xref: /openbmc/linux/drivers/md/dm-thin.c (revision 55fd7e02)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 
204 	/*
205 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 	 */
207 	PM_OUT_OF_METADATA_SPACE,
208 	PM_READ_ONLY,		/* metadata may not be changed */
209 
210 	PM_FAIL,		/* all I/O fails */
211 };
212 
213 struct pool_features {
214 	enum pool_mode mode;
215 
216 	bool zero_new_blocks:1;
217 	bool discard_enabled:1;
218 	bool discard_passdown:1;
219 	bool error_if_no_space:1;
220 };
221 
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226 
227 #define CELL_SORT_ARRAY_SIZE 8192
228 
229 struct pool {
230 	struct list_head list;
231 	struct dm_target *ti;	/* Only set if a pool target is bound */
232 
233 	struct mapped_device *pool_md;
234 	struct block_device *data_dev;
235 	struct block_device *md_dev;
236 	struct dm_pool_metadata *pmd;
237 
238 	dm_block_t low_water_blocks;
239 	uint32_t sectors_per_block;
240 	int sectors_per_block_shift;
241 
242 	struct pool_features pf;
243 	bool low_water_triggered:1;	/* A dm event has been sent */
244 	bool suspended:1;
245 	bool out_of_data_space:1;
246 
247 	struct dm_bio_prison *prison;
248 	struct dm_kcopyd_client *copier;
249 
250 	struct work_struct worker;
251 	struct workqueue_struct *wq;
252 	struct throttle throttle;
253 	struct delayed_work waker;
254 	struct delayed_work no_space_timeout;
255 
256 	unsigned long last_commit_jiffies;
257 	unsigned ref_count;
258 
259 	spinlock_t lock;
260 	struct bio_list deferred_flush_bios;
261 	struct bio_list deferred_flush_completions;
262 	struct list_head prepared_mappings;
263 	struct list_head prepared_discards;
264 	struct list_head prepared_discards_pt2;
265 	struct list_head active_thins;
266 
267 	struct dm_deferred_set *shared_read_ds;
268 	struct dm_deferred_set *all_io_ds;
269 
270 	struct dm_thin_new_mapping *next_mapping;
271 
272 	process_bio_fn process_bio;
273 	process_bio_fn process_discard;
274 
275 	process_cell_fn process_cell;
276 	process_cell_fn process_discard_cell;
277 
278 	process_mapping_fn process_prepared_mapping;
279 	process_mapping_fn process_prepared_discard;
280 	process_mapping_fn process_prepared_discard_pt2;
281 
282 	struct dm_bio_prison_cell **cell_sort_array;
283 
284 	mempool_t mapping_pool;
285 
286 	struct bio flush_bio;
287 };
288 
289 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
290 
291 static enum pool_mode get_pool_mode(struct pool *pool)
292 {
293 	return pool->pf.mode;
294 }
295 
296 static void notify_of_pool_mode_change(struct pool *pool)
297 {
298 	const char *descs[] = {
299 		"write",
300 		"out-of-data-space",
301 		"read-only",
302 		"read-only",
303 		"fail"
304 	};
305 	const char *extra_desc = NULL;
306 	enum pool_mode mode = get_pool_mode(pool);
307 
308 	if (mode == PM_OUT_OF_DATA_SPACE) {
309 		if (!pool->pf.error_if_no_space)
310 			extra_desc = " (queue IO)";
311 		else
312 			extra_desc = " (error IO)";
313 	}
314 
315 	dm_table_event(pool->ti->table);
316 	DMINFO("%s: switching pool to %s%s mode",
317 	       dm_device_name(pool->pool_md),
318 	       descs[(int)mode], extra_desc ? : "");
319 }
320 
321 /*
322  * Target context for a pool.
323  */
324 struct pool_c {
325 	struct dm_target *ti;
326 	struct pool *pool;
327 	struct dm_dev *data_dev;
328 	struct dm_dev *metadata_dev;
329 	struct dm_target_callbacks callbacks;
330 
331 	dm_block_t low_water_blocks;
332 	struct pool_features requested_pf; /* Features requested during table load */
333 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
334 };
335 
336 /*
337  * Target context for a thin.
338  */
339 struct thin_c {
340 	struct list_head list;
341 	struct dm_dev *pool_dev;
342 	struct dm_dev *origin_dev;
343 	sector_t origin_size;
344 	dm_thin_id dev_id;
345 
346 	struct pool *pool;
347 	struct dm_thin_device *td;
348 	struct mapped_device *thin_md;
349 
350 	bool requeue_mode:1;
351 	spinlock_t lock;
352 	struct list_head deferred_cells;
353 	struct bio_list deferred_bio_list;
354 	struct bio_list retry_on_resume_list;
355 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
356 
357 	/*
358 	 * Ensures the thin is not destroyed until the worker has finished
359 	 * iterating the active_thins list.
360 	 */
361 	refcount_t refcount;
362 	struct completion can_destroy;
363 };
364 
365 /*----------------------------------------------------------------*/
366 
367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369 	return pool->sectors_per_block_shift >= 0;
370 }
371 
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374 	return block_size_is_power_of_two(pool) ?
375 		(b << pool->sectors_per_block_shift) :
376 		(b * pool->sectors_per_block);
377 }
378 
379 /*----------------------------------------------------------------*/
380 
381 struct discard_op {
382 	struct thin_c *tc;
383 	struct blk_plug plug;
384 	struct bio *parent_bio;
385 	struct bio *bio;
386 };
387 
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390 	BUG_ON(!parent);
391 
392 	op->tc = tc;
393 	blk_start_plug(&op->plug);
394 	op->parent_bio = parent;
395 	op->bio = NULL;
396 }
397 
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400 	struct thin_c *tc = op->tc;
401 	sector_t s = block_to_sectors(tc->pool, data_b);
402 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403 
404 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
405 				      GFP_NOWAIT, 0, &op->bio);
406 }
407 
408 static void end_discard(struct discard_op *op, int r)
409 {
410 	if (op->bio) {
411 		/*
412 		 * Even if one of the calls to issue_discard failed, we
413 		 * need to wait for the chain to complete.
414 		 */
415 		bio_chain(op->bio, op->parent_bio);
416 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
417 		submit_bio(op->bio);
418 	}
419 
420 	blk_finish_plug(&op->plug);
421 
422 	/*
423 	 * Even if r is set, there could be sub discards in flight that we
424 	 * need to wait for.
425 	 */
426 	if (r && !op->parent_bio->bi_status)
427 		op->parent_bio->bi_status = errno_to_blk_status(r);
428 	bio_endio(op->parent_bio);
429 }
430 
431 /*----------------------------------------------------------------*/
432 
433 /*
434  * wake_worker() is used when new work is queued and when pool_resume is
435  * ready to continue deferred IO processing.
436  */
437 static void wake_worker(struct pool *pool)
438 {
439 	queue_work(pool->wq, &pool->worker);
440 }
441 
442 /*----------------------------------------------------------------*/
443 
444 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
445 		      struct dm_bio_prison_cell **cell_result)
446 {
447 	int r;
448 	struct dm_bio_prison_cell *cell_prealloc;
449 
450 	/*
451 	 * Allocate a cell from the prison's mempool.
452 	 * This might block but it can't fail.
453 	 */
454 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
455 
456 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
457 	if (r)
458 		/*
459 		 * We reused an old cell; we can get rid of
460 		 * the new one.
461 		 */
462 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
463 
464 	return r;
465 }
466 
467 static void cell_release(struct pool *pool,
468 			 struct dm_bio_prison_cell *cell,
469 			 struct bio_list *bios)
470 {
471 	dm_cell_release(pool->prison, cell, bios);
472 	dm_bio_prison_free_cell(pool->prison, cell);
473 }
474 
475 static void cell_visit_release(struct pool *pool,
476 			       void (*fn)(void *, struct dm_bio_prison_cell *),
477 			       void *context,
478 			       struct dm_bio_prison_cell *cell)
479 {
480 	dm_cell_visit_release(pool->prison, fn, context, cell);
481 	dm_bio_prison_free_cell(pool->prison, cell);
482 }
483 
484 static void cell_release_no_holder(struct pool *pool,
485 				   struct dm_bio_prison_cell *cell,
486 				   struct bio_list *bios)
487 {
488 	dm_cell_release_no_holder(pool->prison, cell, bios);
489 	dm_bio_prison_free_cell(pool->prison, cell);
490 }
491 
492 static void cell_error_with_code(struct pool *pool,
493 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
494 {
495 	dm_cell_error(pool->prison, cell, error_code);
496 	dm_bio_prison_free_cell(pool->prison, cell);
497 }
498 
499 static blk_status_t get_pool_io_error_code(struct pool *pool)
500 {
501 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502 }
503 
504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505 {
506 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
507 }
508 
509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510 {
511 	cell_error_with_code(pool, cell, 0);
512 }
513 
514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515 {
516 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517 }
518 
519 /*----------------------------------------------------------------*/
520 
521 /*
522  * A global list of pools that uses a struct mapped_device as a key.
523  */
524 static struct dm_thin_pool_table {
525 	struct mutex mutex;
526 	struct list_head pools;
527 } dm_thin_pool_table;
528 
529 static void pool_table_init(void)
530 {
531 	mutex_init(&dm_thin_pool_table.mutex);
532 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
533 }
534 
535 static void pool_table_exit(void)
536 {
537 	mutex_destroy(&dm_thin_pool_table.mutex);
538 }
539 
540 static void __pool_table_insert(struct pool *pool)
541 {
542 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543 	list_add(&pool->list, &dm_thin_pool_table.pools);
544 }
545 
546 static void __pool_table_remove(struct pool *pool)
547 {
548 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549 	list_del(&pool->list);
550 }
551 
552 static struct pool *__pool_table_lookup(struct mapped_device *md)
553 {
554 	struct pool *pool = NULL, *tmp;
555 
556 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557 
558 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559 		if (tmp->pool_md == md) {
560 			pool = tmp;
561 			break;
562 		}
563 	}
564 
565 	return pool;
566 }
567 
568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569 {
570 	struct pool *pool = NULL, *tmp;
571 
572 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573 
574 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575 		if (tmp->md_dev == md_dev) {
576 			pool = tmp;
577 			break;
578 		}
579 	}
580 
581 	return pool;
582 }
583 
584 /*----------------------------------------------------------------*/
585 
586 struct dm_thin_endio_hook {
587 	struct thin_c *tc;
588 	struct dm_deferred_entry *shared_read_entry;
589 	struct dm_deferred_entry *all_io_entry;
590 	struct dm_thin_new_mapping *overwrite_mapping;
591 	struct rb_node rb_node;
592 	struct dm_bio_prison_cell *cell;
593 };
594 
595 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
596 {
597 	bio_list_merge(bios, master);
598 	bio_list_init(master);
599 }
600 
601 static void error_bio_list(struct bio_list *bios, blk_status_t error)
602 {
603 	struct bio *bio;
604 
605 	while ((bio = bio_list_pop(bios))) {
606 		bio->bi_status = error;
607 		bio_endio(bio);
608 	}
609 }
610 
611 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
612 		blk_status_t error)
613 {
614 	struct bio_list bios;
615 
616 	bio_list_init(&bios);
617 
618 	spin_lock_irq(&tc->lock);
619 	__merge_bio_list(&bios, master);
620 	spin_unlock_irq(&tc->lock);
621 
622 	error_bio_list(&bios, error);
623 }
624 
625 static void requeue_deferred_cells(struct thin_c *tc)
626 {
627 	struct pool *pool = tc->pool;
628 	struct list_head cells;
629 	struct dm_bio_prison_cell *cell, *tmp;
630 
631 	INIT_LIST_HEAD(&cells);
632 
633 	spin_lock_irq(&tc->lock);
634 	list_splice_init(&tc->deferred_cells, &cells);
635 	spin_unlock_irq(&tc->lock);
636 
637 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
638 		cell_requeue(pool, cell);
639 }
640 
641 static void requeue_io(struct thin_c *tc)
642 {
643 	struct bio_list bios;
644 
645 	bio_list_init(&bios);
646 
647 	spin_lock_irq(&tc->lock);
648 	__merge_bio_list(&bios, &tc->deferred_bio_list);
649 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
650 	spin_unlock_irq(&tc->lock);
651 
652 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
653 	requeue_deferred_cells(tc);
654 }
655 
656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
657 {
658 	struct thin_c *tc;
659 
660 	rcu_read_lock();
661 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
662 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
663 	rcu_read_unlock();
664 }
665 
666 static void error_retry_list(struct pool *pool)
667 {
668 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
669 }
670 
671 /*
672  * This section of code contains the logic for processing a thin device's IO.
673  * Much of the code depends on pool object resources (lists, workqueues, etc)
674  * but most is exclusively called from the thin target rather than the thin-pool
675  * target.
676  */
677 
678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679 {
680 	struct pool *pool = tc->pool;
681 	sector_t block_nr = bio->bi_iter.bi_sector;
682 
683 	if (block_size_is_power_of_two(pool))
684 		block_nr >>= pool->sectors_per_block_shift;
685 	else
686 		(void) sector_div(block_nr, pool->sectors_per_block);
687 
688 	return block_nr;
689 }
690 
691 /*
692  * Returns the _complete_ blocks that this bio covers.
693  */
694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695 				dm_block_t *begin, dm_block_t *end)
696 {
697 	struct pool *pool = tc->pool;
698 	sector_t b = bio->bi_iter.bi_sector;
699 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
700 
701 	b += pool->sectors_per_block - 1ull; /* so we round up */
702 
703 	if (block_size_is_power_of_two(pool)) {
704 		b >>= pool->sectors_per_block_shift;
705 		e >>= pool->sectors_per_block_shift;
706 	} else {
707 		(void) sector_div(b, pool->sectors_per_block);
708 		(void) sector_div(e, pool->sectors_per_block);
709 	}
710 
711 	if (e < b)
712 		/* Can happen if the bio is within a single block. */
713 		e = b;
714 
715 	*begin = b;
716 	*end = e;
717 }
718 
719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
720 {
721 	struct pool *pool = tc->pool;
722 	sector_t bi_sector = bio->bi_iter.bi_sector;
723 
724 	bio_set_dev(bio, tc->pool_dev->bdev);
725 	if (block_size_is_power_of_two(pool))
726 		bio->bi_iter.bi_sector =
727 			(block << pool->sectors_per_block_shift) |
728 			(bi_sector & (pool->sectors_per_block - 1));
729 	else
730 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
731 				 sector_div(bi_sector, pool->sectors_per_block);
732 }
733 
734 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
735 {
736 	bio_set_dev(bio, tc->origin_dev->bdev);
737 }
738 
739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
740 {
741 	return op_is_flush(bio->bi_opf) &&
742 		dm_thin_changed_this_transaction(tc->td);
743 }
744 
745 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
746 {
747 	struct dm_thin_endio_hook *h;
748 
749 	if (bio_op(bio) == REQ_OP_DISCARD)
750 		return;
751 
752 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
753 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
754 }
755 
756 static void issue(struct thin_c *tc, struct bio *bio)
757 {
758 	struct pool *pool = tc->pool;
759 
760 	if (!bio_triggers_commit(tc, bio)) {
761 		generic_make_request(bio);
762 		return;
763 	}
764 
765 	/*
766 	 * Complete bio with an error if earlier I/O caused changes to
767 	 * the metadata that can't be committed e.g, due to I/O errors
768 	 * on the metadata device.
769 	 */
770 	if (dm_thin_aborted_changes(tc->td)) {
771 		bio_io_error(bio);
772 		return;
773 	}
774 
775 	/*
776 	 * Batch together any bios that trigger commits and then issue a
777 	 * single commit for them in process_deferred_bios().
778 	 */
779 	spin_lock_irq(&pool->lock);
780 	bio_list_add(&pool->deferred_flush_bios, bio);
781 	spin_unlock_irq(&pool->lock);
782 }
783 
784 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
785 {
786 	remap_to_origin(tc, bio);
787 	issue(tc, bio);
788 }
789 
790 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
791 			    dm_block_t block)
792 {
793 	remap(tc, bio, block);
794 	issue(tc, bio);
795 }
796 
797 /*----------------------------------------------------------------*/
798 
799 /*
800  * Bio endio functions.
