1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison-v1.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in various modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 204 /* 205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 206 */ 207 PM_OUT_OF_METADATA_SPACE, 208 PM_READ_ONLY, /* metadata may not be changed */ 209 210 PM_FAIL, /* all I/O fails */ 211 }; 212 213 struct pool_features { 214 enum pool_mode mode; 215 216 bool zero_new_blocks:1; 217 bool discard_enabled:1; 218 bool discard_passdown:1; 219 bool error_if_no_space:1; 220 }; 221 222 struct thin_c; 223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 226 227 #define CELL_SORT_ARRAY_SIZE 8192 228 229 struct pool { 230 struct list_head list; 231 struct dm_target *ti; /* Only set if a pool target is bound */ 232 233 struct mapped_device *pool_md; 234 struct block_device *data_dev; 235 struct block_device *md_dev; 236 struct dm_pool_metadata *pmd; 237 238 dm_block_t low_water_blocks; 239 uint32_t sectors_per_block; 240 int sectors_per_block_shift; 241 242 struct pool_features pf; 243 bool low_water_triggered:1; /* A dm event has been sent */ 244 bool suspended:1; 245 bool out_of_data_space:1; 246 247 struct dm_bio_prison *prison; 248 struct dm_kcopyd_client *copier; 249 250 struct work_struct worker; 251 struct workqueue_struct *wq; 252 struct throttle throttle; 253 struct delayed_work waker; 254 struct delayed_work no_space_timeout; 255 256 unsigned long last_commit_jiffies; 257 unsigned ref_count; 258 259 spinlock_t lock; 260 struct bio_list deferred_flush_bios; 261 struct bio_list deferred_flush_completions; 262 struct list_head prepared_mappings; 263 struct list_head prepared_discards; 264 struct list_head prepared_discards_pt2; 265 struct list_head active_thins; 266 267 struct dm_deferred_set *shared_read_ds; 268 struct dm_deferred_set *all_io_ds; 269 270 struct dm_thin_new_mapping *next_mapping; 271 272 process_bio_fn process_bio; 273 process_bio_fn process_discard; 274 275 process_cell_fn process_cell; 276 process_cell_fn process_discard_cell; 277 278 process_mapping_fn process_prepared_mapping; 279 process_mapping_fn process_prepared_discard; 280 process_mapping_fn process_prepared_discard_pt2; 281 282 struct dm_bio_prison_cell **cell_sort_array; 283 284 mempool_t mapping_pool; 285 }; 286 287 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 288 289 static enum pool_mode get_pool_mode(struct pool *pool) 290 { 291 return pool->pf.mode; 292 } 293 294 static void notify_of_pool_mode_change(struct pool *pool) 295 { 296 const char *descs[] = { 297 "write", 298 "out-of-data-space", 299 "read-only", 300 "read-only", 301 "fail" 302 }; 303 const char *extra_desc = NULL; 304 enum pool_mode mode = get_pool_mode(pool); 305 306 if (mode == PM_OUT_OF_DATA_SPACE) { 307 if (!pool->pf.error_if_no_space) 308 extra_desc = " (queue IO)"; 309 else 310 extra_desc = " (error IO)"; 311 } 312 313 dm_table_event(pool->ti->table); 314 DMINFO("%s: switching pool to %s%s mode", 315 dm_device_name(pool->pool_md), 316 descs[(int)mode], extra_desc ? : ""); 317 } 318 319 /* 320 * Target context for a pool. 321 */ 322 struct pool_c { 323 struct dm_target *ti; 324 struct pool *pool; 325 struct dm_dev *data_dev; 326 struct dm_dev *metadata_dev; 327 328 dm_block_t low_water_blocks; 329 struct pool_features requested_pf; /* Features requested during table load */ 330 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 331 }; 332 333 /* 334 * Target context for a thin. 335 */ 336 struct thin_c { 337 struct list_head list; 338 struct dm_dev *pool_dev; 339 struct dm_dev *origin_dev; 340 sector_t origin_size; 341 dm_thin_id dev_id; 342 343 struct pool *pool; 344 struct dm_thin_device *td; 345 struct mapped_device *thin_md; 346 347 bool requeue_mode:1; 348 spinlock_t lock; 349 struct list_head deferred_cells; 350 struct bio_list deferred_bio_list; 351 struct bio_list retry_on_resume_list; 352 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 353 354 /* 355 * Ensures the thin is not destroyed until the worker has finished 356 * iterating the active_thins list. 357 */ 358 refcount_t refcount; 359 struct completion can_destroy; 360 }; 361 362 /*----------------------------------------------------------------*/ 363 364 static bool block_size_is_power_of_two(struct pool *pool) 365 { 366 return pool->sectors_per_block_shift >= 0; 367 } 368 369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 370 { 371 return block_size_is_power_of_two(pool) ? 372 (b << pool->sectors_per_block_shift) : 373 (b * pool->sectors_per_block); 374 } 375 376 /*----------------------------------------------------------------*/ 377 378 struct discard_op { 379 struct thin_c *tc; 380 struct blk_plug plug; 381 struct bio *parent_bio; 382 struct bio *bio; 383 }; 384 385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 386 { 387 BUG_ON(!parent); 388 389 op->tc = tc; 390 blk_start_plug(&op->plug); 391 op->parent_bio = parent; 392 op->bio = NULL; 393 } 394 395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 396 { 397 struct thin_c *tc = op->tc; 398 sector_t s = block_to_sectors(tc->pool, data_b); 399 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 400 401 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT, 402 &op->bio); 403 } 404 405 static void end_discard(struct discard_op *op, int r) 406 { 407 if (op->bio) { 408 /* 409 * Even if one of the calls to issue_discard failed, we 410 * need to wait for the chain to complete. 411 */ 412 bio_chain(op->bio, op->parent_bio); 413 op->bio->bi_opf = REQ_OP_DISCARD; 414 submit_bio(op->bio); 415 } 416 417 blk_finish_plug(&op->plug); 418 419 /* 420 * Even if r is set, there could be sub discards in flight that we 421 * need to wait for. 422 */ 423 if (r && !op->parent_bio->bi_status) 424 op->parent_bio->bi_status = errno_to_blk_status(r); 425 bio_endio(op->parent_bio); 426 } 427 428 /*----------------------------------------------------------------*/ 429 430 /* 431 * wake_worker() is used when new work is queued and when pool_resume is 432 * ready to continue deferred IO processing. 433 */ 434 static void wake_worker(struct pool *pool) 435 { 436 queue_work(pool->wq, &pool->worker); 437 } 438 439 /*----------------------------------------------------------------*/ 440 441 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 442 struct dm_bio_prison_cell **cell_result) 443 { 444 int r; 445 struct dm_bio_prison_cell *cell_prealloc; 446 447 /* 448 * Allocate a cell from the prison's mempool. 449 * This might block but it can't fail. 450 */ 451 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 452 453 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 454 if (r) 455 /* 456 * We reused an old cell; we can get rid of 457 * the new one. 458 */ 459 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 460 461 return r; 462 } 463 464 static void cell_release(struct pool *pool, 465 struct dm_bio_prison_cell *cell, 466 struct bio_list *bios) 467 { 468 dm_cell_release(pool->prison, cell, bios); 469 dm_bio_prison_free_cell(pool->prison, cell); 470 } 471 472 static void cell_visit_release(struct pool *pool, 473 void (*fn)(void *, struct dm_bio_prison_cell *), 474 void *context, 475 struct dm_bio_prison_cell *cell) 476 { 477 dm_cell_visit_release(pool->prison, fn, context, cell); 478 dm_bio_prison_free_cell(pool->prison, cell); 479 } 480 481 static void cell_release_no_holder(struct pool *pool, 482 struct dm_bio_prison_cell *cell, 483 struct bio_list *bios) 484 { 485 dm_cell_release_no_holder(pool->prison, cell, bios); 486 dm_bio_prison_free_cell(pool->prison, cell); 487 } 488 489 static void cell_error_with_code(struct pool *pool, 490 struct dm_bio_prison_cell *cell, blk_status_t error_code) 491 { 492 dm_cell_error(pool->prison, cell, error_code); 493 dm_bio_prison_free_cell(pool->prison, cell); 494 } 495 496 static blk_status_t get_pool_io_error_code(struct pool *pool) 497 { 498 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 499 } 500 501 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 502 { 503 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 504 } 505 506 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 507 { 508 cell_error_with_code(pool, cell, 0); 509 } 510 511 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 512 { 513 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 514 } 515 516 /*----------------------------------------------------------------*/ 517 518 /* 519 * A global list of pools that uses a struct mapped_device as a key. 520 */ 521 static struct dm_thin_pool_table { 522 struct mutex mutex; 523 struct list_head pools; 524 } dm_thin_pool_table; 525 526 static void pool_table_init(void) 527 { 528 mutex_init(&dm_thin_pool_table.mutex); 529 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 530 } 531 532 static void pool_table_exit(void) 533 { 534 mutex_destroy(&dm_thin_pool_table.mutex); 535 } 536 537 static void __pool_table_insert(struct pool *pool) 538 { 539 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 540 list_add(&pool->list, &dm_thin_pool_table.pools); 541 } 542 543 static void __pool_table_remove(struct pool *pool) 544 { 545 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 546 list_del(&pool->list); 547 } 548 549 static struct pool *__pool_table_lookup(struct mapped_device *md) 550 { 551 struct pool *pool = NULL, *tmp; 552 553 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 554 555 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 556 if (tmp->pool_md == md) { 557 pool = tmp; 558 break; 559 } 560 } 561 562 return pool; 563 } 564 565 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 566 { 567 struct pool *pool = NULL, *tmp; 568 569 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 570 571 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 572 if (tmp->md_dev == md_dev) { 573 pool = tmp; 574 break; 575 } 576 } 577 578 return pool; 579 } 580 581 /*----------------------------------------------------------------*/ 582 583 struct dm_thin_endio_hook { 584 struct thin_c *tc; 585 struct dm_deferred_entry *shared_read_entry; 586 struct dm_deferred_entry *all_io_entry; 587 struct dm_thin_new_mapping *overwrite_mapping; 588 struct rb_node rb_node; 589 struct dm_bio_prison_cell *cell; 590 }; 591 592 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 593 { 594 bio_list_merge(bios, master); 595 bio_list_init(master); 596 } 597 598 static void error_bio_list(struct bio_list *bios, blk_status_t error) 599 { 600 struct bio *bio; 601 602 while ((bio = bio_list_pop(bios))) { 603 bio->bi_status = error; 604 bio_endio(bio); 605 } 606 } 607 608 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 609 blk_status_t error) 610 { 611 struct bio_list bios; 612 613 bio_list_init(&bios); 614 615 spin_lock_irq(&tc->lock); 616 __merge_bio_list(&bios, master); 617 spin_unlock_irq(&tc->lock); 618 619 error_bio_list(&bios, error); 620 } 621 622 static void requeue_deferred_cells(struct thin_c *tc) 623 { 624 struct pool *pool = tc->pool; 625 struct list_head cells; 626 struct dm_bio_prison_cell *cell, *tmp; 627 628 INIT_LIST_HEAD(&cells); 629 630 spin_lock_irq(&tc->lock); 631 list_splice_init(&tc->deferred_cells, &cells); 632 spin_unlock_irq(&tc->lock); 633 634 list_for_each_entry_safe(cell, tmp, &cells, user_list) 635 cell_requeue(pool, cell); 636 } 637 638 static void requeue_io(struct thin_c *tc) 639 { 640 struct bio_list bios; 641 642 bio_list_init(&bios); 643 644 spin_lock_irq(&tc->lock); 645 __merge_bio_list(&bios, &tc->deferred_bio_list); 646 __merge_bio_list(&bios, &tc->retry_on_resume_list); 647 spin_unlock_irq(&tc->lock); 648 649 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 650 requeue_deferred_cells(tc); 651 } 652 653 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 654 { 655 struct thin_c *tc; 656 657 rcu_read_lock(); 658 list_for_each_entry_rcu(tc, &pool->active_thins, list) 659 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 660 rcu_read_unlock(); 661 } 662 663 static void error_retry_list(struct pool *pool) 664 { 665 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 666 } 667 668 /* 669 * This section of code contains the logic for processing a thin device's IO. 670 * Much of the code depends on pool object resources (lists, workqueues, etc) 671 * but most is exclusively called from the thin target rather than the thin-pool 672 * target. 673 */ 674 675 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 676 { 677 struct pool *pool = tc->pool; 678 sector_t block_nr = bio->bi_iter.bi_sector; 679 680 if (block_size_is_power_of_two(pool)) 681 block_nr >>= pool->sectors_per_block_shift; 682 else 683 (void) sector_div(block_nr, pool->sectors_per_block); 684 685 return block_nr; 686 } 687 688 /* 689 * Returns the _complete_ blocks that this bio covers. 690 */ 691 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 692 dm_block_t *begin, dm_block_t *end) 693 { 694 struct pool *pool = tc->pool; 695 sector_t b = bio->bi_iter.bi_sector; 696 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 697 698 b += pool->sectors_per_block - 1ull; /* so we round up */ 699 700 if (block_size_is_power_of_two(pool)) { 701 b >>= pool->sectors_per_block_shift; 702 e >>= pool->sectors_per_block_shift; 703 } else { 704 (void) sector_div(b, pool->sectors_per_block); 705 (void) sector_div(e, pool->sectors_per_block); 706 } 707 708 if (e < b) 709 /* Can happen if the bio is within a single block. */ 710 e = b; 711 712 *begin = b; 713 *end = e; 714 } 715 716 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 717 { 718 struct pool *pool = tc->pool; 719 sector_t bi_sector = bio->bi_iter.bi_sector; 720 721 bio_set_dev(bio, tc->pool_dev->bdev); 722 if (block_size_is_power_of_two(pool)) 723 bio->bi_iter.bi_sector = 724 (block << pool->sectors_per_block_shift) | 725 (bi_sector & (pool->sectors_per_block - 1)); 726 else 727 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 728 sector_div(bi_sector, pool->sectors_per_block); 729 } 730 731 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 732 { 733 bio_set_dev(bio, tc->origin_dev->bdev); 734 } 735 736 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 737 { 738 return op_is_flush(bio->bi_opf) && 739 dm_thin_changed_this_transaction(tc->td); 740 } 741 742 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 743 { 744 struct dm_thin_endio_hook *h; 745 746 if (bio_op(bio) == REQ_OP_DISCARD) 747 return; 748 749 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 750 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 751 } 752 753 static void issue(struct thin_c *tc, struct bio *bio) 754 { 755 struct pool *pool = tc->pool; 756 757 if (!bio_triggers_commit(tc, bio)) { 758 dm_submit_bio_remap(bio, NULL); 759 return; 760 } 761 762 /* 763 * Complete bio with an error if earlier I/O caused changes to 764 * the metadata that can't be committed e.g, due to I/O errors 765 * on the metadata device. 