1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison-v1.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 PM_READ_ONLY, /* metadata may not be changed */ 204 PM_FAIL, /* all I/O fails */ 205 }; 206 207 struct pool_features { 208 enum pool_mode mode; 209 210 bool zero_new_blocks:1; 211 bool discard_enabled:1; 212 bool discard_passdown:1; 213 bool error_if_no_space:1; 214 }; 215 216 struct thin_c; 217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 220 221 #define CELL_SORT_ARRAY_SIZE 8192 222 223 struct pool { 224 struct list_head list; 225 struct dm_target *ti; /* Only set if a pool target is bound */ 226 227 struct mapped_device *pool_md; 228 struct block_device *md_dev; 229 struct dm_pool_metadata *pmd; 230 231 dm_block_t low_water_blocks; 232 uint32_t sectors_per_block; 233 int sectors_per_block_shift; 234 235 struct pool_features pf; 236 bool low_water_triggered:1; /* A dm event has been sent */ 237 bool suspended:1; 238 bool out_of_data_space:1; 239 240 struct dm_bio_prison *prison; 241 struct dm_kcopyd_client *copier; 242 243 struct workqueue_struct *wq; 244 struct throttle throttle; 245 struct work_struct worker; 246 struct delayed_work waker; 247 struct delayed_work no_space_timeout; 248 249 unsigned long last_commit_jiffies; 250 unsigned ref_count; 251 252 spinlock_t lock; 253 struct bio_list deferred_flush_bios; 254 struct list_head prepared_mappings; 255 struct list_head prepared_discards; 256 struct list_head prepared_discards_pt2; 257 struct list_head active_thins; 258 259 struct dm_deferred_set *shared_read_ds; 260 struct dm_deferred_set *all_io_ds; 261 262 struct dm_thin_new_mapping *next_mapping; 263 mempool_t *mapping_pool; 264 265 process_bio_fn process_bio; 266 process_bio_fn process_discard; 267 268 process_cell_fn process_cell; 269 process_cell_fn process_discard_cell; 270 271 process_mapping_fn process_prepared_mapping; 272 process_mapping_fn process_prepared_discard; 273 process_mapping_fn process_prepared_discard_pt2; 274 275 struct dm_bio_prison_cell **cell_sort_array; 276 }; 277 278 static enum pool_mode get_pool_mode(struct pool *pool); 279 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 280 281 /* 282 * Target context for a pool. 283 */ 284 struct pool_c { 285 struct dm_target *ti; 286 struct pool *pool; 287 struct dm_dev *data_dev; 288 struct dm_dev *metadata_dev; 289 struct dm_target_callbacks callbacks; 290 291 dm_block_t low_water_blocks; 292 struct pool_features requested_pf; /* Features requested during table load */ 293 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 294 }; 295 296 /* 297 * Target context for a thin. 298 */ 299 struct thin_c { 300 struct list_head list; 301 struct dm_dev *pool_dev; 302 struct dm_dev *origin_dev; 303 sector_t origin_size; 304 dm_thin_id dev_id; 305 306 struct pool *pool; 307 struct dm_thin_device *td; 308 struct mapped_device *thin_md; 309 310 bool requeue_mode:1; 311 spinlock_t lock; 312 struct list_head deferred_cells; 313 struct bio_list deferred_bio_list; 314 struct bio_list retry_on_resume_list; 315 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 316 317 /* 318 * Ensures the thin is not destroyed until the worker has finished 319 * iterating the active_thins list. 320 */ 321 atomic_t refcount; 322 struct completion can_destroy; 323 }; 324 325 /*----------------------------------------------------------------*/ 326 327 static bool block_size_is_power_of_two(struct pool *pool) 328 { 329 return pool->sectors_per_block_shift >= 0; 330 } 331 332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 333 { 334 return block_size_is_power_of_two(pool) ? 335 (b << pool->sectors_per_block_shift) : 336 (b * pool->sectors_per_block); 337 } 338 339 /*----------------------------------------------------------------*/ 340 341 struct discard_op { 342 struct thin_c *tc; 343 struct blk_plug plug; 344 struct bio *parent_bio; 345 struct bio *bio; 346 }; 347 348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 349 { 350 BUG_ON(!parent); 351 352 op->tc = tc; 353 blk_start_plug(&op->plug); 354 op->parent_bio = parent; 355 op->bio = NULL; 356 } 357 358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 359 { 360 struct thin_c *tc = op->tc; 361 sector_t s = block_to_sectors(tc->pool, data_b); 362 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 363 364 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 365 GFP_NOWAIT, 0, &op->bio); 366 } 367 368 static void end_discard(struct discard_op *op, int r) 369 { 370 if (op->bio) { 371 /* 372 * Even if one of the calls to issue_discard failed, we 373 * need to wait for the chain to complete. 374 */ 375 bio_chain(op->bio, op->parent_bio); 376 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 377 submit_bio(op->bio); 378 } 379 380 blk_finish_plug(&op->plug); 381 382 /* 383 * Even if r is set, there could be sub discards in flight that we 384 * need to wait for. 385 */ 386 if (r && !op->parent_bio->bi_status) 387 op->parent_bio->bi_status = errno_to_blk_status(r); 388 bio_endio(op->parent_bio); 389 } 390 391 /*----------------------------------------------------------------*/ 392 393 /* 394 * wake_worker() is used when new work is queued and when pool_resume is 395 * ready to continue deferred IO processing. 396 */ 397 static void wake_worker(struct pool *pool) 398 { 399 queue_work(pool->wq, &pool->worker); 400 } 401 402 /*----------------------------------------------------------------*/ 403 404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 405 struct dm_bio_prison_cell **cell_result) 406 { 407 int r; 408 struct dm_bio_prison_cell *cell_prealloc; 409 410 /* 411 * Allocate a cell from the prison's mempool. 412 * This might block but it can't fail. 413 */ 414 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 415 416 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 417 if (r) 418 /* 419 * We reused an old cell; we can get rid of 420 * the new one. 421 */ 422 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 423 424 return r; 425 } 426 427 static void cell_release(struct pool *pool, 428 struct dm_bio_prison_cell *cell, 429 struct bio_list *bios) 430 { 431 dm_cell_release(pool->prison, cell, bios); 432 dm_bio_prison_free_cell(pool->prison, cell); 433 } 434 435 static void cell_visit_release(struct pool *pool, 436 void (*fn)(void *, struct dm_bio_prison_cell *), 437 void *context, 438 struct dm_bio_prison_cell *cell) 439 { 440 dm_cell_visit_release(pool->prison, fn, context, cell); 441 dm_bio_prison_free_cell(pool->prison, cell); 442 } 443 444 static void cell_release_no_holder(struct pool *pool, 445 struct dm_bio_prison_cell *cell, 446 struct bio_list *bios) 447 { 448 dm_cell_release_no_holder(pool->prison, cell, bios); 449 dm_bio_prison_free_cell(pool->prison, cell); 450 } 451 452 static void cell_error_with_code(struct pool *pool, 453 struct dm_bio_prison_cell *cell, blk_status_t error_code) 454 { 455 dm_cell_error(pool->prison, cell, error_code); 456 dm_bio_prison_free_cell(pool->prison, cell); 457 } 458 459 static blk_status_t get_pool_io_error_code(struct pool *pool) 460 { 461 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 462 } 463 464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 465 { 466 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 467 } 468 469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 470 { 471 cell_error_with_code(pool, cell, 0); 472 } 473 474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 475 { 476 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 477 } 478 479 /*----------------------------------------------------------------*/ 480 481 /* 482 * A global list of pools that uses a struct mapped_device as a key. 483 */ 484 static struct dm_thin_pool_table { 485 struct mutex mutex; 486 struct list_head pools; 487 } dm_thin_pool_table; 488 489 static void pool_table_init(void) 490 { 491 mutex_init(&dm_thin_pool_table.mutex); 492 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 493 } 494 495 static void pool_table_exit(void) 496 { 497 mutex_destroy(&dm_thin_pool_table.mutex); 498 } 499 500 static void __pool_table_insert(struct pool *pool) 501 { 502 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 503 list_add(&pool->list, &dm_thin_pool_table.pools); 504 } 505 506 static void __pool_table_remove(struct pool *pool) 507 { 508 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 509 list_del(&pool->list); 510 } 511 512 static struct pool *__pool_table_lookup(struct mapped_device *md) 513 { 514 struct pool *pool = NULL, *tmp; 515 516 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 517 518 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 519 if (tmp->pool_md == md) { 520 pool = tmp; 521 break; 522 } 523 } 524 525 return pool; 526 } 527 528 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 529 { 530 struct pool *pool = NULL, *tmp; 531 532 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 533 534 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 535 if (tmp->md_dev == md_dev) { 536 pool = tmp; 537 break; 538 } 539 } 540 541 return pool; 542 } 543 544 /*----------------------------------------------------------------*/ 545 546 struct dm_thin_endio_hook { 547 struct thin_c *tc; 548 struct dm_deferred_entry *shared_read_entry; 549 struct dm_deferred_entry *all_io_entry; 550 struct dm_thin_new_mapping *overwrite_mapping; 551 struct rb_node rb_node; 552 struct dm_bio_prison_cell *cell; 553 }; 554 555 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 556 { 557 bio_list_merge(bios, master); 558 bio_list_init(master); 559 } 560 561 static void error_bio_list(struct bio_list *bios, blk_status_t error) 562 { 563 struct bio *bio; 564 565 while ((bio = bio_list_pop(bios))) { 566 bio->bi_status = error; 567 bio_endio(bio); 568 } 569 } 570 571 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 572 blk_status_t error) 573 { 574 struct bio_list bios; 575 unsigned long flags; 576 577 bio_list_init(&bios); 578 579 spin_lock_irqsave(&tc->lock, flags); 580 __merge_bio_list(&bios, master); 581 spin_unlock_irqrestore(&tc->lock, flags); 582 583 error_bio_list(&bios, error); 584 } 585 586 static void requeue_deferred_cells(struct thin_c *tc) 587 { 588 struct pool *pool = tc->pool; 589 unsigned long flags; 590 struct list_head cells; 591 struct dm_bio_prison_cell *cell, *tmp; 592 593 INIT_LIST_HEAD(&cells); 594 595 spin_lock_irqsave(&tc->lock, flags); 596 list_splice_init(&tc->deferred_cells, &cells); 597 spin_unlock_irqrestore(&tc->lock, flags); 598 599 list_for_each_entry_safe(cell, tmp, &cells, user_list) 600 cell_requeue(pool, cell); 601 } 602 603 static void requeue_io(struct thin_c *tc) 604 { 605 struct bio_list bios; 606 unsigned long flags; 607 608 bio_list_init(&bios); 609 610 spin_lock_irqsave(&tc->lock, flags); 611 __merge_bio_list(&bios, &tc->deferred_bio_list); 612 __merge_bio_list(&bios, &tc->retry_on_resume_list); 613 spin_unlock_irqrestore(&tc->lock, flags); 614 615 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 616 requeue_deferred_cells(tc); 617 } 618 619 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 620 { 621 struct thin_c *tc; 622 623 rcu_read_lock(); 624 list_for_each_entry_rcu(tc, &pool->active_thins, list) 625 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 626 rcu_read_unlock(); 627 } 628 629 static void error_retry_list(struct pool *pool) 630 { 631 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 632 } 633 634 /* 635 * This section of code contains the logic for processing a thin device's IO. 636 * Much of the code depends on pool object resources (lists, workqueues, etc) 637 * but most is exclusively called from the thin target rather than the thin-pool 638 * target. 639 */ 640 641 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 642 { 643 struct pool *pool = tc->pool; 644 sector_t block_nr = bio->bi_iter.bi_sector; 645 646 if (block_size_is_power_of_two(pool)) 647 block_nr >>= pool->sectors_per_block_shift; 648 else 649 (void) sector_div(block_nr, pool->sectors_per_block); 650 651 return block_nr; 652 } 653 654 /* 655 * Returns the _complete_ blocks that this bio covers. 656 */ 657 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 658 dm_block_t *begin, dm_block_t *end) 659 { 660 struct pool *pool = tc->pool; 661 sector_t b = bio->bi_iter.bi_sector; 662 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 663 664 b += pool->sectors_per_block - 1ull; /* so we round up */ 665 666 if (block_size_is_power_of_two(pool)) { 667 b >>= pool->sectors_per_block_shift; 668 e >>= pool->sectors_per_block_shift; 669 } else { 670 (void) sector_div(b, pool->sectors_per_block); 671 (void) sector_div(e, pool->sectors_per_block); 672 } 673 674 if (e < b) 675 /* Can happen if the bio is within a single block. */ 676 e = b; 677 678 *begin = b; 679 *end = e; 680 } 681 682 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 683 { 684 struct pool *pool = tc->pool; 685 sector_t bi_sector = bio->bi_iter.bi_sector; 686 687 bio_set_dev(bio, tc->pool_dev->bdev); 688 if (block_size_is_power_of_two(pool)) 689 bio->bi_iter.bi_sector = 690 (block << pool->sectors_per_block_shift) | 691 (bi_sector & (pool->sectors_per_block - 1)); 692 else 693 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 694 sector_div(bi_sector, pool->sectors_per_block); 695 } 696 697 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 698 { 699 bio_set_dev(bio, tc->origin_dev->bdev); 700 } 701 702 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 703 { 704 return op_is_flush(bio->bi_opf) && 705 dm_thin_changed_this_transaction(tc->td); 706 } 707 708 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 709 { 710 struct dm_thin_endio_hook *h; 711 712 if (bio_op(bio) == REQ_OP_DISCARD) 713 return; 714 715 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 716 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 717 } 718 719 static void issue(struct thin_c *tc, struct bio *bio) 720 { 721 struct pool *pool = tc->pool; 722 unsigned long flags; 723 724 if (!bio_triggers_commit(tc, bio)) { 725 generic_make_request(bio); 726 return; 727 } 728 729 /* 730 * Complete bio with an error if earlier I/O caused changes to 731 * the metadata that can't be committed e.g, due to I/O errors 732 * on the metadata device. 733 */ 734 if (dm_thin_aborted_changes(tc->td)) { 735 bio_io_error(bio); 736 return; 737 } 738 739 /* 740 * Batch together any bios that trigger commits and then issue a 741 * single commit for them in process_deferred_bios(). 