801  */
802 struct dm_thin_new_mapping {
803 	struct list_head list;
804 
805 	bool pass_discard:1;
806 	bool maybe_shared:1;
807 
808 	/*
809 	 * Track quiescing, copying and zeroing preparation actions.  When this
810 	 * counter hits zero the block is prepared and can be inserted into the
811 	 * btree.
812 	 */
813 	atomic_t prepare_actions;
814 
815 	blk_status_t status;
816 	struct thin_c *tc;
817 	dm_block_t virt_begin, virt_end;
818 	dm_block_t data_block;
819 	struct dm_bio_prison_cell *cell;
820 
821 	/*
822 	 * If the bio covers the whole area of a block then we can avoid
823 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
824 	 * still be in the cell, so care has to be taken to avoid issuing
825 	 * the bio twice.
826 	 */
827 	struct bio *bio;
828 	bio_end_io_t *saved_bi_end_io;
829 };
830 
831 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
832 {
833 	struct pool *pool = m->tc->pool;
834 
835 	if (atomic_dec_and_test(&m->prepare_actions)) {
836 		list_add_tail(&m->list, &pool->prepared_mappings);
837 		wake_worker(pool);
838 	}
839 }
840 
841 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
842 {
843 	unsigned long flags;
844 	struct pool *pool = m->tc->pool;
845 
846 	spin_lock_irqsave(&pool->lock, flags);
847 	__complete_mapping_preparation(m);
848 	spin_unlock_irqrestore(&pool->lock, flags);
849 }
850 
851 static void copy_complete(int read_err, unsigned long write_err, void *context)
852 {
853 	struct dm_thin_new_mapping *m = context;
854 
855 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
856 	complete_mapping_preparation(m);
857 }
858 
859 static void overwrite_endio(struct bio *bio)
860 {
861 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
862 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
863 
864 	bio->bi_end_io = m->saved_bi_end_io;
865 
866 	m->status = bio->bi_status;
867 	complete_mapping_preparation(m);
868 }
869 
870 /*----------------------------------------------------------------*/
871 
872 /*
873  * Workqueue.
874  */
875 
876 /*
877  * Prepared mapping jobs.
878  */
879 
880 /*
881  * This sends the bios in the cell, except the original holder, back
882  * to the deferred_bios list.
883  */
884 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
885 {
886 	struct pool *pool = tc->pool;
887 	unsigned long flags;
888 	int has_work;
889 
890 	spin_lock_irqsave(&tc->lock, flags);
891 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
892 	has_work = !bio_list_empty(&tc->deferred_bio_list);
893 	spin_unlock_irqrestore(&tc->lock, flags);
894 
895 	if (has_work)
896 		wake_worker(pool);
897 }
898 
899 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
900 
901 struct remap_info {
902 	struct thin_c *tc;
903 	struct bio_list defer_bios;
904 	struct bio_list issue_bios;
905 };
906 
907 static void __inc_remap_and_issue_cell(void *context,
908 				       struct dm_bio_prison_cell *cell)
909 {
910 	struct remap_info *info = context;
911 	struct bio *bio;
912 
913 	while ((bio = bio_list_pop(&cell->bios))) {
914 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
915 			bio_list_add(&info->defer_bios, bio);
916 		else {
917 			inc_all_io_entry(info->tc->pool, bio);
918 
919 			/*
920 			 * We can't issue the bios with the bio prison lock
921 			 * held, so we add them to a list to issue on
922 			 * return from this function.
923 			 */
924 			bio_list_add(&info->issue_bios, bio);
925 		}
926 	}
927 }
928 
929 static void inc_remap_and_issue_cell(struct thin_c *tc,
930 				     struct dm_bio_prison_cell *cell,
931 				     dm_block_t block)
932 {
933 	struct bio *bio;
934 	struct remap_info info;
935 
936 	info.tc = tc;
937 	bio_list_init(&info.defer_bios);
938 	bio_list_init(&info.issue_bios);
939 
940 	/*
941 	 * We have to be careful to inc any bios we're about to issue
942 	 * before the cell is released, and avoid a race with new bios
943 	 * being added to the cell.
944 	 */
945 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
946 			   &info, cell);
947 
948 	while ((bio = bio_list_pop(&info.defer_bios)))
949 		thin_defer_bio(tc, bio);
950 
951 	while ((bio = bio_list_pop(&info.issue_bios)))
952 		remap_and_issue(info.tc, bio, block);
953 }
954 
955 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
956 {
957 	cell_error(m->tc->pool, m->cell);
958 	list_del(&m->list);
959 	mempool_free(m, &m->tc->pool->mapping_pool);
960 }
961 
962 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
963 {
964 	struct pool *pool = tc->pool;
965 
966 	/*
967 	 * If the bio has the REQ_FUA flag set we must commit the metadata
968 	 * before signaling its completion.
969 	 */
970 	if (!bio_triggers_commit(tc, bio)) {
971 		bio_endio(bio);
972 		return;
973 	}
974 
975 	/*
976 	 * Complete bio with an error if earlier I/O caused changes to the
977 	 * metadata that can't be committed, e.g, due to I/O errors on the
978 	 * metadata device.
979 	 */
980 	if (dm_thin_aborted_changes(tc->td)) {
981 		bio_io_error(bio);
982 		return;
983 	}
984 
985 	/*
986 	 * Batch together any bios that trigger commits and then issue a
987 	 * single commit for them in process_deferred_bios().
988 	 */
989 	spin_lock_irq(&pool->lock);
990 	bio_list_add(&pool->deferred_flush_completions, bio);
991 	spin_unlock_irq(&pool->lock);
992 }
993 
994 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
995 {
996 	struct thin_c *tc = m->tc;
997 	struct pool *pool = tc->pool;
998 	struct bio *bio = m->bio;
999 	int r;
1000 
1001 	if (m->status) {
1002 		cell_error(pool, m->cell);
1003 		goto out;
1004 	}
1005 
1006 	/*
1007 	 * Commit the prepared block into the mapping btree.
1008 	 * Any I/O for this block arriving after this point will get
1009 	 * remapped to it directly.
1010 	 */
1011 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1012 	if (r) {
1013 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1014 		cell_error(pool, m->cell);
1015 		goto out;
1016 	}
1017 
1018 	/*
1019 	 * Release any bios held while the block was being provisioned.
1020 	 * If we are processing a write bio that completely covers the block,
1021 	 * we already processed it so can ignore it now when processing
1022 	 * the bios in the cell.
1023 	 */
1024 	if (bio) {
1025 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1026 		complete_overwrite_bio(tc, bio);
1027 	} else {
1028 		inc_all_io_entry(tc->pool, m->cell->holder);
1029 		remap_and_issue(tc, m->cell->holder, m->data_block);
1030 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1031 	}
1032 
1033 out:
1034 	list_del(&m->list);
1035 	mempool_free(m, &pool->mapping_pool);
1036 }
1037 
1038 /*----------------------------------------------------------------*/
1039 
1040 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1041 {
1042 	struct thin_c *tc = m->tc;
1043 	if (m->cell)
1044 		cell_defer_no_holder(tc, m->cell);
1045 	mempool_free(m, &tc->pool->mapping_pool);
1046 }
1047 
1048 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1049 {
1050 	bio_io_error(m->bio);
1051 	free_discard_mapping(m);
1052 }
1053 
1054 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1055 {
1056 	bio_endio(m->bio);
1057 	free_discard_mapping(m);
1058 }
1059 
1060 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1061 {
1062 	int r;
1063 	struct thin_c *tc = m->tc;
1064 
1065 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1066 	if (r) {
1067 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1068 		bio_io_error(m->bio);
1069 	} else
1070 		bio_endio(m->bio);
1071 
1072 	cell_defer_no_holder(tc, m->cell);
1073 	mempool_free(m, &tc->pool->mapping_pool);
1074 }
1075 
1076 /*----------------------------------------------------------------*/
1077 
1078 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1079 						   struct bio *discard_parent)
1080 {
1081 	/*
1082 	 * We've already unmapped this range of blocks, but before we
1083 	 * passdown we have to check that these blocks are now unused.
1084 	 */
1085 	int r = 0;
1086 	bool shared = true;
1087 	struct thin_c *tc = m->tc;
1088 	struct pool *pool = tc->pool;
1089 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1090 	struct discard_op op;
1091 
1092 	begin_discard(&op, tc, discard_parent);
1093 	while (b != end) {
1094 		/* find start of unmapped run */
1095 		for (; b < end; b++) {
1096 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1097 			if (r)
1098 				goto out;
1099 
1100 			if (!shared)
1101 				break;
1102 		}
1103 
1104 		if (b == end)
1105 			break;
1106 
1107 		/* find end of run */
1108 		for (e = b + 1; e != end; e++) {
1109 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1110 			if (r)
1111 				goto out;
1112 
1113 			if (shared)
1114 				break;
1115 		}
1116 
1117 		r = issue_discard(&op, b, e);
1118 		if (r)
1119 			goto out;
1120 
1121 		b = e;
1122 	}
1123 out:
1124 	end_discard(&op, r);
1125 }
1126 
1127 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1128 {
1129 	unsigned long flags;
1130 	struct pool *pool = m->tc->pool;
1131 
1132 	spin_lock_irqsave(&pool->lock, flags);
1133 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1134 	spin_unlock_irqrestore(&pool->lock, flags);
1135 	wake_worker(pool);
1136 }
1137 
1138 static void passdown_endio(struct bio *bio)
1139 {
1140 	/*
1141 	 * It doesn't matter if the passdown discard failed, we still want
1142 	 * to unmap (we ignore err).
1143 	 */
1144 	queue_passdown_pt2(bio->bi_private);
1145 	bio_put(bio);
1146 }
1147 
1148 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1149 {
1150 	int r;
1151 	struct thin_c *tc = m->tc;
1152 	struct pool *pool = tc->pool;
1153 	struct bio *discard_parent;
1154 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1155 
1156 	/*
1157 	 * Only this thread allocates blocks, so we can be sure that the
1158 	 * newly unmapped blocks will not be allocated before the end of
1159 	 * the function.
1160 	 */
1161 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1162 	if (r) {
1163 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1164 		bio_io_error(m->bio);
1165 		cell_defer_no_holder(tc, m->cell);
1166 		mempool_free(m, &pool->mapping_pool);
1167 		return;
1168 	}
1169 
1170 	/*
1171 	 * Increment the unmapped blocks.  This prevents a race between the
1172 	 * passdown io and reallocation of freed blocks.
1173 	 */
1174 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1175 	if (r) {
1176 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1177 		bio_io_error(m->bio);
1178 		cell_defer_no_holder(tc, m->cell);
1179 		mempool_free(m, &pool->mapping_pool);
1180 		return;
1181 	}
1182 
1183 	discard_parent = bio_alloc(GFP_NOIO, 1);
1184 	if (!discard_parent) {
1185 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1186 		       dm_device_name(tc->pool->pool_md));
1187 		queue_passdown_pt2(m);
1188 
1189 	} else {
1190 		discard_parent->bi_end_io = passdown_endio;
1191 		discard_parent->bi_private = m;
1192 
1193 		if (m->maybe_shared)
1194 			passdown_double_checking_shared_status(m, discard_parent);
1195 		else {
1196 			struct discard_op op;
1197 
1198 			begin_discard(&op, tc, discard_parent);
1199 			r = issue_discard(&op, m->data_block, data_end);
1200 			end_discard(&op, r);
1201 		}
1202 	}
1203 }
1204 
1205 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1206 {
1207 	int r;
1208 	struct thin_c *tc = m->tc;
1209 	struct pool *pool = tc->pool;
1210 
1211 	/*
1212 	 * The passdown has completed, so now we can decrement all those
1213 	 * unmapped blocks.
1214 	 */
1215 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1216 				   m->data_block + (m->virt_end - m->virt_begin));
1217 	if (r) {
1218 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1219 		bio_io_error(m->bio);
1220 	} else
1221 		bio_endio(m->bio);
1222 
1223 	cell_defer_no_holder(tc, m->cell);
1224 	mempool_free(m, &pool->mapping_pool);
1225 }
1226 
1227 static void process_prepared(struct pool *pool, struct list_head *head,
1228 			     process_mapping_fn *fn)
1229 {
1230 	struct list_head maps;
1231 	struct dm_thin_new_mapping *m, *tmp;
1232 
1233 	INIT_LIST_HEAD(&maps);
1234 	spin_lock_irq(&pool->lock);
1235 	list_splice_init(head, &maps);
1236 	spin_unlock_irq(&pool->lock);
1237 
1238 	list_for_each_entry_safe(m, tmp, &maps, list)
1239 		(*fn)(m);
1240 }
1241 
1242 /*
1243  * Deferred bio jobs.
1244  */
1245 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1246 {
1247 	return bio->bi_iter.bi_size ==
1248 		(pool->sectors_per_block << SECTOR_SHIFT);
1249 }
1250 
1251 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1252 {
1253 	return (bio_data_dir(bio) == WRITE) &&
1254 		io_overlaps_block(pool, bio);
1255 }
1256 
1257 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1258 			       bio_end_io_t *fn)
1259 {
1260 	*save = bio->bi_end_io;
1261 	bio->bi_end_io = fn;
1262 }
1263 
1264 static int ensure_next_mapping(struct pool *pool)
1265 {
1266 	if (pool->next_mapping)
1267 		return 0;
1268 
1269 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1270 
1271 	return pool->next_mapping ? 0 : -ENOMEM;
1272 }
1273 
1274 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1275 {
1276 	struct dm_thin_new_mapping *m = pool->next_mapping;
1277 
1278 	BUG_ON(!pool->next_mapping);
1279 
1280 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1281 	INIT_LIST_HEAD(&m->list);
1282 	m->bio = NULL;
1283 
1284 	pool->next_mapping = NULL;
1285 
1286 	return m;
1287 }
1288 
1289 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1290 		    sector_t begin, sector_t end)
1291 {
1292 	struct dm_io_region to;
1293 
1294 	to.bdev = tc->pool_dev->bdev;
1295 	to.sector = begin;
1296 	to.count = end - begin;
1297 
1298 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1299 }
1300 
1301 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1302 				      dm_block_t data_begin,
1303 				      struct dm_thin_new_mapping *m)
1304 {
1305 	struct pool *pool = tc->pool;
1306 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1307 
1308 	h->overwrite_mapping = m;
1309 	m->bio = bio;
1310 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1311 	inc_all_io_entry(pool, bio);
1312 	remap_and_issue(tc, bio, data_begin);
1313 }
1314 
1315 /*
1316  * A partial copy also needs to zero the uncopied region.
1317  */
1318 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1319 			  struct dm_dev *origin, dm_block_t data_origin,
1320 			  dm_block_t data_dest,
1321 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1322 			  sector_t len)
1323 {
1324 	struct pool *pool = tc->pool;
1325 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1326 
1327 	m->tc = tc;
1328 	m->virt_begin = virt_block;
1329 	m->virt_end = virt_block + 1u;
1330 	m->data_block = data_dest;
1331 	m->cell = cell;
1332 
1333 	/*
1334 	 * quiesce action + copy action + an extra reference held for the
1335 	 * duration of this function (we may need to inc later for a
1336 	 * partial zero).
1337 	 */
1338 	atomic_set(&m->prepare_actions, 3);
1339 
1340 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1341 		complete_mapping_preparation(m); /* already quiesced */
1342 
1343 	/*
1344 	 * IO to pool_dev remaps to the pool target's data_dev.
