xref: /openbmc/linux/drivers/md/dm-thin.c (revision 37be287c)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 
19 #define	DM_MSG_PREFIX	"thin"
20 
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28 
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 		"A percentage of time allocated for copy on write");
31 
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38 
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43 
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101 
102 /*----------------------------------------------------------------*/
103 
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108 			   dm_block_t b, struct dm_cell_key *key)
109 {
110 	key->virtual = 0;
111 	key->dev = dm_thin_dev_id(td);
112 	key->block = b;
113 }
114 
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 			      struct dm_cell_key *key)
117 {
118 	key->virtual = 1;
119 	key->dev = dm_thin_dev_id(td);
120 	key->block = b;
121 }
122 
123 /*----------------------------------------------------------------*/
124 
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131 
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136 	PM_WRITE,		/* metadata may be changed */
137 	PM_READ_ONLY,		/* metadata may not be changed */
138 	PM_FAIL,		/* all I/O fails */
139 };
140 
141 struct pool_features {
142 	enum pool_mode mode;
143 
144 	bool zero_new_blocks:1;
145 	bool discard_enabled:1;
146 	bool discard_passdown:1;
147 	bool error_if_no_space:1;
148 };
149 
150 struct thin_c;
151 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
152 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
153 
154 struct pool {
155 	struct list_head list;
156 	struct dm_target *ti;	/* Only set if a pool target is bound */
157 
158 	struct mapped_device *pool_md;
159 	struct block_device *md_dev;
160 	struct dm_pool_metadata *pmd;
161 
162 	dm_block_t low_water_blocks;
163 	uint32_t sectors_per_block;
164 	int sectors_per_block_shift;
165 
166 	struct pool_features pf;
167 	bool low_water_triggered:1;	/* A dm event has been sent */
168 
169 	struct dm_bio_prison *prison;
170 	struct dm_kcopyd_client *copier;
171 
172 	struct workqueue_struct *wq;
173 	struct work_struct worker;
174 	struct delayed_work waker;
175 
176 	unsigned long last_commit_jiffies;
177 	unsigned ref_count;
178 
179 	spinlock_t lock;
180 	struct bio_list deferred_bios;
181 	struct bio_list deferred_flush_bios;
182 	struct list_head prepared_mappings;
183 	struct list_head prepared_discards;
184 
185 	struct bio_list retry_on_resume_list;
186 
187 	struct dm_deferred_set *shared_read_ds;
188 	struct dm_deferred_set *all_io_ds;
189 
190 	struct dm_thin_new_mapping *next_mapping;
191 	mempool_t *mapping_pool;
192 
193 	process_bio_fn process_bio;
194 	process_bio_fn process_discard;
195 
196 	process_mapping_fn process_prepared_mapping;
197 	process_mapping_fn process_prepared_discard;
198 };
199 
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void out_of_data_space(struct pool *pool);
202 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
203 
204 /*
205  * Target context for a pool.
206  */
207 struct pool_c {
208 	struct dm_target *ti;
209 	struct pool *pool;
210 	struct dm_dev *data_dev;
211 	struct dm_dev *metadata_dev;
212 	struct dm_target_callbacks callbacks;
213 
214 	dm_block_t low_water_blocks;
215 	struct pool_features requested_pf; /* Features requested during table load */
216 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
217 };
218 
219 /*
220  * Target context for a thin.
221  */
222 struct thin_c {
223 	struct dm_dev *pool_dev;
224 	struct dm_dev *origin_dev;
225 	dm_thin_id dev_id;
226 
227 	struct pool *pool;
228 	struct dm_thin_device *td;
229 };
230 
231 /*----------------------------------------------------------------*/
232 
233 /*
234  * wake_worker() is used when new work is queued and when pool_resume is
235  * ready to continue deferred IO processing.
236  */
237 static void wake_worker(struct pool *pool)
238 {
239 	queue_work(pool->wq, &pool->worker);
240 }
241 
242 /*----------------------------------------------------------------*/
243 
244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
245 		      struct dm_bio_prison_cell **cell_result)
246 {
247 	int r;
248 	struct dm_bio_prison_cell *cell_prealloc;
249 
250 	/*
251 	 * Allocate a cell from the prison's mempool.
252 	 * This might block but it can't fail.
253 	 */
254 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
255 
256 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
257 	if (r)
258 		/*
259 		 * We reused an old cell; we can get rid of
260 		 * the new one.
261 		 */
262 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
263 
264 	return r;
265 }
266 
267 static void cell_release(struct pool *pool,
268 			 struct dm_bio_prison_cell *cell,
269 			 struct bio_list *bios)
270 {
271 	dm_cell_release(pool->prison, cell, bios);
272 	dm_bio_prison_free_cell(pool->prison, cell);
273 }
274 
275 static void cell_release_no_holder(struct pool *pool,
276 				   struct dm_bio_prison_cell *cell,
277 				   struct bio_list *bios)
278 {
279 	dm_cell_release_no_holder(pool->prison, cell, bios);
280 	dm_bio_prison_free_cell(pool->prison, cell);
281 }
282 
283 static void cell_defer_no_holder_no_free(struct thin_c *tc,
284 					 struct dm_bio_prison_cell *cell)
285 {
286 	struct pool *pool = tc->pool;
287 	unsigned long flags;
288 
289 	spin_lock_irqsave(&pool->lock, flags);
290 	dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
291 	spin_unlock_irqrestore(&pool->lock, flags);
292 
293 	wake_worker(pool);
294 }
295 
296 static void cell_error(struct pool *pool,
297 		       struct dm_bio_prison_cell *cell)
298 {
299 	dm_cell_error(pool->prison, cell);
300 	dm_bio_prison_free_cell(pool->prison, cell);
301 }
302 
303 /*----------------------------------------------------------------*/
304 
305 /*
306  * A global list of pools that uses a struct mapped_device as a key.
307  */
308 static struct dm_thin_pool_table {
309 	struct mutex mutex;
310 	struct list_head pools;
311 } dm_thin_pool_table;
312 
313 static void pool_table_init(void)
314 {
315 	mutex_init(&dm_thin_pool_table.mutex);
316 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
317 }
318 
319 static void __pool_table_insert(struct pool *pool)
320 {
321 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
322 	list_add(&pool->list, &dm_thin_pool_table.pools);
323 }
324 
325 static void __pool_table_remove(struct pool *pool)
326 {
327 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
328 	list_del(&pool->list);
329 }
330 
331 static struct pool *__pool_table_lookup(struct mapped_device *md)
332 {
333 	struct pool *pool = NULL, *tmp;
334 
335 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
336 
337 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
338 		if (tmp->pool_md == md) {
339 			pool = tmp;
340 			break;
341 		}
342 	}
343 
344 	return pool;
345 }
346 
347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
348 {
349 	struct pool *pool = NULL, *tmp;
350 
351 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
352 
353 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
354 		if (tmp->md_dev == md_dev) {
355 			pool = tmp;
356 			break;
357 		}
358 	}
359 
360 	return pool;
361 }
362 
363 /*----------------------------------------------------------------*/
364 
365 struct dm_thin_endio_hook {
366 	struct thin_c *tc;
367 	struct dm_deferred_entry *shared_read_entry;
368 	struct dm_deferred_entry *all_io_entry;
369 	struct dm_thin_new_mapping *overwrite_mapping;
370 };
371 
372 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
373 {
374 	struct bio *bio;
375 	struct bio_list bios;
376 
377 	bio_list_init(&bios);
378 	bio_list_merge(&bios, master);
379 	bio_list_init(master);
380 
381 	while ((bio = bio_list_pop(&bios))) {
382 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
383 
384 		if (h->tc == tc)
385 			bio_endio(bio, DM_ENDIO_REQUEUE);
386 		else
387 			bio_list_add(master, bio);
388 	}
389 }
390 
391 static void requeue_io(struct thin_c *tc)
392 {
393 	struct pool *pool = tc->pool;
394 	unsigned long flags;
395 
396 	spin_lock_irqsave(&pool->lock, flags);
397 	__requeue_bio_list(tc, &pool->deferred_bios);
398 	__requeue_bio_list(tc, &pool->retry_on_resume_list);
399 	spin_unlock_irqrestore(&pool->lock, flags);
400 }
401 
402 /*
403  * This section of code contains the logic for processing a thin device's IO.
