xref: /openbmc/linux/drivers/md/dm-thin.c (revision 4f6cce39)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 	bool out_of_data_space:1;
239 
240 	struct dm_bio_prison *prison;
241 	struct dm_kcopyd_client *copier;
242 
243 	struct workqueue_struct *wq;
244 	struct throttle throttle;
245 	struct work_struct worker;
246 	struct delayed_work waker;
247 	struct delayed_work no_space_timeout;
248 
249 	unsigned long last_commit_jiffies;
250 	unsigned ref_count;
251 
252 	spinlock_t lock;
253 	struct bio_list deferred_flush_bios;
254 	struct list_head prepared_mappings;
255 	struct list_head prepared_discards;
256 	struct list_head prepared_discards_pt2;
257 	struct list_head active_thins;
258 
259 	struct dm_deferred_set *shared_read_ds;
260 	struct dm_deferred_set *all_io_ds;
261 
262 	struct dm_thin_new_mapping *next_mapping;
263 	mempool_t *mapping_pool;
264 
265 	process_bio_fn process_bio;
266 	process_bio_fn process_discard;
267 
268 	process_cell_fn process_cell;
269 	process_cell_fn process_discard_cell;
270 
271 	process_mapping_fn process_prepared_mapping;
272 	process_mapping_fn process_prepared_discard;
273 	process_mapping_fn process_prepared_discard_pt2;
274 
275 	struct dm_bio_prison_cell **cell_sort_array;
276 };
277 
278 static enum pool_mode get_pool_mode(struct pool *pool);
279 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280 
281 /*
282  * Target context for a pool.
283  */
284 struct pool_c {
285 	struct dm_target *ti;
286 	struct pool *pool;
287 	struct dm_dev *data_dev;
288 	struct dm_dev *metadata_dev;
289 	struct dm_target_callbacks callbacks;
290 
291 	dm_block_t low_water_blocks;
292 	struct pool_features requested_pf; /* Features requested during table load */
293 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
294 };
295 
296 /*
297  * Target context for a thin.
298  */
299 struct thin_c {
300 	struct list_head list;
301 	struct dm_dev *pool_dev;
302 	struct dm_dev *origin_dev;
303 	sector_t origin_size;
304 	dm_thin_id dev_id;
305 
306 	struct pool *pool;
307 	struct dm_thin_device *td;
308 	struct mapped_device *thin_md;
309 
310 	bool requeue_mode:1;
311 	spinlock_t lock;
312 	struct list_head deferred_cells;
313 	struct bio_list deferred_bio_list;
314 	struct bio_list retry_on_resume_list;
315 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
316 
317 	/*
318 	 * Ensures the thin is not destroyed until the worker has finished
319 	 * iterating the active_thins list.
320 	 */
321 	atomic_t refcount;
322 	struct completion can_destroy;
323 };
324 
325 /*----------------------------------------------------------------*/
326 
327 static bool block_size_is_power_of_two(struct pool *pool)
328 {
329 	return pool->sectors_per_block_shift >= 0;
330 }
331 
332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
333 {
334 	return block_size_is_power_of_two(pool) ?
335 		(b << pool->sectors_per_block_shift) :
336 		(b * pool->sectors_per_block);
337 }
338 
339 /*----------------------------------------------------------------*/
340 
341 struct discard_op {
342 	struct thin_c *tc;
343 	struct blk_plug plug;
344 	struct bio *parent_bio;
345 	struct bio *bio;
346 };
347 
348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
349 {
350 	BUG_ON(!parent);
351 
352 	op->tc = tc;
353 	blk_start_plug(&op->plug);
354 	op->parent_bio = parent;
355 	op->bio = NULL;
356 }
357 
358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
359 {
360 	struct thin_c *tc = op->tc;
361 	sector_t s = block_to_sectors(tc->pool, data_b);
362 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363 
364 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365 				      GFP_NOWAIT, 0, &op->bio);
366 }
367 
368 static void end_discard(struct discard_op *op, int r)
369 {
370 	if (op->bio) {
371 		/*
372 		 * Even if one of the calls to issue_discard failed, we
373 		 * need to wait for the chain to complete.
374 		 */
375 		bio_chain(op->bio, op->parent_bio);
376 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377 		submit_bio(op->bio);
378 	}
379 
380 	blk_finish_plug(&op->plug);
381 
382 	/*
383 	 * Even if r is set, there could be sub discards in flight that we
384 	 * need to wait for.
385 	 */
386 	if (r && !op->parent_bio->bi_error)
387 		op->parent_bio->bi_error = r;
388 	bio_endio(op->parent_bio);
389 }
390 
391 /*----------------------------------------------------------------*/
392 
393 /*
394  * wake_worker() is used when new work is queued and when pool_resume is
395  * ready to continue deferred IO processing.
396  */
397 static void wake_worker(struct pool *pool)
398 {
399 	queue_work(pool->wq, &pool->worker);
400 }
401 
402 /*----------------------------------------------------------------*/
403 
404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405 		      struct dm_bio_prison_cell **cell_result)
406 {
407 	int r;
408 	struct dm_bio_prison_cell *cell_prealloc;
409 
410 	/*
411 	 * Allocate a cell from the prison's mempool.
412 	 * This might block but it can't fail.
413 	 */
414 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
415 
416 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417 	if (r)
418 		/*
419 		 * We reused an old cell; we can get rid of
420 		 * the new one.
421 		 */
422 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
423 
424 	return r;
425 }
426 
427 static void cell_release(struct pool *pool,
428 			 struct dm_bio_prison_cell *cell,
429 			 struct bio_list *bios)
430 {
431 	dm_cell_release(pool->prison, cell, bios);
432 	dm_bio_prison_free_cell(pool->prison, cell);
433 }
434 
435 static void cell_visit_release(struct pool *pool,
436 			       void (*fn)(void *, struct dm_bio_prison_cell *),
437 			       void *context,
438 			       struct dm_bio_prison_cell *cell)
439 {
440 	dm_cell_visit_release(pool->prison, fn, context, cell);
441 	dm_bio_prison_free_cell(pool->prison, cell);
442 }
443 
444 static void cell_release_no_holder(struct pool *pool,
445 				   struct dm_bio_prison_cell *cell,
446 				   struct bio_list *bios)
447 {
448 	dm_cell_release_no_holder(pool->prison, cell, bios);
449 	dm_bio_prison_free_cell(pool->prison, cell);
450 }
451 
452 static void cell_error_with_code(struct pool *pool,
453 				 struct dm_bio_prison_cell *cell, int error_code)
454 {
455 	dm_cell_error(pool->prison, cell, error_code);
456 	dm_bio_prison_free_cell(pool->prison, cell);
457 }
458 
459 static int get_pool_io_error_code(struct pool *pool)
460 {
461 	return pool->out_of_data_space ? -ENOSPC : -EIO;
462 }
463 
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466 	int error = get_pool_io_error_code(pool);
467 
468 	cell_error_with_code(pool, cell, error);
469 }
470 
471 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
472 {
473 	cell_error_with_code(pool, cell, 0);
474 }
475 
476 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
477 {
478 	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
479 }
480 
481 /*----------------------------------------------------------------*/
482 
483 /*
484  * A global list of pools that uses a struct mapped_device as a key.
485  */
486 static struct dm_thin_pool_table {
487 	struct mutex mutex;
488 	struct list_head pools;
489 } dm_thin_pool_table;
490 
491 static void pool_table_init(void)
492 {
493 	mutex_init(&dm_thin_pool_table.mutex);
494 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
495 }
496 
497 static void __pool_table_insert(struct pool *pool)
498 {
499 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
500 	list_add(&pool->list, &dm_thin_pool_table.pools);
501 }
502 
503 static void __pool_table_remove(struct pool *pool)
504 {
505 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
506 	list_del(&pool->list);
507 }
508 
509 static struct pool *__pool_table_lookup(struct mapped_device *md)
510 {
511 	struct pool *pool = NULL, *tmp;
512 
513 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
514 
515 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
516 		if (tmp->pool_md == md) {
517 			pool = tmp;
518 			break;
519 		}
520 	}
521 
522 	return pool;
523 }
524 
525 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
526 {
527 	struct pool *pool = NULL, *tmp;
528 
529 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
530 
531 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
532 		if (tmp->md_dev == md_dev) {
533 			pool = tmp;
534 			break;
535 		}
536 	}
537 
538 	return pool;
539 }
540 
541 /*----------------------------------------------------------------*/
542 
543 struct dm_thin_endio_hook {
544 	struct thin_c *tc;
545 	struct dm_deferred_entry *shared_read_entry;
546 	struct dm_deferred_entry *all_io_entry;
547 	struct dm_thin_new_mapping *overwrite_mapping;
548 	struct rb_node rb_node;
549 	struct dm_bio_prison_cell *cell;
550 };
551 
552 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
553 {
554 	bio_list_merge(bios, master);
555 	bio_list_init(master);
556 }
557 
558 static void error_bio_list(struct bio_list *bios, int error)
559 {
560 	struct bio *bio;
561 
562 	while ((bio = bio_list_pop(bios))) {
563 		bio->bi_error = error;
564 		bio_endio(bio);
565 	}
566 }
567 
568 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
569 {
570 	struct bio_list bios;
571 	unsigned long flags;
572 
573 	bio_list_init(&bios);
574 
575 	spin_lock_irqsave(&tc->lock, flags);
576 	__merge_bio_list(&bios, master);
577 	spin_unlock_irqrestore(&tc->lock, flags);
578 
579 	error_bio_list(&bios, error);
580 }
581 
582 static void requeue_deferred_cells(struct thin_c *tc)
583 {
584 	struct pool *pool = tc->pool;
585 	unsigned long flags;
586 	struct list_head cells;
587 	struct dm_bio_prison_cell *cell, *tmp;
588 
589 	INIT_LIST_HEAD(&cells);
590 
591 	spin_lock_irqsave(&tc->lock, flags);
592 	list_splice_init(&tc->deferred_cells, &cells);
593 	spin_unlock_irqrestore(&tc->lock, flags);
594 
595 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
596 		cell_requeue(pool, cell);
597 }
598 
599 static void requeue_io(struct thin_c *tc)
600 {
601 	struct bio_list bios;
602 	unsigned long flags;
603 
604 	bio_list_init(&bios);
605 
606 	spin_lock_irqsave(&tc->lock, flags);
607 	__merge_bio_list(&bios, &tc->deferred_bio_list);
608 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
609 	spin_unlock_irqrestore(&tc->lock, flags);
610 
611 	error_bio_list(&bios, DM_ENDIO_REQUEUE);
612 	requeue_deferred_cells(tc);
613 }
614 
615 static void error_retry_list_with_code(struct pool *pool, int error)
616 {
617 	struct thin_c *tc;
618 
619 	rcu_read_lock();
620 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
621 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
622 	rcu_read_unlock();
623 }
624 
625 static void error_retry_list(struct pool *pool)
626 {
627 	int error = get_pool_io_error_code(pool);
628 
629 	error_retry_list_with_code(pool, error);
630 }
631 
632 /*
633  * This section of code contains the logic for processing a thin device's IO.
634  * Much of the code depends on pool object resources (lists, workqueues, etc)
635  * but most is exclusively called from the thin target rather than the thin-pool
636  * target.
637  */
638 
639 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
640 {
641 	struct pool *pool = tc->pool;
642 	sector_t block_nr = bio->bi_iter.bi_sector;
643 
644 	if (block_size_is_power_of_two(pool))
645 		block_nr >>= pool->sectors_per_block_shift;
646 	else
647 		(void) sector_div(block_nr, pool->sectors_per_block);
648 
649 	return block_nr;
650 }
651 
652 /*
653  * Returns the _complete_ blocks that this bio covers.
654  */
655 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
656 				dm_block_t *begin, dm_block_t *end)
657 {
658 	struct pool *pool = tc->pool;
659 	sector_t b = bio->bi_iter.bi_sector;
660 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
661 
662 	b += pool->sectors_per_block - 1ull; /* so we round up */
663 
664 	if (block_size_is_power_of_two(pool)) {
665 		b >>= pool->sectors_per_block_shift;
666 		e >>= pool->sectors_per_block_shift;
667 	} else {
668 		(void) sector_div(b, pool->sectors_per_block);
669 		(void) sector_div(e, pool->sectors_per_block);
670 	}
671 
672 	if (e < b)
673 		/* Can happen if the bio is within a single block. */
674 		e = b;
675 
676 	*begin = b;
677 	*end = e;
678 }
679 
680 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
681 {
682 	struct pool *pool = tc->pool;
683 	sector_t bi_sector = bio->bi_iter.bi_sector;
684 
685 	bio->bi_bdev = tc->pool_dev->bdev;
686 	if (block_size_is_power_of_two(pool))
687 		bio->bi_iter.bi_sector =
688 			(block << pool->sectors_per_block_shift) |
689 			(bi_sector & (pool->sectors_per_block - 1));
690 	else
691 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
692 				 sector_div(bi_sector, pool->sectors_per_block);
693 }
694 
695 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
696 {
697 	bio->bi_bdev = tc->origin_dev->bdev;
698 }
699 
700 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
701 {
702 	return op_is_flush(bio->bi_opf) &&
703 		dm_thin_changed_this_transaction(tc->td);
704 }
705 
706 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
707 {
708 	struct dm_thin_endio_hook *h;
709 
710 	if (bio_op(bio) == REQ_OP_DISCARD)
711 		return;
712 
713 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
714 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
715 }
716 
717 static void issue(struct thin_c *tc, struct bio *bio)
718 {
719 	struct pool *pool = tc->pool;
720 	unsigned long flags;
721 
722 	if (!bio_triggers_commit(tc, bio)) {
723 		generic_make_request(bio);
724 		return;
725 	}
726 
727 	/*
728 	 * Complete bio with an error if earlier I/O caused changes to
729 	 * the metadata that can't be committed e.g, due to I/O errors
730 	 * on the metadata device.
731 	 */
732 	if (dm_thin_aborted_changes(tc->td)) {
733 		bio_io_error(bio);
734 		return;
735 	}
736 
737 	/*
738 	 * Batch together any bios that trigger commits and then issue a
739 	 * single commit for them in process_deferred_bios().
740 	 */
741 	spin_lock_irqsave(&pool->lock, flags);
742 	bio_list_add(&pool->deferred_flush_bios, bio);
743 	spin_unlock_irqrestore(&pool->lock, flags);
744 }
745 
746 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
747 {
748 	remap_to_origin(tc, bio);
749 	issue(tc, bio);
750 }
751 
752 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
753 			    dm_block_t block)
754 {
755 	remap(tc, bio, block);
756 	issue(tc, bio);
757 }
758 
759 /*----------------------------------------------------------------*/
760 
761 /*
762  * Bio endio functions.
763  */
764 struct dm_thin_new_mapping {
765 	struct list_head list;
766 
767 	bool pass_discard:1;
768 	bool maybe_shared:1;
769 
770 	/*
771 	 * Track quiescing, copying and zeroing preparation actions.  When this
772 	 * counter hits zero the block is prepared and can be inserted into the
773 	 * btree.
774 	 */
775 	atomic_t prepare_actions;
776 
777 	int err;
778 	struct thin_c *tc;
779 	dm_block_t virt_begin, virt_end;
780 	dm_block_t data_block;
781 	struct dm_bio_prison_cell *cell;
782 
783 	/*
784 	 * If the bio covers the whole area of a block then we can avoid
785 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
786 	 * still be in the cell, so care has to be taken to avoid issuing
787 	 * the bio twice.
