2950 	return pool;
2951 
2952 bad_sort_array:
2953 	mempool_destroy(pool->mapping_pool);
2954 bad_mapping_pool:
2955 	dm_deferred_set_destroy(pool->all_io_ds);
2956 bad_all_io_ds:
2957 	dm_deferred_set_destroy(pool->shared_read_ds);
2958 bad_shared_read_ds:
2959 	destroy_workqueue(pool->wq);
2960 bad_wq:
2961 	dm_kcopyd_client_destroy(pool->copier);
2962 bad_kcopyd_client:
2963 	dm_bio_prison_destroy(pool->prison);
2964 bad_prison:
2965 	kfree(pool);
2966 bad_pool:
2967 	if (dm_pool_metadata_close(pmd))
2968 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2969 
2970 	return err_p;
2971 }
2972 
2973 static void __pool_inc(struct pool *pool)
2974 {
2975 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2976 	pool->ref_count++;
2977 }
2978 
2979 static void __pool_dec(struct pool *pool)
2980 {
2981 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2982 	BUG_ON(!pool->ref_count);
2983 	if (!--pool->ref_count)
2984 		__pool_destroy(pool);
2985 }
2986 
2987 static struct pool *__pool_find(struct mapped_device *pool_md,
2988 				struct block_device *metadata_dev,
2989 				unsigned long block_size, int read_only,
2990 				char **error, int *created)
2991 {
2992 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2993 
2994 	if (pool) {
2995 		if (pool->pool_md != pool_md) {
2996 			*error = "metadata device already in use by a pool";
2997 			return ERR_PTR(-EBUSY);
2998 		}
2999 		__pool_inc(pool);
3000 
3001 	} else {
3002 		pool = __pool_table_lookup(pool_md);
3003 		if (pool) {
3004 			if (pool->md_dev != metadata_dev) {
3005 				*error = "different pool cannot replace a pool";
3006 				return ERR_PTR(-EINVAL);
3007 			}
3008 			__pool_inc(pool);
3009 
3010 		} else {
3011 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3012 			*created = 1;
3013 		}
3014 	}
3015 
3016 	return pool;
3017 }
3018 
3019 /*----------------------------------------------------------------
3020  * Pool target methods
3021  *--------------------------------------------------------------*/
3022 static void pool_dtr(struct dm_target *ti)
3023 {
3024 	struct pool_c *pt = ti->private;
3025 
3026 	mutex_lock(&dm_thin_pool_table.mutex);
3027 
3028 	unbind_control_target(pt->pool, ti);
3029 	__pool_dec(pt->pool);
3030 	dm_put_device(ti, pt->metadata_dev);
3031 	dm_put_device(ti, pt->data_dev);
3032 	kfree(pt);
3033 
3034 	mutex_unlock(&dm_thin_pool_table.mutex);
3035 }
3036 
3037 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3038 			       struct dm_target *ti)
3039 {
3040 	int r;
3041 	unsigned argc;
3042 	const char *arg_name;
3043 
3044 	static struct dm_arg _args[] = {
3045 		{0, 4, "Invalid number of pool feature arguments"},
3046 	};
3047 
3048 	/*
3049 	 * No feature arguments supplied.
3050 	 */
3051 	if (!as->argc)
3052 		return 0;
3053 
3054 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3055 	if (r)
3056 		return -EINVAL;
3057 
3058 	while (argc && !r) {
3059 		arg_name = dm_shift_arg(as);
3060 		argc--;
3061 
3062 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3063 			pf->zero_new_blocks = false;
3064 
3065 		else if (!strcasecmp(arg_name, "ignore_discard"))
3066 			pf->discard_enabled = false;
3067 
3068 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3069 			pf->discard_passdown = false;
3070 
3071 		else if (!strcasecmp(arg_name, "read_only"))
3072 			pf->mode = PM_READ_ONLY;
3073 
3074 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3075 			pf->error_if_no_space = true;
3076 
3077 		else {
3078 			ti->error = "Unrecognised pool feature requested";
3079 			r = -EINVAL;
3080 			break;
3081 		}
3082 	}
3083 
3084 	return r;
3085 }
3086 
3087 static void metadata_low_callback(void *context)
3088 {
3089 	struct pool *pool = context;
3090 
3091 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3092 	       dm_device_name(pool->pool_md));
3093 
3094 	dm_table_event(pool->ti->table);
3095 }
3096 
3097 static sector_t get_dev_size(struct block_device *bdev)
3098 {
3099 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3100 }
3101 
3102 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3103 {
3104 	sector_t metadata_dev_size = get_dev_size(bdev);
3105 	char buffer[BDEVNAME_SIZE];
3106 
3107 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3108 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3109 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3110 }
3111 
3112 static sector_t get_metadata_dev_size(struct block_device *bdev)
3113 {
3114 	sector_t metadata_dev_size = get_dev_size(bdev);
3115 
3116 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3117 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3118 
3119 	return metadata_dev_size;
3120 }
3121 
3122 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3123 {
3124 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3125 
3126 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3127 
3128 	return metadata_dev_size;
3129 }
3130 
3131 /*
3132  * When a metadata threshold is crossed a dm event is triggered, and
3133  * userland should respond by growing the metadata device.  We could let
3134  * userland set the threshold, like we do with the data threshold, but I'm
3135  * not sure they know enough to do this well.
