1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 PM_READ_ONLY, /* metadata may not be changed */ 204 PM_FAIL, /* all I/O fails */ 205 }; 206 207 struct pool_features { 208 enum pool_mode mode; 209 210 bool zero_new_blocks:1; 211 bool discard_enabled:1; 212 bool discard_passdown:1; 213 bool error_if_no_space:1; 214 }; 215 216 struct thin_c; 217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 220 221 #define CELL_SORT_ARRAY_SIZE 8192 222 223 struct pool { 224 struct list_head list; 225 struct dm_target *ti; /* Only set if a pool target is bound */ 226 227 struct mapped_device *pool_md; 228 struct block_device *md_dev; 229 struct dm_pool_metadata *pmd; 230 231 dm_block_t low_water_blocks; 232 uint32_t sectors_per_block; 233 int sectors_per_block_shift; 234 235 struct pool_features pf; 236 bool low_water_triggered:1; /* A dm event has been sent */ 237 bool suspended:1; 238 bool out_of_data_space:1; 239 240 struct dm_bio_prison *prison; 241 struct dm_kcopyd_client *copier; 242 243 struct workqueue_struct *wq; 244 struct throttle throttle; 245 struct work_struct worker; 246 struct delayed_work waker; 247 struct delayed_work no_space_timeout; 248 249 unsigned long last_commit_jiffies; 250 unsigned ref_count; 251 252 spinlock_t lock; 253 struct bio_list deferred_flush_bios; 254 struct list_head prepared_mappings; 255 struct list_head prepared_discards; 256 struct list_head prepared_discards_pt2; 257 struct list_head active_thins; 258 259 struct dm_deferred_set *shared_read_ds; 260 struct dm_deferred_set *all_io_ds; 261 262 struct dm_thin_new_mapping *next_mapping; 263 mempool_t *mapping_pool; 264 265 process_bio_fn process_bio; 266 process_bio_fn process_discard; 267 268 process_cell_fn process_cell; 269 process_cell_fn process_discard_cell; 270 271 process_mapping_fn process_prepared_mapping; 272 process_mapping_fn process_prepared_discard; 273 process_mapping_fn process_prepared_discard_pt2; 274 275 struct dm_bio_prison_cell **cell_sort_array; 276 }; 277 278 static enum pool_mode get_pool_mode(struct pool *pool); 279 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 280 281 /* 282 * Target context for a pool. 283 */ 284 struct pool_c { 285 struct dm_target *ti; 286 struct pool *pool; 287 struct dm_dev *data_dev; 288 struct dm_dev *metadata_dev; 289 struct dm_target_callbacks callbacks; 290 291 dm_block_t low_water_blocks; 292 struct pool_features requested_pf; /* Features requested during table load */ 293 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 294 }; 295 296 /* 297 * Target context for a thin. 298 */ 299 struct thin_c { 300 struct list_head list; 301 struct dm_dev *pool_dev; 302 struct dm_dev *origin_dev; 303 sector_t origin_size; 304 dm_thin_id dev_id; 305 306 struct pool *pool; 307 struct dm_thin_device *td; 308 struct mapped_device *thin_md; 309 310 bool requeue_mode:1; 311 spinlock_t lock; 312 struct list_head deferred_cells; 313 struct bio_list deferred_bio_list; 314 struct bio_list retry_on_resume_list; 315 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 316 317 /* 318 * Ensures the thin is not destroyed until the worker has finished 319 * iterating the active_thins list. 320 */ 321 atomic_t refcount; 322 struct completion can_destroy; 323 }; 324 325 /*----------------------------------------------------------------*/ 326 327 static bool block_size_is_power_of_two(struct pool *pool) 328 { 329 return pool->sectors_per_block_shift >= 0; 330 } 331 332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 333 { 334 return block_size_is_power_of_two(pool) ? 335 (b << pool->sectors_per_block_shift) : 336 (b * pool->sectors_per_block); 337 } 338 339 /*----------------------------------------------------------------*/ 340 341 struct discard_op { 342 struct thin_c *tc; 343 struct blk_plug plug; 344 struct bio *parent_bio; 345 struct bio *bio; 346 }; 347 348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 349 { 350 BUG_ON(!parent); 351 352 op->tc = tc; 353 blk_start_plug(&op->plug); 354 op->parent_bio = parent; 355 op->bio = NULL; 356 } 357 358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 359 { 360 struct thin_c *tc = op->tc; 361 sector_t s = block_to_sectors(tc->pool, data_b); 362 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 363 364 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 365 GFP_NOWAIT, 0, &op->bio); 366 } 367 368 static void end_discard(struct discard_op *op, int r) 369 { 370 if (op->bio) { 371 /* 372 * Even if one of the calls to issue_discard failed, we 373 * need to wait for the chain to complete. 374 */ 375 bio_chain(op->bio, op->parent_bio); 376 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 377 submit_bio(op->bio); 378 } 379 380 blk_finish_plug(&op->plug); 381 382 /* 383 * Even if r is set, there could be sub discards in flight that we 384 * need to wait for. 385 */ 386 if (r && !op->parent_bio->bi_error) 387 op->parent_bio->bi_error = r; 388 bio_endio(op->parent_bio); 389 } 390 391 /*----------------------------------------------------------------*/ 392 393 /* 394 * wake_worker() is used when new work is queued and when pool_resume is 395 * ready to continue deferred IO processing. 396 */ 397 static void wake_worker(struct pool *pool) 398 { 399 queue_work(pool->wq, &pool->worker); 400 } 401 402 /*----------------------------------------------------------------*/ 403 404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 405 struct dm_bio_prison_cell **cell_result) 406 { 407 int r; 408 struct dm_bio_prison_cell *cell_prealloc; 409 410 /* 411 * Allocate a cell from the prison's mempool. 412 * This might block but it can't fail. 413 */ 414 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 415 416 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 417 if (r) 418 /* 419 * We reused an old cell; we can get rid of 420 * the new one. 421 */ 422 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 423 424 return r; 425 } 426 427 static void cell_release(struct pool *pool, 428 struct dm_bio_prison_cell *cell, 429 struct bio_list *bios) 430 { 431 dm_cell_release(pool->prison, cell, bios); 432 dm_bio_prison_free_cell(pool->prison, cell); 433 } 434 435 static void cell_visit_release(struct pool *pool, 436 void (*fn)(void *, struct dm_bio_prison_cell *), 437 void *context, 438 struct dm_bio_prison_cell *cell) 439 { 440 dm_cell_visit_release(pool->prison, fn, context, cell); 441 dm_bio_prison_free_cell(pool->prison, cell); 442 } 443 444 static void cell_release_no_holder(struct pool *pool, 445 struct dm_bio_prison_cell *cell, 446 struct bio_list *bios) 447 { 448 dm_cell_release_no_holder(pool->prison, cell, bios); 449 dm_bio_prison_free_cell(pool->prison, cell); 450 } 451 452 static void cell_error_with_code(struct pool *pool, 453 struct dm_bio_prison_cell *cell, int error_code) 454 { 455 dm_cell_error(pool->prison, cell, error_code); 456 dm_bio_prison_free_cell(pool->prison, cell); 457 } 458 459 static int get_pool_io_error_code(struct pool *pool) 460 { 461 return pool->out_of_data_space ? -ENOSPC : -EIO; 462 } 463 464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 465 { 466 int error = get_pool_io_error_code(pool); 467 468 cell_error_with_code(pool, cell, error); 469 } 470 471 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 472 { 473 cell_error_with_code(pool, cell, 0); 474 } 475 476 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 477 { 478 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE); 479 } 480 481 /*----------------------------------------------------------------*/ 482 483 /* 484 * A global list of pools that uses a struct mapped_device as a key. 485 */ 486 static struct dm_thin_pool_table { 487 struct mutex mutex; 488 struct list_head pools; 489 } dm_thin_pool_table; 490 491 static void pool_table_init(void) 492 { 493 mutex_init(&dm_thin_pool_table.mutex); 494 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 495 } 496 497 static void __pool_table_insert(struct pool *pool) 498 { 499 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 500 list_add(&pool->list, &dm_thin_pool_table.pools); 501 } 502 503 static void __pool_table_remove(struct pool *pool) 504 { 505 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 506 list_del(&pool->list); 507 } 508 509 static struct pool *__pool_table_lookup(struct mapped_device *md) 510 { 511 struct pool *pool = NULL, *tmp; 512 513 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 514 515 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 516 if (tmp->pool_md == md) { 517 pool = tmp; 518 break; 519 } 520 } 521 522 return pool; 523 } 524 525 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 526 { 527 struct pool *pool = NULL, *tmp; 528 529 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 530 531 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 532 if (tmp->md_dev == md_dev) { 533 pool = tmp; 534 break; 535 } 536 } 537 538 return pool; 539 } 540 541 /*----------------------------------------------------------------*/ 542 543 struct dm_thin_endio_hook { 544 struct thin_c *tc; 545 struct dm_deferred_entry *shared_read_entry; 546 struct dm_deferred_entry *all_io_entry; 547 struct dm_thin_new_mapping *overwrite_mapping; 548 struct rb_node rb_node; 549 struct dm_bio_prison_cell *cell; 550 }; 551 552 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 553 { 554 bio_list_merge(bios, master); 555 bio_list_init(master); 556 } 557 558 static void error_bio_list(struct bio_list *bios, int error) 559 { 560 struct bio *bio; 561 562 while ((bio = bio_list_pop(bios))) { 563 bio->bi_error = error; 564 bio_endio(bio); 565 } 566 } 567 568 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error) 569 { 570 struct bio_list bios; 571 unsigned long flags; 572 573 bio_list_init(&bios); 574 575 spin_lock_irqsave(&tc->lock, flags); 576 __merge_bio_list(&bios, master); 577 spin_unlock_irqrestore(&tc->lock, flags); 578 579 error_bio_list(&bios, error); 580 } 581 582 static void requeue_deferred_cells(struct thin_c *tc) 583 { 584 struct pool *pool = tc->pool; 585 unsigned long flags; 586 struct list_head cells; 587 struct dm_bio_prison_cell *cell, *tmp; 588 589 INIT_LIST_HEAD(&cells); 590 591 spin_lock_irqsave(&tc->lock, flags); 592 list_splice_init(&tc->deferred_cells, &cells); 593 spin_unlock_irqrestore(&tc->lock, flags); 594 595 list_for_each_entry_safe(cell, tmp, &cells, user_list) 596 cell_requeue(pool, cell); 597 } 598 599 static void requeue_io(struct thin_c *tc) 600 { 601 struct bio_list bios; 602 unsigned long flags; 603 604 bio_list_init(&bios); 605 606 spin_lock_irqsave(&tc->lock, flags); 607 __merge_bio_list(&bios, &tc->deferred_bio_list); 608 __merge_bio_list(&bios, &tc->retry_on_resume_list); 609 spin_unlock_irqrestore(&tc->lock, flags); 610 611 error_bio_list(&bios, DM_ENDIO_REQUEUE); 612 requeue_deferred_cells(tc); 613 } 614 615 static void error_retry_list_with_code(struct pool *pool, int error) 616 { 617 struct thin_c *tc; 618 619 rcu_read_lock(); 620 list_for_each_entry_rcu(tc, &pool->active_thins, list) 621 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 622 rcu_read_unlock(); 623 } 624 625 static void error_retry_list(struct pool *pool) 626 { 627 int error = get_pool_io_error_code(pool); 628 629 error_retry_list_with_code(pool, error); 630 } 631 632 /* 633 * This section of code contains the logic for processing a thin device's IO. 634 * Much of the code depends on pool object resources (lists, workqueues, etc) 635 * but most is exclusively called from the thin target rather than the thin-pool 636 * target. 637 */ 638 639 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 640 { 641 struct pool *pool = tc->pool; 642 sector_t block_nr = bio->bi_iter.bi_sector; 643 644 if (block_size_is_power_of_two(pool)) 645 block_nr >>= pool->sectors_per_block_shift; 646 else 647 (void) sector_div(block_nr, pool->sectors_per_block); 648 649 return block_nr; 650 } 651 652 /* 653 * Returns the _complete_ blocks that this bio covers. 654 */ 655 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 656 dm_block_t *begin, dm_block_t *end) 657 { 658 struct pool *pool = tc->pool; 659 sector_t b = bio->bi_iter.bi_sector; 660 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 661 662 b += pool->sectors_per_block - 1ull; /* so we round up */ 663 664 if (block_size_is_power_of_two(pool)) { 665 b >>= pool->sectors_per_block_shift; 666 e >>= pool->sectors_per_block_shift; 667 } else { 668 (void) sector_div(b, pool->sectors_per_block); 669 (void) sector_div(e, pool->sectors_per_block); 670 } 671 672 if (e < b) 673 /* Can happen if the bio is within a single block. */ 674 e = b; 675 676 *begin = b; 677 *end = e; 678 } 679 680 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 681 { 682 struct pool *pool = tc->pool; 683 sector_t bi_sector = bio->bi_iter.bi_sector; 684 685 bio->bi_bdev = tc->pool_dev->bdev; 686 if (block_size_is_power_of_two(pool)) 687 bio->bi_iter.bi_sector = 688 (block << pool->sectors_per_block_shift) | 689 (bi_sector & (pool->sectors_per_block - 1)); 690 else 691 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 692 sector_div(bi_sector, pool->sectors_per_block); 693 } 694 695 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 696 { 697 bio->bi_bdev = tc->origin_dev->bdev; 698 } 699 700 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 701 { 702 return op_is_flush(bio->bi_opf) && 703 dm_thin_changed_this_transaction(tc->td); 704 } 705 706 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 707 { 708 struct dm_thin_endio_hook *h; 709 710 if (bio_op(bio) == REQ_OP_DISCARD) 711 return; 712 713 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 714 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 715 } 716 717 static void issue(struct thin_c *tc, struct bio *bio) 718 { 719 struct pool *pool = tc->pool; 720 unsigned long flags; 721 722 if (!bio_triggers_commit(tc, bio)) { 723 generic_make_request(bio); 724 return; 725 } 726 727 /* 728 * Complete bio with an error if earlier I/O caused changes to 729 * the metadata that can't be committed e.g, due to I/O errors 730 * on the metadata device. 731 */ 732 if (dm_thin_aborted_changes(tc->td)) { 733 bio_io_error(bio); 734 return; 735 } 736 737 /* 738 * Batch together any bios that trigger commits and then issue a 739 * single commit for them in process_deferred_bios(). 