788 	 */
789 	struct bio *bio;
790 	bio_end_io_t *saved_bi_end_io;
791 };
792 
793 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
794 {
795 	struct pool *pool = m->tc->pool;
796 
797 	if (atomic_dec_and_test(&m->prepare_actions)) {
798 		list_add_tail(&m->list, &pool->prepared_mappings);
799 		wake_worker(pool);
800 	}
801 }
802 
803 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
804 {
805 	unsigned long flags;
806 	struct pool *pool = m->tc->pool;
807 
808 	spin_lock_irqsave(&pool->lock, flags);
809 	__complete_mapping_preparation(m);
810 	spin_unlock_irqrestore(&pool->lock, flags);
811 }
812 
813 static void copy_complete(int read_err, unsigned long write_err, void *context)
814 {
815 	struct dm_thin_new_mapping *m = context;
816 
817 	m->err = read_err || write_err ? -EIO : 0;
818 	complete_mapping_preparation(m);
819 }
820 
821 static void overwrite_endio(struct bio *bio)
822 {
823 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
824 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
825 
826 	bio->bi_end_io = m->saved_bi_end_io;
827 
828 	m->err = bio->bi_error;
829 	complete_mapping_preparation(m);
830 }
831 
832 /*----------------------------------------------------------------*/
833 
834 /*
835  * Workqueue.
836  */
837 
838 /*
839  * Prepared mapping jobs.
840  */
841 
842 /*
843  * This sends the bios in the cell, except the original holder, back
844  * to the deferred_bios list.
845  */
846 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
847 {
848 	struct pool *pool = tc->pool;
849 	unsigned long flags;
850 
851 	spin_lock_irqsave(&tc->lock, flags);
852 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
853 	spin_unlock_irqrestore(&tc->lock, flags);
854 
855 	wake_worker(pool);
856 }
857 
858 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
859 
860 struct remap_info {
861 	struct thin_c *tc;
862 	struct bio_list defer_bios;
863 	struct bio_list issue_bios;
864 };
865 
866 static void __inc_remap_and_issue_cell(void *context,
867 				       struct dm_bio_prison_cell *cell)
868 {
869 	struct remap_info *info = context;
870 	struct bio *bio;
871 
872 	while ((bio = bio_list_pop(&cell->bios))) {
873 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
874 			bio_list_add(&info->defer_bios, bio);
875 		else {
876 			inc_all_io_entry(info->tc->pool, bio);
877 
878 			/*
879 			 * We can't issue the bios with the bio prison lock
880 			 * held, so we add them to a list to issue on
881 			 * return from this function.
882 			 */
883 			bio_list_add(&info->issue_bios, bio);
884 		}
885 	}
886 }
887 
888 static void inc_remap_and_issue_cell(struct thin_c *tc,
889 				     struct dm_bio_prison_cell *cell,
890 				     dm_block_t block)
891 {
892 	struct bio *bio;
893 	struct remap_info info;
894 
895 	info.tc = tc;
896 	bio_list_init(&info.defer_bios);
897 	bio_list_init(&info.issue_bios);
898 
899 	/*
900 	 * We have to be careful to inc any bios we're about to issue
901 	 * before the cell is released, and avoid a race with new bios
902 	 * being added to the cell.
903 	 */
904 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
905 			   &info, cell);
906 
907 	while ((bio = bio_list_pop(&info.defer_bios)))
908 		thin_defer_bio(tc, bio);
909 
910 	while ((bio = bio_list_pop(&info.issue_bios)))
911 		remap_and_issue(info.tc, bio, block);
912 }
913 
914 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
915 {
916 	cell_error(m->tc->pool, m->cell);
917 	list_del(&m->list);
918 	mempool_free(m, m->tc->pool->mapping_pool);
919 }
920 
921 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
922 {
923 	struct thin_c *tc = m->tc;
924 	struct pool *pool = tc->pool;
925 	struct bio *bio = m->bio;
926 	int r;
927 
928 	if (m->err) {
929 		cell_error(pool, m->cell);
930 		goto out;
931 	}
932 
933 	/*
934 	 * Commit the prepared block into the mapping btree.
935 	 * Any I/O for this block arriving after this point will get
936 	 * remapped to it directly.
937 	 */
938 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
939 	if (r) {
940 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
941 		cell_error(pool, m->cell);
942 		goto out;
943 	}
944 
945 	/*
946 	 * Release any bios held while the block was being provisioned.
947 	 * If we are processing a write bio that completely covers the block,
948 	 * we already processed it so can ignore it now when processing
949 	 * the bios in the cell.
950 	 */
951 	if (bio) {
952 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
953 		bio_endio(bio);
954 	} else {
955 		inc_all_io_entry(tc->pool, m->cell->holder);
956 		remap_and_issue(tc, m->cell->holder, m->data_block);
957 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
958 	}
959 
960 out:
961 	list_del(&m->list);
962 	mempool_free(m, pool->mapping_pool);
963 }
964 
965 /*----------------------------------------------------------------*/
966 
967 static void free_discard_mapping(struct dm_thin_new_mapping *m)
968 {
969 	struct thin_c *tc = m->tc;
970 	if (m->cell)
971 		cell_defer_no_holder(tc, m->cell);
972 	mempool_free(m, tc->pool->mapping_pool);
973 }
974 
975 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
976 {
977 	bio_io_error(m->bio);
978 	free_discard_mapping(m);
979 }
980 
981 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
982 {
983 	bio_endio(m->bio);
984 	free_discard_mapping(m);
985 }
986 
987 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
988 {
989 	int r;
990 	struct thin_c *tc = m->tc;
991 
992 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
993 	if (r) {
994 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
995 		bio_io_error(m->bio);
996 	} else
997 		bio_endio(m->bio);
998 
999 	cell_defer_no_holder(tc, m->cell);
1000 	mempool_free(m, tc->pool->mapping_pool);
1001 }
1002 
1003 /*----------------------------------------------------------------*/
1004 
1005 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1006 						   struct bio *discard_parent)
1007 {
1008 	/*
1009 	 * We've already unmapped this range of blocks, but before we
1010 	 * passdown we have to check that these blocks are now unused.
1011 	 */
1012 	int r = 0;
1013 	bool used = true;
1014 	struct thin_c *tc = m->tc;
1015 	struct pool *pool = tc->pool;
1016 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1017 	struct discard_op op;
1018 
1019 	begin_discard(&op, tc, discard_parent);
1020 	while (b != end) {
1021 		/* find start of unmapped run */
1022 		for (; b < end; b++) {
1023 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1024 			if (r)
1025 				goto out;
1026 
1027 			if (!used)
1028 				break;
1029 		}
1030 
1031 		if (b == end)
1032 			break;
1033 
1034 		/* find end of run */
1035 		for (e = b + 1; e != end; e++) {
1036 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1037 			if (r)
1038 				goto out;
1039 
1040 			if (used)
1041 				break;
1042 		}
1043 
1044 		r = issue_discard(&op, b, e);
1045 		if (r)
1046 			goto out;
1047 
1048 		b = e;
1049 	}
1050 out:
1051 	end_discard(&op, r);
1052 }
1053 
1054 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1055 {
1056 	unsigned long flags;
1057 	struct pool *pool = m->tc->pool;
1058 
1059 	spin_lock_irqsave(&pool->lock, flags);
1060 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1061 	spin_unlock_irqrestore(&pool->lock, flags);
1062 	wake_worker(pool);
1063 }
1064 
1065 static void passdown_endio(struct bio *bio)
1066 {
1067 	/*
1068 	 * It doesn't matter if the passdown discard failed, we still want
1069 	 * to unmap (we ignore err).
1070 	 */
1071 	queue_passdown_pt2(bio->bi_private);
1072 }
1073 
1074 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1075 {
1076 	int r;
1077 	struct thin_c *tc = m->tc;
1078 	struct pool *pool = tc->pool;
1079 	struct bio *discard_parent;
1080 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1081 
1082 	/*
1083 	 * Only this thread allocates blocks, so we can be sure that the
1084 	 * newly unmapped blocks will not be allocated before the end of
1085 	 * the function.
1086 	 */
1087 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1088 	if (r) {
1089 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1090 		bio_io_error(m->bio);
1091 		cell_defer_no_holder(tc, m->cell);
1092 		mempool_free(m, pool->mapping_pool);
1093 		return;
1094 	}
1095 
1096 	discard_parent = bio_alloc(GFP_NOIO, 1);
1097 	if (!discard_parent) {
1098 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1099 		       dm_device_name(tc->pool->pool_md));
1100 		queue_passdown_pt2(m);
1101 
1102 	} else {
1103 		discard_parent->bi_end_io = passdown_endio;
1104 		discard_parent->bi_private = m;
1105 
1106 		if (m->maybe_shared)
1107 			passdown_double_checking_shared_status(m, discard_parent);
1108 		else {
1109 			struct discard_op op;
1110 
1111 			begin_discard(&op, tc, discard_parent);
1112 			r = issue_discard(&op, m->data_block, data_end);
1113 			end_discard(&op, r);
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * Increment the unmapped blocks.  This prevents a race between the
1119 	 * passdown io and reallocation of freed blocks.
1120 	 */
1121 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1122 	if (r) {
1123 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1124 		bio_io_error(m->bio);
1125 		cell_defer_no_holder(tc, m->cell);
1126 		mempool_free(m, pool->mapping_pool);
1127 		return;
1128 	}
1129 }
1130 
1131 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1132 {
1133 	int r;
1134 	struct thin_c *tc = m->tc;
1135 	struct pool *pool = tc->pool;
1136 
1137 	/*
1138 	 * The passdown has completed, so now we can decrement all those
1139 	 * unmapped blocks.
1140 	 */
1141 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1142 				   m->data_block + (m->virt_end - m->virt_begin));
1143 	if (r) {
1144 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1145 		bio_io_error(m->bio);
1146 	} else
1147 		bio_endio(m->bio);
1148 
1149 	cell_defer_no_holder(tc, m->cell);
1150 	mempool_free(m, pool->mapping_pool);
1151 }
1152 
1153 static void process_prepared(struct pool *pool, struct list_head *head,
1154 			     process_mapping_fn *fn)
1155 {
1156 	unsigned long flags;
1157 	struct list_head maps;
1158 	struct dm_thin_new_mapping *m, *tmp;
1159 
1160 	INIT_LIST_HEAD(&maps);
1161 	spin_lock_irqsave(&pool->lock, flags);
1162 	list_splice_init(head, &maps);
1163 	spin_unlock_irqrestore(&pool->lock, flags);
1164 
1165 	list_for_each_entry_safe(m, tmp, &maps, list)
1166 		(*fn)(m);
1167 }
1168 
1169 /*
1170  * Deferred bio jobs.
1171  */
1172 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1173 {
1174 	return bio->bi_iter.bi_size ==
1175 		(pool->sectors_per_block << SECTOR_SHIFT);
1176 }
1177 
1178 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1179 {
1180 	return (bio_data_dir(bio) == WRITE) &&
1181 		io_overlaps_block(pool, bio);
1182 }
1183 
1184 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1185 			       bio_end_io_t *fn)
1186 {
1187 	*save = bio->bi_end_io;
1188 	bio->bi_end_io = fn;
1189 }
1190 
1191 static int ensure_next_mapping(struct pool *pool)
1192 {
1193 	if (pool->next_mapping)
1194 		return 0;
1195 
1196 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1197 
1198 	return pool->next_mapping ? 0 : -ENOMEM;
1199 }
1200 
1201 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1202 {
1203 	struct dm_thin_new_mapping *m = pool->next_mapping;
1204 
1205 	BUG_ON(!pool->next_mapping);
1206 
1207 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1208 	INIT_LIST_HEAD(&m->list);
1209 	m->bio = NULL;
1210 
1211 	pool->next_mapping = NULL;
1212 
1213 	return m;
1214 }
1215 
1216 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1217 		    sector_t begin, sector_t end)
1218 {
1219 	int r;
1220 	struct dm_io_region to;
1221 
1222 	to.bdev = tc->pool_dev->bdev;
1223 	to.sector = begin;
1224 	to.count = end - begin;
1225 
1226 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1227 	if (r < 0) {
1228 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1229 		copy_complete(1, 1, m);
1230 	}
1231 }
1232 
1233 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1234 				      dm_block_t data_begin,
1235 				      struct dm_thin_new_mapping *m)
1236 {
1237 	struct pool *pool = tc->pool;
1238 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1239 
1240 	h->overwrite_mapping = m;
1241 	m->bio = bio;
1242 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1243 	inc_all_io_entry(pool, bio);
1244 	remap_and_issue(tc, bio, data_begin);
1245 }
1246 
1247 /*
1248  * A partial copy also needs to zero the uncopied region.
1249  */
1250 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1251 			  struct dm_dev *origin, dm_block_t data_origin,
1252 			  dm_block_t data_dest,
1253 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1254 			  sector_t len)
1255 {
1256 	int r;
1257 	struct pool *pool = tc->pool;
1258 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1259 
1260 	m->tc = tc;
1261 	m->virt_begin = virt_block;
1262 	m->virt_end = virt_block + 1u;
1263 	m->data_block = data_dest;
1264 	m->cell = cell;
1265 
1266 	/*
1267 	 * quiesce action + copy action + an extra reference held for the
1268 	 * duration of this function (we may need to inc later for a
1269 	 * partial zero).
1270 	 */
1271 	atomic_set(&m->prepare_actions, 3);
1272 
1273 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1274 		complete_mapping_preparation(m); /* already quiesced */
1275 
1276 	/*
1277 	 * IO to pool_dev remaps to the pool target's data_dev.
1278 	 *
1279 	 * If the whole block of data is being overwritten, we can issue the
1280 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1281 	 */
1282 	if (io_overwrites_block(pool, bio))
1283 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1284 	else {
1285 		struct dm_io_region from, to;
1286 
1287 		from.bdev = origin->bdev;
1288 		from.sector = data_origin * pool->sectors_per_block;
1289 		from.count = len;
1290 
1291 		to.bdev = tc->pool_dev->bdev;
1292 		to.sector = data_dest * pool->sectors_per_block;
1293 		to.count = len;
1294 
1295 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1296 				   0, copy_complete, m);
1297 		if (r < 0) {
1298 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1299 			copy_complete(1, 1, m);
1300 
1301 			/*
1302 			 * We allow the zero to be issued, to simplify the
1303 			 * error path.  Otherwise we'd need to start
1304 			 * worrying about decrementing the prepare_actions
1305 			 * counter.
1306 			 */
1307 		}
1308 
1309 		/*
1310 		 * Do we need to zero a tail region?
1311 		 */
1312 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1313 			atomic_inc(&m->prepare_actions);
1314 			ll_zero(tc, m,
1315 				data_dest * pool->sectors_per_block + len,
1316 				(data_dest + 1) * pool->sectors_per_block);
1317 		}
1318 	}
1319 
1320 	complete_mapping_preparation(m); /* drop our ref */
1321 }
1322 
1323 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1324 				   dm_block_t data_origin, dm_block_t data_dest,
1325 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1326 {
1327 	schedule_copy(tc, virt_block, tc->pool_dev,
1328 		      data_origin, data_dest, cell, bio,
1329 		      tc->pool->sectors_per_block);
1330 }
1331 
1332 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1333 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1334 			  struct bio *bio)
1335 {
1336 	struct pool *pool = tc->pool;
1337 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1338 
1339 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1340 	m->tc = tc;
1341 	m->virt_begin = virt_block;
1342 	m->virt_end = virt_block + 1u;
1343 	m->data_block = data_block;
1344 	m->cell = cell;
1345 
1346 	/*
1347 	 * If the whole block of data is being overwritten or we are not
1348 	 * zeroing pre-existing data, we can issue the bio immediately.