742 */ 743 spin_lock_irqsave(&pool->lock, flags); 744 bio_list_add(&pool->deferred_flush_bios, bio); 745 spin_unlock_irqrestore(&pool->lock, flags); 746 } 747 748 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 749 { 750 remap_to_origin(tc, bio); 751 issue(tc, bio); 752 } 753 754 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 755 dm_block_t block) 756 { 757 remap(tc, bio, block); 758 issue(tc, bio); 759 } 760 761 /*----------------------------------------------------------------*/ 762 763 /* 764 * Bio endio functions. 765 */ 766 struct dm_thin_new_mapping { 767 struct list_head list; 768 769 bool pass_discard:1; 770 bool maybe_shared:1; 771 772 /* 773 * Track quiescing, copying and zeroing preparation actions. When this 774 * counter hits zero the block is prepared and can be inserted into the 775 * btree. 776 */ 777 atomic_t prepare_actions; 778 779 blk_status_t status; 780 struct thin_c *tc; 781 dm_block_t virt_begin, virt_end; 782 dm_block_t data_block; 783 struct dm_bio_prison_cell *cell; 784 785 /* 786 * If the bio covers the whole area of a block then we can avoid 787 * zeroing or copying. Instead this bio is hooked. The bio will 788 * still be in the cell, so care has to be taken to avoid issuing 789 * the bio twice. 790 */ 791 struct bio *bio; 792 bio_end_io_t *saved_bi_end_io; 793 }; 794 795 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 796 { 797 struct pool *pool = m->tc->pool; 798 799 if (atomic_dec_and_test(&m->prepare_actions)) { 800 list_add_tail(&m->list, &pool->prepared_mappings); 801 wake_worker(pool); 802 } 803 } 804 805 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 806 { 807 unsigned long flags; 808 struct pool *pool = m->tc->pool; 809 810 spin_lock_irqsave(&pool->lock, flags); 811 __complete_mapping_preparation(m); 812 spin_unlock_irqrestore(&pool->lock, flags); 813 } 814 815 static void copy_complete(int read_err, unsigned long write_err, void *context) 816 { 817 struct dm_thin_new_mapping *m = context; 818 819 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 820 complete_mapping_preparation(m); 821 } 822 823 static void overwrite_endio(struct bio *bio) 824 { 825 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 826 struct dm_thin_new_mapping *m = h->overwrite_mapping; 827 828 bio->bi_end_io = m->saved_bi_end_io; 829 830 m->status = bio->bi_status; 831 complete_mapping_preparation(m); 832 } 833 834 /*----------------------------------------------------------------*/ 835 836 /* 837 * Workqueue. 838 */ 839 840 /* 841 * Prepared mapping jobs. 842 */ 843 844 /* 845 * This sends the bios in the cell, except the original holder, back 846 * to the deferred_bios list. 847 */ 848 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 849 { 850 struct pool *pool = tc->pool; 851 unsigned long flags; 852 853 spin_lock_irqsave(&tc->lock, flags); 854 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 855 spin_unlock_irqrestore(&tc->lock, flags); 856 857 wake_worker(pool); 858 } 859 860 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 861 862 struct remap_info { 863 struct thin_c *tc; 864 struct bio_list defer_bios; 865 struct bio_list issue_bios; 866 }; 867 868 static void __inc_remap_and_issue_cell(void *context, 869 struct dm_bio_prison_cell *cell) 870 { 871 struct remap_info *info = context; 872 struct bio *bio; 873 874 while ((bio = bio_list_pop(&cell->bios))) { 875 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 876 bio_list_add(&info->defer_bios, bio); 877 else { 878 inc_all_io_entry(info->tc->pool, bio); 879 880 /* 881 * We can't issue the bios with the bio prison lock 882 * held, so we add them to a list to issue on 883 * return from this function. 884 */ 885 bio_list_add(&info->issue_bios, bio); 886 } 887 } 888 } 889 890 static void inc_remap_and_issue_cell(struct thin_c *tc, 891 struct dm_bio_prison_cell *cell, 892 dm_block_t block) 893 { 894 struct bio *bio; 895 struct remap_info info; 896 897 info.tc = tc; 898 bio_list_init(&info.defer_bios); 899 bio_list_init(&info.issue_bios); 900 901 /* 902 * We have to be careful to inc any bios we're about to issue 903 * before the cell is released, and avoid a race with new bios 904 * being added to the cell. 905 */ 906 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 907 &info, cell); 908 909 while ((bio = bio_list_pop(&info.defer_bios))) 910 thin_defer_bio(tc, bio); 911 912 while ((bio = bio_list_pop(&info.issue_bios))) 913 remap_and_issue(info.tc, bio, block); 914 } 915 916 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 917 { 918 cell_error(m->tc->pool, m->cell); 919 list_del(&m->list); 920 mempool_free(m, m->tc->pool->mapping_pool); 921 } 922 923 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 924 { 925 struct thin_c *tc = m->tc; 926 struct pool *pool = tc->pool; 927 struct bio *bio = m->bio; 928 int r; 929 930 if (m->status) { 931 cell_error(pool, m->cell); 932 goto out; 933 } 934 935 /* 936 * Commit the prepared block into the mapping btree. 937 * Any I/O for this block arriving after this point will get 938 * remapped to it directly. 939 */ 940 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 941 if (r) { 942 metadata_operation_failed(pool, "dm_thin_insert_block", r); 943 cell_error(pool, m->cell); 944 goto out; 945 } 946 947 /* 948 * Release any bios held while the block was being provisioned. 949 * If we are processing a write bio that completely covers the block, 950 * we already processed it so can ignore it now when processing 951 * the bios in the cell. 952 */ 953 if (bio) { 954 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 955 bio_endio(bio); 956 } else { 957 inc_all_io_entry(tc->pool, m->cell->holder); 958 remap_and_issue(tc, m->cell->holder, m->data_block); 959 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 960 } 961 962 out: 963 list_del(&m->list); 964 mempool_free(m, pool->mapping_pool); 965 } 966 967 /*----------------------------------------------------------------*/ 968 969 static void free_discard_mapping(struct dm_thin_new_mapping *m) 970 { 971 struct thin_c *tc = m->tc; 972 if (m->cell) 973 cell_defer_no_holder(tc, m->cell); 974 mempool_free(m, tc->pool->mapping_pool); 975 } 976 977 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 978 { 979 bio_io_error(m->bio); 980 free_discard_mapping(m); 981 } 982 983 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 984 { 985 bio_endio(m->bio); 986 free_discard_mapping(m); 987 } 988 989 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 990 { 991 int r; 992 struct thin_c *tc = m->tc; 993 994 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 995 if (r) { 996 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 997 bio_io_error(m->bio); 998 } else 999 bio_endio(m->bio); 1000 1001 cell_defer_no_holder(tc, m->cell); 1002 mempool_free(m, tc->pool->mapping_pool); 1003 } 1004 1005 /*----------------------------------------------------------------*/ 1006 1007 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1008 struct bio *discard_parent) 1009 { 1010 /* 1011 * We've already unmapped this range of blocks, but before we 1012 * passdown we have to check that these blocks are now unused. 1013 */ 1014 int r = 0; 1015 bool used = true; 1016 struct thin_c *tc = m->tc; 1017 struct pool *pool = tc->pool; 1018 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1019 struct discard_op op; 1020 1021 begin_discard(&op, tc, discard_parent); 1022 while (b != end) { 1023 /* find start of unmapped run */ 1024 for (; b < end; b++) { 1025 r = dm_pool_block_is_used(pool->pmd, b, &used); 1026 if (r) 1027 goto out; 1028 1029 if (!used) 1030 break; 1031 } 1032 1033 if (b == end) 1034 break; 1035 1036 /* find end of run */ 1037 for (e = b + 1; e != end; e++) { 1038 r = dm_pool_block_is_used(pool->pmd, e, &used); 1039 if (r) 1040 goto out; 1041 1042 if (used) 1043 break; 1044 } 1045 1046 r = issue_discard(&op, b, e); 1047 if (r) 1048 goto out; 1049 1050 b = e; 1051 } 1052 out: 1053 end_discard(&op, r); 1054 } 1055 1056 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1057 { 1058 unsigned long flags; 1059 struct pool *pool = m->tc->pool; 1060 1061 spin_lock_irqsave(&pool->lock, flags); 1062 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1063 spin_unlock_irqrestore(&pool->lock, flags); 1064 wake_worker(pool); 1065 } 1066 1067 static void passdown_endio(struct bio *bio) 1068 { 1069 /* 1070 * It doesn't matter if the passdown discard failed, we still want 1071 * to unmap (we ignore err). 1072 */ 1073 queue_passdown_pt2(bio->bi_private); 1074 bio_put(bio); 1075 } 1076 1077 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1078 { 1079 int r; 1080 struct thin_c *tc = m->tc; 1081 struct pool *pool = tc->pool; 1082 struct bio *discard_parent; 1083 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1084 1085 /* 1086 * Only this thread allocates blocks, so we can be sure that the 1087 * newly unmapped blocks will not be allocated before the end of 1088 * the function. 1089 */ 1090 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1091 if (r) { 1092 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1093 bio_io_error(m->bio); 1094 cell_defer_no_holder(tc, m->cell); 1095 mempool_free(m, pool->mapping_pool); 1096 return; 1097 } 1098 1099 /* 1100 * Increment the unmapped blocks. This prevents a race between the 1101 * passdown io and reallocation of freed blocks. 1102 */ 1103 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1104 if (r) { 1105 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1106 bio_io_error(m->bio); 1107 cell_defer_no_holder(tc, m->cell); 1108 mempool_free(m, pool->mapping_pool); 1109 return; 1110 } 1111 1112 discard_parent = bio_alloc(GFP_NOIO, 1); 1113 if (!discard_parent) { 1114 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1115 dm_device_name(tc->pool->pool_md)); 1116 queue_passdown_pt2(m); 1117 1118 } else { 1119 discard_parent->bi_end_io = passdown_endio; 1120 discard_parent->bi_private = m; 1121 1122 if (m->maybe_shared) 1123 passdown_double_checking_shared_status(m, discard_parent); 1124 else { 1125 struct discard_op op; 1126 1127 begin_discard(&op, tc, discard_parent); 1128 r = issue_discard(&op, m->data_block, data_end); 1129 end_discard(&op, r); 1130 } 1131 } 1132 } 1133 1134 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1135 { 1136 int r; 1137 struct thin_c *tc = m->tc; 1138 struct pool *pool = tc->pool; 1139 1140 /* 1141 * The passdown has completed, so now we can decrement all those 1142 * unmapped blocks. 1143 */ 1144 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1145 m->data_block + (m->virt_end - m->virt_begin)); 1146 if (r) { 1147 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1148 bio_io_error(m->bio); 1149 } else 1150 bio_endio(m->bio); 1151 1152 cell_defer_no_holder(tc, m->cell); 1153 mempool_free(m, pool->mapping_pool); 1154 } 1155 1156 static void process_prepared(struct pool *pool, struct list_head *head, 1157 process_mapping_fn *fn) 1158 { 1159 unsigned long flags; 1160 struct list_head maps; 1161 struct dm_thin_new_mapping *m, *tmp; 1162 1163 INIT_LIST_HEAD(&maps); 1164 spin_lock_irqsave(&pool->lock, flags); 1165 list_splice_init(head, &maps); 1166 spin_unlock_irqrestore(&pool->lock, flags); 1167 1168 list_for_each_entry_safe(m, tmp, &maps, list) 1169 (*fn)(m); 1170 } 1171 1172 /* 1173 * Deferred bio jobs. 1174 */ 1175 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1176 { 1177 return bio->bi_iter.bi_size == 1178 (pool->sectors_per_block << SECTOR_SHIFT); 1179 } 1180 1181 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1182 { 1183 return (bio_data_dir(bio) == WRITE) && 1184 io_overlaps_block(pool, bio); 1185 } 1186 1187 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1188 bio_end_io_t *fn) 1189 { 1190 *save = bio->bi_end_io; 1191 bio->bi_end_io = fn; 1192 } 1193 1194 static int ensure_next_mapping(struct pool *pool) 1195 { 1196 if (pool->next_mapping) 1197 return 0; 1198 1199 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 1200 1201 return pool->next_mapping ? 0 : -ENOMEM; 1202 } 1203 1204 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1205 { 1206 struct dm_thin_new_mapping *m = pool->next_mapping; 1207 1208 BUG_ON(!pool->next_mapping); 1209 1210 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1211 INIT_LIST_HEAD(&m->list); 1212 m->bio = NULL; 1213 1214 pool->next_mapping = NULL; 1215 1216 return m; 1217 } 1218 1219 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1220 sector_t begin, sector_t end) 1221 { 1222 int r; 1223 struct dm_io_region to; 1224 1225 to.bdev = tc->pool_dev->bdev; 1226 to.sector = begin; 1227 to.count = end - begin; 1228 1229 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1230 if (r < 0) { 1231 DMERR_LIMIT("dm_kcopyd_zero() failed"); 1232 copy_complete(1, 1, m); 1233 } 1234 } 1235 1236 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1237 dm_block_t data_begin, 1238 struct dm_thin_new_mapping *m) 1239 { 1240 struct pool *pool = tc->pool; 1241 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1242 1243 h->overwrite_mapping = m; 1244 m->bio = bio; 1245 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1246 inc_all_io_entry(pool, bio); 1247 remap_and_issue(tc, bio, data_begin); 1248 } 1249 1250 /* 1251 * A partial copy also needs to zero the uncopied region. 1252 */ 1253 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1254 struct dm_dev *origin, dm_block_t data_origin, 1255 dm_block_t data_dest, 1256 struct dm_bio_prison_cell *cell, struct bio *bio, 1257 sector_t len) 1258 { 1259 int r; 1260 struct pool *pool = tc->pool; 1261 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1262 1263 m->tc = tc; 1264 m->virt_begin = virt_block; 1265 m->virt_end = virt_block + 1u; 1266 m->data_block = data_dest; 1267 m->cell = cell; 1268 1269 /* 1270 * quiesce action + copy action + an extra reference held for the 1271 * duration of this function (we may need to inc later for a 1272 * partial zero). 1273 */ 1274 atomic_set(&m->prepare_actions, 3); 1275 1276 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1277 complete_mapping_preparation(m); /* already quiesced */ 1278 1279 /* 1280 * IO to pool_dev remaps to the pool target's data_dev. 1281 * 1282 * If the whole block of data is being overwritten, we can issue the 1283 * bio immediately. Otherwise we use kcopyd to clone the data first. 