3136  */
3137 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3138 {
3139 	/*
3140 	 * 4M is ample for all ops with the possible exception of thin
3141 	 * device deletion which is harmless if it fails (just retry the
3142 	 * delete after you've grown the device).
3143 	 */
3144 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3145 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3146 }
3147 
3148 /*
3149  * thin-pool <metadata dev> <data dev>
3150  *	     <data block size (sectors)>
3151  *	     <low water mark (blocks)>
3152  *	     [<#feature args> [<arg>]*]
3153  *
3154  * Optional feature arguments are:
3155  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3156  *	     ignore_discard: disable discard
3157  *	     no_discard_passdown: don't pass discards down to the data device
3158  *	     read_only: Don't allow any changes to be made to the pool metadata.
3159  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3160  */
3161 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3162 {
3163 	int r, pool_created = 0;
3164 	struct pool_c *pt;
3165 	struct pool *pool;
3166 	struct pool_features pf;
3167 	struct dm_arg_set as;
3168 	struct dm_dev *data_dev;
3169 	unsigned long block_size;
3170 	dm_block_t low_water_blocks;
3171 	struct dm_dev *metadata_dev;
3172 	fmode_t metadata_mode;
3173 
3174 	/*
3175 	 * FIXME Remove validation from scope of lock.
3176 	 */
3177 	mutex_lock(&dm_thin_pool_table.mutex);
3178 
3179 	if (argc < 4) {
3180 		ti->error = "Invalid argument count";
3181 		r = -EINVAL;
3182 		goto out_unlock;
3183 	}
3184 
3185 	as.argc = argc;
3186 	as.argv = argv;
3187 
3188 	/*
3189 	 * Set default pool features.
3190 	 */
3191 	pool_features_init(&pf);
3192 
3193 	dm_consume_args(&as, 4);
3194 	r = parse_pool_features(&as, &pf, ti);
3195 	if (r)
3196 		goto out_unlock;
3197 
3198 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3199 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3200 	if (r) {
3201 		ti->error = "Error opening metadata block device";
3202 		goto out_unlock;
3203 	}
3204 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3205 
3206 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3207 	if (r) {
3208 		ti->error = "Error getting data device";
3209 		goto out_metadata;
3210 	}
3211 
3212 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3213 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3214 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3215 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3216 		ti->error = "Invalid block size";
3217 		r = -EINVAL;
3218 		goto out;
3219 	}
3220 
3221 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3222 		ti->error = "Invalid low water mark";
3223 		r = -EINVAL;
3224 		goto out;
3225 	}
3226 
3227 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3228 	if (!pt) {
3229 		r = -ENOMEM;
3230 		goto out;
3231 	}
3232 
3233 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3234 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3235 	if (IS_ERR(pool)) {
3236 		r = PTR_ERR(pool);
3237 		goto out_free_pt;
3238 	}
3239 
3240 	/*
3241 	 * 'pool_created' reflects whether this is the first table load.
3242 	 * Top level discard support is not allowed to be changed after
3243 	 * initial load.  This would require a pool reload to trigger thin
3244 	 * device changes.
3245 	 */
3246 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3247 		ti->error = "Discard support cannot be disabled once enabled";
3248 		r = -EINVAL;
3249 		goto out_flags_changed;
3250 	}
3251 
3252 	pt->pool = pool;
3253 	pt->ti = ti;
3254 	pt->metadata_dev = metadata_dev;
3255 	pt->data_dev = data_dev;
3256 	pt->low_water_blocks = low_water_blocks;
3257 	pt->adjusted_pf = pt->requested_pf = pf;
3258 	ti->num_flush_bios = 1;
3259 
3260 	/*
3261 	 * Only need to enable discards if the pool should pass
3262 	 * them down to the data device.  The thin device's discard
3263 	 * processing will cause mappings to be removed from the btree.
3264 	 */
3265 	if (pf.discard_enabled && pf.discard_passdown) {
3266 		ti->num_discard_bios = 1;
3267 
3268 		/*
3269 		 * Setting 'discards_supported' circumvents the normal
3270 		 * stacking of discard limits (this keeps the pool and
3271 		 * thin devices' discard limits consistent).
3272 		 */
3273 		ti->discards_supported = true;
3274 	}
3275 	ti->private = pt;
3276 
3277 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3278 						calc_metadata_threshold(pt),
3279 						metadata_low_callback,
3280 						pool);
3281 	if (r)
3282 		goto out_flags_changed;
3283 
3284 	pt->callbacks.congested_fn = pool_is_congested;
3285 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3286 
3287 	mutex_unlock(&dm_thin_pool_table.mutex);
3288 
3289 	return 0;
3290 
3291 out_flags_changed:
3292 	__pool_dec(pool);
3293 out_free_pt:
3294 	kfree(pt);
3295 out:
3296 	dm_put_device(ti, data_dev);
3297 out_metadata:
3298 	dm_put_device(ti, metadata_dev);
3299 out_unlock:
3300 	mutex_unlock(&dm_thin_pool_table.mutex);
3301 
3302 	return r;
3303 }
3304 
3305 static int pool_map(struct dm_target *ti, struct bio *bio)
3306 {
3307 	int r;
3308 	struct pool_c *pt = ti->private;
3309 	struct pool *pool = pt->pool;
3310 	unsigned long flags;
3311 
3312 	/*
3313 	 * As this is a singleton target, ti->begin is always zero.