1349 	 * Otherwise we use kcopyd to zero the data first.
1350 	 */
1351 	if (pool->pf.zero_new_blocks) {
1352 		if (io_overwrites_block(pool, bio))
1353 			remap_and_issue_overwrite(tc, bio, data_block, m);
1354 		else
1355 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1356 				(data_block + 1) * pool->sectors_per_block);
1357 	} else
1358 		process_prepared_mapping(m);
1359 }
1360 
1361 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1362 				   dm_block_t data_dest,
1363 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1364 {
1365 	struct pool *pool = tc->pool;
1366 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1367 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1368 
1369 	if (virt_block_end <= tc->origin_size)
1370 		schedule_copy(tc, virt_block, tc->origin_dev,
1371 			      virt_block, data_dest, cell, bio,
1372 			      pool->sectors_per_block);
1373 
1374 	else if (virt_block_begin < tc->origin_size)
1375 		schedule_copy(tc, virt_block, tc->origin_dev,
1376 			      virt_block, data_dest, cell, bio,
1377 			      tc->origin_size - virt_block_begin);
1378 
1379 	else
1380 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1381 }
1382 
1383 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1384 
1385 static void check_for_space(struct pool *pool)
1386 {
1387 	int r;
1388 	dm_block_t nr_free;
1389 
1390 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1391 		return;
1392 
1393 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1394 	if (r)
1395 		return;
1396 
1397 	if (nr_free)
1398 		set_pool_mode(pool, PM_WRITE);
1399 }
1400 
1401 /*
1402  * A non-zero return indicates read_only or fail_io mode.
1403  * Many callers don't care about the return value.
1404  */
1405 static int commit(struct pool *pool)
1406 {
1407 	int r;
1408 
1409 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1410 		return -EINVAL;
1411 
1412 	r = dm_pool_commit_metadata(pool->pmd);
1413 	if (r)
1414 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1415 	else
1416 		check_for_space(pool);
1417 
1418 	return r;
1419 }
1420 
1421 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1422 {
1423 	unsigned long flags;
1424 
1425 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1426 		DMWARN("%s: reached low water mark for data device: sending event.",
1427 		       dm_device_name(pool->pool_md));
1428 		spin_lock_irqsave(&pool->lock, flags);
1429 		pool->low_water_triggered = true;
1430 		spin_unlock_irqrestore(&pool->lock, flags);
1431 		dm_table_event(pool->ti->table);
1432 	}
1433 }
1434 
1435 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1436 {
1437 	int r;
1438 	dm_block_t free_blocks;
1439 	struct pool *pool = tc->pool;
1440 
1441 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1442 		return -EINVAL;
1443 
1444 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1445 	if (r) {
1446 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1447 		return r;
1448 	}
1449 
1450 	check_low_water_mark(pool, free_blocks);
1451 
1452 	if (!free_blocks) {
1453 		/*
1454 		 * Try to commit to see if that will free up some
1455 		 * more space.
1456 		 */
1457 		r = commit(pool);
1458 		if (r)
1459 			return r;
1460 
1461 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1462 		if (r) {
1463 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1464 			return r;
1465 		}
1466 
1467 		if (!free_blocks) {
1468 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1469 			return -ENOSPC;
1470 		}
1471 	}
1472 
1473 	r = dm_pool_alloc_data_block(pool->pmd, result);
1474 	if (r) {
1475 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1476 		return r;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 /*
1483  * If we have run out of space, queue bios until the device is
1484  * resumed, presumably after having been reloaded with more space.
1485  */
1486 static void retry_on_resume(struct bio *bio)
1487 {
1488 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1489 	struct thin_c *tc = h->tc;
1490 	unsigned long flags;
1491 
1492 	spin_lock_irqsave(&tc->lock, flags);
1493 	bio_list_add(&tc->retry_on_resume_list, bio);
1494 	spin_unlock_irqrestore(&tc->lock, flags);
1495 }
1496 
1497 static int should_error_unserviceable_bio(struct pool *pool)
1498 {
1499 	enum pool_mode m = get_pool_mode(pool);
1500 
1501 	switch (m) {
1502 	case PM_WRITE:
1503 		/* Shouldn't get here */
1504 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1505 		return -EIO;
1506 
1507 	case PM_OUT_OF_DATA_SPACE:
1508 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1509 
1510 	case PM_READ_ONLY:
1511 	case PM_FAIL:
1512 		return -EIO;
1513 	default:
1514 		/* Shouldn't get here */
1515 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1516 		return -EIO;
1517 	}
1518 }
1519 
1520 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1521 {
1522 	int error = should_error_unserviceable_bio(pool);
1523 
1524 	if (error) {
1525 		bio->bi_error = error;
1526 		bio_endio(bio);
1527 	} else
1528 		retry_on_resume(bio);
1529 }
1530 
1531 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1532 {
1533 	struct bio *bio;
1534 	struct bio_list bios;
1535 	int error;
1536 
1537 	error = should_error_unserviceable_bio(pool);
1538 	if (error) {
1539 		cell_error_with_code(pool, cell, error);
1540 		return;
1541 	}
1542 
1543 	bio_list_init(&bios);
1544 	cell_release(pool, cell, &bios);
1545 
1546 	while ((bio = bio_list_pop(&bios)))
1547 		retry_on_resume(bio);
1548 }
1549 
1550 static void process_discard_cell_no_passdown(struct thin_c *tc,
1551 					     struct dm_bio_prison_cell *virt_cell)
1552 {
1553 	struct pool *pool = tc->pool;
1554 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1555 
1556 	/*
1557 	 * We don't need to lock the data blocks, since there's no
1558 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1559 	 */
1560 	m->tc = tc;
1561 	m->virt_begin = virt_cell->key.block_begin;
1562 	m->virt_end = virt_cell->key.block_end;
1563 	m->cell = virt_cell;
1564 	m->bio = virt_cell->holder;
1565 
1566 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1567 		pool->process_prepared_discard(m);
1568 }
1569 
1570 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1571 				 struct bio *bio)
1572 {
1573 	struct pool *pool = tc->pool;
1574 
1575 	int r;
1576 	bool maybe_shared;
1577 	struct dm_cell_key data_key;
1578 	struct dm_bio_prison_cell *data_cell;
1579 	struct dm_thin_new_mapping *m;
1580 	dm_block_t virt_begin, virt_end, data_begin;
1581 
1582 	while (begin != end) {
1583 		r = ensure_next_mapping(pool);
1584 		if (r)
1585 			/* we did our best */
1586 			return;
1587 
1588 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1589 					      &data_begin, &maybe_shared);
1590 		if (r)
1591 			/*
1592 			 * Silently fail, letting any mappings we've
1593 			 * created complete.
1594 			 */
1595 			break;
1596 
1597 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1598 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1599 			/* contention, we'll give up with this range */
1600 			begin = virt_end;
1601 			continue;
1602 		}
1603 
1604 		/*
1605 		 * IO may still be going to the destination block.  We must
1606 		 * quiesce before we can do the removal.
1607 		 */
1608 		m = get_next_mapping(pool);
1609 		m->tc = tc;
1610 		m->maybe_shared = maybe_shared;
1611 		m->virt_begin = virt_begin;
1612 		m->virt_end = virt_end;
1613 		m->data_block = data_begin;
1614 		m->cell = data_cell;
1615 		m->bio = bio;
1616 
1617 		/*
1618 		 * The parent bio must not complete before sub discard bios are
1619 		 * chained to it (see end_discard's bio_chain)!
1620 		 *
1621 		 * This per-mapping bi_remaining increment is paired with
1622 		 * the implicit decrement that occurs via bio_endio() in
1623 		 * end_discard().
1624 		 */
1625 		bio_inc_remaining(bio);
1626 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1627 			pool->process_prepared_discard(m);
1628 
1629 		begin = virt_end;
1630 	}
1631 }
1632 
1633 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1634 {
1635 	struct bio *bio = virt_cell->holder;
1636 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1637 
1638 	/*
1639 	 * The virt_cell will only get freed once the origin bio completes.
1640 	 * This means it will remain locked while all the individual
1641 	 * passdown bios are in flight.
1642 	 */
1643 	h->cell = virt_cell;
1644 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1645 
1646 	/*
1647 	 * We complete the bio now, knowing that the bi_remaining field
1648 	 * will prevent completion until the sub range discards have
1649 	 * completed.
1650 	 */
1651 	bio_endio(bio);
1652 }
1653 
1654 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1655 {
1656 	dm_block_t begin, end;
1657 	struct dm_cell_key virt_key;
1658 	struct dm_bio_prison_cell *virt_cell;
1659 
1660 	get_bio_block_range(tc, bio, &begin, &end);
1661 	if (begin == end) {
1662 		/*
1663 		 * The discard covers less than a block.
1664 		 */
1665 		bio_endio(bio);
1666 		return;
1667 	}
1668 
1669 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1670 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1671 		/*
1672 		 * Potential starvation issue: We're relying on the
1673 		 * fs/application being well behaved, and not trying to
1674 		 * send IO to a region at the same time as discarding it.
1675 		 * If they do this persistently then it's possible this
1676 		 * cell will never be granted.
1677 		 */
1678 		return;
1679 
1680 	tc->pool->process_discard_cell(tc, virt_cell);
1681 }
1682 
1683 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1684 			  struct dm_cell_key *key,
1685 			  struct dm_thin_lookup_result *lookup_result,
1686 			  struct dm_bio_prison_cell *cell)
1687 {
1688 	int r;
1689 	dm_block_t data_block;
1690 	struct pool *pool = tc->pool;
1691 
1692 	r = alloc_data_block(tc, &data_block);
1693 	switch (r) {
1694 	case 0:
1695 		schedule_internal_copy(tc, block, lookup_result->block,
1696 				       data_block, cell, bio);
1697 		break;
1698 
1699 	case -ENOSPC:
1700 		retry_bios_on_resume(pool, cell);
1701 		break;
1702 
1703 	default:
1704 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1705 			    __func__, r);
1706 		cell_error(pool, cell);
1707 		break;
1708 	}
1709 }
1710 
1711 static void __remap_and_issue_shared_cell(void *context,
1712 					  struct dm_bio_prison_cell *cell)
1713 {
1714 	struct remap_info *info = context;
1715 	struct bio *bio;
1716 
1717 	while ((bio = bio_list_pop(&cell->bios))) {
1718 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1719 		    bio_op(bio) == REQ_OP_DISCARD)
1720 			bio_list_add(&info->defer_bios, bio);
1721 		else {
1722 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1723 
1724 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1725 			inc_all_io_entry(info->tc->pool, bio);
1726 			bio_list_add(&info->issue_bios, bio);
1727 		}
1728 	}
1729 }
1730 
1731 static void remap_and_issue_shared_cell(struct thin_c *tc,
1732 					struct dm_bio_prison_cell *cell,
1733 					dm_block_t block)
1734 {
1735 	struct bio *bio;
1736 	struct remap_info info;
1737 
1738 	info.tc = tc;
1739 	bio_list_init(&info.defer_bios);
1740 	bio_list_init(&info.issue_bios);
1741 
1742 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1743 			   &info, cell);
1744 
1745 	while ((bio = bio_list_pop(&info.defer_bios)))
1746 		thin_defer_bio(tc, bio);
1747 
1748 	while ((bio = bio_list_pop(&info.issue_bios)))
1749 		remap_and_issue(tc, bio, block);
1750 }
1751 
1752 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1753 			       dm_block_t block,
1754 			       struct dm_thin_lookup_result *lookup_result,
1755 			       struct dm_bio_prison_cell *virt_cell)
1756 {
1757 	struct dm_bio_prison_cell *data_cell;
1758 	struct pool *pool = tc->pool;
1759 	struct dm_cell_key key;
1760 
1761 	/*
1762 	 * If cell is already occupied, then sharing is already in the process
1763 	 * of being broken so we have nothing further to do here.
1764 	 */
1765 	build_data_key(tc->td, lookup_result->block, &key);
1766 	if (bio_detain(pool, &key, bio, &data_cell)) {
1767 		cell_defer_no_holder(tc, virt_cell);
1768 		return;
1769 	}
1770 
1771 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1772 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1773 		cell_defer_no_holder(tc, virt_cell);
1774 	} else {
1775 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1776 
1777 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1778 		inc_all_io_entry(pool, bio);
1779 		remap_and_issue(tc, bio, lookup_result->block);
1780 
1781 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1782 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1783 	}
1784 }
1785 
1786 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1787 			    struct dm_bio_prison_cell *cell)
1788 {
1789 	int r;
1790 	dm_block_t data_block;
1791 	struct pool *pool = tc->pool;
1792 
1793 	/*
1794 	 * Remap empty bios (flushes) immediately, without provisioning.
1795 	 */
1796 	if (!bio->bi_iter.bi_size) {
1797 		inc_all_io_entry(pool, bio);
1798 		cell_defer_no_holder(tc, cell);
1799 
1800 		remap_and_issue(tc, bio, 0);
1801 		return;
1802 	}
1803 
1804 	/*
1805 	 * Fill read bios with zeroes and complete them immediately.
1806 	 */
1807 	if (bio_data_dir(bio) == READ) {
1808 		zero_fill_bio(bio);
1809 		cell_defer_no_holder(tc, cell);
1810 		bio_endio(bio);
1811 		return;
1812 	}
1813 
1814 	r = alloc_data_block(tc, &data_block);
1815 	switch (r) {
1816 	case 0:
1817 		if (tc->origin_dev)
1818 			schedule_external_copy(tc, block, data_block, cell, bio);
1819 		else
1820 			schedule_zero(tc, block, data_block, cell, bio);
1821 		break;
1822 
1823 	case -ENOSPC:
1824 		retry_bios_on_resume(pool, cell);
1825 		break;
1826 
1827 	default:
1828 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1829 			    __func__, r);
1830 		cell_error(pool, cell);
1831 		break;
1832 	}
1833 }
1834 
1835 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1836 {
1837 	int r;
1838 	struct pool *pool = tc->pool;
1839 	struct bio *bio = cell->holder;
1840 	dm_block_t block = get_bio_block(tc, bio);
1841 	struct dm_thin_lookup_result lookup_result;
1842 
1843 	if (tc->requeue_mode) {
1844 		cell_requeue(pool, cell);
1845 		return;
1846 	}
1847 
1848 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1849 	switch (r) {
1850 	case 0:
1851 		if (lookup_result.shared)
1852 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1853 		else {
1854 			inc_all_io_entry(pool, bio);
1855 			remap_and_issue(tc, bio, lookup_result.block);
1856 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1857 		}
1858 		break;
1859 
1860 	case -ENODATA:
1861 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1862 			inc_all_io_entry(pool, bio);
1863 			cell_defer_no_holder(tc, cell);
1864 
1865 			if (bio_end_sector(bio) <= tc->origin_size)
1866 				remap_to_origin_and_issue(tc, bio);
1867 
1868 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1869 				zero_fill_bio(bio);
1870 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1871 				remap_to_origin_and_issue(tc, bio);
1872 
1873 			} else {
1874 				zero_fill_bio(bio);
1875 				bio_endio(bio);
1876 			}
1877 		} else
1878 			provision_block(tc, bio, block, cell);
1879 		break;
1880 
1881 	default:
1882 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1883 			    __func__, r);
1884 		cell_defer_no_holder(tc, cell);
1885 		bio_io_error(bio);
1886 		break;
1887 	}
1888 }
1889 
1890 static void process_bio(struct thin_c *tc, struct bio *bio)
1891 {
1892 	struct pool *pool = tc->pool;
1893 	dm_block_t block = get_bio_block(tc, bio);
1894 	struct dm_bio_prison_cell *cell;
1895 	struct dm_cell_key key;
1896 
1897 	/*
1898 	 * If cell is already occupied, then the block is already
1899 	 * being provisioned so we have nothing further to do here.