1284 */ 1285 if (io_overwrites_block(pool, bio)) 1286 remap_and_issue_overwrite(tc, bio, data_dest, m); 1287 else { 1288 struct dm_io_region from, to; 1289 1290 from.bdev = origin->bdev; 1291 from.sector = data_origin * pool->sectors_per_block; 1292 from.count = len; 1293 1294 to.bdev = tc->pool_dev->bdev; 1295 to.sector = data_dest * pool->sectors_per_block; 1296 to.count = len; 1297 1298 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1299 0, copy_complete, m); 1300 if (r < 0) { 1301 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1302 copy_complete(1, 1, m); 1303 1304 /* 1305 * We allow the zero to be issued, to simplify the 1306 * error path. Otherwise we'd need to start 1307 * worrying about decrementing the prepare_actions 1308 * counter. 1309 */ 1310 } 1311 1312 /* 1313 * Do we need to zero a tail region? 1314 */ 1315 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1316 atomic_inc(&m->prepare_actions); 1317 ll_zero(tc, m, 1318 data_dest * pool->sectors_per_block + len, 1319 (data_dest + 1) * pool->sectors_per_block); 1320 } 1321 } 1322 1323 complete_mapping_preparation(m); /* drop our ref */ 1324 } 1325 1326 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1327 dm_block_t data_origin, dm_block_t data_dest, 1328 struct dm_bio_prison_cell *cell, struct bio *bio) 1329 { 1330 schedule_copy(tc, virt_block, tc->pool_dev, 1331 data_origin, data_dest, cell, bio, 1332 tc->pool->sectors_per_block); 1333 } 1334 1335 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1336 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1337 struct bio *bio) 1338 { 1339 struct pool *pool = tc->pool; 1340 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1341 1342 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1343 m->tc = tc; 1344 m->virt_begin = virt_block; 1345 m->virt_end = virt_block + 1u; 1346 m->data_block = data_block; 1347 m->cell = cell; 1348 1349 /* 1350 * If the whole block of data is being overwritten or we are not 1351 * zeroing pre-existing data, we can issue the bio immediately. 1352 * Otherwise we use kcopyd to zero the data first. 1353 */ 1354 if (pool->pf.zero_new_blocks) { 1355 if (io_overwrites_block(pool, bio)) 1356 remap_and_issue_overwrite(tc, bio, data_block, m); 1357 else 1358 ll_zero(tc, m, data_block * pool->sectors_per_block, 1359 (data_block + 1) * pool->sectors_per_block); 1360 } else 1361 process_prepared_mapping(m); 1362 } 1363 1364 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1365 dm_block_t data_dest, 1366 struct dm_bio_prison_cell *cell, struct bio *bio) 1367 { 1368 struct pool *pool = tc->pool; 1369 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1370 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1371 1372 if (virt_block_end <= tc->origin_size) 1373 schedule_copy(tc, virt_block, tc->origin_dev, 1374 virt_block, data_dest, cell, bio, 1375 pool->sectors_per_block); 1376 1377 else if (virt_block_begin < tc->origin_size) 1378 schedule_copy(tc, virt_block, tc->origin_dev, 1379 virt_block, data_dest, cell, bio, 1380 tc->origin_size - virt_block_begin); 1381 1382 else 1383 schedule_zero(tc, virt_block, data_dest, cell, bio); 1384 } 1385 1386 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1387 1388 static void check_for_space(struct pool *pool) 1389 { 1390 int r; 1391 dm_block_t nr_free; 1392 1393 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1394 return; 1395 1396 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1397 if (r) 1398 return; 1399 1400 if (nr_free) 1401 set_pool_mode(pool, PM_WRITE); 1402 } 1403 1404 /* 1405 * A non-zero return indicates read_only or fail_io mode. 1406 * Many callers don't care about the return value. 1407 */ 1408 static int commit(struct pool *pool) 1409 { 1410 int r; 1411 1412 if (get_pool_mode(pool) >= PM_READ_ONLY) 1413 return -EINVAL; 1414 1415 r = dm_pool_commit_metadata(pool->pmd); 1416 if (r) 1417 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1418 else 1419 check_for_space(pool); 1420 1421 return r; 1422 } 1423 1424 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1425 { 1426 unsigned long flags; 1427 1428 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1429 DMWARN("%s: reached low water mark for data device: sending event.", 1430 dm_device_name(pool->pool_md)); 1431 spin_lock_irqsave(&pool->lock, flags); 1432 pool->low_water_triggered = true; 1433 spin_unlock_irqrestore(&pool->lock, flags); 1434 dm_table_event(pool->ti->table); 1435 } 1436 } 1437 1438 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1439 { 1440 int r; 1441 dm_block_t free_blocks; 1442 struct pool *pool = tc->pool; 1443 1444 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1445 return -EINVAL; 1446 1447 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1448 if (r) { 1449 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1450 return r; 1451 } 1452 1453 check_low_water_mark(pool, free_blocks); 1454 1455 if (!free_blocks) { 1456 /* 1457 * Try to commit to see if that will free up some 1458 * more space. 1459 */ 1460 r = commit(pool); 1461 if (r) 1462 return r; 1463 1464 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1465 if (r) { 1466 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1467 return r; 1468 } 1469 1470 if (!free_blocks) { 1471 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1472 return -ENOSPC; 1473 } 1474 } 1475 1476 r = dm_pool_alloc_data_block(pool->pmd, result); 1477 if (r) { 1478 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1479 return r; 1480 } 1481 1482 return 0; 1483 } 1484 1485 /* 1486 * If we have run out of space, queue bios until the device is 1487 * resumed, presumably after having been reloaded with more space. 1488 */ 1489 static void retry_on_resume(struct bio *bio) 1490 { 1491 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1492 struct thin_c *tc = h->tc; 1493 unsigned long flags; 1494 1495 spin_lock_irqsave(&tc->lock, flags); 1496 bio_list_add(&tc->retry_on_resume_list, bio); 1497 spin_unlock_irqrestore(&tc->lock, flags); 1498 } 1499 1500 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1501 { 1502 enum pool_mode m = get_pool_mode(pool); 1503 1504 switch (m) { 1505 case PM_WRITE: 1506 /* Shouldn't get here */ 1507 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1508 return BLK_STS_IOERR; 1509 1510 case PM_OUT_OF_DATA_SPACE: 1511 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1512 1513 case PM_READ_ONLY: 1514 case PM_FAIL: 1515 return BLK_STS_IOERR; 1516 default: 1517 /* Shouldn't get here */ 1518 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1519 return BLK_STS_IOERR; 1520 } 1521 } 1522 1523 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1524 { 1525 blk_status_t error = should_error_unserviceable_bio(pool); 1526 1527 if (error) { 1528 bio->bi_status = error; 1529 bio_endio(bio); 1530 } else 1531 retry_on_resume(bio); 1532 } 1533 1534 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1535 { 1536 struct bio *bio; 1537 struct bio_list bios; 1538 blk_status_t error; 1539 1540 error = should_error_unserviceable_bio(pool); 1541 if (error) { 1542 cell_error_with_code(pool, cell, error); 1543 return; 1544 } 1545 1546 bio_list_init(&bios); 1547 cell_release(pool, cell, &bios); 1548 1549 while ((bio = bio_list_pop(&bios))) 1550 retry_on_resume(bio); 1551 } 1552 1553 static void process_discard_cell_no_passdown(struct thin_c *tc, 1554 struct dm_bio_prison_cell *virt_cell) 1555 { 1556 struct pool *pool = tc->pool; 1557 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1558 1559 /* 1560 * We don't need to lock the data blocks, since there's no 1561 * passdown. We only lock data blocks for allocation and breaking sharing. 1562 */ 1563 m->tc = tc; 1564 m->virt_begin = virt_cell->key.block_begin; 1565 m->virt_end = virt_cell->key.block_end; 1566 m->cell = virt_cell; 1567 m->bio = virt_cell->holder; 1568 1569 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1570 pool->process_prepared_discard(m); 1571 } 1572 1573 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1574 struct bio *bio) 1575 { 1576 struct pool *pool = tc->pool; 1577 1578 int r; 1579 bool maybe_shared; 1580 struct dm_cell_key data_key; 1581 struct dm_bio_prison_cell *data_cell; 1582 struct dm_thin_new_mapping *m; 1583 dm_block_t virt_begin, virt_end, data_begin; 1584 1585 while (begin != end) { 1586 r = ensure_next_mapping(pool); 1587 if (r) 1588 /* we did our best */ 1589 return; 1590 1591 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1592 &data_begin, &maybe_shared); 1593 if (r) 1594 /* 1595 * Silently fail, letting any mappings we've 1596 * created complete. 1597 */ 1598 break; 1599 1600 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1601 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1602 /* contention, we'll give up with this range */ 1603 begin = virt_end; 1604 continue; 1605 } 1606 1607 /* 1608 * IO may still be going to the destination block. We must 1609 * quiesce before we can do the removal. 1610 */ 1611 m = get_next_mapping(pool); 1612 m->tc = tc; 1613 m->maybe_shared = maybe_shared; 1614 m->virt_begin = virt_begin; 1615 m->virt_end = virt_end; 1616 m->data_block = data_begin; 1617 m->cell = data_cell; 1618 m->bio = bio; 1619 1620 /* 1621 * The parent bio must not complete before sub discard bios are 1622 * chained to it (see end_discard's bio_chain)! 1623 * 1624 * This per-mapping bi_remaining increment is paired with 1625 * the implicit decrement that occurs via bio_endio() in 1626 * end_discard(). 1627 */ 1628 bio_inc_remaining(bio); 1629 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1630 pool->process_prepared_discard(m); 1631 1632 begin = virt_end; 1633 } 1634 } 1635 1636 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1637 { 1638 struct bio *bio = virt_cell->holder; 1639 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1640 1641 /* 1642 * The virt_cell will only get freed once the origin bio completes. 1643 * This means it will remain locked while all the individual 1644 * passdown bios are in flight. 1645 */ 1646 h->cell = virt_cell; 1647 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1648 1649 /* 1650 * We complete the bio now, knowing that the bi_remaining field 1651 * will prevent completion until the sub range discards have 1652 * completed. 1653 */ 1654 bio_endio(bio); 1655 } 1656 1657 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1658 { 1659 dm_block_t begin, end; 1660 struct dm_cell_key virt_key; 1661 struct dm_bio_prison_cell *virt_cell; 1662 1663 get_bio_block_range(tc, bio, &begin, &end); 1664 if (begin == end) { 1665 /* 1666 * The discard covers less than a block. 1667 */ 1668 bio_endio(bio); 1669 return; 1670 } 1671 1672 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1673 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1674 /* 1675 * Potential starvation issue: We're relying on the 1676 * fs/application being well behaved, and not trying to 1677 * send IO to a region at the same time as discarding it. 1678 * If they do this persistently then it's possible this 1679 * cell will never be granted. 1680 */ 1681 return; 1682 1683 tc->pool->process_discard_cell(tc, virt_cell); 1684 } 1685 1686 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1687 struct dm_cell_key *key, 1688 struct dm_thin_lookup_result *lookup_result, 1689 struct dm_bio_prison_cell *cell) 1690 { 1691 int r; 1692 dm_block_t data_block; 1693 struct pool *pool = tc->pool; 1694 1695 r = alloc_data_block(tc, &data_block); 1696 switch (r) { 1697 case 0: 1698 schedule_internal_copy(tc, block, lookup_result->block, 1699 data_block, cell, bio); 1700 break; 1701 1702 case -ENOSPC: 1703 retry_bios_on_resume(pool, cell); 1704 break; 1705 1706 default: 1707 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1708 __func__, r); 1709 cell_error(pool, cell); 1710 break; 1711 } 1712 } 1713 1714 static void __remap_and_issue_shared_cell(void *context, 1715 struct dm_bio_prison_cell *cell) 1716 { 1717 struct remap_info *info = context; 1718 struct bio *bio; 1719 1720 while ((bio = bio_list_pop(&cell->bios))) { 1721 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1722 bio_op(bio) == REQ_OP_DISCARD) 1723 bio_list_add(&info->defer_bios, bio); 1724 else { 1725 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1726 1727 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1728 inc_all_io_entry(info->tc->pool, bio); 1729 bio_list_add(&info->issue_bios, bio); 1730 } 1731 } 1732 } 1733 1734 static void remap_and_issue_shared_cell(struct thin_c *tc, 1735 struct dm_bio_prison_cell *cell, 1736 dm_block_t block) 1737 { 1738 struct bio *bio; 1739 struct remap_info info; 1740 1741 info.tc = tc; 1742 bio_list_init(&info.defer_bios); 1743 bio_list_init(&info.issue_bios); 1744 1745 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1746 &info, cell); 1747 1748 while ((bio = bio_list_pop(&info.defer_bios))) 1749 thin_defer_bio(tc, bio); 1750 1751 while ((bio = bio_list_pop(&info.issue_bios))) 1752 remap_and_issue(tc, bio, block); 1753 } 1754 1755 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1756 dm_block_t block, 1757 struct dm_thin_lookup_result *lookup_result, 1758 struct dm_bio_prison_cell *virt_cell) 1759 { 1760 struct dm_bio_prison_cell *data_cell; 1761 struct pool *pool = tc->pool; 1762 struct dm_cell_key key; 1763 1764 /* 1765 * If cell is already occupied, then sharing is already in the process 1766 * of being broken so we have nothing further to do here. 1767 */ 1768 build_data_key(tc->td, lookup_result->block, &key); 1769 if (bio_detain(pool, &key, bio, &data_cell)) { 1770 cell_defer_no_holder(tc, virt_cell); 1771 return; 1772 } 1773 1774 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1775 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1776 cell_defer_no_holder(tc, virt_cell); 1777 } else { 1778 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1779 1780 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1781 inc_all_io_entry(pool, bio); 1782 remap_and_issue(tc, bio, lookup_result->block); 1783 1784 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1785 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1786 } 1787 } 1788 1789 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1790 struct dm_bio_prison_cell *cell) 1791 { 1792 int r; 1793 dm_block_t data_block; 1794 struct pool *pool = tc->pool; 1795 1796 /* 1797 * Remap empty bios (flushes) immediately, without provisioning. 1798 */ 1799 if (!bio->bi_iter.bi_size) { 1800 inc_all_io_entry(pool, bio); 1801 cell_defer_no_holder(tc, cell); 1802 1803 remap_and_issue(tc, bio, 0); 1804 return; 1805 } 1806 1807 /* 1808 * Fill read bios with zeroes and complete them immediately. 