404  * Much of the code depends on pool object resources (lists, workqueues, etc)
405  * but most is exclusively called from the thin target rather than the thin-pool
406  * target.
407  */
408 
409 static bool block_size_is_power_of_two(struct pool *pool)
410 {
411 	return pool->sectors_per_block_shift >= 0;
412 }
413 
414 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
415 {
416 	struct pool *pool = tc->pool;
417 	sector_t block_nr = bio->bi_iter.bi_sector;
418 
419 	if (block_size_is_power_of_two(pool))
420 		block_nr >>= pool->sectors_per_block_shift;
421 	else
422 		(void) sector_div(block_nr, pool->sectors_per_block);
423 
424 	return block_nr;
425 }
426 
427 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
428 {
429 	struct pool *pool = tc->pool;
430 	sector_t bi_sector = bio->bi_iter.bi_sector;
431 
432 	bio->bi_bdev = tc->pool_dev->bdev;
433 	if (block_size_is_power_of_two(pool))
434 		bio->bi_iter.bi_sector =
435 			(block << pool->sectors_per_block_shift) |
436 			(bi_sector & (pool->sectors_per_block - 1));
437 	else
438 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
439 				 sector_div(bi_sector, pool->sectors_per_block);
440 }
441 
442 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
443 {
444 	bio->bi_bdev = tc->origin_dev->bdev;
445 }
446 
447 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
448 {
449 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
450 		dm_thin_changed_this_transaction(tc->td);
451 }
452 
453 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
454 {
455 	struct dm_thin_endio_hook *h;
456 
457 	if (bio->bi_rw & REQ_DISCARD)
458 		return;
459 
460 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
461 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
462 }
463 
464 static void issue(struct thin_c *tc, struct bio *bio)
465 {
466 	struct pool *pool = tc->pool;
467 	unsigned long flags;
468 
469 	if (!bio_triggers_commit(tc, bio)) {
470 		generic_make_request(bio);
471 		return;
472 	}
473 
474 	/*
475 	 * Complete bio with an error if earlier I/O caused changes to
476 	 * the metadata that can't be committed e.g, due to I/O errors
477 	 * on the metadata device.
478 	 */
479 	if (dm_thin_aborted_changes(tc->td)) {
480 		bio_io_error(bio);
481 		return;
482 	}
483 
484 	/*
485 	 * Batch together any bios that trigger commits and then issue a
486 	 * single commit for them in process_deferred_bios().
487 	 */
488 	spin_lock_irqsave(&pool->lock, flags);
489 	bio_list_add(&pool->deferred_flush_bios, bio);
490 	spin_unlock_irqrestore(&pool->lock, flags);
491 }
492 
493 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
494 {
495 	remap_to_origin(tc, bio);
496 	issue(tc, bio);
497 }
498 
499 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
500 			    dm_block_t block)
501 {
502 	remap(tc, bio, block);
503 	issue(tc, bio);
504 }
505 
506 /*----------------------------------------------------------------*/
507 
508 /*
509  * Bio endio functions.
510  */
511 struct dm_thin_new_mapping {
512 	struct list_head list;
513 
514 	bool quiesced:1;
515 	bool prepared:1;
516 	bool pass_discard:1;
517 	bool definitely_not_shared:1;
518 
519 	int err;
520 	struct thin_c *tc;
521 	dm_block_t virt_block;
522 	dm_block_t data_block;
523 	struct dm_bio_prison_cell *cell, *cell2;
524 
525 	/*
526 	 * If the bio covers the whole area of a block then we can avoid
527 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
528 	 * still be in the cell, so care has to be taken to avoid issuing
529 	 * the bio twice.
530 	 */
531 	struct bio *bio;
532 	bio_end_io_t *saved_bi_end_io;
533 };
534 
535 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
536 {
537 	struct pool *pool = m->tc->pool;
538 
539 	if (m->quiesced && m->prepared) {
540 		list_add_tail(&m->list, &pool->prepared_mappings);
541 		wake_worker(pool);
542 	}
543 }
544 
545 static void copy_complete(int read_err, unsigned long write_err, void *context)
546 {
547 	unsigned long flags;
548 	struct dm_thin_new_mapping *m = context;
549 	struct pool *pool = m->tc->pool;
550 
551 	m->err = read_err || write_err ? -EIO : 0;
552 
553 	spin_lock_irqsave(&pool->lock, flags);
554 	m->prepared = true;
555 	__maybe_add_mapping(m);
556 	spin_unlock_irqrestore(&pool->lock, flags);
557 }
558 
559 static void overwrite_endio(struct bio *bio, int err)
560 {
561 	unsigned long flags;
562 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
563 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
564 	struct pool *pool = m->tc->pool;
565 
566 	m->err = err;
567 
568 	spin_lock_irqsave(&pool->lock, flags);
569 	m->prepared = true;
570 	__maybe_add_mapping(m);
571 	spin_unlock_irqrestore(&pool->lock, flags);
572 }
573 
574 /*----------------------------------------------------------------*/
575 
576 /*
577  * Workqueue.
578  */
579 
580 /*
581  * Prepared mapping jobs.
582  */
583 
584 /*
585  * This sends the bios in the cell back to the deferred_bios list.
586  */
587 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
588 {
589 	struct pool *pool = tc->pool;
590 	unsigned long flags;
591 
592 	spin_lock_irqsave(&pool->lock, flags);
593 	cell_release(pool, cell, &pool->deferred_bios);
594 	spin_unlock_irqrestore(&tc->pool->lock, flags);
595 
596 	wake_worker(pool);
597 }
598 
599 /*
600  * Same as cell_defer above, except it omits the original holder of the cell.
601  */
602 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
603 {
604 	struct pool *pool = tc->pool;
605 	unsigned long flags;
606 
607 	spin_lock_irqsave(&pool->lock, flags);
608 	cell_release_no_holder(pool, cell, &pool->deferred_bios);
609 	spin_unlock_irqrestore(&pool->lock, flags);
610 
611 	wake_worker(pool);
612 }
613 
614 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
615 {
616 	if (m->bio) {
617 		m->bio->bi_end_io = m->saved_bi_end_io;
618 		atomic_inc(&m->bio->bi_remaining);
619 	}
620 	cell_error(m->tc->pool, m->cell);
621 	list_del(&m->list);
622 	mempool_free(m, m->tc->pool->mapping_pool);
623 }
624 
625 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
626 {
627 	struct thin_c *tc = m->tc;
628 	struct pool *pool = tc->pool;
629 	struct bio *bio;
630 	int r;
631 
632 	bio = m->bio;
633 	if (bio) {
634 		bio->bi_end_io = m->saved_bi_end_io;
635 		atomic_inc(&bio->bi_remaining);
636 	}
637 
638 	if (m->err) {
639 		cell_error(pool, m->cell);
640 		goto out;
641 	}
642 
643 	/*
644 	 * Commit the prepared block into the mapping btree.
645 	 * Any I/O for this block arriving after this point will get
646 	 * remapped to it directly.
647 	 */
648 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
649 	if (r) {
650 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
651 		cell_error(pool, m->cell);
652 		goto out;
653 	}
654 
655 	/*
656 	 * Release any bios held while the block was being provisioned.
