1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/log2.h> 15 #include <linux/list.h> 16 #include <linux/rculist.h> 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/sort.h> 21 #include <linux/rbtree.h> 22 23 #define DM_MSG_PREFIX "thin" 24 25 /* 26 * Tunable constants 27 */ 28 #define ENDIO_HOOK_POOL_SIZE 1024 29 #define MAPPING_POOL_SIZE 1024 30 #define COMMIT_PERIOD HZ 31 #define NO_SPACE_TIMEOUT_SECS 60 32 33 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 34 35 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 36 "A percentage of time allocated for copy on write"); 37 38 /* 39 * The block size of the device holding pool data must be 40 * between 64KB and 1GB. 41 */ 42 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 43 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 44 45 /* 46 * Device id is restricted to 24 bits. 47 */ 48 #define MAX_DEV_ID ((1 << 24) - 1) 49 50 /* 51 * How do we handle breaking sharing of data blocks? 52 * ================================================= 53 * 54 * We use a standard copy-on-write btree to store the mappings for the 55 * devices (note I'm talking about copy-on-write of the metadata here, not 56 * the data). When you take an internal snapshot you clone the root node 57 * of the origin btree. After this there is no concept of an origin or a 58 * snapshot. They are just two device trees that happen to point to the 59 * same data blocks. 60 * 61 * When we get a write in we decide if it's to a shared data block using 62 * some timestamp magic. If it is, we have to break sharing. 63 * 64 * Let's say we write to a shared block in what was the origin. The 65 * steps are: 66 * 67 * i) plug io further to this physical block. (see bio_prison code). 68 * 69 * ii) quiesce any read io to that shared data block. Obviously 70 * including all devices that share this block. (see dm_deferred_set code) 71 * 72 * iii) copy the data block to a newly allocate block. This step can be 73 * missed out if the io covers the block. (schedule_copy). 74 * 75 * iv) insert the new mapping into the origin's btree 76 * (process_prepared_mapping). This act of inserting breaks some 77 * sharing of btree nodes between the two devices. Breaking sharing only 78 * effects the btree of that specific device. Btrees for the other 79 * devices that share the block never change. The btree for the origin 80 * device as it was after the last commit is untouched, ie. we're using 81 * persistent data structures in the functional programming sense. 82 * 83 * v) unplug io to this physical block, including the io that triggered 84 * the breaking of sharing. 85 * 86 * Steps (ii) and (iii) occur in parallel. 87 * 88 * The metadata _doesn't_ need to be committed before the io continues. We 89 * get away with this because the io is always written to a _new_ block. 90 * If there's a crash, then: 91 * 92 * - The origin mapping will point to the old origin block (the shared 93 * one). This will contain the data as it was before the io that triggered 94 * the breaking of sharing came in. 95 * 96 * - The snap mapping still points to the old block. As it would after 97 * the commit. 98 * 99 * The downside of this scheme is the timestamp magic isn't perfect, and 100 * will continue to think that data block in the snapshot device is shared 101 * even after the write to the origin has broken sharing. I suspect data 102 * blocks will typically be shared by many different devices, so we're 103 * breaking sharing n + 1 times, rather than n, where n is the number of 104 * devices that reference this data block. At the moment I think the 105 * benefits far, far outweigh the disadvantages. 106 */ 107 108 /*----------------------------------------------------------------*/ 109 110 /* 111 * Key building. 112 */ 113 static void build_data_key(struct dm_thin_device *td, 114 dm_block_t b, struct dm_cell_key *key) 115 { 116 key->virtual = 0; 117 key->dev = dm_thin_dev_id(td); 118 key->block_begin = b; 119 key->block_end = b + 1ULL; 120 } 121 122 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 123 struct dm_cell_key *key) 124 { 125 key->virtual = 1; 126 key->dev = dm_thin_dev_id(td); 127 key->block_begin = b; 128 key->block_end = b + 1ULL; 129 } 130 131 /*----------------------------------------------------------------*/ 132 133 #define THROTTLE_THRESHOLD (1 * HZ) 134 135 struct throttle { 136 struct rw_semaphore lock; 137 unsigned long threshold; 138 bool throttle_applied; 139 }; 140 141 static void throttle_init(struct throttle *t) 142 { 143 init_rwsem(&t->lock); 144 t->throttle_applied = false; 145 } 146 147 static void throttle_work_start(struct throttle *t) 148 { 149 t->threshold = jiffies + THROTTLE_THRESHOLD; 150 } 151 152 static void throttle_work_update(struct throttle *t) 153 { 154 if (!t->throttle_applied && jiffies > t->threshold) { 155 down_write(&t->lock); 156 t->throttle_applied = true; 157 } 158 } 159 160 static void throttle_work_complete(struct throttle *t) 161 { 162 if (t->throttle_applied) { 163 t->throttle_applied = false; 164 up_write(&t->lock); 165 } 166 } 167 168 static void throttle_lock(struct throttle *t) 169 { 170 down_read(&t->lock); 171 } 172 173 static void throttle_unlock(struct throttle *t) 174 { 175 up_read(&t->lock); 176 } 177 178 /*----------------------------------------------------------------*/ 179 180 /* 181 * A pool device ties together a metadata device and a data device. It 182 * also provides the interface for creating and destroying internal 183 * devices. 184 */ 185 struct dm_thin_new_mapping; 186 187 /* 188 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 189 */ 190 enum pool_mode { 191 PM_WRITE, /* metadata may be changed */ 192 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 193 PM_READ_ONLY, /* metadata may not be changed */ 194 PM_FAIL, /* all I/O fails */ 195 }; 196 197 struct pool_features { 198 enum pool_mode mode; 199 200 bool zero_new_blocks:1; 201 bool discard_enabled:1; 202 bool discard_passdown:1; 203 bool error_if_no_space:1; 204 }; 205 206 struct thin_c; 207 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 208 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 209 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 210 211 #define CELL_SORT_ARRAY_SIZE 8192 212 213 struct pool { 214 struct list_head list; 215 struct dm_target *ti; /* Only set if a pool target is bound */ 216 217 struct mapped_device *pool_md; 218 struct block_device *md_dev; 219 struct dm_pool_metadata *pmd; 220 221 dm_block_t low_water_blocks; 222 uint32_t sectors_per_block; 223 int sectors_per_block_shift; 224 225 struct pool_features pf; 226 bool low_water_triggered:1; /* A dm event has been sent */ 227 bool suspended:1; 228 229 struct dm_bio_prison *prison; 230 struct dm_kcopyd_client *copier; 231 232 struct workqueue_struct *wq; 233 struct throttle throttle; 234 struct work_struct worker; 235 struct delayed_work waker; 236 struct delayed_work no_space_timeout; 237 238 unsigned long last_commit_jiffies; 239 unsigned ref_count; 240 241 spinlock_t lock; 242 struct bio_list deferred_flush_bios; 243 struct list_head prepared_mappings; 244 struct list_head prepared_discards; 245 struct list_head active_thins; 246 247 struct dm_deferred_set *shared_read_ds; 248 struct dm_deferred_set *all_io_ds; 249 250 struct dm_thin_new_mapping *next_mapping; 251 mempool_t *mapping_pool; 252 253 process_bio_fn process_bio; 254 process_bio_fn process_discard; 255 256 process_cell_fn process_cell; 257 process_cell_fn process_discard_cell; 258 259 process_mapping_fn process_prepared_mapping; 260 process_mapping_fn process_prepared_discard; 261 262 struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE]; 263 }; 264 265 static enum pool_mode get_pool_mode(struct pool *pool); 266 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 267 268 /* 269 * Target context for a pool. 270 */ 271 struct pool_c { 272 struct dm_target *ti; 273 struct pool *pool; 274 struct dm_dev *data_dev; 275 struct dm_dev *metadata_dev; 276 struct dm_target_callbacks callbacks; 277 278 dm_block_t low_water_blocks; 279 struct pool_features requested_pf; /* Features requested during table load */ 280 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 281 }; 282 283 /* 284 * Target context for a thin. 285 */ 286 struct thin_c { 287 struct list_head list; 288 struct dm_dev *pool_dev; 289 struct dm_dev *origin_dev; 290 sector_t origin_size; 291 dm_thin_id dev_id; 292 293 struct pool *pool; 294 struct dm_thin_device *td; 295 struct mapped_device *thin_md; 296 297 bool requeue_mode:1; 298 spinlock_t lock; 299 struct list_head deferred_cells; 300 struct bio_list deferred_bio_list; 301 struct bio_list retry_on_resume_list; 302 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 303 304 /* 305 * Ensures the thin is not destroyed until the worker has finished 306 * iterating the active_thins list. 307 */ 308 atomic_t refcount; 309 struct completion can_destroy; 310 }; 311 312 /*----------------------------------------------------------------*/ 313 314 /* 315 * wake_worker() is used when new work is queued and when pool_resume is 316 * ready to continue deferred IO processing. 317 */ 318 static void wake_worker(struct pool *pool) 319 { 320 queue_work(pool->wq, &pool->worker); 321 } 322 323 /*----------------------------------------------------------------*/ 324 325 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 326 struct dm_bio_prison_cell **cell_result) 327 { 328 int r; 329 struct dm_bio_prison_cell *cell_prealloc; 330 331 /* 332 * Allocate a cell from the prison's mempool. 333 * This might block but it can't fail. 334 */ 335 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 336 337 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 338 if (r) 339 /* 340 * We reused an old cell; we can get rid of 341 * the new one. 342 */ 343 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 344 345 return r; 346 } 347 348 static void cell_release(struct pool *pool, 349 struct dm_bio_prison_cell *cell, 350 struct bio_list *bios) 351 { 352 dm_cell_release(pool->prison, cell, bios); 353 dm_bio_prison_free_cell(pool->prison, cell); 354 } 355 356 static void cell_visit_release(struct pool *pool, 357 void (*fn)(void *, struct dm_bio_prison_cell *), 358 void *context, 359 struct dm_bio_prison_cell *cell) 360 { 361 dm_cell_visit_release(pool->prison, fn, context, cell); 362 dm_bio_prison_free_cell(pool->prison, cell); 363 } 364 365 static void cell_release_no_holder(struct pool *pool, 366 struct dm_bio_prison_cell *cell, 367 struct bio_list *bios) 368 { 369 dm_cell_release_no_holder(pool->prison, cell, bios); 370 dm_bio_prison_free_cell(pool->prison, cell); 371 } 372 373 static void cell_error_with_code(struct pool *pool, 374 struct dm_bio_prison_cell *cell, int error_code) 375 { 376 dm_cell_error(pool->prison, cell, error_code); 377 dm_bio_prison_free_cell(pool->prison, cell); 378 } 379 380 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 381 { 382 cell_error_with_code(pool, cell, -EIO); 383 } 384 385 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 386 { 387 cell_error_with_code(pool, cell, 0); 388 } 389 390 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 391 { 392 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE); 393 } 394 395 /*----------------------------------------------------------------*/ 396 397 /* 398 * A global list of pools that uses a struct mapped_device as a key. 399 */ 400 static struct dm_thin_pool_table { 401 struct mutex mutex; 402 struct list_head pools; 403 } dm_thin_pool_table; 404 405 static void pool_table_init(void) 406 { 407 mutex_init(&dm_thin_pool_table.mutex); 408 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 409 } 410 411 static void __pool_table_insert(struct pool *pool) 412 { 413 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 414 list_add(&pool->list, &dm_thin_pool_table.pools); 415 } 416 417 static void __pool_table_remove(struct pool *pool) 418 { 419 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 420 list_del(&pool->list); 421 } 422 423 static struct pool *__pool_table_lookup(struct mapped_device *md) 424 { 425 struct pool *pool = NULL, *tmp; 426 427 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 428 429 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 430 if (tmp->pool_md == md) { 431 pool = tmp; 432 break; 433 } 434 } 435 436 return pool; 437 } 438 439 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 440 { 441 struct pool *pool = NULL, *tmp; 442 443 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 444 445 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 446 if (tmp->md_dev == md_dev) { 447 pool = tmp; 448 break; 449 } 450 } 451 452 return pool; 453 } 454 455 /*----------------------------------------------------------------*/ 456 457 struct dm_thin_endio_hook { 458 struct thin_c *tc; 459 struct dm_deferred_entry *shared_read_entry; 460 struct dm_deferred_entry *all_io_entry; 461 struct dm_thin_new_mapping *overwrite_mapping; 462 struct rb_node rb_node; 463 }; 464 465 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 466 { 467 bio_list_merge(bios, master); 468 bio_list_init(master); 469 } 470 471 static void error_bio_list(struct bio_list *bios, int error) 472 { 473 struct bio *bio; 474 475 while ((bio = bio_list_pop(bios))) 476 bio_endio(bio, error); 477 } 478 479 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error) 480 { 481 struct bio_list bios; 482 unsigned long flags; 483 484 bio_list_init(&bios); 485 486 spin_lock_irqsave(&tc->lock, flags); 487 __merge_bio_list(&bios, master); 488 spin_unlock_irqrestore(&tc->lock, flags); 489 490 error_bio_list(&bios, error); 491 } 492 493 static void requeue_deferred_cells(struct thin_c *tc) 494 { 495 struct pool *pool = tc->pool; 496 unsigned long flags; 497 struct list_head cells; 498 struct dm_bio_prison_cell *cell, *tmp; 499 500 INIT_LIST_HEAD(&cells); 501 502 spin_lock_irqsave(&tc->lock, flags); 503 list_splice_init(&tc->deferred_cells, &cells); 504 spin_unlock_irqrestore(&tc->lock, flags); 505 506 list_for_each_entry_safe(cell, tmp, &cells, user_list) 507 cell_requeue(pool, cell); 508 } 509 510 static void requeue_io(struct thin_c *tc) 511 { 512 struct bio_list bios; 513 unsigned long flags; 514 515 bio_list_init(&bios); 516 517 spin_lock_irqsave(&tc->lock, flags); 518 __merge_bio_list(&bios, &tc->deferred_bio_list); 519 __merge_bio_list(&bios, &tc->retry_on_resume_list); 520 spin_unlock_irqrestore(&tc->lock, flags); 521 522 error_bio_list(&bios, DM_ENDIO_REQUEUE); 523 requeue_deferred_cells(tc); 524 } 525 526 static void error_retry_list(struct pool *pool) 527 { 528 struct thin_c *tc; 529 530 rcu_read_lock(); 531 list_for_each_entry_rcu(tc, &pool->active_thins, list) 532 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO); 533 rcu_read_unlock(); 534 } 535 536 /* 537 * This section of code contains the logic for processing a thin device's IO. 538 * Much of the code depends on pool object resources (lists, workqueues, etc) 539 * but most is exclusively called from the thin target rather than the thin-pool 540 * target. 