3314 	 */
3315 	spin_lock_irqsave(&pool->lock, flags);
3316 	bio->bi_bdev = pt->data_dev->bdev;
3317 	r = DM_MAPIO_REMAPPED;
3318 	spin_unlock_irqrestore(&pool->lock, flags);
3319 
3320 	return r;
3321 }
3322 
3323 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3324 {
3325 	int r;
3326 	struct pool_c *pt = ti->private;
3327 	struct pool *pool = pt->pool;
3328 	sector_t data_size = ti->len;
3329 	dm_block_t sb_data_size;
3330 
3331 	*need_commit = false;
3332 
3333 	(void) sector_div(data_size, pool->sectors_per_block);
3334 
3335 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3336 	if (r) {
3337 		DMERR("%s: failed to retrieve data device size",
3338 		      dm_device_name(pool->pool_md));
3339 		return r;
3340 	}
3341 
3342 	if (data_size < sb_data_size) {
3343 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3344 		      dm_device_name(pool->pool_md),
3345 		      (unsigned long long)data_size, sb_data_size);
3346 		return -EINVAL;
3347 
3348 	} else if (data_size > sb_data_size) {
3349 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3350 			DMERR("%s: unable to grow the data device until repaired.",
3351 			      dm_device_name(pool->pool_md));
3352 			return 0;
3353 		}
3354 
3355 		if (sb_data_size)
3356 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3357 			       dm_device_name(pool->pool_md),
3358 			       sb_data_size, (unsigned long long)data_size);
3359 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3360 		if (r) {
3361 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3362 			return r;
3363 		}
3364 
3365 		*need_commit = true;
3366 	}
3367 
3368 	return 0;
3369 }
3370 
3371 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3372 {
3373 	int r;
3374 	struct pool_c *pt = ti->private;
3375 	struct pool *pool = pt->pool;
3376 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3377 
3378 	*need_commit = false;
3379 
3380 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3381 
3382 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3383 	if (r) {
3384 		DMERR("%s: failed to retrieve metadata device size",
3385 		      dm_device_name(pool->pool_md));
3386 		return r;
3387 	}
3388 
3389 	if (metadata_dev_size < sb_metadata_dev_size) {
3390 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3391 		      dm_device_name(pool->pool_md),
3392 		      metadata_dev_size, sb_metadata_dev_size);
3393 		return -EINVAL;
3394 
3395 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3396 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3397 			DMERR("%s: unable to grow the metadata device until repaired.",
3398 			      dm_device_name(pool->pool_md));
3399 			return 0;
3400 		}
3401 
3402 		warn_if_metadata_device_too_big(pool->md_dev);
3403 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3404 		       dm_device_name(pool->pool_md),
3405 		       sb_metadata_dev_size, metadata_dev_size);
3406 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3407 		if (r) {
3408 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3409 			return r;
3410 		}
3411 
3412 		*need_commit = true;
3413 	}
3414 
3415 	return 0;
3416 }
3417 
3418 /*
3419  * Retrieves the number of blocks of the data device from
3420  * the superblock and compares it to the actual device size,
3421  * thus resizing the data device in case it has grown.
3422  *
3423  * This both copes with opening preallocated data devices in the ctr
3424  * being followed by a resume
3425  * -and-
3426  * calling the resume method individually after userspace has
3427  * grown the data device in reaction to a table event.
3428  */
3429 static int pool_preresume(struct dm_target *ti)
3430 {
3431 	int r;
3432 	bool need_commit1, need_commit2;
3433 	struct pool_c *pt = ti->private;
3434 	struct pool *pool = pt->pool;
3435 
3436 	/*
3437 	 * Take control of the pool object.
3438 	 */
3439 	r = bind_control_target(pool, ti);
3440 	if (r)
3441 		return r;
3442 
3443 	r = maybe_resize_data_dev(ti, &need_commit1);
3444 	if (r)
3445 		return r;
3446 
3447 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3448 	if (r)
3449 		return r;
3450 
3451 	if (need_commit1 || need_commit2)
3452 		(void) commit(pool);
3453 
3454 	return 0;
3455 }
3456 
3457 static void pool_suspend_active_thins(struct pool *pool)
3458 {
3459 	struct thin_c *tc;
3460 
3461 	/* Suspend all active thin devices */
3462 	tc = get_first_thin(pool);
3463 	while (tc) {
3464 		dm_internal_suspend_noflush(tc->thin_md);
3465 		tc = get_next_thin(pool, tc);
3466 	}
3467 }
3468 
3469 static void pool_resume_active_thins(struct pool *pool)
3470 {
3471 	struct thin_c *tc;
3472 
3473 	/* Resume all active thin devices */
3474 	tc = get_first_thin(pool);
3475 	while (tc) {
3476 		dm_internal_resume(tc->thin_md);
3477 		tc = get_next_thin(pool, tc);
3478 	}
3479 }
3480 
3481 static void pool_resume(struct dm_target *ti)
3482 {
3483 	struct pool_c *pt = ti->private;
3484 	struct pool *pool = pt->pool;
3485 	unsigned long flags;
3486 
3487 	/*
3488 	 * Must requeue active_thins' bios and then resume
3489 	 * active_thins _before_ clearing 'suspend' flag.