657 	 * If we are processing a write bio that completely covers the block,
658 	 * we already processed it so can ignore it now when processing
659 	 * the bios in the cell.
660 	 */
661 	if (bio) {
662 		cell_defer_no_holder(tc, m->cell);
663 		bio_endio(bio, 0);
664 	} else
665 		cell_defer(tc, m->cell);
666 
667 out:
668 	list_del(&m->list);
669 	mempool_free(m, pool->mapping_pool);
670 }
671 
672 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
673 {
674 	struct thin_c *tc = m->tc;
675 
676 	bio_io_error(m->bio);
677 	cell_defer_no_holder(tc, m->cell);
678 	cell_defer_no_holder(tc, m->cell2);
679 	mempool_free(m, tc->pool->mapping_pool);
680 }
681 
682 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
683 {
684 	struct thin_c *tc = m->tc;
685 
686 	inc_all_io_entry(tc->pool, m->bio);
687 	cell_defer_no_holder(tc, m->cell);
688 	cell_defer_no_holder(tc, m->cell2);
689 
690 	if (m->pass_discard)
691 		if (m->definitely_not_shared)
692 			remap_and_issue(tc, m->bio, m->data_block);
693 		else {
694 			bool used = false;
695 			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
696 				bio_endio(m->bio, 0);
697 			else
698 				remap_and_issue(tc, m->bio, m->data_block);
699 		}
700 	else
701 		bio_endio(m->bio, 0);
702 
703 	mempool_free(m, tc->pool->mapping_pool);
704 }
705 
706 static void process_prepared_discard(struct dm_thin_new_mapping *m)
707 {
708 	int r;
709 	struct thin_c *tc = m->tc;
710 
711 	r = dm_thin_remove_block(tc->td, m->virt_block);
712 	if (r)
713 		DMERR_LIMIT("dm_thin_remove_block() failed");
714 
715 	process_prepared_discard_passdown(m);
716 }
717 
718 static void process_prepared(struct pool *pool, struct list_head *head,
719 			     process_mapping_fn *fn)
720 {
721 	unsigned long flags;
722 	struct list_head maps;
723 	struct dm_thin_new_mapping *m, *tmp;
724 
725 	INIT_LIST_HEAD(&maps);
726 	spin_lock_irqsave(&pool->lock, flags);
727 	list_splice_init(head, &maps);
728 	spin_unlock_irqrestore(&pool->lock, flags);
729 
730 	list_for_each_entry_safe(m, tmp, &maps, list)
731 		(*fn)(m);
732 }
733 
734 /*
735  * Deferred bio jobs.
736  */
737 static int io_overlaps_block(struct pool *pool, struct bio *bio)
738 {
739 	return bio->bi_iter.bi_size ==
740 		(pool->sectors_per_block << SECTOR_SHIFT);
741 }
742 
743 static int io_overwrites_block(struct pool *pool, struct bio *bio)
744 {
745 	return (bio_data_dir(bio) == WRITE) &&
746 		io_overlaps_block(pool, bio);
747 }
748 
749 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
750 			       bio_end_io_t *fn)
751 {
752 	*save = bio->bi_end_io;
753 	bio->bi_end_io = fn;
754 }
755 
756 static int ensure_next_mapping(struct pool *pool)
757 {
758 	if (pool->next_mapping)
759 		return 0;
760 
761 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
762 
763 	return pool->next_mapping ? 0 : -ENOMEM;
764 }
765 
766 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
767 {
768 	struct dm_thin_new_mapping *m = pool->next_mapping;
769 
770 	BUG_ON(!pool->next_mapping);
771 
772 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
773 	INIT_LIST_HEAD(&m->list);
774 	m->bio = NULL;
775 
776 	pool->next_mapping = NULL;
777 
778 	return m;
779 }
780 
781 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
782 			  struct dm_dev *origin, dm_block_t data_origin,
783 			  dm_block_t data_dest,
784 			  struct dm_bio_prison_cell *cell, struct bio *bio)
785 {
786 	int r;
787 	struct pool *pool = tc->pool;
788 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
789 
790 	m->tc = tc;
791 	m->virt_block = virt_block;
792 	m->data_block = data_dest;
793 	m->cell = cell;
794 
795 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
796 		m->quiesced = true;
797 
798 	/*
799 	 * IO to pool_dev remaps to the pool target's data_dev.
800 	 *
801 	 * If the whole block of data is being overwritten, we can issue the
802 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
803 	 */
804 	if (io_overwrites_block(pool, bio)) {
805 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
806 
807 		h->overwrite_mapping = m;
808 		m->bio = bio;
809 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
810 		inc_all_io_entry(pool, bio);
811 		remap_and_issue(tc, bio, data_dest);
812 	} else {
813 		struct dm_io_region from, to;
814 
815 		from.bdev = origin->bdev;
816 		from.sector = data_origin * pool->sectors_per_block;
817 		from.count = pool->sectors_per_block;
818 
819 		to.bdev = tc->pool_dev->bdev;
820 		to.sector = data_dest * pool->sectors_per_block;
821 		to.count = pool->sectors_per_block;
822 
823 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
824 				   0, copy_complete, m);
825 		if (r < 0) {
826 			mempool_free(m, pool->mapping_pool);
827 			DMERR_LIMIT("dm_kcopyd_copy() failed");
828 			cell_error(pool, cell);
829 		}
830 	}
831 }
832 
833 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
834 				   dm_block_t data_origin, dm_block_t data_dest,
835 				   struct dm_bio_prison_cell *cell, struct bio *bio)
836 {
837 	schedule_copy(tc, virt_block, tc->pool_dev,
838 		      data_origin, data_dest, cell, bio);
839 }
840 
841 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
842 				   dm_block_t data_dest,
843 				   struct dm_bio_prison_cell *cell, struct bio *bio)
844 {
845 	schedule_copy(tc, virt_block, tc->origin_dev,
846 		      virt_block, data_dest, cell, bio);
847 }
848 
849 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
850 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
851 			  struct bio *bio)
852 {
853 	struct pool *pool = tc->pool;
854 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
855 
856 	m->quiesced = true;
857 	m->prepared = false;
858 	m->tc = tc;
859 	m->virt_block = virt_block;
860 	m->data_block = data_block;
861 	m->cell = cell;
862 
863 	/*
864 	 * If the whole block of data is being overwritten or we are not
865 	 * zeroing pre-existing data, we can issue the bio immediately.
866 	 * Otherwise we use kcopyd to zero the data first.
867 	 */
868 	if (!pool->pf.zero_new_blocks)
869 		process_prepared_mapping(m);
870 
871 	else if (io_overwrites_block(pool, bio)) {
872 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
873 
874 		h->overwrite_mapping = m;
875 		m->bio = bio;
876 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
877 		inc_all_io_entry(pool, bio);
878 		remap_and_issue(tc, bio, data_block);
879 	} else {
880 		int r;
881 		struct dm_io_region to;
882 
883 		to.bdev = tc->pool_dev->bdev;
884 		to.sector = data_block * pool->sectors_per_block;
885 		to.count = pool->sectors_per_block;
886 
887 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
888 		if (r < 0) {
889 			mempool_free(m, pool->mapping_pool);
890 			DMERR_LIMIT("dm_kcopyd_zero() failed");
891 			cell_error(pool, cell);
892 		}
893 	}
894 }
895 
896 /*
897  * A non-zero return indicates read_only or fail_io mode.
898  * Many callers don't care about the return value.