766 */ 767 if (dm_thin_aborted_changes(tc->td)) { 768 bio_io_error(bio); 769 return; 770 } 771 772 /* 773 * Batch together any bios that trigger commits and then issue a 774 * single commit for them in process_deferred_bios(). 775 */ 776 spin_lock_irq(&pool->lock); 777 bio_list_add(&pool->deferred_flush_bios, bio); 778 spin_unlock_irq(&pool->lock); 779 } 780 781 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 782 { 783 remap_to_origin(tc, bio); 784 issue(tc, bio); 785 } 786 787 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 788 dm_block_t block) 789 { 790 remap(tc, bio, block); 791 issue(tc, bio); 792 } 793 794 /*----------------------------------------------------------------*/ 795 796 /* 797 * Bio endio functions. 798 */ 799 struct dm_thin_new_mapping { 800 struct list_head list; 801 802 bool pass_discard:1; 803 bool maybe_shared:1; 804 805 /* 806 * Track quiescing, copying and zeroing preparation actions. When this 807 * counter hits zero the block is prepared and can be inserted into the 808 * btree. 809 */ 810 atomic_t prepare_actions; 811 812 blk_status_t status; 813 struct thin_c *tc; 814 dm_block_t virt_begin, virt_end; 815 dm_block_t data_block; 816 struct dm_bio_prison_cell *cell; 817 818 /* 819 * If the bio covers the whole area of a block then we can avoid 820 * zeroing or copying. Instead this bio is hooked. The bio will 821 * still be in the cell, so care has to be taken to avoid issuing 822 * the bio twice. 823 */ 824 struct bio *bio; 825 bio_end_io_t *saved_bi_end_io; 826 }; 827 828 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 829 { 830 struct pool *pool = m->tc->pool; 831 832 if (atomic_dec_and_test(&m->prepare_actions)) { 833 list_add_tail(&m->list, &pool->prepared_mappings); 834 wake_worker(pool); 835 } 836 } 837 838 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 839 { 840 unsigned long flags; 841 struct pool *pool = m->tc->pool; 842 843 spin_lock_irqsave(&pool->lock, flags); 844 __complete_mapping_preparation(m); 845 spin_unlock_irqrestore(&pool->lock, flags); 846 } 847 848 static void copy_complete(int read_err, unsigned long write_err, void *context) 849 { 850 struct dm_thin_new_mapping *m = context; 851 852 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 853 complete_mapping_preparation(m); 854 } 855 856 static void overwrite_endio(struct bio *bio) 857 { 858 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 859 struct dm_thin_new_mapping *m = h->overwrite_mapping; 860 861 bio->bi_end_io = m->saved_bi_end_io; 862 863 m->status = bio->bi_status; 864 complete_mapping_preparation(m); 865 } 866 867 /*----------------------------------------------------------------*/ 868 869 /* 870 * Workqueue. 871 */ 872 873 /* 874 * Prepared mapping jobs. 875 */ 876 877 /* 878 * This sends the bios in the cell, except the original holder, back 879 * to the deferred_bios list. 880 */ 881 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 882 { 883 struct pool *pool = tc->pool; 884 unsigned long flags; 885 int has_work; 886 887 spin_lock_irqsave(&tc->lock, flags); 888 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 889 has_work = !bio_list_empty(&tc->deferred_bio_list); 890 spin_unlock_irqrestore(&tc->lock, flags); 891 892 if (has_work) 893 wake_worker(pool); 894 } 895 896 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 897 898 struct remap_info { 899 struct thin_c *tc; 900 struct bio_list defer_bios; 901 struct bio_list issue_bios; 902 }; 903 904 static void __inc_remap_and_issue_cell(void *context, 905 struct dm_bio_prison_cell *cell) 906 { 907 struct remap_info *info = context; 908 struct bio *bio; 909 910 while ((bio = bio_list_pop(&cell->bios))) { 911 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 912 bio_list_add(&info->defer_bios, bio); 913 else { 914 inc_all_io_entry(info->tc->pool, bio); 915 916 /* 917 * We can't issue the bios with the bio prison lock 918 * held, so we add them to a list to issue on 919 * return from this function. 920 */ 921 bio_list_add(&info->issue_bios, bio); 922 } 923 } 924 } 925 926 static void inc_remap_and_issue_cell(struct thin_c *tc, 927 struct dm_bio_prison_cell *cell, 928 dm_block_t block) 929 { 930 struct bio *bio; 931 struct remap_info info; 932 933 info.tc = tc; 934 bio_list_init(&info.defer_bios); 935 bio_list_init(&info.issue_bios); 936 937 /* 938 * We have to be careful to inc any bios we're about to issue 939 * before the cell is released, and avoid a race with new bios 940 * being added to the cell. 941 */ 942 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 943 &info, cell); 944 945 while ((bio = bio_list_pop(&info.defer_bios))) 946 thin_defer_bio(tc, bio); 947 948 while ((bio = bio_list_pop(&info.issue_bios))) 949 remap_and_issue(info.tc, bio, block); 950 } 951 952 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 953 { 954 cell_error(m->tc->pool, m->cell); 955 list_del(&m->list); 956 mempool_free(m, &m->tc->pool->mapping_pool); 957 } 958 959 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 960 { 961 struct pool *pool = tc->pool; 962 963 /* 964 * If the bio has the REQ_FUA flag set we must commit the metadata 965 * before signaling its completion. 966 */ 967 if (!bio_triggers_commit(tc, bio)) { 968 bio_endio(bio); 969 return; 970 } 971 972 /* 973 * Complete bio with an error if earlier I/O caused changes to the 974 * metadata that can't be committed, e.g, due to I/O errors on the 975 * metadata device. 976 */ 977 if (dm_thin_aborted_changes(tc->td)) { 978 bio_io_error(bio); 979 return; 980 } 981 982 /* 983 * Batch together any bios that trigger commits and then issue a 984 * single commit for them in process_deferred_bios(). 985 */ 986 spin_lock_irq(&pool->lock); 987 bio_list_add(&pool->deferred_flush_completions, bio); 988 spin_unlock_irq(&pool->lock); 989 } 990 991 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 992 { 993 struct thin_c *tc = m->tc; 994 struct pool *pool = tc->pool; 995 struct bio *bio = m->bio; 996 int r; 997 998 if (m->status) { 999 cell_error(pool, m->cell); 1000 goto out; 1001 } 1002 1003 /* 1004 * Commit the prepared block into the mapping btree. 1005 * Any I/O for this block arriving after this point will get 1006 * remapped to it directly. 1007 */ 1008 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1009 if (r) { 1010 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1011 cell_error(pool, m->cell); 1012 goto out; 1013 } 1014 1015 /* 1016 * Release any bios held while the block was being provisioned. 1017 * If we are processing a write bio that completely covers the block, 1018 * we already processed it so can ignore it now when processing 1019 * the bios in the cell. 1020 */ 1021 if (bio) { 1022 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1023 complete_overwrite_bio(tc, bio); 1024 } else { 1025 inc_all_io_entry(tc->pool, m->cell->holder); 1026 remap_and_issue(tc, m->cell->holder, m->data_block); 1027 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1028 } 1029 1030 out: 1031 list_del(&m->list); 1032 mempool_free(m, &pool->mapping_pool); 1033 } 1034 1035 /*----------------------------------------------------------------*/ 1036 1037 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1038 { 1039 struct thin_c *tc = m->tc; 1040 if (m->cell) 1041 cell_defer_no_holder(tc, m->cell); 1042 mempool_free(m, &tc->pool->mapping_pool); 1043 } 1044 1045 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1046 { 1047 bio_io_error(m->bio); 1048 free_discard_mapping(m); 1049 } 1050 1051 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1052 { 1053 bio_endio(m->bio); 1054 free_discard_mapping(m); 1055 } 1056 1057 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1058 { 1059 int r; 1060 struct thin_c *tc = m->tc; 1061 1062 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1063 if (r) { 1064 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1065 bio_io_error(m->bio); 1066 } else 1067 bio_endio(m->bio); 1068 1069 cell_defer_no_holder(tc, m->cell); 1070 mempool_free(m, &tc->pool->mapping_pool); 1071 } 1072 1073 /*----------------------------------------------------------------*/ 1074 1075 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1076 struct bio *discard_parent) 1077 { 1078 /* 1079 * We've already unmapped this range of blocks, but before we 1080 * passdown we have to check that these blocks are now unused. 1081 */ 1082 int r = 0; 1083 bool shared = true; 1084 struct thin_c *tc = m->tc; 1085 struct pool *pool = tc->pool; 1086 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1087 struct discard_op op; 1088 1089 begin_discard(&op, tc, discard_parent); 1090 while (b != end) { 1091 /* find start of unmapped run */ 1092 for (; b < end; b++) { 1093 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1094 if (r) 1095 goto out; 1096 1097 if (!shared) 1098 break; 1099 } 1100 1101 if (b == end) 1102 break; 1103 1104 /* find end of run */ 1105 for (e = b + 1; e != end; e++) { 1106 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1107 if (r) 1108 goto out; 1109 1110 if (shared) 1111 break; 1112 } 1113 1114 r = issue_discard(&op, b, e); 1115 if (r) 1116 goto out; 1117 1118 b = e; 1119 } 1120 out: 1121 end_discard(&op, r); 1122 } 1123 1124 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1125 { 1126 unsigned long flags; 1127 struct pool *pool = m->tc->pool; 1128 1129 spin_lock_irqsave(&pool->lock, flags); 1130 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1131 spin_unlock_irqrestore(&pool->lock, flags); 1132 wake_worker(pool); 1133 } 1134 1135 static void passdown_endio(struct bio *bio) 1136 { 1137 /* 1138 * It doesn't matter if the passdown discard failed, we still want 1139 * to unmap (we ignore err). 1140 */ 1141 queue_passdown_pt2(bio->bi_private); 1142 bio_put(bio); 1143 } 1144 1145 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1146 { 1147 int r; 1148 struct thin_c *tc = m->tc; 1149 struct pool *pool = tc->pool; 1150 struct bio *discard_parent; 1151 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1152 1153 /* 1154 * Only this thread allocates blocks, so we can be sure that the 1155 * newly unmapped blocks will not be allocated before the end of 1156 * the function. 1157 */ 1158 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1159 if (r) { 1160 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1161 bio_io_error(m->bio); 1162 cell_defer_no_holder(tc, m->cell); 1163 mempool_free(m, &pool->mapping_pool); 1164 return; 1165 } 1166 1167 /* 1168 * Increment the unmapped blocks. This prevents a race between the 1169 * passdown io and reallocation of freed blocks. 1170 */ 1171 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1172 if (r) { 1173 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1174 bio_io_error(m->bio); 1175 cell_defer_no_holder(tc, m->cell); 1176 mempool_free(m, &pool->mapping_pool); 1177 return; 1178 } 1179 1180 discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO); 1181 discard_parent->bi_end_io = passdown_endio; 1182 discard_parent->bi_private = m; 1183 if (m->maybe_shared) 1184 passdown_double_checking_shared_status(m, discard_parent); 1185 else { 1186 struct discard_op op; 1187 1188 begin_discard(&op, tc, discard_parent); 1189 r = issue_discard(&op, m->data_block, data_end); 1190 end_discard(&op, r); 1191 } 1192 } 1193 1194 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1195 { 1196 int r; 1197 struct thin_c *tc = m->tc; 1198 struct pool *pool = tc->pool; 1199 1200 /* 1201 * The passdown has completed, so now we can decrement all those 1202 * unmapped blocks. 1203 */ 1204 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1205 m->data_block + (m->virt_end - m->virt_begin)); 1206 if (r) { 1207 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1208 bio_io_error(m->bio); 1209 } else 1210 bio_endio(m->bio); 1211 1212 cell_defer_no_holder(tc, m->cell); 1213 mempool_free(m, &pool->mapping_pool); 1214 } 1215 1216 static void process_prepared(struct pool *pool, struct list_head *head, 1217 process_mapping_fn *fn) 1218 { 1219 struct list_head maps; 1220 struct dm_thin_new_mapping *m, *tmp; 1221 1222 INIT_LIST_HEAD(&maps); 1223 spin_lock_irq(&pool->lock); 1224 list_splice_init(head, &maps); 1225 spin_unlock_irq(&pool->lock); 1226 1227 list_for_each_entry_safe(m, tmp, &maps, list) 1228 (*fn)(m); 1229 } 1230 1231 /* 1232 * Deferred bio jobs. 1233 */ 1234 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1235 { 1236 return bio->bi_iter.bi_size == 1237 (pool->sectors_per_block << SECTOR_SHIFT); 1238 } 1239 1240 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1241 { 1242 return (bio_data_dir(bio) == WRITE) && 1243 io_overlaps_block(pool, bio); 1244 } 1245 1246 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1247 bio_end_io_t *fn) 1248 { 1249 *save = bio->bi_end_io; 1250 bio->bi_end_io = fn; 1251 } 1252 1253 static int ensure_next_mapping(struct pool *pool) 1254 { 1255 if (pool->next_mapping) 1256 return 0; 1257 1258 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1259 1260 return pool->next_mapping ? 0 : -ENOMEM; 1261 } 1262 1263 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1264 { 1265 struct dm_thin_new_mapping *m = pool->next_mapping; 1266 1267 BUG_ON(!pool->next_mapping); 1268 1269 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1270 INIT_LIST_HEAD(&m->list); 1271 m->bio = NULL; 1272 1273 pool->next_mapping = NULL; 1274 1275 return m; 1276 } 1277 1278 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1279 sector_t begin, sector_t end) 1280 { 1281 struct dm_io_region to; 1282 1283 to.bdev = tc->pool_dev->bdev; 1284 to.sector = begin; 1285 to.count = end - begin; 1286 1287 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1288 } 1289 1290 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1291 dm_block_t data_begin, 1292 struct dm_thin_new_mapping *m) 1293 { 1294 struct pool *pool = tc->pool; 1295 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1296 1297 h->overwrite_mapping = m; 1298 m->bio = bio; 1299 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1300 inc_all_io_entry(pool, bio); 1301 remap_and_issue(tc, bio, data_begin); 1302 } 1303 1304 /* 1305 * A partial copy also needs to zero the uncopied region. 1306 */ 1307 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1308 struct dm_dev *origin, dm_block_t data_origin, 1309 dm_block_t data_dest, 1310 struct dm_bio_prison_cell *cell, struct bio *bio, 1311 sector_t len) 1312 { 1313 struct pool *pool = tc->pool; 1314 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1315 1316 m->tc = tc; 1317 m->virt_begin = virt_block; 1318 m->virt_end = virt_block + 1u; 1319 m->data_block = data_dest; 1320 m->cell = cell; 1321 1322 /* 1323 * quiesce action + copy action + an extra reference held for the 1324 * duration of this function (we may need to inc later for a 1325 * partial zero). 