541 */ 542 543 static bool block_size_is_power_of_two(struct pool *pool) 544 { 545 return pool->sectors_per_block_shift >= 0; 546 } 547 548 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 549 { 550 struct pool *pool = tc->pool; 551 sector_t block_nr = bio->bi_iter.bi_sector; 552 553 if (block_size_is_power_of_two(pool)) 554 block_nr >>= pool->sectors_per_block_shift; 555 else 556 (void) sector_div(block_nr, pool->sectors_per_block); 557 558 return block_nr; 559 } 560 561 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 562 { 563 struct pool *pool = tc->pool; 564 sector_t bi_sector = bio->bi_iter.bi_sector; 565 566 bio->bi_bdev = tc->pool_dev->bdev; 567 if (block_size_is_power_of_two(pool)) 568 bio->bi_iter.bi_sector = 569 (block << pool->sectors_per_block_shift) | 570 (bi_sector & (pool->sectors_per_block - 1)); 571 else 572 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 573 sector_div(bi_sector, pool->sectors_per_block); 574 } 575 576 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 577 { 578 bio->bi_bdev = tc->origin_dev->bdev; 579 } 580 581 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 582 { 583 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 584 dm_thin_changed_this_transaction(tc->td); 585 } 586 587 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 588 { 589 struct dm_thin_endio_hook *h; 590 591 if (bio->bi_rw & REQ_DISCARD) 592 return; 593 594 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 595 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 596 } 597 598 static void issue(struct thin_c *tc, struct bio *bio) 599 { 600 struct pool *pool = tc->pool; 601 unsigned long flags; 602 603 if (!bio_triggers_commit(tc, bio)) { 604 generic_make_request(bio); 605 return; 606 } 607 608 /* 609 * Complete bio with an error if earlier I/O caused changes to 610 * the metadata that can't be committed e.g, due to I/O errors 611 * on the metadata device. 612 */ 613 if (dm_thin_aborted_changes(tc->td)) { 614 bio_io_error(bio); 615 return; 616 } 617 618 /* 619 * Batch together any bios that trigger commits and then issue a 620 * single commit for them in process_deferred_bios(). 621 */ 622 spin_lock_irqsave(&pool->lock, flags); 623 bio_list_add(&pool->deferred_flush_bios, bio); 624 spin_unlock_irqrestore(&pool->lock, flags); 625 } 626 627 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 628 { 629 remap_to_origin(tc, bio); 630 issue(tc, bio); 631 } 632 633 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 634 dm_block_t block) 635 { 636 remap(tc, bio, block); 637 issue(tc, bio); 638 } 639 640 /*----------------------------------------------------------------*/ 641 642 /* 643 * Bio endio functions. 644 */ 645 struct dm_thin_new_mapping { 646 struct list_head list; 647 648 bool pass_discard:1; 649 bool definitely_not_shared:1; 650 651 /* 652 * Track quiescing, copying and zeroing preparation actions. When this 653 * counter hits zero the block is prepared and can be inserted into the 654 * btree. 655 */ 656 atomic_t prepare_actions; 657 658 int err; 659 struct thin_c *tc; 660 dm_block_t virt_block; 661 dm_block_t data_block; 662 struct dm_bio_prison_cell *cell, *cell2; 663 664 /* 665 * If the bio covers the whole area of a block then we can avoid 666 * zeroing or copying. Instead this bio is hooked. The bio will 667 * still be in the cell, so care has to be taken to avoid issuing 668 * the bio twice. 669 */ 670 struct bio *bio; 671 bio_end_io_t *saved_bi_end_io; 672 }; 673 674 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 675 { 676 struct pool *pool = m->tc->pool; 677 678 if (atomic_dec_and_test(&m->prepare_actions)) { 679 list_add_tail(&m->list, &pool->prepared_mappings); 680 wake_worker(pool); 681 } 682 } 683 684 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 685 { 686 unsigned long flags; 687 struct pool *pool = m->tc->pool; 688 689 spin_lock_irqsave(&pool->lock, flags); 690 __complete_mapping_preparation(m); 691 spin_unlock_irqrestore(&pool->lock, flags); 692 } 693 694 static void copy_complete(int read_err, unsigned long write_err, void *context) 695 { 696 struct dm_thin_new_mapping *m = context; 697 698 m->err = read_err || write_err ? -EIO : 0; 699 complete_mapping_preparation(m); 700 } 701 702 static void overwrite_endio(struct bio *bio, int err) 703 { 704 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 705 struct dm_thin_new_mapping *m = h->overwrite_mapping; 706 707 m->err = err; 708 complete_mapping_preparation(m); 709 } 710 711 /*----------------------------------------------------------------*/ 712 713 /* 714 * Workqueue. 715 */ 716 717 /* 718 * Prepared mapping jobs. 719 */ 720 721 /* 722 * This sends the bios in the cell, except the original holder, back 723 * to the deferred_bios list. 724 */ 725 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 726 { 727 struct pool *pool = tc->pool; 728 unsigned long flags; 729 730 spin_lock_irqsave(&tc->lock, flags); 731 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 732 spin_unlock_irqrestore(&tc->lock, flags); 733 734 wake_worker(pool); 735 } 736 737 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 738 739 struct remap_info { 740 struct thin_c *tc; 741 struct bio_list defer_bios; 742 struct bio_list issue_bios; 743 }; 744 745 static void __inc_remap_and_issue_cell(void *context, 746 struct dm_bio_prison_cell *cell) 747 { 748 struct remap_info *info = context; 749 struct bio *bio; 750 751 while ((bio = bio_list_pop(&cell->bios))) { 752 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) 753 bio_list_add(&info->defer_bios, bio); 754 else { 755 inc_all_io_entry(info->tc->pool, bio); 756 757 /* 758 * We can't issue the bios with the bio prison lock 759 * held, so we add them to a list to issue on 760 * return from this function. 761 */ 762 bio_list_add(&info->issue_bios, bio); 763 } 764 } 765 } 766 767 static void inc_remap_and_issue_cell(struct thin_c *tc, 768 struct dm_bio_prison_cell *cell, 769 dm_block_t block) 770 { 771 struct bio *bio; 772 struct remap_info info; 773 774 info.tc = tc; 775 bio_list_init(&info.defer_bios); 776 bio_list_init(&info.issue_bios); 777 778 /* 779 * We have to be careful to inc any bios we're about to issue 780 * before the cell is released, and avoid a race with new bios 781 * being added to the cell. 782 */ 783 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 784 &info, cell); 785 786 while ((bio = bio_list_pop(&info.defer_bios))) 787 thin_defer_bio(tc, bio); 788 789 while ((bio = bio_list_pop(&info.issue_bios))) 790 remap_and_issue(info.tc, bio, block); 791 } 792 793 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 794 { 795 if (m->bio) { 796 m->bio->bi_end_io = m->saved_bi_end_io; 797 atomic_inc(&m->bio->bi_remaining); 798 } 799 cell_error(m->tc->pool, m->cell); 800 list_del(&m->list); 801 mempool_free(m, m->tc->pool->mapping_pool); 802 } 803 804 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 805 { 806 struct thin_c *tc = m->tc; 807 struct pool *pool = tc->pool; 808 struct bio *bio; 809 int r; 810 811 bio = m->bio; 812 if (bio) { 813 bio->bi_end_io = m->saved_bi_end_io; 814 atomic_inc(&bio->bi_remaining); 815 } 816 817 if (m->err) { 818 cell_error(pool, m->cell); 819 goto out; 820 } 821 822 /* 823 * Commit the prepared block into the mapping btree. 824 * Any I/O for this block arriving after this point will get 825 * remapped to it directly. 826 */ 827 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 828 if (r) { 829 metadata_operation_failed(pool, "dm_thin_insert_block", r); 830 cell_error(pool, m->cell); 831 goto out; 832 } 833 834 /* 835 * Release any bios held while the block was being provisioned. 836 * If we are processing a write bio that completely covers the block, 837 * we already processed it so can ignore it now when processing 838 * the bios in the cell. 839 */ 840 if (bio) { 841 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 842 bio_endio(bio, 0); 843 } else { 844 inc_all_io_entry(tc->pool, m->cell->holder); 845 remap_and_issue(tc, m->cell->holder, m->data_block); 846 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 847 } 848 849 out: 850 list_del(&m->list); 851 mempool_free(m, pool->mapping_pool); 852 } 853 854 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 855 { 856 struct thin_c *tc = m->tc; 857 858 bio_io_error(m->bio); 859 cell_defer_no_holder(tc, m->cell); 860 cell_defer_no_holder(tc, m->cell2); 861 mempool_free(m, tc->pool->mapping_pool); 862 } 863 864 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 865 { 866 struct thin_c *tc = m->tc; 867 868 inc_all_io_entry(tc->pool, m->bio); 869 cell_defer_no_holder(tc, m->cell); 870 cell_defer_no_holder(tc, m->cell2); 871 872 if (m->pass_discard) 873 if (m->definitely_not_shared) 874 remap_and_issue(tc, m->bio, m->data_block); 875 else { 876 bool used = false; 877 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used) 878 bio_endio(m->bio, 0); 879 else 880 remap_and_issue(tc, m->bio, m->data_block); 881 } 882 else 883 bio_endio(m->bio, 0); 884 885 mempool_free(m, tc->pool->mapping_pool); 886 } 887 888 static void process_prepared_discard(struct dm_thin_new_mapping *m) 889 { 890 int r; 891 struct thin_c *tc = m->tc; 892 893 r = dm_thin_remove_block(tc->td, m->virt_block); 894 if (r) 895 DMERR_LIMIT("dm_thin_remove_block() failed"); 896 897 process_prepared_discard_passdown(m); 898 } 899 900 static void process_prepared(struct pool *pool, struct list_head *head, 901 process_mapping_fn *fn) 902 { 903 unsigned long flags; 904 struct list_head maps; 905 struct dm_thin_new_mapping *m, *tmp; 906 907 INIT_LIST_HEAD(&maps); 908 spin_lock_irqsave(&pool->lock, flags); 909 list_splice_init(head, &maps); 910 spin_unlock_irqrestore(&pool->lock, flags); 911 912 list_for_each_entry_safe(m, tmp, &maps, list) 913 (*fn)(m); 914 } 915 916 /* 917 * Deferred bio jobs. 918 */ 919 static int io_overlaps_block(struct pool *pool, struct bio *bio) 920 { 921 return bio->bi_iter.bi_size == 922 (pool->sectors_per_block << SECTOR_SHIFT); 923 } 924 925 static int io_overwrites_block(struct pool *pool, struct bio *bio) 926 { 927 return (bio_data_dir(bio) == WRITE) && 928 io_overlaps_block(pool, bio); 929 } 930 931 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 932 bio_end_io_t *fn) 933 { 934 *save = bio->bi_end_io; 935 bio->bi_end_io = fn; 936 } 937 938 static int ensure_next_mapping(struct pool *pool) 939 { 940 if (pool->next_mapping) 941 return 0; 942 943 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 944 945 return pool->next_mapping ? 0 : -ENOMEM; 946 } 947 948 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 949 { 950 struct dm_thin_new_mapping *m = pool->next_mapping; 951 952 BUG_ON(!pool->next_mapping); 953 954 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 955 INIT_LIST_HEAD(&m->list); 956 m->bio = NULL; 957 958 pool->next_mapping = NULL; 959 960 return m; 961 } 962 963 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 964 sector_t begin, sector_t end) 965 { 966 int r; 967 struct dm_io_region to; 968 969 to.bdev = tc->pool_dev->bdev; 970 to.sector = begin; 971 to.count = end - begin; 972 973 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 974 if (r < 0) { 975 DMERR_LIMIT("dm_kcopyd_zero() failed"); 976 copy_complete(1, 1, m); 977 } 978 } 979 980 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 981 dm_block_t data_block, 982 struct dm_thin_new_mapping *m) 983 { 984 struct pool *pool = tc->pool; 985 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 986 987 h->overwrite_mapping = m; 988 m->bio = bio; 989 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 990 inc_all_io_entry(pool, bio); 991 remap_and_issue(tc, bio, data_block); 992 } 993 994 /* 995 * A partial copy also needs to zero the uncopied region. 996 */ 997 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 998 struct dm_dev *origin, dm_block_t data_origin, 999 dm_block_t data_dest, 1000 struct dm_bio_prison_cell *cell, struct bio *bio, 1001 sector_t len) 1002 { 1003 int r; 1004 struct pool *pool = tc->pool; 1005 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1006 1007 m->tc = tc; 1008 m->virt_block = virt_block; 1009 m->data_block = data_dest; 1010 m->cell = cell; 1011 1012 /* 1013 * quiesce action + copy action + an extra reference held for the 1014 * duration of this function (we may need to inc later for a 1015 * partial zero). 1016 */ 1017 atomic_set(&m->prepare_actions, 3); 1018 1019 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1020 complete_mapping_preparation(m); /* already quiesced */ 1021 1022 /* 1023 * IO to pool_dev remaps to the pool target's data_dev. 1024 * 1025 * If the whole block of data is being overwritten, we can issue the 1026 * bio immediately. Otherwise we use kcopyd to clone the data first. 1027 */ 1028 if (io_overwrites_block(pool, bio)) 1029 remap_and_issue_overwrite(tc, bio, data_dest, m); 1030 else { 1031 struct dm_io_region from, to; 1032 1033 from.bdev = origin->bdev; 1034 from.sector = data_origin * pool->sectors_per_block; 1035 from.count = len; 1036 1037 to.bdev = tc->pool_dev->bdev; 1038 to.sector = data_dest * pool->sectors_per_block; 1039 to.count = len; 1040 1041 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 1042 0, copy_complete, m); 1043 if (r < 0) { 1044 DMERR_LIMIT("dm_kcopyd_copy() failed"); 1045 copy_complete(1, 1, m); 1046 1047 /* 1048 * We allow the zero to be issued, to simplify the 1049 * error path. Otherwise we'd need to start 1050 * worrying about decrementing the prepare_actions 1051 * counter. 