899  */
900 static int commit(struct pool *pool)
901 {
902 	int r;
903 
904 	if (get_pool_mode(pool) != PM_WRITE)
905 		return -EINVAL;
906 
907 	r = dm_pool_commit_metadata(pool->pmd);
908 	if (r)
909 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
910 
911 	return r;
912 }
913 
914 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
915 {
916 	unsigned long flags;
917 
918 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
919 		DMWARN("%s: reached low water mark for data device: sending event.",
920 		       dm_device_name(pool->pool_md));
921 		spin_lock_irqsave(&pool->lock, flags);
922 		pool->low_water_triggered = true;
923 		spin_unlock_irqrestore(&pool->lock, flags);
924 		dm_table_event(pool->ti->table);
925 	}
926 }
927 
928 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
929 {
930 	int r;
931 	dm_block_t free_blocks;
932 	struct pool *pool = tc->pool;
933 
934 	if (get_pool_mode(pool) != PM_WRITE)
935 		return -EINVAL;
936 
937 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
938 	if (r) {
939 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
940 		return r;
941 	}
942 
943 	check_low_water_mark(pool, free_blocks);
944 
945 	if (!free_blocks) {
946 		/*
947 		 * Try to commit to see if that will free up some
948 		 * more space.
949 		 */
950 		r = commit(pool);
951 		if (r)
952 			return r;
953 
954 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
955 		if (r) {
956 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
957 			return r;
958 		}
959 
960 		if (!free_blocks) {
961 			out_of_data_space(pool);
962 			return -ENOSPC;
963 		}
964 	}
965 
966 	r = dm_pool_alloc_data_block(pool->pmd, result);
967 	if (r) {
968 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
969 		return r;
970 	}
971 
972 	return 0;
973 }
974 
975 /*
976  * If we have run out of space, queue bios until the device is
977  * resumed, presumably after having been reloaded with more space.
978  */
979 static void retry_on_resume(struct bio *bio)
980 {
981 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
982 	struct thin_c *tc = h->tc;
983 	struct pool *pool = tc->pool;
984 	unsigned long flags;
985 
986 	spin_lock_irqsave(&pool->lock, flags);
987 	bio_list_add(&pool->retry_on_resume_list, bio);
988 	spin_unlock_irqrestore(&pool->lock, flags);
989 }
990 
991 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
992 {
993 	/*
994 	 * When pool is read-only, no cell locking is needed because
995 	 * nothing is changing.
996 	 */
997 	WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY);
998 
999 	if (pool->pf.error_if_no_space)
1000 		bio_io_error(bio);
1001 	else
1002 		retry_on_resume(bio);
1003 }
1004 
1005 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1006 {
1007 	struct bio *bio;
1008 	struct bio_list bios;
1009 
1010 	bio_list_init(&bios);
1011 	cell_release(pool, cell, &bios);
1012 
1013 	while ((bio = bio_list_pop(&bios)))
1014 		handle_unserviceable_bio(pool, bio);
1015 }
1016 
1017 static void process_discard(struct thin_c *tc, struct bio *bio)
1018 {
1019 	int r;
1020 	unsigned long flags;
1021 	struct pool *pool = tc->pool;
1022 	struct dm_bio_prison_cell *cell, *cell2;
1023 	struct dm_cell_key key, key2;
1024 	dm_block_t block = get_bio_block(tc, bio);
1025 	struct dm_thin_lookup_result lookup_result;
1026 	struct dm_thin_new_mapping *m;
1027 
1028 	build_virtual_key(tc->td, block, &key);
1029 	if (bio_detain(tc->pool, &key, bio, &cell))
1030 		return;
1031 
1032 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1033 	switch (r) {
1034 	case 0:
1035 		/*
1036 		 * Check nobody is fiddling with this pool block.  This can
1037 		 * happen if someone's in the process of breaking sharing
1038 		 * on this block.
1039 		 */
1040 		build_data_key(tc->td, lookup_result.block, &key2);
1041 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1042 			cell_defer_no_holder(tc, cell);
1043 			break;
1044 		}
1045 
1046 		if (io_overlaps_block(pool, bio)) {
1047 			/*
1048 			 * IO may still be going to the destination block.  We must
1049 			 * quiesce before we can do the removal.
1050 			 */
1051 			m = get_next_mapping(pool);
1052 			m->tc = tc;
1053 			m->pass_discard = pool->pf.discard_passdown;
1054 			m->definitely_not_shared = !lookup_result.shared;
1055 			m->virt_block = block;
1056 			m->data_block = lookup_result.block;
1057 			m->cell = cell;
1058 			m->cell2 = cell2;
1059 			m->bio = bio;
1060 
1061 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1062 				spin_lock_irqsave(&pool->lock, flags);
1063 				list_add_tail(&m->list, &pool->prepared_discards);
1064 				spin_unlock_irqrestore(&pool->lock, flags);
1065 				wake_worker(pool);
1066 			}
1067 		} else {
1068 			inc_all_io_entry(pool, bio);
1069 			cell_defer_no_holder(tc, cell);
1070 			cell_defer_no_holder(tc, cell2);
1071 
1072 			/*
1073 			 * The DM core makes sure that the discard doesn't span
1074 			 * a block boundary.  So we submit the discard of a
1075 			 * partial block appropriately.
1076 			 */
1077 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1078 				remap_and_issue(tc, bio, lookup_result.block);
1079 			else
1080 				bio_endio(bio, 0);
1081 		}
1082 		break;
1083 
1084 	case -ENODATA:
1085 		/*
1086 		 * It isn't provisioned, just forget it.
1087 		 */
1088 		cell_defer_no_holder(tc, cell);
1089 		bio_endio(bio, 0);
1090 		break;
1091 
1092 	default:
1093 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1094 			    __func__, r);
1095 		cell_defer_no_holder(tc, cell);
1096 		bio_io_error(bio);
1097 		break;
1098 	}
1099 }
1100 
1101 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1102 			  struct dm_cell_key *key,
1103 			  struct dm_thin_lookup_result *lookup_result,
1104 			  struct dm_bio_prison_cell *cell)
1105 {
1106 	int r;
1107 	dm_block_t data_block;
1108 	struct pool *pool = tc->pool;
1109 
1110 	r = alloc_data_block(tc, &data_block);
1111 	switch (r) {
1112 	case 0:
1113 		schedule_internal_copy(tc, block, lookup_result->block,
1114 				       data_block, cell, bio);
1115 		break;
1116 
1117 	case -ENOSPC:
1118 		retry_bios_on_resume(pool, cell);
1119 		break;
1120 
1121 	default:
1122 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1123 			    __func__, r);
1124 		cell_error(pool, cell);
1125 		break;
1126 	}
1127 }
1128 
1129 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1130 			       dm_block_t block,
1131 			       struct dm_thin_lookup_result *lookup_result)
1132 {
1133 	struct dm_bio_prison_cell *cell;
1134 	struct pool *pool = tc->pool;
1135 	struct dm_cell_key key;
1136 
1137 	/*
1138 	 * If cell is already occupied, then sharing is already in the process
1139 	 * of being broken so we have nothing further to do here.
1140 	 */
1141 	build_data_key(tc->td, lookup_result->block, &key);
1142 	if (bio_detain(pool, &key, bio, &cell))
1143 		return;
1144 
1145 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1146 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1147 	else {
1148 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1149 
1150 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1151 		inc_all_io_entry(pool, bio);
1152 		cell_defer_no_holder(tc, cell);
1153 
1154 		remap_and_issue(tc, bio, lookup_result->block);
1155 	}
1156 }
1157 
1158 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1159 			    struct dm_bio_prison_cell *cell)
1160 {
1161 	int r;
1162 	dm_block_t data_block;
1163 	struct pool *pool = tc->pool;
1164 
1165 	/*
1166 	 * Remap empty bios (flushes) immediately, without provisioning.