1345 	 *
1346 	 * If the whole block of data is being overwritten, we can issue the
1347 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1348 	 */
1349 	if (io_overwrites_block(pool, bio))
1350 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1351 	else {
1352 		struct dm_io_region from, to;
1353 
1354 		from.bdev = origin->bdev;
1355 		from.sector = data_origin * pool->sectors_per_block;
1356 		from.count = len;
1357 
1358 		to.bdev = tc->pool_dev->bdev;
1359 		to.sector = data_dest * pool->sectors_per_block;
1360 		to.count = len;
1361 
1362 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1363 			       0, copy_complete, m);
1364 
1365 		/*
1366 		 * Do we need to zero a tail region?
1367 		 */
1368 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1369 			atomic_inc(&m->prepare_actions);
1370 			ll_zero(tc, m,
1371 				data_dest * pool->sectors_per_block + len,
1372 				(data_dest + 1) * pool->sectors_per_block);
1373 		}
1374 	}
1375 
1376 	complete_mapping_preparation(m); /* drop our ref */
1377 }
1378 
1379 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1380 				   dm_block_t data_origin, dm_block_t data_dest,
1381 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1382 {
1383 	schedule_copy(tc, virt_block, tc->pool_dev,
1384 		      data_origin, data_dest, cell, bio,
1385 		      tc->pool->sectors_per_block);
1386 }
1387 
1388 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1389 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1390 			  struct bio *bio)
1391 {
1392 	struct pool *pool = tc->pool;
1393 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1394 
1395 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1396 	m->tc = tc;
1397 	m->virt_begin = virt_block;
1398 	m->virt_end = virt_block + 1u;
1399 	m->data_block = data_block;
1400 	m->cell = cell;
1401 
1402 	/*
1403 	 * If the whole block of data is being overwritten or we are not
1404 	 * zeroing pre-existing data, we can issue the bio immediately.
1405 	 * Otherwise we use kcopyd to zero the data first.
1406 	 */
1407 	if (pool->pf.zero_new_blocks) {
1408 		if (io_overwrites_block(pool, bio))
1409 			remap_and_issue_overwrite(tc, bio, data_block, m);
1410 		else
1411 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1412 				(data_block + 1) * pool->sectors_per_block);
1413 	} else
1414 		process_prepared_mapping(m);
1415 }
1416 
1417 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1418 				   dm_block_t data_dest,
1419 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1420 {
1421 	struct pool *pool = tc->pool;
1422 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1423 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1424 
1425 	if (virt_block_end <= tc->origin_size)
1426 		schedule_copy(tc, virt_block, tc->origin_dev,
1427 			      virt_block, data_dest, cell, bio,
1428 			      pool->sectors_per_block);
1429 
1430 	else if (virt_block_begin < tc->origin_size)
1431 		schedule_copy(tc, virt_block, tc->origin_dev,
1432 			      virt_block, data_dest, cell, bio,
1433 			      tc->origin_size - virt_block_begin);
1434 
1435 	else
1436 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1437 }
1438 
1439 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1440 
1441 static void requeue_bios(struct pool *pool);
1442 
1443 static bool is_read_only_pool_mode(enum pool_mode mode)
1444 {
1445 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1446 }
1447 
1448 static bool is_read_only(struct pool *pool)
1449 {
1450 	return is_read_only_pool_mode(get_pool_mode(pool));
1451 }
1452 
1453 static void check_for_metadata_space(struct pool *pool)
1454 {
1455 	int r;
1456 	const char *ooms_reason = NULL;
1457 	dm_block_t nr_free;
1458 
1459 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1460 	if (r)
1461 		ooms_reason = "Could not get free metadata blocks";
1462 	else if (!nr_free)
1463 		ooms_reason = "No free metadata blocks";
1464 
1465 	if (ooms_reason && !is_read_only(pool)) {
1466 		DMERR("%s", ooms_reason);
1467 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1468 	}
1469 }
1470 
1471 static void check_for_data_space(struct pool *pool)
1472 {
1473 	int r;
1474 	dm_block_t nr_free;
1475 
1476 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1477 		return;
1478 
1479 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1480 	if (r)
1481 		return;
1482 
1483 	if (nr_free) {
1484 		set_pool_mode(pool, PM_WRITE);
1485 		requeue_bios(pool);
1486 	}
1487 }
1488 
1489 /*
1490  * A non-zero return indicates read_only or fail_io mode.
1491  * Many callers don't care about the return value.
1492  */
1493 static int commit(struct pool *pool)
1494 {
1495 	int r;
1496 
1497 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1498 		return -EINVAL;
1499 
1500 	r = dm_pool_commit_metadata(pool->pmd);
1501 	if (r)
1502 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1503 	else {
1504 		check_for_metadata_space(pool);
1505 		check_for_data_space(pool);
1506 	}
1507 
1508 	return r;
1509 }
1510 
1511 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1512 {
1513 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1514 		DMWARN("%s: reached low water mark for data device: sending event.",
1515 		       dm_device_name(pool->pool_md));
1516 		spin_lock_irq(&pool->lock);
1517 		pool->low_water_triggered = true;
1518 		spin_unlock_irq(&pool->lock);
1519 		dm_table_event(pool->ti->table);
1520 	}
1521 }
1522 
1523 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1524 {
1525 	int r;
1526 	dm_block_t free_blocks;
1527 	struct pool *pool = tc->pool;
1528 
1529 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1530 		return -EINVAL;
1531 
1532 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1533 	if (r) {
1534 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1535 		return r;
1536 	}
1537 
1538 	check_low_water_mark(pool, free_blocks);
1539 
1540 	if (!free_blocks) {
1541 		/*
1542 		 * Try to commit to see if that will free up some
1543 		 * more space.
1544 		 */
1545 		r = commit(pool);
1546 		if (r)
1547 			return r;
1548 
1549 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1550 		if (r) {
1551 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1552 			return r;
1553 		}
1554 
1555 		if (!free_blocks) {
1556 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1557 			return -ENOSPC;
1558 		}
1559 	}
1560 
1561 	r = dm_pool_alloc_data_block(pool->pmd, result);
1562 	if (r) {
1563 		if (r == -ENOSPC)
1564 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1565 		else
1566 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1567 		return r;
1568 	}
1569 
1570 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1571 	if (r) {
1572 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1573 		return r;
1574 	}
1575 
1576 	if (!free_blocks) {
1577 		/* Let's commit before we use up the metadata reserve. */
1578 		r = commit(pool);
1579 		if (r)
1580 			return r;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 /*
1587  * If we have run out of space, queue bios until the device is
1588  * resumed, presumably after having been reloaded with more space.
1589  */
1590 static void retry_on_resume(struct bio *bio)
1591 {
1592 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1593 	struct thin_c *tc = h->tc;
1594 
1595 	spin_lock_irq(&tc->lock);
1596 	bio_list_add(&tc->retry_on_resume_list, bio);
1597 	spin_unlock_irq(&tc->lock);
1598 }
1599 
1600 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1601 {
1602 	enum pool_mode m = get_pool_mode(pool);
1603 
1604 	switch (m) {
1605 	case PM_WRITE:
1606 		/* Shouldn't get here */
1607 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1608 		return BLK_STS_IOERR;
1609 
1610 	case PM_OUT_OF_DATA_SPACE:
1611 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1612 
1613 	case PM_OUT_OF_METADATA_SPACE:
1614 	case PM_READ_ONLY:
1615 	case PM_FAIL:
1616 		return BLK_STS_IOERR;
1617 	default:
1618 		/* Shouldn't get here */
1619 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1620 		return BLK_STS_IOERR;
1621 	}
1622 }
1623 
1624 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1625 {
1626 	blk_status_t error = should_error_unserviceable_bio(pool);
1627 
1628 	if (error) {
1629 		bio->bi_status = error;
1630 		bio_endio(bio);
1631 	} else
1632 		retry_on_resume(bio);
1633 }
1634 
1635 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1636 {
1637 	struct bio *bio;
1638 	struct bio_list bios;
1639 	blk_status_t error;
1640 
1641 	error = should_error_unserviceable_bio(pool);
1642 	if (error) {
1643 		cell_error_with_code(pool, cell, error);
1644 		return;
1645 	}
1646 
1647 	bio_list_init(&bios);
1648 	cell_release(pool, cell, &bios);
1649 
1650 	while ((bio = bio_list_pop(&bios)))
1651 		retry_on_resume(bio);
1652 }
1653 
1654 static void process_discard_cell_no_passdown(struct thin_c *tc,
1655 					     struct dm_bio_prison_cell *virt_cell)
1656 {
1657 	struct pool *pool = tc->pool;
1658 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1659 
1660 	/*
1661 	 * We don't need to lock the data blocks, since there's no
1662 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1663 	 */
1664 	m->tc = tc;
1665 	m->virt_begin = virt_cell->key.block_begin;
1666 	m->virt_end = virt_cell->key.block_end;
1667 	m->cell = virt_cell;
1668 	m->bio = virt_cell->holder;
1669 
1670 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1671 		pool->process_prepared_discard(m);
1672 }
1673 
1674 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1675 				 struct bio *bio)
1676 {
1677 	struct pool *pool = tc->pool;
1678 
1679 	int r;
1680 	bool maybe_shared;
1681 	struct dm_cell_key data_key;
1682 	struct dm_bio_prison_cell *data_cell;
1683 	struct dm_thin_new_mapping *m;
1684 	dm_block_t virt_begin, virt_end, data_begin;
1685 
1686 	while (begin != end) {
1687 		r = ensure_next_mapping(pool);
1688 		if (r)
1689 			/* we did our best */
1690 			return;
1691 
1692 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1693 					      &data_begin, &maybe_shared);
1694 		if (r)
1695 			/*
1696 			 * Silently fail, letting any mappings we've
1697 			 * created complete.
1698 			 */
1699 			break;
1700 
1701 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1702 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1703 			/* contention, we'll give up with this range */
1704 			begin = virt_end;
1705 			continue;
1706 		}
1707 
1708 		/*
1709 		 * IO may still be going to the destination block.  We must
1710 		 * quiesce before we can do the removal.
1711 		 */
1712 		m = get_next_mapping(pool);
1713 		m->tc = tc;
1714 		m->maybe_shared = maybe_shared;
1715 		m->virt_begin = virt_begin;
1716 		m->virt_end = virt_end;
1717 		m->data_block = data_begin;
1718 		m->cell = data_cell;
1719 		m->bio = bio;
1720 
1721 		/*
1722 		 * The parent bio must not complete before sub discard bios are
1723 		 * chained to it (see end_discard's bio_chain)!
1724 		 *
1725 		 * This per-mapping bi_remaining increment is paired with
1726 		 * the implicit decrement that occurs via bio_endio() in
1727 		 * end_discard().
1728 		 */
1729 		bio_inc_remaining(bio);
1730 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1731 			pool->process_prepared_discard(m);
1732 
1733 		begin = virt_end;
1734 	}
1735 }
1736 
1737 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1738 {
1739 	struct bio *bio = virt_cell->holder;
1740 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1741 
1742 	/*
1743 	 * The virt_cell will only get freed once the origin bio completes.
1744 	 * This means it will remain locked while all the individual
1745 	 * passdown bios are in flight.
1746 	 */
1747 	h->cell = virt_cell;
1748 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1749 
1750 	/*
1751 	 * We complete the bio now, knowing that the bi_remaining field
1752 	 * will prevent completion until the sub range discards have
1753 	 * completed.
1754 	 */
1755 	bio_endio(bio);
1756 }
1757 
1758 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1759 {
1760 	dm_block_t begin, end;
1761 	struct dm_cell_key virt_key;
1762 	struct dm_bio_prison_cell *virt_cell;
1763 
1764 	get_bio_block_range(tc, bio, &begin, &end);
1765 	if (begin == end) {
1766 		/*
1767 		 * The discard covers less than a block.
1768 		 */
1769 		bio_endio(bio);
1770 		return;
1771 	}
1772 
1773 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1774 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1775 		/*
1776 		 * Potential starvation issue: We're relying on the
1777 		 * fs/application being well behaved, and not trying to
1778 		 * send IO to a region at the same time as discarding it.
1779 		 * If they do this persistently then it's possible this
1780 		 * cell will never be granted.
1781 		 */
1782 		return;
1783 
1784 	tc->pool->process_discard_cell(tc, virt_cell);
1785 }
1786 
1787 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1788 			  struct dm_cell_key *key,
1789 			  struct dm_thin_lookup_result *lookup_result,
1790 			  struct dm_bio_prison_cell *cell)
1791 {
1792 	int r;
1793 	dm_block_t data_block;
1794 	struct pool *pool = tc->pool;
1795 
1796 	r = alloc_data_block(tc, &data_block);
1797 	switch (r) {
1798 	case 0:
1799 		schedule_internal_copy(tc, block, lookup_result->block,
1800 				       data_block, cell, bio);
1801 		break;
1802 
1803 	case -ENOSPC:
1804 		retry_bios_on_resume(pool, cell);
1805 		break;
1806 
1807 	default:
1808 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1809 			    __func__, r);
1810 		cell_error(pool, cell);
1811 		break;
1812 	}
1813 }
1814 
1815 static void __remap_and_issue_shared_cell(void *context,
1816 					  struct dm_bio_prison_cell *cell)
1817 {
1818 	struct remap_info *info = context;
1819 	struct bio *bio;
1820 
1821 	while ((bio = bio_list_pop(&cell->bios))) {
1822 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1823 		    bio_op(bio) == REQ_OP_DISCARD)
1824 			bio_list_add(&info->defer_bios, bio);
1825 		else {
1826 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1827 
1828 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1829 			inc_all_io_entry(info->tc->pool, bio);
1830 			bio_list_add(&info->issue_bios, bio);
1831 		}
1832 	}
1833 }
1834 
1835 static void remap_and_issue_shared_cell(struct thin_c *tc,
1836 					struct dm_bio_prison_cell *cell,
1837 					dm_block_t block)
1838 {
1839 	struct bio *bio;
1840 	struct remap_info info;
1841 
1842 	info.tc = tc;
1843 	bio_list_init(&info.defer_bios);
1844 	bio_list_init(&info.issue_bios);
1845 
1846 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1847 			   &info, cell);
1848 
1849 	while ((bio = bio_list_pop(&info.defer_bios)))
1850 		thin_defer_bio(tc, bio);
1851 
1852 	while ((bio = bio_list_pop(&info.issue_bios)))
1853 		remap_and_issue(tc, bio, block);
1854 }
1855 
1856 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1857 			       dm_block_t block,
1858 			       struct dm_thin_lookup_result *lookup_result,
1859 			       struct dm_bio_prison_cell *virt_cell)
1860 {
1861 	struct dm_bio_prison_cell *data_cell;
1862 	struct pool *pool = tc->pool;
1863 	struct dm_cell_key key;
1864 
1865 	/*
1866 	 * If cell is already occupied, then sharing is already in the process
1867 	 * of being broken so we have nothing further to do here.
1868 	 */
1869 	build_data_key(tc->td, lookup_result->block, &key);
1870 	if (bio_detain(pool, &key, bio, &data_cell)) {
1871 		cell_defer_no_holder(tc, virt_cell);
1872 		return;
1873 	}
1874 
1875 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1876 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1877 		cell_defer_no_holder(tc, virt_cell);
1878 	} else {
1879 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1880 
1881 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1882 		inc_all_io_entry(pool, bio);
1883 		remap_and_issue(tc, bio, lookup_result->block);
1884 
1885 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1886 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1887 	}
1888 }
1889 
1890 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1891 			    struct dm_bio_prison_cell *cell)
1892 {
1893 	int r;
1894 	dm_block_t data_block;
1895 	struct pool *pool = tc->pool;
1896 
1897 	/*
1898 	 * Remap empty bios (flushes) immediately, without provisioning.
1899 	 */
1900 	if (!bio->bi_iter.bi_size) {
1901 		inc_all_io_entry(pool, bio);
1902 		cell_defer_no_holder(tc, cell);
1903 
1904 		remap_and_issue(tc, bio, 0);
1905 		return;
1906 	}
1907 
1908 	/*
1909 	 * Fill read bios with zeroes and complete them immediately.