1052 */ 1053 } 1054 1055 /* 1056 * Do we need to zero a tail region? 1057 */ 1058 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1059 atomic_inc(&m->prepare_actions); 1060 ll_zero(tc, m, 1061 data_dest * pool->sectors_per_block + len, 1062 (data_dest + 1) * pool->sectors_per_block); 1063 } 1064 } 1065 1066 complete_mapping_preparation(m); /* drop our ref */ 1067 } 1068 1069 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1070 dm_block_t data_origin, dm_block_t data_dest, 1071 struct dm_bio_prison_cell *cell, struct bio *bio) 1072 { 1073 schedule_copy(tc, virt_block, tc->pool_dev, 1074 data_origin, data_dest, cell, bio, 1075 tc->pool->sectors_per_block); 1076 } 1077 1078 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1079 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1080 struct bio *bio) 1081 { 1082 struct pool *pool = tc->pool; 1083 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1084 1085 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1086 m->tc = tc; 1087 m->virt_block = virt_block; 1088 m->data_block = data_block; 1089 m->cell = cell; 1090 1091 /* 1092 * If the whole block of data is being overwritten or we are not 1093 * zeroing pre-existing data, we can issue the bio immediately. 1094 * Otherwise we use kcopyd to zero the data first. 1095 */ 1096 if (!pool->pf.zero_new_blocks) 1097 process_prepared_mapping(m); 1098 1099 else if (io_overwrites_block(pool, bio)) 1100 remap_and_issue_overwrite(tc, bio, data_block, m); 1101 1102 else 1103 ll_zero(tc, m, 1104 data_block * pool->sectors_per_block, 1105 (data_block + 1) * pool->sectors_per_block); 1106 } 1107 1108 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1109 dm_block_t data_dest, 1110 struct dm_bio_prison_cell *cell, struct bio *bio) 1111 { 1112 struct pool *pool = tc->pool; 1113 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1114 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1115 1116 if (virt_block_end <= tc->origin_size) 1117 schedule_copy(tc, virt_block, tc->origin_dev, 1118 virt_block, data_dest, cell, bio, 1119 pool->sectors_per_block); 1120 1121 else if (virt_block_begin < tc->origin_size) 1122 schedule_copy(tc, virt_block, tc->origin_dev, 1123 virt_block, data_dest, cell, bio, 1124 tc->origin_size - virt_block_begin); 1125 1126 else 1127 schedule_zero(tc, virt_block, data_dest, cell, bio); 1128 } 1129 1130 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1131 1132 static void check_for_space(struct pool *pool) 1133 { 1134 int r; 1135 dm_block_t nr_free; 1136 1137 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1138 return; 1139 1140 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1141 if (r) 1142 return; 1143 1144 if (nr_free) 1145 set_pool_mode(pool, PM_WRITE); 1146 } 1147 1148 /* 1149 * A non-zero return indicates read_only or fail_io mode. 1150 * Many callers don't care about the return value. 1151 */ 1152 static int commit(struct pool *pool) 1153 { 1154 int r; 1155 1156 if (get_pool_mode(pool) >= PM_READ_ONLY) 1157 return -EINVAL; 1158 1159 r = dm_pool_commit_metadata(pool->pmd); 1160 if (r) 1161 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1162 else 1163 check_for_space(pool); 1164 1165 return r; 1166 } 1167 1168 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1169 { 1170 unsigned long flags; 1171 1172 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1173 DMWARN("%s: reached low water mark for data device: sending event.", 1174 dm_device_name(pool->pool_md)); 1175 spin_lock_irqsave(&pool->lock, flags); 1176 pool->low_water_triggered = true; 1177 spin_unlock_irqrestore(&pool->lock, flags); 1178 dm_table_event(pool->ti->table); 1179 } 1180 } 1181 1182 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1183 { 1184 int r; 1185 dm_block_t free_blocks; 1186 struct pool *pool = tc->pool; 1187 1188 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1189 return -EINVAL; 1190 1191 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1192 if (r) { 1193 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1194 return r; 1195 } 1196 1197 check_low_water_mark(pool, free_blocks); 1198 1199 if (!free_blocks) { 1200 /* 1201 * Try to commit to see if that will free up some 1202 * more space. 1203 */ 1204 r = commit(pool); 1205 if (r) 1206 return r; 1207 1208 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1209 if (r) { 1210 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1211 return r; 1212 } 1213 1214 if (!free_blocks) { 1215 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1216 return -ENOSPC; 1217 } 1218 } 1219 1220 r = dm_pool_alloc_data_block(pool->pmd, result); 1221 if (r) { 1222 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1223 return r; 1224 } 1225 1226 return 0; 1227 } 1228 1229 /* 1230 * If we have run out of space, queue bios until the device is 1231 * resumed, presumably after having been reloaded with more space. 1232 */ 1233 static void retry_on_resume(struct bio *bio) 1234 { 1235 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1236 struct thin_c *tc = h->tc; 1237 unsigned long flags; 1238 1239 spin_lock_irqsave(&tc->lock, flags); 1240 bio_list_add(&tc->retry_on_resume_list, bio); 1241 spin_unlock_irqrestore(&tc->lock, flags); 1242 } 1243 1244 static int should_error_unserviceable_bio(struct pool *pool) 1245 { 1246 enum pool_mode m = get_pool_mode(pool); 1247 1248 switch (m) { 1249 case PM_WRITE: 1250 /* Shouldn't get here */ 1251 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1252 return -EIO; 1253 1254 case PM_OUT_OF_DATA_SPACE: 1255 return pool->pf.error_if_no_space ? -ENOSPC : 0; 1256 1257 case PM_READ_ONLY: 1258 case PM_FAIL: 1259 return -EIO; 1260 default: 1261 /* Shouldn't get here */ 1262 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1263 return -EIO; 1264 } 1265 } 1266 1267 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1268 { 1269 int error = should_error_unserviceable_bio(pool); 1270 1271 if (error) 1272 bio_endio(bio, error); 1273 else 1274 retry_on_resume(bio); 1275 } 1276 1277 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1278 { 1279 struct bio *bio; 1280 struct bio_list bios; 1281 int error; 1282 1283 error = should_error_unserviceable_bio(pool); 1284 if (error) { 1285 cell_error_with_code(pool, cell, error); 1286 return; 1287 } 1288 1289 bio_list_init(&bios); 1290 cell_release(pool, cell, &bios); 1291 1292 while ((bio = bio_list_pop(&bios))) 1293 retry_on_resume(bio); 1294 } 1295 1296 static void process_discard_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1297 { 1298 int r; 1299 struct bio *bio = cell->holder; 1300 struct pool *pool = tc->pool; 1301 struct dm_bio_prison_cell *cell2; 1302 struct dm_cell_key key2; 1303 dm_block_t block = get_bio_block(tc, bio); 1304 struct dm_thin_lookup_result lookup_result; 1305 struct dm_thin_new_mapping *m; 1306 1307 if (tc->requeue_mode) { 1308 cell_requeue(pool, cell); 1309 return; 1310 } 1311 1312 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1313 switch (r) { 1314 case 0: 1315 /* 1316 * Check nobody is fiddling with this pool block. This can 1317 * happen if someone's in the process of breaking sharing 1318 * on this block. 1319 */ 1320 build_data_key(tc->td, lookup_result.block, &key2); 1321 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1322 cell_defer_no_holder(tc, cell); 1323 break; 1324 } 1325 1326 if (io_overlaps_block(pool, bio)) { 1327 /* 1328 * IO may still be going to the destination block. We must 1329 * quiesce before we can do the removal. 1330 */ 1331 m = get_next_mapping(pool); 1332 m->tc = tc; 1333 m->pass_discard = pool->pf.discard_passdown; 1334 m->definitely_not_shared = !lookup_result.shared; 1335 m->virt_block = block; 1336 m->data_block = lookup_result.block; 1337 m->cell = cell; 1338 m->cell2 = cell2; 1339 m->bio = bio; 1340 1341 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1342 pool->process_prepared_discard(m); 1343 1344 } else { 1345 inc_all_io_entry(pool, bio); 1346 cell_defer_no_holder(tc, cell); 1347 cell_defer_no_holder(tc, cell2); 1348 1349 /* 1350 * The DM core makes sure that the discard doesn't span 1351 * a block boundary. So we submit the discard of a 1352 * partial block appropriately. 1353 */ 1354 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1355 remap_and_issue(tc, bio, lookup_result.block); 1356 else 1357 bio_endio(bio, 0); 1358 } 1359 break; 1360 1361 case -ENODATA: 1362 /* 1363 * It isn't provisioned, just forget it. 1364 */ 1365 cell_defer_no_holder(tc, cell); 1366 bio_endio(bio, 0); 1367 break; 1368 1369 default: 1370 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1371 __func__, r); 1372 cell_defer_no_holder(tc, cell); 1373 bio_io_error(bio); 1374 break; 1375 } 1376 } 1377 1378 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1379 { 1380 struct dm_bio_prison_cell *cell; 1381 struct dm_cell_key key; 1382 dm_block_t block = get_bio_block(tc, bio); 1383 1384 build_virtual_key(tc->td, block, &key); 1385 if (bio_detain(tc->pool, &key, bio, &cell)) 1386 return; 1387 1388 process_discard_cell(tc, cell); 1389 } 1390 1391 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1392 struct dm_cell_key *key, 1393 struct dm_thin_lookup_result *lookup_result, 1394 struct dm_bio_prison_cell *cell) 1395 { 1396 int r; 1397 dm_block_t data_block; 1398 struct pool *pool = tc->pool; 1399 1400 r = alloc_data_block(tc, &data_block); 1401 switch (r) { 1402 case 0: 1403 schedule_internal_copy(tc, block, lookup_result->block, 1404 data_block, cell, bio); 1405 break; 1406 1407 case -ENOSPC: 1408 retry_bios_on_resume(pool, cell); 1409 break; 1410 1411 default: 1412 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1413 __func__, r); 1414 cell_error(pool, cell); 1415 break; 1416 } 1417 } 1418 1419 static void __remap_and_issue_shared_cell(void *context, 1420 struct dm_bio_prison_cell *cell) 1421 { 1422 struct remap_info *info = context; 1423 struct bio *bio; 1424 1425 while ((bio = bio_list_pop(&cell->bios))) { 1426 if ((bio_data_dir(bio) == WRITE) || 1427 (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))) 1428 bio_list_add(&info->defer_bios, bio); 1429 else { 1430 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));; 1431 1432 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1433 inc_all_io_entry(info->tc->pool, bio); 1434 bio_list_add(&info->issue_bios, bio); 1435 } 1436 } 1437 } 1438 1439 static void remap_and_issue_shared_cell(struct thin_c *tc, 1440 struct dm_bio_prison_cell *cell, 1441 dm_block_t block) 1442 { 1443 struct bio *bio; 1444 struct remap_info info; 1445 1446 info.tc = tc; 1447 bio_list_init(&info.defer_bios); 1448 bio_list_init(&info.issue_bios); 1449 1450 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1451 &info, cell); 1452 1453 while ((bio = bio_list_pop(&info.defer_bios))) 1454 thin_defer_bio(tc, bio); 1455 1456 while ((bio = bio_list_pop(&info.issue_bios))) 1457 remap_and_issue(tc, bio, block); 1458 } 1459 1460 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1461 dm_block_t block, 1462 struct dm_thin_lookup_result *lookup_result, 1463 struct dm_bio_prison_cell *virt_cell) 1464 { 1465 struct dm_bio_prison_cell *data_cell; 1466 struct pool *pool = tc->pool; 1467 struct dm_cell_key key; 1468 1469 /* 1470 * If cell is already occupied, then sharing is already in the process 1471 * of being broken so we have nothing further to do here. 1472 */ 1473 build_data_key(tc->td, lookup_result->block, &key); 1474 if (bio_detain(pool, &key, bio, &data_cell)) { 1475 cell_defer_no_holder(tc, virt_cell); 1476 return; 1477 } 1478 1479 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1480 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1481 cell_defer_no_holder(tc, virt_cell); 1482 } else { 1483 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1484 1485 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1486 inc_all_io_entry(pool, bio); 1487 remap_and_issue(tc, bio, lookup_result->block); 1488 1489 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1490 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1491 } 1492 } 1493 1494 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1495 struct dm_bio_prison_cell *cell) 1496 { 1497 int r; 1498 dm_block_t data_block; 1499 struct pool *pool = tc->pool; 1500 1501 /* 1502 * Remap empty bios (flushes) immediately, without provisioning. 1503 */ 1504 if (!bio->bi_iter.bi_size) { 1505 inc_all_io_entry(pool, bio); 1506 cell_defer_no_holder(tc, cell); 1507 1508 remap_and_issue(tc, bio, 0); 1509 return; 1510 } 1511 1512 /* 1513 * Fill read bios with zeroes and complete them immediately. 