1167 	 */
1168 	if (!bio->bi_iter.bi_size) {
1169 		inc_all_io_entry(pool, bio);
1170 		cell_defer_no_holder(tc, cell);
1171 
1172 		remap_and_issue(tc, bio, 0);
1173 		return;
1174 	}
1175 
1176 	/*
1177 	 * Fill read bios with zeroes and complete them immediately.
1178 	 */
1179 	if (bio_data_dir(bio) == READ) {
1180 		zero_fill_bio(bio);
1181 		cell_defer_no_holder(tc, cell);
1182 		bio_endio(bio, 0);
1183 		return;
1184 	}
1185 
1186 	r = alloc_data_block(tc, &data_block);
1187 	switch (r) {
1188 	case 0:
1189 		if (tc->origin_dev)
1190 			schedule_external_copy(tc, block, data_block, cell, bio);
1191 		else
1192 			schedule_zero(tc, block, data_block, cell, bio);
1193 		break;
1194 
1195 	case -ENOSPC:
1196 		retry_bios_on_resume(pool, cell);
1197 		break;
1198 
1199 	default:
1200 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1201 			    __func__, r);
1202 		cell_error(pool, cell);
1203 		break;
1204 	}
1205 }
1206 
1207 static void process_bio(struct thin_c *tc, struct bio *bio)
1208 {
1209 	int r;
1210 	struct pool *pool = tc->pool;
1211 	dm_block_t block = get_bio_block(tc, bio);
1212 	struct dm_bio_prison_cell *cell;
1213 	struct dm_cell_key key;
1214 	struct dm_thin_lookup_result lookup_result;
1215 
1216 	/*
1217 	 * If cell is already occupied, then the block is already
1218 	 * being provisioned so we have nothing further to do here.
1219 	 */
1220 	build_virtual_key(tc->td, block, &key);
1221 	if (bio_detain(pool, &key, bio, &cell))
1222 		return;
1223 
1224 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1225 	switch (r) {
1226 	case 0:
1227 		if (lookup_result.shared) {
1228 			process_shared_bio(tc, bio, block, &lookup_result);
1229 			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1230 		} else {
1231 			inc_all_io_entry(pool, bio);
1232 			cell_defer_no_holder(tc, cell);
1233 
1234 			remap_and_issue(tc, bio, lookup_result.block);
1235 		}
1236 		break;
1237 
1238 	case -ENODATA:
1239 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1240 			inc_all_io_entry(pool, bio);
1241 			cell_defer_no_holder(tc, cell);
1242 
1243 			remap_to_origin_and_issue(tc, bio);
1244 		} else
1245 			provision_block(tc, bio, block, cell);
1246 		break;
1247 
1248 	default:
1249 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1250 			    __func__, r);
1251 		cell_defer_no_holder(tc, cell);
1252 		bio_io_error(bio);
1253 		break;
1254 	}
1255 }
1256 
1257 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1258 {
1259 	int r;
1260 	int rw = bio_data_dir(bio);
1261 	dm_block_t block = get_bio_block(tc, bio);
1262 	struct dm_thin_lookup_result lookup_result;
1263 
1264 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1265 	switch (r) {
1266 	case 0:
1267 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1268 			handle_unserviceable_bio(tc->pool, bio);
1269 		else {
1270 			inc_all_io_entry(tc->pool, bio);
1271 			remap_and_issue(tc, bio, lookup_result.block);
1272 		}
1273 		break;
1274 
1275 	case -ENODATA:
1276 		if (rw != READ) {
1277 			handle_unserviceable_bio(tc->pool, bio);
1278 			break;
1279 		}
1280 
1281 		if (tc->origin_dev) {
1282 			inc_all_io_entry(tc->pool, bio);
1283 			remap_to_origin_and_issue(tc, bio);
1284 			break;
1285 		}
1286 
1287 		zero_fill_bio(bio);
1288 		bio_endio(bio, 0);
1289 		break;
1290 
1291 	default:
1292 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1293 			    __func__, r);
1294 		bio_io_error(bio);
1295 		break;
1296 	}
1297 }
1298 
1299 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1300 {
1301 	bio_io_error(bio);
1302 }
1303 
1304 /*
1305  * FIXME: should we also commit due to size of transaction, measured in
1306  * metadata blocks?
1307  */
1308 static int need_commit_due_to_time(struct pool *pool)
1309 {
1310 	return jiffies < pool->last_commit_jiffies ||
1311 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1312 }
1313 
1314 static void process_deferred_bios(struct pool *pool)
1315 {
1316 	unsigned long flags;
1317 	struct bio *bio;
1318 	struct bio_list bios;
1319 
1320 	bio_list_init(&bios);
1321 
1322 	spin_lock_irqsave(&pool->lock, flags);
1323 	bio_list_merge(&bios, &pool->deferred_bios);
1324 	bio_list_init(&pool->deferred_bios);
1325 	spin_unlock_irqrestore(&pool->lock, flags);
1326 
1327 	while ((bio = bio_list_pop(&bios))) {
1328 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1329 		struct thin_c *tc = h->tc;
1330 
1331 		/*
1332 		 * If we've got no free new_mapping structs, and processing
1333 		 * this bio might require one, we pause until there are some
1334 		 * prepared mappings to process.
1335 		 */
1336 		if (ensure_next_mapping(pool)) {
1337 			spin_lock_irqsave(&pool->lock, flags);
1338 			bio_list_merge(&pool->deferred_bios, &bios);
1339 			spin_unlock_irqrestore(&pool->lock, flags);
1340 
1341 			break;
1342 		}
1343 
1344 		if (bio->bi_rw & REQ_DISCARD)
1345 			pool->process_discard(tc, bio);
1346 		else
1347 			pool->process_bio(tc, bio);
1348 	}
1349 
1350 	/*
1351 	 * If there are any deferred flush bios, we must commit
1352 	 * the metadata before issuing them.
1353 	 */
1354 	bio_list_init(&bios);
1355 	spin_lock_irqsave(&pool->lock, flags);
1356 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1357 	bio_list_init(&pool->deferred_flush_bios);
1358 	spin_unlock_irqrestore(&pool->lock, flags);
1359 
1360 	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1361 		return;
1362 
1363 	if (commit(pool)) {
1364 		while ((bio = bio_list_pop(&bios)))
1365 			bio_io_error(bio);
1366 		return;
1367 	}
1368 	pool->last_commit_jiffies = jiffies;
1369 
1370 	while ((bio = bio_list_pop(&bios)))
1371 		generic_make_request(bio);
1372 }
1373 
1374 static void do_worker(struct work_struct *ws)
1375 {
1376 	struct pool *pool = container_of(ws, struct pool, worker);
1377 
1378 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1379 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1380 	process_deferred_bios(pool);
1381 }
1382 
1383 /*
1384  * We want to commit periodically so that not too much
1385  * unwritten data builds up.