1910 	 */
1911 	if (bio_data_dir(bio) == READ) {
1912 		zero_fill_bio(bio);
1913 		cell_defer_no_holder(tc, cell);
1914 		bio_endio(bio);
1915 		return;
1916 	}
1917 
1918 	r = alloc_data_block(tc, &data_block);
1919 	switch (r) {
1920 	case 0:
1921 		if (tc->origin_dev)
1922 			schedule_external_copy(tc, block, data_block, cell, bio);
1923 		else
1924 			schedule_zero(tc, block, data_block, cell, bio);
1925 		break;
1926 
1927 	case -ENOSPC:
1928 		retry_bios_on_resume(pool, cell);
1929 		break;
1930 
1931 	default:
1932 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1933 			    __func__, r);
1934 		cell_error(pool, cell);
1935 		break;
1936 	}
1937 }
1938 
1939 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1940 {
1941 	int r;
1942 	struct pool *pool = tc->pool;
1943 	struct bio *bio = cell->holder;
1944 	dm_block_t block = get_bio_block(tc, bio);
1945 	struct dm_thin_lookup_result lookup_result;
1946 
1947 	if (tc->requeue_mode) {
1948 		cell_requeue(pool, cell);
1949 		return;
1950 	}
1951 
1952 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1953 	switch (r) {
1954 	case 0:
1955 		if (lookup_result.shared)
1956 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1957 		else {
1958 			inc_all_io_entry(pool, bio);
1959 			remap_and_issue(tc, bio, lookup_result.block);
1960 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1961 		}
1962 		break;
1963 
1964 	case -ENODATA:
1965 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1966 			inc_all_io_entry(pool, bio);
1967 			cell_defer_no_holder(tc, cell);
1968 
1969 			if (bio_end_sector(bio) <= tc->origin_size)
1970 				remap_to_origin_and_issue(tc, bio);
1971 
1972 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1973 				zero_fill_bio(bio);
1974 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1975 				remap_to_origin_and_issue(tc, bio);
1976 
1977 			} else {
1978 				zero_fill_bio(bio);
1979 				bio_endio(bio);
1980 			}
1981 		} else
1982 			provision_block(tc, bio, block, cell);
1983 		break;
1984 
1985 	default:
1986 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1987 			    __func__, r);
1988 		cell_defer_no_holder(tc, cell);
1989 		bio_io_error(bio);
1990 		break;
1991 	}
1992 }
1993 
1994 static void process_bio(struct thin_c *tc, struct bio *bio)
1995 {
1996 	struct pool *pool = tc->pool;
1997 	dm_block_t block = get_bio_block(tc, bio);
1998 	struct dm_bio_prison_cell *cell;
1999 	struct dm_cell_key key;
2000 
2001 	/*
2002 	 * If cell is already occupied, then the block is already
2003 	 * being provisioned so we have nothing further to do here.
2004 	 */
2005 	build_virtual_key(tc->td, block, &key);
2006 	if (bio_detain(pool, &key, bio, &cell))
2007 		return;
2008 
2009 	process_cell(tc, cell);
2010 }
2011 
2012 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2013 				    struct dm_bio_prison_cell *cell)
2014 {
2015 	int r;
2016 	int rw = bio_data_dir(bio);
2017 	dm_block_t block = get_bio_block(tc, bio);
2018 	struct dm_thin_lookup_result lookup_result;
2019 
2020 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2021 	switch (r) {
2022 	case 0:
2023 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2024 			handle_unserviceable_bio(tc->pool, bio);
2025 			if (cell)
2026 				cell_defer_no_holder(tc, cell);
2027 		} else {
2028 			inc_all_io_entry(tc->pool, bio);
2029 			remap_and_issue(tc, bio, lookup_result.block);
2030 			if (cell)
2031 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2032 		}
2033 		break;
2034 
2035 	case -ENODATA:
2036 		if (cell)
2037 			cell_defer_no_holder(tc, cell);
2038 		if (rw != READ) {
2039 			handle_unserviceable_bio(tc->pool, bio);
2040 			break;
2041 		}
2042 
2043 		if (tc->origin_dev) {
2044 			inc_all_io_entry(tc->pool, bio);
2045 			remap_to_origin_and_issue(tc, bio);
2046 			break;
2047 		}
2048 
2049 		zero_fill_bio(bio);
2050 		bio_endio(bio);
2051 		break;
2052 
2053 	default:
2054 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2055 			    __func__, r);
2056 		if (cell)
2057 			cell_defer_no_holder(tc, cell);
2058 		bio_io_error(bio);
2059 		break;
2060 	}
2061 }
2062 
2063 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2064 {
2065 	__process_bio_read_only(tc, bio, NULL);
2066 }
2067 
2068 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2069 {
2070 	__process_bio_read_only(tc, cell->holder, cell);
2071 }
2072 
2073 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2074 {
2075 	bio_endio(bio);
2076 }
2077 
2078 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2079 {
2080 	bio_io_error(bio);
2081 }
2082 
2083 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2084 {
2085 	cell_success(tc->pool, cell);
2086 }
2087 
2088 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2089 {
2090 	cell_error(tc->pool, cell);
2091 }
2092 
2093 /*
2094  * FIXME: should we also commit due to size of transaction, measured in
2095  * metadata blocks?
2096  */
2097 static int need_commit_due_to_time(struct pool *pool)
2098 {
2099 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2100 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2101 }
2102 
2103 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2104 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2105 
2106 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2107 {
2108 	struct rb_node **rbp, *parent;
2109 	struct dm_thin_endio_hook *pbd;
2110 	sector_t bi_sector = bio->bi_iter.bi_sector;
2111 
2112 	rbp = &tc->sort_bio_list.rb_node;
2113 	parent = NULL;
2114 	while (*rbp) {
2115 		parent = *rbp;
2116 		pbd = thin_pbd(parent);
2117 
2118 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2119 			rbp = &(*rbp)->rb_left;
2120 		else
2121 			rbp = &(*rbp)->rb_right;
2122 	}
2123 
2124 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2125 	rb_link_node(&pbd->rb_node, parent, rbp);
2126 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2127 }
2128 
2129 static void __extract_sorted_bios(struct thin_c *tc)
2130 {
2131 	struct rb_node *node;
2132 	struct dm_thin_endio_hook *pbd;
2133 	struct bio *bio;
2134 
2135 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2136 		pbd = thin_pbd(node);
2137 		bio = thin_bio(pbd);
2138 
2139 		bio_list_add(&tc->deferred_bio_list, bio);
2140 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2141 	}
2142 
2143 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2144 }
2145 
2146 static void __sort_thin_deferred_bios(struct thin_c *tc)
2147 {
2148 	struct bio *bio;
2149 	struct bio_list bios;
2150 
2151 	bio_list_init(&bios);
2152 	bio_list_merge(&bios, &tc->deferred_bio_list);
2153 	bio_list_init(&tc->deferred_bio_list);
2154 
2155 	/* Sort deferred_bio_list using rb-tree */
2156 	while ((bio = bio_list_pop(&bios)))
2157 		__thin_bio_rb_add(tc, bio);
2158 
2159 	/*
2160 	 * Transfer the sorted bios in sort_bio_list back to
2161 	 * deferred_bio_list to allow lockless submission of
2162 	 * all bios.
2163 	 */
2164 	__extract_sorted_bios(tc);
2165 }
2166 
2167 static void process_thin_deferred_bios(struct thin_c *tc)
2168 {
2169 	struct pool *pool = tc->pool;
2170 	struct bio *bio;
2171 	struct bio_list bios;
2172 	struct blk_plug plug;
2173 	unsigned count = 0;
2174 
2175 	if (tc->requeue_mode) {
2176 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2177 				BLK_STS_DM_REQUEUE);
2178 		return;
2179 	}
2180 
2181 	bio_list_init(&bios);
2182 
2183 	spin_lock_irq(&tc->lock);
2184 
2185 	if (bio_list_empty(&tc->deferred_bio_list)) {
2186 		spin_unlock_irq(&tc->lock);
2187 		return;
2188 	}
2189 
2190 	__sort_thin_deferred_bios(tc);
2191 
2192 	bio_list_merge(&bios, &tc->deferred_bio_list);
2193 	bio_list_init(&tc->deferred_bio_list);
2194 
2195 	spin_unlock_irq(&tc->lock);
2196 
2197 	blk_start_plug(&plug);
2198 	while ((bio = bio_list_pop(&bios))) {
2199 		/*
2200 		 * If we've got no free new_mapping structs, and processing
2201 		 * this bio might require one, we pause until there are some
2202 		 * prepared mappings to process.
2203 		 */
2204 		if (ensure_next_mapping(pool)) {
2205 			spin_lock_irq(&tc->lock);
2206 			bio_list_add(&tc->deferred_bio_list, bio);
2207 			bio_list_merge(&tc->deferred_bio_list, &bios);
2208 			spin_unlock_irq(&tc->lock);
2209 			break;
2210 		}
2211 
2212 		if (bio_op(bio) == REQ_OP_DISCARD)
2213 			pool->process_discard(tc, bio);
2214 		else
2215 			pool->process_bio(tc, bio);
2216 
2217 		if ((count++ & 127) == 0) {
2218 			throttle_work_update(&pool->throttle);
2219 			dm_pool_issue_prefetches(pool->pmd);
2220 		}
2221 	}
2222 	blk_finish_plug(&plug);
2223 }
2224 
2225 static int cmp_cells(const void *lhs, const void *rhs)
2226 {
2227 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2228 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2229 
2230 	BUG_ON(!lhs_cell->holder);
2231 	BUG_ON(!rhs_cell->holder);
2232 
2233 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2234 		return -1;
2235 
2236 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2237 		return 1;
2238 
2239 	return 0;
2240 }
2241 
2242 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2243 {
2244 	unsigned count = 0;
2245 	struct dm_bio_prison_cell *cell, *tmp;
2246 
2247 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2248 		if (count >= CELL_SORT_ARRAY_SIZE)
2249 			break;
2250 
2251 		pool->cell_sort_array[count++] = cell;
2252 		list_del(&cell->user_list);
2253 	}
2254 
2255 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2256 
2257 	return count;
2258 }
2259 
2260 static void process_thin_deferred_cells(struct thin_c *tc)
2261 {
2262 	struct pool *pool = tc->pool;
2263 	struct list_head cells;
2264 	struct dm_bio_prison_cell *cell;
2265 	unsigned i, j, count;
2266 
2267 	INIT_LIST_HEAD(&cells);
2268 
2269 	spin_lock_irq(&tc->lock);
2270 	list_splice_init(&tc->deferred_cells, &cells);
2271 	spin_unlock_irq(&tc->lock);
2272 
2273 	if (list_empty(&cells))
2274 		return;
2275 
2276 	do {
2277 		count = sort_cells(tc->pool, &cells);
2278 
2279 		for (i = 0; i < count; i++) {
2280 			cell = pool->cell_sort_array[i];
2281 			BUG_ON(!cell->holder);
2282 
2283 			/*
2284 			 * If we've got no free new_mapping structs, and processing
2285 			 * this bio might require one, we pause until there are some
2286 			 * prepared mappings to process.
2287 			 */
2288 			if (ensure_next_mapping(pool)) {
2289 				for (j = i; j < count; j++)
2290 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2291 
2292 				spin_lock_irq(&tc->lock);
2293 				list_splice(&cells, &tc->deferred_cells);
2294 				spin_unlock_irq(&tc->lock);
2295 				return;
2296 			}
2297 
2298 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2299 				pool->process_discard_cell(tc, cell);
2300 			else
2301 				pool->process_cell(tc, cell);
2302 		}
2303 	} while (!list_empty(&cells));
2304 }
2305 
2306 static void thin_get(struct thin_c *tc);
2307 static void thin_put(struct thin_c *tc);
2308 
2309 /*
2310  * We can't hold rcu_read_lock() around code that can block.  So we
2311  * find a thin with the rcu lock held; bump a refcount; then drop
2312  * the lock.
2313  */
2314 static struct thin_c *get_first_thin(struct pool *pool)
2315 {
2316 	struct thin_c *tc = NULL;
2317 
2318 	rcu_read_lock();
2319 	if (!list_empty(&pool->active_thins)) {
2320 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2321 		thin_get(tc);
2322 	}
2323 	rcu_read_unlock();
2324 
2325 	return tc;
2326 }
2327 
2328 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2329 {
2330 	struct thin_c *old_tc = tc;
2331 
2332 	rcu_read_lock();
2333 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2334 		thin_get(tc);
2335 		thin_put(old_tc);
2336 		rcu_read_unlock();
2337 		return tc;
2338 	}
2339 	thin_put(old_tc);
2340 	rcu_read_unlock();
2341 
2342 	return NULL;
2343 }
2344 
2345 static void process_deferred_bios(struct pool *pool)
2346 {
2347 	struct bio *bio;
2348 	struct bio_list bios, bio_completions;
2349 	struct thin_c *tc;
2350 
2351 	tc = get_first_thin(pool);
2352 	while (tc) {
2353 		process_thin_deferred_cells(tc);
2354 		process_thin_deferred_bios(tc);
2355 		tc = get_next_thin(pool, tc);
2356 	}
2357 
2358 	/*
2359 	 * If there are any deferred flush bios, we must commit the metadata
2360 	 * before issuing them or signaling their completion.
2361 	 */
2362 	bio_list_init(&bios);
2363 	bio_list_init(&bio_completions);
2364 
2365 	spin_lock_irq(&pool->lock);
2366 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2367 	bio_list_init(&pool->deferred_flush_bios);
2368 
2369 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2370 	bio_list_init(&pool->deferred_flush_completions);
2371 	spin_unlock_irq(&pool->lock);
2372 
2373 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2374 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2375 		return;
2376 
2377 	if (commit(pool)) {
2378 		bio_list_merge(&bios, &bio_completions);
2379 
2380 		while ((bio = bio_list_pop(&bios)))
2381 			bio_io_error(bio);
2382 		return;
2383 	}
2384 	pool->last_commit_jiffies = jiffies;
2385 
2386 	while ((bio = bio_list_pop(&bio_completions)))
2387 		bio_endio(bio);
2388 
2389 	while ((bio = bio_list_pop(&bios))) {
2390 		/*
2391 		 * The data device was flushed as part of metadata commit,
2392 		 * so complete redundant flushes immediately.
2393 		 */
2394 		if (bio->bi_opf & REQ_PREFLUSH)
2395 			bio_endio(bio);
2396 		else
2397 			generic_make_request(bio);
2398 	}
2399 }
2400 
2401 static void do_worker(struct work_struct *ws)
2402 {
2403 	struct pool *pool = container_of(ws, struct pool, worker);
2404 
2405 	throttle_work_start(&pool->throttle);
2406 	dm_pool_issue_prefetches(pool->pmd);
2407 	throttle_work_update(&pool->throttle);
2408 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2409 	throttle_work_update(&pool->throttle);
2410 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2411 	throttle_work_update(&pool->throttle);
2412 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2413 	throttle_work_update(&pool->throttle);
2414 	process_deferred_bios(pool);
2415 	throttle_work_complete(&pool->throttle);
2416 }
2417 
2418 /*
2419  * We want to commit periodically so that not too much
2420  * unwritten data builds up.