1514 */ 1515 if (bio_data_dir(bio) == READ) { 1516 zero_fill_bio(bio); 1517 cell_defer_no_holder(tc, cell); 1518 bio_endio(bio, 0); 1519 return; 1520 } 1521 1522 r = alloc_data_block(tc, &data_block); 1523 switch (r) { 1524 case 0: 1525 if (tc->origin_dev) 1526 schedule_external_copy(tc, block, data_block, cell, bio); 1527 else 1528 schedule_zero(tc, block, data_block, cell, bio); 1529 break; 1530 1531 case -ENOSPC: 1532 retry_bios_on_resume(pool, cell); 1533 break; 1534 1535 default: 1536 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1537 __func__, r); 1538 cell_error(pool, cell); 1539 break; 1540 } 1541 } 1542 1543 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1544 { 1545 int r; 1546 struct pool *pool = tc->pool; 1547 struct bio *bio = cell->holder; 1548 dm_block_t block = get_bio_block(tc, bio); 1549 struct dm_thin_lookup_result lookup_result; 1550 1551 if (tc->requeue_mode) { 1552 cell_requeue(pool, cell); 1553 return; 1554 } 1555 1556 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1557 switch (r) { 1558 case 0: 1559 if (lookup_result.shared) 1560 process_shared_bio(tc, bio, block, &lookup_result, cell); 1561 else { 1562 inc_all_io_entry(pool, bio); 1563 remap_and_issue(tc, bio, lookup_result.block); 1564 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1565 } 1566 break; 1567 1568 case -ENODATA: 1569 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1570 inc_all_io_entry(pool, bio); 1571 cell_defer_no_holder(tc, cell); 1572 1573 if (bio_end_sector(bio) <= tc->origin_size) 1574 remap_to_origin_and_issue(tc, bio); 1575 1576 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1577 zero_fill_bio(bio); 1578 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1579 remap_to_origin_and_issue(tc, bio); 1580 1581 } else { 1582 zero_fill_bio(bio); 1583 bio_endio(bio, 0); 1584 } 1585 } else 1586 provision_block(tc, bio, block, cell); 1587 break; 1588 1589 default: 1590 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1591 __func__, r); 1592 cell_defer_no_holder(tc, cell); 1593 bio_io_error(bio); 1594 break; 1595 } 1596 } 1597 1598 static void process_bio(struct thin_c *tc, struct bio *bio) 1599 { 1600 struct pool *pool = tc->pool; 1601 dm_block_t block = get_bio_block(tc, bio); 1602 struct dm_bio_prison_cell *cell; 1603 struct dm_cell_key key; 1604 1605 /* 1606 * If cell is already occupied, then the block is already 1607 * being provisioned so we have nothing further to do here. 1608 */ 1609 build_virtual_key(tc->td, block, &key); 1610 if (bio_detain(pool, &key, bio, &cell)) 1611 return; 1612 1613 process_cell(tc, cell); 1614 } 1615 1616 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1617 struct dm_bio_prison_cell *cell) 1618 { 1619 int r; 1620 int rw = bio_data_dir(bio); 1621 dm_block_t block = get_bio_block(tc, bio); 1622 struct dm_thin_lookup_result lookup_result; 1623 1624 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1625 switch (r) { 1626 case 0: 1627 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1628 handle_unserviceable_bio(tc->pool, bio); 1629 if (cell) 1630 cell_defer_no_holder(tc, cell); 1631 } else { 1632 inc_all_io_entry(tc->pool, bio); 1633 remap_and_issue(tc, bio, lookup_result.block); 1634 if (cell) 1635 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1636 } 1637 break; 1638 1639 case -ENODATA: 1640 if (cell) 1641 cell_defer_no_holder(tc, cell); 1642 if (rw != READ) { 1643 handle_unserviceable_bio(tc->pool, bio); 1644 break; 1645 } 1646 1647 if (tc->origin_dev) { 1648 inc_all_io_entry(tc->pool, bio); 1649 remap_to_origin_and_issue(tc, bio); 1650 break; 1651 } 1652 1653 zero_fill_bio(bio); 1654 bio_endio(bio, 0); 1655 break; 1656 1657 default: 1658 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1659 __func__, r); 1660 if (cell) 1661 cell_defer_no_holder(tc, cell); 1662 bio_io_error(bio); 1663 break; 1664 } 1665 } 1666 1667 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1668 { 1669 __process_bio_read_only(tc, bio, NULL); 1670 } 1671 1672 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1673 { 1674 __process_bio_read_only(tc, cell->holder, cell); 1675 } 1676 1677 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1678 { 1679 bio_endio(bio, 0); 1680 } 1681 1682 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1683 { 1684 bio_io_error(bio); 1685 } 1686 1687 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1688 { 1689 cell_success(tc->pool, cell); 1690 } 1691 1692 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1693 { 1694 cell_error(tc->pool, cell); 1695 } 1696 1697 /* 1698 * FIXME: should we also commit due to size of transaction, measured in 1699 * metadata blocks? 1700 */ 1701 static int need_commit_due_to_time(struct pool *pool) 1702 { 1703 return jiffies < pool->last_commit_jiffies || 1704 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1705 } 1706 1707 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1708 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1709 1710 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 1711 { 1712 struct rb_node **rbp, *parent; 1713 struct dm_thin_endio_hook *pbd; 1714 sector_t bi_sector = bio->bi_iter.bi_sector; 1715 1716 rbp = &tc->sort_bio_list.rb_node; 1717 parent = NULL; 1718 while (*rbp) { 1719 parent = *rbp; 1720 pbd = thin_pbd(parent); 1721 1722 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 1723 rbp = &(*rbp)->rb_left; 1724 else 1725 rbp = &(*rbp)->rb_right; 1726 } 1727 1728 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1729 rb_link_node(&pbd->rb_node, parent, rbp); 1730 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 1731 } 1732 1733 static void __extract_sorted_bios(struct thin_c *tc) 1734 { 1735 struct rb_node *node; 1736 struct dm_thin_endio_hook *pbd; 1737 struct bio *bio; 1738 1739 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 1740 pbd = thin_pbd(node); 1741 bio = thin_bio(pbd); 1742 1743 bio_list_add(&tc->deferred_bio_list, bio); 1744 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 1745 } 1746 1747 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 1748 } 1749 1750 static void __sort_thin_deferred_bios(struct thin_c *tc) 1751 { 1752 struct bio *bio; 1753 struct bio_list bios; 1754 1755 bio_list_init(&bios); 1756 bio_list_merge(&bios, &tc->deferred_bio_list); 1757 bio_list_init(&tc->deferred_bio_list); 1758 1759 /* Sort deferred_bio_list using rb-tree */ 1760 while ((bio = bio_list_pop(&bios))) 1761 __thin_bio_rb_add(tc, bio); 1762 1763 /* 1764 * Transfer the sorted bios in sort_bio_list back to 1765 * deferred_bio_list to allow lockless submission of 1766 * all bios. 1767 */ 1768 __extract_sorted_bios(tc); 1769 } 1770 1771 static void process_thin_deferred_bios(struct thin_c *tc) 1772 { 1773 struct pool *pool = tc->pool; 1774 unsigned long flags; 1775 struct bio *bio; 1776 struct bio_list bios; 1777 struct blk_plug plug; 1778 unsigned count = 0; 1779 1780 if (tc->requeue_mode) { 1781 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE); 1782 return; 1783 } 1784 1785 bio_list_init(&bios); 1786 1787 spin_lock_irqsave(&tc->lock, flags); 1788 1789 if (bio_list_empty(&tc->deferred_bio_list)) { 1790 spin_unlock_irqrestore(&tc->lock, flags); 1791 return; 1792 } 1793 1794 __sort_thin_deferred_bios(tc); 1795 1796 bio_list_merge(&bios, &tc->deferred_bio_list); 1797 bio_list_init(&tc->deferred_bio_list); 1798 1799 spin_unlock_irqrestore(&tc->lock, flags); 1800 1801 blk_start_plug(&plug); 1802 while ((bio = bio_list_pop(&bios))) { 1803 /* 1804 * If we've got no free new_mapping structs, and processing 1805 * this bio might require one, we pause until there are some 1806 * prepared mappings to process. 1807 */ 1808 if (ensure_next_mapping(pool)) { 1809 spin_lock_irqsave(&tc->lock, flags); 1810 bio_list_add(&tc->deferred_bio_list, bio); 1811 bio_list_merge(&tc->deferred_bio_list, &bios); 1812 spin_unlock_irqrestore(&tc->lock, flags); 1813 break; 1814 } 1815 1816 if (bio->bi_rw & REQ_DISCARD) 1817 pool->process_discard(tc, bio); 1818 else 1819 pool->process_bio(tc, bio); 1820 1821 if ((count++ & 127) == 0) { 1822 throttle_work_update(&pool->throttle); 1823 dm_pool_issue_prefetches(pool->pmd); 1824 } 1825 } 1826 blk_finish_plug(&plug); 1827 } 1828 1829 static int cmp_cells(const void *lhs, const void *rhs) 1830 { 1831 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 1832 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 1833 1834 BUG_ON(!lhs_cell->holder); 1835 BUG_ON(!rhs_cell->holder); 1836 1837 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 1838 return -1; 1839 1840 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 1841 return 1; 1842 1843 return 0; 1844 } 1845 1846 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 1847 { 1848 unsigned count = 0; 1849 struct dm_bio_prison_cell *cell, *tmp; 1850 1851 list_for_each_entry_safe(cell, tmp, cells, user_list) { 1852 if (count >= CELL_SORT_ARRAY_SIZE) 1853 break; 1854 1855 pool->cell_sort_array[count++] = cell; 1856 list_del(&cell->user_list); 1857 } 1858 1859 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 1860 1861 return count; 1862 } 1863 1864 static void process_thin_deferred_cells(struct thin_c *tc) 1865 { 1866 struct pool *pool = tc->pool; 1867 unsigned long flags; 1868 struct list_head cells; 1869 struct dm_bio_prison_cell *cell; 1870 unsigned i, j, count; 1871 1872 INIT_LIST_HEAD(&cells); 1873 1874 spin_lock_irqsave(&tc->lock, flags); 1875 list_splice_init(&tc->deferred_cells, &cells); 1876 spin_unlock_irqrestore(&tc->lock, flags); 1877 1878 if (list_empty(&cells)) 1879 return; 1880 1881 do { 1882 count = sort_cells(tc->pool, &cells); 1883 1884 for (i = 0; i < count; i++) { 1885 cell = pool->cell_sort_array[i]; 1886 BUG_ON(!cell->holder); 1887 1888 /* 1889 * If we've got no free new_mapping structs, and processing 1890 * this bio might require one, we pause until there are some 1891 * prepared mappings to process. 1892 */ 1893 if (ensure_next_mapping(pool)) { 1894 for (j = i; j < count; j++) 1895 list_add(&pool->cell_sort_array[j]->user_list, &cells); 1896 1897 spin_lock_irqsave(&tc->lock, flags); 1898 list_splice(&cells, &tc->deferred_cells); 1899 spin_unlock_irqrestore(&tc->lock, flags); 1900 return; 1901 } 1902 1903 if (cell->holder->bi_rw & REQ_DISCARD) 1904 pool->process_discard_cell(tc, cell); 1905 else 1906 pool->process_cell(tc, cell); 1907 } 1908 } while (!list_empty(&cells)); 1909 } 1910 1911 static void thin_get(struct thin_c *tc); 1912 static void thin_put(struct thin_c *tc); 1913 1914 /* 1915 * We can't hold rcu_read_lock() around code that can block. So we 1916 * find a thin with the rcu lock held; bump a refcount; then drop 1917 * the lock. 1918 */ 1919 static struct thin_c *get_first_thin(struct pool *pool) 1920 { 1921 struct thin_c *tc = NULL; 1922 1923 rcu_read_lock(); 1924 if (!list_empty(&pool->active_thins)) { 1925 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 1926 thin_get(tc); 1927 } 1928 rcu_read_unlock(); 1929 1930 return tc; 1931 } 1932 1933 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 1934 { 1935 struct thin_c *old_tc = tc; 1936 1937 rcu_read_lock(); 1938 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 1939 thin_get(tc); 1940 thin_put(old_tc); 1941 rcu_read_unlock(); 1942 return tc; 1943 } 1944 thin_put(old_tc); 1945 rcu_read_unlock(); 1946 1947 return NULL; 1948 } 1949 1950 static void process_deferred_bios(struct pool *pool) 1951 { 1952 unsigned long flags; 1953 struct bio *bio; 1954 struct bio_list bios; 1955 struct thin_c *tc; 1956 1957 tc = get_first_thin(pool); 1958 while (tc) { 1959 process_thin_deferred_cells(tc); 1960 process_thin_deferred_bios(tc); 1961 tc = get_next_thin(pool, tc); 1962 } 1963 1964 /* 1965 * If there are any deferred flush bios, we must commit 1966 * the metadata before issuing them. 1967 */ 1968 bio_list_init(&bios); 1969 spin_lock_irqsave(&pool->lock, flags); 1970 bio_list_merge(&bios, &pool->deferred_flush_bios); 1971 bio_list_init(&pool->deferred_flush_bios); 1972 spin_unlock_irqrestore(&pool->lock, flags); 1973 1974 if (bio_list_empty(&bios) && 1975 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 1976 return; 1977 1978 if (commit(pool)) { 1979 while ((bio = bio_list_pop(&bios))) 1980 bio_io_error(bio); 1981 return; 1982 } 1983 pool->last_commit_jiffies = jiffies; 1984 1985 while ((bio = bio_list_pop(&bios))) 1986 generic_make_request(bio); 1987 } 1988 1989 static void do_worker(struct work_struct *ws) 1990 { 1991 struct pool *pool = container_of(ws, struct pool, worker); 1992 1993 throttle_work_start(&pool->throttle); 1994 dm_pool_issue_prefetches(pool->pmd); 1995 throttle_work_update(&pool->throttle); 1996 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1997 throttle_work_update(&pool->throttle); 1998 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1999 throttle_work_update(&pool->throttle); 2000 process_deferred_bios(pool); 2001 throttle_work_complete(&pool->throttle); 2002 } 2003 2004 /* 2005 * We want to commit periodically so that not too much 2006 * unwritten data builds up. 2007 */ 2008 static void do_waker(struct work_struct *ws) 2009 { 2010 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2011 wake_worker(pool); 2012 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2013 } 2014 2015 /* 2016 * We're holding onto IO to allow userland time to react. After the 2017 * timeout either the pool will have been resized (and thus back in 2018 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO. 2019 */ 2020 static void do_no_space_timeout(struct work_struct *ws) 2021 { 2022 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2023 no_space_timeout); 2024 2025 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) 2026 set_pool_mode(pool, PM_READ_ONLY); 2027 } 2028 2029 /*----------------------------------------------------------------*/ 2030 2031 struct pool_work { 2032 struct work_struct worker; 2033 struct completion complete; 2034 }; 2035 2036 static struct pool_work *to_pool_work(struct work_struct *ws) 2037 { 2038 return container_of(ws, struct pool_work, worker); 2039 } 2040 2041 static void pool_work_complete(struct pool_work *pw) 2042 { 2043 complete(&pw->complete); 2044 } 2045 2046 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2047 void (*fn)(struct work_struct *)) 2048 { 2049 INIT_WORK_ONSTACK(&pw->worker, fn); 2050 init_completion(&pw->complete); 2051 queue_work(pool->wq, &pw->worker); 2052 wait_for_completion(&pw->complete); 2053 } 2054 2055 /*----------------------------------------------------------------*/ 2056 2057 struct noflush_work { 2058 struct pool_work pw; 2059 struct thin_c *tc; 2060 }; 2061 2062 static struct noflush_work *to_noflush(struct work_struct *ws) 2063 { 2064 return container_of(to_pool_work(ws), struct noflush_work, pw); 2065 } 2066 2067 static void do_noflush_start(struct work_struct *ws) 2068 { 2069 struct noflush_work *w = to_noflush(ws); 2070 w->tc->requeue_mode = true; 2071 requeue_io(w->tc); 2072 pool_work_complete(&w->pw); 2073 } 2074 2075 static void do_noflush_stop(struct work_struct *ws) 2076 { 2077 struct noflush_work *w = to_noflush(ws); 2078 w->tc->requeue_mode = false; 2079 pool_work_complete(&w->pw); 2080 } 2081 2082 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2083 { 2084 struct noflush_work w; 2085 2086 w.tc = tc; 2087 pool_work_wait(&w.pw, tc->pool, fn); 2088 } 2089 2090 /*----------------------------------------------------------------*/ 2091 2092 static enum pool_mode get_pool_mode(struct pool *pool) 2093 { 2094 return pool->pf.mode; 2095 } 2096 2097 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2098 { 2099 dm_table_event(pool->ti->table); 2100 DMINFO("%s: switching pool to %s mode", 2101 dm_device_name(pool->pool_md), new_mode); 2102 } 2103 2104 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2105 { 2106 struct pool_c *pt = pool->ti->private; 2107 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2108 enum pool_mode old_mode = get_pool_mode(pool); 2109 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 2110 2111 /* 2112 * Never allow the pool to transition to PM_WRITE mode if user 2113 * intervention is required to verify metadata and data consistency. 