3490 	 */
3491 	requeue_bios(pool);
3492 	pool_resume_active_thins(pool);
3493 
3494 	spin_lock_irqsave(&pool->lock, flags);
3495 	pool->low_water_triggered = false;
3496 	pool->suspended = false;
3497 	spin_unlock_irqrestore(&pool->lock, flags);
3498 
3499 	do_waker(&pool->waker.work);
3500 }
3501 
3502 static void pool_presuspend(struct dm_target *ti)
3503 {
3504 	struct pool_c *pt = ti->private;
3505 	struct pool *pool = pt->pool;
3506 	unsigned long flags;
3507 
3508 	spin_lock_irqsave(&pool->lock, flags);
3509 	pool->suspended = true;
3510 	spin_unlock_irqrestore(&pool->lock, flags);
3511 
3512 	pool_suspend_active_thins(pool);
3513 }
3514 
3515 static void pool_presuspend_undo(struct dm_target *ti)
3516 {
3517 	struct pool_c *pt = ti->private;
3518 	struct pool *pool = pt->pool;
3519 	unsigned long flags;
3520 
3521 	pool_resume_active_thins(pool);
3522 
3523 	spin_lock_irqsave(&pool->lock, flags);
3524 	pool->suspended = false;
3525 	spin_unlock_irqrestore(&pool->lock, flags);
3526 }
3527 
3528 static void pool_postsuspend(struct dm_target *ti)
3529 {
3530 	struct pool_c *pt = ti->private;
3531 	struct pool *pool = pt->pool;
3532 
3533 	cancel_delayed_work_sync(&pool->waker);
3534 	cancel_delayed_work_sync(&pool->no_space_timeout);
3535 	flush_workqueue(pool->wq);
3536 	(void) commit(pool);
3537 }
3538 
3539 static int check_arg_count(unsigned argc, unsigned args_required)
3540 {
3541 	if (argc != args_required) {
3542 		DMWARN("Message received with %u arguments instead of %u.",
3543 		       argc, args_required);
3544 		return -EINVAL;
3545 	}
3546 
3547 	return 0;
3548 }
3549 
3550 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3551 {
3552 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3553 	    *dev_id <= MAX_DEV_ID)
3554 		return 0;
3555 
3556 	if (warning)
3557 		DMWARN("Message received with invalid device id: %s", arg);
3558 
3559 	return -EINVAL;
3560 }
3561 
3562 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3563 {
3564 	dm_thin_id dev_id;
3565 	int r;
3566 
3567 	r = check_arg_count(argc, 2);
3568 	if (r)
3569 		return r;
3570 
3571 	r = read_dev_id(argv[1], &dev_id, 1);
3572 	if (r)
3573 		return r;
3574 
3575 	r = dm_pool_create_thin(pool->pmd, dev_id);
3576 	if (r) {
3577 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3578 		       argv[1]);
3579 		return r;
3580 	}
3581 
3582 	return 0;
3583 }
3584 
3585 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3586 {
3587 	dm_thin_id dev_id;
3588 	dm_thin_id origin_dev_id;
3589 	int r;
3590 
3591 	r = check_arg_count(argc, 3);
3592 	if (r)
3593 		return r;
3594 
3595 	r = read_dev_id(argv[1], &dev_id, 1);
3596 	if (r)
3597 		return r;
3598 
3599 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3600 	if (r)
3601 		return r;
3602 
3603 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3604 	if (r) {
3605 		DMWARN("Creation of new snapshot %s of device %s failed.",
3606 		       argv[1], argv[2]);
3607 		return r;
3608 	}
3609 
3610 	return 0;
3611 }
3612 
3613 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3614 {
3615 	dm_thin_id dev_id;
3616 	int r;
3617 
3618 	r = check_arg_count(argc, 2);
3619 	if (r)
3620 		return r;
3621 
3622 	r = read_dev_id(argv[1], &dev_id, 1);
3623 	if (r)
3624 		return r;
3625 
3626 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3627 	if (r)
3628 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3629 
3630 	return r;
3631 }
3632 
3633 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3634 {
3635 	dm_thin_id old_id, new_id;
3636 	int r;
3637 
3638 	r = check_arg_count(argc, 3);
3639 	if (r)
3640 		return r;
3641 
3642 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3643 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3644 		return -EINVAL;
3645 	}
3646 
3647 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3648 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3649 		return -EINVAL;
3650 	}
3651 
3652 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3653 	if (r) {
3654 		DMWARN("Failed to change transaction id from %s to %s.",
3655 		       argv[1], argv[2]);
3656 		return r;
3657 	}
3658 
3659 	return 0;
3660 }
3661 
3662 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3663 {
3664 	int r;
3665 
3666 	r = check_arg_count(argc, 1);
3667 	if (r)
3668 		return r;
3669 
3670 	(void) commit(pool);
3671 
3672 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3673 	if (r)
3674 		DMWARN("reserve_metadata_snap message failed.");
3675 
3676 	return r;
3677 }
3678 
3679 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3680 {
3681 	int r;
3682 
3683 	r = check_arg_count(argc, 1);
3684 	if (r)
3685 		return r;
3686 
3687 	r = dm_pool_release_metadata_snap(pool->pmd);
3688 	if (r)
3689 		DMWARN("release_metadata_snap message failed.");
3690 
3691 	return r;
3692 }
3693 
3694 /*
3695  * Messages supported:
3696  *   create_thin	<dev_id>
3697  *   create_snap	<dev_id> <origin_id>
3698  *   delete		<dev_id>
3699  *   set_transaction_id <current_trans_id> <new_trans_id>
3700  *   reserve_metadata_snap
3701  *   release_metadata_snap
3702  */
3703 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3704 {
3705 	int r = -EINVAL;
3706 	struct pool_c *pt = ti->private;
3707 	struct pool *pool = pt->pool;
3708 
3709 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3710 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3711 		      dm_device_name(pool->pool_md));
3712 		return -EOPNOTSUPP;
3713 	}
3714 
3715 	if (!strcasecmp(argv[0], "create_thin"))
3716 		r = process_create_thin_mesg(argc, argv, pool);
3717 
3718 	else if (!strcasecmp(argv[0], "create_snap"))
3719 		r = process_create_snap_mesg(argc, argv, pool);
3720 
3721 	else if (!strcasecmp(argv[0], "delete"))
3722 		r = process_delete_mesg(argc, argv, pool);
3723 
3724 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3725 		r = process_set_transaction_id_mesg(argc, argv, pool);
3726 
3727 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3728 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3729 
3730 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3731 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3732 