740 */ 741 spin_lock_irqsave(&pool->lock, flags); 742 bio_list_add(&pool->deferred_flush_bios, bio); 743 spin_unlock_irqrestore(&pool->lock, flags); 744 } 745 746 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 747 { 748 remap_to_origin(tc, bio); 749 issue(tc, bio); 750 } 751 752 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 753 dm_block_t block) 754 { 755 remap(tc, bio, block); 756 issue(tc, bio); 757 } 758 759 /*----------------------------------------------------------------*/ 760 761 /* 762 * Bio endio functions. 763 */ 764 struct dm_thin_new_mapping { 765 struct list_head list; 766 767 bool pass_discard:1; 768 bool maybe_shared:1; 769 770 /* 771 * Track quiescing, copying and zeroing preparation actions. When this 772 * counter hits zero the block is prepared and can be inserted into the 773 * btree. 774 */ 775 atomic_t prepare_actions; 776 777 int err; 778 struct thin_c *tc; 779 dm_block_t virt_begin, virt_end; 780 dm_block_t data_block; 781 struct dm_bio_prison_cell *cell; 782 783 /* 784 * If the bio covers the whole area of a block then we can avoid 785 * zeroing or copying. Instead this bio is hooked. The bio will 786 * still be in the cell, so care has to be taken to avoid issuing 787 * the bio twice. 788 */ 789 struct bio *bio; 790 bio_end_io_t *saved_bi_end_io; 791 }; 792 793 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 794 { 795 struct pool *pool = m->tc->pool; 796 797 if (atomic_dec_and_test(&m->prepare_actions)) { 798 list_add_tail(&m->list, &pool->prepared_mappings); 799 wake_worker(pool); 800 } 801 } 802 803 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 804 { 805 unsigned long flags; 806 struct pool *pool = m->tc->pool; 807 808 spin_lock_irqsave(&pool->lock, flags); 809 __complete_mapping_preparation(m); 810 spin_unlock_irqrestore(&pool->lock, flags); 811 } 812 813 static void copy_complete(int read_err, unsigned long write_err, void *context) 814 { 815 struct dm_thin_new_mapping *m = context; 816 817 m->err = read_err || write_err ? -EIO : 0; 818 complete_mapping_preparation(m); 819 } 820 821 static void overwrite_endio(struct bio *bio) 822 { 823 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 824 struct dm_thin_new_mapping *m = h->overwrite_mapping; 825 826 bio->bi_end_io = m->saved_bi_end_io; 827 828 m->err = bio->bi_error; 829 complete_mapping_preparation(m); 830 } 831 832 /*----------------------------------------------------------------*/ 833 834 /* 835 * Workqueue. 836 */ 837 838 /* 839 * Prepared mapping jobs. 840 */ 841 842 /* 843 * This sends the bios in the cell, except the original holder, back 844 * to the deferred_bios list. 845 */ 846 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 847 { 848 struct pool *pool = tc->pool; 849 unsigned long flags; 850 851 spin_lock_irqsave(&tc->lock, flags); 852 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 853 spin_unlock_irqrestore(&tc->lock, flags); 854 855 wake_worker(pool); 856 } 857 858 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 859 860 struct remap_info { 861 struct thin_c *tc; 862 struct bio_list defer_bios; 863 struct bio_list issue_bios; 864 }; 865 866 static void __inc_remap_and_issue_cell(void *context, 867 struct dm_bio_prison_cell *cell) 868 { 869 struct remap_info *info = context; 870 struct bio *bio; 871 872 while ((bio = bio_list_pop(&cell->bios))) { 873 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 874 bio_list_add(&info->defer_bios, bio); 875 else { 876 inc_all_io_entry(info->tc->pool, bio); 877 878 /* 879 * We can't issue the bios with the bio prison lock 880 * held, so we add them to a list to issue on 881 * return from this function. 882 */ 883 bio_list_add(&info->issue_bios, bio); 884 } 885 } 886 } 887 888 static void inc_remap_and_issue_cell(struct thin_c *tc, 889 struct dm_bio_prison_cell *cell, 890 dm_block_t block) 891 { 892 struct bio *bio; 893 struct remap_info info; 894 895 info.tc = tc; 896 bio_list_init(&info.defer_bios); 897 bio_list_init(&info.issue_bios); 898 899 /* 900 * We have to be careful to inc any bios we're about to issue 901 * before the cell is released, and avoid a race with new bios 902 * being added to the cell. 903 */ 904 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 905 &info, cell); 906 907 while ((bio = bio_list_pop(&info.defer_bios))) 908 thin_defer_bio(tc, bio); 909 910 while ((bio = bio_list_pop(&info.issue_bios))) 911 remap_and_issue(info.tc, bio, block); 912 } 913 914 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 915 { 916 cell_error(m->tc->pool, m->cell); 917 list_del(&m->list); 918 mempool_free(m, m->tc->pool->mapping_pool); 919 } 920 921 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 922 { 923 struct thin_c *tc = m->tc; 924 struct pool *pool = tc->pool; 925 struct bio *bio = m->bio; 926 int r; 927 928 if (m->err) { 929 cell_error(pool, m->cell); 930 goto out; 931 } 932 933 /* 934 * Commit the prepared block into the mapping btree. 935 * Any I/O for this block arriving after this point will get 936 * remapped to it directly. 937 */ 938 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 939 if (r) { 940 metadata_operation_failed(pool, "dm_thin_insert_block", r); 941 cell_error(pool, m->cell); 942 goto out; 943 } 944 945 /* 946 * Release any bios held while the block was being provisioned. 947 * If we are processing a write bio that completely covers the block, 948 * we already processed it so can ignore it now when processing 949 * the bios in the cell. 950 */ 951 if (bio) { 952 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 953 bio_endio(bio); 954 } else { 955 inc_all_io_entry(tc->pool, m->cell->holder); 956 remap_and_issue(tc, m->cell->holder, m->data_block); 957 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 958 } 959 960 out: 961 list_del(&m->list); 962 mempool_free(m, pool->mapping_pool); 963 } 964 965 /*----------------------------------------------------------------*/ 966 967 static void free_discard_mapping(struct dm_thin_new_mapping *m) 968 { 969 struct thin_c *tc = m->tc; 970 if (m->cell) 971 cell_defer_no_holder(tc, m->cell); 972 mempool_free(m, tc->pool->mapping_pool); 973 } 974 975 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 976 { 977 bio_io_error(m->bio); 978 free_discard_mapping(m); 979 } 980 981 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 982 { 983 bio_endio(m->bio); 984 free_discard_mapping(m); 985 } 986 987 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 988 { 989 int r; 990 struct thin_c *tc = m->tc; 991 992 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 993 if (r) { 994 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 995 bio_io_error(m->bio); 996 } else 997 bio_endio(m->bio); 998 999 cell_defer_no_holder(tc, m->cell); 1000 mempool_free(m, tc->pool->mapping_pool); 1001 } 1002 1003 /*----------------------------------------------------------------*/ 1004 1005 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1006 struct bio *discard_parent) 1007 { 1008 /* 1009 * We've already unmapped this range of blocks, but before we 1010 * passdown we have to check that these blocks are now unused. 1011 */ 1012 int r = 0; 1013 bool used = true; 1014 struct thin_c *tc = m->tc; 1015 struct pool *pool = tc->pool; 1016 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1017 struct discard_op op; 1018 1019 begin_discard(&op, tc, discard_parent); 1020 while (b != end) { 1021 /* find start of unmapped run */ 1022 for (; b < end; b++) { 1023 r = dm_pool_block_is_used(pool->pmd, b, &used); 1024 if (r) 1025 goto out; 1026 1027 if (!used) 1028 break; 1029 } 1030 1031 if (b == end) 1032 break; 1033 1034 /* find end of run */ 1035 for (e = b + 1; e != end; e++) { 1036 r = dm_pool_block_is_used(pool->pmd, e, &used); 1037 if (r) 1038 goto out; 1039 1040 if (used) 1041 break; 1042 } 1043 1044 r = issue_discard(&op, b, e); 1045 if (r) 1046 goto out; 1047 1048 b = e; 1049 } 1050 out: 1051 end_discard(&op, r); 1052 } 1053 1054 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1055 { 1056 unsigned long flags; 1057 struct pool *pool = m->tc->pool; 1058 1059 spin_lock_irqsave(&pool->lock, flags); 1060 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1061 spin_unlock_irqrestore(&pool->lock, flags); 1062 wake_worker(pool); 1063 } 1064 1065 static void passdown_endio(struct bio *bio) 1066 { 1067 /* 1068 * It doesn't matter if the passdown discard failed, we still want 1069 * to unmap (we ignore err). 1070 */ 1071 queue_passdown_pt2(bio->bi_private); 1072 } 1073 1074 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1075 { 1076 int r; 1077 struct thin_c *tc = m->tc; 1078 struct pool *pool = tc->pool; 1079 struct bio *discard_parent; 1080 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1081 1082 /* 1083 * Only this thread allocates blocks, so we can be sure that the 1084 * newly unmapped blocks will not be allocated before the end of 1085 * the function. 1086 */ 1087 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1088 if (r) { 1089 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1090 bio_io_error(m->bio); 1091 cell_defer_no_holder(tc, m->cell); 1092 mempool_free(m, pool->mapping_pool); 1093 return; 1094 } 1095 1096 discard_parent = bio_alloc(GFP_NOIO, 1); 1097 if (!discard_parent) { 1098 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1099 dm_device_name(tc->pool->pool_md)); 1100 queue_passdown_pt2(m); 1101 1102 } else { 1103 discard_parent->bi_end_io = passdown_endio; 1104 discard_parent->bi_private = m; 1105 1106 if (m->maybe_shared) 1107 passdown_double_checking_shared_status(m, discard_parent); 1108 else { 1109 struct discard_op op; 1110 1111 begin_discard(&op, tc, discard_parent); 1112 r = issue_discard(&op, m->data_block, data_end); 1113 end_discard(&op, r); 1114 } 1115 } 1116 1117 /* 1118 * Increment the unmapped blocks. This prevents a race between the 1119 * passdown io and reallocation of freed blocks. 1120 */ 1121 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1122 if (r) { 1123 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1124 bio_io_error(m->bio); 1125 cell_defer_no_holder(tc, m->cell); 1126 mempool_free(m, pool->mapping_pool); 1127 return; 1128 } 1129 } 1130 1131 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1132 { 1133 int r; 1134 struct thin_c *tc = m->tc; 1135 struct pool *pool = tc->pool; 1136 1137 /* 1138 * The passdown has completed, so now we can decrement all those 1139 * unmapped blocks. 1140 */ 1141 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1142 m->data_block + (m->virt_end - m->virt_begin)); 1143 if (r) { 1144 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1145 bio_io_error(m->bio); 1146 } else 1147 bio_endio(m->bio); 1148 1149 cell_defer_no_holder(tc, m->cell); 1150 mempool_free(m, pool->mapping_pool); 1151 } 1152 1153 static void process_prepared(struct pool *pool, struct list_head *head, 1154 process_mapping_fn *fn) 1155 { 1156 unsigned long flags; 1157 struct list_head maps; 1158 struct dm_thin_new_mapping *m, *tmp; 1159 1160 INIT_LIST_HEAD(&maps); 1161 spin_lock_irqsave(&pool->lock, flags); 1162 list_splice_init(head, &maps); 1163 spin_unlock_irqrestore(&pool->lock, flags); 1164 1165 list_for_each_entry_safe(m, tmp, &maps, list) 1166 (*fn)(m); 1167 } 1168 1169 /* 1170 * Deferred bio jobs. 1171 */ 1172 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1173 { 1174 return bio->bi_iter.bi_size == 1175 (pool->sectors_per_block << SECTOR_SHIFT); 1176 } 1177 1178 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1179 { 1180 return (bio_data_dir(bio) == WRITE) && 1181 io_overlaps_block(pool, bio); 1182 } 1183 1184 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1185 bio_end_io_t *fn) 1186 { 1187 *save = bio->bi_end_io; 1188 bio->bi_end_io = fn; 1189 } 1190 1191 static int ensure_next_mapping(struct pool *pool) 1192 { 1193 if (pool->next_mapping) 1194 return 0; 1195 1196 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 1197 1198 return pool->next_mapping ? 0 : -ENOMEM; 1199 } 1200 1201 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1202 { 1203 struct dm_thin_new_mapping *m = pool->next_mapping; 1204 1205 BUG_ON(!pool->next_mapping); 1206 1207 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1208 INIT_LIST_HEAD(&m->list); 1209 m->bio = NULL; 1210 1211 pool->next_mapping = NULL; 1212 1213 return m; 1214 } 1215 1216 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1217 sector_t begin, sector_t end) 1218 { 1219 int r; 1220 struct dm_io_region to; 1221 1222 to.bdev = tc->pool_dev->bdev; 1223 to.sector = begin; 1224 to.count = end - begin; 1225 1226 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1227 if (r < 0) { 1228 DMERR_LIMIT("dm_kcopyd_zero() failed"); 1229 copy_complete(1, 1, m); 1230 } 1231 } 1232 1233 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1234 dm_block_t data_begin, 1235 struct dm_thin_new_mapping *m) 1236 { 1237 struct pool *pool = tc->pool; 1238 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1239 1240 h->overwrite_mapping = m; 1241 m->bio = bio; 1242 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1243 inc_all_io_entry(pool, bio); 1244 remap_and_issue(tc, bio, data_begin); 1245 } 1246 1247 /* 1248 * A partial copy also needs to zero the uncopied region. 1249 */ 1250 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1251 struct dm_dev *origin, dm_block_t data_origin, 1252 dm_block_t data_dest, 1253 struct dm_bio_prison_cell *cell, struct bio *bio, 1254 sector_t len) 1255 { 1256 int r; 1257 struct pool *pool = tc->pool; 1258 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1259 1260 m->tc = tc; 1261 m->virt_begin = virt_block; 1262 m->virt_end = virt_block + 1u; 1263 m->data_block = data_dest; 1264 m->cell = cell; 1265 1266 /* 1267 * quiesce action + copy action + an extra reference held for the 1268 * duration of this function (we may need to inc later for a 1269 * partial zero). 1270 */ 1271 atomic_set(&m->prepare_actions, 3); 1272 1273 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1274 complete_mapping_preparation(m); /* already quiesced */ 1275 1276 /* 1277 * IO to pool_dev remaps to the pool target's data_dev. 1278 * 1279 * If the whole block of data is being overwritten, we can issue the 1280 * bio immediately. Otherwise we use kcopyd to clone the data first. 