1809 */ 1810 if (bio_data_dir(bio) == READ) { 1811 zero_fill_bio(bio); 1812 cell_defer_no_holder(tc, cell); 1813 bio_endio(bio); 1814 return; 1815 } 1816 1817 r = alloc_data_block(tc, &data_block); 1818 switch (r) { 1819 case 0: 1820 if (tc->origin_dev) 1821 schedule_external_copy(tc, block, data_block, cell, bio); 1822 else 1823 schedule_zero(tc, block, data_block, cell, bio); 1824 break; 1825 1826 case -ENOSPC: 1827 retry_bios_on_resume(pool, cell); 1828 break; 1829 1830 default: 1831 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1832 __func__, r); 1833 cell_error(pool, cell); 1834 break; 1835 } 1836 } 1837 1838 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1839 { 1840 int r; 1841 struct pool *pool = tc->pool; 1842 struct bio *bio = cell->holder; 1843 dm_block_t block = get_bio_block(tc, bio); 1844 struct dm_thin_lookup_result lookup_result; 1845 1846 if (tc->requeue_mode) { 1847 cell_requeue(pool, cell); 1848 return; 1849 } 1850 1851 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1852 switch (r) { 1853 case 0: 1854 if (lookup_result.shared) 1855 process_shared_bio(tc, bio, block, &lookup_result, cell); 1856 else { 1857 inc_all_io_entry(pool, bio); 1858 remap_and_issue(tc, bio, lookup_result.block); 1859 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1860 } 1861 break; 1862 1863 case -ENODATA: 1864 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1865 inc_all_io_entry(pool, bio); 1866 cell_defer_no_holder(tc, cell); 1867 1868 if (bio_end_sector(bio) <= tc->origin_size) 1869 remap_to_origin_and_issue(tc, bio); 1870 1871 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1872 zero_fill_bio(bio); 1873 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1874 remap_to_origin_and_issue(tc, bio); 1875 1876 } else { 1877 zero_fill_bio(bio); 1878 bio_endio(bio); 1879 } 1880 } else 1881 provision_block(tc, bio, block, cell); 1882 break; 1883 1884 default: 1885 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1886 __func__, r); 1887 cell_defer_no_holder(tc, cell); 1888 bio_io_error(bio); 1889 break; 1890 } 1891 } 1892 1893 static void process_bio(struct thin_c *tc, struct bio *bio) 1894 { 1895 struct pool *pool = tc->pool; 1896 dm_block_t block = get_bio_block(tc, bio); 1897 struct dm_bio_prison_cell *cell; 1898 struct dm_cell_key key; 1899 1900 /* 1901 * If cell is already occupied, then the block is already 1902 * being provisioned so we have nothing further to do here. 1903 */ 1904 build_virtual_key(tc->td, block, &key); 1905 if (bio_detain(pool, &key, bio, &cell)) 1906 return; 1907 1908 process_cell(tc, cell); 1909 } 1910 1911 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1912 struct dm_bio_prison_cell *cell) 1913 { 1914 int r; 1915 int rw = bio_data_dir(bio); 1916 dm_block_t block = get_bio_block(tc, bio); 1917 struct dm_thin_lookup_result lookup_result; 1918 1919 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1920 switch (r) { 1921 case 0: 1922 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1923 handle_unserviceable_bio(tc->pool, bio); 1924 if (cell) 1925 cell_defer_no_holder(tc, cell); 1926 } else { 1927 inc_all_io_entry(tc->pool, bio); 1928 remap_and_issue(tc, bio, lookup_result.block); 1929 if (cell) 1930 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1931 } 1932 break; 1933 1934 case -ENODATA: 1935 if (cell) 1936 cell_defer_no_holder(tc, cell); 1937 if (rw != READ) { 1938 handle_unserviceable_bio(tc->pool, bio); 1939 break; 1940 } 1941 1942 if (tc->origin_dev) { 1943 inc_all_io_entry(tc->pool, bio); 1944 remap_to_origin_and_issue(tc, bio); 1945 break; 1946 } 1947 1948 zero_fill_bio(bio); 1949 bio_endio(bio); 1950 break; 1951 1952 default: 1953 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1954 __func__, r); 1955 if (cell) 1956 cell_defer_no_holder(tc, cell); 1957 bio_io_error(bio); 1958 break; 1959 } 1960 } 1961 1962 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1963 { 1964 __process_bio_read_only(tc, bio, NULL); 1965 } 1966 1967 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1968 { 1969 __process_bio_read_only(tc, cell->holder, cell); 1970 } 1971 1972 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1973 { 1974 bio_endio(bio); 1975 } 1976 1977 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1978 { 1979 bio_io_error(bio); 1980 } 1981 1982 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1983 { 1984 cell_success(tc->pool, cell); 1985 } 1986 1987 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1988 { 1989 cell_error(tc->pool, cell); 1990 } 1991 1992 /* 1993 * FIXME: should we also commit due to size of transaction, measured in 1994 * metadata blocks? 1995 */ 1996 static int need_commit_due_to_time(struct pool *pool) 1997 { 1998 return !time_in_range(jiffies, pool->last_commit_jiffies, 1999 pool->last_commit_jiffies + COMMIT_PERIOD); 2000 } 2001 2002 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2003 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2004 2005 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2006 { 2007 struct rb_node **rbp, *parent; 2008 struct dm_thin_endio_hook *pbd; 2009 sector_t bi_sector = bio->bi_iter.bi_sector; 2010 2011 rbp = &tc->sort_bio_list.rb_node; 2012 parent = NULL; 2013 while (*rbp) { 2014 parent = *rbp; 2015 pbd = thin_pbd(parent); 2016 2017 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2018 rbp = &(*rbp)->rb_left; 2019 else 2020 rbp = &(*rbp)->rb_right; 2021 } 2022 2023 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2024 rb_link_node(&pbd->rb_node, parent, rbp); 2025 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2026 } 2027 2028 static void __extract_sorted_bios(struct thin_c *tc) 2029 { 2030 struct rb_node *node; 2031 struct dm_thin_endio_hook *pbd; 2032 struct bio *bio; 2033 2034 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2035 pbd = thin_pbd(node); 2036 bio = thin_bio(pbd); 2037 2038 bio_list_add(&tc->deferred_bio_list, bio); 2039 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2040 } 2041 2042 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2043 } 2044 2045 static void __sort_thin_deferred_bios(struct thin_c *tc) 2046 { 2047 struct bio *bio; 2048 struct bio_list bios; 2049 2050 bio_list_init(&bios); 2051 bio_list_merge(&bios, &tc->deferred_bio_list); 2052 bio_list_init(&tc->deferred_bio_list); 2053 2054 /* Sort deferred_bio_list using rb-tree */ 2055 while ((bio = bio_list_pop(&bios))) 2056 __thin_bio_rb_add(tc, bio); 2057 2058 /* 2059 * Transfer the sorted bios in sort_bio_list back to 2060 * deferred_bio_list to allow lockless submission of 2061 * all bios. 2062 */ 2063 __extract_sorted_bios(tc); 2064 } 2065 2066 static void process_thin_deferred_bios(struct thin_c *tc) 2067 { 2068 struct pool *pool = tc->pool; 2069 unsigned long flags; 2070 struct bio *bio; 2071 struct bio_list bios; 2072 struct blk_plug plug; 2073 unsigned count = 0; 2074 2075 if (tc->requeue_mode) { 2076 error_thin_bio_list(tc, &tc->deferred_bio_list, 2077 BLK_STS_DM_REQUEUE); 2078 return; 2079 } 2080 2081 bio_list_init(&bios); 2082 2083 spin_lock_irqsave(&tc->lock, flags); 2084 2085 if (bio_list_empty(&tc->deferred_bio_list)) { 2086 spin_unlock_irqrestore(&tc->lock, flags); 2087 return; 2088 } 2089 2090 __sort_thin_deferred_bios(tc); 2091 2092 bio_list_merge(&bios, &tc->deferred_bio_list); 2093 bio_list_init(&tc->deferred_bio_list); 2094 2095 spin_unlock_irqrestore(&tc->lock, flags); 2096 2097 blk_start_plug(&plug); 2098 while ((bio = bio_list_pop(&bios))) { 2099 /* 2100 * If we've got no free new_mapping structs, and processing 2101 * this bio might require one, we pause until there are some 2102 * prepared mappings to process. 2103 */ 2104 if (ensure_next_mapping(pool)) { 2105 spin_lock_irqsave(&tc->lock, flags); 2106 bio_list_add(&tc->deferred_bio_list, bio); 2107 bio_list_merge(&tc->deferred_bio_list, &bios); 2108 spin_unlock_irqrestore(&tc->lock, flags); 2109 break; 2110 } 2111 2112 if (bio_op(bio) == REQ_OP_DISCARD) 2113 pool->process_discard(tc, bio); 2114 else 2115 pool->process_bio(tc, bio); 2116 2117 if ((count++ & 127) == 0) { 2118 throttle_work_update(&pool->throttle); 2119 dm_pool_issue_prefetches(pool->pmd); 2120 } 2121 } 2122 blk_finish_plug(&plug); 2123 } 2124 2125 static int cmp_cells(const void *lhs, const void *rhs) 2126 { 2127 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2128 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2129 2130 BUG_ON(!lhs_cell->holder); 2131 BUG_ON(!rhs_cell->holder); 2132 2133 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2134 return -1; 2135 2136 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2137 return 1; 2138 2139 return 0; 2140 } 2141 2142 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2143 { 2144 unsigned count = 0; 2145 struct dm_bio_prison_cell *cell, *tmp; 2146 2147 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2148 if (count >= CELL_SORT_ARRAY_SIZE) 2149 break; 2150 2151 pool->cell_sort_array[count++] = cell; 2152 list_del(&cell->user_list); 2153 } 2154 2155 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2156 2157 return count; 2158 } 2159 2160 static void process_thin_deferred_cells(struct thin_c *tc) 2161 { 2162 struct pool *pool = tc->pool; 2163 unsigned long flags; 2164 struct list_head cells; 2165 struct dm_bio_prison_cell *cell; 2166 unsigned i, j, count; 2167 2168 INIT_LIST_HEAD(&cells); 2169 2170 spin_lock_irqsave(&tc->lock, flags); 2171 list_splice_init(&tc->deferred_cells, &cells); 2172 spin_unlock_irqrestore(&tc->lock, flags); 2173 2174 if (list_empty(&cells)) 2175 return; 2176 2177 do { 2178 count = sort_cells(tc->pool, &cells); 2179 2180 for (i = 0; i < count; i++) { 2181 cell = pool->cell_sort_array[i]; 2182 BUG_ON(!cell->holder); 2183 2184 /* 2185 * If we've got no free new_mapping structs, and processing 2186 * this bio might require one, we pause until there are some 2187 * prepared mappings to process. 2188 */ 2189 if (ensure_next_mapping(pool)) { 2190 for (j = i; j < count; j++) 2191 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2192 2193 spin_lock_irqsave(&tc->lock, flags); 2194 list_splice(&cells, &tc->deferred_cells); 2195 spin_unlock_irqrestore(&tc->lock, flags); 2196 return; 2197 } 2198 2199 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2200 pool->process_discard_cell(tc, cell); 2201 else 2202 pool->process_cell(tc, cell); 2203 } 2204 } while (!list_empty(&cells)); 2205 } 2206 2207 static void thin_get(struct thin_c *tc); 2208 static void thin_put(struct thin_c *tc); 2209 2210 /* 2211 * We can't hold rcu_read_lock() around code that can block. So we 2212 * find a thin with the rcu lock held; bump a refcount; then drop 2213 * the lock. 2214 */ 2215 static struct thin_c *get_first_thin(struct pool *pool) 2216 { 2217 struct thin_c *tc = NULL; 2218 2219 rcu_read_lock(); 2220 if (!list_empty(&pool->active_thins)) { 2221 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2222 thin_get(tc); 2223 } 2224 rcu_read_unlock(); 2225 2226 return tc; 2227 } 2228 2229 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2230 { 2231 struct thin_c *old_tc = tc; 2232 2233 rcu_read_lock(); 2234 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2235 thin_get(tc); 2236 thin_put(old_tc); 2237 rcu_read_unlock(); 2238 return tc; 2239 } 2240 thin_put(old_tc); 2241 rcu_read_unlock(); 2242 2243 return NULL; 2244 } 2245 2246 static void process_deferred_bios(struct pool *pool) 2247 { 2248 unsigned long flags; 2249 struct bio *bio; 2250 struct bio_list bios; 2251 struct thin_c *tc; 2252 2253 tc = get_first_thin(pool); 2254 while (tc) { 2255 process_thin_deferred_cells(tc); 2256 process_thin_deferred_bios(tc); 2257 tc = get_next_thin(pool, tc); 2258 } 2259 2260 /* 2261 * If there are any deferred flush bios, we must commit 2262 * the metadata before issuing them. 2263 */ 2264 bio_list_init(&bios); 2265 spin_lock_irqsave(&pool->lock, flags); 2266 bio_list_merge(&bios, &pool->deferred_flush_bios); 2267 bio_list_init(&pool->deferred_flush_bios); 2268 spin_unlock_irqrestore(&pool->lock, flags); 2269 2270 if (bio_list_empty(&bios) && 2271 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2272 return; 2273 2274 if (commit(pool)) { 2275 while ((bio = bio_list_pop(&bios))) 2276 bio_io_error(bio); 2277 return; 2278 } 2279 pool->last_commit_jiffies = jiffies; 2280 2281 while ((bio = bio_list_pop(&bios))) 2282 generic_make_request(bio); 2283 } 2284 2285 static void do_worker(struct work_struct *ws) 2286 { 2287 struct pool *pool = container_of(ws, struct pool, worker); 2288 2289 throttle_work_start(&pool->throttle); 2290 dm_pool_issue_prefetches(pool->pmd); 2291 throttle_work_update(&pool->throttle); 2292 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2293 throttle_work_update(&pool->throttle); 2294 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2295 throttle_work_update(&pool->throttle); 2296 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2297 throttle_work_update(&pool->throttle); 2298 process_deferred_bios(pool); 2299 throttle_work_complete(&pool->throttle); 2300 } 2301 2302 /* 2303 * We want to commit periodically so that not too much 2304 * unwritten data builds up. 2305 */ 2306 static void do_waker(struct work_struct *ws) 2307 { 2308 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2309 wake_worker(pool); 2310 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2311 } 2312 2313 static void notify_of_pool_mode_change_to_oods(struct pool *pool); 2314 2315 /* 2316 * We're holding onto IO to allow userland time to react. After the 2317 * timeout either the pool will have been resized (and thus back in 2318 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2319 */ 2320 static void do_no_space_timeout(struct work_struct *ws) 2321 { 2322 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2323 no_space_timeout); 2324 2325 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2326 pool->pf.error_if_no_space = true; 2327 notify_of_pool_mode_change_to_oods(pool); 2328 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2329 } 2330 } 2331 2332 /*----------------------------------------------------------------*/ 2333 2334 struct pool_work { 2335 struct work_struct worker; 2336 struct completion complete; 2337 }; 2338 2339 static struct pool_work *to_pool_work(struct work_struct *ws) 2340 { 2341 return container_of(ws, struct pool_work, worker); 2342 } 2343 2344 static void pool_work_complete(struct pool_work *pw) 2345 { 2346 complete(&pw->complete); 2347 } 2348 2349 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2350 void (*fn)(struct work_struct *)) 2351 { 2352 