1326 */ 1327 atomic_set(&m->prepare_actions, 3); 1328 1329 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1330 complete_mapping_preparation(m); /* already quiesced */ 1331 1332 /* 1333 * IO to pool_dev remaps to the pool target's data_dev. 1334 * 1335 * If the whole block of data is being overwritten, we can issue the 1336 * bio immediately. Otherwise we use kcopyd to clone the data first. 1337 */ 1338 if (io_overwrites_block(pool, bio)) 1339 remap_and_issue_overwrite(tc, bio, data_dest, m); 1340 else { 1341 struct dm_io_region from, to; 1342 1343 from.bdev = origin->bdev; 1344 from.sector = data_origin * pool->sectors_per_block; 1345 from.count = len; 1346 1347 to.bdev = tc->pool_dev->bdev; 1348 to.sector = data_dest * pool->sectors_per_block; 1349 to.count = len; 1350 1351 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1352 0, copy_complete, m); 1353 1354 /* 1355 * Do we need to zero a tail region? 1356 */ 1357 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1358 atomic_inc(&m->prepare_actions); 1359 ll_zero(tc, m, 1360 data_dest * pool->sectors_per_block + len, 1361 (data_dest + 1) * pool->sectors_per_block); 1362 } 1363 } 1364 1365 complete_mapping_preparation(m); /* drop our ref */ 1366 } 1367 1368 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1369 dm_block_t data_origin, dm_block_t data_dest, 1370 struct dm_bio_prison_cell *cell, struct bio *bio) 1371 { 1372 schedule_copy(tc, virt_block, tc->pool_dev, 1373 data_origin, data_dest, cell, bio, 1374 tc->pool->sectors_per_block); 1375 } 1376 1377 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1378 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1379 struct bio *bio) 1380 { 1381 struct pool *pool = tc->pool; 1382 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1383 1384 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1385 m->tc = tc; 1386 m->virt_begin = virt_block; 1387 m->virt_end = virt_block + 1u; 1388 m->data_block = data_block; 1389 m->cell = cell; 1390 1391 /* 1392 * If the whole block of data is being overwritten or we are not 1393 * zeroing pre-existing data, we can issue the bio immediately. 1394 * Otherwise we use kcopyd to zero the data first. 1395 */ 1396 if (pool->pf.zero_new_blocks) { 1397 if (io_overwrites_block(pool, bio)) 1398 remap_and_issue_overwrite(tc, bio, data_block, m); 1399 else 1400 ll_zero(tc, m, data_block * pool->sectors_per_block, 1401 (data_block + 1) * pool->sectors_per_block); 1402 } else 1403 process_prepared_mapping(m); 1404 } 1405 1406 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1407 dm_block_t data_dest, 1408 struct dm_bio_prison_cell *cell, struct bio *bio) 1409 { 1410 struct pool *pool = tc->pool; 1411 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1412 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1413 1414 if (virt_block_end <= tc->origin_size) 1415 schedule_copy(tc, virt_block, tc->origin_dev, 1416 virt_block, data_dest, cell, bio, 1417 pool->sectors_per_block); 1418 1419 else if (virt_block_begin < tc->origin_size) 1420 schedule_copy(tc, virt_block, tc->origin_dev, 1421 virt_block, data_dest, cell, bio, 1422 tc->origin_size - virt_block_begin); 1423 1424 else 1425 schedule_zero(tc, virt_block, data_dest, cell, bio); 1426 } 1427 1428 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1429 1430 static void requeue_bios(struct pool *pool); 1431 1432 static bool is_read_only_pool_mode(enum pool_mode mode) 1433 { 1434 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1435 } 1436 1437 static bool is_read_only(struct pool *pool) 1438 { 1439 return is_read_only_pool_mode(get_pool_mode(pool)); 1440 } 1441 1442 static void check_for_metadata_space(struct pool *pool) 1443 { 1444 int r; 1445 const char *ooms_reason = NULL; 1446 dm_block_t nr_free; 1447 1448 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1449 if (r) 1450 ooms_reason = "Could not get free metadata blocks"; 1451 else if (!nr_free) 1452 ooms_reason = "No free metadata blocks"; 1453 1454 if (ooms_reason && !is_read_only(pool)) { 1455 DMERR("%s", ooms_reason); 1456 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1457 } 1458 } 1459 1460 static void check_for_data_space(struct pool *pool) 1461 { 1462 int r; 1463 dm_block_t nr_free; 1464 1465 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1466 return; 1467 1468 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1469 if (r) 1470 return; 1471 1472 if (nr_free) { 1473 set_pool_mode(pool, PM_WRITE); 1474 requeue_bios(pool); 1475 } 1476 } 1477 1478 /* 1479 * A non-zero return indicates read_only or fail_io mode. 1480 * Many callers don't care about the return value. 1481 */ 1482 static int commit(struct pool *pool) 1483 { 1484 int r; 1485 1486 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1487 return -EINVAL; 1488 1489 r = dm_pool_commit_metadata(pool->pmd); 1490 if (r) 1491 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1492 else { 1493 check_for_metadata_space(pool); 1494 check_for_data_space(pool); 1495 } 1496 1497 return r; 1498 } 1499 1500 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1501 { 1502 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1503 DMWARN("%s: reached low water mark for data device: sending event.", 1504 dm_device_name(pool->pool_md)); 1505 spin_lock_irq(&pool->lock); 1506 pool->low_water_triggered = true; 1507 spin_unlock_irq(&pool->lock); 1508 dm_table_event(pool->ti->table); 1509 } 1510 } 1511 1512 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1513 { 1514 int r; 1515 dm_block_t free_blocks; 1516 struct pool *pool = tc->pool; 1517 1518 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1519 return -EINVAL; 1520 1521 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1522 if (r) { 1523 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1524 return r; 1525 } 1526 1527 check_low_water_mark(pool, free_blocks); 1528 1529 if (!free_blocks) { 1530 /* 1531 * Try to commit to see if that will free up some 1532 * more space. 1533 */ 1534 r = commit(pool); 1535 if (r) 1536 return r; 1537 1538 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1539 if (r) { 1540 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1541 return r; 1542 } 1543 1544 if (!free_blocks) { 1545 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1546 return -ENOSPC; 1547 } 1548 } 1549 1550 r = dm_pool_alloc_data_block(pool->pmd, result); 1551 if (r) { 1552 if (r == -ENOSPC) 1553 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1554 else 1555 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1556 return r; 1557 } 1558 1559 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1560 if (r) { 1561 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1562 return r; 1563 } 1564 1565 if (!free_blocks) { 1566 /* Let's commit before we use up the metadata reserve. */ 1567 r = commit(pool); 1568 if (r) 1569 return r; 1570 } 1571 1572 return 0; 1573 } 1574 1575 /* 1576 * If we have run out of space, queue bios until the device is 1577 * resumed, presumably after having been reloaded with more space. 1578 */ 1579 static void retry_on_resume(struct bio *bio) 1580 { 1581 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1582 struct thin_c *tc = h->tc; 1583 1584 spin_lock_irq(&tc->lock); 1585 bio_list_add(&tc->retry_on_resume_list, bio); 1586 spin_unlock_irq(&tc->lock); 1587 } 1588 1589 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1590 { 1591 enum pool_mode m = get_pool_mode(pool); 1592 1593 switch (m) { 1594 case PM_WRITE: 1595 /* Shouldn't get here */ 1596 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1597 return BLK_STS_IOERR; 1598 1599 case PM_OUT_OF_DATA_SPACE: 1600 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1601 1602 case PM_OUT_OF_METADATA_SPACE: 1603 case PM_READ_ONLY: 1604 case PM_FAIL: 1605 return BLK_STS_IOERR; 1606 default: 1607 /* Shouldn't get here */ 1608 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1609 return BLK_STS_IOERR; 1610 } 1611 } 1612 1613 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1614 { 1615 blk_status_t error = should_error_unserviceable_bio(pool); 1616 1617 if (error) { 1618 bio->bi_status = error; 1619 bio_endio(bio); 1620 } else 1621 retry_on_resume(bio); 1622 } 1623 1624 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1625 { 1626 struct bio *bio; 1627 struct bio_list bios; 1628 blk_status_t error; 1629 1630 error = should_error_unserviceable_bio(pool); 1631 if (error) { 1632 cell_error_with_code(pool, cell, error); 1633 return; 1634 } 1635 1636 bio_list_init(&bios); 1637 cell_release(pool, cell, &bios); 1638 1639 while ((bio = bio_list_pop(&bios))) 1640 retry_on_resume(bio); 1641 } 1642 1643 static void process_discard_cell_no_passdown(struct thin_c *tc, 1644 struct dm_bio_prison_cell *virt_cell) 1645 { 1646 struct pool *pool = tc->pool; 1647 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1648 1649 /* 1650 * We don't need to lock the data blocks, since there's no 1651 * passdown. We only lock data blocks for allocation and breaking sharing. 1652 */ 1653 m->tc = tc; 1654 m->virt_begin = virt_cell->key.block_begin; 1655 m->virt_end = virt_cell->key.block_end; 1656 m->cell = virt_cell; 1657 m->bio = virt_cell->holder; 1658 1659 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1660 pool->process_prepared_discard(m); 1661 } 1662 1663 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1664 struct bio *bio) 1665 { 1666 struct pool *pool = tc->pool; 1667 1668 int r; 1669 bool maybe_shared; 1670 struct dm_cell_key data_key; 1671 struct dm_bio_prison_cell *data_cell; 1672 struct dm_thin_new_mapping *m; 1673 dm_block_t virt_begin, virt_end, data_begin; 1674 1675 while (begin != end) { 1676 r = ensure_next_mapping(pool); 1677 if (r) 1678 /* we did our best */ 1679 return; 1680 1681 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1682 &data_begin, &maybe_shared); 1683 if (r) 1684 /* 1685 * Silently fail, letting any mappings we've 1686 * created complete. 1687 */ 1688 break; 1689 1690 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1691 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1692 /* contention, we'll give up with this range */ 1693 begin = virt_end; 1694 continue; 1695 } 1696 1697 /* 1698 * IO may still be going to the destination block. We must 1699 * quiesce before we can do the removal. 1700 */ 1701 m = get_next_mapping(pool); 1702 m->tc = tc; 1703 m->maybe_shared = maybe_shared; 1704 m->virt_begin = virt_begin; 1705 m->virt_end = virt_end; 1706 m->data_block = data_begin; 1707 m->cell = data_cell; 1708 m->bio = bio; 1709 1710 /* 1711 * The parent bio must not complete before sub discard bios are 1712 * chained to it (see end_discard's bio_chain)! 1713 * 1714 * This per-mapping bi_remaining increment is paired with 1715 * the implicit decrement that occurs via bio_endio() in 1716 * end_discard(). 1717 */ 1718 bio_inc_remaining(bio); 1719 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1720 pool->process_prepared_discard(m); 1721 1722 begin = virt_end; 1723 } 1724 } 1725 1726 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1727 { 1728 struct bio *bio = virt_cell->holder; 1729 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1730 1731 /* 1732 * The virt_cell will only get freed once the origin bio completes. 1733 * This means it will remain locked while all the individual 1734 * passdown bios are in flight. 1735 */ 1736 h->cell = virt_cell; 1737 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1738 1739 /* 1740 * We complete the bio now, knowing that the bi_remaining field 1741 * will prevent completion until the sub range discards have 1742 * completed. 1743 */ 1744 bio_endio(bio); 1745 } 1746 1747 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1748 { 1749 dm_block_t begin, end; 1750 struct dm_cell_key virt_key; 1751 struct dm_bio_prison_cell *virt_cell; 1752 1753 get_bio_block_range(tc, bio, &begin, &end); 1754 if (begin == end) { 1755 /* 1756 * The discard covers less than a block. 1757 */ 1758 bio_endio(bio); 1759 return; 1760 } 1761 1762 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1763 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1764 /* 1765 * Potential starvation issue: We're relying on the 1766 * fs/application being well behaved, and not trying to 1767 * send IO to a region at the same time as discarding it. 1768 * If they do this persistently then it's possible this 1769 * cell will never be granted. 1770 */ 1771 return; 1772 1773 tc->pool->process_discard_cell(tc, virt_cell); 1774 } 1775 1776 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1777 struct dm_cell_key *key, 1778 struct dm_thin_lookup_result *lookup_result, 1779 struct dm_bio_prison_cell *cell) 1780 { 1781 int r; 1782 dm_block_t data_block; 1783 struct pool *pool = tc->pool; 1784 1785 r = alloc_data_block(tc, &data_block); 1786 switch (r) { 1787 case 0: 1788 schedule_internal_copy(tc, block, lookup_result->block, 1789 data_block, cell, bio); 1790 break; 1791 1792 case -ENOSPC: 1793 retry_bios_on_resume(pool, cell); 1794 break; 1795 1796 default: 1797 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1798 __func__, r); 1799 cell_error(pool, cell); 1800 break; 1801 } 1802 } 1803 1804 static void __remap_and_issue_shared_cell(void *context, 1805 struct dm_bio_prison_cell *cell) 1806 { 1807 struct remap_info *info = context; 1808 struct bio *bio; 1809 1810 while ((bio = bio_list_pop(&cell->bios))) { 1811 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1812 bio_op(bio) == REQ_OP_DISCARD) 1813 bio_list_add(&info->defer_bios, bio); 1814 else { 1815 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1816 1817 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1818 inc_all_io_entry(info->tc->pool, bio); 1819 bio_list_add(&info->issue_bios, bio); 1820 } 1821 } 1822 } 1823 1824 static void remap_and_issue_shared_cell(struct thin_c *tc, 1825 struct dm_bio_prison_cell *cell, 1826 dm_block_t block) 1827 { 1828 struct bio *bio; 1829 struct remap_info info; 1830 1831 info.tc = tc; 1832 bio_list_init(&info.defer_bios); 1833 bio_list_init(&info.issue_bios); 1834 1835 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1836 &info, cell); 1837 1838 while ((bio = bio_list_pop(&info.defer_bios))) 1839 thin_defer_bio(tc, bio); 1840 1841 while ((bio = bio_list_pop(&info.issue_bios))) 1842 remap_and_issue(tc, bio, block); 1843 } 1844 1845 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1846 dm_block_t block, 1847 struct dm_thin_lookup_result *lookup_result, 1848 struct dm_bio_prison_cell *virt_cell) 1849 { 1850 struct dm_bio_prison_cell *data_cell; 1851 struct pool *pool = tc->pool; 1852 struct dm_cell_key key; 1853 1854 /* 1855 * If cell is already occupied, then sharing is already in the process 1856 * of being broken so we have nothing further to do here. 1857 */ 1858 build_data_key(tc->td, lookup_result->block, &key); 1859 if (bio_detain(pool, &key, bio, &data_cell)) { 1860 cell_defer_no_holder(tc, virt_cell); 1861 return; 1862 } 1863 1864 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1865 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1866 cell_defer_no_holder(tc, virt_cell); 1867 } else { 1868 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1869 1870 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1871 inc_all_io_entry(pool, bio); 1872 remap_and_issue(tc, bio, lookup_result->block); 1873 1874 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1875 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1876 } 1877 } 1878 1879 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1880 struct dm_bio_prison_cell *cell) 1881 { 1882 int r; 1883 dm_block_t data_block; 1884 struct pool *pool = tc->pool; 1885 1886 /* 1887 * Remap empty bios (flushes) immediately, without provisioning. 