3733 	else
3734 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3735 
3736 	if (!r)
3737 		(void) commit(pool);
3738 
3739 	return r;
3740 }
3741 
3742 static void emit_flags(struct pool_features *pf, char *result,
3743 		       unsigned sz, unsigned maxlen)
3744 {
3745 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3746 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3747 		pf->error_if_no_space;
3748 	DMEMIT("%u ", count);
3749 
3750 	if (!pf->zero_new_blocks)
3751 		DMEMIT("skip_block_zeroing ");
3752 
3753 	if (!pf->discard_enabled)
3754 		DMEMIT("ignore_discard ");
3755 
3756 	if (!pf->discard_passdown)
3757 		DMEMIT("no_discard_passdown ");
3758 
3759 	if (pf->mode == PM_READ_ONLY)
3760 		DMEMIT("read_only ");
3761 
3762 	if (pf->error_if_no_space)
3763 		DMEMIT("error_if_no_space ");
3764 }
3765 
3766 /*
3767  * Status line is:
3768  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3769  *    <used data sectors>/<total data sectors> <held metadata root>
3770  *    <pool mode> <discard config> <no space config> <needs_check>
3771  */
3772 static void pool_status(struct dm_target *ti, status_type_t type,
3773 			unsigned status_flags, char *result, unsigned maxlen)
3774 {
3775 	int r;
3776 	unsigned sz = 0;
3777 	uint64_t transaction_id;
3778 	dm_block_t nr_free_blocks_data;
3779 	dm_block_t nr_free_blocks_metadata;
3780 	dm_block_t nr_blocks_data;
3781 	dm_block_t nr_blocks_metadata;
3782 	dm_block_t held_root;
3783 	char buf[BDEVNAME_SIZE];
3784 	char buf2[BDEVNAME_SIZE];
3785 	struct pool_c *pt = ti->private;
3786 	struct pool *pool = pt->pool;
3787 
3788 	switch (type) {
3789 	case STATUSTYPE_INFO:
3790 		if (get_pool_mode(pool) == PM_FAIL) {
3791 			DMEMIT("Fail");
3792 			break;
3793 		}
3794 
3795 		/* Commit to ensure statistics aren't out-of-date */
3796 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3797 			(void) commit(pool);
3798 
3799 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3800 		if (r) {
3801 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3802 			      dm_device_name(pool->pool_md), r);
3803 			goto err;
3804 		}
3805 
3806 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3807 		if (r) {
3808 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3809 			      dm_device_name(pool->pool_md), r);
3810 			goto err;
3811 		}
3812 
3813 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3814 		if (r) {
3815 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3816 			      dm_device_name(pool->pool_md), r);
3817 			goto err;
3818 		}
3819 
3820 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3821 		if (r) {
3822 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3823 			      dm_device_name(pool->pool_md), r);
3824 			goto err;
3825 		}
3826 
3827 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3828 		if (r) {
3829 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3830 			      dm_device_name(pool->pool_md), r);
3831 			goto err;
3832 		}
3833 
3834 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3835 		if (r) {
3836 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3837 			      dm_device_name(pool->pool_md), r);
3838 			goto err;
3839 		}
3840 
3841 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3842 		       (unsigned long long)transaction_id,
3843 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3844 		       (unsigned long long)nr_blocks_metadata,
3845 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3846 		       (unsigned long long)nr_blocks_data);
3847 
3848 		if (held_root)
3849 			DMEMIT("%llu ", held_root);
3850 		else
3851 			DMEMIT("- ");
3852 
3853 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3854 			DMEMIT("out_of_data_space ");
3855 		else if (pool->pf.mode == PM_READ_ONLY)
3856 			DMEMIT("ro ");
3857 		else
3858 			DMEMIT("rw ");
3859 
3860 		if (!pool->pf.discard_enabled)
3861 			DMEMIT("ignore_discard ");
3862 		else if (pool->pf.discard_passdown)
3863 			DMEMIT("discard_passdown ");
3864 		else
3865 			DMEMIT("no_discard_passdown ");
3866 
3867 		if (pool->pf.error_if_no_space)
3868 			DMEMIT("error_if_no_space ");
3869 		else
3870 			DMEMIT("queue_if_no_space ");
3871 
3872 		if (dm_pool_metadata_needs_check(pool->pmd))
3873 			DMEMIT("needs_check ");
3874 		else
3875 			DMEMIT("- ");
3876 
3877 		break;
3878 
3879 	case STATUSTYPE_TABLE:
3880 		DMEMIT("%s %s %lu %llu ",
3881 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3882 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3883 		       (unsigned long)pool->sectors_per_block,
3884 		       (unsigned long long)pt->low_water_blocks);
3885 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3886 		break;
3887 	}
3888 	return;
3889 
3890 err:
3891 	DMEMIT("Error");
3892 }
3893 
3894 static int pool_iterate_devices(struct dm_target *ti,
3895 				iterate_devices_callout_fn fn, void *data)
3896 {
3897 	struct pool_c *pt = ti->private;
3898 
3899 	return fn(ti, pt->data_dev, 0, ti->len, data);
3900 }
3901 
3902 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3903 {
3904 	struct pool_c *pt = ti->private;
3905 	struct pool *pool = pt->pool;
3906 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3907 
3908 	/*
3909 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3910 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3911 	 * This is especially beneficial when the pool's data device is a RAID
3912 	 * device that has a full stripe width that matches pool->sectors_per_block
3913 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3914 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3915 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3916 	 */
3917 	if (limits->max_sectors < pool->sectors_per_block) {
3918 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3919 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3920 				limits->max_sectors--;
3921 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3922 		}
3923 	}
3924 
3925 	/*
3926 	 * If the system-determined stacked limits are compatible with the
3927 	 * pool's blocksize (io_opt is a factor) do not override them.