2114 */ 2115 if (new_mode == PM_WRITE && needs_check) { 2116 DMERR("%s: unable to switch pool to write mode until repaired.", 2117 dm_device_name(pool->pool_md)); 2118 if (old_mode != new_mode) 2119 new_mode = old_mode; 2120 else 2121 new_mode = PM_READ_ONLY; 2122 } 2123 /* 2124 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2125 * not going to recover without a thin_repair. So we never let the 2126 * pool move out of the old mode. 2127 */ 2128 if (old_mode == PM_FAIL) 2129 new_mode = old_mode; 2130 2131 switch (new_mode) { 2132 case PM_FAIL: 2133 if (old_mode != new_mode) 2134 notify_of_pool_mode_change(pool, "failure"); 2135 dm_pool_metadata_read_only(pool->pmd); 2136 pool->process_bio = process_bio_fail; 2137 pool->process_discard = process_bio_fail; 2138 pool->process_cell = process_cell_fail; 2139 pool->process_discard_cell = process_cell_fail; 2140 pool->process_prepared_mapping = process_prepared_mapping_fail; 2141 pool->process_prepared_discard = process_prepared_discard_fail; 2142 2143 error_retry_list(pool); 2144 break; 2145 2146 case PM_READ_ONLY: 2147 if (old_mode != new_mode) 2148 notify_of_pool_mode_change(pool, "read-only"); 2149 dm_pool_metadata_read_only(pool->pmd); 2150 pool->process_bio = process_bio_read_only; 2151 pool->process_discard = process_bio_success; 2152 pool->process_cell = process_cell_read_only; 2153 pool->process_discard_cell = process_cell_success; 2154 pool->process_prepared_mapping = process_prepared_mapping_fail; 2155 pool->process_prepared_discard = process_prepared_discard_passdown; 2156 2157 error_retry_list(pool); 2158 break; 2159 2160 case PM_OUT_OF_DATA_SPACE: 2161 /* 2162 * Ideally we'd never hit this state; the low water mark 2163 * would trigger userland to extend the pool before we 2164 * completely run out of data space. However, many small 2165 * IOs to unprovisioned space can consume data space at an 2166 * alarming rate. Adjust your low water mark if you're 2167 * frequently seeing this mode. 2168 */ 2169 if (old_mode != new_mode) 2170 notify_of_pool_mode_change(pool, "out-of-data-space"); 2171 pool->process_bio = process_bio_read_only; 2172 pool->process_discard = process_discard_bio; 2173 pool->process_cell = process_cell_read_only; 2174 pool->process_discard_cell = process_discard_cell; 2175 pool->process_prepared_mapping = process_prepared_mapping; 2176 pool->process_prepared_discard = process_prepared_discard; 2177 2178 if (!pool->pf.error_if_no_space && no_space_timeout) 2179 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2180 break; 2181 2182 case PM_WRITE: 2183 if (old_mode != new_mode) 2184 notify_of_pool_mode_change(pool, "write"); 2185 dm_pool_metadata_read_write(pool->pmd); 2186 pool->process_bio = process_bio; 2187 pool->process_discard = process_discard_bio; 2188 pool->process_cell = process_cell; 2189 pool->process_discard_cell = process_discard_cell; 2190 pool->process_prepared_mapping = process_prepared_mapping; 2191 pool->process_prepared_discard = process_prepared_discard; 2192 break; 2193 } 2194 2195 pool->pf.mode = new_mode; 2196 /* 2197 * The pool mode may have changed, sync it so bind_control_target() 2198 * doesn't cause an unexpected mode transition on resume. 2199 */ 2200 pt->adjusted_pf.mode = new_mode; 2201 } 2202 2203 static void abort_transaction(struct pool *pool) 2204 { 2205 const char *dev_name = dm_device_name(pool->pool_md); 2206 2207 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2208 if (dm_pool_abort_metadata(pool->pmd)) { 2209 DMERR("%s: failed to abort metadata transaction", dev_name); 2210 set_pool_mode(pool, PM_FAIL); 2211 } 2212 2213 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2214 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2215 set_pool_mode(pool, PM_FAIL); 2216 } 2217 } 2218 2219 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2220 { 2221 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2222 dm_device_name(pool->pool_md), op, r); 2223 2224 abort_transaction(pool); 2225 set_pool_mode(pool, PM_READ_ONLY); 2226 } 2227 2228 /*----------------------------------------------------------------*/ 2229 2230 /* 2231 * Mapping functions. 2232 */ 2233 2234 /* 2235 * Called only while mapping a thin bio to hand it over to the workqueue. 2236 */ 2237 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2238 { 2239 unsigned long flags; 2240 struct pool *pool = tc->pool; 2241 2242 spin_lock_irqsave(&tc->lock, flags); 2243 bio_list_add(&tc->deferred_bio_list, bio); 2244 spin_unlock_irqrestore(&tc->lock, flags); 2245 2246 wake_worker(pool); 2247 } 2248 2249 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2250 { 2251 struct pool *pool = tc->pool; 2252 2253 throttle_lock(&pool->throttle); 2254 thin_defer_bio(tc, bio); 2255 throttle_unlock(&pool->throttle); 2256 } 2257 2258 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2259 { 2260 unsigned long flags; 2261 struct pool *pool = tc->pool; 2262 2263 throttle_lock(&pool->throttle); 2264 spin_lock_irqsave(&tc->lock, flags); 2265 list_add_tail(&cell->user_list, &tc->deferred_cells); 2266 spin_unlock_irqrestore(&tc->lock, flags); 2267 throttle_unlock(&pool->throttle); 2268 2269 wake_worker(pool); 2270 } 2271 2272 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2273 { 2274 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2275 2276 h->tc = tc; 2277 h->shared_read_entry = NULL; 2278 h->all_io_entry = NULL; 2279 h->overwrite_mapping = NULL; 2280 } 2281 2282 /* 2283 * Non-blocking function called from the thin target's map function. 2284 */ 2285 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2286 { 2287 int r; 2288 struct thin_c *tc = ti->private; 2289 dm_block_t block = get_bio_block(tc, bio); 2290 struct dm_thin_device *td = tc->td; 2291 struct dm_thin_lookup_result result; 2292 struct dm_bio_prison_cell *virt_cell, *data_cell; 2293 struct dm_cell_key key; 2294 2295 thin_hook_bio(tc, bio); 2296 2297 if (tc->requeue_mode) { 2298 bio_endio(bio, DM_ENDIO_REQUEUE); 2299 return DM_MAPIO_SUBMITTED; 2300 } 2301 2302 if (get_pool_mode(tc->pool) == PM_FAIL) { 2303 bio_io_error(bio); 2304 return DM_MAPIO_SUBMITTED; 2305 } 2306 2307 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 2308 thin_defer_bio_with_throttle(tc, bio); 2309 return DM_MAPIO_SUBMITTED; 2310 } 2311 2312 /* 2313 * We must hold the virtual cell before doing the lookup, otherwise 2314 * there's a race with discard. 2315 */ 2316 build_virtual_key(tc->td, block, &key); 2317 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2318 return DM_MAPIO_SUBMITTED; 2319 2320 r = dm_thin_find_block(td, block, 0, &result); 2321 2322 /* 2323 * Note that we defer readahead too. 2324 */ 2325 switch (r) { 2326 case 0: 2327 if (unlikely(result.shared)) { 2328 /* 2329 * We have a race condition here between the 2330 * result.shared value returned by the lookup and 2331 * snapshot creation, which may cause new 2332 * sharing. 2333 * 2334 * To avoid this always quiesce the origin before 2335 * taking the snap. You want to do this anyway to 2336 * ensure a consistent application view 2337 * (i.e. lockfs). 2338 * 2339 * More distant ancestors are irrelevant. The 2340 * shared flag will be set in their case. 2341 */ 2342 thin_defer_cell(tc, virt_cell); 2343 return DM_MAPIO_SUBMITTED; 2344 } 2345 2346 build_data_key(tc->td, result.block, &key); 2347 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2348 cell_defer_no_holder(tc, virt_cell); 2349 return DM_MAPIO_SUBMITTED; 2350 } 2351 2352 inc_all_io_entry(tc->pool, bio); 2353 cell_defer_no_holder(tc, data_cell); 2354 cell_defer_no_holder(tc, virt_cell); 2355 2356 remap(tc, bio, result.block); 2357 return DM_MAPIO_REMAPPED; 2358 2359 case -ENODATA: 2360 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 2361 /* 2362 * This block isn't provisioned, and we have no way 2363 * of doing so. 2364 */ 2365 handle_unserviceable_bio(tc->pool, bio); 2366 cell_defer_no_holder(tc, virt_cell); 2367 return DM_MAPIO_SUBMITTED; 2368 } 2369 /* fall through */ 2370 2371 case -EWOULDBLOCK: 2372 thin_defer_cell(tc, virt_cell); 2373 return DM_MAPIO_SUBMITTED; 2374 2375 default: 2376 /* 2377 * Must always call bio_io_error on failure. 2378 * dm_thin_find_block can fail with -EINVAL if the 2379 * pool is switched to fail-io mode. 2380 */ 2381 bio_io_error(bio); 2382 cell_defer_no_holder(tc, virt_cell); 2383 return DM_MAPIO_SUBMITTED; 2384 } 2385 } 2386 2387 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2388 { 2389 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2390 struct request_queue *q; 2391 2392 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2393 return 1; 2394 2395 q = bdev_get_queue(pt->data_dev->bdev); 2396 return bdi_congested(&q->backing_dev_info, bdi_bits); 2397 } 2398 2399 static void requeue_bios(struct pool *pool) 2400 { 2401 unsigned long flags; 2402 struct thin_c *tc; 2403 2404 rcu_read_lock(); 2405 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2406 spin_lock_irqsave(&tc->lock, flags); 2407 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2408 bio_list_init(&tc->retry_on_resume_list); 2409 spin_unlock_irqrestore(&tc->lock, flags); 2410 } 2411 rcu_read_unlock(); 2412 } 2413 2414 /*---------------------------------------------------------------- 2415 * Binding of control targets to a pool object 2416 *--------------------------------------------------------------*/ 2417 static bool data_dev_supports_discard(struct pool_c *pt) 2418 { 2419 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2420 2421 return q && blk_queue_discard(q); 2422 } 2423 2424 static bool is_factor(sector_t block_size, uint32_t n) 2425 { 2426 return !sector_div(block_size, n); 2427 } 2428 2429 /* 2430 * If discard_passdown was enabled verify that the data device 2431 * supports discards. Disable discard_passdown if not. 2432 */ 2433 static void disable_passdown_if_not_supported(struct pool_c *pt) 2434 { 2435 struct pool *pool = pt->pool; 2436 struct block_device *data_bdev = pt->data_dev->bdev; 2437 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2438 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 2439 const char *reason = NULL; 2440 char buf[BDEVNAME_SIZE]; 2441 2442 if (!pt->adjusted_pf.discard_passdown) 2443 return; 2444 2445 if (!data_dev_supports_discard(pt)) 2446 reason = "discard unsupported"; 2447 2448 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2449 reason = "max discard sectors smaller than a block"; 2450 2451 else if (data_limits->discard_granularity > block_size) 2452 reason = "discard granularity larger than a block"; 2453 2454 else if (!is_factor(block_size, data_limits->discard_granularity)) 2455 reason = "discard granularity not a factor of block size"; 2456 2457 if (reason) { 2458 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2459 pt->adjusted_pf.discard_passdown = false; 2460 } 2461 } 2462 2463 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2464 { 2465 struct pool_c *pt = ti->private; 2466 2467 /* 2468 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2469 */ 2470 enum pool_mode old_mode = get_pool_mode(pool); 2471 enum pool_mode new_mode = pt->adjusted_pf.mode; 2472 2473 /* 2474 * Don't change the pool's mode until set_pool_mode() below. 2475 * Otherwise the pool's process_* function pointers may 2476 * not match the desired pool mode. 2477 */ 2478 pt->adjusted_pf.mode = old_mode; 2479 2480 pool->ti = ti; 2481 pool->pf = pt->adjusted_pf; 2482 pool->low_water_blocks = pt->low_water_blocks; 2483 2484 set_pool_mode(pool, new_mode); 2485 2486 return 0; 2487 } 2488 2489 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2490 { 2491 if (pool->ti == ti) 2492 pool->ti = NULL; 2493 } 2494 2495 /*---------------------------------------------------------------- 2496 * Pool creation 2497 *--------------------------------------------------------------*/ 2498 /* Initialize pool features. */ 2499 static void pool_features_init(struct pool_features *pf) 2500 { 2501 pf->mode = PM_WRITE; 2502 pf->zero_new_blocks = true; 2503 pf->discard_enabled = true; 2504 pf->discard_passdown = true; 2505 pf->error_if_no_space = false; 2506 } 2507 2508 static void __pool_destroy(struct pool *pool) 2509 { 2510 __pool_table_remove(pool); 2511 2512 if (dm_pool_metadata_close(pool->pmd) < 0) 2513 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2514 2515 dm_bio_prison_destroy(pool->prison); 2516 dm_kcopyd_client_destroy(pool->copier); 2517 2518 if (pool->wq) 2519 destroy_workqueue(pool->wq); 2520 2521 if (pool->next_mapping) 2522 mempool_free(pool->next_mapping, pool->mapping_pool); 2523 mempool_destroy(pool->mapping_pool); 2524 dm_deferred_set_destroy(pool->shared_read_ds); 2525 dm_deferred_set_destroy(pool->all_io_ds); 2526 kfree(pool); 2527 } 2528 2529 static struct kmem_cache *_new_mapping_cache; 2530 2531 static struct pool *pool_create(struct mapped_device *pool_md, 2532 struct block_device *metadata_dev, 2533 unsigned long block_size, 2534 int read_only, char **error) 2535 { 2536 int r; 2537 void *err_p; 2538 struct pool *pool; 2539 struct dm_pool_metadata *pmd; 2540 bool format_device = read_only ? false : true; 2541 2542 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2543 if (IS_ERR(pmd)) { 2544 *error = "Error creating metadata object"; 2545 return (struct pool *)pmd; 2546 } 2547 2548 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2549 if (!pool) { 2550 *error = "Error allocating memory for pool"; 2551 err_p = ERR_PTR(-ENOMEM); 2552 goto bad_pool; 2553 } 2554 2555 pool->pmd = pmd; 2556 pool->sectors_per_block = block_size; 2557 if (block_size & (block_size - 1)) 2558 pool->sectors_per_block_shift = -1; 2559 else 2560 pool->sectors_per_block_shift = __ffs(block_size); 2561 pool->low_water_blocks = 0; 2562 pool_features_init(&pool->pf); 2563 pool->prison = dm_bio_prison_create(); 2564 if (!pool->prison) { 2565 *error = "Error creating pool's bio prison"; 2566 err_p = ERR_PTR(-ENOMEM); 2567 goto bad_prison; 2568 } 2569 2570 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2571 if (IS_ERR(pool->copier)) { 2572 r = PTR_ERR(pool->copier); 2573 *error = "Error creating pool's kcopyd client"; 2574 err_p = ERR_PTR(r); 2575 goto bad_kcopyd_client; 2576 } 2577 2578 /* 2579 * Create singlethreaded workqueue that will service all devices 2580 * that use this metadata. 