INIT_WORK_ONSTACK(&pw->worker, fn); 2353 init_completion(&pw->complete); 2354 queue_work(pool->wq, &pw->worker); 2355 wait_for_completion(&pw->complete); 2356 } 2357 2358 /*----------------------------------------------------------------*/ 2359 2360 struct noflush_work { 2361 struct pool_work pw; 2362 struct thin_c *tc; 2363 }; 2364 2365 static struct noflush_work *to_noflush(struct work_struct *ws) 2366 { 2367 return container_of(to_pool_work(ws), struct noflush_work, pw); 2368 } 2369 2370 static void do_noflush_start(struct work_struct *ws) 2371 { 2372 struct noflush_work *w = to_noflush(ws); 2373 w->tc->requeue_mode = true; 2374 requeue_io(w->tc); 2375 pool_work_complete(&w->pw); 2376 } 2377 2378 static void do_noflush_stop(struct work_struct *ws) 2379 { 2380 struct noflush_work *w = to_noflush(ws); 2381 w->tc->requeue_mode = false; 2382 pool_work_complete(&w->pw); 2383 } 2384 2385 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2386 { 2387 struct noflush_work w; 2388 2389 w.tc = tc; 2390 pool_work_wait(&w.pw, tc->pool, fn); 2391 } 2392 2393 /*----------------------------------------------------------------*/ 2394 2395 static enum pool_mode get_pool_mode(struct pool *pool) 2396 { 2397 return pool->pf.mode; 2398 } 2399 2400 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2401 { 2402 dm_table_event(pool->ti->table); 2403 DMINFO("%s: switching pool to %s mode", 2404 dm_device_name(pool->pool_md), new_mode); 2405 } 2406 2407 static void notify_of_pool_mode_change_to_oods(struct pool *pool) 2408 { 2409 if (!pool->pf.error_if_no_space) 2410 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)"); 2411 else 2412 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)"); 2413 } 2414 2415 static bool passdown_enabled(struct pool_c *pt) 2416 { 2417 return pt->adjusted_pf.discard_passdown; 2418 } 2419 2420 static void set_discard_callbacks(struct pool *pool) 2421 { 2422 struct pool_c *pt = pool->ti->private; 2423 2424 if (passdown_enabled(pt)) { 2425 pool->process_discard_cell = process_discard_cell_passdown; 2426 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2427 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2428 } else { 2429 pool->process_discard_cell = process_discard_cell_no_passdown; 2430 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2431 } 2432 } 2433 2434 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2435 { 2436 struct pool_c *pt = pool->ti->private; 2437 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2438 enum pool_mode old_mode = get_pool_mode(pool); 2439 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2440 2441 /* 2442 * Never allow the pool to transition to PM_WRITE mode if user 2443 * intervention is required to verify metadata and data consistency. 2444 */ 2445 if (new_mode == PM_WRITE && needs_check) { 2446 DMERR("%s: unable to switch pool to write mode until repaired.", 2447 dm_device_name(pool->pool_md)); 2448 if (old_mode != new_mode) 2449 new_mode = old_mode; 2450 else 2451 new_mode = PM_READ_ONLY; 2452 } 2453 /* 2454 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2455 * not going to recover without a thin_repair. So we never let the 2456 * pool move out of the old mode. 2457 */ 2458 if (old_mode == PM_FAIL) 2459 new_mode = old_mode; 2460 2461 switch (new_mode) { 2462 case PM_FAIL: 2463 if (old_mode != new_mode) 2464 notify_of_pool_mode_change(pool, "failure"); 2465 dm_pool_metadata_read_only(pool->pmd); 2466 pool->process_bio = process_bio_fail; 2467 pool->process_discard = process_bio_fail; 2468 pool->process_cell = process_cell_fail; 2469 pool->process_discard_cell = process_cell_fail; 2470 pool->process_prepared_mapping = process_prepared_mapping_fail; 2471 pool->process_prepared_discard = process_prepared_discard_fail; 2472 2473 error_retry_list(pool); 2474 break; 2475 2476 case PM_READ_ONLY: 2477 if (old_mode != new_mode) 2478 notify_of_pool_mode_change(pool, "read-only"); 2479 dm_pool_metadata_read_only(pool->pmd); 2480 pool->process_bio = process_bio_read_only; 2481 pool->process_discard = process_bio_success; 2482 pool->process_cell = process_cell_read_only; 2483 pool->process_discard_cell = process_cell_success; 2484 pool->process_prepared_mapping = process_prepared_mapping_fail; 2485 pool->process_prepared_discard = process_prepared_discard_success; 2486 2487 error_retry_list(pool); 2488 break; 2489 2490 case PM_OUT_OF_DATA_SPACE: 2491 /* 2492 * Ideally we'd never hit this state; the low water mark 2493 * would trigger userland to extend the pool before we 2494 * completely run out of data space. However, many small 2495 * IOs to unprovisioned space can consume data space at an 2496 * alarming rate. Adjust your low water mark if you're 2497 * frequently seeing this mode. 2498 */ 2499 if (old_mode != new_mode) 2500 notify_of_pool_mode_change_to_oods(pool); 2501 pool->out_of_data_space = true; 2502 pool->process_bio = process_bio_read_only; 2503 pool->process_discard = process_discard_bio; 2504 pool->process_cell = process_cell_read_only; 2505 pool->process_prepared_mapping = process_prepared_mapping; 2506 set_discard_callbacks(pool); 2507 2508 if (!pool->pf.error_if_no_space && no_space_timeout) 2509 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2510 break; 2511 2512 case PM_WRITE: 2513 if (old_mode != new_mode) 2514 notify_of_pool_mode_change(pool, "write"); 2515 pool->out_of_data_space = false; 2516 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2517 dm_pool_metadata_read_write(pool->pmd); 2518 pool->process_bio = process_bio; 2519 pool->process_discard = process_discard_bio; 2520 pool->process_cell = process_cell; 2521 pool->process_prepared_mapping = process_prepared_mapping; 2522 set_discard_callbacks(pool); 2523 break; 2524 } 2525 2526 pool->pf.mode = new_mode; 2527 /* 2528 * The pool mode may have changed, sync it so bind_control_target() 2529 * doesn't cause an unexpected mode transition on resume. 2530 */ 2531 pt->adjusted_pf.mode = new_mode; 2532 } 2533 2534 static void abort_transaction(struct pool *pool) 2535 { 2536 const char *dev_name = dm_device_name(pool->pool_md); 2537 2538 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2539 if (dm_pool_abort_metadata(pool->pmd)) { 2540 DMERR("%s: failed to abort metadata transaction", dev_name); 2541 set_pool_mode(pool, PM_FAIL); 2542 } 2543 2544 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2545 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2546 set_pool_mode(pool, PM_FAIL); 2547 } 2548 } 2549 2550 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2551 { 2552 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2553 dm_device_name(pool->pool_md), op, r); 2554 2555 abort_transaction(pool); 2556 set_pool_mode(pool, PM_READ_ONLY); 2557 } 2558 2559 /*----------------------------------------------------------------*/ 2560 2561 /* 2562 * Mapping functions. 2563 */ 2564 2565 /* 2566 * Called only while mapping a thin bio to hand it over to the workqueue. 2567 */ 2568 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2569 { 2570 unsigned long flags; 2571 struct pool *pool = tc->pool; 2572 2573 spin_lock_irqsave(&tc->lock, flags); 2574 bio_list_add(&tc->deferred_bio_list, bio); 2575 spin_unlock_irqrestore(&tc->lock, flags); 2576 2577 wake_worker(pool); 2578 } 2579 2580 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2581 { 2582 struct pool *pool = tc->pool; 2583 2584 throttle_lock(&pool->throttle); 2585 thin_defer_bio(tc, bio); 2586 throttle_unlock(&pool->throttle); 2587 } 2588 2589 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2590 { 2591 unsigned long flags; 2592 struct pool *pool = tc->pool; 2593 2594 throttle_lock(&pool->throttle); 2595 spin_lock_irqsave(&tc->lock, flags); 2596 list_add_tail(&cell->user_list, &tc->deferred_cells); 2597 spin_unlock_irqrestore(&tc->lock, flags); 2598 throttle_unlock(&pool->throttle); 2599 2600 wake_worker(pool); 2601 } 2602 2603 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2604 { 2605 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2606 2607 h->tc = tc; 2608 h->shared_read_entry = NULL; 2609 h->all_io_entry = NULL; 2610 h->overwrite_mapping = NULL; 2611 h->cell = NULL; 2612 } 2613 2614 /* 2615 * Non-blocking function called from the thin target's map function. 2616 */ 2617 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2618 { 2619 int r; 2620 struct thin_c *tc = ti->private; 2621 dm_block_t block = get_bio_block(tc, bio); 2622 struct dm_thin_device *td = tc->td; 2623 struct dm_thin_lookup_result result; 2624 struct dm_bio_prison_cell *virt_cell, *data_cell; 2625 struct dm_cell_key key; 2626 2627 thin_hook_bio(tc, bio); 2628 2629 if (tc->requeue_mode) { 2630 bio->bi_status = BLK_STS_DM_REQUEUE; 2631 bio_endio(bio); 2632 return DM_MAPIO_SUBMITTED; 2633 } 2634 2635 if (get_pool_mode(tc->pool) == PM_FAIL) { 2636 bio_io_error(bio); 2637 return DM_MAPIO_SUBMITTED; 2638 } 2639 2640 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2641 thin_defer_bio_with_throttle(tc, bio); 2642 return DM_MAPIO_SUBMITTED; 2643 } 2644 2645 /* 2646 * We must hold the virtual cell before doing the lookup, otherwise 2647 * there's a race with discard. 2648 */ 2649 build_virtual_key(tc->td, block, &key); 2650 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2651 return DM_MAPIO_SUBMITTED; 2652 2653 r = dm_thin_find_block(td, block, 0, &result); 2654 2655 /* 2656 * Note that we defer readahead too. 2657 */ 2658 switch (r) { 2659 case 0: 2660 if (unlikely(result.shared)) { 2661 /* 2662 * We have a race condition here between the 2663 * result.shared value returned by the lookup and 2664 * snapshot creation, which may cause new 2665 * sharing. 2666 * 2667 * To avoid this always quiesce the origin before 2668 * taking the snap. You want to do this anyway to 2669 * ensure a consistent application view 2670 * (i.e. lockfs). 2671 * 2672 * More distant ancestors are irrelevant. The 2673 * shared flag will be set in their case. 2674 */ 2675 thin_defer_cell(tc, virt_cell); 2676 return DM_MAPIO_SUBMITTED; 2677 } 2678 2679 build_data_key(tc->td, result.block, &key); 2680 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2681 cell_defer_no_holder(tc, virt_cell); 2682 return DM_MAPIO_SUBMITTED; 2683 } 2684 2685 inc_all_io_entry(tc->pool, bio); 2686 cell_defer_no_holder(tc, data_cell); 2687 cell_defer_no_holder(tc, virt_cell); 2688 2689 remap(tc, bio, result.block); 2690 return DM_MAPIO_REMAPPED; 2691 2692 case -ENODATA: 2693 case -EWOULDBLOCK: 2694 thin_defer_cell(tc, virt_cell); 2695 return DM_MAPIO_SUBMITTED; 2696 2697 default: 2698 /* 2699 * Must always call bio_io_error on failure. 2700 * dm_thin_find_block can fail with -EINVAL if the 2701 * pool is switched to fail-io mode. 2702 */ 2703 bio_io_error(bio); 2704 cell_defer_no_holder(tc, virt_cell); 2705 return DM_MAPIO_SUBMITTED; 2706 } 2707 } 2708 2709 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2710 { 2711 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2712 struct request_queue *q; 2713 2714 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2715 return 1; 2716 2717 q = bdev_get_queue(pt->data_dev->bdev); 2718 return bdi_congested(q->backing_dev_info, bdi_bits); 2719 } 2720 2721 static void requeue_bios(struct pool *pool) 2722 { 2723 unsigned long flags; 2724 struct thin_c *tc; 2725 2726 rcu_read_lock(); 2727 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2728 spin_lock_irqsave(&tc->lock, flags); 2729 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2730 bio_list_init(&tc->retry_on_resume_list); 2731 spin_unlock_irqrestore(&tc->lock, flags); 2732 } 2733 rcu_read_unlock(); 2734 } 2735 2736 /*---------------------------------------------------------------- 2737 * Binding of control targets to a pool object 2738 *--------------------------------------------------------------*/ 2739 static bool data_dev_supports_discard(struct pool_c *pt) 2740 { 2741 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2742 2743 return q && blk_queue_discard(q); 2744 } 2745 2746 static bool is_factor(sector_t block_size, uint32_t n) 2747 { 2748 return !sector_div(block_size, n); 2749 } 2750 2751 /* 2752 * If discard_passdown was enabled verify that the data device 2753 * supports discards. Disable discard_passdown if not. 2754 */ 2755 static void disable_passdown_if_not_supported(struct pool_c *pt) 2756 { 2757 struct pool *pool = pt->pool; 2758 struct block_device *data_bdev = pt->data_dev->bdev; 2759 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2760 const char *reason = NULL; 2761 char buf[BDEVNAME_SIZE]; 2762 2763 if (!pt->adjusted_pf.discard_passdown) 2764 return; 2765 2766 if (!data_dev_supports_discard(pt)) 2767 reason = "discard unsupported"; 2768 2769 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2770 reason = "max discard sectors smaller than a block"; 2771 2772 if (reason) { 2773 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2774 pt->adjusted_pf.discard_passdown = false; 2775 } 2776 } 2777 2778 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2779 { 2780 struct pool_c *pt = ti->private; 2781 2782 /* 2783 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2784 */ 2785 enum pool_mode old_mode = get_pool_mode(pool); 2786 enum pool_mode new_mode = pt->adjusted_pf.mode; 2787 2788 /* 2789 * Don't change the pool's mode until set_pool_mode() below. 