3928 	 */
3929 	if (io_opt_sectors < pool->sectors_per_block ||
3930 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3931 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3932 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3933 		else
3934 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3935 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3936 	}
3937 
3938 	/*
3939 	 * pt->adjusted_pf is a staging area for the actual features to use.
3940 	 * They get transferred to the live pool in bind_control_target()
3941 	 * called from pool_preresume().
3942 	 */
3943 	if (!pt->adjusted_pf.discard_enabled) {
3944 		/*
3945 		 * Must explicitly disallow stacking discard limits otherwise the
3946 		 * block layer will stack them if pool's data device has support.
3947 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3948 		 * user to see that, so make sure to set all discard limits to 0.
3949 		 */
3950 		limits->discard_granularity = 0;
3951 		return;
3952 	}
3953 
3954 	disable_passdown_if_not_supported(pt);
3955 
3956 	/*
3957 	 * The pool uses the same discard limits as the underlying data
3958 	 * device.  DM core has already set this up.
3959 	 */
3960 }
3961 
3962 static struct target_type pool_target = {
3963 	.name = "thin-pool",
3964 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3965 		    DM_TARGET_IMMUTABLE,
3966 	.version = {1, 19, 0},
3967 	.module = THIS_MODULE,
3968 	.ctr = pool_ctr,
3969 	.dtr = pool_dtr,
3970 	.map = pool_map,
3971 	.presuspend = pool_presuspend,
3972 	.presuspend_undo = pool_presuspend_undo,
3973 	.postsuspend = pool_postsuspend,
3974 	.preresume = pool_preresume,
3975 	.resume = pool_resume,
3976 	.message = pool_message,
3977 	.status = pool_status,
3978 	.iterate_devices = pool_iterate_devices,
3979 	.io_hints = pool_io_hints,
3980 };
3981 
3982 /*----------------------------------------------------------------
3983  * Thin target methods
3984  *--------------------------------------------------------------*/
3985 static void thin_get(struct thin_c *tc)
3986 {
3987 	atomic_inc(&tc->refcount);
3988 }
3989 
3990 static void thin_put(struct thin_c *tc)
3991 {
3992 	if (atomic_dec_and_test(&tc->refcount))
3993 		complete(&tc->can_destroy);
3994 }
3995 
3996 static void thin_dtr(struct dm_target *ti)
3997 {
3998 	struct thin_c *tc = ti->private;
3999 	unsigned long flags;
4000 
4001 	spin_lock_irqsave(&tc->pool->lock, flags);
4002 	list_del_rcu(&tc->list);
4003 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4004 	synchronize_rcu();
4005 
4006 	thin_put(tc);
4007 	wait_for_completion(&tc->can_destroy);
4008 
4009 	mutex_lock(&dm_thin_pool_table.mutex);
4010 
4011 	__pool_dec(tc->pool);
4012 	dm_pool_close_thin_device(tc->td);
4013 	dm_put_device(ti, tc->pool_dev);
4014 	if (tc->origin_dev)
4015 		dm_put_device(ti, tc->origin_dev);
4016 	kfree(tc);
4017 
4018 	mutex_unlock(&dm_thin_pool_table.mutex);
4019 }
4020 
4021 /*
4022  * Thin target parameters:
4023  *
4024  * <pool_dev> <dev_id> [origin_dev]
4025  *
4026  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4027  * dev_id: the internal device identifier
4028  * origin_dev: a device external to the pool that should act as the origin
4029  *
4030  * If the pool device has discards disabled, they get disabled for the thin
4031  * device as well.