1888 */ 1889 if (!bio->bi_iter.bi_size) { 1890 inc_all_io_entry(pool, bio); 1891 cell_defer_no_holder(tc, cell); 1892 1893 remap_and_issue(tc, bio, 0); 1894 return; 1895 } 1896 1897 /* 1898 * Fill read bios with zeroes and complete them immediately. 1899 */ 1900 if (bio_data_dir(bio) == READ) { 1901 zero_fill_bio(bio); 1902 cell_defer_no_holder(tc, cell); 1903 bio_endio(bio); 1904 return; 1905 } 1906 1907 r = alloc_data_block(tc, &data_block); 1908 switch (r) { 1909 case 0: 1910 if (tc->origin_dev) 1911 schedule_external_copy(tc, block, data_block, cell, bio); 1912 else 1913 schedule_zero(tc, block, data_block, cell, bio); 1914 break; 1915 1916 case -ENOSPC: 1917 retry_bios_on_resume(pool, cell); 1918 break; 1919 1920 default: 1921 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1922 __func__, r); 1923 cell_error(pool, cell); 1924 break; 1925 } 1926 } 1927 1928 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1929 { 1930 int r; 1931 struct pool *pool = tc->pool; 1932 struct bio *bio = cell->holder; 1933 dm_block_t block = get_bio_block(tc, bio); 1934 struct dm_thin_lookup_result lookup_result; 1935 1936 if (tc->requeue_mode) { 1937 cell_requeue(pool, cell); 1938 return; 1939 } 1940 1941 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1942 switch (r) { 1943 case 0: 1944 if (lookup_result.shared) 1945 process_shared_bio(tc, bio, block, &lookup_result, cell); 1946 else { 1947 inc_all_io_entry(pool, bio); 1948 remap_and_issue(tc, bio, lookup_result.block); 1949 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1950 } 1951 break; 1952 1953 case -ENODATA: 1954 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1955 inc_all_io_entry(pool, bio); 1956 cell_defer_no_holder(tc, cell); 1957 1958 if (bio_end_sector(bio) <= tc->origin_size) 1959 remap_to_origin_and_issue(tc, bio); 1960 1961 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1962 zero_fill_bio(bio); 1963 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1964 remap_to_origin_and_issue(tc, bio); 1965 1966 } else { 1967 zero_fill_bio(bio); 1968 bio_endio(bio); 1969 } 1970 } else 1971 provision_block(tc, bio, block, cell); 1972 break; 1973 1974 default: 1975 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1976 __func__, r); 1977 cell_defer_no_holder(tc, cell); 1978 bio_io_error(bio); 1979 break; 1980 } 1981 } 1982 1983 static void process_bio(struct thin_c *tc, struct bio *bio) 1984 { 1985 struct pool *pool = tc->pool; 1986 dm_block_t block = get_bio_block(tc, bio); 1987 struct dm_bio_prison_cell *cell; 1988 struct dm_cell_key key; 1989 1990 /* 1991 * If cell is already occupied, then the block is already 1992 * being provisioned so we have nothing further to do here. 1993 */ 1994 build_virtual_key(tc->td, block, &key); 1995 if (bio_detain(pool, &key, bio, &cell)) 1996 return; 1997 1998 process_cell(tc, cell); 1999 } 2000 2001 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2002 struct dm_bio_prison_cell *cell) 2003 { 2004 int r; 2005 int rw = bio_data_dir(bio); 2006 dm_block_t block = get_bio_block(tc, bio); 2007 struct dm_thin_lookup_result lookup_result; 2008 2009 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2010 switch (r) { 2011 case 0: 2012 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2013 handle_unserviceable_bio(tc->pool, bio); 2014 if (cell) 2015 cell_defer_no_holder(tc, cell); 2016 } else { 2017 inc_all_io_entry(tc->pool, bio); 2018 remap_and_issue(tc, bio, lookup_result.block); 2019 if (cell) 2020 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2021 } 2022 break; 2023 2024 case -ENODATA: 2025 if (cell) 2026 cell_defer_no_holder(tc, cell); 2027 if (rw != READ) { 2028 handle_unserviceable_bio(tc->pool, bio); 2029 break; 2030 } 2031 2032 if (tc->origin_dev) { 2033 inc_all_io_entry(tc->pool, bio); 2034 remap_to_origin_and_issue(tc, bio); 2035 break; 2036 } 2037 2038 zero_fill_bio(bio); 2039 bio_endio(bio); 2040 break; 2041 2042 default: 2043 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2044 __func__, r); 2045 if (cell) 2046 cell_defer_no_holder(tc, cell); 2047 bio_io_error(bio); 2048 break; 2049 } 2050 } 2051 2052 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2053 { 2054 __process_bio_read_only(tc, bio, NULL); 2055 } 2056 2057 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2058 { 2059 __process_bio_read_only(tc, cell->holder, cell); 2060 } 2061 2062 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2063 { 2064 bio_endio(bio); 2065 } 2066 2067 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2068 { 2069 bio_io_error(bio); 2070 } 2071 2072 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2073 { 2074 cell_success(tc->pool, cell); 2075 } 2076 2077 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2078 { 2079 cell_error(tc->pool, cell); 2080 } 2081 2082 /* 2083 * FIXME: should we also commit due to size of transaction, measured in 2084 * metadata blocks? 2085 */ 2086 static int need_commit_due_to_time(struct pool *pool) 2087 { 2088 return !time_in_range(jiffies, pool->last_commit_jiffies, 2089 pool->last_commit_jiffies + COMMIT_PERIOD); 2090 } 2091 2092 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2093 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2094 2095 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2096 { 2097 struct rb_node **rbp, *parent; 2098 struct dm_thin_endio_hook *pbd; 2099 sector_t bi_sector = bio->bi_iter.bi_sector; 2100 2101 rbp = &tc->sort_bio_list.rb_node; 2102 parent = NULL; 2103 while (*rbp) { 2104 parent = *rbp; 2105 pbd = thin_pbd(parent); 2106 2107 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2108 rbp = &(*rbp)->rb_left; 2109 else 2110 rbp = &(*rbp)->rb_right; 2111 } 2112 2113 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2114 rb_link_node(&pbd->rb_node, parent, rbp); 2115 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2116 } 2117 2118 static void __extract_sorted_bios(struct thin_c *tc) 2119 { 2120 struct rb_node *node; 2121 struct dm_thin_endio_hook *pbd; 2122 struct bio *bio; 2123 2124 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2125 pbd = thin_pbd(node); 2126 bio = thin_bio(pbd); 2127 2128 bio_list_add(&tc->deferred_bio_list, bio); 2129 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2130 } 2131 2132 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2133 } 2134 2135 static void __sort_thin_deferred_bios(struct thin_c *tc) 2136 { 2137 struct bio *bio; 2138 struct bio_list bios; 2139 2140 bio_list_init(&bios); 2141 bio_list_merge(&bios, &tc->deferred_bio_list); 2142 bio_list_init(&tc->deferred_bio_list); 2143 2144 /* Sort deferred_bio_list using rb-tree */ 2145 while ((bio = bio_list_pop(&bios))) 2146 __thin_bio_rb_add(tc, bio); 2147 2148 /* 2149 * Transfer the sorted bios in sort_bio_list back to 2150 * deferred_bio_list to allow lockless submission of 2151 * all bios. 2152 */ 2153 __extract_sorted_bios(tc); 2154 } 2155 2156 static void process_thin_deferred_bios(struct thin_c *tc) 2157 { 2158 struct pool *pool = tc->pool; 2159 struct bio *bio; 2160 struct bio_list bios; 2161 struct blk_plug plug; 2162 unsigned count = 0; 2163 2164 if (tc->requeue_mode) { 2165 error_thin_bio_list(tc, &tc->deferred_bio_list, 2166 BLK_STS_DM_REQUEUE); 2167 return; 2168 } 2169 2170 bio_list_init(&bios); 2171 2172 spin_lock_irq(&tc->lock); 2173 2174 if (bio_list_empty(&tc->deferred_bio_list)) { 2175 spin_unlock_irq(&tc->lock); 2176 return; 2177 } 2178 2179 __sort_thin_deferred_bios(tc); 2180 2181 bio_list_merge(&bios, &tc->deferred_bio_list); 2182 bio_list_init(&tc->deferred_bio_list); 2183 2184 spin_unlock_irq(&tc->lock); 2185 2186 blk_start_plug(&plug); 2187 while ((bio = bio_list_pop(&bios))) { 2188 /* 2189 * If we've got no free new_mapping structs, and processing 2190 * this bio might require one, we pause until there are some 2191 * prepared mappings to process. 2192 */ 2193 if (ensure_next_mapping(pool)) { 2194 spin_lock_irq(&tc->lock); 2195 bio_list_add(&tc->deferred_bio_list, bio); 2196 bio_list_merge(&tc->deferred_bio_list, &bios); 2197 spin_unlock_irq(&tc->lock); 2198 break; 2199 } 2200 2201 if (bio_op(bio) == REQ_OP_DISCARD) 2202 pool->process_discard(tc, bio); 2203 else 2204 pool->process_bio(tc, bio); 2205 2206 if ((count++ & 127) == 0) { 2207 throttle_work_update(&pool->throttle); 2208 dm_pool_issue_prefetches(pool->pmd); 2209 } 2210 } 2211 blk_finish_plug(&plug); 2212 } 2213 2214 static int cmp_cells(const void *lhs, const void *rhs) 2215 { 2216 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2217 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2218 2219 BUG_ON(!lhs_cell->holder); 2220 BUG_ON(!rhs_cell->holder); 2221 2222 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2223 return -1; 2224 2225 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2226 return 1; 2227 2228 return 0; 2229 } 2230 2231 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2232 { 2233 unsigned count = 0; 2234 struct dm_bio_prison_cell *cell, *tmp; 2235 2236 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2237 if (count >= CELL_SORT_ARRAY_SIZE) 2238 break; 2239 2240 pool->cell_sort_array[count++] = cell; 2241 list_del(&cell->user_list); 2242 } 2243 2244 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2245 2246 return count; 2247 } 2248 2249 static void process_thin_deferred_cells(struct thin_c *tc) 2250 { 2251 struct pool *pool = tc->pool; 2252 struct list_head cells; 2253 struct dm_bio_prison_cell *cell; 2254 unsigned i, j, count; 2255 2256 INIT_LIST_HEAD(&cells); 2257 2258 spin_lock_irq(&tc->lock); 2259 list_splice_init(&tc->deferred_cells, &cells); 2260 spin_unlock_irq(&tc->lock); 2261 2262 if (list_empty(&cells)) 2263 return; 2264 2265 do { 2266 count = sort_cells(tc->pool, &cells); 2267 2268 for (i = 0; i < count; i++) { 2269 cell = pool->cell_sort_array[i]; 2270 BUG_ON(!cell->holder); 2271 2272 /* 2273 * If we've got no free new_mapping structs, and processing 2274 * this bio might require one, we pause until there are some 2275 * prepared mappings to process. 2276 */ 2277 if (ensure_next_mapping(pool)) { 2278 for (j = i; j < count; j++) 2279 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2280 2281 spin_lock_irq(&tc->lock); 2282 list_splice(&cells, &tc->deferred_cells); 2283 spin_unlock_irq(&tc->lock); 2284 return; 2285 } 2286 2287 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2288 pool->process_discard_cell(tc, cell); 2289 else 2290 pool->process_cell(tc, cell); 2291 } 2292 } while (!list_empty(&cells)); 2293 } 2294 2295 static void thin_get(struct thin_c *tc); 2296 static void thin_put(struct thin_c *tc); 2297 2298 /* 2299 * We can't hold rcu_read_lock() around code that can block. So we 2300 * find a thin with the rcu lock held; bump a refcount; then drop 2301 * the lock. 2302 */ 2303 static struct thin_c *get_first_thin(struct pool *pool) 2304 { 2305 struct thin_c *tc = NULL; 2306 2307 rcu_read_lock(); 2308 if (!list_empty(&pool->active_thins)) { 2309 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2310 thin_get(tc); 2311 } 2312 rcu_read_unlock(); 2313 2314 return tc; 2315 } 2316 2317 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2318 { 2319 struct thin_c *old_tc = tc; 2320 2321 rcu_read_lock(); 2322 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2323 thin_get(tc); 2324 thin_put(old_tc); 2325 rcu_read_unlock(); 2326 return tc; 2327 } 2328 thin_put(old_tc); 2329 rcu_read_unlock(); 2330 2331 return NULL; 2332 } 2333 2334 static void process_deferred_bios(struct pool *pool) 2335 { 2336 struct bio *bio; 2337 struct bio_list bios, bio_completions; 2338 struct thin_c *tc; 2339 2340 tc = get_first_thin(pool); 2341 while (tc) { 2342 process_thin_deferred_cells(tc); 2343 process_thin_deferred_bios(tc); 2344 tc = get_next_thin(pool, tc); 2345 } 2346 2347 /* 2348 * If there are any deferred flush bios, we must commit the metadata 2349 * before issuing them or signaling their completion. 2350 */ 2351 bio_list_init(&bios); 2352 bio_list_init(&bio_completions); 2353 2354 spin_lock_irq(&pool->lock); 2355 bio_list_merge(&bios, &pool->deferred_flush_bios); 2356 bio_list_init(&pool->deferred_flush_bios); 2357 2358 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2359 bio_list_init(&pool->deferred_flush_completions); 2360 spin_unlock_irq(&pool->lock); 2361 2362 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2363 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2364 return; 2365 2366 if (commit(pool)) { 2367 bio_list_merge(&bios, &bio_completions); 2368 2369 while ((bio = bio_list_pop(&bios))) 2370 bio_io_error(bio); 2371 return; 2372 } 2373 pool->last_commit_jiffies = jiffies; 2374 2375 while ((bio = bio_list_pop(&bio_completions))) 2376 bio_endio(bio); 2377 2378 while ((bio = bio_list_pop(&bios))) { 2379 /* 2380 * The data device was flushed as part of metadata commit, 2381 * so complete redundant flushes immediately. 