1281 */ 1282 if (io_overwrites_block(pool, bio)) 1283 remap_and_issue_overwrite(tc, bio, data_dest, m); 1284 else { 1285 struct dm_io_region from, to; 1286 1287 from.bdev = origin->bdev; 1288 from.sector = data_origin * pool->sectors_per_block; 1289 from.count = len; 1290 1291 to.bdev = tc->pool_dev->bdev; 1292 to.sector = data_dest * pool->sectors_per_block; 1293 to.count = len; 1294 1295 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1296 0, copy_complete, m); 1297 if (r < 0) { 1298 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1299 copy_complete(1, 1, m); 1300 1301 /* 1302 * We allow the zero to be issued, to simplify the 1303 * error path. Otherwise we'd need to start 1304 * worrying about decrementing the prepare_actions 1305 * counter. 1306 */ 1307 } 1308 1309 /* 1310 * Do we need to zero a tail region? 1311 */ 1312 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1313 atomic_inc(&m->prepare_actions); 1314 ll_zero(tc, m, 1315 data_dest * pool->sectors_per_block + len, 1316 (data_dest + 1) * pool->sectors_per_block); 1317 } 1318 } 1319 1320 complete_mapping_preparation(m); /* drop our ref */ 1321 } 1322 1323 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1324 dm_block_t data_origin, dm_block_t data_dest, 1325 struct dm_bio_prison_cell *cell, struct bio *bio) 1326 { 1327 schedule_copy(tc, virt_block, tc->pool_dev, 1328 data_origin, data_dest, cell, bio, 1329 tc->pool->sectors_per_block); 1330 } 1331 1332 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1333 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1334 struct bio *bio) 1335 { 1336 struct pool *pool = tc->pool; 1337 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1338 1339 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1340 m->tc = tc; 1341 m->virt_begin = virt_block; 1342 m->virt_end = virt_block + 1u; 1343 m->data_block = data_block; 1344 m->cell = cell; 1345 1346 /* 1347 * If the whole block of data is being overwritten or we are not 1348 * zeroing pre-existing data, we can issue the bio immediately. 1349 * Otherwise we use kcopyd to zero the data first. 1350 */ 1351 if (pool->pf.zero_new_blocks) { 1352 if (io_overwrites_block(pool, bio)) 1353 remap_and_issue_overwrite(tc, bio, data_block, m); 1354 else 1355 ll_zero(tc, m, data_block * pool->sectors_per_block, 1356 (data_block + 1) * pool->sectors_per_block); 1357 } else 1358 process_prepared_mapping(m); 1359 } 1360 1361 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1362 dm_block_t data_dest, 1363 struct dm_bio_prison_cell *cell, struct bio *bio) 1364 { 1365 struct pool *pool = tc->pool; 1366 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1367 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1368 1369 if (virt_block_end <= tc->origin_size) 1370 schedule_copy(tc, virt_block, tc->origin_dev, 1371 virt_block, data_dest, cell, bio, 1372 pool->sectors_per_block); 1373 1374 else if (virt_block_begin < tc->origin_size) 1375 schedule_copy(tc, virt_block, tc->origin_dev, 1376 virt_block, data_dest, cell, bio, 1377 tc->origin_size - virt_block_begin); 1378 1379 else 1380 schedule_zero(tc, virt_block, data_dest, cell, bio); 1381 } 1382 1383 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1384 1385 static void check_for_space(struct pool *pool) 1386 { 1387 int r; 1388 dm_block_t nr_free; 1389 1390 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1391 return; 1392 1393 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1394 if (r) 1395 return; 1396 1397 if (nr_free) 1398 set_pool_mode(pool, PM_WRITE); 1399 } 1400 1401 /* 1402 * A non-zero return indicates read_only or fail_io mode. 1403 * Many callers don't care about the return value. 1404 */ 1405 static int commit(struct pool *pool) 1406 { 1407 int r; 1408 1409 if (get_pool_mode(pool) >= PM_READ_ONLY) 1410 return -EINVAL; 1411 1412 r = dm_pool_commit_metadata(pool->pmd); 1413 if (r) 1414 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1415 else 1416 check_for_space(pool); 1417 1418 return r; 1419 } 1420 1421 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1422 { 1423 unsigned long flags; 1424 1425 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1426 DMWARN("%s: reached low water mark for data device: sending event.", 1427 dm_device_name(pool->pool_md)); 1428 spin_lock_irqsave(&pool->lock, flags); 1429 pool->low_water_triggered = true; 1430 spin_unlock_irqrestore(&pool->lock, flags); 1431 dm_table_event(pool->ti->table); 1432 } 1433 } 1434 1435 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1436 { 1437 int r; 1438 dm_block_t free_blocks; 1439 struct pool *pool = tc->pool; 1440 1441 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1442 return -EINVAL; 1443 1444 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1445 if (r) { 1446 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1447 return r; 1448 } 1449 1450 check_low_water_mark(pool, free_blocks); 1451 1452 if (!free_blocks) { 1453 /* 1454 * Try to commit to see if that will free up some 1455 * more space. 1456 */ 1457 r = commit(pool); 1458 if (r) 1459 return r; 1460 1461 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1462 if (r) { 1463 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1464 return r; 1465 } 1466 1467 if (!free_blocks) { 1468 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1469 return -ENOSPC; 1470 } 1471 } 1472 1473 r = dm_pool_alloc_data_block(pool->pmd, result); 1474 if (r) { 1475 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1476 return r; 1477 } 1478 1479 return 0; 1480 } 1481 1482 /* 1483 * If we have run out of space, queue bios until the device is 1484 * resumed, presumably after having been reloaded with more space. 1485 */ 1486 static void retry_on_resume(struct bio *bio) 1487 { 1488 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1489 struct thin_c *tc = h->tc; 1490 unsigned long flags; 1491 1492 spin_lock_irqsave(&tc->lock, flags); 1493 bio_list_add(&tc->retry_on_resume_list, bio); 1494 spin_unlock_irqrestore(&tc->lock, flags); 1495 } 1496 1497 static int should_error_unserviceable_bio(struct pool *pool) 1498 { 1499 enum pool_mode m = get_pool_mode(pool); 1500 1501 switch (m) { 1502 case PM_WRITE: 1503 /* Shouldn't get here */ 1504 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1505 return -EIO; 1506 1507 case PM_OUT_OF_DATA_SPACE: 1508 return pool->pf.error_if_no_space ? -ENOSPC : 0; 1509 1510 case PM_READ_ONLY: 1511 case PM_FAIL: 1512 return -EIO; 1513 default: 1514 /* Shouldn't get here */ 1515 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1516 return -EIO; 1517 } 1518 } 1519 1520 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1521 { 1522 int error = should_error_unserviceable_bio(pool); 1523 1524 if (error) { 1525 bio->bi_error = error; 1526 bio_endio(bio); 1527 } else 1528 retry_on_resume(bio); 1529 } 1530 1531 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1532 { 1533 struct bio *bio; 1534 struct bio_list bios; 1535 int error; 1536 1537 error = should_error_unserviceable_bio(pool); 1538 if (error) { 1539 cell_error_with_code(pool, cell, error); 1540 return; 1541 } 1542 1543 bio_list_init(&bios); 1544 cell_release(pool, cell, &bios); 1545 1546 while ((bio = bio_list_pop(&bios))) 1547 retry_on_resume(bio); 1548 } 1549 1550 static void process_discard_cell_no_passdown(struct thin_c *tc, 1551 struct dm_bio_prison_cell *virt_cell) 1552 { 1553 struct pool *pool = tc->pool; 1554 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1555 1556 /* 1557 * We don't need to lock the data blocks, since there's no 1558 * passdown. We only lock data blocks for allocation and breaking sharing. 1559 */ 1560 m->tc = tc; 1561 m->virt_begin = virt_cell->key.block_begin; 1562 m->virt_end = virt_cell->key.block_end; 1563 m->cell = virt_cell; 1564 m->bio = virt_cell->holder; 1565 1566 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1567 pool->process_prepared_discard(m); 1568 } 1569 1570 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1571 struct bio *bio) 1572 { 1573 struct pool *pool = tc->pool; 1574 1575 int r; 1576 bool maybe_shared; 1577 struct dm_cell_key data_key; 1578 struct dm_bio_prison_cell *data_cell; 1579 struct dm_thin_new_mapping *m; 1580 dm_block_t virt_begin, virt_end, data_begin; 1581 1582 while (begin != end) { 1583 r = ensure_next_mapping(pool); 1584 if (r) 1585 /* we did our best */ 1586 return; 1587 1588 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1589 &data_begin, &maybe_shared); 1590 if (r) 1591 /* 1592 * Silently fail, letting any mappings we've 1593 * created complete. 1594 */ 1595 break; 1596 1597 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1598 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1599 /* contention, we'll give up with this range */ 1600 begin = virt_end; 1601 continue; 1602 } 1603 1604 /* 1605 * IO may still be going to the destination block. We must 1606 * quiesce before we can do the removal. 1607 */ 1608 m = get_next_mapping(pool); 1609 m->tc = tc; 1610 m->maybe_shared = maybe_shared; 1611 m->virt_begin = virt_begin; 1612 m->virt_end = virt_end; 1613 m->data_block = data_begin; 1614 m->cell = data_cell; 1615 m->bio = bio; 1616 1617 /* 1618 * The parent bio must not complete before sub discard bios are 1619 * chained to it (see end_discard's bio_chain)! 1620 * 1621 * This per-mapping bi_remaining increment is paired with 1622 * the implicit decrement that occurs via bio_endio() in 1623 * end_discard(). 1624 */ 1625 bio_inc_remaining(bio); 1626 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1627 pool->process_prepared_discard(m); 1628 1629 begin = virt_end; 1630 } 1631 } 1632 1633 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1634 { 1635 struct bio *bio = virt_cell->holder; 1636 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1637 1638 /* 1639 * The virt_cell will only get freed once the origin bio completes. 1640 * This means it will remain locked while all the individual 1641 * passdown bios are in flight. 1642 */ 1643 h->cell = virt_cell; 1644 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1645 1646 /* 1647 * We complete the bio now, knowing that the bi_remaining field 1648 * will prevent completion until the sub range discards have 1649 * completed. 1650 */ 1651 bio_endio(bio); 1652 } 1653 1654 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1655 { 1656 dm_block_t begin, end; 1657 struct dm_cell_key virt_key; 1658 struct dm_bio_prison_cell *virt_cell; 1659 1660 get_bio_block_range(tc, bio, &begin, &end); 1661 if (begin == end) { 1662 /* 1663 * The discard covers less than a block. 1664 */ 1665 bio_endio(bio); 1666 return; 1667 } 1668 1669 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1670 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1671 /* 1672 * Potential starvation issue: We're relying on the 1673 * fs/application being well behaved, and not trying to 1674 * send IO to a region at the same time as discarding it. 1675 * If they do this persistently then it's possible this 1676 * cell will never be granted. 1677 */ 1678 return; 1679 1680 tc->pool->process_discard_cell(tc, virt_cell); 1681 } 1682 1683 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1684 struct dm_cell_key *key, 1685 struct dm_thin_lookup_result *lookup_result, 1686 struct dm_bio_prison_cell *cell) 1687 { 1688 int r; 1689 dm_block_t data_block; 1690 struct pool *pool = tc->pool; 1691 1692 r = alloc_data_block(tc, &data_block); 1693 switch (r) { 1694 case 0: 1695 schedule_internal_copy(tc, block, lookup_result->block, 1696 data_block, cell, bio); 1697 break; 1698 1699 case -ENOSPC: 1700 retry_bios_on_resume(pool, cell); 1701 break; 1702 1703 default: 1704 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1705 __func__, r); 1706 cell_error(pool, cell); 1707 break; 1708 } 1709 } 1710 1711 static void __remap_and_issue_shared_cell(void *context, 1712 struct dm_bio_prison_cell *cell) 1713 { 1714 struct remap_info *info = context; 1715 struct bio *bio; 1716 1717 while ((bio = bio_list_pop(&cell->bios))) { 1718 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1719 bio_op(bio) == REQ_OP_DISCARD) 1720 bio_list_add(&info->defer_bios, bio); 1721 else { 1722 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));; 1723 1724 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1725 inc_all_io_entry(info->tc->pool, bio); 1726 bio_list_add(&info->issue_bios, bio); 1727 } 1728 } 1729 } 1730 1731 static void remap_and_issue_shared_cell(struct thin_c *tc, 1732 struct dm_bio_prison_cell *cell, 1733 dm_block_t block) 1734 { 1735 struct bio *bio; 1736 struct remap_info info; 1737 1738 info.tc = tc; 1739 bio_list_init(&info.defer_bios); 1740 bio_list_init(&info.issue_bios); 1741 1742 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1743 &info, cell); 1744 1745 while ((bio = bio_list_pop(&info.defer_bios))) 1746 thin_defer_bio(tc, bio); 1747 1748 while ((bio = bio_list_pop(&info.issue_bios))) 1749 remap_and_issue(tc, bio, block); 1750 } 1751 1752 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1753 dm_block_t block, 1754 struct dm_thin_lookup_result *lookup_result, 1755 struct dm_bio_prison_cell *virt_cell) 1756 { 1757 struct dm_bio_prison_cell *data_cell; 1758 struct pool *pool = tc->pool; 1759 struct dm_cell_key key; 1760 1761 /* 1762 * If cell is already occupied, then sharing is already in the process 1763 * of being broken so we have nothing further to do here. 1764 */ 1765 build_data_key(tc->td, lookup_result->block, &key); 1766 if (bio_detain(pool, &key, bio, &data_cell)) { 1767 cell_defer_no_holder(tc, virt_cell); 1768 return; 1769 } 1770 1771 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1772 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1773 cell_defer_no_holder(tc, virt_cell); 1774 } else { 1775 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1776 1777 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1778 inc_all_io_entry(pool, bio); 1779 remap_and_issue(tc, bio, lookup_result->block); 1780 1781 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1782 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1783 } 1784 } 1785 1786 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1787 struct dm_bio_prison_cell *cell) 1788 { 1789 int r; 1790 dm_block_t data_block; 1791 struct pool *pool = tc->pool; 1792 1793 /* 1794 * Remap empty bios (flushes) immediately, without provisioning. 1795 */ 1796 if (!bio->bi_iter.bi_size) { 1797 inc_all_io_entry(pool, bio); 1798 cell_defer_no_holder(tc, cell); 1799 1800 remap_and_issue(tc, bio, 0); 1801 return; 1802 } 1803 1804 /* 1805 * Fill read bios with zeroes and complete them immediately. 