2421  */
2422 static void do_waker(struct work_struct *ws)
2423 {
2424 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2425 	wake_worker(pool);
2426 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2427 }
2428 
2429 /*
2430  * We're holding onto IO to allow userland time to react.  After the
2431  * timeout either the pool will have been resized (and thus back in
2432  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2433  */
2434 static void do_no_space_timeout(struct work_struct *ws)
2435 {
2436 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2437 					 no_space_timeout);
2438 
2439 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2440 		pool->pf.error_if_no_space = true;
2441 		notify_of_pool_mode_change(pool);
2442 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2443 	}
2444 }
2445 
2446 /*----------------------------------------------------------------*/
2447 
2448 struct pool_work {
2449 	struct work_struct worker;
2450 	struct completion complete;
2451 };
2452 
2453 static struct pool_work *to_pool_work(struct work_struct *ws)
2454 {
2455 	return container_of(ws, struct pool_work, worker);
2456 }
2457 
2458 static void pool_work_complete(struct pool_work *pw)
2459 {
2460 	complete(&pw->complete);
2461 }
2462 
2463 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2464 			   void (*fn)(struct work_struct *))
2465 {
2466 	INIT_WORK_ONSTACK(&pw->worker, fn);
2467 	init_completion(&pw->complete);
2468 	queue_work(pool->wq, &pw->worker);
2469 	wait_for_completion(&pw->complete);
2470 }
2471 
2472 /*----------------------------------------------------------------*/
2473 
2474 struct noflush_work {
2475 	struct pool_work pw;
2476 	struct thin_c *tc;
2477 };
2478 
2479 static struct noflush_work *to_noflush(struct work_struct *ws)
2480 {
2481 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2482 }
2483 
2484 static void do_noflush_start(struct work_struct *ws)
2485 {
2486 	struct noflush_work *w = to_noflush(ws);
2487 	w->tc->requeue_mode = true;
2488 	requeue_io(w->tc);
2489 	pool_work_complete(&w->pw);
2490 }
2491 
2492 static void do_noflush_stop(struct work_struct *ws)
2493 {
2494 	struct noflush_work *w = to_noflush(ws);
2495 	w->tc->requeue_mode = false;
2496 	pool_work_complete(&w->pw);
2497 }
2498 
2499 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2500 {
2501 	struct noflush_work w;
2502 
2503 	w.tc = tc;
2504 	pool_work_wait(&w.pw, tc->pool, fn);
2505 }
2506 
2507 /*----------------------------------------------------------------*/
2508 
2509 static bool passdown_enabled(struct pool_c *pt)
2510 {
2511 	return pt->adjusted_pf.discard_passdown;
2512 }
2513 
2514 static void set_discard_callbacks(struct pool *pool)
2515 {
2516 	struct pool_c *pt = pool->ti->private;
2517 
2518 	if (passdown_enabled(pt)) {
2519 		pool->process_discard_cell = process_discard_cell_passdown;
2520 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2521 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2522 	} else {
2523 		pool->process_discard_cell = process_discard_cell_no_passdown;
2524 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2525 	}
2526 }
2527 
2528 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2529 {
2530 	struct pool_c *pt = pool->ti->private;
2531 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2532 	enum pool_mode old_mode = get_pool_mode(pool);
2533 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2534 
2535 	/*
2536 	 * Never allow the pool to transition to PM_WRITE mode if user
2537 	 * intervention is required to verify metadata and data consistency.
2538 	 */
2539 	if (new_mode == PM_WRITE && needs_check) {
2540 		DMERR("%s: unable to switch pool to write mode until repaired.",
2541 		      dm_device_name(pool->pool_md));
2542 		if (old_mode != new_mode)
2543 			new_mode = old_mode;
2544 		else
2545 			new_mode = PM_READ_ONLY;
2546 	}
2547 	/*
2548 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2549 	 * not going to recover without a thin_repair.	So we never let the
2550 	 * pool move out of the old mode.
2551 	 */
2552 	if (old_mode == PM_FAIL)
2553 		new_mode = old_mode;
2554 
2555 	switch (new_mode) {
2556 	case PM_FAIL:
2557 		dm_pool_metadata_read_only(pool->pmd);
2558 		pool->process_bio = process_bio_fail;
2559 		pool->process_discard = process_bio_fail;
2560 		pool->process_cell = process_cell_fail;
2561 		pool->process_discard_cell = process_cell_fail;
2562 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2563 		pool->process_prepared_discard = process_prepared_discard_fail;
2564 
2565 		error_retry_list(pool);
2566 		break;
2567 
2568 	case PM_OUT_OF_METADATA_SPACE:
2569 	case PM_READ_ONLY:
2570 		dm_pool_metadata_read_only(pool->pmd);
2571 		pool->process_bio = process_bio_read_only;
2572 		pool->process_discard = process_bio_success;
2573 		pool->process_cell = process_cell_read_only;
2574 		pool->process_discard_cell = process_cell_success;
2575 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2576 		pool->process_prepared_discard = process_prepared_discard_success;
2577 
2578 		error_retry_list(pool);
2579 		break;
2580 
2581 	case PM_OUT_OF_DATA_SPACE:
2582 		/*
2583 		 * Ideally we'd never hit this state; the low water mark
2584 		 * would trigger userland to extend the pool before we
2585 		 * completely run out of data space.  However, many small
2586 		 * IOs to unprovisioned space can consume data space at an
2587 		 * alarming rate.  Adjust your low water mark if you're
2588 		 * frequently seeing this mode.
2589 		 */
2590 		pool->out_of_data_space = true;
2591 		pool->process_bio = process_bio_read_only;
2592 		pool->process_discard = process_discard_bio;
2593 		pool->process_cell = process_cell_read_only;
2594 		pool->process_prepared_mapping = process_prepared_mapping;
2595 		set_discard_callbacks(pool);
2596 
2597 		if (!pool->pf.error_if_no_space && no_space_timeout)
2598 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2599 		break;
2600 
2601 	case PM_WRITE:
2602 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2603 			cancel_delayed_work_sync(&pool->no_space_timeout);
2604 		pool->out_of_data_space = false;
2605 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2606 		dm_pool_metadata_read_write(pool->pmd);
2607 		pool->process_bio = process_bio;
2608 		pool->process_discard = process_discard_bio;
2609 		pool->process_cell = process_cell;
2610 		pool->process_prepared_mapping = process_prepared_mapping;
2611 		set_discard_callbacks(pool);
2612 		break;
2613 	}
2614 
2615 	pool->pf.mode = new_mode;
2616 	/*
2617 	 * The pool mode may have changed, sync it so bind_control_target()
2618 	 * doesn't cause an unexpected mode transition on resume.
2619 	 */
2620 	pt->adjusted_pf.mode = new_mode;
2621 
2622 	if (old_mode != new_mode)
2623 		notify_of_pool_mode_change(pool);
2624 }
2625 
2626 static void abort_transaction(struct pool *pool)
2627 {
2628 	const char *dev_name = dm_device_name(pool->pool_md);
2629 
2630 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2631 	if (dm_pool_abort_metadata(pool->pmd)) {
2632 		DMERR("%s: failed to abort metadata transaction", dev_name);
2633 		set_pool_mode(pool, PM_FAIL);
2634 	}
2635 
2636 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2637 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2638 		set_pool_mode(pool, PM_FAIL);
2639 	}
2640 }
2641 
2642 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2643 {
2644 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2645 		    dm_device_name(pool->pool_md), op, r);
2646 
2647 	abort_transaction(pool);
2648 	set_pool_mode(pool, PM_READ_ONLY);
2649 }
2650 
2651 /*----------------------------------------------------------------*/
2652 
2653 /*
2654  * Mapping functions.
2655  */
2656 
2657 /*
2658  * Called only while mapping a thin bio to hand it over to the workqueue.
2659  */
2660 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2661 {
2662 	struct pool *pool = tc->pool;
2663 
2664 	spin_lock_irq(&tc->lock);
2665 	bio_list_add(&tc->deferred_bio_list, bio);
2666 	spin_unlock_irq(&tc->lock);
2667 
2668 	wake_worker(pool);
2669 }
2670 
2671 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2672 {
2673 	struct pool *pool = tc->pool;
2674 
2675 	throttle_lock(&pool->throttle);
2676 	thin_defer_bio(tc, bio);
2677 	throttle_unlock(&pool->throttle);
2678 }
2679 
2680 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2681 {
2682 	struct pool *pool = tc->pool;
2683 
2684 	throttle_lock(&pool->throttle);
2685 	spin_lock_irq(&tc->lock);
2686 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2687 	spin_unlock_irq(&tc->lock);
2688 	throttle_unlock(&pool->throttle);
2689 
2690 	wake_worker(pool);
2691 }
2692 
2693 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2694 {
2695 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2696 
2697 	h->tc = tc;
2698 	h->shared_read_entry = NULL;
2699 	h->all_io_entry = NULL;
2700 	h->overwrite_mapping = NULL;
2701 	h->cell = NULL;
2702 }
2703 
2704 /*
2705  * Non-blocking function called from the thin target's map function.
2706  */
2707 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2708 {
2709 	int r;
2710 	struct thin_c *tc = ti->private;
2711 	dm_block_t block = get_bio_block(tc, bio);
2712 	struct dm_thin_device *td = tc->td;
2713 	struct dm_thin_lookup_result result;
2714 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2715 	struct dm_cell_key key;
2716 
2717 	thin_hook_bio(tc, bio);
2718 
2719 	if (tc->requeue_mode) {
2720 		bio->bi_status = BLK_STS_DM_REQUEUE;
2721 		bio_endio(bio);
2722 		return DM_MAPIO_SUBMITTED;
2723 	}
2724 
2725 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2726 		bio_io_error(bio);
2727 		return DM_MAPIO_SUBMITTED;
2728 	}
2729 
2730 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2731 		thin_defer_bio_with_throttle(tc, bio);
2732 		return DM_MAPIO_SUBMITTED;
2733 	}
2734 
2735 	/*
2736 	 * We must hold the virtual cell before doing the lookup, otherwise
2737 	 * there's a race with discard.
2738 	 */
2739 	build_virtual_key(tc->td, block, &key);
2740 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2741 		return DM_MAPIO_SUBMITTED;
2742 
2743 	r = dm_thin_find_block(td, block, 0, &result);
2744 
2745 	/*
2746 	 * Note that we defer readahead too.
2747 	 */
2748 	switch (r) {
2749 	case 0:
2750 		if (unlikely(result.shared)) {
2751 			/*
2752 			 * We have a race condition here between the
2753 			 * result.shared value returned by the lookup and
2754 			 * snapshot creation, which may cause new
2755 			 * sharing.
2756 			 *
2757 			 * To avoid this always quiesce the origin before
2758 			 * taking the snap.  You want to do this anyway to
2759 			 * ensure a consistent application view
2760 			 * (i.e. lockfs).
2761 			 *
2762 			 * More distant ancestors are irrelevant. The
2763 			 * shared flag will be set in their case.
2764 			 */
2765 			thin_defer_cell(tc, virt_cell);
2766 			return DM_MAPIO_SUBMITTED;
2767 		}
2768 
2769 		build_data_key(tc->td, result.block, &key);
2770 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2771 			cell_defer_no_holder(tc, virt_cell);
2772 			return DM_MAPIO_SUBMITTED;
2773 		}
2774 
2775 		inc_all_io_entry(tc->pool, bio);
2776 		cell_defer_no_holder(tc, data_cell);
2777 		cell_defer_no_holder(tc, virt_cell);
2778 
2779 		remap(tc, bio, result.block);
2780 		return DM_MAPIO_REMAPPED;
2781 
2782 	case -ENODATA:
2783 	case -EWOULDBLOCK:
2784 		thin_defer_cell(tc, virt_cell);
2785 		return DM_MAPIO_SUBMITTED;
2786 
2787 	default:
2788 		/*
2789 		 * Must always call bio_io_error on failure.
2790 		 * dm_thin_find_block can fail with -EINVAL if the
2791 		 * pool is switched to fail-io mode.
2792 		 */
2793 		bio_io_error(bio);
2794 		cell_defer_no_holder(tc, virt_cell);
2795 		return DM_MAPIO_SUBMITTED;
2796 	}
2797 }
2798 
2799 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2800 {
2801 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2802 	struct request_queue *q;
2803 
2804 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2805 		return 1;
2806 
2807 	q = bdev_get_queue(pt->data_dev->bdev);
2808 	return bdi_congested(q->backing_dev_info, bdi_bits);
2809 }
2810 
2811 static void requeue_bios(struct pool *pool)
2812 {
2813 	struct thin_c *tc;
2814 
2815 	rcu_read_lock();
2816 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2817 		spin_lock_irq(&tc->lock);
2818 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2819 		bio_list_init(&tc->retry_on_resume_list);
2820 		spin_unlock_irq(&tc->lock);
2821 	}
2822 	rcu_read_unlock();
2823 }
2824 
2825 /*----------------------------------------------------------------
2826  * Binding of control targets to a pool object
2827  *--------------------------------------------------------------*/
2828 static bool data_dev_supports_discard(struct pool_c *pt)
2829 {
2830 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2831 
2832 	return q && blk_queue_discard(q);
2833 }
2834 
2835 static bool is_factor(sector_t block_size, uint32_t n)
2836 {
2837 	return !sector_div(block_size, n);
2838 }
2839 
2840 /*
2841  * If discard_passdown was enabled verify that the data device
2842  * supports discards.  Disable discard_passdown if not.
2843  */
2844 static void disable_passdown_if_not_supported(struct pool_c *pt)
2845 {
2846 	struct pool *pool = pt->pool;
2847 	struct block_device *data_bdev = pt->data_dev->bdev;
2848 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2849 	const char *reason = NULL;
2850 	char buf[BDEVNAME_SIZE];
2851 
2852 	if (!pt->adjusted_pf.discard_passdown)
2853 		return;
2854 
2855 	if (!data_dev_supports_discard(pt))
2856 		reason = "discard unsupported";
2857 
2858 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2859 		reason = "max discard sectors smaller than a block";
2860 
2861 	if (reason) {
2862 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2863 		pt->adjusted_pf.discard_passdown = false;
2864 	}
2865 }
2866 
2867 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2868 {
2869 	struct pool_c *pt = ti->private;
2870 
2871 	/*
2872 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2873 	 */
2874 	enum pool_mode old_mode = get_pool_mode(pool);
2875 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2876 
2877 	/*
2878 	 * Don't change the pool's mode until set_pool_mode() below.
2879 	 * Otherwise the pool's process_* function pointers may
2880 	 * not match the desired pool mode.
2881 	 */
2882 	pt->adjusted_pf.mode = old_mode;
2883 
2884 	pool->ti = ti;
2885 	pool->pf = pt->adjusted_pf;
2886 	pool->low_water_blocks = pt->low_water_blocks;
2887 
2888 	set_pool_mode(pool, new_mode);
2889 
2890 	return 0;
2891 }
2892 
2893 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2894 {
2895 	if (pool->ti == ti)
2896 		pool->ti = NULL;
2897 }
2898 
2899 /*----------------------------------------------------------------
2900  * Pool creation
2901  *--------------------------------------------------------------*/
2902 /* Initialize pool features. */
2903 static void pool_features_init(struct pool_features *pf)
2904 {
2905 	pf->mode = PM_WRITE;
2906 	pf->zero_new_blocks = true;
2907 	pf->discard_enabled = true;
2908 	pf->discard_passdown = true;
2909 	pf->error_if_no_space = false;
2910 }
2911 
2912 static void __pool_destroy(struct pool *pool)
2913 {
2914 	__pool_table_remove(pool);
2915 
2916 	vfree(pool->cell_sort_array);
2917 	if (dm_pool_metadata_close(pool->pmd) < 0)
2918 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2919 
2920 	dm_bio_prison_destroy(pool->prison);
2921 	dm_kcopyd_client_destroy(pool->copier);
2922 
2923 	if (pool->wq)
2924 		destroy_workqueue(pool->wq);
2925 
2926 	if (pool->next_mapping)
2927 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2928 	mempool_exit(&pool->mapping_pool);
2929 	bio_uninit(&pool->flush_bio);
2930 	dm_deferred_set_destroy(pool->shared_read_ds);
2931 	dm_deferred_set_destroy(pool->all_io_ds);
2932 	kfree(pool);
2933 }
2934 
2935 static struct kmem_cache *_new_mapping_cache;
2936 
2937 static struct pool *pool_create(struct mapped_device *pool_md,
2938 				struct block_device *metadata_dev,
2939 				struct block_device *data_dev,
2940 				unsigned long block_size,
2941 				int read_only, char **error)
2942 {
2943 	int r;
2944 	void *err_p;
2945 	struct pool *pool;
2946 	struct dm_pool_metadata *pmd;
2947 	bool format_device = read_only ? false : true;
2948 
2949 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2950 	if (IS_ERR(pmd)) {
2951 		*error = "Error creating metadata object";
2952 		return (struct pool *)pmd;
2953 	}
2954 
2955 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2956 	if (!pool) {
2957 		*error = "Error allocating memory for pool";
2958 		err_p = ERR_PTR(-ENOMEM);
2959 		goto bad_pool;
2960 	}
2961 
2962 	pool->pmd = pmd;
2963 	pool->sectors_per_block = block_size;
2964 	if (block_size & (block_size - 1))
2965 		pool->sectors_per_block_shift = -1;
2966 	else
2967 		pool->sectors_per_block_shift = __ffs(block_size);
2968 	pool->low_water_blocks = 0;
2969 	pool_features_init(&pool->pf);
2970 	pool->prison = dm_bio_prison_create();
2971 	if (!pool->prison) {
2972 		*error = "Error creating pool's bio prison";
2973 		err_p = ERR_PTR(-ENOMEM);
2974 		goto bad_prison;
2975 	}
2976 
2977 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2978 	if (IS_ERR(pool->copier)) {
2979 		r = PTR_ERR(pool->copier);
2980 		*error = "Error creating pool's kcopyd client";
2981 		err_p = ERR_PTR(r);
2982 		goto bad_kcopyd_client;
2983 	}
2984 
2985 	/*
2986 	 * Create singlethreaded workqueue that will service all devices
2987 	 * that use this metadata.