2382 */ 2383 if (bio->bi_opf & REQ_PREFLUSH) 2384 bio_endio(bio); 2385 else 2386 dm_submit_bio_remap(bio, NULL); 2387 } 2388 } 2389 2390 static void do_worker(struct work_struct *ws) 2391 { 2392 struct pool *pool = container_of(ws, struct pool, worker); 2393 2394 throttle_work_start(&pool->throttle); 2395 dm_pool_issue_prefetches(pool->pmd); 2396 throttle_work_update(&pool->throttle); 2397 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2398 throttle_work_update(&pool->throttle); 2399 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2400 throttle_work_update(&pool->throttle); 2401 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2402 throttle_work_update(&pool->throttle); 2403 process_deferred_bios(pool); 2404 throttle_work_complete(&pool->throttle); 2405 } 2406 2407 /* 2408 * We want to commit periodically so that not too much 2409 * unwritten data builds up. 2410 */ 2411 static void do_waker(struct work_struct *ws) 2412 { 2413 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2414 wake_worker(pool); 2415 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2416 } 2417 2418 /* 2419 * We're holding onto IO to allow userland time to react. After the 2420 * timeout either the pool will have been resized (and thus back in 2421 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2422 */ 2423 static void do_no_space_timeout(struct work_struct *ws) 2424 { 2425 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2426 no_space_timeout); 2427 2428 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2429 pool->pf.error_if_no_space = true; 2430 notify_of_pool_mode_change(pool); 2431 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2432 } 2433 } 2434 2435 /*----------------------------------------------------------------*/ 2436 2437 struct pool_work { 2438 struct work_struct worker; 2439 struct completion complete; 2440 }; 2441 2442 static struct pool_work *to_pool_work(struct work_struct *ws) 2443 { 2444 return container_of(ws, struct pool_work, worker); 2445 } 2446 2447 static void pool_work_complete(struct pool_work *pw) 2448 { 2449 complete(&pw->complete); 2450 } 2451 2452 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2453 void (*fn)(struct work_struct *)) 2454 { 2455 INIT_WORK_ONSTACK(&pw->worker, fn); 2456 init_completion(&pw->complete); 2457 queue_work(pool->wq, &pw->worker); 2458 wait_for_completion(&pw->complete); 2459 } 2460 2461 /*----------------------------------------------------------------*/ 2462 2463 struct noflush_work { 2464 struct pool_work pw; 2465 struct thin_c *tc; 2466 }; 2467 2468 static struct noflush_work *to_noflush(struct work_struct *ws) 2469 { 2470 return container_of(to_pool_work(ws), struct noflush_work, pw); 2471 } 2472 2473 static void do_noflush_start(struct work_struct *ws) 2474 { 2475 struct noflush_work *w = to_noflush(ws); 2476 w->tc->requeue_mode = true; 2477 requeue_io(w->tc); 2478 pool_work_complete(&w->pw); 2479 } 2480 2481 static void do_noflush_stop(struct work_struct *ws) 2482 { 2483 struct noflush_work *w = to_noflush(ws); 2484 w->tc->requeue_mode = false; 2485 pool_work_complete(&w->pw); 2486 } 2487 2488 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2489 { 2490 struct noflush_work w; 2491 2492 w.tc = tc; 2493 pool_work_wait(&w.pw, tc->pool, fn); 2494 } 2495 2496 /*----------------------------------------------------------------*/ 2497 2498 static bool passdown_enabled(struct pool_c *pt) 2499 { 2500 return pt->adjusted_pf.discard_passdown; 2501 } 2502 2503 static void set_discard_callbacks(struct pool *pool) 2504 { 2505 struct pool_c *pt = pool->ti->private; 2506 2507 if (passdown_enabled(pt)) { 2508 pool->process_discard_cell = process_discard_cell_passdown; 2509 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2510 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2511 } else { 2512 pool->process_discard_cell = process_discard_cell_no_passdown; 2513 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2514 } 2515 } 2516 2517 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2518 { 2519 struct pool_c *pt = pool->ti->private; 2520 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2521 enum pool_mode old_mode = get_pool_mode(pool); 2522 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2523 2524 /* 2525 * Never allow the pool to transition to PM_WRITE mode if user 2526 * intervention is required to verify metadata and data consistency. 2527 */ 2528 if (new_mode == PM_WRITE && needs_check) { 2529 DMERR("%s: unable to switch pool to write mode until repaired.", 2530 dm_device_name(pool->pool_md)); 2531 if (old_mode != new_mode) 2532 new_mode = old_mode; 2533 else 2534 new_mode = PM_READ_ONLY; 2535 } 2536 /* 2537 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2538 * not going to recover without a thin_repair. So we never let the 2539 * pool move out of the old mode. 2540 */ 2541 if (old_mode == PM_FAIL) 2542 new_mode = old_mode; 2543 2544 switch (new_mode) { 2545 case PM_FAIL: 2546 dm_pool_metadata_read_only(pool->pmd); 2547 pool->process_bio = process_bio_fail; 2548 pool->process_discard = process_bio_fail; 2549 pool->process_cell = process_cell_fail; 2550 pool->process_discard_cell = process_cell_fail; 2551 pool->process_prepared_mapping = process_prepared_mapping_fail; 2552 pool->process_prepared_discard = process_prepared_discard_fail; 2553 2554 error_retry_list(pool); 2555 break; 2556 2557 case PM_OUT_OF_METADATA_SPACE: 2558 case PM_READ_ONLY: 2559 dm_pool_metadata_read_only(pool->pmd); 2560 pool->process_bio = process_bio_read_only; 2561 pool->process_discard = process_bio_success; 2562 pool->process_cell = process_cell_read_only; 2563 pool->process_discard_cell = process_cell_success; 2564 pool->process_prepared_mapping = process_prepared_mapping_fail; 2565 pool->process_prepared_discard = process_prepared_discard_success; 2566 2567 error_retry_list(pool); 2568 break; 2569 2570 case PM_OUT_OF_DATA_SPACE: 2571 /* 2572 * Ideally we'd never hit this state; the low water mark 2573 * would trigger userland to extend the pool before we 2574 * completely run out of data space. However, many small 2575 * IOs to unprovisioned space can consume data space at an 2576 * alarming rate. Adjust your low water mark if you're 2577 * frequently seeing this mode. 2578 */ 2579 pool->out_of_data_space = true; 2580 pool->process_bio = process_bio_read_only; 2581 pool->process_discard = process_discard_bio; 2582 pool->process_cell = process_cell_read_only; 2583 pool->process_prepared_mapping = process_prepared_mapping; 2584 set_discard_callbacks(pool); 2585 2586 if (!pool->pf.error_if_no_space && no_space_timeout) 2587 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2588 break; 2589 2590 case PM_WRITE: 2591 if (old_mode == PM_OUT_OF_DATA_SPACE) 2592 cancel_delayed_work_sync(&pool->no_space_timeout); 2593 pool->out_of_data_space = false; 2594 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2595 dm_pool_metadata_read_write(pool->pmd); 2596 pool->process_bio = process_bio; 2597 pool->process_discard = process_discard_bio; 2598 pool->process_cell = process_cell; 2599 pool->process_prepared_mapping = process_prepared_mapping; 2600 set_discard_callbacks(pool); 2601 break; 2602 } 2603 2604 pool->pf.mode = new_mode; 2605 /* 2606 * The pool mode may have changed, sync it so bind_control_target() 2607 * doesn't cause an unexpected mode transition on resume. 2608 */ 2609 pt->adjusted_pf.mode = new_mode; 2610 2611 if (old_mode != new_mode) 2612 notify_of_pool_mode_change(pool); 2613 } 2614 2615 static void abort_transaction(struct pool *pool) 2616 { 2617 const char *dev_name = dm_device_name(pool->pool_md); 2618 2619 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2620 if (dm_pool_abort_metadata(pool->pmd)) { 2621 DMERR("%s: failed to abort metadata transaction", dev_name); 2622 set_pool_mode(pool, PM_FAIL); 2623 } 2624 2625 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2626 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2627 set_pool_mode(pool, PM_FAIL); 2628 } 2629 } 2630 2631 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2632 { 2633 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2634 dm_device_name(pool->pool_md), op, r); 2635 2636 abort_transaction(pool); 2637 set_pool_mode(pool, PM_READ_ONLY); 2638 } 2639 2640 /*----------------------------------------------------------------*/ 2641 2642 /* 2643 * Mapping functions. 2644 */ 2645 2646 /* 2647 * Called only while mapping a thin bio to hand it over to the workqueue. 2648 */ 2649 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2650 { 2651 struct pool *pool = tc->pool; 2652 2653 spin_lock_irq(&tc->lock); 2654 bio_list_add(&tc->deferred_bio_list, bio); 2655 spin_unlock_irq(&tc->lock); 2656 2657 wake_worker(pool); 2658 } 2659 2660 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2661 { 2662 struct pool *pool = tc->pool; 2663 2664 throttle_lock(&pool->throttle); 2665 thin_defer_bio(tc, bio); 2666 throttle_unlock(&pool->throttle); 2667 } 2668 2669 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2670 { 2671 struct pool *pool = tc->pool; 2672 2673 throttle_lock(&pool->throttle); 2674 spin_lock_irq(&tc->lock); 2675 list_add_tail(&cell->user_list, &tc->deferred_cells); 2676 spin_unlock_irq(&tc->lock); 2677 throttle_unlock(&pool->throttle); 2678 2679 wake_worker(pool); 2680 } 2681 2682 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2683 { 2684 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2685 2686 h->tc = tc; 2687 h->shared_read_entry = NULL; 2688 h->all_io_entry = NULL; 2689 h->overwrite_mapping = NULL; 2690 h->cell = NULL; 2691 } 2692 2693 /* 2694 * Non-blocking function called from the thin target's map function. 2695 */ 2696 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2697 { 2698 int r; 2699 struct thin_c *tc = ti->private; 2700 dm_block_t block = get_bio_block(tc, bio); 2701 struct dm_thin_device *td = tc->td; 2702 struct dm_thin_lookup_result result; 2703 struct dm_bio_prison_cell *virt_cell, *data_cell; 2704 struct dm_cell_key key; 2705 2706 thin_hook_bio(tc, bio); 2707 2708 if (tc->requeue_mode) { 2709 bio->bi_status = BLK_STS_DM_REQUEUE; 2710 bio_endio(bio); 2711 return DM_MAPIO_SUBMITTED; 2712 } 2713 2714 if (get_pool_mode(tc->pool) == PM_FAIL) { 2715 bio_io_error(bio); 2716 return DM_MAPIO_SUBMITTED; 2717 } 2718 2719 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2720 thin_defer_bio_with_throttle(tc, bio); 2721 return DM_MAPIO_SUBMITTED; 2722 } 2723 2724 /* 2725 * We must hold the virtual cell before doing the lookup, otherwise 2726 * there's a race with discard. 2727 */ 2728 build_virtual_key(tc->td, block, &key); 2729 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2730 return DM_MAPIO_SUBMITTED; 2731 2732 r = dm_thin_find_block(td, block, 0, &result); 2733 2734 /* 2735 * Note that we defer readahead too. 2736 */ 2737 switch (r) { 2738 case 0: 2739 if (unlikely(result.shared)) { 2740 /* 2741 * We have a race condition here between the 2742 * result.shared value returned by the lookup and 2743 * snapshot creation, which may cause new 2744 * sharing. 2745 * 2746 * To avoid this always quiesce the origin before 2747 * taking the snap. You want to do this anyway to 2748 * ensure a consistent application view 2749 * (i.e. lockfs). 2750 * 2751 * More distant ancestors are irrelevant. The 2752 * shared flag will be set in their case. 2753 */ 2754 thin_defer_cell(tc, virt_cell); 2755 return DM_MAPIO_SUBMITTED; 2756 } 2757 2758 build_data_key(tc->td, result.block, &key); 2759 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2760 cell_defer_no_holder(tc, virt_cell); 2761 return DM_MAPIO_SUBMITTED; 2762 } 2763 2764 inc_all_io_entry(tc->pool, bio); 2765 cell_defer_no_holder(tc, data_cell); 2766 cell_defer_no_holder(tc, virt_cell); 2767 2768 remap(tc, bio, result.block); 2769 return DM_MAPIO_REMAPPED; 2770 2771 case -ENODATA: 2772 case -EWOULDBLOCK: 2773 thin_defer_cell(tc, virt_cell); 2774 return DM_MAPIO_SUBMITTED; 2775 2776 default: 2777 /* 2778 * Must always call bio_io_error on failure. 2779 * dm_thin_find_block can fail with -EINVAL if the 2780 * pool is switched to fail-io mode. 2781 */ 2782 bio_io_error(bio); 2783 cell_defer_no_holder(tc, virt_cell); 2784 return DM_MAPIO_SUBMITTED; 2785 } 2786 } 2787 2788 static void requeue_bios(struct pool *pool) 2789 { 2790 struct thin_c *tc; 2791 2792 rcu_read_lock(); 2793 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2794 spin_lock_irq(&tc->lock); 2795 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2796 bio_list_init(&tc->retry_on_resume_list); 2797 spin_unlock_irq(&tc->lock); 2798 } 2799 rcu_read_unlock(); 2800 } 2801 2802 /*---------------------------------------------------------------- 2803 * Binding of control targets to a pool object 2804 *--------------------------------------------------------------*/ 2805 static bool is_factor(sector_t block_size, uint32_t n) 2806 { 2807 return !sector_div(block_size, n); 2808 } 2809 2810 /* 2811 * If discard_passdown was enabled verify that the data device 2812 * supports discards. Disable discard_passdown if not. 2813 */ 2814 static void disable_passdown_if_not_supported(struct pool_c *pt) 2815 { 2816 struct pool *pool = pt->pool; 2817 struct block_device *data_bdev = pt->data_dev->bdev; 2818 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2819 const char *reason = NULL; 2820 2821 if (!pt->adjusted_pf.discard_passdown) 2822 return; 2823 2824 if (!bdev_max_discard_sectors(pt->data_dev->bdev)) 2825 reason = "discard unsupported"; 2826 2827 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2828 reason = "max discard sectors smaller than a block"; 2829 2830 if (reason) { 2831 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason); 2832 pt->adjusted_pf.discard_passdown = false; 2833 } 2834 } 2835 2836 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2837 { 2838 struct pool_c *pt = ti->private; 2839 2840 /* 2841 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2842 */ 2843 enum pool_mode old_mode = get_pool_mode(pool); 2844 enum pool_mode new_mode = pt->adjusted_pf.mode; 2845 2846 /* 2847 * Don't change the pool's mode until set_pool_mode() below. 2848 * Otherwise the pool's process_* function pointers may 2849 * not match the desired pool mode. 2850 */ 2851 pt->adjusted_pf.mode = old_mode; 2852 2853 pool->ti = ti; 2854 pool->pf = pt->adjusted_pf; 2855 pool->low_water_blocks = pt->low_water_blocks; 2856 2857 set_pool_mode(pool, new_mode); 2858 2859 return 0; 2860 } 2861 2862 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2863 { 2864 if (pool->ti == ti) 2865 pool->ti = NULL; 2866 } 2867 2868 /*---------------------------------------------------------------- 2869 * Pool creation 2870 *--------------------------------------------------------------*/ 2871 /* Initialize pool features. */ 2872 static void pool_features_init(struct pool_features *pf) 2873 { 2874 pf->mode = PM_WRITE; 2875 pf->zero_new_blocks = true; 2876 pf->discard_enabled = true; 2877 pf->discard_passdown = true; 2878 pf->error_if_no_space = false; 2879 } 2880 2881 static void __pool_destroy(struct pool *pool) 2882 { 2883 __pool_table_remove(pool); 2884 2885 vfree(pool->cell_sort_array); 2886 if (dm_pool_metadata_close(pool->pmd) < 0) 2887 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2888 2889 dm_bio_prison_destroy(pool->prison); 2890 dm_kcopyd_client_destroy(pool->copier); 2891 2892 cancel_delayed_work_sync(&pool->waker); 2893 cancel_delayed_work_sync(&pool->no_space_timeout); 2894 if (pool->wq) 2895 destroy_workqueue(pool->wq); 2896 2897 if (pool->next_mapping) 2898 mempool_free(pool->next_mapping, &pool->mapping_pool); 2899 mempool_exit(&pool->mapping_pool); 2900 dm_deferred_set_destroy(pool->shared_read_ds); 2901 dm_deferred_set_destroy(pool->all_io_ds); 2902 kfree(pool); 2903 } 2904 2905 static struct kmem_cache *_new_mapping_cache; 2906 2907 static struct pool *pool_create(struct mapped_device *pool_md, 2908 struct block_device *metadata_dev, 2909 struct block_device *data_dev, 2910 unsigned long block_size, 2911 int read_only, char **error) 2912 { 2913 int r; 2914 void *err_p; 2915 struct pool *pool; 2916 struct dm_pool_metadata *pmd; 2917 bool format_device = read_only ? false : true; 2918 2919 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2920 if (IS_ERR(pmd)) { 2921 *error = "Error creating metadata object"; 2922 return (struct pool *)pmd; 2923 } 2924 2925 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2926 if (!pool) { 2927 *error = "Error allocating memory for pool"; 2928 err_p = ERR_PTR(-ENOMEM); 2929 goto bad_pool; 2930 } 2931 2932 pool->pmd = pmd; 2933 pool->sectors_per_block = block_size; 2934 if (block_size & (block_size - 1)) 2935 pool->sectors_per_block_shift = -1; 2936 else 2937 pool->sectors_per_block_shift = __ffs(block_size); 2938 pool->low_water_blocks = 0; 2939 pool_features_init(&pool->pf); 2940 pool->prison = dm_bio_prison_create(); 2941 if (!pool->prison) { 2942 *error = "Error creating pool's bio prison"; 2943 err_p = ERR_PTR(-ENOMEM); 2944 goto bad_prison; 2945 } 2946 2947 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2948 if (IS_ERR(pool->copier)) { 2949 r = PTR_ERR(pool->copier); 2950 *error = "Error creating pool's kcopyd client"; 2951 err_p = ERR_PTR(r); 2952 goto bad_kcopyd_client; 2953 } 2954 2955 /* 2956 * Create singlethreaded workqueue that will service all devices 2957 * that use this metadata. 