2581 */ 2582 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2583 if (!pool->wq) { 2584 *error = "Error creating pool's workqueue"; 2585 err_p = ERR_PTR(-ENOMEM); 2586 goto bad_wq; 2587 } 2588 2589 throttle_init(&pool->throttle); 2590 INIT_WORK(&pool->worker, do_worker); 2591 INIT_DELAYED_WORK(&pool->waker, do_waker); 2592 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2593 spin_lock_init(&pool->lock); 2594 bio_list_init(&pool->deferred_flush_bios); 2595 INIT_LIST_HEAD(&pool->prepared_mappings); 2596 INIT_LIST_HEAD(&pool->prepared_discards); 2597 INIT_LIST_HEAD(&pool->active_thins); 2598 pool->low_water_triggered = false; 2599 pool->suspended = true; 2600 2601 pool->shared_read_ds = dm_deferred_set_create(); 2602 if (!pool->shared_read_ds) { 2603 *error = "Error creating pool's shared read deferred set"; 2604 err_p = ERR_PTR(-ENOMEM); 2605 goto bad_shared_read_ds; 2606 } 2607 2608 pool->all_io_ds = dm_deferred_set_create(); 2609 if (!pool->all_io_ds) { 2610 *error = "Error creating pool's all io deferred set"; 2611 err_p = ERR_PTR(-ENOMEM); 2612 goto bad_all_io_ds; 2613 } 2614 2615 pool->next_mapping = NULL; 2616 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2617 _new_mapping_cache); 2618 if (!pool->mapping_pool) { 2619 *error = "Error creating pool's mapping mempool"; 2620 err_p = ERR_PTR(-ENOMEM); 2621 goto bad_mapping_pool; 2622 } 2623 2624 pool->ref_count = 1; 2625 pool->last_commit_jiffies = jiffies; 2626 pool->pool_md = pool_md; 2627 pool->md_dev = metadata_dev; 2628 __pool_table_insert(pool); 2629 2630 return pool; 2631 2632 bad_mapping_pool: 2633 dm_deferred_set_destroy(pool->all_io_ds); 2634 bad_all_io_ds: 2635 dm_deferred_set_destroy(pool->shared_read_ds); 2636 bad_shared_read_ds: 2637 destroy_workqueue(pool->wq); 2638 bad_wq: 2639 dm_kcopyd_client_destroy(pool->copier); 2640 bad_kcopyd_client: 2641 dm_bio_prison_destroy(pool->prison); 2642 bad_prison: 2643 kfree(pool); 2644 bad_pool: 2645 if (dm_pool_metadata_close(pmd)) 2646 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2647 2648 return err_p; 2649 } 2650 2651 static void __pool_inc(struct pool *pool) 2652 { 2653 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2654 pool->ref_count++; 2655 } 2656 2657 static void __pool_dec(struct pool *pool) 2658 { 2659 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2660 BUG_ON(!pool->ref_count); 2661 if (!--pool->ref_count) 2662 __pool_destroy(pool); 2663 } 2664 2665 static struct pool *__pool_find(struct mapped_device *pool_md, 2666 struct block_device *metadata_dev, 2667 unsigned long block_size, int read_only, 2668 char **error, int *created) 2669 { 2670 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2671 2672 if (pool) { 2673 if (pool->pool_md != pool_md) { 2674 *error = "metadata device already in use by a pool"; 2675 return ERR_PTR(-EBUSY); 2676 } 2677 __pool_inc(pool); 2678 2679 } else { 2680 pool = __pool_table_lookup(pool_md); 2681 if (pool) { 2682 if (pool->md_dev != metadata_dev) { 2683 *error = "different pool cannot replace a pool"; 2684 return ERR_PTR(-EINVAL); 2685 } 2686 __pool_inc(pool); 2687 2688 } else { 2689 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2690 *created = 1; 2691 } 2692 } 2693 2694 return pool; 2695 } 2696 2697 /*---------------------------------------------------------------- 2698 * Pool target methods 2699 *--------------------------------------------------------------*/ 2700 static void pool_dtr(struct dm_target *ti) 2701 { 2702 struct pool_c *pt = ti->private; 2703 2704 mutex_lock(&dm_thin_pool_table.mutex); 2705 2706 unbind_control_target(pt->pool, ti); 2707 __pool_dec(pt->pool); 2708 dm_put_device(ti, pt->metadata_dev); 2709 dm_put_device(ti, pt->data_dev); 2710 kfree(pt); 2711 2712 mutex_unlock(&dm_thin_pool_table.mutex); 2713 } 2714 2715 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2716 struct dm_target *ti) 2717 { 2718 int r; 2719 unsigned argc; 2720 const char *arg_name; 2721 2722 static struct dm_arg _args[] = { 2723 {0, 4, "Invalid number of pool feature arguments"}, 2724 }; 2725 2726 /* 2727 * No feature arguments supplied. 2728 */ 2729 if (!as->argc) 2730 return 0; 2731 2732 r = dm_read_arg_group(_args, as, &argc, &ti->error); 2733 if (r) 2734 return -EINVAL; 2735 2736 while (argc && !r) { 2737 arg_name = dm_shift_arg(as); 2738 argc--; 2739 2740 if (!strcasecmp(arg_name, "skip_block_zeroing")) 2741 pf->zero_new_blocks = false; 2742 2743 else if (!strcasecmp(arg_name, "ignore_discard")) 2744 pf->discard_enabled = false; 2745 2746 else if (!strcasecmp(arg_name, "no_discard_passdown")) 2747 pf->discard_passdown = false; 2748 2749 else if (!strcasecmp(arg_name, "read_only")) 2750 pf->mode = PM_READ_ONLY; 2751 2752 else if (!strcasecmp(arg_name, "error_if_no_space")) 2753 pf->error_if_no_space = true; 2754 2755 else { 2756 ti->error = "Unrecognised pool feature requested"; 2757 r = -EINVAL; 2758 break; 2759 } 2760 } 2761 2762 return r; 2763 } 2764 2765 static void metadata_low_callback(void *context) 2766 { 2767 struct pool *pool = context; 2768 2769 DMWARN("%s: reached low water mark for metadata device: sending event.", 2770 dm_device_name(pool->pool_md)); 2771 2772 dm_table_event(pool->ti->table); 2773 } 2774 2775 static sector_t get_dev_size(struct block_device *bdev) 2776 { 2777 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 2778 } 2779 2780 static void warn_if_metadata_device_too_big(struct block_device *bdev) 2781 { 2782 sector_t metadata_dev_size = get_dev_size(bdev); 2783 char buffer[BDEVNAME_SIZE]; 2784 2785 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 2786 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2787 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 2788 } 2789 2790 static sector_t get_metadata_dev_size(struct block_device *bdev) 2791 { 2792 sector_t metadata_dev_size = get_dev_size(bdev); 2793 2794 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 2795 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 2796 2797 return metadata_dev_size; 2798 } 2799 2800 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 2801 { 2802 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 2803 2804 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 2805 2806 return metadata_dev_size; 2807 } 2808 2809 /* 2810 * When a metadata threshold is crossed a dm event is triggered, and 2811 * userland should respond by growing the metadata device. We could let 2812 * userland set the threshold, like we do with the data threshold, but I'm 2813 * not sure they know enough to do this well. 2814 */ 2815 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 2816 { 2817 /* 2818 * 4M is ample for all ops with the possible exception of thin 2819 * device deletion which is harmless if it fails (just retry the 2820 * delete after you've grown the device). 2821 */ 2822 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 2823 return min((dm_block_t)1024ULL /* 4M */, quarter); 2824 } 2825 2826 /* 2827 * thin-pool <metadata dev> <data dev> 2828 * <data block size (sectors)> 2829 * <low water mark (blocks)> 2830 * [<#feature args> [<arg>]*] 2831 * 2832 * Optional feature arguments are: 2833 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 2834 * ignore_discard: disable discard 2835 * no_discard_passdown: don't pass discards down to the data device 2836 * read_only: Don't allow any changes to be made to the pool metadata. 2837 * error_if_no_space: error IOs, instead of queueing, if no space. 2838 */ 2839 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 2840 { 2841 int r, pool_created = 0; 2842 struct pool_c *pt; 2843 struct pool *pool; 2844 struct pool_features pf; 2845 struct dm_arg_set as; 2846 struct dm_dev *data_dev; 2847 unsigned long block_size; 2848 dm_block_t low_water_blocks; 2849 struct dm_dev *metadata_dev; 2850 fmode_t metadata_mode; 2851 2852 /* 2853 * FIXME Remove validation from scope of lock. 2854 */ 2855 mutex_lock(&dm_thin_pool_table.mutex); 2856 2857 if (argc < 4) { 2858 ti->error = "Invalid argument count"; 2859 r = -EINVAL; 2860 goto out_unlock; 2861 } 2862 2863 as.argc = argc; 2864 as.argv = argv; 2865 2866 /* 2867 * Set default pool features. 2868 */ 2869 pool_features_init(&pf); 2870 2871 dm_consume_args(&as, 4); 2872 r = parse_pool_features(&as, &pf, ti); 2873 if (r) 2874 goto out_unlock; 2875 2876 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 2877 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 2878 if (r) { 2879 ti->error = "Error opening metadata block device"; 2880 goto out_unlock; 2881 } 2882 warn_if_metadata_device_too_big(metadata_dev->bdev); 2883 2884 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 2885 if (r) { 2886 ti->error = "Error getting data device"; 2887 goto out_metadata; 2888 } 2889 2890 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 2891 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2892 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2893 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2894 ti->error = "Invalid block size"; 2895 r = -EINVAL; 2896 goto out; 2897 } 2898 2899 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 2900 ti->error = "Invalid low water mark"; 2901 r = -EINVAL; 2902 goto out; 2903 } 2904 2905 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 2906 if (!pt) { 2907 r = -ENOMEM; 2908 goto out; 2909 } 2910 2911 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 2912 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2913 if (IS_ERR(pool)) { 2914 r = PTR_ERR(pool); 2915 goto out_free_pt; 2916 } 2917 2918 /* 2919 * 'pool_created' reflects whether this is the first table load. 2920 * Top level discard support is not allowed to be changed after 2921 * initial load. This would require a pool reload to trigger thin 2922 * device changes. 2923 */ 2924 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2925 ti->error = "Discard support cannot be disabled once enabled"; 2926 r = -EINVAL; 2927 goto out_flags_changed; 2928 } 2929 2930 pt->pool = pool; 2931 pt->ti = ti; 2932 pt->metadata_dev = metadata_dev; 2933 pt->data_dev = data_dev; 2934 pt->low_water_blocks = low_water_blocks; 2935 pt->adjusted_pf = pt->requested_pf = pf; 2936 ti->num_flush_bios = 1; 2937 2938 /* 2939 * Only need to enable discards if the pool should pass 2940 * them down to the data device. The thin device's discard 2941 * processing will cause mappings to be removed from the btree. 2942 */ 2943 ti->discard_zeroes_data_unsupported = true; 2944 if (pf.discard_enabled && pf.discard_passdown) { 2945 ti->num_discard_bios = 1; 2946 2947 /* 2948 * Setting 'discards_supported' circumvents the normal 2949 * stacking of discard limits (this keeps the pool and 2950 * thin devices' discard limits consistent). 2951 */ 2952 ti->discards_supported = true; 2953 } 2954 ti->private = pt; 2955 2956 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 2957 calc_metadata_threshold(pt), 2958 metadata_low_callback, 2959 pool); 2960 if (r) 2961 goto out_free_pt; 2962 2963 pt->callbacks.congested_fn = pool_is_congested; 2964 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2965 2966 mutex_unlock(&dm_thin_pool_table.mutex); 2967 2968 return 0; 2969 2970 out_flags_changed: 2971 __pool_dec(pool); 2972 out_free_pt: 2973 kfree(pt); 2974 out: 2975 dm_put_device(ti, data_dev); 2976 out_metadata: 2977 dm_put_device(ti, metadata_dev); 2978 out_unlock: 2979 mutex_unlock(&dm_thin_pool_table.mutex); 2980 2981 return r; 2982 } 2983 2984 static int pool_map(struct dm_target *ti, struct bio *bio) 2985 { 2986 int r; 2987 struct pool_c *pt = ti->private; 2988 struct pool *pool = pt->pool; 2989 unsigned long flags; 2990 2991 /* 2992 * As this is a singleton target, ti->begin is always zero. 2993 */ 2994 spin_lock_irqsave(&pool->lock, flags); 2995 bio->bi_bdev = pt->data_dev->bdev; 2996 r = DM_MAPIO_REMAPPED; 2997 spin_unlock_irqrestore(&pool->lock, flags); 2998 2999 return r; 3000 } 3001 3002 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3003 { 3004 int r; 3005 struct pool_c *pt = ti->private; 3006 struct pool *pool = pt->pool; 3007 sector_t data_size = ti->len; 3008 dm_block_t sb_data_size; 3009 3010 *need_commit = false; 3011 3012 (void) sector_div(data_size, pool->sectors_per_block); 3013 3014 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3015 if (r) { 3016 DMERR("%s: failed to retrieve data device size", 3017 dm_device_name(pool->pool_md)); 3018 return r; 3019 } 3020 3021 if (data_size < sb_data_size) { 3022 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3023 dm_device_name(pool->pool_md), 3024 (unsigned long long)data_size, sb_data_size); 3025 return -EINVAL; 3026 3027 } else if (data_size > sb_data_size) { 3028 if (dm_pool_metadata_needs_check(pool->pmd)) { 3029 DMERR("%s: unable to grow the data device until repaired.", 3030 dm_device_name(pool->pool_md)); 3031 return 0; 3032 } 3033 3034 if (sb_data_size) 3035 DMINFO("%s: growing the data device from %llu to %llu blocks", 3036 dm_device_name(pool->pool_md), 3037 sb_data_size, (unsigned long long)data_size); 3038 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3039 if (r) { 3040 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3041 return r; 3042 } 3043 3044 *need_commit = true; 3045 } 3046 3047 return 0; 3048 } 3049 3050 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3051 { 3052 int r; 3053 struct pool_c *pt = ti->private; 3054 struct pool *pool = pt->pool; 3055 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3056 3057 *need_commit = false; 3058 3059 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3060 3061 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3062 if (r) { 3063 DMERR("%s: failed to retrieve metadata device size", 3064 dm_device_name(pool->pool_md)); 3065 return r; 3066 } 3067 3068 if (metadata_dev_size < sb_metadata_dev_size) { 3069 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3070 dm_device_name(pool->pool_md), 3071 metadata_dev_size, sb_metadata_dev_size); 3072 return -EINVAL; 3073 3074 } else if (metadata_dev_size > sb_metadata_dev_size) { 3075 if (dm_pool_metadata_needs_check(pool->pmd)) { 3076 DMERR("%s: unable to grow the metadata device until repaired.", 3077 dm_device_name(pool->pool_md)); 3078 return 0; 3079 } 3080 3081 warn_if_metadata_device_too_big(pool->md_dev); 3082 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3083 dm_device_name(pool->pool_md), 3084 sb_metadata_dev_size, metadata_dev_size); 3085 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3086 if (r) { 3087 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3088 return r; 3089 } 3090 3091 *need_commit = true; 3092 } 3093 3094 return 0; 3095 } 3096 3097 /* 3098 * Retrieves the number of blocks of the data device from 3099 * the superblock and compares it to the actual device size, 3100 * thus resizing the data device in case it has grown. 