2988 	 */
2989 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2990 	if (!pool->wq) {
2991 		*error = "Error creating pool's workqueue";
2992 		err_p = ERR_PTR(-ENOMEM);
2993 		goto bad_wq;
2994 	}
2995 
2996 	throttle_init(&pool->throttle);
2997 	INIT_WORK(&pool->worker, do_worker);
2998 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2999 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3000 	spin_lock_init(&pool->lock);
3001 	bio_list_init(&pool->deferred_flush_bios);
3002 	bio_list_init(&pool->deferred_flush_completions);
3003 	INIT_LIST_HEAD(&pool->prepared_mappings);
3004 	INIT_LIST_HEAD(&pool->prepared_discards);
3005 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3006 	INIT_LIST_HEAD(&pool->active_thins);
3007 	pool->low_water_triggered = false;
3008 	pool->suspended = true;
3009 	pool->out_of_data_space = false;
3010 	bio_init(&pool->flush_bio, NULL, 0);
3011 
3012 	pool->shared_read_ds = dm_deferred_set_create();
3013 	if (!pool->shared_read_ds) {
3014 		*error = "Error creating pool's shared read deferred set";
3015 		err_p = ERR_PTR(-ENOMEM);
3016 		goto bad_shared_read_ds;
3017 	}
3018 
3019 	pool->all_io_ds = dm_deferred_set_create();
3020 	if (!pool->all_io_ds) {
3021 		*error = "Error creating pool's all io deferred set";
3022 		err_p = ERR_PTR(-ENOMEM);
3023 		goto bad_all_io_ds;
3024 	}
3025 
3026 	pool->next_mapping = NULL;
3027 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3028 				   _new_mapping_cache);
3029 	if (r) {
3030 		*error = "Error creating pool's mapping mempool";
3031 		err_p = ERR_PTR(r);
3032 		goto bad_mapping_pool;
3033 	}
3034 
3035 	pool->cell_sort_array =
3036 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3037 				   sizeof(*pool->cell_sort_array)));
3038 	if (!pool->cell_sort_array) {
3039 		*error = "Error allocating cell sort array";
3040 		err_p = ERR_PTR(-ENOMEM);
3041 		goto bad_sort_array;
3042 	}
3043 
3044 	pool->ref_count = 1;
3045 	pool->last_commit_jiffies = jiffies;
3046 	pool->pool_md = pool_md;
3047 	pool->md_dev = metadata_dev;
3048 	pool->data_dev = data_dev;
3049 	__pool_table_insert(pool);
3050 
3051 	return pool;
3052 
3053 bad_sort_array:
3054 	mempool_exit(&pool->mapping_pool);
3055 bad_mapping_pool:
3056 	dm_deferred_set_destroy(pool->all_io_ds);
3057 bad_all_io_ds:
3058 	dm_deferred_set_destroy(pool->shared_read_ds);
3059 bad_shared_read_ds:
3060 	destroy_workqueue(pool->wq);
3061 bad_wq:
3062 	dm_kcopyd_client_destroy(pool->copier);
3063 bad_kcopyd_client:
3064 	dm_bio_prison_destroy(pool->prison);
3065 bad_prison:
3066 	kfree(pool);
3067 bad_pool:
3068 	if (dm_pool_metadata_close(pmd))
3069 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3070 
3071 	return err_p;
3072 }
3073 
3074 static void __pool_inc(struct pool *pool)
3075 {
3076 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3077 	pool->ref_count++;
3078 }
3079 
3080 static void __pool_dec(struct pool *pool)
3081 {
3082 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3083 	BUG_ON(!pool->ref_count);
3084 	if (!--pool->ref_count)
3085 		__pool_destroy(pool);
3086 }
3087 
3088 static struct pool *__pool_find(struct mapped_device *pool_md,
3089 				struct block_device *metadata_dev,
3090 				struct block_device *data_dev,
3091 				unsigned long block_size, int read_only,
3092 				char **error, int *created)
3093 {
3094 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3095 
3096 	if (pool) {
3097 		if (pool->pool_md != pool_md) {
3098 			*error = "metadata device already in use by a pool";
3099 			return ERR_PTR(-EBUSY);
3100 		}
3101 		if (pool->data_dev != data_dev) {
3102 			*error = "data device already in use by a pool";
3103 			return ERR_PTR(-EBUSY);
3104 		}
3105 		__pool_inc(pool);
3106 
3107 	} else {
3108 		pool = __pool_table_lookup(pool_md);
3109 		if (pool) {
3110 			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3111 				*error = "different pool cannot replace a pool";
3112 				return ERR_PTR(-EINVAL);
3113 			}
3114 			__pool_inc(pool);
3115 
3116 		} else {
3117 			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3118 			*created = 1;
3119 		}
3120 	}
3121 
3122 	return pool;
3123 }
3124 
3125 /*----------------------------------------------------------------
3126  * Pool target methods
3127  *--------------------------------------------------------------*/
3128 static void pool_dtr(struct dm_target *ti)
3129 {
3130 	struct pool_c *pt = ti->private;
3131 
3132 	mutex_lock(&dm_thin_pool_table.mutex);
3133 
3134 	unbind_control_target(pt->pool, ti);
3135 	__pool_dec(pt->pool);
3136 	dm_put_device(ti, pt->metadata_dev);
3137 	dm_put_device(ti, pt->data_dev);
3138 	kfree(pt);
3139 
3140 	mutex_unlock(&dm_thin_pool_table.mutex);
3141 }
3142 
3143 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3144 			       struct dm_target *ti)
3145 {
3146 	int r;
3147 	unsigned argc;
3148 	const char *arg_name;
3149 
3150 	static const struct dm_arg _args[] = {
3151 		{0, 4, "Invalid number of pool feature arguments"},
3152 	};
3153 
3154 	/*
3155 	 * No feature arguments supplied.
3156 	 */
3157 	if (!as->argc)
3158 		return 0;
3159 
3160 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3161 	if (r)
3162 		return -EINVAL;
3163 
3164 	while (argc && !r) {
3165 		arg_name = dm_shift_arg(as);
3166 		argc--;
3167 
3168 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3169 			pf->zero_new_blocks = false;
3170 
3171 		else if (!strcasecmp(arg_name, "ignore_discard"))
3172 			pf->discard_enabled = false;
3173 
3174 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3175 			pf->discard_passdown = false;
3176 
3177 		else if (!strcasecmp(arg_name, "read_only"))
3178 			pf->mode = PM_READ_ONLY;
3179 
3180 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3181 			pf->error_if_no_space = true;
3182 
3183 		else {
3184 			ti->error = "Unrecognised pool feature requested";
3185 			r = -EINVAL;
3186 			break;
3187 		}
3188 	}
3189 
3190 	return r;
3191 }
3192 
3193 static void metadata_low_callback(void *context)
3194 {
3195 	struct pool *pool = context;
3196 
3197 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3198 	       dm_device_name(pool->pool_md));
3199 
3200 	dm_table_event(pool->ti->table);
3201 }
3202 
3203 /*
3204  * We need to flush the data device **before** committing the metadata.
3205  *
3206  * This ensures that the data blocks of any newly inserted mappings are
3207  * properly written to non-volatile storage and won't be lost in case of a
3208  * crash.
3209  *
3210  * Failure to do so can result in data corruption in the case of internal or
3211  * external snapshots and in the case of newly provisioned blocks, when block
3212  * zeroing is enabled.
3213  */
3214 static int metadata_pre_commit_callback(void *context)
3215 {
3216 	struct pool *pool = context;
3217 	struct bio *flush_bio = &pool->flush_bio;
3218 
3219 	bio_reset(flush_bio);
3220 	bio_set_dev(flush_bio, pool->data_dev);
3221 	flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3222 
3223 	return submit_bio_wait(flush_bio);
3224 }
3225 
3226 static sector_t get_dev_size(struct block_device *bdev)
3227 {
3228 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3229 }
3230 
3231 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3232 {
3233 	sector_t metadata_dev_size = get_dev_size(bdev);
3234 	char buffer[BDEVNAME_SIZE];
3235 
3236 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3237 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3238 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3239 }
3240 
3241 static sector_t get_metadata_dev_size(struct block_device *bdev)
3242 {
3243 	sector_t metadata_dev_size = get_dev_size(bdev);
3244 
3245 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3246 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3247 
3248 	return metadata_dev_size;
3249 }
3250 
3251 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3252 {
3253 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3254 
3255 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3256 
3257 	return metadata_dev_size;
3258 }
3259 
3260 /*
3261  * When a metadata threshold is crossed a dm event is triggered, and
3262  * userland should respond by growing the metadata device.  We could let
3263  * userland set the threshold, like we do with the data threshold, but I'm
3264  * not sure they know enough to do this well.
3265  */
3266 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3267 {
3268 	/*
3269 	 * 4M is ample for all ops with the possible exception of thin
3270 	 * device deletion which is harmless if it fails (just retry the
3271 	 * delete after you've grown the device).
3272 	 */
3273 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3274 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3275 }
3276 
3277 /*
3278  * thin-pool <metadata dev> <data dev>
3279  *	     <data block size (sectors)>
3280  *	     <low water mark (blocks)>
3281  *	     [<#feature args> [<arg>]*]
3282  *
3283  * Optional feature arguments are:
3284  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3285  *	     ignore_discard: disable discard
3286  *	     no_discard_passdown: don't pass discards down to the data device
3287  *	     read_only: Don't allow any changes to be made to the pool metadata.
3288  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3289  */
3290 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3291 {
3292 	int r, pool_created = 0;
3293 	struct pool_c *pt;
3294 	struct pool *pool;
3295 	struct pool_features pf;
3296 	struct dm_arg_set as;
3297 	struct dm_dev *data_dev;
3298 	unsigned long block_size;
3299 	dm_block_t low_water_blocks;
3300 	struct dm_dev *metadata_dev;
3301 	fmode_t metadata_mode;
3302 
3303 	/*
3304 	 * FIXME Remove validation from scope of lock.
3305 	 */
3306 	mutex_lock(&dm_thin_pool_table.mutex);
3307 
3308 	if (argc < 4) {
3309 		ti->error = "Invalid argument count";
3310 		r = -EINVAL;
3311 		goto out_unlock;
3312 	}
3313 
3314 	as.argc = argc;
3315 	as.argv = argv;
3316 
3317 	/* make sure metadata and data are different devices */
3318 	if (!strcmp(argv[0], argv[1])) {
3319 		ti->error = "Error setting metadata or data device";
3320 		r = -EINVAL;
3321 		goto out_unlock;
3322 	}
3323 
3324 	/*
3325 	 * Set default pool features.
3326 	 */
3327 	pool_features_init(&pf);
3328 
3329 	dm_consume_args(&as, 4);
3330 	r = parse_pool_features(&as, &pf, ti);
3331 	if (r)
3332 		goto out_unlock;
3333 
3334 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3335 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3336 	if (r) {
3337 		ti->error = "Error opening metadata block device";
3338 		goto out_unlock;
3339 	}
3340 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3341 
3342 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3343 	if (r) {
3344 		ti->error = "Error getting data device";
3345 		goto out_metadata;
3346 	}
3347 
3348 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3349 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3350 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3351 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3352 		ti->error = "Invalid block size";
3353 		r = -EINVAL;
3354 		goto out;
3355 	}
3356 
3357 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3358 		ti->error = "Invalid low water mark";
3359 		r = -EINVAL;
3360 		goto out;
3361 	}
3362 
3363 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3364 	if (!pt) {
3365 		r = -ENOMEM;
3366 		goto out;
3367 	}
3368 
3369 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3370 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3371 	if (IS_ERR(pool)) {
3372 		r = PTR_ERR(pool);
3373 		goto out_free_pt;
3374 	}
3375 
3376 	/*
3377 	 * 'pool_created' reflects whether this is the first table load.
3378 	 * Top level discard support is not allowed to be changed after
3379 	 * initial load.  This would require a pool reload to trigger thin
3380 	 * device changes.
3381 	 */
3382 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3383 		ti->error = "Discard support cannot be disabled once enabled";
3384 		r = -EINVAL;
3385 		goto out_flags_changed;
3386 	}
3387 
3388 	pt->pool = pool;
3389 	pt->ti = ti;
3390 	pt->metadata_dev = metadata_dev;
3391 	pt->data_dev = data_dev;
3392 	pt->low_water_blocks = low_water_blocks;
3393 	pt->adjusted_pf = pt->requested_pf = pf;
3394 	ti->num_flush_bios = 1;
3395 
3396 	/*
3397 	 * Only need to enable discards if the pool should pass
3398 	 * them down to the data device.  The thin device's discard
3399 	 * processing will cause mappings to be removed from the btree.
3400 	 */
3401 	if (pf.discard_enabled && pf.discard_passdown) {
3402 		ti->num_discard_bios = 1;
3403 
3404 		/*
3405 		 * Setting 'discards_supported' circumvents the normal
3406 		 * stacking of discard limits (this keeps the pool and
3407 		 * thin devices' discard limits consistent).
3408 		 */
3409 		ti->discards_supported = true;
3410 	}
3411 	ti->private = pt;
3412 
3413 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3414 						calc_metadata_threshold(pt),
3415 						metadata_low_callback,
3416 						pool);
3417 	if (r)
3418 		goto out_flags_changed;
3419 
3420 	dm_pool_register_pre_commit_callback(pool->pmd,
3421 					     metadata_pre_commit_callback, pool);
3422 
3423 	pt->callbacks.congested_fn = pool_is_congested;
3424 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3425 
3426 	mutex_unlock(&dm_thin_pool_table.mutex);
3427 
3428 	return 0;
3429 
3430 out_flags_changed:
3431 	__pool_dec(pool);
3432 out_free_pt:
3433 	kfree(pt);
3434 out:
3435 	dm_put_device(ti, data_dev);
3436 out_metadata:
3437 	dm_put_device(ti, metadata_dev);
3438 out_unlock:
3439 	mutex_unlock(&dm_thin_pool_table.mutex);
3440 
3441 	return r;
3442 }
3443 
3444 static int pool_map(struct dm_target *ti, struct bio *bio)
3445 {
3446 	int r;
3447 	struct pool_c *pt = ti->private;
3448 	struct pool *pool = pt->pool;
3449 
3450 	/*
3451 	 * As this is a singleton target, ti->begin is always zero.