2790 * Otherwise the pool's process_* function pointers may 2791 * not match the desired pool mode. 2792 */ 2793 pt->adjusted_pf.mode = old_mode; 2794 2795 pool->ti = ti; 2796 pool->pf = pt->adjusted_pf; 2797 pool->low_water_blocks = pt->low_water_blocks; 2798 2799 set_pool_mode(pool, new_mode); 2800 2801 return 0; 2802 } 2803 2804 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2805 { 2806 if (pool->ti == ti) 2807 pool->ti = NULL; 2808 } 2809 2810 /*---------------------------------------------------------------- 2811 * Pool creation 2812 *--------------------------------------------------------------*/ 2813 /* Initialize pool features. */ 2814 static void pool_features_init(struct pool_features *pf) 2815 { 2816 pf->mode = PM_WRITE; 2817 pf->zero_new_blocks = true; 2818 pf->discard_enabled = true; 2819 pf->discard_passdown = true; 2820 pf->error_if_no_space = false; 2821 } 2822 2823 static void __pool_destroy(struct pool *pool) 2824 { 2825 __pool_table_remove(pool); 2826 2827 vfree(pool->cell_sort_array); 2828 if (dm_pool_metadata_close(pool->pmd) < 0) 2829 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2830 2831 dm_bio_prison_destroy(pool->prison); 2832 dm_kcopyd_client_destroy(pool->copier); 2833 2834 if (pool->wq) 2835 destroy_workqueue(pool->wq); 2836 2837 if (pool->next_mapping) 2838 mempool_free(pool->next_mapping, pool->mapping_pool); 2839 mempool_destroy(pool->mapping_pool); 2840 dm_deferred_set_destroy(pool->shared_read_ds); 2841 dm_deferred_set_destroy(pool->all_io_ds); 2842 kfree(pool); 2843 } 2844 2845 static struct kmem_cache *_new_mapping_cache; 2846 2847 static struct pool *pool_create(struct mapped_device *pool_md, 2848 struct block_device *metadata_dev, 2849 unsigned long block_size, 2850 int read_only, char **error) 2851 { 2852 int r; 2853 void *err_p; 2854 struct pool *pool; 2855 struct dm_pool_metadata *pmd; 2856 bool format_device = read_only ? false : true; 2857 2858 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2859 if (IS_ERR(pmd)) { 2860 *error = "Error creating metadata object"; 2861 return (struct pool *)pmd; 2862 } 2863 2864 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2865 if (!pool) { 2866 *error = "Error allocating memory for pool"; 2867 err_p = ERR_PTR(-ENOMEM); 2868 goto bad_pool; 2869 } 2870 2871 pool->pmd = pmd; 2872 pool->sectors_per_block = block_size; 2873 if (block_size & (block_size - 1)) 2874 pool->sectors_per_block_shift = -1; 2875 else 2876 pool->sectors_per_block_shift = __ffs(block_size); 2877 pool->low_water_blocks = 0; 2878 pool_features_init(&pool->pf); 2879 pool->prison = dm_bio_prison_create(); 2880 if (!pool->prison) { 2881 *error = "Error creating pool's bio prison"; 2882 err_p = ERR_PTR(-ENOMEM); 2883 goto bad_prison; 2884 } 2885 2886 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2887 if (IS_ERR(pool->copier)) { 2888 r = PTR_ERR(pool->copier); 2889 *error = "Error creating pool's kcopyd client"; 2890 err_p = ERR_PTR(r); 2891 goto bad_kcopyd_client; 2892 } 2893 2894 /* 2895 * Create singlethreaded workqueue that will service all devices 2896 * that use this metadata. 2897 */ 2898 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2899 if (!pool->wq) { 2900 *error = "Error creating pool's workqueue"; 2901 err_p = ERR_PTR(-ENOMEM); 2902 goto bad_wq; 2903 } 2904 2905 throttle_init(&pool->throttle); 2906 INIT_WORK(&pool->worker, do_worker); 2907 INIT_DELAYED_WORK(&pool->waker, do_waker); 2908 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2909 spin_lock_init(&pool->lock); 2910 bio_list_init(&pool->deferred_flush_bios); 2911 INIT_LIST_HEAD(&pool->prepared_mappings); 2912 INIT_LIST_HEAD(&pool->prepared_discards); 2913 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2914 INIT_LIST_HEAD(&pool->active_thins); 2915 pool->low_water_triggered = false; 2916 pool->suspended = true; 2917 pool->out_of_data_space = false; 2918 2919 pool->shared_read_ds = dm_deferred_set_create(); 2920 if (!pool->shared_read_ds) { 2921 *error = "Error creating pool's shared read deferred set"; 2922 err_p = ERR_PTR(-ENOMEM); 2923 goto bad_shared_read_ds; 2924 } 2925 2926 pool->all_io_ds = dm_deferred_set_create(); 2927 if (!pool->all_io_ds) { 2928 *error = "Error creating pool's all io deferred set"; 2929 err_p = ERR_PTR(-ENOMEM); 2930 goto bad_all_io_ds; 2931 } 2932 2933 pool->next_mapping = NULL; 2934 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2935 _new_mapping_cache); 2936 if (!pool->mapping_pool) { 2937 *error = "Error creating pool's mapping mempool"; 2938 err_p = ERR_PTR(-ENOMEM); 2939 goto bad_mapping_pool; 2940 } 2941 2942 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE); 2943 if (!pool->cell_sort_array) { 2944 *error = "Error allocating cell sort array"; 2945 err_p = ERR_PTR(-ENOMEM); 2946 goto bad_sort_array; 2947 } 2948 2949 pool->ref_count = 1; 2950 pool->last_commit_jiffies = jiffies; 2951 pool->pool_md = pool_md; 2952 pool->md_dev = metadata_dev; 2953 __pool_table_insert(pool); 2954 2955 return pool; 2956 2957 bad_sort_array: 2958 mempool_destroy(pool->mapping_pool); 2959 bad_mapping_pool: 2960 dm_deferred_set_destroy(pool->all_io_ds); 2961 bad_all_io_ds: 2962 dm_deferred_set_destroy(pool->shared_read_ds); 2963 bad_shared_read_ds: 2964 destroy_workqueue(pool->wq); 2965 bad_wq: 2966 dm_kcopyd_client_destroy(pool->copier); 2967 bad_kcopyd_client: 2968 dm_bio_prison_destroy(pool->prison); 2969 bad_prison: 2970 kfree(pool); 2971 bad_pool: 2972 if (dm_pool_metadata_close(pmd)) 2973 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2974 2975 return err_p; 2976 } 2977 2978 static void __pool_inc(struct pool *pool) 2979 { 2980 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2981 pool->ref_count++; 2982 } 2983 2984 static void __pool_dec(struct pool *pool) 2985 { 2986 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2987 BUG_ON(!pool->ref_count); 2988 if (!--pool->ref_count) 2989 __pool_destroy(pool); 2990 } 2991 2992 static struct pool *__pool_find(struct mapped_device *pool_md, 2993 struct block_device *metadata_dev, 2994 unsigned long block_size, int read_only, 2995 char **error, int *created) 2996 { 2997 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2998 2999 if (pool) { 3000 if (pool->pool_md != pool_md) { 3001 *error = "metadata device already in use by a pool"; 3002 return ERR_PTR(-EBUSY); 3003 } 3004 __pool_inc(pool); 3005 3006 } else { 3007 pool = __pool_table_lookup(pool_md); 3008 if (pool) { 3009 if (pool->md_dev != metadata_dev) { 3010 *error = "different pool cannot replace a pool"; 3011 return ERR_PTR(-EINVAL); 3012 } 3013 __pool_inc(pool); 3014 3015 } else { 3016 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 3017 *created = 1; 3018 } 3019 } 3020 3021 return pool; 3022 } 3023 3024 /*---------------------------------------------------------------- 3025 * Pool target methods 3026 *--------------------------------------------------------------*/ 3027 static void pool_dtr(struct dm_target *ti) 3028 { 3029 struct pool_c *pt = ti->private; 3030 3031 mutex_lock(&dm_thin_pool_table.mutex); 3032 3033 unbind_control_target(pt->pool, ti); 3034 __pool_dec(pt->pool); 3035 dm_put_device(ti, pt->metadata_dev); 3036 dm_put_device(ti, pt->data_dev); 3037 kfree(pt); 3038 3039 mutex_unlock(&dm_thin_pool_table.mutex); 3040 } 3041 3042 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3043 struct dm_target *ti) 3044 { 3045 int r; 3046 unsigned argc; 3047 const char *arg_name; 3048 3049 static const struct dm_arg _args[] = { 3050 {0, 4, "Invalid number of pool feature arguments"}, 3051 }; 3052 3053 /* 3054 * No feature arguments supplied. 3055 */ 3056 if (!as->argc) 3057 return 0; 3058 3059 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3060 if (r) 3061 return -EINVAL; 3062 3063 while (argc && !r) { 3064 arg_name = dm_shift_arg(as); 3065 argc--; 3066 3067 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3068 pf->zero_new_blocks = false; 3069 3070 else if (!strcasecmp(arg_name, "ignore_discard")) 3071 pf->discard_enabled = false; 3072 3073 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3074 pf->discard_passdown = false; 3075 3076 else if (!strcasecmp(arg_name, "read_only")) 3077 pf->mode = PM_READ_ONLY; 3078 3079 else if (!strcasecmp(arg_name, "error_if_no_space")) 3080 pf->error_if_no_space = true; 3081 3082 else { 3083 ti->error = "Unrecognised pool feature requested"; 3084 r = -EINVAL; 3085 break; 3086 } 3087 } 3088 3089 return r; 3090 } 3091 3092 static void metadata_low_callback(void *context) 3093 { 3094 struct pool *pool = context; 3095 3096 DMWARN("%s: reached low water mark for metadata device: sending event.", 3097 dm_device_name(pool->pool_md)); 3098 3099 dm_table_event(pool->ti->table); 3100 } 3101 3102 static sector_t get_dev_size(struct block_device *bdev) 3103 { 3104 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3105 } 3106 3107 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3108 { 3109 sector_t metadata_dev_size = get_dev_size(bdev); 3110 char buffer[BDEVNAME_SIZE]; 3111 3112 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3113 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3114 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3115 } 3116 3117 static sector_t get_metadata_dev_size(struct block_device *bdev) 3118 { 3119 sector_t metadata_dev_size = get_dev_size(bdev); 3120 3121 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3122 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3123 3124 return metadata_dev_size; 3125 } 3126 3127 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3128 { 3129 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3130 3131 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3132 3133 return metadata_dev_size; 3134 } 3135 3136 /* 3137 * When a metadata threshold is crossed a dm event is triggered, and 3138 * userland should respond by growing the metadata device. We could let 3139 * userland set the threshold, like we do with the data threshold, but I'm 3140 * not sure they know enough to do this well. 3141 */ 3142 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3143 { 3144 /* 3145 * 4M is ample for all ops with the possible exception of thin 3146 * device deletion which is harmless if it fails (just retry the 3147 * delete after you've grown the device). 3148 */ 3149 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3150 return min((dm_block_t)1024ULL /* 4M */, quarter); 3151 } 3152 3153 /* 3154 * thin-pool <metadata dev> <data dev> 3155 * <data block size (sectors)> 3156 * <low water mark (blocks)> 3157 * [<#feature args> [<arg>]*] 3158 * 3159 * Optional feature arguments are: 3160 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3161 * ignore_discard: disable discard 3162 * no_discard_passdown: don't pass discards down to the data device 3163 * read_only: Don't allow any changes to be made to the pool metadata. 3164 * error_if_no_space: error IOs, instead of queueing, if no space. 3165 */ 3166 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3167 { 3168 int r, pool_created = 0; 3169 struct pool_c *pt; 3170 struct pool *pool; 3171 struct pool_features pf; 3172 struct dm_arg_set as; 3173 struct dm_dev *data_dev; 3174 unsigned long block_size; 3175 dm_block_t low_water_blocks; 3176 struct dm_dev *metadata_dev; 3177 fmode_t metadata_mode; 3178 3179 /* 3180 * FIXME Remove validation from scope of lock. 3181 */ 3182 mutex_lock(&dm_thin_pool_table.mutex); 3183 3184 if (argc < 4) { 3185 ti->error = "Invalid argument count"; 3186 r = -EINVAL; 3187 goto out_unlock; 3188 } 3189 3190 as.argc = argc; 3191 as.argv = argv; 3192 3193 /* 3194 * Set default pool features. 3195 */ 3196 pool_features_init(&pf); 3197 3198 dm_consume_args(&as, 4); 3199 r = parse_pool_features(&as, &pf, ti); 3200 if (r) 3201 goto out_unlock; 3202 3203 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3204 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3205 if (r) { 3206 ti->error = "Error opening metadata block device"; 3207 goto out_unlock; 3208 } 3209 warn_if_metadata_device_too_big(metadata_dev->bdev); 3210 3211 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3212 if (r) { 3213 ti->error = "Error getting data device"; 3214 goto out_metadata; 3215 } 3216 3217 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3218 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3219 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3220 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3221 ti->error = "Invalid block size"; 3222 r = -EINVAL; 3223 goto out; 3224 } 3225 3226 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3227 ti->error = "Invalid low water mark"; 3228 r = -EINVAL; 3229 goto out; 3230 } 3231 3232 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3233 if (!pt) { 3234 r = -ENOMEM; 3235 goto out; 3236 } 3237 3238 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3239 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3240 if (IS_ERR(pool)) { 3241 r = PTR_ERR(pool); 3242 goto out_free_pt; 3243 } 3244 3245 /* 3246 * 'pool_created' reflects whether this is the first table load. 3247 * Top level discard support is not allowed to be changed after 3248 * initial load. This would require a pool reload to trigger thin 3249 * device changes. 3250 */ 3251 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3252 ti->error = "Discard support cannot be disabled once enabled"; 3253 r = -EINVAL; 3254 goto out_flags_changed; 3255 } 3256 3257 pt->pool = pool; 3258 pt->ti = ti; 3259 pt->metadata_dev = metadata_dev; 3260 pt->data_dev = data_dev; 3261 pt->low_water_blocks = low_water_blocks; 3262 pt->adjusted_pf = pt->requested_pf = pf; 3263 ti->num_flush_bios = 1; 3264 3265 /* 3266 * Only need to enable discards if the pool should pass 3267 * them down to the data device. The thin device's discard 3268 * processing will cause mappings to be removed from the btree. 3269 */ 3270 if (pf.discard_enabled && pf.discard_passdown) { 3271 ti->num_discard_bios = 1; 3272 3273 /* 3274 * Setting 'discards_supported' circumvents the normal 3275 * stacking of discard limits (this keeps the pool and 3276 * thin devices' discard limits consistent). 