4032  */
4033 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4034 {
4035 	int r;
4036 	struct thin_c *tc;
4037 	struct dm_dev *pool_dev, *origin_dev;
4038 	struct mapped_device *pool_md;
4039 	unsigned long flags;
4040 
4041 	mutex_lock(&dm_thin_pool_table.mutex);
4042 
4043 	if (argc != 2 && argc != 3) {
4044 		ti->error = "Invalid argument count";
4045 		r = -EINVAL;
4046 		goto out_unlock;
4047 	}
4048 
4049 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4050 	if (!tc) {
4051 		ti->error = "Out of memory";
4052 		r = -ENOMEM;
4053 		goto out_unlock;
4054 	}
4055 	tc->thin_md = dm_table_get_md(ti->table);
4056 	spin_lock_init(&tc->lock);
4057 	INIT_LIST_HEAD(&tc->deferred_cells);
4058 	bio_list_init(&tc->deferred_bio_list);
4059 	bio_list_init(&tc->retry_on_resume_list);
4060 	tc->sort_bio_list = RB_ROOT;
4061 
4062 	if (argc == 3) {
4063 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4064 		if (r) {
4065 			ti->error = "Error opening origin device";
4066 			goto bad_origin_dev;
4067 		}
4068 		tc->origin_dev = origin_dev;
4069 	}
4070 
4071 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4072 	if (r) {
4073 		ti->error = "Error opening pool device";
4074 		goto bad_pool_dev;
4075 	}
4076 	tc->pool_dev = pool_dev;
4077 
4078 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4079 		ti->error = "Invalid device id";
4080 		r = -EINVAL;
4081 		goto bad_common;
4082 	}
4083 
4084 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4085 	if (!pool_md) {
4086 		ti->error = "Couldn't get pool mapped device";
4087 		r = -EINVAL;
4088 		goto bad_common;
4089 	}
4090 
4091 	tc->pool = __pool_table_lookup(pool_md);
4092 	if (!tc->pool) {
4093 		ti->error = "Couldn't find pool object";
4094 		r = -EINVAL;
4095 		goto bad_pool_lookup;
4096 	}
4097 	__pool_inc(tc->pool);
4098 
4099 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4100 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4101 		r = -EINVAL;
4102 		goto bad_pool;
4103 	}
4104 
4105 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4106 	if (r) {
4107 		ti->error = "Couldn't open thin internal device";
4108 		goto bad_pool;
4109 	}
4110 
4111 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4112 	if (r)
4113 		goto bad;
4114 
4115 	ti->num_flush_bios = 1;
4116 	ti->flush_supported = true;
4117 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4118 
4119 	/* In case the pool supports discards, pass them on. */
4120 	if (tc->pool->pf.discard_enabled) {
4121 		ti->discards_supported = true;
4122 		ti->num_discard_bios = 1;
4123 		ti->split_discard_bios = false;
4124 	}
4125 
4126 	mutex_unlock(&dm_thin_pool_table.mutex);
4127 
4128 	spin_lock_irqsave(&tc->pool->lock, flags);
4129 	if (tc->pool->suspended) {
4130 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4131 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4132 		ti->error = "Unable to activate thin device while pool is suspended";
4133 		r = -EINVAL;
4134 		goto bad;
4135 	}
4136 	atomic_set(&tc->refcount, 1);
4137 	init_completion(&tc->can_destroy);
4138 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4139 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4140 	/*
4141 	 * This synchronize_rcu() call is needed here otherwise we risk a
4142 	 * wake_worker() call finding no bios to process (because the newly
4143 	 * added tc isn't yet visible).  So this reduces latency since we
4144 	 * aren't then dependent on the periodic commit to wake_worker().
4145 	 */
4146 	synchronize_rcu();
4147 
4148 	dm_put(pool_md);
4149 
4150 	return 0;
4151 
4152 bad:
4153 	dm_pool_close_thin_device(tc->td);
4154 bad_pool:
4155 	__pool_dec(tc->pool);
4156 bad_pool_lookup:
4157 	dm_put(pool_md);
4158 bad_common:
4159 	dm_put_device(ti, tc->pool_dev);
4160 bad_pool_dev:
4161 	if (tc->origin_dev)
4162 		dm_put_device(ti, tc->origin_dev);
4163 bad_origin_dev:
4164 	kfree(tc);
4165 out_unlock:
4166 	mutex_unlock(&dm_thin_pool_table.mutex);
4167 
4168 	return r;
4169 }
4170 
4171 static int thin_map(struct dm_target *ti, struct bio *bio)
4172 {
4173 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4174 
4175 	return thin_bio_map(ti, bio);
4176 }
4177 
4178 static int thin_endio(struct dm_target *ti, struct bio *bio,
4179 		blk_status_t *err)
4180 {
4181 	unsigned long flags;
4182 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4183 	struct list_head work;
4184 	struct dm_thin_new_mapping *m, *tmp;
4185 	struct pool *pool = h->tc->pool;
4186 
4187 	if (h->shared_read_entry) {
4188 		INIT_LIST_HEAD(&work);
4189 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4190 
4191 		spin_lock_irqsave(&pool->lock, flags);
4192 		list_for_each_entry_safe(m, tmp, &work, list) {
4193 			list_del(&m->list);
4194 			__complete_mapping_preparation(m);
4195 		}
4196 		spin_unlock_irqrestore(&pool->lock, flags);
4197 	}
4198 
4199 	if (h->all_io_entry) {
4200 		INIT_LIST_HEAD(&work);
4201 		dm_deferred_entry_dec(h->all_io_entry, &work);
4202 		if (!list_empty(&work)) {
4203 			spin_lock_irqsave(&pool->lock, flags);
4204 			list_for_each_entry_safe(m, tmp, &work, list)
4205 				list_add_tail(&m->list, &pool->prepared_discards);
4206 			spin_unlock_irqrestore(&pool->lock, flags);
4207 			wake_worker(pool);
4208 		}
4209 	}
4210 
4211 	if (h->cell)
4212 		cell_defer_no_holder(h->tc, h->cell);
4213 
4214 	return DM_ENDIO_DONE;
4215 }
4216 
4217 static void thin_presuspend(struct dm_target *ti)
4218 {
4219 	struct thin_c *tc = ti->private;
4220 
4221 	if (dm_noflush_suspending(ti))
4222 		noflush_work(tc, do_noflush_start);
4223 }
4224 
4225 static void thin_postsuspend(struct dm_target *ti)
4226 {
4227 	struct thin_c *tc = ti->private;
4228 
4229 	/*
4230 	 * The dm_noflush_suspending flag has been cleared by now, so
4231 	 * unfortunately we must always run this.