1386  */
1387 static void do_waker(struct work_struct *ws)
1388 {
1389 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1390 	wake_worker(pool);
1391 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1392 }
1393 
1394 /*----------------------------------------------------------------*/
1395 
1396 static enum pool_mode get_pool_mode(struct pool *pool)
1397 {
1398 	return pool->pf.mode;
1399 }
1400 
1401 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1402 {
1403 	int r;
1404 	enum pool_mode old_mode = pool->pf.mode;
1405 
1406 	switch (new_mode) {
1407 	case PM_FAIL:
1408 		if (old_mode != new_mode)
1409 			DMERR("%s: switching pool to failure mode",
1410 			      dm_device_name(pool->pool_md));
1411 		dm_pool_metadata_read_only(pool->pmd);
1412 		pool->process_bio = process_bio_fail;
1413 		pool->process_discard = process_bio_fail;
1414 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1415 		pool->process_prepared_discard = process_prepared_discard_fail;
1416 		break;
1417 
1418 	case PM_READ_ONLY:
1419 		if (old_mode != new_mode)
1420 			DMERR("%s: switching pool to read-only mode",
1421 			      dm_device_name(pool->pool_md));
1422 		r = dm_pool_abort_metadata(pool->pmd);
1423 		if (r) {
1424 			DMERR("%s: aborting transaction failed",
1425 			      dm_device_name(pool->pool_md));
1426 			new_mode = PM_FAIL;
1427 			set_pool_mode(pool, new_mode);
1428 		} else {
1429 			dm_pool_metadata_read_only(pool->pmd);
1430 			pool->process_bio = process_bio_read_only;
1431 			pool->process_discard = process_discard;
1432 			pool->process_prepared_mapping = process_prepared_mapping_fail;
1433 			pool->process_prepared_discard = process_prepared_discard_passdown;
1434 		}
1435 		break;
1436 
1437 	case PM_WRITE:
1438 		if (old_mode != new_mode)
1439 			DMINFO("%s: switching pool to write mode",
1440 			       dm_device_name(pool->pool_md));
1441 		dm_pool_metadata_read_write(pool->pmd);
1442 		pool->process_bio = process_bio;
1443 		pool->process_discard = process_discard;
1444 		pool->process_prepared_mapping = process_prepared_mapping;
1445 		pool->process_prepared_discard = process_prepared_discard;
1446 		break;
1447 	}
1448 
1449 	pool->pf.mode = new_mode;
1450 }
1451 
1452 /*
1453  * Rather than calling set_pool_mode directly, use these which describe the
1454  * reason for mode degradation.
1455  */
1456 static void out_of_data_space(struct pool *pool)
1457 {
1458 	DMERR_LIMIT("%s: no free data space available.",
1459 		    dm_device_name(pool->pool_md));
1460 	set_pool_mode(pool, PM_READ_ONLY);
1461 }
1462 
1463 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1464 {
1465 	dm_block_t free_blocks;
1466 
1467 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1468 		    dm_device_name(pool->pool_md), op, r);
1469 
1470 	if (r == -ENOSPC &&
1471 	    !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) &&
1472 	    !free_blocks)
1473 		DMERR_LIMIT("%s: no free metadata space available.",
1474 			    dm_device_name(pool->pool_md));
1475 
1476 	set_pool_mode(pool, PM_READ_ONLY);
1477 }
1478 
1479 /*----------------------------------------------------------------*/
1480 
1481 /*
1482  * Mapping functions.
1483  */
1484 
1485 /*
1486  * Called only while mapping a thin bio to hand it over to the workqueue.
1487  */
1488 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1489 {
1490 	unsigned long flags;
1491 	struct pool *pool = tc->pool;
1492 
1493 	spin_lock_irqsave(&pool->lock, flags);
1494 	bio_list_add(&pool->deferred_bios, bio);
1495 	spin_unlock_irqrestore(&pool->lock, flags);
1496 
1497 	wake_worker(pool);
1498 }
1499 
1500 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1501 {
1502 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1503 
1504 	h->tc = tc;
1505 	h->shared_read_entry = NULL;
1506 	h->all_io_entry = NULL;
1507 	h->overwrite_mapping = NULL;
1508 }
1509 
1510 /*
1511  * Non-blocking function called from the thin target's map function.
1512  */
1513 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1514 {
1515 	int r;
1516 	struct thin_c *tc = ti->private;
1517 	dm_block_t block = get_bio_block(tc, bio);
1518 	struct dm_thin_device *td = tc->td;
1519 	struct dm_thin_lookup_result result;
1520 	struct dm_bio_prison_cell cell1, cell2;
1521 	struct dm_bio_prison_cell *cell_result;
1522 	struct dm_cell_key key;
1523 
1524 	thin_hook_bio(tc, bio);
1525 
1526 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1527 		bio_io_error(bio);
1528 		return DM_MAPIO_SUBMITTED;
1529 	}
1530 
1531 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1532 		thin_defer_bio(tc, bio);
1533 		return DM_MAPIO_SUBMITTED;
1534 	}
1535 
1536 	r = dm_thin_find_block(td, block, 0, &result);
1537 
1538 	/*
1539 	 * Note that we defer readahead too.
1540 	 */
1541 	switch (r) {
1542 	case 0:
1543 		if (unlikely(result.shared)) {
1544 			/*
1545 			 * We have a race condition here between the
1546 			 * result.shared value returned by the lookup and
1547 			 * snapshot creation, which may cause new
1548 			 * sharing.
1549 			 *
1550 			 * To avoid this always quiesce the origin before
1551 			 * taking the snap.  You want to do this anyway to
1552 			 * ensure a consistent application view
1553 			 * (i.e. lockfs).
1554 			 *
1555 			 * More distant ancestors are irrelevant. The
1556 			 * shared flag will be set in their case.
1557 			 */
1558 			thin_defer_bio(tc, bio);
1559 			return DM_MAPIO_SUBMITTED;
1560 		}
1561 
1562 		build_virtual_key(tc->td, block, &key);
1563 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1564 			return DM_MAPIO_SUBMITTED;
1565 
1566 		build_data_key(tc->td, result.block, &key);
1567 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1568 			cell_defer_no_holder_no_free(tc, &cell1);
1569 			return DM_MAPIO_SUBMITTED;
1570 		}
1571 
1572 		inc_all_io_entry(tc->pool, bio);
1573 		cell_defer_no_holder_no_free(tc, &cell2);
1574 		cell_defer_no_holder_no_free(tc, &cell1);
1575 
1576 		remap(tc, bio, result.block);
1577 		return DM_MAPIO_REMAPPED;
1578 
1579 	case -ENODATA:
1580 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1581 			/*
1582 			 * This block isn't provisioned, and we have no way
1583 			 * of doing so.
1584 			 */
1585 			handle_unserviceable_bio(tc->pool, bio);
1586 			return DM_MAPIO_SUBMITTED;
1587 		}
1588 		/* fall through */
1589 
1590 	case -EWOULDBLOCK:
1591 		/*
1592 		 * In future, the failed dm_thin_find_block above could
1593 		 * provide the hint to load the metadata into cache.
1594 		 */
1595 		thin_defer_bio(tc, bio);
1596 		return DM_MAPIO_SUBMITTED;
1597 
1598 	default:
1599 		/*
1600 		 * Must always call bio_io_error on failure.
1601 		 * dm_thin_find_block can fail with -EINVAL if the
1602 		 * pool is switched to fail-io mode.
1603 		 */
1604 		bio_io_error(bio);
1605 		return DM_MAPIO_SUBMITTED;
1606 	}
1607 }
1608 
1609 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1610 {
1611 	int r;
1612 	unsigned long flags;
1613 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1614 
1615 	spin_lock_irqsave(&pt->pool->lock, flags);
1616 	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1617 	spin_unlock_irqrestore(&pt->pool->lock, flags);
1618 
1619 	if (!r) {
1620 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1621 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1622 	}
1623 
1624 	return r;
1625 }
1626 
1627 static void __requeue_bios(struct pool *pool)
1628 {
1629 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1630 	bio_list_init(&pool->retry_on_resume_list);
1631 }
1632 
1633 /*----------------------------------------------------------------
1634  * Binding of control targets to a pool object
1635  *--------------------------------------------------------------*/
1636 static bool data_dev_supports_discard(struct pool_c *pt)
1637 {
1638 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1639 
1640 	return q && blk_queue_discard(q);
1641 }
1642 
1643 static bool is_factor(sector_t block_size, uint32_t n)
1644 {
1645 	return !sector_div(block_size, n);
1646 }
1647 
1648 /*
1649  * If discard_passdown was enabled verify that the data device
1650  * supports discards.  Disable discard_passdown if not.