1806 */ 1807 if (bio_data_dir(bio) == READ) { 1808 zero_fill_bio(bio); 1809 cell_defer_no_holder(tc, cell); 1810 bio_endio(bio); 1811 return; 1812 } 1813 1814 r = alloc_data_block(tc, &data_block); 1815 switch (r) { 1816 case 0: 1817 if (tc->origin_dev) 1818 schedule_external_copy(tc, block, data_block, cell, bio); 1819 else 1820 schedule_zero(tc, block, data_block, cell, bio); 1821 break; 1822 1823 case -ENOSPC: 1824 retry_bios_on_resume(pool, cell); 1825 break; 1826 1827 default: 1828 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1829 __func__, r); 1830 cell_error(pool, cell); 1831 break; 1832 } 1833 } 1834 1835 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1836 { 1837 int r; 1838 struct pool *pool = tc->pool; 1839 struct bio *bio = cell->holder; 1840 dm_block_t block = get_bio_block(tc, bio); 1841 struct dm_thin_lookup_result lookup_result; 1842 1843 if (tc->requeue_mode) { 1844 cell_requeue(pool, cell); 1845 return; 1846 } 1847 1848 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1849 switch (r) { 1850 case 0: 1851 if (lookup_result.shared) 1852 process_shared_bio(tc, bio, block, &lookup_result, cell); 1853 else { 1854 inc_all_io_entry(pool, bio); 1855 remap_and_issue(tc, bio, lookup_result.block); 1856 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1857 } 1858 break; 1859 1860 case -ENODATA: 1861 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1862 inc_all_io_entry(pool, bio); 1863 cell_defer_no_holder(tc, cell); 1864 1865 if (bio_end_sector(bio) <= tc->origin_size) 1866 remap_to_origin_and_issue(tc, bio); 1867 1868 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1869 zero_fill_bio(bio); 1870 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1871 remap_to_origin_and_issue(tc, bio); 1872 1873 } else { 1874 zero_fill_bio(bio); 1875 bio_endio(bio); 1876 } 1877 } else 1878 provision_block(tc, bio, block, cell); 1879 break; 1880 1881 default: 1882 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1883 __func__, r); 1884 cell_defer_no_holder(tc, cell); 1885 bio_io_error(bio); 1886 break; 1887 } 1888 } 1889 1890 static void process_bio(struct thin_c *tc, struct bio *bio) 1891 { 1892 struct pool *pool = tc->pool; 1893 dm_block_t block = get_bio_block(tc, bio); 1894 struct dm_bio_prison_cell *cell; 1895 struct dm_cell_key key; 1896 1897 /* 1898 * If cell is already occupied, then the block is already 1899 * being provisioned so we have nothing further to do here. 1900 */ 1901 build_virtual_key(tc->td, block, &key); 1902 if (bio_detain(pool, &key, bio, &cell)) 1903 return; 1904 1905 process_cell(tc, cell); 1906 } 1907 1908 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1909 struct dm_bio_prison_cell *cell) 1910 { 1911 int r; 1912 int rw = bio_data_dir(bio); 1913 dm_block_t block = get_bio_block(tc, bio); 1914 struct dm_thin_lookup_result lookup_result; 1915 1916 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1917 switch (r) { 1918 case 0: 1919 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1920 handle_unserviceable_bio(tc->pool, bio); 1921 if (cell) 1922 cell_defer_no_holder(tc, cell); 1923 } else { 1924 inc_all_io_entry(tc->pool, bio); 1925 remap_and_issue(tc, bio, lookup_result.block); 1926 if (cell) 1927 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1928 } 1929 break; 1930 1931 case -ENODATA: 1932 if (cell) 1933 cell_defer_no_holder(tc, cell); 1934 if (rw != READ) { 1935 handle_unserviceable_bio(tc->pool, bio); 1936 break; 1937 } 1938 1939 if (tc->origin_dev) { 1940 inc_all_io_entry(tc->pool, bio); 1941 remap_to_origin_and_issue(tc, bio); 1942 break; 1943 } 1944 1945 zero_fill_bio(bio); 1946 bio_endio(bio); 1947 break; 1948 1949 default: 1950 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1951 __func__, r); 1952 if (cell) 1953 cell_defer_no_holder(tc, cell); 1954 bio_io_error(bio); 1955 break; 1956 } 1957 } 1958 1959 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1960 { 1961 __process_bio_read_only(tc, bio, NULL); 1962 } 1963 1964 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1965 { 1966 __process_bio_read_only(tc, cell->holder, cell); 1967 } 1968 1969 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1970 { 1971 bio_endio(bio); 1972 } 1973 1974 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1975 { 1976 bio_io_error(bio); 1977 } 1978 1979 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1980 { 1981 cell_success(tc->pool, cell); 1982 } 1983 1984 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1985 { 1986 cell_error(tc->pool, cell); 1987 } 1988 1989 /* 1990 * FIXME: should we also commit due to size of transaction, measured in 1991 * metadata blocks? 1992 */ 1993 static int need_commit_due_to_time(struct pool *pool) 1994 { 1995 return !time_in_range(jiffies, pool->last_commit_jiffies, 1996 pool->last_commit_jiffies + COMMIT_PERIOD); 1997 } 1998 1999 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2000 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2001 2002 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2003 { 2004 struct rb_node **rbp, *parent; 2005 struct dm_thin_endio_hook *pbd; 2006 sector_t bi_sector = bio->bi_iter.bi_sector; 2007 2008 rbp = &tc->sort_bio_list.rb_node; 2009 parent = NULL; 2010 while (*rbp) { 2011 parent = *rbp; 2012 pbd = thin_pbd(parent); 2013 2014 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2015 rbp = &(*rbp)->rb_left; 2016 else 2017 rbp = &(*rbp)->rb_right; 2018 } 2019 2020 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2021 rb_link_node(&pbd->rb_node, parent, rbp); 2022 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2023 } 2024 2025 static void __extract_sorted_bios(struct thin_c *tc) 2026 { 2027 struct rb_node *node; 2028 struct dm_thin_endio_hook *pbd; 2029 struct bio *bio; 2030 2031 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2032 pbd = thin_pbd(node); 2033 bio = thin_bio(pbd); 2034 2035 bio_list_add(&tc->deferred_bio_list, bio); 2036 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2037 } 2038 2039 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2040 } 2041 2042 static void __sort_thin_deferred_bios(struct thin_c *tc) 2043 { 2044 struct bio *bio; 2045 struct bio_list bios; 2046 2047 bio_list_init(&bios); 2048 bio_list_merge(&bios, &tc->deferred_bio_list); 2049 bio_list_init(&tc->deferred_bio_list); 2050 2051 /* Sort deferred_bio_list using rb-tree */ 2052 while ((bio = bio_list_pop(&bios))) 2053 __thin_bio_rb_add(tc, bio); 2054 2055 /* 2056 * Transfer the sorted bios in sort_bio_list back to 2057 * deferred_bio_list to allow lockless submission of 2058 * all bios. 2059 */ 2060 __extract_sorted_bios(tc); 2061 } 2062 2063 static void process_thin_deferred_bios(struct thin_c *tc) 2064 { 2065 struct pool *pool = tc->pool; 2066 unsigned long flags; 2067 struct bio *bio; 2068 struct bio_list bios; 2069 struct blk_plug plug; 2070 unsigned count = 0; 2071 2072 if (tc->requeue_mode) { 2073 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE); 2074 return; 2075 } 2076 2077 bio_list_init(&bios); 2078 2079 spin_lock_irqsave(&tc->lock, flags); 2080 2081 if (bio_list_empty(&tc->deferred_bio_list)) { 2082 spin_unlock_irqrestore(&tc->lock, flags); 2083 return; 2084 } 2085 2086 __sort_thin_deferred_bios(tc); 2087 2088 bio_list_merge(&bios, &tc->deferred_bio_list); 2089 bio_list_init(&tc->deferred_bio_list); 2090 2091 spin_unlock_irqrestore(&tc->lock, flags); 2092 2093 blk_start_plug(&plug); 2094 while ((bio = bio_list_pop(&bios))) { 2095 /* 2096 * If we've got no free new_mapping structs, and processing 2097 * this bio might require one, we pause until there are some 2098 * prepared mappings to process. 2099 */ 2100 if (ensure_next_mapping(pool)) { 2101 spin_lock_irqsave(&tc->lock, flags); 2102 bio_list_add(&tc->deferred_bio_list, bio); 2103 bio_list_merge(&tc->deferred_bio_list, &bios); 2104 spin_unlock_irqrestore(&tc->lock, flags); 2105 break; 2106 } 2107 2108 if (bio_op(bio) == REQ_OP_DISCARD) 2109 pool->process_discard(tc, bio); 2110 else 2111 pool->process_bio(tc, bio); 2112 2113 if ((count++ & 127) == 0) { 2114 throttle_work_update(&pool->throttle); 2115 dm_pool_issue_prefetches(pool->pmd); 2116 } 2117 } 2118 blk_finish_plug(&plug); 2119 } 2120 2121 static int cmp_cells(const void *lhs, const void *rhs) 2122 { 2123 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2124 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2125 2126 BUG_ON(!lhs_cell->holder); 2127 BUG_ON(!rhs_cell->holder); 2128 2129 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2130 return -1; 2131 2132 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2133 return 1; 2134 2135 return 0; 2136 } 2137 2138 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2139 { 2140 unsigned count = 0; 2141 struct dm_bio_prison_cell *cell, *tmp; 2142 2143 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2144 if (count >= CELL_SORT_ARRAY_SIZE) 2145 break; 2146 2147 pool->cell_sort_array[count++] = cell; 2148 list_del(&cell->user_list); 2149 } 2150 2151 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2152 2153 return count; 2154 } 2155 2156 static void process_thin_deferred_cells(struct thin_c *tc) 2157 { 2158 struct pool *pool = tc->pool; 2159 unsigned long flags; 2160 struct list_head cells; 2161 struct dm_bio_prison_cell *cell; 2162 unsigned i, j, count; 2163 2164 INIT_LIST_HEAD(&cells); 2165 2166 spin_lock_irqsave(&tc->lock, flags); 2167 list_splice_init(&tc->deferred_cells, &cells); 2168 spin_unlock_irqrestore(&tc->lock, flags); 2169 2170 if (list_empty(&cells)) 2171 return; 2172 2173 do { 2174 count = sort_cells(tc->pool, &cells); 2175 2176 for (i = 0; i < count; i++) { 2177 cell = pool->cell_sort_array[i]; 2178 BUG_ON(!cell->holder); 2179 2180 /* 2181 * If we've got no free new_mapping structs, and processing 2182 * this bio might require one, we pause until there are some 2183 * prepared mappings to process. 2184 */ 2185 if (ensure_next_mapping(pool)) { 2186 for (j = i; j < count; j++) 2187 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2188 2189 spin_lock_irqsave(&tc->lock, flags); 2190 list_splice(&cells, &tc->deferred_cells); 2191 spin_unlock_irqrestore(&tc->lock, flags); 2192 return; 2193 } 2194 2195 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2196 pool->process_discard_cell(tc, cell); 2197 else 2198 pool->process_cell(tc, cell); 2199 } 2200 } while (!list_empty(&cells)); 2201 } 2202 2203 static void thin_get(struct thin_c *tc); 2204 static void thin_put(struct thin_c *tc); 2205 2206 /* 2207 * We can't hold rcu_read_lock() around code that can block. So we 2208 * find a thin with the rcu lock held; bump a refcount; then drop 2209 * the lock. 2210 */ 2211 static struct thin_c *get_first_thin(struct pool *pool) 2212 { 2213 struct thin_c *tc = NULL; 2214 2215 rcu_read_lock(); 2216 if (!list_empty(&pool->active_thins)) { 2217 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2218 thin_get(tc); 2219 } 2220 rcu_read_unlock(); 2221 2222 return tc; 2223 } 2224 2225 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2226 { 2227 struct thin_c *old_tc = tc; 2228 2229 rcu_read_lock(); 2230 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2231 thin_get(tc); 2232 thin_put(old_tc); 2233 rcu_read_unlock(); 2234 return tc; 2235 } 2236 thin_put(old_tc); 2237 rcu_read_unlock(); 2238 2239 return NULL; 2240 } 2241 2242 static void process_deferred_bios(struct pool *pool) 2243 { 2244 unsigned long flags; 2245 struct bio *bio; 2246 struct bio_list bios; 2247 struct thin_c *tc; 2248 2249 tc = get_first_thin(pool); 2250 while (tc) { 2251 process_thin_deferred_cells(tc); 2252 process_thin_deferred_bios(tc); 2253 tc = get_next_thin(pool, tc); 2254 } 2255 2256 /* 2257 * If there are any deferred flush bios, we must commit 2258 * the metadata before issuing them. 2259 */ 2260 bio_list_init(&bios); 2261 spin_lock_irqsave(&pool->lock, flags); 2262 bio_list_merge(&bios, &pool->deferred_flush_bios); 2263 bio_list_init(&pool->deferred_flush_bios); 2264 spin_unlock_irqrestore(&pool->lock, flags); 2265 2266 if (bio_list_empty(&bios) && 2267 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2268 return; 2269 2270 if (commit(pool)) { 2271 while ((bio = bio_list_pop(&bios))) 2272 bio_io_error(bio); 2273 return; 2274 } 2275 pool->last_commit_jiffies = jiffies; 2276 2277 while ((bio = bio_list_pop(&bios))) 2278 generic_make_request(bio); 2279 } 2280 2281 static void do_worker(struct work_struct *ws) 2282 { 2283 struct pool *pool = container_of(ws, struct pool, worker); 2284 2285 throttle_work_start(&pool->throttle); 2286 dm_pool_issue_prefetches(pool->pmd); 2287 throttle_work_update(&pool->throttle); 2288 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2289 throttle_work_update(&pool->throttle); 2290 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2291 throttle_work_update(&pool->throttle); 2292 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2293 throttle_work_update(&pool->throttle); 2294 process_deferred_bios(pool); 2295 throttle_work_complete(&pool->throttle); 2296 } 2297 2298 /* 2299 * We want to commit periodically so that not too much 2300 * unwritten data builds up. 2301 */ 2302 static void do_waker(struct work_struct *ws) 2303 { 2304 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2305 wake_worker(pool); 2306 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2307 } 2308 2309 static void notify_of_pool_mode_change_to_oods(struct pool *pool); 2310 2311 /* 2312 * We're holding onto IO to allow userland time to react. After the 2313 * timeout either the pool will have been resized (and thus back in 2314 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2315 */ 2316 static void do_no_space_timeout(struct work_struct *ws) 2317 { 2318 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2319 no_space_timeout); 2320 2321 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2322 pool->pf.error_if_no_space = true; 2323 notify_of_pool_mode_change_to_oods(pool); 2324 error_retry_list_with_code(pool, -ENOSPC); 2325 } 2326 } 2327 2328 /*----------------------------------------------------------------*/ 2329 2330 struct pool_work { 2331 struct work_struct worker; 2332 struct completion complete; 2333 }; 2334 2335 static struct pool_work *to_pool_work(struct work_struct *ws) 2336 { 2337 return container_of(ws, struct pool_work, worker); 2338 } 2339 2340 static void pool_work_complete(struct pool_work *pw) 2341 { 2342 complete(&pw->complete); 2343 } 2344 2345 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2346 void (*fn)(struct work_struct *)) 2347 { 2348 INIT_WORK_ONSTACK(&pw->worker, fn); 2349 init_completion(&pw->complete); 2350 queue_work(pool->wq, &pw->worker); 2351 wait_for_completion(&pw->complete); 