3452 	 */
3453 	spin_lock_irq(&pool->lock);
3454 	bio_set_dev(bio, pt->data_dev->bdev);
3455 	r = DM_MAPIO_REMAPPED;
3456 	spin_unlock_irq(&pool->lock);
3457 
3458 	return r;
3459 }
3460 
3461 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3462 {
3463 	int r;
3464 	struct pool_c *pt = ti->private;
3465 	struct pool *pool = pt->pool;
3466 	sector_t data_size = ti->len;
3467 	dm_block_t sb_data_size;
3468 
3469 	*need_commit = false;
3470 
3471 	(void) sector_div(data_size, pool->sectors_per_block);
3472 
3473 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3474 	if (r) {
3475 		DMERR("%s: failed to retrieve data device size",
3476 		      dm_device_name(pool->pool_md));
3477 		return r;
3478 	}
3479 
3480 	if (data_size < sb_data_size) {
3481 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3482 		      dm_device_name(pool->pool_md),
3483 		      (unsigned long long)data_size, sb_data_size);
3484 		return -EINVAL;
3485 
3486 	} else if (data_size > sb_data_size) {
3487 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3488 			DMERR("%s: unable to grow the data device until repaired.",
3489 			      dm_device_name(pool->pool_md));
3490 			return 0;
3491 		}
3492 
3493 		if (sb_data_size)
3494 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3495 			       dm_device_name(pool->pool_md),
3496 			       sb_data_size, (unsigned long long)data_size);
3497 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3498 		if (r) {
3499 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3500 			return r;
3501 		}
3502 
3503 		*need_commit = true;
3504 	}
3505 
3506 	return 0;
3507 }
3508 
3509 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3510 {
3511 	int r;
3512 	struct pool_c *pt = ti->private;
3513 	struct pool *pool = pt->pool;
3514 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3515 
3516 	*need_commit = false;
3517 
3518 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3519 
3520 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3521 	if (r) {
3522 		DMERR("%s: failed to retrieve metadata device size",
3523 		      dm_device_name(pool->pool_md));
3524 		return r;
3525 	}
3526 
3527 	if (metadata_dev_size < sb_metadata_dev_size) {
3528 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3529 		      dm_device_name(pool->pool_md),
3530 		      metadata_dev_size, sb_metadata_dev_size);
3531 		return -EINVAL;
3532 
3533 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3534 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3535 			DMERR("%s: unable to grow the metadata device until repaired.",
3536 			      dm_device_name(pool->pool_md));
3537 			return 0;
3538 		}
3539 
3540 		warn_if_metadata_device_too_big(pool->md_dev);
3541 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3542 		       dm_device_name(pool->pool_md),
3543 		       sb_metadata_dev_size, metadata_dev_size);
3544 
3545 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3546 			set_pool_mode(pool, PM_WRITE);
3547 
3548 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3549 		if (r) {
3550 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3551 			return r;
3552 		}
3553 
3554 		*need_commit = true;
3555 	}
3556 
3557 	return 0;
3558 }
3559 
3560 /*
3561  * Retrieves the number of blocks of the data device from
3562  * the superblock and compares it to the actual device size,
3563  * thus resizing the data device in case it has grown.
3564  *
3565  * This both copes with opening preallocated data devices in the ctr
3566  * being followed by a resume
3567  * -and-
3568  * calling the resume method individually after userspace has
3569  * grown the data device in reaction to a table event.
3570  */
3571 static int pool_preresume(struct dm_target *ti)
3572 {
3573 	int r;
3574 	bool need_commit1, need_commit2;
3575 	struct pool_c *pt = ti->private;
3576 	struct pool *pool = pt->pool;
3577 
3578 	/*
3579 	 * Take control of the pool object.
3580 	 */
3581 	r = bind_control_target(pool, ti);
3582 	if (r)
3583 		return r;
3584 
3585 	r = maybe_resize_data_dev(ti, &need_commit1);
3586 	if (r)
3587 		return r;
3588 
3589 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3590 	if (r)
3591 		return r;
3592 
3593 	if (need_commit1 || need_commit2)
3594 		(void) commit(pool);
3595 
3596 	return 0;
3597 }
3598 
3599 static void pool_suspend_active_thins(struct pool *pool)
3600 {
3601 	struct thin_c *tc;
3602 
3603 	/* Suspend all active thin devices */
3604 	tc = get_first_thin(pool);
3605 	while (tc) {
3606 		dm_internal_suspend_noflush(tc->thin_md);
3607 		tc = get_next_thin(pool, tc);
3608 	}
3609 }
3610 
3611 static void pool_resume_active_thins(struct pool *pool)
3612 {
3613 	struct thin_c *tc;
3614 
3615 	/* Resume all active thin devices */
3616 	tc = get_first_thin(pool);
3617 	while (tc) {
3618 		dm_internal_resume(tc->thin_md);
3619 		tc = get_next_thin(pool, tc);
3620 	}
3621 }
3622 
3623 static void pool_resume(struct dm_target *ti)
3624 {
3625 	struct pool_c *pt = ti->private;
3626 	struct pool *pool = pt->pool;
3627 
3628 	/*
3629 	 * Must requeue active_thins' bios and then resume
3630 	 * active_thins _before_ clearing 'suspend' flag.
3631 	 */
3632 	requeue_bios(pool);
3633 	pool_resume_active_thins(pool);
3634 
3635 	spin_lock_irq(&pool->lock);
3636 	pool->low_water_triggered = false;
3637 	pool->suspended = false;
3638 	spin_unlock_irq(&pool->lock);
3639 
3640 	do_waker(&pool->waker.work);
3641 }
3642 
3643 static void pool_presuspend(struct dm_target *ti)
3644 {
3645 	struct pool_c *pt = ti->private;
3646 	struct pool *pool = pt->pool;
3647 
3648 	spin_lock_irq(&pool->lock);
3649 	pool->suspended = true;
3650 	spin_unlock_irq(&pool->lock);
3651 
3652 	pool_suspend_active_thins(pool);
3653 }
3654 
3655 static void pool_presuspend_undo(struct dm_target *ti)
3656 {
3657 	struct pool_c *pt = ti->private;
3658 	struct pool *pool = pt->pool;
3659 
3660 	pool_resume_active_thins(pool);
3661 
3662 	spin_lock_irq(&pool->lock);
3663 	pool->suspended = false;
3664 	spin_unlock_irq(&pool->lock);
3665 }
3666 
3667 static void pool_postsuspend(struct dm_target *ti)
3668 {
3669 	struct pool_c *pt = ti->private;
3670 	struct pool *pool = pt->pool;
3671 
3672 	cancel_delayed_work_sync(&pool->waker);
3673 	cancel_delayed_work_sync(&pool->no_space_timeout);
3674 	flush_workqueue(pool->wq);
3675 	(void) commit(pool);
3676 }
3677 
3678 static int check_arg_count(unsigned argc, unsigned args_required)
3679 {
3680 	if (argc != args_required) {
3681 		DMWARN("Message received with %u arguments instead of %u.",
3682 		       argc, args_required);
3683 		return -EINVAL;
3684 	}
3685 
3686 	return 0;
3687 }
3688 
3689 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3690 {
3691 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3692 	    *dev_id <= MAX_DEV_ID)
3693 		return 0;
3694 
3695 	if (warning)
3696 		DMWARN("Message received with invalid device id: %s", arg);
3697 
3698 	return -EINVAL;
3699 }
3700 
3701 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3702 {
3703 	dm_thin_id dev_id;
3704 	int r;
3705 
3706 	r = check_arg_count(argc, 2);
3707 	if (r)
3708 		return r;
3709 
3710 	r = read_dev_id(argv[1], &dev_id, 1);
3711 	if (r)
3712 		return r;
3713 
3714 	r = dm_pool_create_thin(pool->pmd, dev_id);
3715 	if (r) {
3716 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3717 		       argv[1]);
3718 		return r;
3719 	}
3720 
3721 	return 0;
3722 }
3723 
3724 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3725 {
3726 	dm_thin_id dev_id;
3727 	dm_thin_id origin_dev_id;
3728 	int r;
3729 
3730 	r = check_arg_count(argc, 3);
3731 	if (r)
3732 		return r;
3733 
3734 	r = read_dev_id(argv[1], &dev_id, 1);
3735 	if (r)
3736 		return r;
3737 
3738 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3739 	if (r)
3740 		return r;
3741 
3742 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3743 	if (r) {
3744 		DMWARN("Creation of new snapshot %s of device %s failed.",
3745 		       argv[1], argv[2]);
3746 		return r;
3747 	}
3748 
3749 	return 0;
3750 }
3751 
3752 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3753 {
3754 	dm_thin_id dev_id;
3755 	int r;
3756 
3757 	r = check_arg_count(argc, 2);
3758 	if (r)
3759 		return r;
3760 
3761 	r = read_dev_id(argv[1], &dev_id, 1);
3762 	if (r)
3763 		return r;
3764 
3765 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3766 	if (r)
3767 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3768 
3769 	return r;
3770 }
3771 
3772 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3773 {
3774 	dm_thin_id old_id, new_id;
3775 	int r;
3776 
3777 	r = check_arg_count(argc, 3);
3778 	if (r)
3779 		return r;
3780 
3781 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3782 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3783 		return -EINVAL;
3784 	}
3785 
3786 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3787 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3788 		return -EINVAL;
3789 	}
3790 
3791 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3792 	if (r) {
3793 		DMWARN("Failed to change transaction id from %s to %s.",
3794 		       argv[1], argv[2]);
3795 		return r;
3796 	}
3797 
3798 	return 0;
3799 }
3800 
3801 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3802 {
3803 	int r;
3804 
3805 	r = check_arg_count(argc, 1);
3806 	if (r)
3807 		return r;
3808 
3809 	(void) commit(pool);
3810 
3811 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3812 	if (r)
3813 		DMWARN("reserve_metadata_snap message failed.");
3814 
3815 	return r;
3816 }
3817 
3818 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3819 {
3820 	int r;
3821 
3822 	r = check_arg_count(argc, 1);
3823 	if (r)
3824 		return r;
3825 
3826 	r = dm_pool_release_metadata_snap(pool->pmd);
3827 	if (r)
3828 		DMWARN("release_metadata_snap message failed.");
3829 
3830 	return r;
3831 }
3832 
3833 /*
3834  * Messages supported:
3835  *   create_thin	<dev_id>
3836  *   create_snap	<dev_id> <origin_id>
3837  *   delete		<dev_id>
3838  *   set_transaction_id <current_trans_id> <new_trans_id>
3839  *   reserve_metadata_snap
3840  *   release_metadata_snap
3841  */
3842 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3843 			char *result, unsigned maxlen)
3844 {
3845 	int r = -EINVAL;
3846 	struct pool_c *pt = ti->private;
3847 	struct pool *pool = pt->pool;
3848 
3849 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3850 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3851 		      dm_device_name(pool->pool_md));
3852 		return -EOPNOTSUPP;
3853 	}
3854 
3855 	if (!strcasecmp(argv[0], "create_thin"))
3856 		r = process_create_thin_mesg(argc, argv, pool);
3857 
3858 	else if (!strcasecmp(argv[0], "create_snap"))
3859 		r = process_create_snap_mesg(argc, argv, pool);
3860 
3861 	else if (!strcasecmp(argv[0], "delete"))
3862 		r = process_delete_mesg(argc, argv, pool);
3863 
3864 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3865 		r = process_set_transaction_id_mesg(argc, argv, pool);
3866 
3867 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3868 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3869 
3870 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3871 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3872 
3873 	else
3874 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3875 
3876 	if (!r)
3877 		(void) commit(pool);
3878 
3879 	return r;
3880 }
3881 
3882 static void emit_flags(struct pool_features *pf, char *result,
3883 		       unsigned sz, unsigned maxlen)
3884 {
3885 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3886 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3887 		pf->error_if_no_space;
3888 	DMEMIT("%u ", count);
3889 
3890 	if (!pf->zero_new_blocks)
3891 		DMEMIT("skip_block_zeroing ");
3892 
3893 	if (!pf->discard_enabled)
3894 		DMEMIT("ignore_discard ");
3895 
3896 	if (!pf->discard_passdown)
3897 		DMEMIT("no_discard_passdown ");
3898 
3899 	if (pf->mode == PM_READ_ONLY)
3900 		DMEMIT("read_only ");
3901 
3902 	if (pf->error_if_no_space)
3903 		DMEMIT("error_if_no_space ");
3904 }
3905 
3906 /*
3907  * Status line is:
3908  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3909  *    <used data sectors>/<total data sectors> <held metadata root>
3910  *    <pool mode> <discard config> <no space config> <needs_check>
3911  */
3912 static void pool_status(struct dm_target *ti, status_type_t type,
3913 			unsigned status_flags, char *result, unsigned maxlen)
3914 {
3915 	int r;
3916 	unsigned sz = 0;
3917 	uint64_t transaction_id;
3918 	dm_block_t nr_free_blocks_data;
3919 	dm_block_t nr_free_blocks_metadata;
3920 	dm_block_t nr_blocks_data;
3921 	dm_block_t nr_blocks_metadata;
3922 	dm_block_t held_root;
3923 	enum pool_mode mode;
3924 	char buf[BDEVNAME_SIZE];
3925 	char buf2[BDEVNAME_SIZE];
3926 	struct pool_c *pt = ti->private;
3927 	struct pool *pool = pt->pool;
3928 
3929 	switch (type) {
3930 	case STATUSTYPE_INFO:
3931 		if (get_pool_mode(pool) == PM_FAIL) {
3932 			DMEMIT("Fail");
3933 			break;
3934 		}
3935 
3936 		/* Commit to ensure statistics aren't out-of-date */
3937 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3938 			(void) commit(pool);
3939 
3940 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3941 		if (r) {
3942 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3943 			      dm_device_name(pool->pool_md), r);
3944 			goto err;
3945 		}
3946 
3947 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3948 		if (r) {
3949 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3950 			      dm_device_name(pool->pool_md), r);
3951 			goto err;
3952 		}
3953 
3954 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3955 		if (r) {
3956 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3957 			      dm_device_name(pool->pool_md), r);
3958 			goto err;
3959 		}
3960 
3961 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3962 		if (r) {
3963 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3964 			      dm_device_name(pool->pool_md), r);
3965 			goto err;
3966 		}
3967 
3968 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3969 		if (r) {
3970 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3971 			      dm_device_name(pool->pool_md), r);
3972 			goto err;
3973 		}
3974 
3975 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3976 		if (r) {
3977 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3978 			      dm_device_name(pool->pool_md), r);
3979 			goto err;
3980 		}
3981 
3982 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3983 		       (unsigned long long)transaction_id,
3984 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3985 		       (unsigned long long)nr_blocks_metadata,
3986 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3987 		       (unsigned long long)nr_blocks_data);
3988 
3989 		if (held_root)
3990 			DMEMIT("%llu ", held_root);
3991 		else
3992 			DMEMIT("- ");
3993 
3994 		mode = get_pool_mode(pool);
3995 		if (mode == PM_OUT_OF_DATA_SPACE)
3996 			DMEMIT("out_of_data_space ");
3997 		else if (is_read_only_pool_mode(mode))
3998 			DMEMIT("ro ");
3999 		else
4000 			DMEMIT("rw ");
4001 
4002 		if (!pool->pf.discard_enabled)
4003 			DMEMIT("ignore_discard ");
4004 		else if (pool->pf.discard_passdown)
4005 			DMEMIT("discard_passdown ");
4006 		else
4007 			DMEMIT("no_discard_passdown ");
4008 
4009 		if (pool->pf.error_if_no_space)
4010 			DMEMIT("error_if_no_space ");
4011 		else
4012 			DMEMIT("queue_if_no_space ");
4013 
4014 		if (dm_pool_metadata_needs_check(pool->pmd))
4015 			DMEMIT("needs_check ");
4016 		else
4017 			DMEMIT("- ");
4018 
4019 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4020 
4021 		break;
4022 
4023 	case STATUSTYPE_TABLE:
4024 		DMEMIT("%s %s %lu %llu ",
4025 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4026 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4027 		       (unsigned long)pool->sectors_per_block,
4028 		       (unsigned long long)pt->low_water_blocks);
4029 		emit_flags(&pt->requested_pf, result, sz, maxlen);
4030 		break;
4031 	}
4032 	return;
4033 
4034 err:
4035 	DMEMIT("Error");
4036 }
4037 
4038 static int pool_iterate_devices(struct dm_target *ti,
4039 				iterate_devices_callout_fn fn, void *data)
4040 {
4041 	struct pool_c *pt = ti->private;
4042 
4043 	return fn(ti, pt->data_dev, 0, ti->len, data);
4044 }
4045 
4046 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4047 {
4048 	struct pool_c *pt = ti->private;
4049 	struct pool *pool = pt->pool;
4050 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4051 
4052 	/*
4053 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4054 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4055 	 * This is especially beneficial when the pool's data device is a RAID
4056 	 * device that has a full stripe width that matches pool->sectors_per_block
4057 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4058 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4059 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4060 	 */
4061 	if (limits->max_sectors < pool->sectors_per_block) {
4062 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4063 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4064 				limits->max_sectors--;
4065 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4066 		}
4067 	}
4068 
4069 	/*
4070 	 * If the system-determined stacked limits are compatible with the
4071 	 * pool's blocksize (io_opt is a factor) do not override them.