3277 */ 3278 ti->discards_supported = true; 3279 } 3280 ti->private = pt; 3281 3282 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3283 calc_metadata_threshold(pt), 3284 metadata_low_callback, 3285 pool); 3286 if (r) 3287 goto out_flags_changed; 3288 3289 pt->callbacks.congested_fn = pool_is_congested; 3290 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3291 3292 mutex_unlock(&dm_thin_pool_table.mutex); 3293 3294 return 0; 3295 3296 out_flags_changed: 3297 __pool_dec(pool); 3298 out_free_pt: 3299 kfree(pt); 3300 out: 3301 dm_put_device(ti, data_dev); 3302 out_metadata: 3303 dm_put_device(ti, metadata_dev); 3304 out_unlock: 3305 mutex_unlock(&dm_thin_pool_table.mutex); 3306 3307 return r; 3308 } 3309 3310 static int pool_map(struct dm_target *ti, struct bio *bio) 3311 { 3312 int r; 3313 struct pool_c *pt = ti->private; 3314 struct pool *pool = pt->pool; 3315 unsigned long flags; 3316 3317 /* 3318 * As this is a singleton target, ti->begin is always zero. 3319 */ 3320 spin_lock_irqsave(&pool->lock, flags); 3321 bio_set_dev(bio, pt->data_dev->bdev); 3322 r = DM_MAPIO_REMAPPED; 3323 spin_unlock_irqrestore(&pool->lock, flags); 3324 3325 return r; 3326 } 3327 3328 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3329 { 3330 int r; 3331 struct pool_c *pt = ti->private; 3332 struct pool *pool = pt->pool; 3333 sector_t data_size = ti->len; 3334 dm_block_t sb_data_size; 3335 3336 *need_commit = false; 3337 3338 (void) sector_div(data_size, pool->sectors_per_block); 3339 3340 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3341 if (r) { 3342 DMERR("%s: failed to retrieve data device size", 3343 dm_device_name(pool->pool_md)); 3344 return r; 3345 } 3346 3347 if (data_size < sb_data_size) { 3348 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3349 dm_device_name(pool->pool_md), 3350 (unsigned long long)data_size, sb_data_size); 3351 return -EINVAL; 3352 3353 } else if (data_size > sb_data_size) { 3354 if (dm_pool_metadata_needs_check(pool->pmd)) { 3355 DMERR("%s: unable to grow the data device until repaired.", 3356 dm_device_name(pool->pool_md)); 3357 return 0; 3358 } 3359 3360 if (sb_data_size) 3361 DMINFO("%s: growing the data device from %llu to %llu blocks", 3362 dm_device_name(pool->pool_md), 3363 sb_data_size, (unsigned long long)data_size); 3364 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3365 if (r) { 3366 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3367 return r; 3368 } 3369 3370 *need_commit = true; 3371 } 3372 3373 return 0; 3374 } 3375 3376 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3377 { 3378 int r; 3379 struct pool_c *pt = ti->private; 3380 struct pool *pool = pt->pool; 3381 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3382 3383 *need_commit = false; 3384 3385 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3386 3387 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3388 if (r) { 3389 DMERR("%s: failed to retrieve metadata device size", 3390 dm_device_name(pool->pool_md)); 3391 return r; 3392 } 3393 3394 if (metadata_dev_size < sb_metadata_dev_size) { 3395 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3396 dm_device_name(pool->pool_md), 3397 metadata_dev_size, sb_metadata_dev_size); 3398 return -EINVAL; 3399 3400 } else if (metadata_dev_size > sb_metadata_dev_size) { 3401 if (dm_pool_metadata_needs_check(pool->pmd)) { 3402 DMERR("%s: unable to grow the metadata device until repaired.", 3403 dm_device_name(pool->pool_md)); 3404 return 0; 3405 } 3406 3407 warn_if_metadata_device_too_big(pool->md_dev); 3408 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3409 dm_device_name(pool->pool_md), 3410 sb_metadata_dev_size, metadata_dev_size); 3411 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3412 if (r) { 3413 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3414 return r; 3415 } 3416 3417 *need_commit = true; 3418 } 3419 3420 return 0; 3421 } 3422 3423 /* 3424 * Retrieves the number of blocks of the data device from 3425 * the superblock and compares it to the actual device size, 3426 * thus resizing the data device in case it has grown. 3427 * 3428 * This both copes with opening preallocated data devices in the ctr 3429 * being followed by a resume 3430 * -and- 3431 * calling the resume method individually after userspace has 3432 * grown the data device in reaction to a table event. 3433 */ 3434 static int pool_preresume(struct dm_target *ti) 3435 { 3436 int r; 3437 bool need_commit1, need_commit2; 3438 struct pool_c *pt = ti->private; 3439 struct pool *pool = pt->pool; 3440 3441 /* 3442 * Take control of the pool object. 3443 */ 3444 r = bind_control_target(pool, ti); 3445 if (r) 3446 return r; 3447 3448 r = maybe_resize_data_dev(ti, &need_commit1); 3449 if (r) 3450 return r; 3451 3452 r = maybe_resize_metadata_dev(ti, &need_commit2); 3453 if (r) 3454 return r; 3455 3456 if (need_commit1 || need_commit2) 3457 (void) commit(pool); 3458 3459 return 0; 3460 } 3461 3462 static void pool_suspend_active_thins(struct pool *pool) 3463 { 3464 struct thin_c *tc; 3465 3466 /* Suspend all active thin devices */ 3467 tc = get_first_thin(pool); 3468 while (tc) { 3469 dm_internal_suspend_noflush(tc->thin_md); 3470 tc = get_next_thin(pool, tc); 3471 } 3472 } 3473 3474 static void pool_resume_active_thins(struct pool *pool) 3475 { 3476 struct thin_c *tc; 3477 3478 /* Resume all active thin devices */ 3479 tc = get_first_thin(pool); 3480 while (tc) { 3481 dm_internal_resume(tc->thin_md); 3482 tc = get_next_thin(pool, tc); 3483 } 3484 } 3485 3486 static void pool_resume(struct dm_target *ti) 3487 { 3488 struct pool_c *pt = ti->private; 3489 struct pool *pool = pt->pool; 3490 unsigned long flags; 3491 3492 /* 3493 * Must requeue active_thins' bios and then resume 3494 * active_thins _before_ clearing 'suspend' flag. 3495 */ 3496 requeue_bios(pool); 3497 pool_resume_active_thins(pool); 3498 3499 spin_lock_irqsave(&pool->lock, flags); 3500 pool->low_water_triggered = false; 3501 pool->suspended = false; 3502 spin_unlock_irqrestore(&pool->lock, flags); 3503 3504 do_waker(&pool->waker.work); 3505 } 3506 3507 static void pool_presuspend(struct dm_target *ti) 3508 { 3509 struct pool_c *pt = ti->private; 3510 struct pool *pool = pt->pool; 3511 unsigned long flags; 3512 3513 spin_lock_irqsave(&pool->lock, flags); 3514 pool->suspended = true; 3515 spin_unlock_irqrestore(&pool->lock, flags); 3516 3517 pool_suspend_active_thins(pool); 3518 } 3519 3520 static void pool_presuspend_undo(struct dm_target *ti) 3521 { 3522 struct pool_c *pt = ti->private; 3523 struct pool *pool = pt->pool; 3524 unsigned long flags; 3525 3526 pool_resume_active_thins(pool); 3527 3528 spin_lock_irqsave(&pool->lock, flags); 3529 pool->suspended = false; 3530 spin_unlock_irqrestore(&pool->lock, flags); 3531 } 3532 3533 static void pool_postsuspend(struct dm_target *ti) 3534 { 3535 struct pool_c *pt = ti->private; 3536 struct pool *pool = pt->pool; 3537 3538 cancel_delayed_work_sync(&pool->waker); 3539 cancel_delayed_work_sync(&pool->no_space_timeout); 3540 flush_workqueue(pool->wq); 3541 (void) commit(pool); 3542 } 3543 3544 static int check_arg_count(unsigned argc, unsigned args_required) 3545 { 3546 if (argc != args_required) { 3547 DMWARN("Message received with %u arguments instead of %u.", 3548 argc, args_required); 3549 return -EINVAL; 3550 } 3551 3552 return 0; 3553 } 3554 3555 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3556 { 3557 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3558 *dev_id <= MAX_DEV_ID) 3559 return 0; 3560 3561 if (warning) 3562 DMWARN("Message received with invalid device id: %s", arg); 3563 3564 return -EINVAL; 3565 } 3566 3567 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3568 { 3569 dm_thin_id dev_id; 3570 int r; 3571 3572 r = check_arg_count(argc, 2); 3573 if (r) 3574 return r; 3575 3576 r = read_dev_id(argv[1], &dev_id, 1); 3577 if (r) 3578 return r; 3579 3580 r = dm_pool_create_thin(pool->pmd, dev_id); 3581 if (r) { 3582 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3583 argv[1]); 3584 return r; 3585 } 3586 3587 return 0; 3588 } 3589 3590 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3591 { 3592 dm_thin_id dev_id; 3593 dm_thin_id origin_dev_id; 3594 int r; 3595 3596 r = check_arg_count(argc, 3); 3597 if (r) 3598 return r; 3599 3600 r = read_dev_id(argv[1], &dev_id, 1); 3601 if (r) 3602 return r; 3603 3604 r = read_dev_id(argv[2], &origin_dev_id, 1); 3605 if (r) 3606 return r; 3607 3608 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3609 if (r) { 3610 DMWARN("Creation of new snapshot %s of device %s failed.", 3611 argv[1], argv[2]); 3612 return r; 3613 } 3614 3615 return 0; 3616 } 3617 3618 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3619 { 3620 dm_thin_id dev_id; 3621 int r; 3622 3623 r = check_arg_count(argc, 2); 3624 if (r) 3625 return r; 3626 3627 r = read_dev_id(argv[1], &dev_id, 1); 3628 if (r) 3629 return r; 3630 3631 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3632 if (r) 3633 DMWARN("Deletion of thin device %s failed.", argv[1]); 3634 3635 return r; 3636 } 3637 3638 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3639 { 3640 dm_thin_id old_id, new_id; 3641 int r; 3642 3643 r = check_arg_count(argc, 3); 3644 if (r) 3645 return r; 3646 3647 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3648 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3649 return -EINVAL; 3650 } 3651 3652 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3653 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3654 return -EINVAL; 3655 } 3656 3657 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3658 if (r) { 3659 DMWARN("Failed to change transaction id from %s to %s.", 3660 argv[1], argv[2]); 3661 return r; 3662 } 3663 3664 return 0; 3665 } 3666 3667 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3668 { 3669 int r; 3670 3671 r = check_arg_count(argc, 1); 3672 if (r) 3673 return r; 3674 3675 (void) commit(pool); 3676 3677 r = dm_pool_reserve_metadata_snap(pool->pmd); 3678 if (r) 3679 DMWARN("reserve_metadata_snap message failed."); 3680 3681 return r; 3682 } 3683 3684 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3685 { 3686 int r; 3687 3688 r = check_arg_count(argc, 1); 3689 if (r) 3690 return r; 3691 3692 r = dm_pool_release_metadata_snap(pool->pmd); 3693 if (r) 3694 DMWARN("release_metadata_snap message failed."); 3695 3696 return r; 3697 } 3698 3699 /* 3700 * Messages supported: 3701 * create_thin <dev_id> 3702 * create_snap <dev_id> <origin_id> 3703 * delete <dev_id> 3704 * set_transaction_id <current_trans_id> <new_trans_id> 3705 * reserve_metadata_snap 3706 * release_metadata_snap 3707 */ 3708 static int pool_message(struct dm_target *ti, unsigned argc, char **argv, 3709 char *result, unsigned maxlen) 3710 { 3711 int r = -EINVAL; 3712 struct pool_c *pt = ti->private; 3713 struct pool *pool = pt->pool; 3714 3715 if (get_pool_mode(pool) >= PM_READ_ONLY) { 3716 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3717 dm_device_name(pool->pool_md)); 3718 return -EOPNOTSUPP; 3719 } 3720 3721 if (!strcasecmp(argv[0], "create_thin")) 3722 r = process_create_thin_mesg(argc, argv, pool); 3723 3724 else if (!strcasecmp(argv[0], "create_snap")) 3725 r = process_create_snap_mesg(argc, argv, pool); 3726 3727 else if (!strcasecmp(argv[0], "delete")) 3728 r = process_delete_mesg(argc, argv, pool); 3729 3730 else if (!strcasecmp(argv[0], "set_transaction_id")) 3731 r = process_set_transaction_id_mesg(argc, argv, pool); 3732 3733 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3734 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3735 3736 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3737 r = process_release_metadata_snap_mesg(argc, argv, pool); 3738 3739 else 3740 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3741 3742 if (!r) 3743 (void) commit(pool); 3744 3745 return r; 3746 } 3747 3748 static void emit_flags(struct pool_features *pf, char *result, 3749 unsigned sz, unsigned maxlen) 3750 { 3751 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3752 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3753 pf->error_if_no_space; 3754 DMEMIT("%u ", count); 3755 3756 if (!pf->zero_new_blocks) 3757 DMEMIT("skip_block_zeroing "); 3758 3759 if (!pf->discard_enabled) 3760 DMEMIT("ignore_discard "); 3761 3762 if (!pf->discard_passdown) 3763 DMEMIT("no_discard_passdown "); 3764 3765 if (pf->mode == PM_READ_ONLY) 3766 DMEMIT("read_only "); 3767 3768 if (pf->error_if_no_space) 3769 DMEMIT("error_if_no_space "); 3770 } 3771 3772 /* 3773 * Status line is: 3774 * <transaction id> <used metadata sectors>/<total metadata sectors> 3775 * <used data sectors>/<total data sectors> <held metadata root> 3776 * <pool mode> <discard config> <no space config> <needs_check> 3777 */ 3778 static void pool_status(struct dm_target *ti, status_type_t type, 3779 unsigned status_flags, char *result, unsigned maxlen) 3780 { 3781 int r; 3782 unsigned sz = 0; 3783 uint64_t transaction_id; 3784 dm_block_t nr_free_blocks_data; 3785 dm_block_t nr_free_blocks_metadata; 3786 dm_block_t nr_blocks_data; 3787 dm_block_t nr_blocks_metadata; 3788 dm_block_t held_root; 3789 char buf[BDEVNAME_SIZE]; 3790 char buf2[BDEVNAME_SIZE]; 3791 struct pool_c *pt = ti->private; 3792 struct pool *pool = pt->pool; 3793 3794 switch (type) { 3795 case STATUSTYPE_INFO: 3796 if (get_pool_mode(pool) == PM_FAIL) { 3797 DMEMIT("Fail"); 3798 break; 3799 } 3800 3801 /* Commit to ensure statistics aren't out-of-date */ 3802 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3803 (void) commit(pool); 3804 3805 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3806 if (r) { 3807 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3808 dm_device_name(pool->pool_md), r); 3809 goto err; 3810 } 3811 3812 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3813 if (r) { 3814 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3815 dm_device_name(pool->pool_md), r); 3816 goto err; 3817 } 3818 3819 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3820 if (r) { 3821 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3822 dm_device_name(pool->pool_md), r); 3823 goto err; 3824 } 3825 3826 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3827 if (r) { 3828 DMERR("%s: dm_pool_get_free_block_count returned %d", 3829 dm_device_name(pool->pool_md), r); 3830 goto err; 3831 } 3832 3833 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3834 if (r) { 3835 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3836 dm_device_name(pool->pool_md), r); 3837 goto err; 3838 } 3839 3840 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3841 if (r) { 3842 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3843 dm_device_name(pool->pool_md), r); 3844 goto err; 3845 } 3846 3847 DMEMIT("%llu %llu/%llu %llu/%llu ", 3848 (unsigned long long)transaction_id, 3849 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3850 (unsigned long long)nr_blocks_metadata, 3851 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3852 (unsigned long long)nr_blocks_data); 3853 3854 if (held_root) 3855 DMEMIT("%llu ", held_root); 3856 else 3857 DMEMIT("- "); 3858 3859 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3860 DMEMIT("out_of_data_space "); 3861 else if (pool->pf.mode == PM_READ_ONLY) 3862 DMEMIT("ro "); 3863 else 3864 DMEMIT("rw "); 3865 3866 if (!pool->pf.discard_enabled) 3867 DMEMIT("ignore_discard "); 3868 else if (pool->pf.discard_passdown) 3869 DMEMIT("discard_passdown "); 3870 else 3871 DMEMIT("no_discard_passdown "); 3872 3873 if (pool->pf.error_if_no_space) 3874 DMEMIT("error_if_no_space "); 3875 else 3876 DMEMIT("queue_if_no_space "); 3877 3878 if (dm_pool_metadata_needs_check(pool->pmd)) 3879 DMEMIT("needs_check "); 3880 else 3881 DMEMIT("- "); 3882 3883 break; 3884 3885 case STATUSTYPE_TABLE: 3886 DMEMIT("%s %s %lu %llu ", 3887 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3888 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3889 (unsigned long)pool->sectors_per_block, 3890 (unsigned long long)pt->low_water_blocks); 3891 emit_flags(&pt->requested_pf, result, sz, maxlen); 3892 break; 3893 } 3894 return; 3895 3896 err: 3897 DMEMIT("Error"); 3898 } 3899 3900 static int pool_iterate_devices(struct dm_target *ti, 3901 iterate_devices_callout_fn fn, void *data) 3902 { 3903 struct pool_c *pt = ti->private; 3904 3905 return fn(ti, pt->data_dev, 0, ti->len, data); 3906 } 3907 3908 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3909 { 3910 struct pool_c *pt = ti->private; 3911 struct pool *pool = pt->pool; 3912 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3913 3914 /* 3915 * If max_sectors is smaller than pool->sectors_per_block adjust it 3916 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3917 * This is especially beneficial when the pool's data device is a RAID 3918 * device that has a full stripe width that matches pool->sectors_per_block 3919 * -- because even though partial RAID stripe-sized IOs will be issued to a 3920 * single RAID stripe; when aggregated they will end on a full RAID stripe 3921 * boundary.. which avoids additional partial RAID stripe writes cascading 3922 */ 3923 if (limits->max_sectors < pool->sectors_per_block) { 3924 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3925 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3926 limits->max_sectors--; 3927 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3928 } 3929 } 3930 3931 /* 3932 * If the system-determined stacked limits are compatible with the 3933 * pool's blocksize (io_opt is a factor) do not override them. 3934 */ 3935 if (io_opt_sectors < pool->sectors_per_block || 3936 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3937 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3938 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3939 else 3940 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3941 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3942 } 3943 3944 /* 3945 * pt->adjusted_pf is a staging area for the actual features to use. 3946 * They get transferred to the live pool in bind_control_target() 3947 * called from pool_preresume(). 