2958 */ 2959 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2960 if (!pool->wq) { 2961 *error = "Error creating pool's workqueue"; 2962 err_p = ERR_PTR(-ENOMEM); 2963 goto bad_wq; 2964 } 2965 2966 throttle_init(&pool->throttle); 2967 INIT_WORK(&pool->worker, do_worker); 2968 INIT_DELAYED_WORK(&pool->waker, do_waker); 2969 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2970 spin_lock_init(&pool->lock); 2971 bio_list_init(&pool->deferred_flush_bios); 2972 bio_list_init(&pool->deferred_flush_completions); 2973 INIT_LIST_HEAD(&pool->prepared_mappings); 2974 INIT_LIST_HEAD(&pool->prepared_discards); 2975 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2976 INIT_LIST_HEAD(&pool->active_thins); 2977 pool->low_water_triggered = false; 2978 pool->suspended = true; 2979 pool->out_of_data_space = false; 2980 2981 pool->shared_read_ds = dm_deferred_set_create(); 2982 if (!pool->shared_read_ds) { 2983 *error = "Error creating pool's shared read deferred set"; 2984 err_p = ERR_PTR(-ENOMEM); 2985 goto bad_shared_read_ds; 2986 } 2987 2988 pool->all_io_ds = dm_deferred_set_create(); 2989 if (!pool->all_io_ds) { 2990 *error = "Error creating pool's all io deferred set"; 2991 err_p = ERR_PTR(-ENOMEM); 2992 goto bad_all_io_ds; 2993 } 2994 2995 pool->next_mapping = NULL; 2996 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 2997 _new_mapping_cache); 2998 if (r) { 2999 *error = "Error creating pool's mapping mempool"; 3000 err_p = ERR_PTR(r); 3001 goto bad_mapping_pool; 3002 } 3003 3004 pool->cell_sort_array = 3005 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3006 sizeof(*pool->cell_sort_array))); 3007 if (!pool->cell_sort_array) { 3008 *error = "Error allocating cell sort array"; 3009 err_p = ERR_PTR(-ENOMEM); 3010 goto bad_sort_array; 3011 } 3012 3013 pool->ref_count = 1; 3014 pool->last_commit_jiffies = jiffies; 3015 pool->pool_md = pool_md; 3016 pool->md_dev = metadata_dev; 3017 pool->data_dev = data_dev; 3018 __pool_table_insert(pool); 3019 3020 return pool; 3021 3022 bad_sort_array: 3023 mempool_exit(&pool->mapping_pool); 3024 bad_mapping_pool: 3025 dm_deferred_set_destroy(pool->all_io_ds); 3026 bad_all_io_ds: 3027 dm_deferred_set_destroy(pool->shared_read_ds); 3028 bad_shared_read_ds: 3029 destroy_workqueue(pool->wq); 3030 bad_wq: 3031 dm_kcopyd_client_destroy(pool->copier); 3032 bad_kcopyd_client: 3033 dm_bio_prison_destroy(pool->prison); 3034 bad_prison: 3035 kfree(pool); 3036 bad_pool: 3037 if (dm_pool_metadata_close(pmd)) 3038 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3039 3040 return err_p; 3041 } 3042 3043 static void __pool_inc(struct pool *pool) 3044 { 3045 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3046 pool->ref_count++; 3047 } 3048 3049 static void __pool_dec(struct pool *pool) 3050 { 3051 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3052 BUG_ON(!pool->ref_count); 3053 if (!--pool->ref_count) 3054 __pool_destroy(pool); 3055 } 3056 3057 static struct pool *__pool_find(struct mapped_device *pool_md, 3058 struct block_device *metadata_dev, 3059 struct block_device *data_dev, 3060 unsigned long block_size, int read_only, 3061 char **error, int *created) 3062 { 3063 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3064 3065 if (pool) { 3066 if (pool->pool_md != pool_md) { 3067 *error = "metadata device already in use by a pool"; 3068 return ERR_PTR(-EBUSY); 3069 } 3070 if (pool->data_dev != data_dev) { 3071 *error = "data device already in use by a pool"; 3072 return ERR_PTR(-EBUSY); 3073 } 3074 __pool_inc(pool); 3075 3076 } else { 3077 pool = __pool_table_lookup(pool_md); 3078 if (pool) { 3079 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { 3080 *error = "different pool cannot replace a pool"; 3081 return ERR_PTR(-EINVAL); 3082 } 3083 __pool_inc(pool); 3084 3085 } else { 3086 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); 3087 *created = 1; 3088 } 3089 } 3090 3091 return pool; 3092 } 3093 3094 /*---------------------------------------------------------------- 3095 * Pool target methods 3096 *--------------------------------------------------------------*/ 3097 static void pool_dtr(struct dm_target *ti) 3098 { 3099 struct pool_c *pt = ti->private; 3100 3101 mutex_lock(&dm_thin_pool_table.mutex); 3102 3103 unbind_control_target(pt->pool, ti); 3104 __pool_dec(pt->pool); 3105 dm_put_device(ti, pt->metadata_dev); 3106 dm_put_device(ti, pt->data_dev); 3107 kfree(pt); 3108 3109 mutex_unlock(&dm_thin_pool_table.mutex); 3110 } 3111 3112 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3113 struct dm_target *ti) 3114 { 3115 int r; 3116 unsigned argc; 3117 const char *arg_name; 3118 3119 static const struct dm_arg _args[] = { 3120 {0, 4, "Invalid number of pool feature arguments"}, 3121 }; 3122 3123 /* 3124 * No feature arguments supplied. 3125 */ 3126 if (!as->argc) 3127 return 0; 3128 3129 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3130 if (r) 3131 return -EINVAL; 3132 3133 while (argc && !r) { 3134 arg_name = dm_shift_arg(as); 3135 argc--; 3136 3137 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3138 pf->zero_new_blocks = false; 3139 3140 else if (!strcasecmp(arg_name, "ignore_discard")) 3141 pf->discard_enabled = false; 3142 3143 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3144 pf->discard_passdown = false; 3145 3146 else if (!strcasecmp(arg_name, "read_only")) 3147 pf->mode = PM_READ_ONLY; 3148 3149 else if (!strcasecmp(arg_name, "error_if_no_space")) 3150 pf->error_if_no_space = true; 3151 3152 else { 3153 ti->error = "Unrecognised pool feature requested"; 3154 r = -EINVAL; 3155 break; 3156 } 3157 } 3158 3159 return r; 3160 } 3161 3162 static void metadata_low_callback(void *context) 3163 { 3164 struct pool *pool = context; 3165 3166 DMWARN("%s: reached low water mark for metadata device: sending event.", 3167 dm_device_name(pool->pool_md)); 3168 3169 dm_table_event(pool->ti->table); 3170 } 3171 3172 /* 3173 * We need to flush the data device **before** committing the metadata. 3174 * 3175 * This ensures that the data blocks of any newly inserted mappings are 3176 * properly written to non-volatile storage and won't be lost in case of a 3177 * crash. 3178 * 3179 * Failure to do so can result in data corruption in the case of internal or 3180 * external snapshots and in the case of newly provisioned blocks, when block 3181 * zeroing is enabled. 3182 */ 3183 static int metadata_pre_commit_callback(void *context) 3184 { 3185 struct pool *pool = context; 3186 3187 return blkdev_issue_flush(pool->data_dev); 3188 } 3189 3190 static sector_t get_dev_size(struct block_device *bdev) 3191 { 3192 return bdev_nr_sectors(bdev); 3193 } 3194 3195 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3196 { 3197 sector_t metadata_dev_size = get_dev_size(bdev); 3198 3199 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3200 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", 3201 bdev, THIN_METADATA_MAX_SECTORS); 3202 } 3203 3204 static sector_t get_metadata_dev_size(struct block_device *bdev) 3205 { 3206 sector_t metadata_dev_size = get_dev_size(bdev); 3207 3208 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3209 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3210 3211 return metadata_dev_size; 3212 } 3213 3214 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3215 { 3216 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3217 3218 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3219 3220 return metadata_dev_size; 3221 } 3222 3223 /* 3224 * When a metadata threshold is crossed a dm event is triggered, and 3225 * userland should respond by growing the metadata device. We could let 3226 * userland set the threshold, like we do with the data threshold, but I'm 3227 * not sure they know enough to do this well. 3228 */ 3229 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3230 { 3231 /* 3232 * 4M is ample for all ops with the possible exception of thin 3233 * device deletion which is harmless if it fails (just retry the 3234 * delete after you've grown the device). 3235 */ 3236 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3237 return min((dm_block_t)1024ULL /* 4M */, quarter); 3238 } 3239 3240 /* 3241 * thin-pool <metadata dev> <data dev> 3242 * <data block size (sectors)> 3243 * <low water mark (blocks)> 3244 * [<#feature args> [<arg>]*] 3245 * 3246 * Optional feature arguments are: 3247 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3248 * ignore_discard: disable discard 3249 * no_discard_passdown: don't pass discards down to the data device 3250 * read_only: Don't allow any changes to be made to the pool metadata. 3251 * error_if_no_space: error IOs, instead of queueing, if no space. 3252 */ 3253 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3254 { 3255 int r, pool_created = 0; 3256 struct pool_c *pt; 3257 struct pool *pool; 3258 struct pool_features pf; 3259 struct dm_arg_set as; 3260 struct dm_dev *data_dev; 3261 unsigned long block_size; 3262 dm_block_t low_water_blocks; 3263 struct dm_dev *metadata_dev; 3264 fmode_t metadata_mode; 3265 3266 /* 3267 * FIXME Remove validation from scope of lock. 3268 */ 3269 mutex_lock(&dm_thin_pool_table.mutex); 3270 3271 if (argc < 4) { 3272 ti->error = "Invalid argument count"; 3273 r = -EINVAL; 3274 goto out_unlock; 3275 } 3276 3277 as.argc = argc; 3278 as.argv = argv; 3279 3280 /* make sure metadata and data are different devices */ 3281 if (!strcmp(argv[0], argv[1])) { 3282 ti->error = "Error setting metadata or data device"; 3283 r = -EINVAL; 3284 goto out_unlock; 3285 } 3286 3287 /* 3288 * Set default pool features. 3289 */ 3290 pool_features_init(&pf); 3291 3292 dm_consume_args(&as, 4); 3293 r = parse_pool_features(&as, &pf, ti); 3294 if (r) 3295 goto out_unlock; 3296 3297 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3298 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3299 if (r) { 3300 ti->error = "Error opening metadata block device"; 3301 goto out_unlock; 3302 } 3303 warn_if_metadata_device_too_big(metadata_dev->bdev); 3304 3305 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3306 if (r) { 3307 ti->error = "Error getting data device"; 3308 goto out_metadata; 3309 } 3310 3311 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3312 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3313 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3314 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3315 ti->error = "Invalid block size"; 3316 r = -EINVAL; 3317 goto out; 3318 } 3319 3320 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3321 ti->error = "Invalid low water mark"; 3322 r = -EINVAL; 3323 goto out; 3324 } 3325 3326 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3327 if (!pt) { 3328 r = -ENOMEM; 3329 goto out; 3330 } 3331 3332 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, 3333 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3334 if (IS_ERR(pool)) { 3335 r = PTR_ERR(pool); 3336 goto out_free_pt; 3337 } 3338 3339 /* 3340 * 'pool_created' reflects whether this is the first table load. 3341 * Top level discard support is not allowed to be changed after 3342 * initial load. This would require a pool reload to trigger thin 3343 * device changes. 3344 */ 3345 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3346 ti->error = "Discard support cannot be disabled once enabled"; 3347 r = -EINVAL; 3348 goto out_flags_changed; 3349 } 3350 3351 pt->pool = pool; 3352 pt->ti = ti; 3353 pt->metadata_dev = metadata_dev; 3354 pt->data_dev = data_dev; 3355 pt->low_water_blocks = low_water_blocks; 3356 pt->adjusted_pf = pt->requested_pf = pf; 3357 ti->num_flush_bios = 1; 3358 3359 /* 3360 * Only need to enable discards if the pool should pass 3361 * them down to the data device. The thin device's discard 3362 * processing will cause mappings to be removed from the btree. 3363 */ 3364 if (pf.discard_enabled && pf.discard_passdown) { 3365 ti->num_discard_bios = 1; 3366 3367 /* 3368 * Setting 'discards_supported' circumvents the normal 3369 * stacking of discard limits (this keeps the pool and 3370 * thin devices' discard limits consistent). 