1900 	 */
1901 	build_virtual_key(tc->td, block, &key);
1902 	if (bio_detain(pool, &key, bio, &cell))
1903 		return;
1904 
1905 	process_cell(tc, cell);
1906 }
1907 
1908 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1909 				    struct dm_bio_prison_cell *cell)
1910 {
1911 	int r;
1912 	int rw = bio_data_dir(bio);
1913 	dm_block_t block = get_bio_block(tc, bio);
1914 	struct dm_thin_lookup_result lookup_result;
1915 
1916 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1917 	switch (r) {
1918 	case 0:
1919 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1920 			handle_unserviceable_bio(tc->pool, bio);
1921 			if (cell)
1922 				cell_defer_no_holder(tc, cell);
1923 		} else {
1924 			inc_all_io_entry(tc->pool, bio);
1925 			remap_and_issue(tc, bio, lookup_result.block);
1926 			if (cell)
1927 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1928 		}
1929 		break;
1930 
1931 	case -ENODATA:
1932 		if (cell)
1933 			cell_defer_no_holder(tc, cell);
1934 		if (rw != READ) {
1935 			handle_unserviceable_bio(tc->pool, bio);
1936 			break;
1937 		}
1938 
1939 		if (tc->origin_dev) {
1940 			inc_all_io_entry(tc->pool, bio);
1941 			remap_to_origin_and_issue(tc, bio);
1942 			break;
1943 		}
1944 
1945 		zero_fill_bio(bio);
1946 		bio_endio(bio);
1947 		break;
1948 
1949 	default:
1950 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1951 			    __func__, r);
1952 		if (cell)
1953 			cell_defer_no_holder(tc, cell);
1954 		bio_io_error(bio);
1955 		break;
1956 	}
1957 }
1958 
1959 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1960 {
1961 	__process_bio_read_only(tc, bio, NULL);
1962 }
1963 
1964 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1965 {
1966 	__process_bio_read_only(tc, cell->holder, cell);
1967 }
1968 
1969 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1970 {
1971 	bio_endio(bio);
1972 }
1973 
1974 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1975 {
1976 	bio_io_error(bio);
1977 }
1978 
1979 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1980 {
1981 	cell_success(tc->pool, cell);
1982 }
1983 
1984 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1985 {
1986 	cell_error(tc->pool, cell);
1987 }
1988 
1989 /*
1990  * FIXME: should we also commit due to size of transaction, measured in
1991  * metadata blocks?
1992  */
1993 static int need_commit_due_to_time(struct pool *pool)
1994 {
1995 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1996 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1997 }
1998 
1999 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2000 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2001 
2002 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2003 {
2004 	struct rb_node **rbp, *parent;
2005 	struct dm_thin_endio_hook *pbd;
2006 	sector_t bi_sector = bio->bi_iter.bi_sector;
2007 
2008 	rbp = &tc->sort_bio_list.rb_node;
2009 	parent = NULL;
2010 	while (*rbp) {
2011 		parent = *rbp;
2012 		pbd = thin_pbd(parent);
2013 
2014 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2015 			rbp = &(*rbp)->rb_left;
2016 		else
2017 			rbp = &(*rbp)->rb_right;
2018 	}
2019 
2020 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2021 	rb_link_node(&pbd->rb_node, parent, rbp);
2022 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2023 }
2024 
2025 static void __extract_sorted_bios(struct thin_c *tc)
2026 {
2027 	struct rb_node *node;
2028 	struct dm_thin_endio_hook *pbd;
2029 	struct bio *bio;
2030 
2031 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2032 		pbd = thin_pbd(node);
2033 		bio = thin_bio(pbd);
2034 
2035 		bio_list_add(&tc->deferred_bio_list, bio);
2036 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2037 	}
2038 
2039 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2040 }
2041 
2042 static void __sort_thin_deferred_bios(struct thin_c *tc)
2043 {
2044 	struct bio *bio;
2045 	struct bio_list bios;
2046 
2047 	bio_list_init(&bios);
2048 	bio_list_merge(&bios, &tc->deferred_bio_list);
2049 	bio_list_init(&tc->deferred_bio_list);
2050 
2051 	/* Sort deferred_bio_list using rb-tree */
2052 	while ((bio = bio_list_pop(&bios)))
2053 		__thin_bio_rb_add(tc, bio);
2054 
2055 	/*
2056 	 * Transfer the sorted bios in sort_bio_list back to
2057 	 * deferred_bio_list to allow lockless submission of
2058 	 * all bios.
2059 	 */
2060 	__extract_sorted_bios(tc);
2061 }
2062 
2063 static void process_thin_deferred_bios(struct thin_c *tc)
2064 {
2065 	struct pool *pool = tc->pool;
2066 	unsigned long flags;
2067 	struct bio *bio;
2068 	struct bio_list bios;
2069 	struct blk_plug plug;
2070 	unsigned count = 0;
2071 
2072 	if (tc->requeue_mode) {
2073 		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2074 		return;
2075 	}
2076 
2077 	bio_list_init(&bios);
2078 
2079 	spin_lock_irqsave(&tc->lock, flags);
2080 
2081 	if (bio_list_empty(&tc->deferred_bio_list)) {
2082 		spin_unlock_irqrestore(&tc->lock, flags);
2083 		return;
2084 	}
2085 
2086 	__sort_thin_deferred_bios(tc);
2087 
2088 	bio_list_merge(&bios, &tc->deferred_bio_list);
2089 	bio_list_init(&tc->deferred_bio_list);
2090 
2091 	spin_unlock_irqrestore(&tc->lock, flags);
2092 
2093 	blk_start_plug(&plug);
2094 	while ((bio = bio_list_pop(&bios))) {
2095 		/*
2096 		 * If we've got no free new_mapping structs, and processing
2097 		 * this bio might require one, we pause until there are some
2098 		 * prepared mappings to process.
2099 		 */
2100 		if (ensure_next_mapping(pool)) {
2101 			spin_lock_irqsave(&tc->lock, flags);
2102 			bio_list_add(&tc->deferred_bio_list, bio);
2103 			bio_list_merge(&tc->deferred_bio_list, &bios);
2104 			spin_unlock_irqrestore(&tc->lock, flags);
2105 			break;
2106 		}
2107 
2108 		if (bio_op(bio) == REQ_OP_DISCARD)
2109 			pool->process_discard(tc, bio);
2110 		else
2111 			pool->process_bio(tc, bio);
2112 
2113 		if ((count++ & 127) == 0) {
2114 			throttle_work_update(&pool->throttle);
2115 			dm_pool_issue_prefetches(pool->pmd);
2116 		}
2117 	}
2118 	blk_finish_plug(&plug);
2119 }
2120 
2121 static int cmp_cells(const void *lhs, const void *rhs)
2122 {
2123 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2124 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2125 
2126 	BUG_ON(!lhs_cell->holder);
2127 	BUG_ON(!rhs_cell->holder);
2128 
2129 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2130 		return -1;
2131 
2132 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2133 		return 1;
2134 
2135 	return 0;
2136 }
2137 
2138 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2139 {
2140 	unsigned count = 0;
2141 	struct dm_bio_prison_cell *cell, *tmp;
2142 
2143 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2144 		if (count >= CELL_SORT_ARRAY_SIZE)
2145 			break;
2146 
2147 		pool->cell_sort_array[count++] = cell;
2148 		list_del(&cell->user_list);
2149 	}
2150 
2151 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2152 
2153 	return count;
2154 }
2155 
2156 static void process_thin_deferred_cells(struct thin_c *tc)
2157 {
2158 	struct pool *pool = tc->pool;
2159 	unsigned long flags;
2160 	struct list_head cells;
2161 	struct dm_bio_prison_cell *cell;
2162 	unsigned i, j, count;
2163 
2164 	INIT_LIST_HEAD(&cells);
2165 
2166 	spin_lock_irqsave(&tc->lock, flags);
2167 	list_splice_init(&tc->deferred_cells, &cells);
2168 	spin_unlock_irqrestore(&tc->lock, flags);
2169 
2170 	if (list_empty(&cells))
2171 		return;
2172 
2173 	do {
2174 		count = sort_cells(tc->pool, &cells);
2175 
2176 		for (i = 0; i < count; i++) {
2177 			cell = pool->cell_sort_array[i];
2178 			BUG_ON(!cell->holder);
2179 
2180 			/*
2181 			 * If we've got no free new_mapping structs, and processing
2182 			 * this bio might require one, we pause until there are some
2183 			 * prepared mappings to process.
2184 			 */
2185 			if (ensure_next_mapping(pool)) {
2186 				for (j = i; j < count; j++)
2187 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2188 
2189 				spin_lock_irqsave(&tc->lock, flags);
2190 				list_splice(&cells, &tc->deferred_cells);
2191 				spin_unlock_irqrestore(&tc->lock, flags);
2192 				return;
2193 			}
2194 
2195 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2196 				pool->process_discard_cell(tc, cell);
2197 			else
2198 				pool->process_cell(tc, cell);
2199 		}
2200 	} while (!list_empty(&cells));
2201 }
2202 
2203 static void thin_get(struct thin_c *tc);
2204 static void thin_put(struct thin_c *tc);
2205 
2206 /*
2207  * We can't hold rcu_read_lock() around code that can block.  So we
2208  * find a thin with the rcu lock held; bump a refcount; then drop
2209  * the lock.
2210  */
2211 static struct thin_c *get_first_thin(struct pool *pool)
2212 {
2213 	struct thin_c *tc = NULL;
2214 
2215 	rcu_read_lock();
2216 	if (!list_empty(&pool->active_thins)) {
2217 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2218 		thin_get(tc);
2219 	}
2220 	rcu_read_unlock();
2221 
2222 	return tc;
2223 }
2224 
2225 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2226 {
2227 	struct thin_c *old_tc = tc;
2228 
2229 	rcu_read_lock();
2230 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2231 		thin_get(tc);
2232 		thin_put(old_tc);
2233 		rcu_read_unlock();
2234 		return tc;
2235 	}
2236 	thin_put(old_tc);
2237 	rcu_read_unlock();
2238 
2239 	return NULL;
2240 }
2241 
2242 static void process_deferred_bios(struct pool *pool)
2243 {
2244 	unsigned long flags;
2245 	struct bio *bio;
2246 	struct bio_list bios;
2247 	struct thin_c *tc;
2248 
2249 	tc = get_first_thin(pool);
2250 	while (tc) {
2251 		process_thin_deferred_cells(tc);
2252 		process_thin_deferred_bios(tc);
2253 		tc = get_next_thin(pool, tc);
2254 	}
2255 
2256 	/*
2257 	 * If there are any deferred flush bios, we must commit
2258 	 * the metadata before issuing them.
2259 	 */
2260 	bio_list_init(&bios);
2261 	spin_lock_irqsave(&pool->lock, flags);
2262 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2263 	bio_list_init(&pool->deferred_flush_bios);
2264 	spin_unlock_irqrestore(&pool->lock, flags);
2265 
2266 	if (bio_list_empty(&bios) &&
2267 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2268 		return;
2269 
2270 	if (commit(pool)) {
2271 		while ((bio = bio_list_pop(&bios)))
2272 			bio_io_error(bio);
2273 		return;
2274 	}
2275 	pool->last_commit_jiffies = jiffies;
2276 
2277 	while ((bio = bio_list_pop(&bios)))
2278 		generic_make_request(bio);
2279 }
2280 
2281 static void do_worker(struct work_struct *ws)
2282 {
2283 	struct pool *pool = container_of(ws, struct pool, worker);
2284 
2285 	throttle_work_start(&pool->throttle);
2286 	dm_pool_issue_prefetches(pool->pmd);
2287 	throttle_work_update(&pool->throttle);
2288 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2289 	throttle_work_update(&pool->throttle);
2290 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2291 	throttle_work_update(&pool->throttle);
2292 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2293 	throttle_work_update(&pool->throttle);
2294 	process_deferred_bios(pool);
2295 	throttle_work_complete(&pool->throttle);
2296 }
2297 
2298 /*
2299  * We want to commit periodically so that not too much
2300  * unwritten data builds up.
2301  */
2302 static void do_waker(struct work_struct *ws)
2303 {
2304 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2305 	wake_worker(pool);
2306 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2307 }
2308 
2309 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2310 
2311 /*
2312  * We're holding onto IO to allow userland time to react.  After the
2313  * timeout either the pool will have been resized (and thus back in
2314  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2315  */
2316 static void do_no_space_timeout(struct work_struct *ws)
2317 {
2318 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2319 					 no_space_timeout);
2320 
2321 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2322 		pool->pf.error_if_no_space = true;
2323 		notify_of_pool_mode_change_to_oods(pool);
2324 		error_retry_list_with_code(pool, -ENOSPC);
2325 	}
2326 }
2327 
2328 /*----------------------------------------------------------------*/
2329 
2330 struct pool_work {
2331 	struct work_struct worker;
2332 	struct completion complete;
2333 };
2334 
2335 static struct pool_work *to_pool_work(struct work_struct *ws)
2336 {
2337 	return container_of(ws, struct pool_work, worker);
2338 }
2339 
2340 static void pool_work_complete(struct pool_work *pw)
2341 {
2342 	complete(&pw->complete);
2343 }
2344 
2345 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2346 			   void (*fn)(struct work_struct *))
2347 {
2348 	INIT_WORK_ONSTACK(&pw->worker, fn);
2349 	init_completion(&pw->complete);
2350 	queue_work(pool->wq, &pw->worker);
2351 	wait_for_completion(&pw->complete);
2352 }
2353 
2354 /*----------------------------------------------------------------*/
2355 
2356 struct noflush_work {
2357 	struct pool_work pw;
2358 	struct thin_c *tc;
2359 };
2360 
2361 static struct noflush_work *to_noflush(struct work_struct *ws)
2362 {
2363 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2364 }
2365 
2366 static void do_noflush_start(struct work_struct *ws)
2367 {
2368 	struct noflush_work *w = to_noflush(ws);
2369 	w->tc->requeue_mode = true;
2370 	requeue_io(w->tc);
2371 	pool_work_complete(&w->pw);
2372 }
2373 
2374 static void do_noflush_stop(struct work_struct *ws)
2375 {
2376 	struct noflush_work *w = to_noflush(ws);
2377 	w->tc->requeue_mode = false;
2378 	pool_work_complete(&w->pw);
2379 }
2380 
2381 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2382 {
2383 	struct noflush_work w;
2384 
2385 	w.tc = tc;
2386 	pool_work_wait(&w.pw, tc->pool, fn);
2387 }
2388 
2389 /*----------------------------------------------------------------*/
2390 
2391 static enum pool_mode get_pool_mode(struct pool *pool)
2392 {
2393 	return pool->pf.mode;
2394 }
2395 
2396 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2397 {
2398 	dm_table_event(pool->ti->table);
2399 	DMINFO("%s: switching pool to %s mode",
2400 	       dm_device_name(pool->pool_md), new_mode);
2401 }
2402 
2403 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2404 {
2405 	if (!pool->pf.error_if_no_space)
2406 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2407 	else
2408 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2409 }
2410 
2411 static bool passdown_enabled(struct pool_c *pt)
2412 {
2413 	return pt->adjusted_pf.discard_passdown;
2414 }
2415 
2416 static void set_discard_callbacks(struct pool *pool)
2417 {
2418 	struct pool_c *pt = pool->ti->private;
2419 
2420 	if (passdown_enabled(pt)) {
2421 		pool->process_discard_cell = process_discard_cell_passdown;
2422 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2423 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2424 	} else {
2425 		pool->process_discard_cell = process_discard_cell_no_passdown;
2426 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2427 	}
2428 }
2429 
2430 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2431 {
2432 	struct pool_c *pt = pool->ti->private;
2433 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2434 	enum pool_mode old_mode = get_pool_mode(pool);
2435 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2436 
2437 	/*
2438 	 * Never allow the pool to transition to PM_WRITE mode if user
2439 	 * intervention is required to verify metadata and data consistency.