3948 */ 3949 if (!pt->adjusted_pf.discard_enabled) { 3950 /* 3951 * Must explicitly disallow stacking discard limits otherwise the 3952 * block layer will stack them if pool's data device has support. 3953 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3954 * user to see that, so make sure to set all discard limits to 0. 3955 */ 3956 limits->discard_granularity = 0; 3957 return; 3958 } 3959 3960 disable_passdown_if_not_supported(pt); 3961 3962 /* 3963 * The pool uses the same discard limits as the underlying data 3964 * device. DM core has already set this up. 3965 */ 3966 } 3967 3968 static struct target_type pool_target = { 3969 .name = "thin-pool", 3970 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3971 DM_TARGET_IMMUTABLE, 3972 .version = {1, 19, 0}, 3973 .module = THIS_MODULE, 3974 .ctr = pool_ctr, 3975 .dtr = pool_dtr, 3976 .map = pool_map, 3977 .presuspend = pool_presuspend, 3978 .presuspend_undo = pool_presuspend_undo, 3979 .postsuspend = pool_postsuspend, 3980 .preresume = pool_preresume, 3981 .resume = pool_resume, 3982 .message = pool_message, 3983 .status = pool_status, 3984 .iterate_devices = pool_iterate_devices, 3985 .io_hints = pool_io_hints, 3986 }; 3987 3988 /*---------------------------------------------------------------- 3989 * Thin target methods 3990 *--------------------------------------------------------------*/ 3991 static void thin_get(struct thin_c *tc) 3992 { 3993 atomic_inc(&tc->refcount); 3994 } 3995 3996 static void thin_put(struct thin_c *tc) 3997 { 3998 if (atomic_dec_and_test(&tc->refcount)) 3999 complete(&tc->can_destroy); 4000 } 4001 4002 static void thin_dtr(struct dm_target *ti) 4003 { 4004 struct thin_c *tc = ti->private; 4005 unsigned long flags; 4006 4007 spin_lock_irqsave(&tc->pool->lock, flags); 4008 list_del_rcu(&tc->list); 4009 spin_unlock_irqrestore(&tc->pool->lock, flags); 4010 synchronize_rcu(); 4011 4012 thin_put(tc); 4013 wait_for_completion(&tc->can_destroy); 4014 4015 mutex_lock(&dm_thin_pool_table.mutex); 4016 4017 __pool_dec(tc->pool); 4018 dm_pool_close_thin_device(tc->td); 4019 dm_put_device(ti, tc->pool_dev); 4020 if (tc->origin_dev) 4021 dm_put_device(ti, tc->origin_dev); 4022 kfree(tc); 4023 4024 mutex_unlock(&dm_thin_pool_table.mutex); 4025 } 4026 4027 /* 4028 * Thin target parameters: 4029 * 4030 * <pool_dev> <dev_id> [origin_dev] 4031 * 4032 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4033 * dev_id: the internal device identifier 4034 * origin_dev: a device external to the pool that should act as the origin 4035 * 4036 * If the pool device has discards disabled, they get disabled for the thin 4037 * device as well. 4038 */ 4039 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4040 { 4041 int r; 4042 struct thin_c *tc; 4043 struct dm_dev *pool_dev, *origin_dev; 4044 struct mapped_device *pool_md; 4045 unsigned long flags; 4046 4047 mutex_lock(&dm_thin_pool_table.mutex); 4048 4049 if (argc != 2 && argc != 3) { 4050 ti->error = "Invalid argument count"; 4051 r = -EINVAL; 4052 goto out_unlock; 4053 } 4054 4055 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4056 if (!tc) { 4057 ti->error = "Out of memory"; 4058 r = -ENOMEM; 4059 goto out_unlock; 4060 } 4061 tc->thin_md = dm_table_get_md(ti->table); 4062 spin_lock_init(&tc->lock); 4063 INIT_LIST_HEAD(&tc->deferred_cells); 4064 bio_list_init(&tc->deferred_bio_list); 4065 bio_list_init(&tc->retry_on_resume_list); 4066 tc->sort_bio_list = RB_ROOT; 4067 4068 if (argc == 3) { 4069 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4070 if (r) { 4071 ti->error = "Error opening origin device"; 4072 goto bad_origin_dev; 4073 } 4074 tc->origin_dev = origin_dev; 4075 } 4076 4077 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4078 if (r) { 4079 ti->error = "Error opening pool device"; 4080 goto bad_pool_dev; 4081 } 4082 tc->pool_dev = pool_dev; 4083 4084 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4085 ti->error = "Invalid device id"; 4086 r = -EINVAL; 4087 goto bad_common; 4088 } 4089 4090 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4091 if (!pool_md) { 4092 ti->error = "Couldn't get pool mapped device"; 4093 r = -EINVAL; 4094 goto bad_common; 4095 } 4096 4097 tc->pool = __pool_table_lookup(pool_md); 4098 if (!tc->pool) { 4099 ti->error = "Couldn't find pool object"; 4100 r = -EINVAL; 4101 goto bad_pool_lookup; 4102 } 4103 __pool_inc(tc->pool); 4104 4105 if (get_pool_mode(tc->pool) == PM_FAIL) { 4106 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4107 r = -EINVAL; 4108 goto bad_pool; 4109 } 4110 4111 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4112 if (r) { 4113 ti->error = "Couldn't open thin internal device"; 4114 goto bad_pool; 4115 } 4116 4117 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4118 if (r) 4119 goto bad; 4120 4121 ti->num_flush_bios = 1; 4122 ti->flush_supported = true; 4123 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4124 4125 /* In case the pool supports discards, pass them on. */ 4126 if (tc->pool->pf.discard_enabled) { 4127 ti->discards_supported = true; 4128 ti->num_discard_bios = 1; 4129 ti->split_discard_bios = false; 4130 } 4131 4132 mutex_unlock(&dm_thin_pool_table.mutex); 4133 4134 spin_lock_irqsave(&tc->pool->lock, flags); 4135 if (tc->pool->suspended) { 4136 spin_unlock_irqrestore(&tc->pool->lock, flags); 4137 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4138 ti->error = "Unable to activate thin device while pool is suspended"; 4139 r = -EINVAL; 4140 goto bad; 4141 } 4142 atomic_set(&tc->refcount, 1); 4143 init_completion(&tc->can_destroy); 4144 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4145 spin_unlock_irqrestore(&tc->pool->lock, flags); 4146 /* 4147 * This synchronize_rcu() call is needed here otherwise we risk a 4148 * wake_worker() call finding no bios to process (because the newly 4149 * added tc isn't yet visible). So this reduces latency since we 4150 * aren't then dependent on the periodic commit to wake_worker(). 4151 */ 4152 synchronize_rcu(); 4153 4154 dm_put(pool_md); 4155 4156 return 0; 4157 4158 bad: 4159 dm_pool_close_thin_device(tc->td); 4160 bad_pool: 4161 __pool_dec(tc->pool); 4162 bad_pool_lookup: 4163 dm_put(pool_md); 4164 bad_common: 4165 dm_put_device(ti, tc->pool_dev); 4166 bad_pool_dev: 4167 if (tc->origin_dev) 4168 dm_put_device(ti, tc->origin_dev); 4169 bad_origin_dev: 4170 kfree(tc); 4171 out_unlock: 4172 mutex_unlock(&dm_thin_pool_table.mutex); 4173 4174 return r; 4175 } 4176 4177 static int thin_map(struct dm_target *ti, struct bio *bio) 4178 { 4179 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4180 4181 return thin_bio_map(ti, bio); 4182 } 4183 4184 static int thin_endio(struct dm_target *ti, struct bio *bio, 4185 blk_status_t *err) 4186 { 4187 unsigned long flags; 4188 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4189 struct list_head work; 4190 struct dm_thin_new_mapping *m, *tmp; 4191 struct pool *pool = h->tc->pool; 4192 4193 if (h->shared_read_entry) { 4194 INIT_LIST_HEAD(&work); 4195 dm_deferred_entry_dec(h->shared_read_entry, &work); 4196 4197 spin_lock_irqsave(&pool->lock, flags); 4198 list_for_each_entry_safe(m, tmp, &work, list) { 4199 list_del(&m->list); 4200 __complete_mapping_preparation(m); 4201 } 4202 spin_unlock_irqrestore(&pool->lock, flags); 4203 } 4204 4205 if (h->all_io_entry) { 4206 INIT_LIST_HEAD(&work); 4207 dm_deferred_entry_dec(h->all_io_entry, &work); 4208 if (!list_empty(&work)) { 4209 spin_lock_irqsave(&pool->lock, flags); 4210 list_for_each_entry_safe(m, tmp, &work, list) 4211 list_add_tail(&m->list, &pool->prepared_discards); 4212 spin_unlock_irqrestore(&pool->lock, flags); 4213 wake_worker(pool); 4214 } 4215 } 4216 4217 if (h->cell) 4218 cell_defer_no_holder(h->tc, h->cell); 4219 4220 return DM_ENDIO_DONE; 4221 } 4222 4223 static void thin_presuspend(struct dm_target *ti) 4224 { 4225 struct thin_c *tc = ti->private; 4226 4227 if (dm_noflush_suspending(ti)) 4228 noflush_work(tc, do_noflush_start); 4229 } 4230 4231 static void thin_postsuspend(struct dm_target *ti) 4232 { 4233 struct thin_c *tc = ti->private; 4234 4235 /* 4236 * The dm_noflush_suspending flag has been cleared by now, so 4237 * unfortunately we must always run this. 4238 */ 4239 noflush_work(tc, do_noflush_stop); 4240 } 4241 4242 static int thin_preresume(struct dm_target *ti) 4243 { 4244 struct thin_c *tc = ti->private; 4245 4246 if (tc->origin_dev) 4247 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4248 4249 return 0; 4250 } 4251 4252 /* 4253 * <nr mapped sectors> <highest mapped sector> 4254 */ 4255 static void thin_status(struct dm_target *ti, status_type_t type, 4256 unsigned status_flags, char *result, unsigned maxlen) 4257 { 4258 int r; 4259 ssize_t sz = 0; 4260 dm_block_t mapped, highest; 4261 char buf[BDEVNAME_SIZE]; 4262 struct thin_c *tc = ti->private; 4263 4264 if (get_pool_mode(tc->pool) == PM_FAIL) { 4265 DMEMIT("Fail"); 4266 return; 4267 } 4268 4269 if (!tc->td) 4270 DMEMIT("-"); 4271 else { 4272 switch (type) { 4273 case STATUSTYPE_INFO: 4274 r = dm_thin_get_mapped_count(tc->td, &mapped); 4275 if (r) { 4276 DMERR("dm_thin_get_mapped_count returned %d", r); 4277 goto err; 4278 } 4279 4280 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4281 if (r < 0) { 4282 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4283 goto err; 4284 } 4285 4286 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4287 if (r) 4288 DMEMIT("%llu", ((highest + 1) * 4289 tc->pool->sectors_per_block) - 1); 4290 else 4291 DMEMIT("-"); 4292 break; 4293 4294 case STATUSTYPE_TABLE: 4295 DMEMIT("%s %lu", 4296 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4297 (unsigned long) tc->dev_id); 4298 if (tc->origin_dev) 4299 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4300 break; 4301 } 4302 } 4303 4304 return; 4305 4306 err: 4307 DMEMIT("Error"); 4308 } 4309 4310 static int thin_iterate_devices(struct dm_target *ti, 4311 iterate_devices_callout_fn fn, void *data) 4312 { 4313 sector_t blocks; 4314 struct thin_c *tc = ti->private; 4315 struct pool *pool = tc->pool; 4316 4317 /* 4318 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4319 * we follow a more convoluted path through to the pool's target. 4320 */ 4321 if (!pool->ti) 4322 return 0; /* nothing is bound */ 4323 4324 blocks = pool->ti->len; 4325 (void) sector_div(blocks, pool->sectors_per_block); 4326 if (blocks) 4327 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4328 4329 return 0; 4330 } 4331 4332 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4333 { 4334 struct thin_c *tc = ti->private; 4335 struct pool *pool = tc->pool; 4336 4337 if (!pool->pf.discard_enabled) 4338 return; 4339 4340 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4341 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4342 } 4343 4344 static struct target_type thin_target = { 4345 .name = "thin", 4346 .version = {1, 19, 0}, 4347 .module = THIS_MODULE, 4348 .ctr = thin_ctr, 4349 .dtr = thin_dtr, 4350 .map = thin_map, 4351 .end_io = thin_endio, 4352 .preresume = thin_preresume, 4353 .presuspend = thin_presuspend, 4354 .postsuspend = thin_postsuspend, 4355 .status = thin_status, 4356 .iterate_devices = thin_iterate_devices, 4357 .io_hints = thin_io_hints, 4358 }; 4359 4360 /*----------------------------------------------------------------*/ 4361 4362 static int __init dm_thin_init(void) 4363 { 4364 int r = -ENOMEM; 4365 4366 pool_table_init(); 4367 4368 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4369 if (!_new_mapping_cache) 4370 return r; 4371 4372 r = dm_register_target(&thin_target); 4373 if (r) 4374 goto bad_new_mapping_cache; 4375 4376 r = dm_register_target(&pool_target); 4377 if (r) 4378 goto bad_thin_target; 4379 4380 return 0; 4381 4382 bad_thin_target: 4383 dm_unregister_target(&thin_target); 4384 bad_new_mapping_cache: 4385 kmem_cache_destroy(_new_mapping_cache); 4386 4387 return r; 4388 } 4389 4390 static void dm_thin_exit(void) 4391 { 4392 dm_unregister_target(&thin_target); 4393 dm_unregister_target(&pool_target); 4394 4395 kmem_cache_destroy(_new_mapping_cache); 4396 4397 pool_table_exit(); 4398 } 4399 4400 module_init(dm_thin_init); 4401 module_exit(dm_thin_exit); 4402 4403 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4404 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4405 4406 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4407 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4408 MODULE_LICENSE("GPL"); 4409