4072 	 */
4073 	if (io_opt_sectors < pool->sectors_per_block ||
4074 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4075 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4076 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4077 		else
4078 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4079 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4080 	}
4081 
4082 	/*
4083 	 * pt->adjusted_pf is a staging area for the actual features to use.
4084 	 * They get transferred to the live pool in bind_control_target()
4085 	 * called from pool_preresume().
4086 	 */
4087 	if (!pt->adjusted_pf.discard_enabled) {
4088 		/*
4089 		 * Must explicitly disallow stacking discard limits otherwise the
4090 		 * block layer will stack them if pool's data device has support.
4091 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4092 		 * user to see that, so make sure to set all discard limits to 0.
4093 		 */
4094 		limits->discard_granularity = 0;
4095 		return;
4096 	}
4097 
4098 	disable_passdown_if_not_supported(pt);
4099 
4100 	/*
4101 	 * The pool uses the same discard limits as the underlying data
4102 	 * device.  DM core has already set this up.
4103 	 */
4104 }
4105 
4106 static struct target_type pool_target = {
4107 	.name = "thin-pool",
4108 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4109 		    DM_TARGET_IMMUTABLE,
4110 	.version = {1, 22, 0},
4111 	.module = THIS_MODULE,
4112 	.ctr = pool_ctr,
4113 	.dtr = pool_dtr,
4114 	.map = pool_map,
4115 	.presuspend = pool_presuspend,
4116 	.presuspend_undo = pool_presuspend_undo,
4117 	.postsuspend = pool_postsuspend,
4118 	.preresume = pool_preresume,
4119 	.resume = pool_resume,
4120 	.message = pool_message,
4121 	.status = pool_status,
4122 	.iterate_devices = pool_iterate_devices,
4123 	.io_hints = pool_io_hints,
4124 };
4125 
4126 /*----------------------------------------------------------------
4127  * Thin target methods
4128  *--------------------------------------------------------------*/
4129 static void thin_get(struct thin_c *tc)
4130 {
4131 	refcount_inc(&tc->refcount);
4132 }
4133 
4134 static void thin_put(struct thin_c *tc)
4135 {
4136 	if (refcount_dec_and_test(&tc->refcount))
4137 		complete(&tc->can_destroy);
4138 }
4139 
4140 static void thin_dtr(struct dm_target *ti)
4141 {
4142 	struct thin_c *tc = ti->private;
4143 
4144 	spin_lock_irq(&tc->pool->lock);
4145 	list_del_rcu(&tc->list);
4146 	spin_unlock_irq(&tc->pool->lock);
4147 	synchronize_rcu();
4148 
4149 	thin_put(tc);
4150 	wait_for_completion(&tc->can_destroy);
4151 
4152 	mutex_lock(&dm_thin_pool_table.mutex);
4153 
4154 	__pool_dec(tc->pool);
4155 	dm_pool_close_thin_device(tc->td);
4156 	dm_put_device(ti, tc->pool_dev);
4157 	if (tc->origin_dev)
4158 		dm_put_device(ti, tc->origin_dev);
4159 	kfree(tc);
4160 
4161 	mutex_unlock(&dm_thin_pool_table.mutex);
4162 }
4163 
4164 /*
4165  * Thin target parameters:
4166  *
4167  * <pool_dev> <dev_id> [origin_dev]
4168  *
4169  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4170  * dev_id: the internal device identifier
4171  * origin_dev: a device external to the pool that should act as the origin
4172  *
4173  * If the pool device has discards disabled, they get disabled for the thin
4174  * device as well.
4175  */
4176 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4177 {
4178 	int r;
4179 	struct thin_c *tc;
4180 	struct dm_dev *pool_dev, *origin_dev;
4181 	struct mapped_device *pool_md;
4182 
4183 	mutex_lock(&dm_thin_pool_table.mutex);
4184 
4185 	if (argc != 2 && argc != 3) {
4186 		ti->error = "Invalid argument count";
4187 		r = -EINVAL;
4188 		goto out_unlock;
4189 	}
4190 
4191 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4192 	if (!tc) {
4193 		ti->error = "Out of memory";
4194 		r = -ENOMEM;
4195 		goto out_unlock;
4196 	}
4197 	tc->thin_md = dm_table_get_md(ti->table);
4198 	spin_lock_init(&tc->lock);
4199 	INIT_LIST_HEAD(&tc->deferred_cells);
4200 	bio_list_init(&tc->deferred_bio_list);
4201 	bio_list_init(&tc->retry_on_resume_list);
4202 	tc->sort_bio_list = RB_ROOT;
4203 
4204 	if (argc == 3) {
4205 		if (!strcmp(argv[0], argv[2])) {
4206 			ti->error = "Error setting origin device";
4207 			r = -EINVAL;
4208 			goto bad_origin_dev;
4209 		}
4210 
4211 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4212 		if (r) {
4213 			ti->error = "Error opening origin device";
4214 			goto bad_origin_dev;
4215 		}
4216 		tc->origin_dev = origin_dev;
4217 	}
4218 
4219 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4220 	if (r) {
4221 		ti->error = "Error opening pool device";
4222 		goto bad_pool_dev;
4223 	}
4224 	tc->pool_dev = pool_dev;
4225 
4226 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4227 		ti->error = "Invalid device id";
4228 		r = -EINVAL;
4229 		goto bad_common;
4230 	}
4231 
4232 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4233 	if (!pool_md) {
4234 		ti->error = "Couldn't get pool mapped device";
4235 		r = -EINVAL;
4236 		goto bad_common;
4237 	}
4238 
4239 	tc->pool = __pool_table_lookup(pool_md);
4240 	if (!tc->pool) {
4241 		ti->error = "Couldn't find pool object";
4242 		r = -EINVAL;
4243 		goto bad_pool_lookup;
4244 	}
4245 	__pool_inc(tc->pool);
4246 
4247 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4248 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4249 		r = -EINVAL;
4250 		goto bad_pool;
4251 	}
4252 
4253 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4254 	if (r) {
4255 		ti->error = "Couldn't open thin internal device";
4256 		goto bad_pool;
4257 	}
4258 
4259 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4260 	if (r)
4261 		goto bad;
4262 
4263 	ti->num_flush_bios = 1;
4264 	ti->flush_supported = true;
4265 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4266 
4267 	/* In case the pool supports discards, pass them on. */
4268 	if (tc->pool->pf.discard_enabled) {
4269 		ti->discards_supported = true;
4270 		ti->num_discard_bios = 1;
4271 	}
4272 
4273 	mutex_unlock(&dm_thin_pool_table.mutex);
4274 
4275 	spin_lock_irq(&tc->pool->lock);
4276 	if (tc->pool->suspended) {
4277 		spin_unlock_irq(&tc->pool->lock);
4278 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4279 		ti->error = "Unable to activate thin device while pool is suspended";
4280 		r = -EINVAL;
4281 		goto bad;
4282 	}
4283 	refcount_set(&tc->refcount, 1);
4284 	init_completion(&tc->can_destroy);
4285 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4286 	spin_unlock_irq(&tc->pool->lock);
4287 	/*
4288 	 * This synchronize_rcu() call is needed here otherwise we risk a
4289 	 * wake_worker() call finding no bios to process (because the newly
4290 	 * added tc isn't yet visible).  So this reduces latency since we
4291 	 * aren't then dependent on the periodic commit to wake_worker().
4292 	 */
4293 	synchronize_rcu();
4294 
4295 	dm_put(pool_md);
4296 
4297 	return 0;
4298 
4299 bad:
4300 	dm_pool_close_thin_device(tc->td);
4301 bad_pool:
4302 	__pool_dec(tc->pool);
4303 bad_pool_lookup:
4304 	dm_put(pool_md);
4305 bad_common:
4306 	dm_put_device(ti, tc->pool_dev);
4307 bad_pool_dev:
4308 	if (tc->origin_dev)
4309 		dm_put_device(ti, tc->origin_dev);
4310 bad_origin_dev:
4311 	kfree(tc);
4312 out_unlock:
4313 	mutex_unlock(&dm_thin_pool_table.mutex);
4314 
4315 	return r;
4316 }
4317 
4318 static int thin_map(struct dm_target *ti, struct bio *bio)
4319 {
4320 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4321 
4322 	return thin_bio_map(ti, bio);
4323 }
4324 
4325 static int thin_endio(struct dm_target *ti, struct bio *bio,
4326 		blk_status_t *err)
4327 {
4328 	unsigned long flags;
4329 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4330 	struct list_head work;
4331 	struct dm_thin_new_mapping *m, *tmp;
4332 	struct pool *pool = h->tc->pool;
4333 
4334 	if (h->shared_read_entry) {
4335 		INIT_LIST_HEAD(&work);
4336 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4337 
4338 		spin_lock_irqsave(&pool->lock, flags);
4339 		list_for_each_entry_safe(m, tmp, &work, list) {
4340 			list_del(&m->list);
4341 			__complete_mapping_preparation(m);
4342 		}
4343 		spin_unlock_irqrestore(&pool->lock, flags);
4344 	}
4345 
4346 	if (h->all_io_entry) {
4347 		INIT_LIST_HEAD(&work);
4348 		dm_deferred_entry_dec(h->all_io_entry, &work);
4349 		if (!list_empty(&work)) {
4350 			spin_lock_irqsave(&pool->lock, flags);
4351 			list_for_each_entry_safe(m, tmp, &work, list)
4352 				list_add_tail(&m->list, &pool->prepared_discards);
4353 			spin_unlock_irqrestore(&pool->lock, flags);
4354 			wake_worker(pool);
4355 		}
4356 	}
4357 
4358 	if (h->cell)
4359 		cell_defer_no_holder(h->tc, h->cell);
4360 
4361 	return DM_ENDIO_DONE;
4362 }
4363 
4364 static void thin_presuspend(struct dm_target *ti)
4365 {
4366 	struct thin_c *tc = ti->private;
4367 
4368 	if (dm_noflush_suspending(ti))
4369 		noflush_work(tc, do_noflush_start);
4370 }
4371 
4372 static void thin_postsuspend(struct dm_target *ti)
4373 {
4374 	struct thin_c *tc = ti->private;
4375 
4376 	/*
4377 	 * The dm_noflush_suspending flag has been cleared by now, so
4378 	 * unfortunately we must always run this.
4379 	 */
4380 	noflush_work(tc, do_noflush_stop);
4381 }
4382 
4383 static int thin_preresume(struct dm_target *ti)
4384 {
4385 	struct thin_c *tc = ti->private;
4386 
4387 	if (tc->origin_dev)
4388 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4389 
4390 	return 0;
4391 }
4392 
4393 /*
4394  * <nr mapped sectors> <highest mapped sector>
4395  */
4396 static void thin_status(struct dm_target *ti, status_type_t type,
4397 			unsigned status_flags, char *result, unsigned maxlen)
4398 {
4399 	int r;
4400 	ssize_t sz = 0;
4401 	dm_block_t mapped, highest;
4402 	char buf[BDEVNAME_SIZE];
4403 	struct thin_c *tc = ti->private;
4404 
4405 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4406 		DMEMIT("Fail");
4407 		return;
4408 	}
4409 
4410 	if (!tc->td)
4411 		DMEMIT("-");
4412 	else {
4413 		switch (type) {
4414 		case STATUSTYPE_INFO:
4415 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4416 			if (r) {
4417 				DMERR("dm_thin_get_mapped_count returned %d", r);
4418 				goto err;
4419 			}
4420 
4421 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4422 			if (r < 0) {
4423 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4424 				goto err;
4425 			}
4426 
4427 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4428 			if (r)
4429 				DMEMIT("%llu", ((highest + 1) *
4430 						tc->pool->sectors_per_block) - 1);
4431 			else
4432 				DMEMIT("-");
4433 			break;
4434 
4435 		case STATUSTYPE_TABLE:
4436 			DMEMIT("%s %lu",
4437 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4438 			       (unsigned long) tc->dev_id);
4439 			if (tc->origin_dev)
4440 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4441 			break;
4442 		}
4443 	}
4444 
4445 	return;
4446 
4447 err:
4448 	DMEMIT("Error");
4449 }
4450 
4451 static int thin_iterate_devices(struct dm_target *ti,
4452 				iterate_devices_callout_fn fn, void *data)
4453 {
4454 	sector_t blocks;
4455 	struct thin_c *tc = ti->private;
4456 	struct pool *pool = tc->pool;
4457 
4458 	/*
4459 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4460 	 * we follow a more convoluted path through to the pool's target.
4461 	 */
4462 	if (!pool->ti)
4463 		return 0;	/* nothing is bound */
4464 
4465 	blocks = pool->ti->len;
4466 	(void) sector_div(blocks, pool->sectors_per_block);
4467 	if (blocks)
4468 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4469 
4470 	return 0;
4471 }
4472 
4473 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4474 {
4475 	struct thin_c *tc = ti->private;
4476 	struct pool *pool = tc->pool;
4477 
4478 	if (!pool->pf.discard_enabled)
4479 		return;
4480 
4481 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4482 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4483 }
4484 
4485 static struct target_type thin_target = {
4486 	.name = "thin",
4487 	.version = {1, 22, 0},
4488 	.module	= THIS_MODULE,
4489 	.ctr = thin_ctr,
4490 	.dtr = thin_dtr,
4491 	.map = thin_map,
4492 	.end_io = thin_endio,
4493 	.preresume = thin_preresume,
4494 	.presuspend = thin_presuspend,
4495 	.postsuspend = thin_postsuspend,
4496 	.status = thin_status,
4497 	.iterate_devices = thin_iterate_devices,
4498 	.io_hints = thin_io_hints,
4499 };
4500 
4501 /*----------------------------------------------------------------*/
4502 
4503 static int __init dm_thin_init(void)
4504 {
4505 	int r = -ENOMEM;
4506 
4507 	pool_table_init();
4508 
4509 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4510 	if (!_new_mapping_cache)
4511 		return r;
4512 
4513 	r = dm_register_target(&thin_target);
4514 	if (r)
4515 		goto bad_new_mapping_cache;
4516 
4517 	r = dm_register_target(&pool_target);
4518 	if (r)
4519 		goto bad_thin_target;
4520 
4521 	return 0;
4522 
4523 bad_thin_target:
4524 	dm_unregister_target(&thin_target);
4525 bad_new_mapping_cache:
4526 	kmem_cache_destroy(_new_mapping_cache);
4527 
4528 	return r;
4529 }
4530 
4531 static void dm_thin_exit(void)
4532 {
4533 	dm_unregister_target(&thin_target);
4534 	dm_unregister_target(&pool_target);
4535 
4536 	kmem_cache_destroy(_new_mapping_cache);
4537 
4538 	pool_table_exit();
4539 }
4540 
4541 module_init(dm_thin_init);
4542 module_exit(dm_thin_exit);
4543 
4544 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4545 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4546 
4547 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4548 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4549 MODULE_LICENSE("GPL");
4550