2440 	 */
2441 	if (new_mode == PM_WRITE && needs_check) {
2442 		DMERR("%s: unable to switch pool to write mode until repaired.",
2443 		      dm_device_name(pool->pool_md));
2444 		if (old_mode != new_mode)
2445 			new_mode = old_mode;
2446 		else
2447 			new_mode = PM_READ_ONLY;
2448 	}
2449 	/*
2450 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2451 	 * not going to recover without a thin_repair.	So we never let the
2452 	 * pool move out of the old mode.
2453 	 */
2454 	if (old_mode == PM_FAIL)
2455 		new_mode = old_mode;
2456 
2457 	switch (new_mode) {
2458 	case PM_FAIL:
2459 		if (old_mode != new_mode)
2460 			notify_of_pool_mode_change(pool, "failure");
2461 		dm_pool_metadata_read_only(pool->pmd);
2462 		pool->process_bio = process_bio_fail;
2463 		pool->process_discard = process_bio_fail;
2464 		pool->process_cell = process_cell_fail;
2465 		pool->process_discard_cell = process_cell_fail;
2466 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2467 		pool->process_prepared_discard = process_prepared_discard_fail;
2468 
2469 		error_retry_list(pool);
2470 		break;
2471 
2472 	case PM_READ_ONLY:
2473 		if (old_mode != new_mode)
2474 			notify_of_pool_mode_change(pool, "read-only");
2475 		dm_pool_metadata_read_only(pool->pmd);
2476 		pool->process_bio = process_bio_read_only;
2477 		pool->process_discard = process_bio_success;
2478 		pool->process_cell = process_cell_read_only;
2479 		pool->process_discard_cell = process_cell_success;
2480 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2481 		pool->process_prepared_discard = process_prepared_discard_success;
2482 
2483 		error_retry_list(pool);
2484 		break;
2485 
2486 	case PM_OUT_OF_DATA_SPACE:
2487 		/*
2488 		 * Ideally we'd never hit this state; the low water mark
2489 		 * would trigger userland to extend the pool before we
2490 		 * completely run out of data space.  However, many small
2491 		 * IOs to unprovisioned space can consume data space at an
2492 		 * alarming rate.  Adjust your low water mark if you're
2493 		 * frequently seeing this mode.
2494 		 */
2495 		if (old_mode != new_mode)
2496 			notify_of_pool_mode_change_to_oods(pool);
2497 		pool->out_of_data_space = true;
2498 		pool->process_bio = process_bio_read_only;
2499 		pool->process_discard = process_discard_bio;
2500 		pool->process_cell = process_cell_read_only;
2501 		pool->process_prepared_mapping = process_prepared_mapping;
2502 		set_discard_callbacks(pool);
2503 
2504 		if (!pool->pf.error_if_no_space && no_space_timeout)
2505 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2506 		break;
2507 
2508 	case PM_WRITE:
2509 		if (old_mode != new_mode)
2510 			notify_of_pool_mode_change(pool, "write");
2511 		pool->out_of_data_space = false;
2512 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2513 		dm_pool_metadata_read_write(pool->pmd);
2514 		pool->process_bio = process_bio;
2515 		pool->process_discard = process_discard_bio;
2516 		pool->process_cell = process_cell;
2517 		pool->process_prepared_mapping = process_prepared_mapping;
2518 		set_discard_callbacks(pool);
2519 		break;
2520 	}
2521 
2522 	pool->pf.mode = new_mode;
2523 	/*
2524 	 * The pool mode may have changed, sync it so bind_control_target()
2525 	 * doesn't cause an unexpected mode transition on resume.
2526 	 */
2527 	pt->adjusted_pf.mode = new_mode;
2528 }
2529 
2530 static void abort_transaction(struct pool *pool)
2531 {
2532 	const char *dev_name = dm_device_name(pool->pool_md);
2533 
2534 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2535 	if (dm_pool_abort_metadata(pool->pmd)) {
2536 		DMERR("%s: failed to abort metadata transaction", dev_name);
2537 		set_pool_mode(pool, PM_FAIL);
2538 	}
2539 
2540 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2541 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2542 		set_pool_mode(pool, PM_FAIL);
2543 	}
2544 }
2545 
2546 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2547 {
2548 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2549 		    dm_device_name(pool->pool_md), op, r);
2550 
2551 	abort_transaction(pool);
2552 	set_pool_mode(pool, PM_READ_ONLY);
2553 }
2554 
2555 /*----------------------------------------------------------------*/
2556 
2557 /*
2558  * Mapping functions.
2559  */
2560 
2561 /*
2562  * Called only while mapping a thin bio to hand it over to the workqueue.
2563  */
2564 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2565 {
2566 	unsigned long flags;
2567 	struct pool *pool = tc->pool;
2568 
2569 	spin_lock_irqsave(&tc->lock, flags);
2570 	bio_list_add(&tc->deferred_bio_list, bio);
2571 	spin_unlock_irqrestore(&tc->lock, flags);
2572 
2573 	wake_worker(pool);
2574 }
2575 
2576 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2577 {
2578 	struct pool *pool = tc->pool;
2579 
2580 	throttle_lock(&pool->throttle);
2581 	thin_defer_bio(tc, bio);
2582 	throttle_unlock(&pool->throttle);
2583 }
2584 
2585 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2586 {
2587 	unsigned long flags;
2588 	struct pool *pool = tc->pool;
2589 
2590 	throttle_lock(&pool->throttle);
2591 	spin_lock_irqsave(&tc->lock, flags);
2592 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2593 	spin_unlock_irqrestore(&tc->lock, flags);
2594 	throttle_unlock(&pool->throttle);
2595 
2596 	wake_worker(pool);
2597 }
2598 
2599 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2600 {
2601 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2602 
2603 	h->tc = tc;
2604 	h->shared_read_entry = NULL;
2605 	h->all_io_entry = NULL;
2606 	h->overwrite_mapping = NULL;
2607 	h->cell = NULL;
2608 }
2609 
2610 /*
2611  * Non-blocking function called from the thin target's map function.
2612  */
2613 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2614 {
2615 	int r;
2616 	struct thin_c *tc = ti->private;
2617 	dm_block_t block = get_bio_block(tc, bio);
2618 	struct dm_thin_device *td = tc->td;
2619 	struct dm_thin_lookup_result result;
2620 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2621 	struct dm_cell_key key;
2622 
2623 	thin_hook_bio(tc, bio);
2624 
2625 	if (tc->requeue_mode) {
2626 		bio->bi_error = DM_ENDIO_REQUEUE;
2627 		bio_endio(bio);
2628 		return DM_MAPIO_SUBMITTED;
2629 	}
2630 
2631 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2632 		bio_io_error(bio);
2633 		return DM_MAPIO_SUBMITTED;
2634 	}
2635 
2636 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2637 		thin_defer_bio_with_throttle(tc, bio);
2638 		return DM_MAPIO_SUBMITTED;
2639 	}
2640 
2641 	/*
2642 	 * We must hold the virtual cell before doing the lookup, otherwise
2643 	 * there's a race with discard.
2644 	 */
2645 	build_virtual_key(tc->td, block, &key);
2646 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2647 		return DM_MAPIO_SUBMITTED;
2648 
2649 	r = dm_thin_find_block(td, block, 0, &result);
2650 
2651 	/*
2652 	 * Note that we defer readahead too.
2653 	 */
2654 	switch (r) {
2655 	case 0:
2656 		if (unlikely(result.shared)) {
2657 			/*
2658 			 * We have a race condition here between the
2659 			 * result.shared value returned by the lookup and
2660 			 * snapshot creation, which may cause new
2661 			 * sharing.
2662 			 *
2663 			 * To avoid this always quiesce the origin before
2664 			 * taking the snap.  You want to do this anyway to
2665 			 * ensure a consistent application view
2666 			 * (i.e. lockfs).
2667 			 *
2668 			 * More distant ancestors are irrelevant. The
2669 			 * shared flag will be set in their case.
2670 			 */
2671 			thin_defer_cell(tc, virt_cell);
2672 			return DM_MAPIO_SUBMITTED;
2673 		}
2674 
2675 		build_data_key(tc->td, result.block, &key);
2676 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2677 			cell_defer_no_holder(tc, virt_cell);
2678 			return DM_MAPIO_SUBMITTED;
2679 		}
2680 
2681 		inc_all_io_entry(tc->pool, bio);
2682 		cell_defer_no_holder(tc, data_cell);
2683 		cell_defer_no_holder(tc, virt_cell);
2684 
2685 		remap(tc, bio, result.block);
2686 		return DM_MAPIO_REMAPPED;
2687 
2688 	case -ENODATA:
2689 	case -EWOULDBLOCK:
2690 		thin_defer_cell(tc, virt_cell);
2691 		return DM_MAPIO_SUBMITTED;
2692 
2693 	default:
2694 		/*
2695 		 * Must always call bio_io_error on failure.
2696 		 * dm_thin_find_block can fail with -EINVAL if the
2697 		 * pool is switched to fail-io mode.
2698 		 */
2699 		bio_io_error(bio);
2700 		cell_defer_no_holder(tc, virt_cell);
2701 		return DM_MAPIO_SUBMITTED;
2702 	}
2703 }
2704 
2705 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2706 {
2707 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2708 	struct request_queue *q;
2709 
2710 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2711 		return 1;
2712 
2713 	q = bdev_get_queue(pt->data_dev->bdev);
2714 	return bdi_congested(q->backing_dev_info, bdi_bits);
2715 }
2716 
2717 static void requeue_bios(struct pool *pool)
2718 {
2719 	unsigned long flags;
2720 	struct thin_c *tc;
2721 
2722 	rcu_read_lock();
2723 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2724 		spin_lock_irqsave(&tc->lock, flags);
2725 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2726 		bio_list_init(&tc->retry_on_resume_list);
2727 		spin_unlock_irqrestore(&tc->lock, flags);
2728 	}
2729 	rcu_read_unlock();
2730 }
2731 
2732 /*----------------------------------------------------------------
2733  * Binding of control targets to a pool object
2734  *--------------------------------------------------------------*/
2735 static bool data_dev_supports_discard(struct pool_c *pt)
2736 {
2737 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2738 
2739 	return q && blk_queue_discard(q);
2740 }
2741 
2742 static bool is_factor(sector_t block_size, uint32_t n)
2743 {
2744 	return !sector_div(block_size, n);
2745 }
2746 
2747 /*
2748  * If discard_passdown was enabled verify that the data device
2749  * supports discards.  Disable discard_passdown if not.
2750  */
2751 static void disable_passdown_if_not_supported(struct pool_c *pt)
2752 {
2753 	struct pool *pool = pt->pool;
2754 	struct block_device *data_bdev = pt->data_dev->bdev;
2755 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2756 	const char *reason = NULL;
2757 	char buf[BDEVNAME_SIZE];
2758 
2759 	if (!pt->adjusted_pf.discard_passdown)
2760 		return;
2761 
2762 	if (!data_dev_supports_discard(pt))
2763 		reason = "discard unsupported";
2764 
2765 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2766 		reason = "max discard sectors smaller than a block";
2767 
2768 	if (reason) {
2769 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2770 		pt->adjusted_pf.discard_passdown = false;
2771 	}
2772 }
2773 
2774 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2775 {
2776 	struct pool_c *pt = ti->private;
2777 
2778 	/*
2779 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2780 	 */
2781 	enum pool_mode old_mode = get_pool_mode(pool);
2782 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2783 
2784 	/*
2785 	 * Don't change the pool's mode until set_pool_mode() below.
2786 	 * Otherwise the pool's process_* function pointers may
2787 	 * not match the desired pool mode.
2788 	 */
2789 	pt->adjusted_pf.mode = old_mode;
2790 
2791 	pool->ti = ti;
2792 	pool->pf = pt->adjusted_pf;
2793 	pool->low_water_blocks = pt->low_water_blocks;
2794 
2795 	set_pool_mode(pool, new_mode);
2796 
2797 	return 0;
2798 }
2799 
2800 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2801 {
2802 	if (pool->ti == ti)
2803 		pool->ti = NULL;
2804 }
2805 
2806 /*----------------------------------------------------------------
2807  * Pool creation
2808  *--------------------------------------------------------------*/
2809 /* Initialize pool features. */
2810 static void pool_features_init(struct pool_features *pf)
2811 {
2812 	pf->mode = PM_WRITE;
2813 	pf->zero_new_blocks = true;
2814 	pf->discard_enabled = true;
2815 	pf->discard_passdown = true;
2816 	pf->error_if_no_space = false;
2817 }
2818 
2819 static void __pool_destroy(struct pool *pool)
2820 {
2821 	__pool_table_remove(pool);
2822 
2823 	vfree(pool->cell_sort_array);
2824 	if (dm_pool_metadata_close(pool->pmd) < 0)
2825 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2826 
2827 	dm_bio_prison_destroy(pool->prison);
2828 	dm_kcopyd_client_destroy(pool->copier);
2829 
2830 	if (pool->wq)
2831 		destroy_workqueue(pool->wq);
2832 
2833 	if (pool->next_mapping)
2834 		mempool_free(pool->next_mapping, pool->mapping_pool);
2835 	mempool_destroy(pool->mapping_pool);
2836 	dm_deferred_set_destroy(pool->shared_read_ds);
2837 	dm_deferred_set_destroy(pool->all_io_ds);
2838 	kfree(pool);
2839 }
2840 
2841 static struct kmem_cache *_new_mapping_cache;
2842 
2843 static struct pool *pool_create(struct mapped_device *pool_md,
2844 				struct block_device *metadata_dev,
2845 				unsigned long block_size,
2846 				int read_only, char **error)
2847 {
2848 	int r;
2849 	void *err_p;
2850 	struct pool *pool;
2851 	struct dm_pool_metadata *pmd;
2852 	bool format_device = read_only ? false : true;
2853 
2854 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2855 	if (IS_ERR(pmd)) {
2856 		*error = "Error creating metadata object";
2857 		return (struct pool *)pmd;
2858 	}
2859 
2860 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2861 	if (!pool) {
2862 		*error = "Error allocating memory for pool";
2863 		err_p = ERR_PTR(-ENOMEM);
2864 		goto bad_pool;
2865 	}
2866 
2867 	pool->pmd = pmd;
2868 	pool->sectors_per_block = block_size;
2869 	if (block_size & (block_size - 1))
2870 		pool->sectors_per_block_shift = -1;
2871 	else
2872 		pool->sectors_per_block_shift = __ffs(block_size);
2873 	pool->low_water_blocks = 0;
2874 	pool_features_init(&pool->pf);
2875 	pool->prison = dm_bio_prison_create();
2876 	if (!pool->prison) {
2877 		*error = "Error creating pool's bio prison";
2878 		err_p = ERR_PTR(-ENOMEM);
2879 		goto bad_prison;
2880 	}
2881 
2882 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2883 	if (IS_ERR(pool->copier)) {
2884 		r = PTR_ERR(pool->copier);
2885 		*error = "Error creating pool's kcopyd client";
2886 		err_p = ERR_PTR(r);
2887 		goto bad_kcopyd_client;
2888 	}
2889 
2890 	/*
2891 	 * Create singlethreaded workqueue that will service all devices
2892 	 * that use this metadata.