1651  */
1652 static void disable_passdown_if_not_supported(struct pool_c *pt)
1653 {
1654 	struct pool *pool = pt->pool;
1655 	struct block_device *data_bdev = pt->data_dev->bdev;
1656 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1657 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1658 	const char *reason = NULL;
1659 	char buf[BDEVNAME_SIZE];
1660 
1661 	if (!pt->adjusted_pf.discard_passdown)
1662 		return;
1663 
1664 	if (!data_dev_supports_discard(pt))
1665 		reason = "discard unsupported";
1666 
1667 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1668 		reason = "max discard sectors smaller than a block";
1669 
1670 	else if (data_limits->discard_granularity > block_size)
1671 		reason = "discard granularity larger than a block";
1672 
1673 	else if (!is_factor(block_size, data_limits->discard_granularity))
1674 		reason = "discard granularity not a factor of block size";
1675 
1676 	if (reason) {
1677 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1678 		pt->adjusted_pf.discard_passdown = false;
1679 	}
1680 }
1681 
1682 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1683 {
1684 	struct pool_c *pt = ti->private;
1685 
1686 	/*
1687 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1688 	 */
1689 	enum pool_mode old_mode = pool->pf.mode;
1690 	enum pool_mode new_mode = pt->adjusted_pf.mode;
1691 
1692 	/*
1693 	 * Don't change the pool's mode until set_pool_mode() below.
1694 	 * Otherwise the pool's process_* function pointers may
1695 	 * not match the desired pool mode.
1696 	 */
1697 	pt->adjusted_pf.mode = old_mode;
1698 
1699 	pool->ti = ti;
1700 	pool->pf = pt->adjusted_pf;
1701 	pool->low_water_blocks = pt->low_water_blocks;
1702 
1703 	/*
1704 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1705 	 * not going to recover without a thin_repair.  So we never let the
1706 	 * pool move out of the old mode.  On the other hand a PM_READ_ONLY
1707 	 * may have been due to a lack of metadata or data space, and may
1708 	 * now work (ie. if the underlying devices have been resized).
1709 	 */
1710 	if (old_mode == PM_FAIL)
1711 		new_mode = old_mode;
1712 
1713 	set_pool_mode(pool, new_mode);
1714 
1715 	return 0;
1716 }
1717 
1718 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1719 {
1720 	if (pool->ti == ti)
1721 		pool->ti = NULL;
1722 }
1723 
1724 /*----------------------------------------------------------------
1725  * Pool creation
1726  *--------------------------------------------------------------*/
1727 /* Initialize pool features. */
1728 static void pool_features_init(struct pool_features *pf)
1729 {
1730 	pf->mode = PM_WRITE;
1731 	pf->zero_new_blocks = true;
1732 	pf->discard_enabled = true;
1733 	pf->discard_passdown = true;
1734 	pf->error_if_no_space = false;
1735 }
1736 
1737 static void __pool_destroy(struct pool *pool)
1738 {
1739 	__pool_table_remove(pool);
1740 
1741 	if (dm_pool_metadata_close(pool->pmd) < 0)
1742 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1743 
1744 	dm_bio_prison_destroy(pool->prison);
1745 	dm_kcopyd_client_destroy(pool->copier);
1746 
1747 	if (pool->wq)
1748 		destroy_workqueue(pool->wq);
1749 
1750 	if (pool->next_mapping)
1751 		mempool_free(pool->next_mapping, pool->mapping_pool);
1752 	mempool_destroy(pool->mapping_pool);
1753 	dm_deferred_set_destroy(pool->shared_read_ds);
1754 	dm_deferred_set_destroy(pool->all_io_ds);
1755 	kfree(pool);
1756 }
1757 
1758 static struct kmem_cache *_new_mapping_cache;
1759 
1760 static struct pool *pool_create(struct mapped_device *pool_md,
1761 				struct block_device *metadata_dev,
1762 				unsigned long block_size,
1763 				int read_only, char **error)
1764 {
1765 	int r;
1766 	void *err_p;
1767 	struct pool *pool;
1768 	struct dm_pool_metadata *pmd;
1769 	bool format_device = read_only ? false : true;
1770 
1771 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1772 	if (IS_ERR(pmd)) {
1773 		*error = "Error creating metadata object";
1774 		return (struct pool *)pmd;
1775 	}
1776 
1777 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1778 	if (!pool) {
1779 		*error = "Error allocating memory for pool";
1780 		err_p = ERR_PTR(-ENOMEM);
1781 		goto bad_pool;
1782 	}
1783 
1784 	pool->pmd = pmd;
1785 	pool->sectors_per_block = block_size;
1786 	if (block_size & (block_size - 1))
1787 		pool->sectors_per_block_shift = -1;
1788 	else
1789 		pool->sectors_per_block_shift = __ffs(block_size);
1790 	pool->low_water_blocks = 0;
1791 	pool_features_init(&pool->pf);
1792 	pool->prison = dm_bio_prison_create(PRISON_CELLS);
1793 	if (!pool->prison) {
1794 		*error = "Error creating pool's bio prison";
1795 		err_p = ERR_PTR(-ENOMEM);
1796 		goto bad_prison;
1797 	}
1798 
1799 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1800 	if (IS_ERR(pool->copier)) {
1801 		r = PTR_ERR(pool->copier);
1802 		*error = "Error creating pool's kcopyd client";
1803 		err_p = ERR_PTR(r);
1804 		goto bad_kcopyd_client;
1805 	}
1806 
1807 	/*
1808 	 * Create singlethreaded workqueue that will service all devices
1809 	 * that use this metadata.