2352 } 2353 2354 /*----------------------------------------------------------------*/ 2355 2356 struct noflush_work { 2357 struct pool_work pw; 2358 struct thin_c *tc; 2359 }; 2360 2361 static struct noflush_work *to_noflush(struct work_struct *ws) 2362 { 2363 return container_of(to_pool_work(ws), struct noflush_work, pw); 2364 } 2365 2366 static void do_noflush_start(struct work_struct *ws) 2367 { 2368 struct noflush_work *w = to_noflush(ws); 2369 w->tc->requeue_mode = true; 2370 requeue_io(w->tc); 2371 pool_work_complete(&w->pw); 2372 } 2373 2374 static void do_noflush_stop(struct work_struct *ws) 2375 { 2376 struct noflush_work *w = to_noflush(ws); 2377 w->tc->requeue_mode = false; 2378 pool_work_complete(&w->pw); 2379 } 2380 2381 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2382 { 2383 struct noflush_work w; 2384 2385 w.tc = tc; 2386 pool_work_wait(&w.pw, tc->pool, fn); 2387 } 2388 2389 /*----------------------------------------------------------------*/ 2390 2391 static enum pool_mode get_pool_mode(struct pool *pool) 2392 { 2393 return pool->pf.mode; 2394 } 2395 2396 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2397 { 2398 dm_table_event(pool->ti->table); 2399 DMINFO("%s: switching pool to %s mode", 2400 dm_device_name(pool->pool_md), new_mode); 2401 } 2402 2403 static void notify_of_pool_mode_change_to_oods(struct pool *pool) 2404 { 2405 if (!pool->pf.error_if_no_space) 2406 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)"); 2407 else 2408 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)"); 2409 } 2410 2411 static bool passdown_enabled(struct pool_c *pt) 2412 { 2413 return pt->adjusted_pf.discard_passdown; 2414 } 2415 2416 static void set_discard_callbacks(struct pool *pool) 2417 { 2418 struct pool_c *pt = pool->ti->private; 2419 2420 if (passdown_enabled(pt)) { 2421 pool->process_discard_cell = process_discard_cell_passdown; 2422 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2423 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2424 } else { 2425 pool->process_discard_cell = process_discard_cell_no_passdown; 2426 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2427 } 2428 } 2429 2430 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2431 { 2432 struct pool_c *pt = pool->ti->private; 2433 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2434 enum pool_mode old_mode = get_pool_mode(pool); 2435 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 2436 2437 /* 2438 * Never allow the pool to transition to PM_WRITE mode if user 2439 * intervention is required to verify metadata and data consistency. 2440 */ 2441 if (new_mode == PM_WRITE && needs_check) { 2442 DMERR("%s: unable to switch pool to write mode until repaired.", 2443 dm_device_name(pool->pool_md)); 2444 if (old_mode != new_mode) 2445 new_mode = old_mode; 2446 else 2447 new_mode = PM_READ_ONLY; 2448 } 2449 /* 2450 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2451 * not going to recover without a thin_repair. So we never let the 2452 * pool move out of the old mode. 2453 */ 2454 if (old_mode == PM_FAIL) 2455 new_mode = old_mode; 2456 2457 switch (new_mode) { 2458 case PM_FAIL: 2459 if (old_mode != new_mode) 2460 notify_of_pool_mode_change(pool, "failure"); 2461 dm_pool_metadata_read_only(pool->pmd); 2462 pool->process_bio = process_bio_fail; 2463 pool->process_discard = process_bio_fail; 2464 pool->process_cell = process_cell_fail; 2465 pool->process_discard_cell = process_cell_fail; 2466 pool->process_prepared_mapping = process_prepared_mapping_fail; 2467 pool->process_prepared_discard = process_prepared_discard_fail; 2468 2469 error_retry_list(pool); 2470 break; 2471 2472 case PM_READ_ONLY: 2473 if (old_mode != new_mode) 2474 notify_of_pool_mode_change(pool, "read-only"); 2475 dm_pool_metadata_read_only(pool->pmd); 2476 pool->process_bio = process_bio_read_only; 2477 pool->process_discard = process_bio_success; 2478 pool->process_cell = process_cell_read_only; 2479 pool->process_discard_cell = process_cell_success; 2480 pool->process_prepared_mapping = process_prepared_mapping_fail; 2481 pool->process_prepared_discard = process_prepared_discard_success; 2482 2483 error_retry_list(pool); 2484 break; 2485 2486 case PM_OUT_OF_DATA_SPACE: 2487 /* 2488 * Ideally we'd never hit this state; the low water mark 2489 * would trigger userland to extend the pool before we 2490 * completely run out of data space. However, many small 2491 * IOs to unprovisioned space can consume data space at an 2492 * alarming rate. Adjust your low water mark if you're 2493 * frequently seeing this mode. 2494 */ 2495 if (old_mode != new_mode) 2496 notify_of_pool_mode_change_to_oods(pool); 2497 pool->out_of_data_space = true; 2498 pool->process_bio = process_bio_read_only; 2499 pool->process_discard = process_discard_bio; 2500 pool->process_cell = process_cell_read_only; 2501 pool->process_prepared_mapping = process_prepared_mapping; 2502 set_discard_callbacks(pool); 2503 2504 if (!pool->pf.error_if_no_space && no_space_timeout) 2505 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2506 break; 2507 2508 case PM_WRITE: 2509 if (old_mode != new_mode) 2510 notify_of_pool_mode_change(pool, "write"); 2511 pool->out_of_data_space = false; 2512 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2513 dm_pool_metadata_read_write(pool->pmd); 2514 pool->process_bio = process_bio; 2515 pool->process_discard = process_discard_bio; 2516 pool->process_cell = process_cell; 2517 pool->process_prepared_mapping = process_prepared_mapping; 2518 set_discard_callbacks(pool); 2519 break; 2520 } 2521 2522 pool->pf.mode = new_mode; 2523 /* 2524 * The pool mode may have changed, sync it so bind_control_target() 2525 * doesn't cause an unexpected mode transition on resume. 2526 */ 2527 pt->adjusted_pf.mode = new_mode; 2528 } 2529 2530 static void abort_transaction(struct pool *pool) 2531 { 2532 const char *dev_name = dm_device_name(pool->pool_md); 2533 2534 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2535 if (dm_pool_abort_metadata(pool->pmd)) { 2536 DMERR("%s: failed to abort metadata transaction", dev_name); 2537 set_pool_mode(pool, PM_FAIL); 2538 } 2539 2540 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2541 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2542 set_pool_mode(pool, PM_FAIL); 2543 } 2544 } 2545 2546 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2547 { 2548 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2549 dm_device_name(pool->pool_md), op, r); 2550 2551 abort_transaction(pool); 2552 set_pool_mode(pool, PM_READ_ONLY); 2553 } 2554 2555 /*----------------------------------------------------------------*/ 2556 2557 /* 2558 * Mapping functions. 2559 */ 2560 2561 /* 2562 * Called only while mapping a thin bio to hand it over to the workqueue. 2563 */ 2564 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2565 { 2566 unsigned long flags; 2567 struct pool *pool = tc->pool; 2568 2569 spin_lock_irqsave(&tc->lock, flags); 2570 bio_list_add(&tc->deferred_bio_list, bio); 2571 spin_unlock_irqrestore(&tc->lock, flags); 2572 2573 wake_worker(pool); 2574 } 2575 2576 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2577 { 2578 struct pool *pool = tc->pool; 2579 2580 throttle_lock(&pool->throttle); 2581 thin_defer_bio(tc, bio); 2582 throttle_unlock(&pool->throttle); 2583 } 2584 2585 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2586 { 2587 unsigned long flags; 2588 struct pool *pool = tc->pool; 2589 2590 throttle_lock(&pool->throttle); 2591 spin_lock_irqsave(&tc->lock, flags); 2592 list_add_tail(&cell->user_list, &tc->deferred_cells); 2593 spin_unlock_irqrestore(&tc->lock, flags); 2594 throttle_unlock(&pool->throttle); 2595 2596 wake_worker(pool); 2597 } 2598 2599 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2600 { 2601 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2602 2603 h->tc = tc; 2604 h->shared_read_entry = NULL; 2605 h->all_io_entry = NULL; 2606 h->overwrite_mapping = NULL; 2607 h->cell = NULL; 2608 } 2609 2610 /* 2611 * Non-blocking function called from the thin target's map function. 2612 */ 2613 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2614 { 2615 int r; 2616 struct thin_c *tc = ti->private; 2617 dm_block_t block = get_bio_block(tc, bio); 2618 struct dm_thin_device *td = tc->td; 2619 struct dm_thin_lookup_result result; 2620 struct dm_bio_prison_cell *virt_cell, *data_cell; 2621 struct dm_cell_key key; 2622 2623 thin_hook_bio(tc, bio); 2624 2625 if (tc->requeue_mode) { 2626 bio->bi_error = DM_ENDIO_REQUEUE; 2627 bio_endio(bio); 2628 return DM_MAPIO_SUBMITTED; 2629 } 2630 2631 if (get_pool_mode(tc->pool) == PM_FAIL) { 2632 bio_io_error(bio); 2633 return DM_MAPIO_SUBMITTED; 2634 } 2635 2636 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2637 thin_defer_bio_with_throttle(tc, bio); 2638 return DM_MAPIO_SUBMITTED; 2639 } 2640 2641 /* 2642 * We must hold the virtual cell before doing the lookup, otherwise 2643 * there's a race with discard. 2644 */ 2645 build_virtual_key(tc->td, block, &key); 2646 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2647 return DM_MAPIO_SUBMITTED; 2648 2649 r = dm_thin_find_block(td, block, 0, &result); 2650 2651 /* 2652 * Note that we defer readahead too. 2653 */ 2654 switch (r) { 2655 case 0: 2656 if (unlikely(result.shared)) { 2657 /* 2658 * We have a race condition here between the 2659 * result.shared value returned by the lookup and 2660 * snapshot creation, which may cause new 2661 * sharing. 2662 * 2663 * To avoid this always quiesce the origin before 2664 * taking the snap. You want to do this anyway to 2665 * ensure a consistent application view 2666 * (i.e. lockfs). 2667 * 2668 * More distant ancestors are irrelevant. The 2669 * shared flag will be set in their case. 2670 */ 2671 thin_defer_cell(tc, virt_cell); 2672 return DM_MAPIO_SUBMITTED; 2673 } 2674 2675 build_data_key(tc->td, result.block, &key); 2676 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2677 cell_defer_no_holder(tc, virt_cell); 2678 return DM_MAPIO_SUBMITTED; 2679 } 2680 2681 inc_all_io_entry(tc->pool, bio); 2682 cell_defer_no_holder(tc, data_cell); 2683 cell_defer_no_holder(tc, virt_cell); 2684 2685 remap(tc, bio, result.block); 2686 return DM_MAPIO_REMAPPED; 2687 2688 case -ENODATA: 2689 case -EWOULDBLOCK: 2690 thin_defer_cell(tc, virt_cell); 2691 return DM_MAPIO_SUBMITTED; 2692 2693 default: 2694 /* 2695 * Must always call bio_io_error on failure. 2696 * dm_thin_find_block can fail with -EINVAL if the 2697 * pool is switched to fail-io mode. 2698 */ 2699 bio_io_error(bio); 2700 cell_defer_no_holder(tc, virt_cell); 2701 return DM_MAPIO_SUBMITTED; 2702 } 2703 } 2704 2705 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2706 { 2707 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2708 struct request_queue *q; 2709 2710 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2711 return 1; 2712 2713 q = bdev_get_queue(pt->data_dev->bdev); 2714 return bdi_congested(q->backing_dev_info, bdi_bits); 2715 } 2716 2717 static void requeue_bios(struct pool *pool) 2718 { 2719 unsigned long flags; 2720 struct thin_c *tc; 2721 2722 rcu_read_lock(); 2723 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2724 spin_lock_irqsave(&tc->lock, flags); 2725 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2726 bio_list_init(&tc->retry_on_resume_list); 2727 spin_unlock_irqrestore(&tc->lock, flags); 2728 } 2729 rcu_read_unlock(); 2730 } 2731 2732 /*---------------------------------------------------------------- 2733 * Binding of control targets to a pool object 2734 *--------------------------------------------------------------*/ 2735 static bool data_dev_supports_discard(struct pool_c *pt) 2736 { 2737 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2738 2739 return q && blk_queue_discard(q); 2740 } 2741 2742 static bool is_factor(sector_t block_size, uint32_t n) 2743 { 2744 return !sector_div(block_size, n); 2745 } 2746 2747 /* 2748 * If discard_passdown was enabled verify that the data device 2749 * supports discards. Disable discard_passdown if not. 2750 */ 2751 static void disable_passdown_if_not_supported(struct pool_c *pt) 2752 { 2753 struct pool *pool = pt->pool; 2754 struct block_device *data_bdev = pt->data_dev->bdev; 2755 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2756 const char *reason = NULL; 2757 char buf[BDEVNAME_SIZE]; 2758 2759 if (!pt->adjusted_pf.discard_passdown) 2760 return; 2761 2762 if (!data_dev_supports_discard(pt)) 2763 reason = "discard unsupported"; 2764 2765 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2766 reason = "max discard sectors smaller than a block"; 2767 2768 if (reason) { 2769 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2770 pt->adjusted_pf.discard_passdown = false; 2771 } 2772 } 2773 2774 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2775 { 2776 struct pool_c *pt = ti->private; 2777 2778 /* 2779 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2780 */ 2781 enum pool_mode old_mode = get_pool_mode(pool); 2782 enum pool_mode new_mode = pt->adjusted_pf.mode; 2783 2784 /* 2785 * Don't change the pool's mode until set_pool_mode() below. 