2893 	 */
2894 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2895 	if (!pool->wq) {
2896 		*error = "Error creating pool's workqueue";
2897 		err_p = ERR_PTR(-ENOMEM);
2898 		goto bad_wq;
2899 	}
2900 
2901 	throttle_init(&pool->throttle);
2902 	INIT_WORK(&pool->worker, do_worker);
2903 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2904 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2905 	spin_lock_init(&pool->lock);
2906 	bio_list_init(&pool->deferred_flush_bios);
2907 	INIT_LIST_HEAD(&pool->prepared_mappings);
2908 	INIT_LIST_HEAD(&pool->prepared_discards);
2909 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2910 	INIT_LIST_HEAD(&pool->active_thins);
2911 	pool->low_water_triggered = false;
2912 	pool->suspended = true;
2913 	pool->out_of_data_space = false;
2914 
2915 	pool->shared_read_ds = dm_deferred_set_create();
2916 	if (!pool->shared_read_ds) {
2917 		*error = "Error creating pool's shared read deferred set";
2918 		err_p = ERR_PTR(-ENOMEM);
2919 		goto bad_shared_read_ds;
2920 	}
2921 
2922 	pool->all_io_ds = dm_deferred_set_create();
2923 	if (!pool->all_io_ds) {
2924 		*error = "Error creating pool's all io deferred set";
2925 		err_p = ERR_PTR(-ENOMEM);
2926 		goto bad_all_io_ds;
2927 	}
2928 
2929 	pool->next_mapping = NULL;
2930 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2931 						      _new_mapping_cache);
2932 	if (!pool->mapping_pool) {
2933 		*error = "Error creating pool's mapping mempool";
2934 		err_p = ERR_PTR(-ENOMEM);
2935 		goto bad_mapping_pool;
2936 	}
2937 
2938 	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2939 	if (!pool->cell_sort_array) {
2940 		*error = "Error allocating cell sort array";
2941 		err_p = ERR_PTR(-ENOMEM);
2942 		goto bad_sort_array;
2943 	}
2944 
2945 	pool->ref_count = 1;
2946 	pool->last_commit_jiffies = jiffies;
2947 	pool->pool_md = pool_md;
2948 	pool->md_dev = metadata_dev;
2949 	__pool_table_insert(pool);
2950 
2951 	return pool;
2952 
2953 bad_sort_array:
2954 	mempool_destroy(pool->mapping_pool);
2955 bad_mapping_pool:
2956 	dm_deferred_set_destroy(pool->all_io_ds);
2957 bad_all_io_ds:
2958 	dm_deferred_set_destroy(pool->shared_read_ds);
2959 bad_shared_read_ds:
2960 	destroy_workqueue(pool->wq);
2961 bad_wq:
2962 	dm_kcopyd_client_destroy(pool->copier);
2963 bad_kcopyd_client:
2964 	dm_bio_prison_destroy(pool->prison);
2965 bad_prison:
2966 	kfree(pool);
2967 bad_pool:
2968 	if (dm_pool_metadata_close(pmd))
2969 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2970 
2971 	return err_p;
2972 }
2973 
2974 static void __pool_inc(struct pool *pool)
2975 {
2976 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2977 	pool->ref_count++;
2978 }
2979 
2980 static void __pool_dec(struct pool *pool)
2981 {
2982 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2983 	BUG_ON(!pool->ref_count);
2984 	if (!--pool->ref_count)
2985 		__pool_destroy(pool);
2986 }
2987 
2988 static struct pool *__pool_find(struct mapped_device *pool_md,
2989 				struct block_device *metadata_dev,
2990 				unsigned long block_size, int read_only,
2991 				char **error, int *created)
2992 {
2993 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2994 
2995 	if (pool) {
2996 		if (pool->pool_md != pool_md) {
2997 			*error = "metadata device already in use by a pool";
2998 			return ERR_PTR(-EBUSY);
2999 		}
3000 		__pool_inc(pool);
3001 
3002 	} else {
3003 		pool = __pool_table_lookup(pool_md);
3004 		if (pool) {
3005 			if (pool->md_dev != metadata_dev) {
3006 				*error = "different pool cannot replace a pool";
3007 				return ERR_PTR(-EINVAL);
3008 			}
3009 			__pool_inc(pool);
3010 
3011 		} else {
3012 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3013 			*created = 1;
3014 		}
3015 	}
3016 
3017 	return pool;
3018 }
3019 
3020 /*----------------------------------------------------------------
3021  * Pool target methods
3022  *--------------------------------------------------------------*/
3023 static void pool_dtr(struct dm_target *ti)
3024 {
3025 	struct pool_c *pt = ti->private;
3026 
3027 	mutex_lock(&dm_thin_pool_table.mutex);
3028 
3029 	unbind_control_target(pt->pool, ti);
3030 	__pool_dec(pt->pool);
3031 	dm_put_device(ti, pt->metadata_dev);
3032 	dm_put_device(ti, pt->data_dev);
3033 	kfree(pt);
3034 
3035 	mutex_unlock(&dm_thin_pool_table.mutex);
3036 }
3037 
3038 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3039 			       struct dm_target *ti)
3040 {
3041 	int r;
3042 	unsigned argc;
3043 	const char *arg_name;
3044 
3045 	static struct dm_arg _args[] = {
3046 		{0, 4, "Invalid number of pool feature arguments"},
3047 	};
3048 
3049 	/*
3050 	 * No feature arguments supplied.
3051 	 */
3052 	if (!as->argc)
3053 		return 0;
3054 
3055 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3056 	if (r)
3057 		return -EINVAL;
3058 
3059 	while (argc && !r) {
3060 		arg_name = dm_shift_arg(as);
3061 		argc--;
3062 
3063 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3064 			pf->zero_new_blocks = false;
3065 
3066 		else if (!strcasecmp(arg_name, "ignore_discard"))
3067 			pf->discard_enabled = false;
3068 
3069 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3070 			pf->discard_passdown = false;
3071 
3072 		else if (!strcasecmp(arg_name, "read_only"))
3073 			pf->mode = PM_READ_ONLY;
3074 
3075 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3076 			pf->error_if_no_space = true;
3077 
3078 		else {
3079 			ti->error = "Unrecognised pool feature requested";
3080 			r = -EINVAL;
3081 			break;
3082 		}
3083 	}
3084 
3085 	return r;
3086 }
3087 
3088 static void metadata_low_callback(void *context)
3089 {
3090 	struct pool *pool = context;
3091 
3092 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3093 	       dm_device_name(pool->pool_md));
3094 
3095 	dm_table_event(pool->ti->table);
3096 }
3097 
3098 static sector_t get_dev_size(struct block_device *bdev)
3099 {
3100 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3101 }
3102 
3103 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3104 {
3105 	sector_t metadata_dev_size = get_dev_size(bdev);
3106 	char buffer[BDEVNAME_SIZE];
3107 
3108 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3109 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3110 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3111 }
3112 
3113 static sector_t get_metadata_dev_size(struct block_device *bdev)
3114 {
3115 	sector_t metadata_dev_size = get_dev_size(bdev);
3116 
3117 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3118 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3119 
3120 	return metadata_dev_size;
3121 }
3122 
3123 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3124 {
3125 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3126 
3127 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3128 
3129 	return metadata_dev_size;
3130 }
3131 
3132 /*
3133  * When a metadata threshold is crossed a dm event is triggered, and
3134  * userland should respond by growing the metadata device.  We could let
3135  * userland set the threshold, like we do with the data threshold, but I'm
3136  * not sure they know enough to do this well.
3137  */
3138 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3139 {
3140 	/*
3141 	 * 4M is ample for all ops with the possible exception of thin
3142 	 * device deletion which is harmless if it fails (just retry the
3143 	 * delete after you've grown the device).
3144 	 */
3145 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3146 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3147 }
3148 
3149 /*
3150  * thin-pool <metadata dev> <data dev>
3151  *	     <data block size (sectors)>
3152  *	     <low water mark (blocks)>
3153  *	     [<#feature args> [<arg>]*]
3154  *
3155  * Optional feature arguments are:
3156  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3157  *	     ignore_discard: disable discard
3158  *	     no_discard_passdown: don't pass discards down to the data device
3159  *	     read_only: Don't allow any changes to be made to the pool metadata.
3160  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3161  */
3162 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3163 {
3164 	int r, pool_created = 0;
3165 	struct pool_c *pt;
3166 	struct pool *pool;
3167 	struct pool_features pf;
3168 	struct dm_arg_set as;
3169 	struct dm_dev *data_dev;
3170 	unsigned long block_size;
3171 	dm_block_t low_water_blocks;
3172 	struct dm_dev *metadata_dev;
3173 	fmode_t metadata_mode;
3174 
3175 	/*
3176 	 * FIXME Remove validation from scope of lock.
3177 	 */
3178 	mutex_lock(&dm_thin_pool_table.mutex);
3179 
3180 	if (argc < 4) {
3181 		ti->error = "Invalid argument count";
3182 		r = -EINVAL;
3183 		goto out_unlock;
3184 	}
3185 
3186 	as.argc = argc;
3187 	as.argv = argv;
3188 
3189 	/*
3190 	 * Set default pool features.
3191 	 */
3192 	pool_features_init(&pf);
3193 
3194 	dm_consume_args(&as, 4);
3195 	r = parse_pool_features(&as, &pf, ti);
3196 	if (r)
3197 		goto out_unlock;
3198 
3199 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3200 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3201 	if (r) {
3202 		ti->error = "Error opening metadata block device";
3203 		goto out_unlock;
3204 	}
3205 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3206 
3207 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3208 	if (r) {
3209 		ti->error = "Error getting data device";
3210 		goto out_metadata;
3211 	}
3212 
3213 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3214 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3215 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3216 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3217 		ti->error = "Invalid block size";
3218 		r = -EINVAL;
3219 		goto out;
3220 	}
3221 
3222 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3223 		ti->error = "Invalid low water mark";
3224 		r = -EINVAL;
3225 		goto out;
3226 	}
3227 
3228 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3229 	if (!pt) {
3230 		r = -ENOMEM;
3231 		goto out;
3232 	}
3233 
3234 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3235 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3236 	if (IS_ERR(pool)) {
3237 		r = PTR_ERR(pool);
3238 		goto out_free_pt;
3239 	}
3240 
3241 	/*
3242 	 * 'pool_created' reflects whether this is the first table load.
3243 	 * Top level discard support is not allowed to be changed after
3244 	 * initial load.  This would require a pool reload to trigger thin
3245 	 * device changes.
3246 	 */
3247 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3248 		ti->error = "Discard support cannot be disabled once enabled";
3249 		r = -EINVAL;
3250 		goto out_flags_changed;
3251 	}
3252 
3253 	pt->pool = pool;
3254 	pt->ti = ti;
3255 	pt->metadata_dev = metadata_dev;
3256 	pt->data_dev = data_dev;
3257 	pt->low_water_blocks = low_water_blocks;
3258 	pt->adjusted_pf = pt->requested_pf = pf;
3259 	ti->num_flush_bios = 1;
3260 
3261 	/*
3262 	 * Only need to enable discards if the pool should pass
3263 	 * them down to the data device.  The thin device's discard
3264 	 * processing will cause mappings to be removed from the btree.
3265 	 */
3266 	ti->discard_zeroes_data_unsupported = true;
3267 	if (pf.discard_enabled && pf.discard_passdown) {
3268 		ti->num_discard_bios = 1;
3269 
3270 		/*
3271 		 * Setting 'discards_supported' circumvents the normal
3272 		 * stacking of discard limits (this keeps the pool and
3273 		 * thin devices' discard limits consistent).
3274 		 */
3275 		ti->discards_supported = true;
3276 	}
3277 	ti->private = pt;
3278 
3279 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3280 						calc_metadata_threshold(pt),
3281 						metadata_low_callback,
3282 						pool);
3283 	if (r)
3284 		goto out_flags_changed;
3285 
3286 	pt->callbacks.congested_fn = pool_is_congested;
3287 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3288 
3289 	mutex_unlock(&dm_thin_pool_table.mutex);
3290 
3291 	return 0;
3292 
3293 out_flags_changed:
3294 	__pool_dec(pool);
3295 out_free_pt:
3296 	kfree(pt);
3297 out:
3298 	dm_put_device(ti, data_dev);
3299 out_metadata:
3300 	dm_put_device(ti, metadata_dev);
3301 out_unlock:
3302 	mutex_unlock(&dm_thin_pool_table.mutex);
3303 
3304 	return r;
3305 }
3306 
3307 static int pool_map(struct dm_target *ti, struct bio *bio)
3308 {
3309 	int r;
3310 	struct pool_c *pt = ti->private;
3311 	struct pool *pool = pt->pool;
3312 	unsigned long flags;
3313 
3314 	/*
3315 	 * As this is a singleton target, ti->begin is always zero.