3371 */ 3372 ti->discards_supported = true; 3373 } 3374 ti->private = pt; 3375 3376 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3377 calc_metadata_threshold(pt), 3378 metadata_low_callback, 3379 pool); 3380 if (r) { 3381 ti->error = "Error registering metadata threshold"; 3382 goto out_flags_changed; 3383 } 3384 3385 dm_pool_register_pre_commit_callback(pool->pmd, 3386 metadata_pre_commit_callback, pool); 3387 3388 mutex_unlock(&dm_thin_pool_table.mutex); 3389 3390 return 0; 3391 3392 out_flags_changed: 3393 __pool_dec(pool); 3394 out_free_pt: 3395 kfree(pt); 3396 out: 3397 dm_put_device(ti, data_dev); 3398 out_metadata: 3399 dm_put_device(ti, metadata_dev); 3400 out_unlock: 3401 mutex_unlock(&dm_thin_pool_table.mutex); 3402 3403 return r; 3404 } 3405 3406 static int pool_map(struct dm_target *ti, struct bio *bio) 3407 { 3408 int r; 3409 struct pool_c *pt = ti->private; 3410 struct pool *pool = pt->pool; 3411 3412 /* 3413 * As this is a singleton target, ti->begin is always zero. 3414 */ 3415 spin_lock_irq(&pool->lock); 3416 bio_set_dev(bio, pt->data_dev->bdev); 3417 r = DM_MAPIO_REMAPPED; 3418 spin_unlock_irq(&pool->lock); 3419 3420 return r; 3421 } 3422 3423 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3424 { 3425 int r; 3426 struct pool_c *pt = ti->private; 3427 struct pool *pool = pt->pool; 3428 sector_t data_size = ti->len; 3429 dm_block_t sb_data_size; 3430 3431 *need_commit = false; 3432 3433 (void) sector_div(data_size, pool->sectors_per_block); 3434 3435 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3436 if (r) { 3437 DMERR("%s: failed to retrieve data device size", 3438 dm_device_name(pool->pool_md)); 3439 return r; 3440 } 3441 3442 if (data_size < sb_data_size) { 3443 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3444 dm_device_name(pool->pool_md), 3445 (unsigned long long)data_size, sb_data_size); 3446 return -EINVAL; 3447 3448 } else if (data_size > sb_data_size) { 3449 if (dm_pool_metadata_needs_check(pool->pmd)) { 3450 DMERR("%s: unable to grow the data device until repaired.", 3451 dm_device_name(pool->pool_md)); 3452 return 0; 3453 } 3454 3455 if (sb_data_size) 3456 DMINFO("%s: growing the data device from %llu to %llu blocks", 3457 dm_device_name(pool->pool_md), 3458 sb_data_size, (unsigned long long)data_size); 3459 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3460 if (r) { 3461 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3462 return r; 3463 } 3464 3465 *need_commit = true; 3466 } 3467 3468 return 0; 3469 } 3470 3471 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3472 { 3473 int r; 3474 struct pool_c *pt = ti->private; 3475 struct pool *pool = pt->pool; 3476 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3477 3478 *need_commit = false; 3479 3480 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3481 3482 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3483 if (r) { 3484 DMERR("%s: failed to retrieve metadata device size", 3485 dm_device_name(pool->pool_md)); 3486 return r; 3487 } 3488 3489 if (metadata_dev_size < sb_metadata_dev_size) { 3490 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3491 dm_device_name(pool->pool_md), 3492 metadata_dev_size, sb_metadata_dev_size); 3493 return -EINVAL; 3494 3495 } else if (metadata_dev_size > sb_metadata_dev_size) { 3496 if (dm_pool_metadata_needs_check(pool->pmd)) { 3497 DMERR("%s: unable to grow the metadata device until repaired.", 3498 dm_device_name(pool->pool_md)); 3499 return 0; 3500 } 3501 3502 warn_if_metadata_device_too_big(pool->md_dev); 3503 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3504 dm_device_name(pool->pool_md), 3505 sb_metadata_dev_size, metadata_dev_size); 3506 3507 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3508 set_pool_mode(pool, PM_WRITE); 3509 3510 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3511 if (r) { 3512 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3513 return r; 3514 } 3515 3516 *need_commit = true; 3517 } 3518 3519 return 0; 3520 } 3521 3522 /* 3523 * Retrieves the number of blocks of the data device from 3524 * the superblock and compares it to the actual device size, 3525 * thus resizing the data device in case it has grown. 3526 * 3527 * This both copes with opening preallocated data devices in the ctr 3528 * being followed by a resume 3529 * -and- 3530 * calling the resume method individually after userspace has 3531 * grown the data device in reaction to a table event. 3532 */ 3533 static int pool_preresume(struct dm_target *ti) 3534 { 3535 int r; 3536 bool need_commit1, need_commit2; 3537 struct pool_c *pt = ti->private; 3538 struct pool *pool = pt->pool; 3539 3540 /* 3541 * Take control of the pool object. 3542 */ 3543 r = bind_control_target(pool, ti); 3544 if (r) 3545 goto out; 3546 3547 r = maybe_resize_data_dev(ti, &need_commit1); 3548 if (r) 3549 goto out; 3550 3551 r = maybe_resize_metadata_dev(ti, &need_commit2); 3552 if (r) 3553 goto out; 3554 3555 if (need_commit1 || need_commit2) 3556 (void) commit(pool); 3557 out: 3558 /* 3559 * When a thin-pool is PM_FAIL, it cannot be rebuilt if 3560 * bio is in deferred list. Therefore need to return 0 3561 * to allow pool_resume() to flush IO. 3562 */ 3563 if (r && get_pool_mode(pool) == PM_FAIL) 3564 r = 0; 3565 3566 return r; 3567 } 3568 3569 static void pool_suspend_active_thins(struct pool *pool) 3570 { 3571 struct thin_c *tc; 3572 3573 /* Suspend all active thin devices */ 3574 tc = get_first_thin(pool); 3575 while (tc) { 3576 dm_internal_suspend_noflush(tc->thin_md); 3577 tc = get_next_thin(pool, tc); 3578 } 3579 } 3580 3581 static void pool_resume_active_thins(struct pool *pool) 3582 { 3583 struct thin_c *tc; 3584 3585 /* Resume all active thin devices */ 3586 tc = get_first_thin(pool); 3587 while (tc) { 3588 dm_internal_resume(tc->thin_md); 3589 tc = get_next_thin(pool, tc); 3590 } 3591 } 3592 3593 static void pool_resume(struct dm_target *ti) 3594 { 3595 struct pool_c *pt = ti->private; 3596 struct pool *pool = pt->pool; 3597 3598 /* 3599 * Must requeue active_thins' bios and then resume 3600 * active_thins _before_ clearing 'suspend' flag. 3601 */ 3602 requeue_bios(pool); 3603 pool_resume_active_thins(pool); 3604 3605 spin_lock_irq(&pool->lock); 3606 pool->low_water_triggered = false; 3607 pool->suspended = false; 3608 spin_unlock_irq(&pool->lock); 3609 3610 do_waker(&pool->waker.work); 3611 } 3612 3613 static void pool_presuspend(struct dm_target *ti) 3614 { 3615 struct pool_c *pt = ti->private; 3616 struct pool *pool = pt->pool; 3617 3618 spin_lock_irq(&pool->lock); 3619 pool->suspended = true; 3620 spin_unlock_irq(&pool->lock); 3621 3622 pool_suspend_active_thins(pool); 3623 } 3624 3625 static void pool_presuspend_undo(struct dm_target *ti) 3626 { 3627 struct pool_c *pt = ti->private; 3628 struct pool *pool = pt->pool; 3629 3630 pool_resume_active_thins(pool); 3631 3632 spin_lock_irq(&pool->lock); 3633 pool->suspended = false; 3634 spin_unlock_irq(&pool->lock); 3635 } 3636 3637 static void pool_postsuspend(struct dm_target *ti) 3638 { 3639 struct pool_c *pt = ti->private; 3640 struct pool *pool = pt->pool; 3641 3642 cancel_delayed_work_sync(&pool->waker); 3643 cancel_delayed_work_sync(&pool->no_space_timeout); 3644 flush_workqueue(pool->wq); 3645 (void) commit(pool); 3646 } 3647 3648 static int check_arg_count(unsigned argc, unsigned args_required) 3649 { 3650 if (argc != args_required) { 3651 DMWARN("Message received with %u arguments instead of %u.", 3652 argc, args_required); 3653 return -EINVAL; 3654 } 3655 3656 return 0; 3657 } 3658 3659 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3660 { 3661 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3662 *dev_id <= MAX_DEV_ID) 3663 return 0; 3664 3665 if (warning) 3666 DMWARN("Message received with invalid device id: %s", arg); 3667 3668 return -EINVAL; 3669 } 3670 3671 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3672 { 3673 dm_thin_id dev_id; 3674 int r; 3675 3676 r = check_arg_count(argc, 2); 3677 if (r) 3678 return r; 3679 3680 r = read_dev_id(argv[1], &dev_id, 1); 3681 if (r) 3682 return r; 3683 3684 r = dm_pool_create_thin(pool->pmd, dev_id); 3685 if (r) { 3686 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3687 argv[1]); 3688 return r; 3689 } 3690 3691 return 0; 3692 } 3693 3694 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3695 { 3696 dm_thin_id dev_id; 3697 dm_thin_id origin_dev_id; 3698 int r; 3699 3700 r = check_arg_count(argc, 3); 3701 if (r) 3702 return r; 3703 3704 r = read_dev_id(argv[1], &dev_id, 1); 3705 if (r) 3706 return r; 3707 3708 r = read_dev_id(argv[2], &origin_dev_id, 1); 3709 if (r) 3710 return r; 3711 3712 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3713 if (r) { 3714 DMWARN("Creation of new snapshot %s of device %s failed.", 3715 argv[1], argv[2]); 3716 return r; 3717 } 3718 3719 return 0; 3720 } 3721 3722 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3723 { 3724 dm_thin_id dev_id; 3725 int r; 3726 3727 r = check_arg_count(argc, 2); 3728 if (r) 3729 return r; 3730 3731 r = read_dev_id(argv[1], &dev_id, 1); 3732 if (r) 3733 return r; 3734 3735 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3736 if (r) 3737 DMWARN("Deletion of thin device %s failed.", argv[1]); 3738 3739 return r; 3740 } 3741 3742 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3743 { 3744 dm_thin_id old_id, new_id; 3745 int r; 3746 3747 r = check_arg_count(argc, 3); 3748 if (r) 3749 return r; 3750 3751 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3752 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3753 return -EINVAL; 3754 } 3755 3756 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3757 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3758 return -EINVAL; 3759 } 3760 3761 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3762 if (r) { 3763 DMWARN("Failed to change transaction id from %s to %s.", 3764 argv[1], argv[2]); 3765 return r; 3766 } 3767 3768 return 0; 3769 } 3770 3771 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3772 { 3773 int r; 3774 3775 r = check_arg_count(argc, 1); 3776 if (r) 3777 return r; 3778 3779 (void) commit(pool); 3780 3781 r = dm_pool_reserve_metadata_snap(pool->pmd); 3782 if (r) 3783 DMWARN("reserve_metadata_snap message failed."); 3784 3785 return r; 3786 } 3787 3788 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3789 { 3790 int r; 3791 3792 r = check_arg_count(argc, 1); 3793 if (r) 3794 return r; 3795 3796 r = dm_pool_release_metadata_snap(pool->pmd); 3797 if (r) 3798 DMWARN("release_metadata_snap message failed."); 3799 3800 return r; 3801 } 3802 3803 /* 3804 * Messages supported: 3805 * create_thin <dev_id> 3806 * create_snap <dev_id> <origin_id> 3807 * delete <dev_id> 3808 * set_transaction_id <current_trans_id> <new_trans_id> 3809 * reserve_metadata_snap 3810 * release_metadata_snap 3811 */ 3812 static int pool_message(struct dm_target *ti, unsigned argc, char **argv, 3813 char *result, unsigned maxlen) 3814 { 3815 int r = -EINVAL; 3816 struct pool_c *pt = ti->private; 3817 struct pool *pool = pt->pool; 3818 3819 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3820 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3821 dm_device_name(pool->pool_md)); 3822 return -EOPNOTSUPP; 3823 } 3824 3825 if (!strcasecmp(argv[0], "create_thin")) 3826 r = process_create_thin_mesg(argc, argv, pool); 3827 3828 else if (!strcasecmp(argv[0], "create_snap")) 3829 r = process_create_snap_mesg(argc, argv, pool); 3830 3831 else if (!strcasecmp(argv[0], "delete")) 3832 r = process_delete_mesg(argc, argv, pool); 3833 3834 else if (!strcasecmp(argv[0], "set_transaction_id")) 3835 r = process_set_transaction_id_mesg(argc, argv, pool); 3836 3837 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3838 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3839 3840 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3841 r = process_release_metadata_snap_mesg(argc, argv, pool); 3842 3843 else 3844 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3845 3846 if (!r) 3847 (void) commit(pool); 3848 3849 return r; 3850 } 3851 3852 static void emit_flags(struct pool_features *pf, char *result, 3853 unsigned sz, unsigned maxlen) 3854 { 3855 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3856 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3857 pf->error_if_no_space; 3858 DMEMIT("%u ", count); 3859 3860 if (!pf->zero_new_blocks) 3861 DMEMIT("skip_block_zeroing "); 3862 3863 if (!pf->discard_enabled) 3864 DMEMIT("ignore_discard "); 3865 3866 if (!pf->discard_passdown) 3867 DMEMIT("no_discard_passdown "); 3868 3869 if (pf->mode == PM_READ_ONLY) 3870 DMEMIT("read_only "); 3871 3872 if (pf->error_if_no_space) 3873 DMEMIT("error_if_no_space "); 3874 } 3875 3876 /* 3877 * Status line is: 3878 * <transaction id> <used metadata sectors>/<total metadata sectors> 3879 * <used data sectors>/<total data sectors> <held metadata root> 3880 * <pool mode> <discard config> <no space config> <needs_check> 3881 */ 3882 static void pool_status(struct dm_target *ti, status_type_t type, 3883 unsigned status_flags, char *result, unsigned maxlen) 3884 { 3885 int r; 3886 unsigned sz = 0; 3887 uint64_t transaction_id; 3888 dm_block_t nr_free_blocks_data; 3889 dm_block_t nr_free_blocks_metadata; 3890 dm_block_t nr_blocks_data; 3891 dm_block_t nr_blocks_metadata; 3892 dm_block_t held_root; 3893 enum pool_mode mode; 3894 char buf[BDEVNAME_SIZE]; 3895 char buf2[BDEVNAME_SIZE]; 3896 struct pool_c *pt = ti->private; 3897 struct pool *pool = pt->pool; 3898 3899 switch (type) { 3900 case STATUSTYPE_INFO: 3901 if (get_pool_mode(pool) == PM_FAIL) { 3902 DMEMIT("Fail"); 3903 break; 3904 } 3905 3906 /* Commit to ensure statistics aren't out-of-date */ 3907 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3908 (void) commit(pool); 3909 3910 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3911 if (r) { 3912 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3913 dm_device_name(pool->pool_md), r); 3914 goto err; 3915 } 3916 3917 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3918 if (r) { 3919 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3920 dm_device_name(pool->pool_md), r); 3921 goto err; 3922 } 3923 3924 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3925 if (r) { 3926 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3927 dm_device_name(pool->pool_md), r); 3928 goto err; 3929 } 3930 3931 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3932 if (r) { 3933 DMERR("%s: dm_pool_get_free_block_count returned %d", 3934 dm_device_name(pool->pool_md), r); 3935 goto err; 3936 } 3937 3938 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3939 if (r) { 3940 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3941 dm_device_name(pool->pool_md), r); 3942 goto err; 3943 } 3944 3945 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3946 if (r) { 3947 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3948 dm_device_name(pool->pool_md), r); 3949 goto err; 3950 } 3951 3952 DMEMIT("%llu %llu/%llu %llu/%llu ", 3953 (unsigned long long)transaction_id, 3954 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3955 (unsigned long long)nr_blocks_metadata, 3956 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3957 (unsigned long long)nr_blocks_data); 3958 3959 if (held_root) 3960 DMEMIT("%llu ", held_root); 3961 else 3962 DMEMIT("- "); 3963 3964 mode = get_pool_mode(pool); 3965 if (mode == PM_OUT_OF_DATA_SPACE) 3966 DMEMIT("out_of_data_space "); 3967 else if (is_read_only_pool_mode(mode)) 3968 DMEMIT("ro "); 3969 else 3970 DMEMIT("rw "); 3971 3972 if (!pool->pf.discard_enabled) 3973 DMEMIT("ignore_discard "); 3974 else if (pool->pf.discard_passdown) 3975 DMEMIT("discard_passdown "); 3976 else 3977 DMEMIT("no_discard_passdown "); 3978 3979 if (pool->pf.error_if_no_space) 3980 DMEMIT("error_if_no_space "); 3981 else 3982 DMEMIT("queue_if_no_space "); 3983 3984 if (dm_pool_metadata_needs_check(pool->pmd)) 3985 DMEMIT("needs_check "); 3986 else 3987 DMEMIT("- "); 3988 3989 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 3990 3991 