2786 * Otherwise the pool's process_* function pointers may 2787 * not match the desired pool mode. 2788 */ 2789 pt->adjusted_pf.mode = old_mode; 2790 2791 pool->ti = ti; 2792 pool->pf = pt->adjusted_pf; 2793 pool->low_water_blocks = pt->low_water_blocks; 2794 2795 set_pool_mode(pool, new_mode); 2796 2797 return 0; 2798 } 2799 2800 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2801 { 2802 if (pool->ti == ti) 2803 pool->ti = NULL; 2804 } 2805 2806 /*---------------------------------------------------------------- 2807 * Pool creation 2808 *--------------------------------------------------------------*/ 2809 /* Initialize pool features. */ 2810 static void pool_features_init(struct pool_features *pf) 2811 { 2812 pf->mode = PM_WRITE; 2813 pf->zero_new_blocks = true; 2814 pf->discard_enabled = true; 2815 pf->discard_passdown = true; 2816 pf->error_if_no_space = false; 2817 } 2818 2819 static void __pool_destroy(struct pool *pool) 2820 { 2821 __pool_table_remove(pool); 2822 2823 vfree(pool->cell_sort_array); 2824 if (dm_pool_metadata_close(pool->pmd) < 0) 2825 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2826 2827 dm_bio_prison_destroy(pool->prison); 2828 dm_kcopyd_client_destroy(pool->copier); 2829 2830 if (pool->wq) 2831 destroy_workqueue(pool->wq); 2832 2833 if (pool->next_mapping) 2834 mempool_free(pool->next_mapping, pool->mapping_pool); 2835 mempool_destroy(pool->mapping_pool); 2836 dm_deferred_set_destroy(pool->shared_read_ds); 2837 dm_deferred_set_destroy(pool->all_io_ds); 2838 kfree(pool); 2839 } 2840 2841 static struct kmem_cache *_new_mapping_cache; 2842 2843 static struct pool *pool_create(struct mapped_device *pool_md, 2844 struct block_device *metadata_dev, 2845 unsigned long block_size, 2846 int read_only, char **error) 2847 { 2848 int r; 2849 void *err_p; 2850 struct pool *pool; 2851 struct dm_pool_metadata *pmd; 2852 bool format_device = read_only ? false : true; 2853 2854 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2855 if (IS_ERR(pmd)) { 2856 *error = "Error creating metadata object"; 2857 return (struct pool *)pmd; 2858 } 2859 2860 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2861 if (!pool) { 2862 *error = "Error allocating memory for pool"; 2863 err_p = ERR_PTR(-ENOMEM); 2864 goto bad_pool; 2865 } 2866 2867 pool->pmd = pmd; 2868 pool->sectors_per_block = block_size; 2869 if (block_size & (block_size - 1)) 2870 pool->sectors_per_block_shift = -1; 2871 else 2872 pool->sectors_per_block_shift = __ffs(block_size); 2873 pool->low_water_blocks = 0; 2874 pool_features_init(&pool->pf); 2875 pool->prison = dm_bio_prison_create(); 2876 if (!pool->prison) { 2877 *error = "Error creating pool's bio prison"; 2878 err_p = ERR_PTR(-ENOMEM); 2879 goto bad_prison; 2880 } 2881 2882 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2883 if (IS_ERR(pool->copier)) { 2884 r = PTR_ERR(pool->copier); 2885 *error = "Error creating pool's kcopyd client"; 2886 err_p = ERR_PTR(r); 2887 goto bad_kcopyd_client; 2888 } 2889 2890 /* 2891 * Create singlethreaded workqueue that will service all devices 2892 * that use this metadata. 2893 */ 2894 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2895 if (!pool->wq) { 2896 *error = "Error creating pool's workqueue"; 2897 err_p = ERR_PTR(-ENOMEM); 2898 goto bad_wq; 2899 } 2900 2901 throttle_init(&pool->throttle); 2902 INIT_WORK(&pool->worker, do_worker); 2903 INIT_DELAYED_WORK(&pool->waker, do_waker); 2904 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2905 spin_lock_init(&pool->lock); 2906 bio_list_init(&pool->deferred_flush_bios); 2907 INIT_LIST_HEAD(&pool->prepared_mappings); 2908 INIT_LIST_HEAD(&pool->prepared_discards); 2909 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2910 INIT_LIST_HEAD(&pool->active_thins); 2911 pool->low_water_triggered = false; 2912 pool->suspended = true; 2913 pool->out_of_data_space = false; 2914 2915 pool->shared_read_ds = dm_deferred_set_create(); 2916 if (!pool->shared_read_ds) { 2917 *error = "Error creating pool's shared read deferred set"; 2918 err_p = ERR_PTR(-ENOMEM); 2919 goto bad_shared_read_ds; 2920 } 2921 2922 pool->all_io_ds = dm_deferred_set_create(); 2923 if (!pool->all_io_ds) { 2924 *error = "Error creating pool's all io deferred set"; 2925 err_p = ERR_PTR(-ENOMEM); 2926 goto bad_all_io_ds; 2927 } 2928 2929 pool->next_mapping = NULL; 2930 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2931 _new_mapping_cache); 2932 if (!pool->mapping_pool) { 2933 *error = "Error creating pool's mapping mempool"; 2934 err_p = ERR_PTR(-ENOMEM); 2935 goto bad_mapping_pool; 2936 } 2937 2938 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE); 2939 if (!pool->cell_sort_array) { 2940 *error = "Error allocating cell sort array"; 2941 err_p = ERR_PTR(-ENOMEM); 2942 goto bad_sort_array; 2943 } 2944 2945 pool->ref_count = 1; 2946 pool->last_commit_jiffies = jiffies; 2947 pool->pool_md = pool_md; 2948 pool->md_dev = metadata_dev; 2949 __pool_table_insert(pool); 2950 2951 return pool; 2952 2953 bad_sort_array: 2954 mempool_destroy(pool->mapping_pool); 2955 bad_mapping_pool: 2956 dm_deferred_set_destroy(pool->all_io_ds); 2957 bad_all_io_ds: 2958 dm_deferred_set_destroy(pool->shared_read_ds); 2959 bad_shared_read_ds: 2960 destroy_workqueue(pool->wq); 2961 bad_wq: 2962 dm_kcopyd_client_destroy(pool->copier); 2963 bad_kcopyd_client: 2964 dm_bio_prison_destroy(pool->prison); 2965 bad_prison: 2966 kfree(pool); 2967 bad_pool: 2968 if (dm_pool_metadata_close(pmd)) 2969 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2970 2971 return err_p; 2972 } 2973 2974 static void __pool_inc(struct pool *pool) 2975 { 2976 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2977 pool->ref_count++; 2978 } 2979 2980 static void __pool_dec(struct pool *pool) 2981 { 2982 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2983 BUG_ON(!pool->ref_count); 2984 if (!--pool->ref_count) 2985 __pool_destroy(pool); 2986 } 2987 2988 static struct pool *__pool_find(struct mapped_device *pool_md, 2989 struct block_device *metadata_dev, 2990 unsigned long block_size, int read_only, 2991 char **error, int *created) 2992 { 2993 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2994 2995 if (pool) { 2996 if (pool->pool_md != pool_md) { 2997 *error = "metadata device already in use by a pool"; 2998 return ERR_PTR(-EBUSY); 2999 } 3000 __pool_inc(pool); 3001 3002 } else { 3003 pool = __pool_table_lookup(pool_md); 3004 if (pool) { 3005 if (pool->md_dev != metadata_dev) { 3006 *error = "different pool cannot replace a pool"; 3007 return ERR_PTR(-EINVAL); 3008 } 3009 __pool_inc(pool); 3010 3011 } else { 3012 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 3013 *created = 1; 3014 } 3015 } 3016 3017 return pool; 3018 } 3019 3020 /*---------------------------------------------------------------- 3021 * Pool target methods 3022 *--------------------------------------------------------------*/ 3023 static void pool_dtr(struct dm_target *ti) 3024 { 3025 struct pool_c *pt = ti->private; 3026 3027 mutex_lock(&dm_thin_pool_table.mutex); 3028 3029 unbind_control_target(pt->pool, ti); 3030 __pool_dec(pt->pool); 3031 dm_put_device(ti, pt->metadata_dev); 3032 dm_put_device(ti, pt->data_dev); 3033 kfree(pt); 3034 3035 mutex_unlock(&dm_thin_pool_table.mutex); 3036 } 3037 3038 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3039 struct dm_target *ti) 3040 { 3041 int r; 3042 unsigned argc; 3043 const char *arg_name; 3044 3045 static struct dm_arg _args[] = { 3046 {0, 4, "Invalid number of pool feature arguments"}, 3047 }; 3048 3049 /* 3050 * No feature arguments supplied. 3051 */ 3052 if (!as->argc) 3053 return 0; 3054 3055 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3056 if (r) 3057 return -EINVAL; 3058 3059 while (argc && !r) { 3060 arg_name = dm_shift_arg(as); 3061 argc--; 3062 3063 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3064 pf->zero_new_blocks = false; 3065 3066 else if (!strcasecmp(arg_name, "ignore_discard")) 3067 pf->discard_enabled = false; 3068 3069 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3070 pf->discard_passdown = false; 3071 3072 else if (!strcasecmp(arg_name, "read_only")) 3073 pf->mode = PM_READ_ONLY; 3074 3075 else if (!strcasecmp(arg_name, "error_if_no_space")) 3076 pf->error_if_no_space = true; 3077 3078 else { 3079 ti->error = "Unrecognised pool feature requested"; 3080 r = -EINVAL; 3081 break; 3082 } 3083 } 3084 3085 return r; 3086 } 3087 3088 static void metadata_low_callback(void *context) 3089 { 3090 struct pool *pool = context; 3091 3092 DMWARN("%s: reached low water mark for metadata device: sending event.", 3093 dm_device_name(pool->pool_md)); 3094 3095 dm_table_event(pool->ti->table); 3096 } 3097 3098 static sector_t get_dev_size(struct block_device *bdev) 3099 { 3100 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3101 } 3102 3103 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3104 { 3105 sector_t metadata_dev_size = get_dev_size(bdev); 3106 char buffer[BDEVNAME_SIZE]; 3107 3108 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3109 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3110 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3111 } 3112 3113 static sector_t get_metadata_dev_size(struct block_device *bdev) 3114 { 3115 sector_t metadata_dev_size = get_dev_size(bdev); 3116 3117 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3118 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3119 3120 return metadata_dev_size; 3121 } 3122 3123 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3124 { 3125 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3126 3127 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3128 3129 return metadata_dev_size; 3130 } 3131 3132 /* 3133 * When a metadata threshold is crossed a dm event is triggered, and 3134 * userland should respond by growing the metadata device. We could let 3135 * userland set the threshold, like we do with the data threshold, but I'm 3136 * not sure they know enough to do this well. 3137 */ 3138 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3139 { 3140 /* 3141 * 4M is ample for all ops with the possible exception of thin 3142 * device deletion which is harmless if it fails (just retry the 3143 * delete after you've grown the device). 3144 */ 3145 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3146 return min((dm_block_t)1024ULL /* 4M */, quarter); 3147 } 3148 3149 /* 3150 * thin-pool <metadata dev> <data dev> 3151 * <data block size (sectors)> 3152 * <low water mark (blocks)> 3153 * [<#feature args> [<arg>]*] 3154 * 3155 * Optional feature arguments are: 3156 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3157 * ignore_discard: disable discard 3158 * no_discard_passdown: don't pass discards down to the data device 3159 * read_only: Don't allow any changes to be made to the pool metadata. 3160 * error_if_no_space: error IOs, instead of queueing, if no space. 3161 */ 3162 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3163 { 3164 int r, pool_created = 0; 3165 struct pool_c *pt; 3166 struct pool *pool; 3167 struct pool_features pf; 3168 struct dm_arg_set as; 3169 struct dm_dev *data_dev; 3170 unsigned long block_size; 3171 dm_block_t low_water_blocks; 3172 struct dm_dev *metadata_dev; 3173 fmode_t metadata_mode; 3174 3175 /* 3176 * FIXME Remove validation from scope of lock. 3177 */ 3178 mutex_lock(&dm_thin_pool_table.mutex); 3179 3180 if (argc < 4) { 3181 ti->error = "Invalid argument count"; 3182 r = -EINVAL; 3183 goto out_unlock; 3184 } 3185 3186 as.argc = argc; 3187 as.argv = argv; 3188 3189 /* 3190 * Set default pool features. 3191 */ 3192 pool_features_init(&pf); 3193 3194 dm_consume_args(&as, 4); 3195 r = parse_pool_features(&as, &pf, ti); 3196 if (r) 3197 goto out_unlock; 3198 3199 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3200 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3201 if (r) { 3202 ti->error = "Error opening metadata block device"; 3203 goto out_unlock; 3204 } 3205 warn_if_metadata_device_too_big(metadata_dev->bdev); 3206 3207 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3208 if (r) { 3209 ti->error = "Error getting data device"; 3210 goto out_metadata; 3211 } 3212 3213 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3214 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3215 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3216 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3217 ti->error = "Invalid block size"; 3218 r = -EINVAL; 3219 goto out; 3220 } 3221 3222 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3223 ti->error = "Invalid low water mark"; 3224 r = -EINVAL; 3225 goto out; 3226 } 3227 3228 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3229 if (!pt) { 3230 r = -ENOMEM; 3231 goto out; 3232 } 3233 3234 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3235 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3236 if (IS_ERR(pool)) { 3237 r = PTR_ERR(pool); 3238 goto out_free_pt; 3239 } 3240 3241 /* 3242 * 'pool_created' reflects whether this is the first table load. 3243 * Top level discard support is not allowed to be changed after 3244 * initial load. This would require a pool reload to trigger thin 3245 * device changes. 3246 */ 3247 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3248 ti->error = "Discard support cannot be disabled once enabled"; 3249 r = -EINVAL; 3250 goto out_flags_changed; 3251 } 3252 3253 pt->pool = pool; 3254 pt->ti = ti; 3255 pt->metadata_dev = metadata_dev; 3256 pt->data_dev = data_dev; 3257 pt->low_water_blocks = low_water_blocks; 3258 pt->adjusted_pf = pt->requested_pf = pf; 3259 ti->num_flush_bios = 1; 3260 3261 /* 3262 * Only need to enable discards if the pool should pass 3263 * them down to the data device. The thin device's discard 3264 * processing will cause mappings to be removed from the btree. 3265 */ 3266 ti->discard_zeroes_data_unsupported = true; 3267 if (pf.discard_enabled && pf.discard_passdown) { 3268 ti->num_discard_bios = 1; 3269 3270 /* 3271 * Setting 'discards_supported' circumvents the normal 3272 * stacking of discard limits (this keeps the pool and 3273 * thin devices' discard limits consistent). 