3316 	 */
3317 	spin_lock_irqsave(&pool->lock, flags);
3318 	bio->bi_bdev = pt->data_dev->bdev;
3319 	r = DM_MAPIO_REMAPPED;
3320 	spin_unlock_irqrestore(&pool->lock, flags);
3321 
3322 	return r;
3323 }
3324 
3325 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3326 {
3327 	int r;
3328 	struct pool_c *pt = ti->private;
3329 	struct pool *pool = pt->pool;
3330 	sector_t data_size = ti->len;
3331 	dm_block_t sb_data_size;
3332 
3333 	*need_commit = false;
3334 
3335 	(void) sector_div(data_size, pool->sectors_per_block);
3336 
3337 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3338 	if (r) {
3339 		DMERR("%s: failed to retrieve data device size",
3340 		      dm_device_name(pool->pool_md));
3341 		return r;
3342 	}
3343 
3344 	if (data_size < sb_data_size) {
3345 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3346 		      dm_device_name(pool->pool_md),
3347 		      (unsigned long long)data_size, sb_data_size);
3348 		return -EINVAL;
3349 
3350 	} else if (data_size > sb_data_size) {
3351 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3352 			DMERR("%s: unable to grow the data device until repaired.",
3353 			      dm_device_name(pool->pool_md));
3354 			return 0;
3355 		}
3356 
3357 		if (sb_data_size)
3358 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3359 			       dm_device_name(pool->pool_md),
3360 			       sb_data_size, (unsigned long long)data_size);
3361 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3362 		if (r) {
3363 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3364 			return r;
3365 		}
3366 
3367 		*need_commit = true;
3368 	}
3369 
3370 	return 0;
3371 }
3372 
3373 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3374 {
3375 	int r;
3376 	struct pool_c *pt = ti->private;
3377 	struct pool *pool = pt->pool;
3378 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3379 
3380 	*need_commit = false;
3381 
3382 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3383 
3384 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3385 	if (r) {
3386 		DMERR("%s: failed to retrieve metadata device size",
3387 		      dm_device_name(pool->pool_md));
3388 		return r;
3389 	}
3390 
3391 	if (metadata_dev_size < sb_metadata_dev_size) {
3392 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3393 		      dm_device_name(pool->pool_md),
3394 		      metadata_dev_size, sb_metadata_dev_size);
3395 		return -EINVAL;
3396 
3397 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3398 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3399 			DMERR("%s: unable to grow the metadata device until repaired.",
3400 			      dm_device_name(pool->pool_md));
3401 			return 0;
3402 		}
3403 
3404 		warn_if_metadata_device_too_big(pool->md_dev);
3405 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3406 		       dm_device_name(pool->pool_md),
3407 		       sb_metadata_dev_size, metadata_dev_size);
3408 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3409 		if (r) {
3410 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3411 			return r;
3412 		}
3413 
3414 		*need_commit = true;
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 /*
3421  * Retrieves the number of blocks of the data device from
3422  * the superblock and compares it to the actual device size,
3423  * thus resizing the data device in case it has grown.
3424  *
3425  * This both copes with opening preallocated data devices in the ctr
3426  * being followed by a resume
3427  * -and-
3428  * calling the resume method individually after userspace has
3429  * grown the data device in reaction to a table event.
3430  */
3431 static int pool_preresume(struct dm_target *ti)
3432 {
3433 	int r;
3434 	bool need_commit1, need_commit2;
3435 	struct pool_c *pt = ti->private;
3436 	struct pool *pool = pt->pool;
3437 
3438 	/*
3439 	 * Take control of the pool object.
3440 	 */
3441 	r = bind_control_target(pool, ti);
3442 	if (r)
3443 		return r;
3444 
3445 	r = maybe_resize_data_dev(ti, &need_commit1);
3446 	if (r)
3447 		return r;
3448 
3449 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3450 	if (r)
3451 		return r;
3452 
3453 	if (need_commit1 || need_commit2)
3454 		(void) commit(pool);
3455 
3456 	return 0;
3457 }
3458 
3459 static void pool_suspend_active_thins(struct pool *pool)
3460 {
3461 	struct thin_c *tc;
3462 
3463 	/* Suspend all active thin devices */
3464 	tc = get_first_thin(pool);
3465 	while (tc) {
3466 		dm_internal_suspend_noflush(tc->thin_md);
3467 		tc = get_next_thin(pool, tc);
3468 	}
3469 }
3470 
3471 static void pool_resume_active_thins(struct pool *pool)
3472 {
3473 	struct thin_c *tc;
3474 
3475 	/* Resume all active thin devices */
3476 	tc = get_first_thin(pool);
3477 	while (tc) {
3478 		dm_internal_resume(tc->thin_md);
3479 		tc = get_next_thin(pool, tc);
3480 	}
3481 }
3482 
3483 static void pool_resume(struct dm_target *ti)
3484 {
3485 	struct pool_c *pt = ti->private;
3486 	struct pool *pool = pt->pool;
3487 	unsigned long flags;
3488 
3489 	/*
3490 	 * Must requeue active_thins' bios and then resume
3491 	 * active_thins _before_ clearing 'suspend' flag.
3492 	 */
3493 	requeue_bios(pool);
3494 	pool_resume_active_thins(pool);
3495 
3496 	spin_lock_irqsave(&pool->lock, flags);
3497 	pool->low_water_triggered = false;
3498 	pool->suspended = false;
3499 	spin_unlock_irqrestore(&pool->lock, flags);
3500 
3501 	do_waker(&pool->waker.work);
3502 }
3503 
3504 static void pool_presuspend(struct dm_target *ti)
3505 {
3506 	struct pool_c *pt = ti->private;
3507 	struct pool *pool = pt->pool;
3508 	unsigned long flags;
3509 
3510 	spin_lock_irqsave(&pool->lock, flags);
3511 	pool->suspended = true;
3512 	spin_unlock_irqrestore(&pool->lock, flags);
3513 
3514 	pool_suspend_active_thins(pool);
3515 }
3516 
3517 static void pool_presuspend_undo(struct dm_target *ti)
3518 {
3519 	struct pool_c *pt = ti->private;
3520 	struct pool *pool = pt->pool;
3521 	unsigned long flags;
3522 
3523 	pool_resume_active_thins(pool);
3524 
3525 	spin_lock_irqsave(&pool->lock, flags);
3526 	pool->suspended = false;
3527 	spin_unlock_irqrestore(&pool->lock, flags);
3528 }
3529 
3530 static void pool_postsuspend(struct dm_target *ti)
3531 {
3532 	struct pool_c *pt = ti->private;
3533 	struct pool *pool = pt->pool;
3534 
3535 	cancel_delayed_work_sync(&pool->waker);
3536 	cancel_delayed_work_sync(&pool->no_space_timeout);
3537 	flush_workqueue(pool->wq);
3538 	(void) commit(pool);
3539 }
3540 
3541 static int check_arg_count(unsigned argc, unsigned args_required)
3542 {
3543 	if (argc != args_required) {
3544 		DMWARN("Message received with %u arguments instead of %u.",
3545 		       argc, args_required);
3546 		return -EINVAL;
3547 	}
3548 
3549 	return 0;
3550 }
3551 
3552 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3553 {
3554 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3555 	    *dev_id <= MAX_DEV_ID)
3556 		return 0;
3557 
3558 	if (warning)
3559 		DMWARN("Message received with invalid device id: %s", arg);
3560 
3561 	return -EINVAL;
3562 }
3563 
3564 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3565 {
3566 	dm_thin_id dev_id;
3567 	int r;
3568 
3569 	r = check_arg_count(argc, 2);
3570 	if (r)
3571 		return r;
3572 
3573 	r = read_dev_id(argv[1], &dev_id, 1);
3574 	if (r)
3575 		return r;
3576 
3577 	r = dm_pool_create_thin(pool->pmd, dev_id);
3578 	if (r) {
3579 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3580 		       argv[1]);
3581 		return r;
3582 	}
3583 
3584 	return 0;
3585 }
3586 
3587 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3588 {
3589 	dm_thin_id dev_id;
3590 	dm_thin_id origin_dev_id;
3591 	int r;
3592 
3593 	r = check_arg_count(argc, 3);
3594 	if (r)
3595 		return r;
3596 
3597 	r = read_dev_id(argv[1], &dev_id, 1);
3598 	if (r)
3599 		return r;
3600 
3601 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3602 	if (r)
3603 		return r;
3604 
3605 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3606 	if (r) {
3607 		DMWARN("Creation of new snapshot %s of device %s failed.",
3608 		       argv[1], argv[2]);
3609 		return r;
3610 	}
3611 
3612 	return 0;
3613 }
3614 
3615 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3616 {
3617 	dm_thin_id dev_id;
3618 	int r;
3619 
3620 	r = check_arg_count(argc, 2);
3621 	if (r)
3622 		return r;
3623 
3624 	r = read_dev_id(argv[1], &dev_id, 1);
3625 	if (r)
3626 		return r;
3627 
3628 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3629 	if (r)
3630 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3631 
3632 	return r;
3633 }
3634 
3635 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3636 {
3637 	dm_thin_id old_id, new_id;
3638 	int r;
3639 
3640 	r = check_arg_count(argc, 3);
3641 	if (r)
3642 		return r;
3643 
3644 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3645 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3646 		return -EINVAL;
3647 	}
3648 
3649 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3650 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3651 		return -EINVAL;
3652 	}
3653 
3654 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3655 	if (r) {
3656 		DMWARN("Failed to change transaction id from %s to %s.",
3657 		       argv[1], argv[2]);
3658 		return r;
3659 	}
3660 
3661 	return 0;
3662 }
3663 
3664 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3665 {
3666 	int r;
3667 
3668 	r = check_arg_count(argc, 1);
3669 	if (r)
3670 		return r;
3671 
3672 	(void) commit(pool);
3673 
3674 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3675 	if (r)
3676 		DMWARN("reserve_metadata_snap message failed.");
3677 
3678 	return r;
3679 }
3680 
3681 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3682 {
3683 	int r;
3684 
3685 	r = check_arg_count(argc, 1);
3686 	if (r)
3687 		return r;
3688 
3689 	r = dm_pool_release_metadata_snap(pool->pmd);
3690 	if (r)
3691 		DMWARN("release_metadata_snap message failed.");
3692 
3693 	return r;
3694 }
3695 
3696 /*
3697  * Messages supported:
3698  *   create_thin	<dev_id>
3699  *   create_snap	<dev_id> <origin_id>
3700  *   delete		<dev_id>
3701  *   set_transaction_id <current_trans_id> <new_trans_id>
3702  *   reserve_metadata_snap
3703  *   release_metadata_snap
3704  */
3705 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3706 {
3707 	int r = -EINVAL;
3708 	struct pool_c *pt = ti->private;
3709 	struct pool *pool = pt->pool;
3710 
3711 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3712 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3713 		      dm_device_name(pool->pool_md));
3714 		return -EOPNOTSUPP;
3715 	}
3716 
3717 	if (!strcasecmp(argv[0], "create_thin"))
3718 		r = process_create_thin_mesg(argc, argv, pool);
3719 
3720 	else if (!strcasecmp(argv[0], "create_snap"))
3721 		r = process_create_snap_mesg(argc, argv, pool);
3722 
3723 	else if (!strcasecmp(argv[0], "delete"))
3724 		r = process_delete_mesg(argc, argv, pool);
3725 
3726 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3727 		r = process_set_transaction_id_mesg(argc, argv, pool);
3728 
3729 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3730 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3731 
3732 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3733 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3734 
3735 	else
3736 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3737 
3738 	if (!r)
3739 		(void) commit(pool);
3740 
3741 	return r;
3742 }
3743 
3744 static void emit_flags(struct pool_features *pf, char *result,
3745 		       unsigned sz, unsigned maxlen)
3746 {
3747 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3748 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3749 		pf->error_if_no_space;
3750 	DMEMIT("%u ", count);
3751 
3752 	if (!pf->zero_new_blocks)
3753 		DMEMIT("skip_block_zeroing ");
3754 
3755 	if (!pf->discard_enabled)
3756 		DMEMIT("ignore_discard ");
3757 
3758 	if (!pf->discard_passdown)
3759 		DMEMIT("no_discard_passdown ");
3760 
3761 	if (pf->mode == PM_READ_ONLY)
3762 		DMEMIT("read_only ");
3763 
3764 	if (pf->error_if_no_space)
3765 		DMEMIT("error_if_no_space ");
3766 }
3767 
3768 /*
3769  * Status line is:
3770  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3771  *    <used data sectors>/<total data sectors> <held metadata root>
3772  *    <pool mode> <discard config> <no space config> <needs_check>
3773  */
3774 static void pool_status(struct dm_target *ti, status_type_t type,
3775 			unsigned status_flags, char *result, unsigned maxlen)
3776 {
3777 	int r;
3778 	unsigned sz = 0;
3779 	uint64_t transaction_id;
3780 	dm_block_t nr_free_blocks_data;
3781 	dm_block_t nr_free_blocks_metadata;
3782 	dm_block_t nr_blocks_data;
3783 	dm_block_t nr_blocks_metadata;
3784 	dm_block_t held_root;
3785 	char buf[BDEVNAME_SIZE];
3786 	char buf2[BDEVNAME_SIZE];
3787 	struct pool_c *pt = ti->private;
3788 	struct pool *pool = pt->pool;
3789 
3790 	switch (type) {
3791 	case STATUSTYPE_INFO:
3792 		if (get_pool_mode(pool) == PM_FAIL) {
3793 			DMEMIT("Fail");
3794 			break;
3795 		}
3796 
3797 		/* Commit to ensure statistics aren't out-of-date */
3798 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3799 			(void) commit(pool);
3800 
3801 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3802 		if (r) {
3803 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3804 			      dm_device_name(pool->pool_md), r);
3805 			goto err;
3806 		}
3807 
3808 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3809 		if (r) {
3810 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3811 			      dm_device_name(pool->pool_md), r);
3812 			goto err;
3813 		}
3814 
3815 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3816 		if (r) {
3817 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3818 			      dm_device_name(pool->pool_md), r);
3819 			goto err;
3820 		}
3821 
3822 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3823 		if (r) {
3824 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3825 			      dm_device_name(pool->pool_md), r);
3826 			goto err;
3827 		}
3828 
3829 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3830 		if (r) {
3831 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3832 			      dm_device_name(pool->pool_md), r);
3833 			goto err;
3834 		}
3835 
3836 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3837 		if (r) {
3838 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3839 			      dm_device_name(pool->pool_md), r);
3840 			goto err;
3841 		}
3842 
3843 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3844 		       (unsigned long long)transaction_id,
3845 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3846 		       (unsigned long long)nr_blocks_metadata,
3847 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3848 		       (unsigned long long)nr_blocks_data);
3849 
3850 		if (held_root)
3851 			DMEMIT("%llu ", held_root);
3852 		else
3853 			DMEMIT("- ");
3854 
3855 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3856 			DMEMIT("out_of_data_space ");
3857 		else if (pool->pf.mode == PM_READ_ONLY)
3858 			DMEMIT("ro ");
3859 		else
3860 			DMEMIT("rw ");
3861 
3862 		if (!pool->pf.discard_enabled)
3863 			DMEMIT("ignore_discard ");
3864 		else if (pool->pf.discard_passdown)
3865 			DMEMIT("discard_passdown ");
3866 		else
3867 			DMEMIT("no_discard_passdown ");
3868 
3869 		if (pool->pf.error_if_no_space)
3870 			DMEMIT("error_if_no_space ");
3871 		else
3872 			DMEMIT("queue_if_no_space ");
3873 
3874 		if (dm_pool_metadata_needs_check(pool->pmd))
3875 			DMEMIT("needs_check ");
3876 		else
3877 			DMEMIT("- ");
3878 
3879 		break;
3880 
3881 	case STATUSTYPE_TABLE:
3882 		DMEMIT("%s %s %lu %llu ",
3883 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3884 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3885 		       (unsigned long)pool->sectors_per_block,
3886 		       (unsigned long long)pt->low_water_blocks);
3887 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3888 		break;
3889 	}
3890 	return;
3891 
3892 err:
3893 	DMEMIT("Error");
3894 }
3895 
3896 static int pool_iterate_devices(struct dm_target *ti,
3897 				iterate_devices_callout_fn fn, void *data)
3898 {
3899 	struct pool_c *pt = ti->private;
3900 
3901 	return fn(ti, pt->data_dev, 0, ti->len, data);
3902 }
3903 
3904 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3905 {
3906 	struct pool_c *pt = ti->private;
3907 	struct pool *pool = pt->pool;
3908 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3909 
3910 	/*
3911 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3912 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3913 	 * This is especially beneficial when the pool's data device is a RAID
3914 	 * device that has a full stripe width that matches pool->sectors_per_block
3915 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3916 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3917 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3918 	 */
3919 	if (limits->max_sectors < pool->sectors_per_block) {
3920 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3921 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3922 				limits->max_sectors--;
3923 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3924 		}
3925 	}
3926 
3927 	/*
3928 	 * If the system-determined stacked limits are compatible with the
3929 	 * pool's blocksize (io_opt is a factor) do not override them.