break; 3992 3993 case STATUSTYPE_TABLE: 3994 DMEMIT("%s %s %lu %llu ", 3995 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3996 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3997 (unsigned long)pool->sectors_per_block, 3998 (unsigned long long)pt->low_water_blocks); 3999 emit_flags(&pt->requested_pf, result, sz, maxlen); 4000 break; 4001 4002 case STATUSTYPE_IMA: 4003 *result = '\0'; 4004 break; 4005 } 4006 return; 4007 4008 err: 4009 DMEMIT("Error"); 4010 } 4011 4012 static int pool_iterate_devices(struct dm_target *ti, 4013 iterate_devices_callout_fn fn, void *data) 4014 { 4015 struct pool_c *pt = ti->private; 4016 4017 return fn(ti, pt->data_dev, 0, ti->len, data); 4018 } 4019 4020 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4021 { 4022 struct pool_c *pt = ti->private; 4023 struct pool *pool = pt->pool; 4024 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4025 4026 /* 4027 * If max_sectors is smaller than pool->sectors_per_block adjust it 4028 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4029 * This is especially beneficial when the pool's data device is a RAID 4030 * device that has a full stripe width that matches pool->sectors_per_block 4031 * -- because even though partial RAID stripe-sized IOs will be issued to a 4032 * single RAID stripe; when aggregated they will end on a full RAID stripe 4033 * boundary.. which avoids additional partial RAID stripe writes cascading 4034 */ 4035 if (limits->max_sectors < pool->sectors_per_block) { 4036 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4037 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4038 limits->max_sectors--; 4039 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4040 } 4041 } 4042 4043 /* 4044 * If the system-determined stacked limits are compatible with the 4045 * pool's blocksize (io_opt is a factor) do not override them. 4046 */ 4047 if (io_opt_sectors < pool->sectors_per_block || 4048 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4049 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4050 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4051 else 4052 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4053 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4054 } 4055 4056 /* 4057 * pt->adjusted_pf is a staging area for the actual features to use. 4058 * They get transferred to the live pool in bind_control_target() 4059 * called from pool_preresume(). 4060 */ 4061 if (!pt->adjusted_pf.discard_enabled) { 4062 /* 4063 * Must explicitly disallow stacking discard limits otherwise the 4064 * block layer will stack them if pool's data device has support. 4065 */ 4066 limits->discard_granularity = 0; 4067 return; 4068 } 4069 4070 disable_passdown_if_not_supported(pt); 4071 4072 /* 4073 * The pool uses the same discard limits as the underlying data 4074 * device. DM core has already set this up. 4075 */ 4076 } 4077 4078 static struct target_type pool_target = { 4079 .name = "thin-pool", 4080 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4081 DM_TARGET_IMMUTABLE, 4082 .version = {1, 22, 0}, 4083 .module = THIS_MODULE, 4084 .ctr = pool_ctr, 4085 .dtr = pool_dtr, 4086 .map = pool_map, 4087 .presuspend = pool_presuspend, 4088 .presuspend_undo = pool_presuspend_undo, 4089 .postsuspend = pool_postsuspend, 4090 .preresume = pool_preresume, 4091 .resume = pool_resume, 4092 .message = pool_message, 4093 .status = pool_status, 4094 .iterate_devices = pool_iterate_devices, 4095 .io_hints = pool_io_hints, 4096 }; 4097 4098 /*---------------------------------------------------------------- 4099 * Thin target methods 4100 *--------------------------------------------------------------*/ 4101 static void thin_get(struct thin_c *tc) 4102 { 4103 refcount_inc(&tc->refcount); 4104 } 4105 4106 static void thin_put(struct thin_c *tc) 4107 { 4108 if (refcount_dec_and_test(&tc->refcount)) 4109 complete(&tc->can_destroy); 4110 } 4111 4112 static void thin_dtr(struct dm_target *ti) 4113 { 4114 struct thin_c *tc = ti->private; 4115 4116 spin_lock_irq(&tc->pool->lock); 4117 list_del_rcu(&tc->list); 4118 spin_unlock_irq(&tc->pool->lock); 4119 synchronize_rcu(); 4120 4121 thin_put(tc); 4122 wait_for_completion(&tc->can_destroy); 4123 4124 mutex_lock(&dm_thin_pool_table.mutex); 4125 4126 __pool_dec(tc->pool); 4127 dm_pool_close_thin_device(tc->td); 4128 dm_put_device(ti, tc->pool_dev); 4129 if (tc->origin_dev) 4130 dm_put_device(ti, tc->origin_dev); 4131 kfree(tc); 4132 4133 mutex_unlock(&dm_thin_pool_table.mutex); 4134 } 4135 4136 /* 4137 * Thin target parameters: 4138 * 4139 * <pool_dev> <dev_id> [origin_dev] 4140 * 4141 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4142 * dev_id: the internal device identifier 4143 * origin_dev: a device external to the pool that should act as the origin 4144 * 4145 * If the pool device has discards disabled, they get disabled for the thin 4146 * device as well. 4147 */ 4148 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4149 { 4150 int r; 4151 struct thin_c *tc; 4152 struct dm_dev *pool_dev, *origin_dev; 4153 struct mapped_device *pool_md; 4154 4155 mutex_lock(&dm_thin_pool_table.mutex); 4156 4157 if (argc != 2 && argc != 3) { 4158 ti->error = "Invalid argument count"; 4159 r = -EINVAL; 4160 goto out_unlock; 4161 } 4162 4163 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4164 if (!tc) { 4165 ti->error = "Out of memory"; 4166 r = -ENOMEM; 4167 goto out_unlock; 4168 } 4169 tc->thin_md = dm_table_get_md(ti->table); 4170 spin_lock_init(&tc->lock); 4171 INIT_LIST_HEAD(&tc->deferred_cells); 4172 bio_list_init(&tc->deferred_bio_list); 4173 bio_list_init(&tc->retry_on_resume_list); 4174 tc->sort_bio_list = RB_ROOT; 4175 4176 if (argc == 3) { 4177 if (!strcmp(argv[0], argv[2])) { 4178 ti->error = "Error setting origin device"; 4179 r = -EINVAL; 4180 goto bad_origin_dev; 4181 } 4182 4183 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4184 if (r) { 4185 ti->error = "Error opening origin device"; 4186 goto bad_origin_dev; 4187 } 4188 tc->origin_dev = origin_dev; 4189 } 4190 4191 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4192 if (r) { 4193 ti->error = "Error opening pool device"; 4194 goto bad_pool_dev; 4195 } 4196 tc->pool_dev = pool_dev; 4197 4198 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4199 ti->error = "Invalid device id"; 4200 r = -EINVAL; 4201 goto bad_common; 4202 } 4203 4204 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4205 if (!pool_md) { 4206 ti->error = "Couldn't get pool mapped device"; 4207 r = -EINVAL; 4208 goto bad_common; 4209 } 4210 4211 tc->pool = __pool_table_lookup(pool_md); 4212 if (!tc->pool) { 4213 ti->error = "Couldn't find pool object"; 4214 r = -EINVAL; 4215 goto bad_pool_lookup; 4216 } 4217 __pool_inc(tc->pool); 4218 4219 if (get_pool_mode(tc->pool) == PM_FAIL) { 4220 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4221 r = -EINVAL; 4222 goto bad_pool; 4223 } 4224 4225 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4226 if (r) { 4227 ti->error = "Couldn't open thin internal device"; 4228 goto bad_pool; 4229 } 4230 4231 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4232 if (r) 4233 goto bad; 4234 4235 ti->num_flush_bios = 1; 4236 ti->flush_supported = true; 4237 ti->accounts_remapped_io = true; 4238 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4239 4240 /* In case the pool supports discards, pass them on. */ 4241 if (tc->pool->pf.discard_enabled) { 4242 ti->discards_supported = true; 4243 ti->num_discard_bios = 1; 4244 } 4245 4246 mutex_unlock(&dm_thin_pool_table.mutex); 4247 4248 spin_lock_irq(&tc->pool->lock); 4249 if (tc->pool->suspended) { 4250 spin_unlock_irq(&tc->pool->lock); 4251 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4252 ti->error = "Unable to activate thin device while pool is suspended"; 4253 r = -EINVAL; 4254 goto bad; 4255 } 4256 refcount_set(&tc->refcount, 1); 4257 init_completion(&tc->can_destroy); 4258 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4259 spin_unlock_irq(&tc->pool->lock); 4260 /* 4261 * This synchronize_rcu() call is needed here otherwise we risk a 4262 * wake_worker() call finding no bios to process (because the newly 4263 * added tc isn't yet visible). So this reduces latency since we 4264 * aren't then dependent on the periodic commit to wake_worker(). 4265 */ 4266 synchronize_rcu(); 4267 4268 dm_put(pool_md); 4269 4270 return 0; 4271 4272 bad: 4273 dm_pool_close_thin_device(tc->td); 4274 bad_pool: 4275 __pool_dec(tc->pool); 4276 bad_pool_lookup: 4277 dm_put(pool_md); 4278 bad_common: 4279 dm_put_device(ti, tc->pool_dev); 4280 bad_pool_dev: 4281 if (tc->origin_dev) 4282 dm_put_device(ti, tc->origin_dev); 4283 bad_origin_dev: 4284 kfree(tc); 4285 out_unlock: 4286 mutex_unlock(&dm_thin_pool_table.mutex); 4287 4288 return r; 4289 } 4290 4291 static int thin_map(struct dm_target *ti, struct bio *bio) 4292 { 4293 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4294 4295 return thin_bio_map(ti, bio); 4296 } 4297 4298 static int thin_endio(struct dm_target *ti, struct bio *bio, 4299 blk_status_t *err) 4300 { 4301 unsigned long flags; 4302 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4303 struct list_head work; 4304 struct dm_thin_new_mapping *m, *tmp; 4305 struct pool *pool = h->tc->pool; 4306 4307 if (h->shared_read_entry) { 4308 INIT_LIST_HEAD(&work); 4309 dm_deferred_entry_dec(h->shared_read_entry, &work); 4310 4311 spin_lock_irqsave(&pool->lock, flags); 4312 list_for_each_entry_safe(m, tmp, &work, list) { 4313 list_del(&m->list); 4314 __complete_mapping_preparation(m); 4315 } 4316 spin_unlock_irqrestore(&pool->lock, flags); 4317 } 4318 4319 if (h->all_io_entry) { 4320 INIT_LIST_HEAD(&work); 4321 dm_deferred_entry_dec(h->all_io_entry, &work); 4322 if (!list_empty(&work)) { 4323 spin_lock_irqsave(&pool->lock, flags); 4324 list_for_each_entry_safe(m, tmp, &work, list) 4325 list_add_tail(&m->list, &pool->prepared_discards); 4326 spin_unlock_irqrestore(&pool->lock, flags); 4327 wake_worker(pool); 4328 } 4329 } 4330 4331 if (h->cell) 4332 cell_defer_no_holder(h->tc, h->cell); 4333 4334 return DM_ENDIO_DONE; 4335 } 4336 4337 static void thin_presuspend(struct dm_target *ti) 4338 { 4339 struct thin_c *tc = ti->private; 4340 4341 if (dm_noflush_suspending(ti)) 4342 noflush_work(tc, do_noflush_start); 4343 } 4344 4345 static void thin_postsuspend(struct dm_target *ti) 4346 { 4347 struct thin_c *tc = ti->private; 4348 4349 /* 4350 * The dm_noflush_suspending flag has been cleared by now, so 4351 * unfortunately we must always run this. 4352 */ 4353 noflush_work(tc, do_noflush_stop); 4354 } 4355 4356 static int thin_preresume(struct dm_target *ti) 4357 { 4358 struct thin_c *tc = ti->private; 4359 4360 if (tc->origin_dev) 4361 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4362 4363 return 0; 4364 } 4365 4366 /* 4367 * <nr mapped sectors> <highest mapped sector> 4368 */ 4369 static void thin_status(struct dm_target *ti, status_type_t type, 4370 unsigned status_flags, char *result, unsigned maxlen) 4371 { 4372 int r; 4373 ssize_t sz = 0; 4374 dm_block_t mapped, highest; 4375 char buf[BDEVNAME_SIZE]; 4376 struct thin_c *tc = ti->private; 4377 4378 if (get_pool_mode(tc->pool) == PM_FAIL) { 4379 DMEMIT("Fail"); 4380 return; 4381 } 4382 4383 if (!tc->td) 4384 DMEMIT("-"); 4385 else { 4386 switch (type) { 4387 case STATUSTYPE_INFO: 4388 r = dm_thin_get_mapped_count(tc->td, &mapped); 4389 if (r) { 4390 DMERR("dm_thin_get_mapped_count returned %d", r); 4391 goto err; 4392 } 4393 4394 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4395 if (r < 0) { 4396 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4397 goto err; 4398 } 4399 4400 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4401 if (r) 4402 DMEMIT("%llu", ((highest + 1) * 4403 tc->pool->sectors_per_block) - 1); 4404 else 4405 DMEMIT("-"); 4406 break; 4407 4408 case STATUSTYPE_TABLE: 4409 DMEMIT("%s %lu", 4410 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4411 (unsigned long) tc->dev_id); 4412 if (tc->origin_dev) 4413 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4414 break; 4415 4416 case STATUSTYPE_IMA: 4417 *result = '\0'; 4418 break; 4419 } 4420 } 4421 4422 return; 4423 4424 err: 4425 DMEMIT("Error"); 4426 } 4427 4428 static int thin_iterate_devices(struct dm_target *ti, 4429 iterate_devices_callout_fn fn, void *data) 4430 { 4431 sector_t blocks; 4432 struct thin_c *tc = ti->private; 4433 struct pool *pool = tc->pool; 4434 4435 /* 4436 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4437 * we follow a more convoluted path through to the pool's target. 4438 */ 4439 if (!pool->ti) 4440 return 0; /* nothing is bound */ 4441 4442 blocks = pool->ti->len; 4443 (void) sector_div(blocks, pool->sectors_per_block); 4444 if (blocks) 4445 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4446 4447 return 0; 4448 } 4449 4450 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4451 { 4452 struct thin_c *tc = ti->private; 4453 struct pool *pool = tc->pool; 4454 4455 if (!pool->pf.discard_enabled) 4456 return; 4457 4458 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4459 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4460 } 4461 4462 static struct target_type thin_target = { 4463 .name = "thin", 4464 .version = {1, 22, 0}, 4465 .module = THIS_MODULE, 4466 .ctr = thin_ctr, 4467 .dtr = thin_dtr, 4468 .map = thin_map, 4469 .end_io = thin_endio, 4470 .preresume = thin_preresume, 4471 .presuspend = thin_presuspend, 4472 .postsuspend = thin_postsuspend, 4473 .status = thin_status, 4474 .iterate_devices = thin_iterate_devices, 4475 .io_hints = thin_io_hints, 4476 }; 4477 4478 /*----------------------------------------------------------------*/ 4479 4480 static int __init dm_thin_init(void) 4481 { 4482 int r = -ENOMEM; 4483 4484 pool_table_init(); 4485 4486 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4487 if (!_new_mapping_cache) 4488 return r; 4489 4490 r = dm_register_target(&thin_target); 4491 if (r) 4492 goto bad_new_mapping_cache; 4493 4494 r = dm_register_target(&pool_target); 4495 if (r) 4496 goto bad_thin_target; 4497 4498 return 0; 4499 4500 bad_thin_target: 4501 dm_unregister_target(&thin_target); 4502 bad_new_mapping_cache: 4503 kmem_cache_destroy(_new_mapping_cache); 4504 4505 return r; 4506 } 4507 4508 static void dm_thin_exit(void) 4509 { 4510 dm_unregister_target(&thin_target); 4511 dm_unregister_target(&pool_target); 4512 4513 kmem_cache_destroy(_new_mapping_cache); 4514 4515 pool_table_exit(); 4516 } 4517 4518 module_init(dm_thin_init); 4519 module_exit(dm_thin_exit); 4520 4521 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4522 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4523 4524 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4525 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4526 MODULE_LICENSE("GPL"); 4527