4232 	 */
4233 	noflush_work(tc, do_noflush_stop);
4234 }
4235 
4236 static int thin_preresume(struct dm_target *ti)
4237 {
4238 	struct thin_c *tc = ti->private;
4239 
4240 	if (tc->origin_dev)
4241 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4242 
4243 	return 0;
4244 }
4245 
4246 /*
4247  * <nr mapped sectors> <highest mapped sector>
4248  */
4249 static void thin_status(struct dm_target *ti, status_type_t type,
4250 			unsigned status_flags, char *result, unsigned maxlen)
4251 {
4252 	int r;
4253 	ssize_t sz = 0;
4254 	dm_block_t mapped, highest;
4255 	char buf[BDEVNAME_SIZE];
4256 	struct thin_c *tc = ti->private;
4257 
4258 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4259 		DMEMIT("Fail");
4260 		return;
4261 	}
4262 
4263 	if (!tc->td)
4264 		DMEMIT("-");
4265 	else {
4266 		switch (type) {
4267 		case STATUSTYPE_INFO:
4268 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4269 			if (r) {
4270 				DMERR("dm_thin_get_mapped_count returned %d", r);
4271 				goto err;
4272 			}
4273 
4274 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4275 			if (r < 0) {
4276 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4277 				goto err;
4278 			}
4279 
4280 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4281 			if (r)
4282 				DMEMIT("%llu", ((highest + 1) *
4283 						tc->pool->sectors_per_block) - 1);
4284 			else
4285 				DMEMIT("-");
4286 			break;
4287 
4288 		case STATUSTYPE_TABLE:
4289 			DMEMIT("%s %lu",
4290 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4291 			       (unsigned long) tc->dev_id);
4292 			if (tc->origin_dev)
4293 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4294 			break;
4295 		}
4296 	}
4297 
4298 	return;
4299 
4300 err:
4301 	DMEMIT("Error");
4302 }
4303 
4304 static int thin_iterate_devices(struct dm_target *ti,
4305 				iterate_devices_callout_fn fn, void *data)
4306 {
4307 	sector_t blocks;
4308 	struct thin_c *tc = ti->private;
4309 	struct pool *pool = tc->pool;
4310 
4311 	/*
4312 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4313 	 * we follow a more convoluted path through to the pool's target.
4314 	 */
4315 	if (!pool->ti)
4316 		return 0;	/* nothing is bound */
4317 
4318 	blocks = pool->ti->len;
4319 	(void) sector_div(blocks, pool->sectors_per_block);
4320 	if (blocks)
4321 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4322 
4323 	return 0;
4324 }
4325 
4326 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4327 {
4328 	struct thin_c *tc = ti->private;
4329 	struct pool *pool = tc->pool;
4330 
4331 	if (!pool->pf.discard_enabled)
4332 		return;
4333 
4334 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4335 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4336 }
4337 
4338 static struct target_type thin_target = {
4339 	.name = "thin",
4340 	.version = {1, 19, 0},
4341 	.module	= THIS_MODULE,
4342 	.ctr = thin_ctr,
4343 	.dtr = thin_dtr,
4344 	.map = thin_map,
4345 	.end_io = thin_endio,
4346 	.preresume = thin_preresume,
4347 	.presuspend = thin_presuspend,
4348 	.postsuspend = thin_postsuspend,
4349 	.status = thin_status,
4350 	.iterate_devices = thin_iterate_devices,
4351 	.io_hints = thin_io_hints,
4352 };
4353 
4354 /*----------------------------------------------------------------*/
4355 
4356 static int __init dm_thin_init(void)
4357 {
4358 	int r;
4359 
4360 	pool_table_init();
4361 
4362 	r = dm_register_target(&thin_target);
4363 	if (r)
4364 		return r;
4365 
4366 	r = dm_register_target(&pool_target);
4367 	if (r)
4368 		goto bad_pool_target;
4369 
4370 	r = -ENOMEM;
4371 
4372 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4373 	if (!_new_mapping_cache)
4374 		goto bad_new_mapping_cache;
4375 
4376 	return 0;
4377 
4378 bad_new_mapping_cache:
4379 	dm_unregister_target(&pool_target);
4380 bad_pool_target:
4381 	dm_unregister_target(&thin_target);
4382 
4383 	return r;
4384 }
4385 
4386 static void dm_thin_exit(void)
4387 {
4388 	dm_unregister_target(&thin_target);
4389 	dm_unregister_target(&pool_target);
4390 
4391 	kmem_cache_destroy(_new_mapping_cache);
4392 }
4393 
4394 module_init(dm_thin_init);
4395 module_exit(dm_thin_exit);
4396 
4397 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4398 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4399 
4400 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4401 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4402 MODULE_LICENSE("GPL");
4403