3930 	 */
3931 	if (io_opt_sectors < pool->sectors_per_block ||
3932 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3933 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3934 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3935 		else
3936 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3937 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3938 	}
3939 
3940 	/*
3941 	 * pt->adjusted_pf is a staging area for the actual features to use.
3942 	 * They get transferred to the live pool in bind_control_target()
3943 	 * called from pool_preresume().
3944 	 */
3945 	if (!pt->adjusted_pf.discard_enabled) {
3946 		/*
3947 		 * Must explicitly disallow stacking discard limits otherwise the
3948 		 * block layer will stack them if pool's data device has support.
3949 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3950 		 * user to see that, so make sure to set all discard limits to 0.
3951 		 */
3952 		limits->discard_granularity = 0;
3953 		return;
3954 	}
3955 
3956 	disable_passdown_if_not_supported(pt);
3957 
3958 	/*
3959 	 * The pool uses the same discard limits as the underlying data
3960 	 * device.  DM core has already set this up.
3961 	 */
3962 }
3963 
3964 static struct target_type pool_target = {
3965 	.name = "thin-pool",
3966 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3967 		    DM_TARGET_IMMUTABLE,
3968 	.version = {1, 19, 0},
3969 	.module = THIS_MODULE,
3970 	.ctr = pool_ctr,
3971 	.dtr = pool_dtr,
3972 	.map = pool_map,
3973 	.presuspend = pool_presuspend,
3974 	.presuspend_undo = pool_presuspend_undo,
3975 	.postsuspend = pool_postsuspend,
3976 	.preresume = pool_preresume,
3977 	.resume = pool_resume,
3978 	.message = pool_message,
3979 	.status = pool_status,
3980 	.iterate_devices = pool_iterate_devices,
3981 	.io_hints = pool_io_hints,
3982 };
3983 
3984 /*----------------------------------------------------------------
3985  * Thin target methods
3986  *--------------------------------------------------------------*/
3987 static void thin_get(struct thin_c *tc)
3988 {
3989 	atomic_inc(&tc->refcount);
3990 }
3991 
3992 static void thin_put(struct thin_c *tc)
3993 {
3994 	if (atomic_dec_and_test(&tc->refcount))
3995 		complete(&tc->can_destroy);
3996 }
3997 
3998 static void thin_dtr(struct dm_target *ti)
3999 {
4000 	struct thin_c *tc = ti->private;
4001 	unsigned long flags;
4002 
4003 	spin_lock_irqsave(&tc->pool->lock, flags);
4004 	list_del_rcu(&tc->list);
4005 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4006 	synchronize_rcu();
4007 
4008 	thin_put(tc);
4009 	wait_for_completion(&tc->can_destroy);
4010 
4011 	mutex_lock(&dm_thin_pool_table.mutex);
4012 
4013 	__pool_dec(tc->pool);
4014 	dm_pool_close_thin_device(tc->td);
4015 	dm_put_device(ti, tc->pool_dev);
4016 	if (tc->origin_dev)
4017 		dm_put_device(ti, tc->origin_dev);
4018 	kfree(tc);
4019 
4020 	mutex_unlock(&dm_thin_pool_table.mutex);
4021 }
4022 
4023 /*
4024  * Thin target parameters:
4025  *
4026  * <pool_dev> <dev_id> [origin_dev]
4027  *
4028  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4029  * dev_id: the internal device identifier
4030  * origin_dev: a device external to the pool that should act as the origin
4031  *
4032  * If the pool device has discards disabled, they get disabled for the thin
4033  * device as well.
4034  */
4035 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4036 {
4037 	int r;
4038 	struct thin_c *tc;
4039 	struct dm_dev *pool_dev, *origin_dev;
4040 	struct mapped_device *pool_md;
4041 	unsigned long flags;
4042 
4043 	mutex_lock(&dm_thin_pool_table.mutex);
4044 
4045 	if (argc != 2 && argc != 3) {
4046 		ti->error = "Invalid argument count";
4047 		r = -EINVAL;
4048 		goto out_unlock;
4049 	}
4050 
4051 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4052 	if (!tc) {
4053 		ti->error = "Out of memory";
4054 		r = -ENOMEM;
4055 		goto out_unlock;
4056 	}
4057 	tc->thin_md = dm_table_get_md(ti->table);
4058 	spin_lock_init(&tc->lock);
4059 	INIT_LIST_HEAD(&tc->deferred_cells);
4060 	bio_list_init(&tc->deferred_bio_list);
4061 	bio_list_init(&tc->retry_on_resume_list);
4062 	tc->sort_bio_list = RB_ROOT;
4063 
4064 	if (argc == 3) {
4065 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4066 		if (r) {
4067 			ti->error = "Error opening origin device";
4068 			goto bad_origin_dev;
4069 		}
4070 		tc->origin_dev = origin_dev;
4071 	}
4072 
4073 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4074 	if (r) {
4075 		ti->error = "Error opening pool device";
4076 		goto bad_pool_dev;
4077 	}
4078 	tc->pool_dev = pool_dev;
4079 
4080 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4081 		ti->error = "Invalid device id";
4082 		r = -EINVAL;
4083 		goto bad_common;
4084 	}
4085 
4086 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4087 	if (!pool_md) {
4088 		ti->error = "Couldn't get pool mapped device";
4089 		r = -EINVAL;
4090 		goto bad_common;
4091 	}
4092 
4093 	tc->pool = __pool_table_lookup(pool_md);
4094 	if (!tc->pool) {
4095 		ti->error = "Couldn't find pool object";
4096 		r = -EINVAL;
4097 		goto bad_pool_lookup;
4098 	}
4099 	__pool_inc(tc->pool);
4100 
4101 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4102 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4103 		r = -EINVAL;
4104 		goto bad_pool;
4105 	}
4106 
4107 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4108 	if (r) {
4109 		ti->error = "Couldn't open thin internal device";
4110 		goto bad_pool;
4111 	}
4112 
4113 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4114 	if (r)
4115 		goto bad;
4116 
4117 	ti->num_flush_bios = 1;
4118 	ti->flush_supported = true;
4119 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4120 
4121 	/* In case the pool supports discards, pass them on. */
4122 	ti->discard_zeroes_data_unsupported = true;
4123 	if (tc->pool->pf.discard_enabled) {
4124 		ti->discards_supported = true;
4125 		ti->num_discard_bios = 1;
4126 		ti->split_discard_bios = false;
4127 	}
4128 
4129 	mutex_unlock(&dm_thin_pool_table.mutex);
4130 
4131 	spin_lock_irqsave(&tc->pool->lock, flags);
4132 	if (tc->pool->suspended) {
4133 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4134 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4135 		ti->error = "Unable to activate thin device while pool is suspended";
4136 		r = -EINVAL;
4137 		goto bad;
4138 	}
4139 	atomic_set(&tc->refcount, 1);
4140 	init_completion(&tc->can_destroy);
4141 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4142 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4143 	/*
4144 	 * This synchronize_rcu() call is needed here otherwise we risk a
4145 	 * wake_worker() call finding no bios to process (because the newly
4146 	 * added tc isn't yet visible).  So this reduces latency since we
4147 	 * aren't then dependent on the periodic commit to wake_worker().
4148 	 */
4149 	synchronize_rcu();
4150 
4151 	dm_put(pool_md);
4152 
4153 	return 0;
4154 
4155 bad:
4156 	dm_pool_close_thin_device(tc->td);
4157 bad_pool:
4158 	__pool_dec(tc->pool);
4159 bad_pool_lookup:
4160 	dm_put(pool_md);
4161 bad_common:
4162 	dm_put_device(ti, tc->pool_dev);
4163 bad_pool_dev:
4164 	if (tc->origin_dev)
4165 		dm_put_device(ti, tc->origin_dev);
4166 bad_origin_dev:
4167 	kfree(tc);
4168 out_unlock:
4169 	mutex_unlock(&dm_thin_pool_table.mutex);
4170 
4171 	return r;
4172 }
4173 
4174 static int thin_map(struct dm_target *ti, struct bio *bio)
4175 {
4176 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4177 
4178 	return thin_bio_map(ti, bio);
4179 }
4180 
4181 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4182 {
4183 	unsigned long flags;
4184 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4185 	struct list_head work;
4186 	struct dm_thin_new_mapping *m, *tmp;
4187 	struct pool *pool = h->tc->pool;
4188 
4189 	if (h->shared_read_entry) {
4190 		INIT_LIST_HEAD(&work);
4191 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4192 
4193 		spin_lock_irqsave(&pool->lock, flags);
4194 		list_for_each_entry_safe(m, tmp, &work, list) {
4195 			list_del(&m->list);
4196 			__complete_mapping_preparation(m);
4197 		}
4198 		spin_unlock_irqrestore(&pool->lock, flags);
4199 	}
4200 
4201 	if (h->all_io_entry) {
4202 		INIT_LIST_HEAD(&work);
4203 		dm_deferred_entry_dec(h->all_io_entry, &work);
4204 		if (!list_empty(&work)) {
4205 			spin_lock_irqsave(&pool->lock, flags);
4206 			list_for_each_entry_safe(m, tmp, &work, list)
4207 				list_add_tail(&m->list, &pool->prepared_discards);
4208 			spin_unlock_irqrestore(&pool->lock, flags);
4209 			wake_worker(pool);
4210 		}
4211 	}
4212 
4213 	if (h->cell)
4214 		cell_defer_no_holder(h->tc, h->cell);
4215 
4216 	return 0;
4217 }
4218 
4219 static void thin_presuspend(struct dm_target *ti)
4220 {
4221 	struct thin_c *tc = ti->private;
4222 
4223 	if (dm_noflush_suspending(ti))
4224 		noflush_work(tc, do_noflush_start);
4225 }
4226 
4227 static void thin_postsuspend(struct dm_target *ti)
4228 {
4229 	struct thin_c *tc = ti->private;
4230 
4231 	/*
4232 	 * The dm_noflush_suspending flag has been cleared by now, so
4233 	 * unfortunately we must always run this.
4234 	 */
4235 	noflush_work(tc, do_noflush_stop);
4236 }
4237 
4238 static int thin_preresume(struct dm_target *ti)
4239 {
4240 	struct thin_c *tc = ti->private;
4241 
4242 	if (tc->origin_dev)
4243 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4244 
4245 	return 0;
4246 }
4247 
4248 /*
4249  * <nr mapped sectors> <highest mapped sector>
4250  */
4251 static void thin_status(struct dm_target *ti, status_type_t type,
4252 			unsigned status_flags, char *result, unsigned maxlen)
4253 {
4254 	int r;
4255 	ssize_t sz = 0;
4256 	dm_block_t mapped, highest;
4257 	char buf[BDEVNAME_SIZE];
4258 	struct thin_c *tc = ti->private;
4259 
4260 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4261 		DMEMIT("Fail");
4262 		return;
4263 	}
4264 
4265 	if (!tc->td)
4266 		DMEMIT("-");
4267 	else {
4268 		switch (type) {
4269 		case STATUSTYPE_INFO:
4270 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4271 			if (r) {
4272 				DMERR("dm_thin_get_mapped_count returned %d", r);
4273 				goto err;
4274 			}
4275 
4276 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4277 			if (r < 0) {
4278 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4279 				goto err;
4280 			}
4281 
4282 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4283 			if (r)
4284 				DMEMIT("%llu", ((highest + 1) *
4285 						tc->pool->sectors_per_block) - 1);
4286 			else
4287 				DMEMIT("-");
4288 			break;
4289 
4290 		case STATUSTYPE_TABLE:
4291 			DMEMIT("%s %lu",
4292 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4293 			       (unsigned long) tc->dev_id);
4294 			if (tc->origin_dev)
4295 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4296 			break;
4297 		}
4298 	}
4299 
4300 	return;
4301 
4302 err:
4303 	DMEMIT("Error");
4304 }
4305 
4306 static int thin_iterate_devices(struct dm_target *ti,
4307 				iterate_devices_callout_fn fn, void *data)
4308 {
4309 	sector_t blocks;
4310 	struct thin_c *tc = ti->private;
4311 	struct pool *pool = tc->pool;
4312 
4313 	/*
4314 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4315 	 * we follow a more convoluted path through to the pool's target.
4316 	 */
4317 	if (!pool->ti)
4318 		return 0;	/* nothing is bound */
4319 
4320 	blocks = pool->ti->len;
4321 	(void) sector_div(blocks, pool->sectors_per_block);
4322 	if (blocks)
4323 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4324 
4325 	return 0;
4326 }
4327 
4328 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4329 {
4330 	struct thin_c *tc = ti->private;
4331 	struct pool *pool = tc->pool;
4332 
4333 	if (!pool->pf.discard_enabled)
4334 		return;
4335 
4336 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4337 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4338 }
4339 
4340 static struct target_type thin_target = {
4341 	.name = "thin",
4342 	.version = {1, 19, 0},
4343 	.module	= THIS_MODULE,
4344 	.ctr = thin_ctr,
4345 	.dtr = thin_dtr,
4346 	.map = thin_map,
4347 	.end_io = thin_endio,
4348 	.preresume = thin_preresume,
4349 	.presuspend = thin_presuspend,
4350 	.postsuspend = thin_postsuspend,
4351 	.status = thin_status,
4352 	.iterate_devices = thin_iterate_devices,
4353 	.io_hints = thin_io_hints,
4354 };
4355 
4356 /*----------------------------------------------------------------*/
4357 
4358 static int __init dm_thin_init(void)
4359 {
4360 	int r;
4361 
4362 	pool_table_init();
4363 
4364 	r = dm_register_target(&thin_target);
4365 	if (r)
4366 		return r;
4367 
4368 	r = dm_register_target(&pool_target);
4369 	if (r)
4370 		goto bad_pool_target;
4371 
4372 	r = -ENOMEM;
4373 
4374 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4375 	if (!_new_mapping_cache)
4376 		goto bad_new_mapping_cache;
4377 
4378 	return 0;
4379 
4380 bad_new_mapping_cache:
4381 	dm_unregister_target(&pool_target);
4382 bad_pool_target:
4383 	dm_unregister_target(&thin_target);
4384 
4385 	return r;
4386 }
4387 
4388 static void dm_thin_exit(void)
4389 {
4390 	dm_unregister_target(&thin_target);
4391 	dm_unregister_target(&pool_target);
4392 
4393 	kmem_cache_destroy(_new_mapping_cache);
4394 }
4395 
4396 module_init(dm_thin_init);
4397 module_exit(dm_thin_exit);
4398 
4399 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4400 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4401 
4402 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4403 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4404 MODULE_LICENSE("GPL");
4405