3274 */ 3275 ti->discards_supported = true; 3276 } 3277 ti->private = pt; 3278 3279 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3280 calc_metadata_threshold(pt), 3281 metadata_low_callback, 3282 pool); 3283 if (r) 3284 goto out_flags_changed; 3285 3286 pt->callbacks.congested_fn = pool_is_congested; 3287 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3288 3289 mutex_unlock(&dm_thin_pool_table.mutex); 3290 3291 return 0; 3292 3293 out_flags_changed: 3294 __pool_dec(pool); 3295 out_free_pt: 3296 kfree(pt); 3297 out: 3298 dm_put_device(ti, data_dev); 3299 out_metadata: 3300 dm_put_device(ti, metadata_dev); 3301 out_unlock: 3302 mutex_unlock(&dm_thin_pool_table.mutex); 3303 3304 return r; 3305 } 3306 3307 static int pool_map(struct dm_target *ti, struct bio *bio) 3308 { 3309 int r; 3310 struct pool_c *pt = ti->private; 3311 struct pool *pool = pt->pool; 3312 unsigned long flags; 3313 3314 /* 3315 * As this is a singleton target, ti->begin is always zero. 3316 */ 3317 spin_lock_irqsave(&pool->lock, flags); 3318 bio->bi_bdev = pt->data_dev->bdev; 3319 r = DM_MAPIO_REMAPPED; 3320 spin_unlock_irqrestore(&pool->lock, flags); 3321 3322 return r; 3323 } 3324 3325 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3326 { 3327 int r; 3328 struct pool_c *pt = ti->private; 3329 struct pool *pool = pt->pool; 3330 sector_t data_size = ti->len; 3331 dm_block_t sb_data_size; 3332 3333 *need_commit = false; 3334 3335 (void) sector_div(data_size, pool->sectors_per_block); 3336 3337 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3338 if (r) { 3339 DMERR("%s: failed to retrieve data device size", 3340 dm_device_name(pool->pool_md)); 3341 return r; 3342 } 3343 3344 if (data_size < sb_data_size) { 3345 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3346 dm_device_name(pool->pool_md), 3347 (unsigned long long)data_size, sb_data_size); 3348 return -EINVAL; 3349 3350 } else if (data_size > sb_data_size) { 3351 if (dm_pool_metadata_needs_check(pool->pmd)) { 3352 DMERR("%s: unable to grow the data device until repaired.", 3353 dm_device_name(pool->pool_md)); 3354 return 0; 3355 } 3356 3357 if (sb_data_size) 3358 DMINFO("%s: growing the data device from %llu to %llu blocks", 3359 dm_device_name(pool->pool_md), 3360 sb_data_size, (unsigned long long)data_size); 3361 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3362 if (r) { 3363 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3364 return r; 3365 } 3366 3367 *need_commit = true; 3368 } 3369 3370 return 0; 3371 } 3372 3373 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3374 { 3375 int r; 3376 struct pool_c *pt = ti->private; 3377 struct pool *pool = pt->pool; 3378 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3379 3380 *need_commit = false; 3381 3382 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3383 3384 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3385 if (r) { 3386 DMERR("%s: failed to retrieve metadata device size", 3387 dm_device_name(pool->pool_md)); 3388 return r; 3389 } 3390 3391 if (metadata_dev_size < sb_metadata_dev_size) { 3392 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3393 dm_device_name(pool->pool_md), 3394 metadata_dev_size, sb_metadata_dev_size); 3395 return -EINVAL; 3396 3397 } else if (metadata_dev_size > sb_metadata_dev_size) { 3398 if (dm_pool_metadata_needs_check(pool->pmd)) { 3399 DMERR("%s: unable to grow the metadata device until repaired.", 3400 dm_device_name(pool->pool_md)); 3401 return 0; 3402 } 3403 3404 warn_if_metadata_device_too_big(pool->md_dev); 3405 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3406 dm_device_name(pool->pool_md), 3407 sb_metadata_dev_size, metadata_dev_size); 3408 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3409 if (r) { 3410 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3411 return r; 3412 } 3413 3414 *need_commit = true; 3415 } 3416 3417 return 0; 3418 } 3419 3420 /* 3421 * Retrieves the number of blocks of the data device from 3422 * the superblock and compares it to the actual device size, 3423 * thus resizing the data device in case it has grown. 3424 * 3425 * This both copes with opening preallocated data devices in the ctr 3426 * being followed by a resume 3427 * -and- 3428 * calling the resume method individually after userspace has 3429 * grown the data device in reaction to a table event. 3430 */ 3431 static int pool_preresume(struct dm_target *ti) 3432 { 3433 int r; 3434 bool need_commit1, need_commit2; 3435 struct pool_c *pt = ti->private; 3436 struct pool *pool = pt->pool; 3437 3438 /* 3439 * Take control of the pool object. 3440 */ 3441 r = bind_control_target(pool, ti); 3442 if (r) 3443 return r; 3444 3445 r = maybe_resize_data_dev(ti, &need_commit1); 3446 if (r) 3447 return r; 3448 3449 r = maybe_resize_metadata_dev(ti, &need_commit2); 3450 if (r) 3451 return r; 3452 3453 if (need_commit1 || need_commit2) 3454 (void) commit(pool); 3455 3456 return 0; 3457 } 3458 3459 static void pool_suspend_active_thins(struct pool *pool) 3460 { 3461 struct thin_c *tc; 3462 3463 /* Suspend all active thin devices */ 3464 tc = get_first_thin(pool); 3465 while (tc) { 3466 dm_internal_suspend_noflush(tc->thin_md); 3467 tc = get_next_thin(pool, tc); 3468 } 3469 } 3470 3471 static void pool_resume_active_thins(struct pool *pool) 3472 { 3473 struct thin_c *tc; 3474 3475 /* Resume all active thin devices */ 3476 tc = get_first_thin(pool); 3477 while (tc) { 3478 dm_internal_resume(tc->thin_md); 3479 tc = get_next_thin(pool, tc); 3480 } 3481 } 3482 3483 static void pool_resume(struct dm_target *ti) 3484 { 3485 struct pool_c *pt = ti->private; 3486 struct pool *pool = pt->pool; 3487 unsigned long flags; 3488 3489 /* 3490 * Must requeue active_thins' bios and then resume 3491 * active_thins _before_ clearing 'suspend' flag. 3492 */ 3493 requeue_bios(pool); 3494 pool_resume_active_thins(pool); 3495 3496 spin_lock_irqsave(&pool->lock, flags); 3497 pool->low_water_triggered = false; 3498 pool->suspended = false; 3499 spin_unlock_irqrestore(&pool->lock, flags); 3500 3501 do_waker(&pool->waker.work); 3502 } 3503 3504 static void pool_presuspend(struct dm_target *ti) 3505 { 3506 struct pool_c *pt = ti->private; 3507 struct pool *pool = pt->pool; 3508 unsigned long flags; 3509 3510 spin_lock_irqsave(&pool->lock, flags); 3511 pool->suspended = true; 3512 spin_unlock_irqrestore(&pool->lock, flags); 3513 3514 pool_suspend_active_thins(pool); 3515 } 3516 3517 static void pool_presuspend_undo(struct dm_target *ti) 3518 { 3519 struct pool_c *pt = ti->private; 3520 struct pool *pool = pt->pool; 3521 unsigned long flags; 3522 3523 pool_resume_active_thins(pool); 3524 3525 spin_lock_irqsave(&pool->lock, flags); 3526 pool->suspended = false; 3527 spin_unlock_irqrestore(&pool->lock, flags); 3528 } 3529 3530 static void pool_postsuspend(struct dm_target *ti) 3531 { 3532 struct pool_c *pt = ti->private; 3533 struct pool *pool = pt->pool; 3534 3535 cancel_delayed_work_sync(&pool->waker); 3536 cancel_delayed_work_sync(&pool->no_space_timeout); 3537 flush_workqueue(pool->wq); 3538 (void) commit(pool); 3539 } 3540 3541 static int check_arg_count(unsigned argc, unsigned args_required) 3542 { 3543 if (argc != args_required) { 3544 DMWARN("Message received with %u arguments instead of %u.", 3545 argc, args_required); 3546 return -EINVAL; 3547 } 3548 3549 return 0; 3550 } 3551 3552 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3553 { 3554 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3555 *dev_id <= MAX_DEV_ID) 3556 return 0; 3557 3558 if (warning) 3559 DMWARN("Message received with invalid device id: %s", arg); 3560 3561 return -EINVAL; 3562 } 3563 3564 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3565 { 3566 dm_thin_id dev_id; 3567 int r; 3568 3569 r = check_arg_count(argc, 2); 3570 if (r) 3571 return r; 3572 3573 r = read_dev_id(argv[1], &dev_id, 1); 3574 if (r) 3575 return r; 3576 3577 r = dm_pool_create_thin(pool->pmd, dev_id); 3578 if (r) { 3579 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3580 argv[1]); 3581 return r; 3582 } 3583 3584 return 0; 3585 } 3586 3587 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3588 { 3589 dm_thin_id dev_id; 3590 dm_thin_id origin_dev_id; 3591 int r; 3592 3593 r = check_arg_count(argc, 3); 3594 if (r) 3595 return r; 3596 3597 r = read_dev_id(argv[1], &dev_id, 1); 3598 if (r) 3599 return r; 3600 3601 r = read_dev_id(argv[2], &origin_dev_id, 1); 3602 if (r) 3603 return r; 3604 3605 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3606 if (r) { 3607 DMWARN("Creation of new snapshot %s of device %s failed.", 3608 argv[1], argv[2]); 3609 return r; 3610 } 3611 3612 return 0; 3613 } 3614 3615 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3616 { 3617 dm_thin_id dev_id; 3618 int r; 3619 3620 r = check_arg_count(argc, 2); 3621 if (r) 3622 return r; 3623 3624 r = read_dev_id(argv[1], &dev_id, 1); 3625 if (r) 3626 return r; 3627 3628 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3629 if (r) 3630 DMWARN("Deletion of thin device %s failed.", argv[1]); 3631 3632 return r; 3633 } 3634 3635 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3636 { 3637 dm_thin_id old_id, new_id; 3638 int r; 3639 3640 r = check_arg_count(argc, 3); 3641 if (r) 3642 return r; 3643 3644 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3645 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3646 return -EINVAL; 3647 } 3648 3649 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3650 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3651 return -EINVAL; 3652 } 3653 3654 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3655 if (r) { 3656 DMWARN("Failed to change transaction id from %s to %s.", 3657 argv[1], argv[2]); 3658 return r; 3659 } 3660 3661 return 0; 3662 } 3663 3664 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3665 { 3666 int r; 3667 3668 r = check_arg_count(argc, 1); 3669 if (r) 3670 return r; 3671 3672 (void) commit(pool); 3673 3674 r = dm_pool_reserve_metadata_snap(pool->pmd); 3675 if (r) 3676 DMWARN("reserve_metadata_snap message failed."); 3677 3678 return r; 3679 } 3680 3681 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3682 { 3683 int r; 3684 3685 r = check_arg_count(argc, 1); 3686 if (r) 3687 return r; 3688 3689 r = dm_pool_release_metadata_snap(pool->pmd); 3690 if (r) 3691 DMWARN("release_metadata_snap message failed."); 3692 3693 return r; 3694 } 3695 3696 /* 3697 * Messages supported: 3698 * create_thin <dev_id> 3699 * create_snap <dev_id> <origin_id> 3700 * delete <dev_id> 3701 * set_transaction_id <current_trans_id> <new_trans_id> 3702 * reserve_metadata_snap 3703 * release_metadata_snap 3704 */ 3705 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 3706 { 3707 int r = -EINVAL; 3708 struct pool_c *pt = ti->private; 3709 struct pool *pool = pt->pool; 3710 3711 if (get_pool_mode(pool) >= PM_READ_ONLY) { 3712 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3713 dm_device_name(pool->pool_md)); 3714 return -EOPNOTSUPP; 3715 } 3716 3717 if (!strcasecmp(argv[0], "create_thin")) 3718 r = process_create_thin_mesg(argc, argv, pool); 3719 3720 else if (!strcasecmp(argv[0], "create_snap")) 3721 r = process_create_snap_mesg(argc, argv, pool); 3722 3723 else if (!strcasecmp(argv[0], "delete")) 3724 r = process_delete_mesg(argc, argv, pool); 3725 3726 else if (!strcasecmp(argv[0], "set_transaction_id")) 3727 r = process_set_transaction_id_mesg(argc, argv, pool); 3728 3729 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3730 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3731 3732 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3733 r = process_release_metadata_snap_mesg(argc, argv, pool); 3734 3735 else 3736 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3737 3738 if (!r) 3739 (void) commit(pool); 3740 3741 return r; 3742 } 3743 3744 static void emit_flags(struct pool_features *pf, char *result, 3745 unsigned sz, unsigned maxlen) 3746 { 3747 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3748 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3749 pf->error_if_no_space; 3750 DMEMIT("%u ", count); 3751 3752 if (!pf->zero_new_blocks) 3753 DMEMIT("skip_block_zeroing "); 3754 3755 if (!pf->discard_enabled) 3756 DMEMIT("ignore_discard "); 3757 3758 if (!pf->discard_passdown) 3759 DMEMIT("no_discard_passdown "); 3760 3761 if (pf->mode == PM_READ_ONLY) 3762 DMEMIT("read_only "); 3763 3764 if (pf->error_if_no_space) 3765 DMEMIT("error_if_no_space "); 3766 } 3767 3768 /* 3769 * Status line is: 3770 * <transaction id> <used metadata sectors>/<total metadata sectors> 3771 * <used data sectors>/<total data sectors> <held metadata root> 3772 * <pool mode> <discard config> <no space config> <needs_check> 3773 */ 3774 static void pool_status(struct dm_target *ti, status_type_t type, 3775 unsigned status_flags, char *result, unsigned maxlen) 3776 { 3777 int r; 3778 unsigned sz = 0; 3779 uint64_t transaction_id; 3780 dm_block_t nr_free_blocks_data; 3781 dm_block_t nr_free_blocks_metadata; 3782 dm_block_t nr_blocks_data; 3783 dm_block_t nr_blocks_metadata; 3784 dm_block_t held_root; 3785 char buf[BDEVNAME_SIZE]; 3786 char buf2[BDEVNAME_SIZE]; 3787 struct pool_c *pt = ti->private; 3788 struct pool *pool = pt->pool; 3789 3790 switch (type) { 3791 case STATUSTYPE_INFO: 3792 if (get_pool_mode(pool) == PM_FAIL) { 3793 DMEMIT("Fail"); 3794 break; 3795 } 3796 3797 /* Commit to ensure statistics aren't out-of-date */ 3798 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3799 (void) commit(pool); 3800 3801 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3802 if (r) { 3803 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3804 dm_device_name(pool->pool_md), r); 3805 goto err; 3806 } 3807 3808 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3809 if (r) { 3810 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3811 dm_device_name(pool->pool_md), r); 3812 goto err; 3813 } 3814 3815 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3816 if (r) { 3817 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3818 dm_device_name(pool->pool_md), r); 3819 goto err; 3820 } 3821 3822 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3823 if (r) { 3824 DMERR("%s: dm_pool_get_free_block_count returned %d", 3825 dm_device_name(pool->pool_md), r); 3826 goto err; 3827 } 3828 3829 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3830 if (r) { 3831 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3832 dm_device_name(pool->pool_md), r); 3833 goto err; 3834 } 3835 3836 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3837 if (r) { 3838 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3839 dm_device_name(pool->pool_md), r); 3840 goto err; 3841 } 3842 3843 DMEMIT("%llu %llu/%llu %llu/%llu ", 3844 (unsigned long long)transaction_id, 3845 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3846 (unsigned long long)nr_blocks_metadata, 3847 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3848 (unsigned long long)nr_blocks_data); 3849 3850 if (held_root) 3851 DMEMIT("%llu ", held_root); 3852 else 3853 DMEMIT("- "); 3854 3855 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3856 DMEMIT("out_of_data_space "); 3857 else if (pool->pf.mode == PM_READ_ONLY) 3858 DMEMIT("ro "); 3859 else 3860 DMEMIT("rw "); 3861 3862 if (!pool->pf.discard_enabled) 3863 DMEMIT("ignore_discard "); 3864 else if (pool->pf.discard_passdown) 3865 DMEMIT("discard_passdown "); 3866 else 3867 DMEMIT("no_discard_passdown "); 3868 3869 if (pool->pf.error_if_no_space) 3870 DMEMIT("error_if_no_space "); 3871 else 3872 DMEMIT("queue_if_no_space "); 3873 3874 if (dm_pool_metadata_needs_check(pool->pmd)) 3875 DMEMIT("needs_check "); 3876 else 3877 DMEMIT("- "); 3878 3879 break; 3880 3881 case STATUSTYPE_TABLE: 3882 DMEMIT("%s %s %lu %llu ", 3883 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3884 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3885 (unsigned long)pool->sectors_per_block, 3886 (unsigned long long)pt->low_water_blocks); 3887 emit_flags(&pt->requested_pf, result, sz, maxlen); 3888 break; 3889 } 3890 return; 3891 3892 err: 3893 DMEMIT("Error"); 3894 } 3895 3896 static int pool_iterate_devices(struct dm_target *ti, 3897 iterate_devices_callout_fn fn, void *data) 3898 { 3899 struct pool_c *pt = ti->private; 3900 3901 return fn(ti, pt->data_dev, 0, ti->len, data); 3902 } 3903 3904 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3905 { 3906 struct pool_c *pt = ti->private; 3907 struct pool *pool = pt->pool; 3908 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3909 3910 /* 3911 * If max_sectors is smaller than pool->sectors_per_block adjust it 3912 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3913 * This is especially beneficial when the pool's data device is a RAID 3914 * device that has a full stripe width that matches pool->sectors_per_block 3915 * -- because even though partial RAID stripe-sized IOs will be issued to a 3916 * single RAID stripe; when aggregated they will end on a full RAID stripe 3917 * boundary.. which avoids additional partial RAID stripe writes cascading 3918 */ 3919 if (limits->max_sectors < pool->sectors_per_block) { 3920 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3921 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3922 limits->max_sectors--; 3923 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3924 } 3925 } 3926 3927 /* 3928 * If the system-determined stacked limits are compatible with the 3929 * pool's blocksize (io_opt is a factor) do not override them. 3930 */ 3931 if (io_opt_sectors < pool->sectors_per_block || 3932 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3933 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3934 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3935 else 3936 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3937 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3938 } 3939 3940 /* 3941 * pt->adjusted_pf is a staging area for the actual features to use. 3942 * They get transferred to the live pool in bind_control_target() 3943 * called from pool_preresume(). 