3101 * 3102 * This both copes with opening preallocated data devices in the ctr 3103 * being followed by a resume 3104 * -and- 3105 * calling the resume method individually after userspace has 3106 * grown the data device in reaction to a table event. 3107 */ 3108 static int pool_preresume(struct dm_target *ti) 3109 { 3110 int r; 3111 bool need_commit1, need_commit2; 3112 struct pool_c *pt = ti->private; 3113 struct pool *pool = pt->pool; 3114 3115 /* 3116 * Take control of the pool object. 3117 */ 3118 r = bind_control_target(pool, ti); 3119 if (r) 3120 return r; 3121 3122 r = maybe_resize_data_dev(ti, &need_commit1); 3123 if (r) 3124 return r; 3125 3126 r = maybe_resize_metadata_dev(ti, &need_commit2); 3127 if (r) 3128 return r; 3129 3130 if (need_commit1 || need_commit2) 3131 (void) commit(pool); 3132 3133 return 0; 3134 } 3135 3136 static void pool_suspend_active_thins(struct pool *pool) 3137 { 3138 struct thin_c *tc; 3139 3140 /* Suspend all active thin devices */ 3141 tc = get_first_thin(pool); 3142 while (tc) { 3143 dm_internal_suspend_noflush(tc->thin_md); 3144 tc = get_next_thin(pool, tc); 3145 } 3146 } 3147 3148 static void pool_resume_active_thins(struct pool *pool) 3149 { 3150 struct thin_c *tc; 3151 3152 /* Resume all active thin devices */ 3153 tc = get_first_thin(pool); 3154 while (tc) { 3155 dm_internal_resume(tc->thin_md); 3156 tc = get_next_thin(pool, tc); 3157 } 3158 } 3159 3160 static void pool_resume(struct dm_target *ti) 3161 { 3162 struct pool_c *pt = ti->private; 3163 struct pool *pool = pt->pool; 3164 unsigned long flags; 3165 3166 /* 3167 * Must requeue active_thins' bios and then resume 3168 * active_thins _before_ clearing 'suspend' flag. 3169 */ 3170 requeue_bios(pool); 3171 pool_resume_active_thins(pool); 3172 3173 spin_lock_irqsave(&pool->lock, flags); 3174 pool->low_water_triggered = false; 3175 pool->suspended = false; 3176 spin_unlock_irqrestore(&pool->lock, flags); 3177 3178 do_waker(&pool->waker.work); 3179 } 3180 3181 static void pool_presuspend(struct dm_target *ti) 3182 { 3183 struct pool_c *pt = ti->private; 3184 struct pool *pool = pt->pool; 3185 unsigned long flags; 3186 3187 spin_lock_irqsave(&pool->lock, flags); 3188 pool->suspended = true; 3189 spin_unlock_irqrestore(&pool->lock, flags); 3190 3191 pool_suspend_active_thins(pool); 3192 } 3193 3194 static void pool_presuspend_undo(struct dm_target *ti) 3195 { 3196 struct pool_c *pt = ti->private; 3197 struct pool *pool = pt->pool; 3198 unsigned long flags; 3199 3200 pool_resume_active_thins(pool); 3201 3202 spin_lock_irqsave(&pool->lock, flags); 3203 pool->suspended = false; 3204 spin_unlock_irqrestore(&pool->lock, flags); 3205 } 3206 3207 static void pool_postsuspend(struct dm_target *ti) 3208 { 3209 struct pool_c *pt = ti->private; 3210 struct pool *pool = pt->pool; 3211 3212 cancel_delayed_work(&pool->waker); 3213 cancel_delayed_work(&pool->no_space_timeout); 3214 flush_workqueue(pool->wq); 3215 (void) commit(pool); 3216 } 3217 3218 static int check_arg_count(unsigned argc, unsigned args_required) 3219 { 3220 if (argc != args_required) { 3221 DMWARN("Message received with %u arguments instead of %u.", 3222 argc, args_required); 3223 return -EINVAL; 3224 } 3225 3226 return 0; 3227 } 3228 3229 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3230 { 3231 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3232 *dev_id <= MAX_DEV_ID) 3233 return 0; 3234 3235 if (warning) 3236 DMWARN("Message received with invalid device id: %s", arg); 3237 3238 return -EINVAL; 3239 } 3240 3241 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3242 { 3243 dm_thin_id dev_id; 3244 int r; 3245 3246 r = check_arg_count(argc, 2); 3247 if (r) 3248 return r; 3249 3250 r = read_dev_id(argv[1], &dev_id, 1); 3251 if (r) 3252 return r; 3253 3254 r = dm_pool_create_thin(pool->pmd, dev_id); 3255 if (r) { 3256 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3257 argv[1]); 3258 return r; 3259 } 3260 3261 return 0; 3262 } 3263 3264 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3265 { 3266 dm_thin_id dev_id; 3267 dm_thin_id origin_dev_id; 3268 int r; 3269 3270 r = check_arg_count(argc, 3); 3271 if (r) 3272 return r; 3273 3274 r = read_dev_id(argv[1], &dev_id, 1); 3275 if (r) 3276 return r; 3277 3278 r = read_dev_id(argv[2], &origin_dev_id, 1); 3279 if (r) 3280 return r; 3281 3282 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3283 if (r) { 3284 DMWARN("Creation of new snapshot %s of device %s failed.", 3285 argv[1], argv[2]); 3286 return r; 3287 } 3288 3289 return 0; 3290 } 3291 3292 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3293 { 3294 dm_thin_id dev_id; 3295 int r; 3296 3297 r = check_arg_count(argc, 2); 3298 if (r) 3299 return r; 3300 3301 r = read_dev_id(argv[1], &dev_id, 1); 3302 if (r) 3303 return r; 3304 3305 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3306 if (r) 3307 DMWARN("Deletion of thin device %s failed.", argv[1]); 3308 3309 return r; 3310 } 3311 3312 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3313 { 3314 dm_thin_id old_id, new_id; 3315 int r; 3316 3317 r = check_arg_count(argc, 3); 3318 if (r) 3319 return r; 3320 3321 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3322 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3323 return -EINVAL; 3324 } 3325 3326 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3327 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3328 return -EINVAL; 3329 } 3330 3331 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3332 if (r) { 3333 DMWARN("Failed to change transaction id from %s to %s.", 3334 argv[1], argv[2]); 3335 return r; 3336 } 3337 3338 return 0; 3339 } 3340 3341 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3342 { 3343 int r; 3344 3345 r = check_arg_count(argc, 1); 3346 if (r) 3347 return r; 3348 3349 (void) commit(pool); 3350 3351 r = dm_pool_reserve_metadata_snap(pool->pmd); 3352 if (r) 3353 DMWARN("reserve_metadata_snap message failed."); 3354 3355 return r; 3356 } 3357 3358 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3359 { 3360 int r; 3361 3362 r = check_arg_count(argc, 1); 3363 if (r) 3364 return r; 3365 3366 r = dm_pool_release_metadata_snap(pool->pmd); 3367 if (r) 3368 DMWARN("release_metadata_snap message failed."); 3369 3370 return r; 3371 } 3372 3373 /* 3374 * Messages supported: 3375 * create_thin <dev_id> 3376 * create_snap <dev_id> <origin_id> 3377 * delete <dev_id> 3378 * set_transaction_id <current_trans_id> <new_trans_id> 3379 * reserve_metadata_snap 3380 * release_metadata_snap 3381 */ 3382 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 3383 { 3384 int r = -EINVAL; 3385 struct pool_c *pt = ti->private; 3386 struct pool *pool = pt->pool; 3387 3388 if (!strcasecmp(argv[0], "create_thin")) 3389 r = process_create_thin_mesg(argc, argv, pool); 3390 3391 else if (!strcasecmp(argv[0], "create_snap")) 3392 r = process_create_snap_mesg(argc, argv, pool); 3393 3394 else if (!strcasecmp(argv[0], "delete")) 3395 r = process_delete_mesg(argc, argv, pool); 3396 3397 else if (!strcasecmp(argv[0], "set_transaction_id")) 3398 r = process_set_transaction_id_mesg(argc, argv, pool); 3399 3400 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3401 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3402 3403 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3404 r = process_release_metadata_snap_mesg(argc, argv, pool); 3405 3406 else 3407 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3408 3409 if (!r) 3410 (void) commit(pool); 3411 3412 return r; 3413 } 3414 3415 static void emit_flags(struct pool_features *pf, char *result, 3416 unsigned sz, unsigned maxlen) 3417 { 3418 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3419 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3420 pf->error_if_no_space; 3421 DMEMIT("%u ", count); 3422 3423 if (!pf->zero_new_blocks) 3424 DMEMIT("skip_block_zeroing "); 3425 3426 if (!pf->discard_enabled) 3427 DMEMIT("ignore_discard "); 3428 3429 if (!pf->discard_passdown) 3430 DMEMIT("no_discard_passdown "); 3431 3432 if (pf->mode == PM_READ_ONLY) 3433 DMEMIT("read_only "); 3434 3435 if (pf->error_if_no_space) 3436 DMEMIT("error_if_no_space "); 3437 } 3438 3439 /* 3440 * Status line is: 3441 * <transaction id> <used metadata sectors>/<total metadata sectors> 3442 * <used data sectors>/<total data sectors> <held metadata root> 3443 */ 3444 static void pool_status(struct dm_target *ti, status_type_t type, 3445 unsigned status_flags, char *result, unsigned maxlen) 3446 { 3447 int r; 3448 unsigned sz = 0; 3449 uint64_t transaction_id; 3450 dm_block_t nr_free_blocks_data; 3451 dm_block_t nr_free_blocks_metadata; 3452 dm_block_t nr_blocks_data; 3453 dm_block_t nr_blocks_metadata; 3454 dm_block_t held_root; 3455 char buf[BDEVNAME_SIZE]; 3456 char buf2[BDEVNAME_SIZE]; 3457 struct pool_c *pt = ti->private; 3458 struct pool *pool = pt->pool; 3459 3460 switch (type) { 3461 case STATUSTYPE_INFO: 3462 if (get_pool_mode(pool) == PM_FAIL) { 3463 DMEMIT("Fail"); 3464 break; 3465 } 3466 3467 /* Commit to ensure statistics aren't out-of-date */ 3468 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3469 (void) commit(pool); 3470 3471 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3472 if (r) { 3473 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3474 dm_device_name(pool->pool_md), r); 3475 goto err; 3476 } 3477 3478 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3479 if (r) { 3480 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3481 dm_device_name(pool->pool_md), r); 3482 goto err; 3483 } 3484 3485 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3486 if (r) { 3487 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3488 dm_device_name(pool->pool_md), r); 3489 goto err; 3490 } 3491 3492 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3493 if (r) { 3494 DMERR("%s: dm_pool_get_free_block_count returned %d", 3495 dm_device_name(pool->pool_md), r); 3496 goto err; 3497 } 3498 3499 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3500 if (r) { 3501 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3502 dm_device_name(pool->pool_md), r); 3503 goto err; 3504 } 3505 3506 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3507 if (r) { 3508 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3509 dm_device_name(pool->pool_md), r); 3510 goto err; 3511 } 3512 3513 DMEMIT("%llu %llu/%llu %llu/%llu ", 3514 (unsigned long long)transaction_id, 3515 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3516 (unsigned long long)nr_blocks_metadata, 3517 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3518 (unsigned long long)nr_blocks_data); 3519 3520 if (held_root) 3521 DMEMIT("%llu ", held_root); 3522 else 3523 DMEMIT("- "); 3524 3525 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3526 DMEMIT("out_of_data_space "); 3527 else if (pool->pf.mode == PM_READ_ONLY) 3528 DMEMIT("ro "); 3529 else 3530 DMEMIT("rw "); 3531 3532 if (!pool->pf.discard_enabled) 3533 DMEMIT("ignore_discard "); 3534 else if (pool->pf.discard_passdown) 3535 DMEMIT("discard_passdown "); 3536 else 3537 DMEMIT("no_discard_passdown "); 3538 3539 if (pool->pf.error_if_no_space) 3540 DMEMIT("error_if_no_space "); 3541 else 3542 DMEMIT("queue_if_no_space "); 3543 3544 break; 3545 3546 case STATUSTYPE_TABLE: 3547 DMEMIT("%s %s %lu %llu ", 3548 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3549 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3550 (unsigned long)pool->sectors_per_block, 3551 (unsigned long long)pt->low_water_blocks); 3552 emit_flags(&pt->requested_pf, result, sz, maxlen); 3553 break; 3554 } 3555 return; 3556 3557 err: 3558 DMEMIT("Error"); 3559 } 3560 3561 static int pool_iterate_devices(struct dm_target *ti, 3562 iterate_devices_callout_fn fn, void *data) 3563 { 3564 struct pool_c *pt = ti->private; 3565 3566 return fn(ti, pt->data_dev, 0, ti->len, data); 3567 } 3568 3569 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 3570 struct bio_vec *biovec, int max_size) 3571 { 3572 struct pool_c *pt = ti->private; 3573 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 3574 3575 if (!q->merge_bvec_fn) 3576 return max_size; 3577 3578 bvm->bi_bdev = pt->data_dev->bdev; 3579 3580 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 3581 } 3582 3583 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 3584 { 3585 struct pool *pool = pt->pool; 3586 struct queue_limits *data_limits; 3587 3588 limits->max_discard_sectors = pool->sectors_per_block; 3589 3590 /* 3591 * discard_granularity is just a hint, and not enforced. 