3944 */ 3945 if (!pt->adjusted_pf.discard_enabled) { 3946 /* 3947 * Must explicitly disallow stacking discard limits otherwise the 3948 * block layer will stack them if pool's data device has support. 3949 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3950 * user to see that, so make sure to set all discard limits to 0. 3951 */ 3952 limits->discard_granularity = 0; 3953 return; 3954 } 3955 3956 disable_passdown_if_not_supported(pt); 3957 3958 /* 3959 * The pool uses the same discard limits as the underlying data 3960 * device. DM core has already set this up. 3961 */ 3962 } 3963 3964 static struct target_type pool_target = { 3965 .name = "thin-pool", 3966 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3967 DM_TARGET_IMMUTABLE, 3968 .version = {1, 19, 0}, 3969 .module = THIS_MODULE, 3970 .ctr = pool_ctr, 3971 .dtr = pool_dtr, 3972 .map = pool_map, 3973 .presuspend = pool_presuspend, 3974 .presuspend_undo = pool_presuspend_undo, 3975 .postsuspend = pool_postsuspend, 3976 .preresume = pool_preresume, 3977 .resume = pool_resume, 3978 .message = pool_message, 3979 .status = pool_status, 3980 .iterate_devices = pool_iterate_devices, 3981 .io_hints = pool_io_hints, 3982 }; 3983 3984 /*---------------------------------------------------------------- 3985 * Thin target methods 3986 *--------------------------------------------------------------*/ 3987 static void thin_get(struct thin_c *tc) 3988 { 3989 atomic_inc(&tc->refcount); 3990 } 3991 3992 static void thin_put(struct thin_c *tc) 3993 { 3994 if (atomic_dec_and_test(&tc->refcount)) 3995 complete(&tc->can_destroy); 3996 } 3997 3998 static void thin_dtr(struct dm_target *ti) 3999 { 4000 struct thin_c *tc = ti->private; 4001 unsigned long flags; 4002 4003 spin_lock_irqsave(&tc->pool->lock, flags); 4004 list_del_rcu(&tc->list); 4005 spin_unlock_irqrestore(&tc->pool->lock, flags); 4006 synchronize_rcu(); 4007 4008 thin_put(tc); 4009 wait_for_completion(&tc->can_destroy); 4010 4011 mutex_lock(&dm_thin_pool_table.mutex); 4012 4013 __pool_dec(tc->pool); 4014 dm_pool_close_thin_device(tc->td); 4015 dm_put_device(ti, tc->pool_dev); 4016 if (tc->origin_dev) 4017 dm_put_device(ti, tc->origin_dev); 4018 kfree(tc); 4019 4020 mutex_unlock(&dm_thin_pool_table.mutex); 4021 } 4022 4023 /* 4024 * Thin target parameters: 4025 * 4026 * <pool_dev> <dev_id> [origin_dev] 4027 * 4028 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4029 * dev_id: the internal device identifier 4030 * origin_dev: a device external to the pool that should act as the origin 4031 * 4032 * If the pool device has discards disabled, they get disabled for the thin 4033 * device as well. 4034 */ 4035 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4036 { 4037 int r; 4038 struct thin_c *tc; 4039 struct dm_dev *pool_dev, *origin_dev; 4040 struct mapped_device *pool_md; 4041 unsigned long flags; 4042 4043 mutex_lock(&dm_thin_pool_table.mutex); 4044 4045 if (argc != 2 && argc != 3) { 4046 ti->error = "Invalid argument count"; 4047 r = -EINVAL; 4048 goto out_unlock; 4049 } 4050 4051 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4052 if (!tc) { 4053 ti->error = "Out of memory"; 4054 r = -ENOMEM; 4055 goto out_unlock; 4056 } 4057 tc->thin_md = dm_table_get_md(ti->table); 4058 spin_lock_init(&tc->lock); 4059 INIT_LIST_HEAD(&tc->deferred_cells); 4060 bio_list_init(&tc->deferred_bio_list); 4061 bio_list_init(&tc->retry_on_resume_list); 4062 tc->sort_bio_list = RB_ROOT; 4063 4064 if (argc == 3) { 4065 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4066 if (r) { 4067 ti->error = "Error opening origin device"; 4068 goto bad_origin_dev; 4069 } 4070 tc->origin_dev = origin_dev; 4071 } 4072 4073 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4074 if (r) { 4075 ti->error = "Error opening pool device"; 4076 goto bad_pool_dev; 4077 } 4078 tc->pool_dev = pool_dev; 4079 4080 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4081 ti->error = "Invalid device id"; 4082 r = -EINVAL; 4083 goto bad_common; 4084 } 4085 4086 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4087 if (!pool_md) { 4088 ti->error = "Couldn't get pool mapped device"; 4089 r = -EINVAL; 4090 goto bad_common; 4091 } 4092 4093 tc->pool = __pool_table_lookup(pool_md); 4094 if (!tc->pool) { 4095 ti->error = "Couldn't find pool object"; 4096 r = -EINVAL; 4097 goto bad_pool_lookup; 4098 } 4099 __pool_inc(tc->pool); 4100 4101 if (get_pool_mode(tc->pool) == PM_FAIL) { 4102 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4103 r = -EINVAL; 4104 goto bad_pool; 4105 } 4106 4107 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4108 if (r) { 4109 ti->error = "Couldn't open thin internal device"; 4110 goto bad_pool; 4111 } 4112 4113 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4114 if (r) 4115 goto bad; 4116 4117 ti->num_flush_bios = 1; 4118 ti->flush_supported = true; 4119 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4120 4121 /* In case the pool supports discards, pass them on. */ 4122 ti->discard_zeroes_data_unsupported = true; 4123 if (tc->pool->pf.discard_enabled) { 4124 ti->discards_supported = true; 4125 ti->num_discard_bios = 1; 4126 ti->split_discard_bios = false; 4127 } 4128 4129 mutex_unlock(&dm_thin_pool_table.mutex); 4130 4131 spin_lock_irqsave(&tc->pool->lock, flags); 4132 if (tc->pool->suspended) { 4133 spin_unlock_irqrestore(&tc->pool->lock, flags); 4134 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4135 ti->error = "Unable to activate thin device while pool is suspended"; 4136 r = -EINVAL; 4137 goto bad; 4138 } 4139 atomic_set(&tc->refcount, 1); 4140 init_completion(&tc->can_destroy); 4141 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4142 spin_unlock_irqrestore(&tc->pool->lock, flags); 4143 /* 4144 * This synchronize_rcu() call is needed here otherwise we risk a 4145 * wake_worker() call finding no bios to process (because the newly 4146 * added tc isn't yet visible). So this reduces latency since we 4147 * aren't then dependent on the periodic commit to wake_worker(). 4148 */ 4149 synchronize_rcu(); 4150 4151 dm_put(pool_md); 4152 4153 return 0; 4154 4155 bad: 4156 dm_pool_close_thin_device(tc->td); 4157 bad_pool: 4158 __pool_dec(tc->pool); 4159 bad_pool_lookup: 4160 dm_put(pool_md); 4161 bad_common: 4162 dm_put_device(ti, tc->pool_dev); 4163 bad_pool_dev: 4164 if (tc->origin_dev) 4165 dm_put_device(ti, tc->origin_dev); 4166 bad_origin_dev: 4167 kfree(tc); 4168 out_unlock: 4169 mutex_unlock(&dm_thin_pool_table.mutex); 4170 4171 return r; 4172 } 4173 4174 static int thin_map(struct dm_target *ti, struct bio *bio) 4175 { 4176 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4177 4178 return thin_bio_map(ti, bio); 4179 } 4180 4181 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 4182 { 4183 unsigned long flags; 4184 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4185 struct list_head work; 4186 struct dm_thin_new_mapping *m, *tmp; 4187 struct pool *pool = h->tc->pool; 4188 4189 if (h->shared_read_entry) { 4190 INIT_LIST_HEAD(&work); 4191 dm_deferred_entry_dec(h->shared_read_entry, &work); 4192 4193 spin_lock_irqsave(&pool->lock, flags); 4194 list_for_each_entry_safe(m, tmp, &work, list) { 4195 list_del(&m->list); 4196 __complete_mapping_preparation(m); 4197 } 4198 spin_unlock_irqrestore(&pool->lock, flags); 4199 } 4200 4201 if (h->all_io_entry) { 4202 INIT_LIST_HEAD(&work); 4203 dm_deferred_entry_dec(h->all_io_entry, &work); 4204 if (!list_empty(&work)) { 4205 spin_lock_irqsave(&pool->lock, flags); 4206 list_for_each_entry_safe(m, tmp, &work, list) 4207 list_add_tail(&m->list, &pool->prepared_discards); 4208 spin_unlock_irqrestore(&pool->lock, flags); 4209 wake_worker(pool); 4210 } 4211 } 4212 4213 if (h->cell) 4214 cell_defer_no_holder(h->tc, h->cell); 4215 4216 return 0; 4217 } 4218 4219 static void thin_presuspend(struct dm_target *ti) 4220 { 4221 struct thin_c *tc = ti->private; 4222 4223 if (dm_noflush_suspending(ti)) 4224 noflush_work(tc, do_noflush_start); 4225 } 4226 4227 static void thin_postsuspend(struct dm_target *ti) 4228 { 4229 struct thin_c *tc = ti->private; 4230 4231 /* 4232 * The dm_noflush_suspending flag has been cleared by now, so 4233 * unfortunately we must always run this. 4234 */ 4235 noflush_work(tc, do_noflush_stop); 4236 } 4237 4238 static int thin_preresume(struct dm_target *ti) 4239 { 4240 struct thin_c *tc = ti->private; 4241 4242 if (tc->origin_dev) 4243 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4244 4245 return 0; 4246 } 4247 4248 /* 4249 * <nr mapped sectors> <highest mapped sector> 4250 */ 4251 static void thin_status(struct dm_target *ti, status_type_t type, 4252 unsigned status_flags, char *result, unsigned maxlen) 4253 { 4254 int r; 4255 ssize_t sz = 0; 4256 dm_block_t mapped, highest; 4257 char buf[BDEVNAME_SIZE]; 4258 struct thin_c *tc = ti->private; 4259 4260 if (get_pool_mode(tc->pool) == PM_FAIL) { 4261 DMEMIT("Fail"); 4262 return; 4263 } 4264 4265 if (!tc->td) 4266 DMEMIT("-"); 4267 else { 4268 switch (type) { 4269 case STATUSTYPE_INFO: 4270 r = dm_thin_get_mapped_count(tc->td, &mapped); 4271 if (r) { 4272 DMERR("dm_thin_get_mapped_count returned %d", r); 4273 goto err; 4274 } 4275 4276 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4277 if (r < 0) { 4278 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4279 goto err; 4280 } 4281 4282 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4283 if (r) 4284 DMEMIT("%llu", ((highest + 1) * 4285 tc->pool->sectors_per_block) - 1); 4286 else 4287 DMEMIT("-"); 4288 break; 4289 4290 case STATUSTYPE_TABLE: 4291 DMEMIT("%s %lu", 4292 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4293 (unsigned long) tc->dev_id); 4294 if (tc->origin_dev) 4295 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4296 break; 4297 } 4298 } 4299 4300 return; 4301 4302 err: 4303 DMEMIT("Error"); 4304 } 4305 4306 static int thin_iterate_devices(struct dm_target *ti, 4307 iterate_devices_callout_fn fn, void *data) 4308 { 4309 sector_t blocks; 4310 struct thin_c *tc = ti->private; 4311 struct pool *pool = tc->pool; 4312 4313 /* 4314 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4315 * we follow a more convoluted path through to the pool's target. 4316 */ 4317 if (!pool->ti) 4318 return 0; /* nothing is bound */ 4319 4320 blocks = pool->ti->len; 4321 (void) sector_div(blocks, pool->sectors_per_block); 4322 if (blocks) 4323 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4324 4325 return 0; 4326 } 4327 4328 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4329 { 4330 struct thin_c *tc = ti->private; 4331 struct pool *pool = tc->pool; 4332 4333 if (!pool->pf.discard_enabled) 4334 return; 4335 4336 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4337 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4338 } 4339 4340 static struct target_type thin_target = { 4341 .name = "thin", 4342 .version = {1, 19, 0}, 4343 .module = THIS_MODULE, 4344 .ctr = thin_ctr, 4345 .dtr = thin_dtr, 4346 .map = thin_map, 4347 .end_io = thin_endio, 4348 .preresume = thin_preresume, 4349 .presuspend = thin_presuspend, 4350 .postsuspend = thin_postsuspend, 4351 .status = thin_status, 4352 .iterate_devices = thin_iterate_devices, 4353 .io_hints = thin_io_hints, 4354 }; 4355 4356 /*----------------------------------------------------------------*/ 4357 4358 static int __init dm_thin_init(void) 4359 { 4360 int r; 4361 4362 pool_table_init(); 4363 4364 r = dm_register_target(&thin_target); 4365 if (r) 4366 return r; 4367 4368 r = dm_register_target(&pool_target); 4369 if (r) 4370 goto bad_pool_target; 4371 4372 r = -ENOMEM; 4373 4374 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4375 if (!_new_mapping_cache) 4376 goto bad_new_mapping_cache; 4377 4378 return 0; 4379 4380 bad_new_mapping_cache: 4381 dm_unregister_target(&pool_target); 4382 bad_pool_target: 4383 dm_unregister_target(&thin_target); 4384 4385 return r; 4386 } 4387 4388 static void dm_thin_exit(void) 4389 { 4390 dm_unregister_target(&thin_target); 4391 dm_unregister_target(&pool_target); 4392 4393 kmem_cache_destroy(_new_mapping_cache); 4394 } 4395 4396 module_init(dm_thin_init); 4397 module_exit(dm_thin_exit); 4398 4399 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4400 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4401 4402 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4403 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4404 MODULE_LICENSE("GPL"); 4405