3592 */ 3593 if (pt->adjusted_pf.discard_passdown) { 3594 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 3595 limits->discard_granularity = max(data_limits->discard_granularity, 3596 pool->sectors_per_block << SECTOR_SHIFT); 3597 } else 3598 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 3599 } 3600 3601 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3602 { 3603 struct pool_c *pt = ti->private; 3604 struct pool *pool = pt->pool; 3605 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3606 3607 /* 3608 * If max_sectors is smaller than pool->sectors_per_block adjust it 3609 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3610 * This is especially beneficial when the pool's data device is a RAID 3611 * device that has a full stripe width that matches pool->sectors_per_block 3612 * -- because even though partial RAID stripe-sized IOs will be issued to a 3613 * single RAID stripe; when aggregated they will end on a full RAID stripe 3614 * boundary.. which avoids additional partial RAID stripe writes cascading 3615 */ 3616 if (limits->max_sectors < pool->sectors_per_block) { 3617 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3618 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3619 limits->max_sectors--; 3620 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3621 } 3622 } 3623 3624 /* 3625 * If the system-determined stacked limits are compatible with the 3626 * pool's blocksize (io_opt is a factor) do not override them. 3627 */ 3628 if (io_opt_sectors < pool->sectors_per_block || 3629 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3630 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3631 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3632 else 3633 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3634 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3635 } 3636 3637 /* 3638 * pt->adjusted_pf is a staging area for the actual features to use. 3639 * They get transferred to the live pool in bind_control_target() 3640 * called from pool_preresume(). 3641 */ 3642 if (!pt->adjusted_pf.discard_enabled) { 3643 /* 3644 * Must explicitly disallow stacking discard limits otherwise the 3645 * block layer will stack them if pool's data device has support. 3646 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3647 * user to see that, so make sure to set all discard limits to 0. 3648 */ 3649 limits->discard_granularity = 0; 3650 return; 3651 } 3652 3653 disable_passdown_if_not_supported(pt); 3654 3655 set_discard_limits(pt, limits); 3656 } 3657 3658 static struct target_type pool_target = { 3659 .name = "thin-pool", 3660 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3661 DM_TARGET_IMMUTABLE, 3662 .version = {1, 14, 0}, 3663 .module = THIS_MODULE, 3664 .ctr = pool_ctr, 3665 .dtr = pool_dtr, 3666 .map = pool_map, 3667 .presuspend = pool_presuspend, 3668 .presuspend_undo = pool_presuspend_undo, 3669 .postsuspend = pool_postsuspend, 3670 .preresume = pool_preresume, 3671 .resume = pool_resume, 3672 .message = pool_message, 3673 .status = pool_status, 3674 .merge = pool_merge, 3675 .iterate_devices = pool_iterate_devices, 3676 .io_hints = pool_io_hints, 3677 }; 3678 3679 /*---------------------------------------------------------------- 3680 * Thin target methods 3681 *--------------------------------------------------------------*/ 3682 static void thin_get(struct thin_c *tc) 3683 { 3684 atomic_inc(&tc->refcount); 3685 } 3686 3687 static void thin_put(struct thin_c *tc) 3688 { 3689 if (atomic_dec_and_test(&tc->refcount)) 3690 complete(&tc->can_destroy); 3691 } 3692 3693 static void thin_dtr(struct dm_target *ti) 3694 { 3695 struct thin_c *tc = ti->private; 3696 unsigned long flags; 3697 3698 spin_lock_irqsave(&tc->pool->lock, flags); 3699 list_del_rcu(&tc->list); 3700 spin_unlock_irqrestore(&tc->pool->lock, flags); 3701 synchronize_rcu(); 3702 3703 thin_put(tc); 3704 wait_for_completion(&tc->can_destroy); 3705 3706 mutex_lock(&dm_thin_pool_table.mutex); 3707 3708 __pool_dec(tc->pool); 3709 dm_pool_close_thin_device(tc->td); 3710 dm_put_device(ti, tc->pool_dev); 3711 if (tc->origin_dev) 3712 dm_put_device(ti, tc->origin_dev); 3713 kfree(tc); 3714 3715 mutex_unlock(&dm_thin_pool_table.mutex); 3716 } 3717 3718 /* 3719 * Thin target parameters: 3720 * 3721 * <pool_dev> <dev_id> [origin_dev] 3722 * 3723 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 3724 * dev_id: the internal device identifier 3725 * origin_dev: a device external to the pool that should act as the origin 3726 * 3727 * If the pool device has discards disabled, they get disabled for the thin 3728 * device as well. 3729 */ 3730 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 3731 { 3732 int r; 3733 struct thin_c *tc; 3734 struct dm_dev *pool_dev, *origin_dev; 3735 struct mapped_device *pool_md; 3736 unsigned long flags; 3737 3738 mutex_lock(&dm_thin_pool_table.mutex); 3739 3740 if (argc != 2 && argc != 3) { 3741 ti->error = "Invalid argument count"; 3742 r = -EINVAL; 3743 goto out_unlock; 3744 } 3745 3746 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 3747 if (!tc) { 3748 ti->error = "Out of memory"; 3749 r = -ENOMEM; 3750 goto out_unlock; 3751 } 3752 tc->thin_md = dm_table_get_md(ti->table); 3753 spin_lock_init(&tc->lock); 3754 INIT_LIST_HEAD(&tc->deferred_cells); 3755 bio_list_init(&tc->deferred_bio_list); 3756 bio_list_init(&tc->retry_on_resume_list); 3757 tc->sort_bio_list = RB_ROOT; 3758 3759 if (argc == 3) { 3760 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 3761 if (r) { 3762 ti->error = "Error opening origin device"; 3763 goto bad_origin_dev; 3764 } 3765 tc->origin_dev = origin_dev; 3766 } 3767 3768 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 3769 if (r) { 3770 ti->error = "Error opening pool device"; 3771 goto bad_pool_dev; 3772 } 3773 tc->pool_dev = pool_dev; 3774 3775 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 3776 ti->error = "Invalid device id"; 3777 r = -EINVAL; 3778 goto bad_common; 3779 } 3780 3781 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 3782 if (!pool_md) { 3783 ti->error = "Couldn't get pool mapped device"; 3784 r = -EINVAL; 3785 goto bad_common; 3786 } 3787 3788 tc->pool = __pool_table_lookup(pool_md); 3789 if (!tc->pool) { 3790 ti->error = "Couldn't find pool object"; 3791 r = -EINVAL; 3792 goto bad_pool_lookup; 3793 } 3794 __pool_inc(tc->pool); 3795 3796 if (get_pool_mode(tc->pool) == PM_FAIL) { 3797 ti->error = "Couldn't open thin device, Pool is in fail mode"; 3798 r = -EINVAL; 3799 goto bad_pool; 3800 } 3801 3802 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 3803 if (r) { 3804 ti->error = "Couldn't open thin internal device"; 3805 goto bad_pool; 3806 } 3807 3808 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 3809 if (r) 3810 goto bad; 3811 3812 ti->num_flush_bios = 1; 3813 ti->flush_supported = true; 3814 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 3815 3816 /* In case the pool supports discards, pass them on. */ 3817 ti->discard_zeroes_data_unsupported = true; 3818 if (tc->pool->pf.discard_enabled) { 3819 ti->discards_supported = true; 3820 ti->num_discard_bios = 1; 3821 /* Discard bios must be split on a block boundary */ 3822 ti->split_discard_bios = true; 3823 } 3824 3825 mutex_unlock(&dm_thin_pool_table.mutex); 3826 3827 spin_lock_irqsave(&tc->pool->lock, flags); 3828 if (tc->pool->suspended) { 3829 spin_unlock_irqrestore(&tc->pool->lock, flags); 3830 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 3831 ti->error = "Unable to activate thin device while pool is suspended"; 3832 r = -EINVAL; 3833 goto bad; 3834 } 3835 atomic_set(&tc->refcount, 1); 3836 init_completion(&tc->can_destroy); 3837 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 3838 spin_unlock_irqrestore(&tc->pool->lock, flags); 3839 /* 3840 * This synchronize_rcu() call is needed here otherwise we risk a 3841 * wake_worker() call finding no bios to process (because the newly 3842 * added tc isn't yet visible). So this reduces latency since we 3843 * aren't then dependent on the periodic commit to wake_worker(). 3844 */ 3845 synchronize_rcu(); 3846 3847 dm_put(pool_md); 3848 3849 return 0; 3850 3851 bad: 3852 dm_pool_close_thin_device(tc->td); 3853 bad_pool: 3854 __pool_dec(tc->pool); 3855 bad_pool_lookup: 3856 dm_put(pool_md); 3857 bad_common: 3858 dm_put_device(ti, tc->pool_dev); 3859 bad_pool_dev: 3860 if (tc->origin_dev) 3861 dm_put_device(ti, tc->origin_dev); 3862 bad_origin_dev: 3863 kfree(tc); 3864 out_unlock: 3865 mutex_unlock(&dm_thin_pool_table.mutex); 3866 3867 return r; 3868 } 3869 3870 static int thin_map(struct dm_target *ti, struct bio *bio) 3871 { 3872 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 3873 3874 return thin_bio_map(ti, bio); 3875 } 3876 3877 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 3878 { 3879 unsigned long flags; 3880 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 3881 struct list_head work; 3882 struct dm_thin_new_mapping *m, *tmp; 3883 struct pool *pool = h->tc->pool; 3884 3885 if (h->shared_read_entry) { 3886 INIT_LIST_HEAD(&work); 3887 dm_deferred_entry_dec(h->shared_read_entry, &work); 3888 3889 spin_lock_irqsave(&pool->lock, flags); 3890 list_for_each_entry_safe(m, tmp, &work, list) { 3891 list_del(&m->list); 3892 __complete_mapping_preparation(m); 3893 } 3894 spin_unlock_irqrestore(&pool->lock, flags); 3895 } 3896 3897 if (h->all_io_entry) { 3898 INIT_LIST_HEAD(&work); 3899 dm_deferred_entry_dec(h->all_io_entry, &work); 3900 if (!list_empty(&work)) { 3901 spin_lock_irqsave(&pool->lock, flags); 3902 list_for_each_entry_safe(m, tmp, &work, list) 3903 list_add_tail(&m->list, &pool->prepared_discards); 3904 spin_unlock_irqrestore(&pool->lock, flags); 3905 wake_worker(pool); 3906 } 3907 } 3908 3909 return 0; 3910 } 3911 3912 static void thin_presuspend(struct dm_target *ti) 3913 { 3914 struct thin_c *tc = ti->private; 3915 3916 if (dm_noflush_suspending(ti)) 3917 noflush_work(tc, do_noflush_start); 3918 } 3919 3920 static void thin_postsuspend(struct dm_target *ti) 3921 { 3922 struct thin_c *tc = ti->private; 3923 3924 /* 3925 * The dm_noflush_suspending flag has been cleared by now, so 3926 * unfortunately we must always run this. 3927 */ 3928 noflush_work(tc, do_noflush_stop); 3929 } 3930 3931 static int thin_preresume(struct dm_target *ti) 3932 { 3933 struct thin_c *tc = ti->private; 3934 3935 if (tc->origin_dev) 3936 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 3937 3938 return 0; 3939 } 3940 3941 /* 3942 * <nr mapped sectors> <highest mapped sector> 3943 */ 3944 static void thin_status(struct dm_target *ti, status_type_t type, 3945 unsigned status_flags, char *result, unsigned maxlen) 3946 { 3947 int r; 3948 ssize_t sz = 0; 3949 dm_block_t mapped, highest; 3950 char buf[BDEVNAME_SIZE]; 3951 struct thin_c *tc = ti->private; 3952 3953 if (get_pool_mode(tc->pool) == PM_FAIL) { 3954 DMEMIT("Fail"); 3955 return; 3956 } 3957 3958 if (!tc->td) 3959 DMEMIT("-"); 3960 else { 3961 switch (type) { 3962 case STATUSTYPE_INFO: 3963 r = dm_thin_get_mapped_count(tc->td, &mapped); 3964 if (r) { 3965 DMERR("dm_thin_get_mapped_count returned %d", r); 3966 goto err; 3967 } 3968 3969 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 3970 if (r < 0) { 3971 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 3972 goto err; 3973 } 3974 3975 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 3976 if (r) 3977 DMEMIT("%llu", ((highest + 1) * 3978 tc->pool->sectors_per_block) - 1); 3979 else 3980 DMEMIT("-"); 3981 break; 3982 3983 case STATUSTYPE_TABLE: 3984 DMEMIT("%s %lu", 3985 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 3986 (unsigned long) tc->dev_id); 3987 if (tc->origin_dev) 3988 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 3989 break; 3990 } 3991 } 3992 3993 return; 3994 3995 err: 3996 DMEMIT("Error"); 3997 } 3998 3999 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 4000 struct bio_vec *biovec, int max_size) 4001 { 4002 struct thin_c *tc = ti->private; 4003 struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev); 4004 4005 if (!q->merge_bvec_fn) 4006 return max_size; 4007 4008 bvm->bi_bdev = tc->pool_dev->bdev; 4009 bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector); 4010 4011 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 4012 } 4013 4014 static int thin_iterate_devices(struct dm_target *ti, 4015 iterate_devices_callout_fn fn, void *data) 4016 { 4017 sector_t blocks; 4018 struct thin_c *tc = ti->private; 4019 struct pool *pool = tc->pool; 4020 4021 /* 4022 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4023 * we follow a more convoluted path through to the pool's target. 4024 */ 4025 if (!pool->ti) 4026 return 0; /* nothing is bound */ 4027 4028 blocks = pool->ti->len; 4029 (void) sector_div(blocks, pool->sectors_per_block); 4030 if (blocks) 4031 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4032 4033 return 0; 4034 } 4035 4036 static struct target_type thin_target = { 4037 .name = "thin", 4038 .version = {1, 14, 0}, 4039 .module = THIS_MODULE, 4040 .ctr = thin_ctr, 4041 .dtr = thin_dtr, 4042 .map = thin_map, 4043 .end_io = thin_endio, 4044 .preresume = thin_preresume, 4045 .presuspend = thin_presuspend, 4046 .postsuspend = thin_postsuspend, 4047 .status = thin_status, 4048 .merge = thin_merge, 4049 .iterate_devices = thin_iterate_devices, 4050 }; 4051 4052 /*----------------------------------------------------------------*/ 4053 4054 static int __init dm_thin_init(void) 4055 { 4056 int r; 4057 4058 pool_table_init(); 4059 4060 r = dm_register_target(&thin_target); 4061 if (r) 4062 return r; 4063 4064 r = dm_register_target(&pool_target); 4065 if (r) 4066 goto bad_pool_target; 4067 4068 r = -ENOMEM; 4069 4070 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4071 if (!_new_mapping_cache) 4072 goto bad_new_mapping_cache; 4073 4074 return 0; 4075 4076 bad_new_mapping_cache: 4077 dm_unregister_target(&pool_target); 4078 bad_pool_target: 4079 dm_unregister_target(&thin_target); 4080 4081 return r; 4082 } 4083 4084 static void dm_thin_exit(void) 4085 { 4086 dm_unregister_target(&thin_target); 4087 dm_unregister_target(&pool_target); 4088 4089 kmem_cache_destroy(_new_mapping_cache); 4090 } 4091 4092 module_init(dm_thin_init); 4093 module_exit(dm_thin_exit); 4094 4095 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4096 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4097 4098 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4099 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4100 MODULE_LICENSE("GPL"); 4101