1810 	 */
1811 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1812 	if (!pool->wq) {
1813 		*error = "Error creating pool's workqueue";
1814 		err_p = ERR_PTR(-ENOMEM);
1815 		goto bad_wq;
1816 	}
1817 
1818 	INIT_WORK(&pool->worker, do_worker);
1819 	INIT_DELAYED_WORK(&pool->waker, do_waker);
1820 	spin_lock_init(&pool->lock);
1821 	bio_list_init(&pool->deferred_bios);
1822 	bio_list_init(&pool->deferred_flush_bios);
1823 	INIT_LIST_HEAD(&pool->prepared_mappings);
1824 	INIT_LIST_HEAD(&pool->prepared_discards);
1825 	pool->low_water_triggered = false;
1826 	bio_list_init(&pool->retry_on_resume_list);
1827 
1828 	pool->shared_read_ds = dm_deferred_set_create();
1829 	if (!pool->shared_read_ds) {
1830 		*error = "Error creating pool's shared read deferred set";
1831 		err_p = ERR_PTR(-ENOMEM);
1832 		goto bad_shared_read_ds;
1833 	}
1834 
1835 	pool->all_io_ds = dm_deferred_set_create();
1836 	if (!pool->all_io_ds) {
1837 		*error = "Error creating pool's all io deferred set";
1838 		err_p = ERR_PTR(-ENOMEM);
1839 		goto bad_all_io_ds;
1840 	}
1841 
1842 	pool->next_mapping = NULL;
1843 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1844 						      _new_mapping_cache);
1845 	if (!pool->mapping_pool) {
1846 		*error = "Error creating pool's mapping mempool";
1847 		err_p = ERR_PTR(-ENOMEM);
1848 		goto bad_mapping_pool;
1849 	}
1850 
1851 	pool->ref_count = 1;
1852 	pool->last_commit_jiffies = jiffies;
1853 	pool->pool_md = pool_md;
1854 	pool->md_dev = metadata_dev;
1855 	__pool_table_insert(pool);
1856 
1857 	return pool;
1858 
1859 bad_mapping_pool:
1860 	dm_deferred_set_destroy(pool->all_io_ds);
1861 bad_all_io_ds:
1862 	dm_deferred_set_destroy(pool->shared_read_ds);
1863 bad_shared_read_ds:
1864 	destroy_workqueue(pool->wq);
1865 bad_wq:
1866 	dm_kcopyd_client_destroy(pool->copier);
1867 bad_kcopyd_client:
1868 	dm_bio_prison_destroy(pool->prison);
1869 bad_prison:
1870 	kfree(pool);
1871 bad_pool:
1872 	if (dm_pool_metadata_close(pmd))
1873 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1874 
1875 	return err_p;
1876 }
1877 
1878 static void __pool_inc(struct pool *pool)
1879 {
1880 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1881 	pool->ref_count++;
1882 }
1883 
1884 static void __pool_dec(struct pool *pool)
1885 {
1886 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1887 	BUG_ON(!pool->ref_count);
1888 	if (!--pool->ref_count)
1889 		__pool_destroy(pool);
1890 }
1891 
1892 static struct pool *__pool_find(struct mapped_device *pool_md,
1893 				struct block_device *metadata_dev,
1894 				unsigned long block_size, int read_only,
1895 				char **error, int *created)
1896 {
1897 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1898 
1899 	if (pool) {
1900 		if (pool->pool_md != pool_md) {
1901 			*error = "metadata device already in use by a pool";
1902 			return ERR_PTR(-EBUSY);
1903 		}
1904 		__pool_inc(pool);
1905 
1906 	} else {
1907 		pool = __pool_table_lookup(pool_md);
1908 		if (pool) {
1909 			if (pool->md_dev != metadata_dev) {
1910 				*error = "different pool cannot replace a pool";
1911 				return ERR_PTR(-EINVAL);
1912 			}
1913 			__pool_inc(pool);
1914 
1915 		} else {
1916 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1917 			*created = 1;
1918 		}
1919 	}
1920 
1921 	return pool;
1922 }
1923 
1924 /*----------------------------------------------------------------
1925  * Pool target methods
1926  *--------------------------------------------------------------*/
1927 static void pool_dtr(struct dm_target *ti)
1928 {
1929 	struct pool_c *pt = ti->private;
1930 
1931 	mutex_lock(&dm_thin_pool_table.mutex);
1932 
1933 	unbind_control_target(pt->pool, ti);
1934 	__pool_dec(pt->pool);
1935 	dm_put_device(ti, pt->metadata_dev);
1936 	dm_put_device(ti, pt->data_dev);
1937 	kfree(pt);
1938 
1939 	mutex_unlock(&dm_thin_pool_table.mutex);
1940 }
1941 
1942 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1943 			       struct dm_target *ti)
1944 {
1945 	int r;
1946 	unsigned argc;
1947 	const char *arg_name;
1948 
1949 	static struct dm_arg _args[] = {
1950 		{0, 4, "Invalid number of pool feature arguments"},
1951 	};
1952 
1953 	/*
1954 	 * No feature arguments supplied.
1955 	 */
1956 	if (!as->argc)
1957 		return 0;
1958 
1959 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1960 	if (r)
1961 		return -EINVAL;
1962 
1963 	while (argc && !r) {
1964 		arg_name = dm_shift_arg(as);
1965 		argc--;
1966 
1967 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
1968 			pf->zero_new_blocks = false;
1969 
1970 		else if (!strcasecmp(arg_name, "ignore_discard"))
1971 			pf->discard_enabled = false;
1972 
1973 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
1974 			pf->discard_passdown = false;
1975 
1976 		else if (!strcasecmp(arg_name, "read_only"))
1977 			pf->mode = PM_READ_ONLY;
1978 
1979 		else if (!strcasecmp(arg_name, "error_if_no_space"))
1980 			pf->error_if_no_space = true;
1981 
1982 		else {
1983 			ti->error = "Unrecognised pool feature requested";
1984 			r = -EINVAL;
1985 			break;
1986 		}
1987 	}
1988 
1989 	return r;
1990 }
1991 
1992 static void metadata_low_callback(void *context)
1993 {
1994 	struct pool *pool = context;
1995 
1996 	DMWARN("%s: reached low water mark for metadata device: sending event.",
1997 	       dm_device_name(pool->pool_md));
1998 
1999 	dm_table_event(pool->ti->table);
2000 }
2001 
2002 static sector_t get_metadata_dev_size(struct block_device *bdev)
2003 {
2004 	sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2005 	char buffer[BDEVNAME_SIZE];
2006 
2007 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) {
2008 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2009 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2010 		metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING;
2011 	}
2012 
2013 	return metadata_dev_size;
2014 }
2015 
2016 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2017 {
2018 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2019 
2020 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
2021 
2022 	return metadata_dev_size;
2023 }
2024 
2025 /*
2026  * When a metadata threshold is crossed a dm event is triggered, and
2027  * userland should respond by growing the metadata device.  We could let
2028  * userland set the threshold, like we do with the data threshold, but I'm
2029  * not sure they know enough to do this well.
2030  */
2031 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2032 {
2033 	/*
2034 	 * 4M is ample for all ops with the possible exception of thin
2035 	 * device deletion which is harmless if it fails (just retry the
2036 	 * delete after you've grown the device).
2037 	 */
2038 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2039 	return min((dm_block_t)1024ULL /* 4M */, quarter);
2040 }
2041 
2042 /*
2043  * thin-pool <metadata dev> <data dev>
2044  *	     <data block size (sectors)>
2045  *	     <low water mark (blocks)>
2046  *	     [<#feature args> [<arg>]*]
2047  *
2048  * Optional feature arguments are:
2049  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2050  *	     ignore_discard: disable discard
2051  *	     no_discard_passdown: don't pass discards down to the data device
2052  *	     read_only: Don't allow any changes to be made to the pool metadata.
2053  *	     error_if_no_space: error IOs, instead of queueing, if no space.
2054  */
2055 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2056 {
2057 	int r, pool_created = 0;
2058 	struct pool_c *pt;
2059 	struct pool *pool;
2060 	struct pool_features pf;
2061 	struct dm_arg_set as;
2062 	struct dm_dev *data_dev;
2063 	unsigned long block_size;
2064 	dm_block_t low_water_blocks;
2065 	struct dm_dev *metadata_dev;
2066 	fmode_t metadata_mode;
2067 
2068 	/*
2069 	 * FIXME Remove validation from scope of lock.
2070 	 */
2071 	mutex_lock(&dm_thin_pool_table.mutex);
2072 
2073 	if (argc < 4) {
2074 		ti->error = "Invalid argument count";
2075 		r = -EINVAL;
2076 		goto out_unlock;
2077 	}
2078 
2079 	as.argc = argc;
2080 	as.argv = argv;
2081 
2082 	/*
2083 	 * Set default pool features.
2084 	 */
2085 	pool_features_init(&pf);
2086 
2087 	dm_consume_args(&as, 4);
2088 	r = parse_pool_features(&as, &pf, ti);
2089 	if (r)
2090 		goto out_unlock;
2091 
2092 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2093 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2094 	if (r) {
2095 		ti->error = "Error opening metadata block device";
2096 		goto out_unlock;
2097 	}
2098 
2099 	/*
2100 	 * Run for the side-effect of possibly issuing a warning if the
2101 	 * device is too big.
2102 	 */
2103 	(void) get_metadata_dev_size(metadata_dev->bdev);
2104 
2105 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2106 	if (r) {
2107 		ti->error = "Error getting data device";
2108 		goto out_metadata;
2109 	}
2110 
2111 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2112 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2113 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2114 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2115 		ti->error = "Invalid block size";
2116 		r = -EINVAL;
2117 		goto out;
2118 	}
2119 
2120 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2121 		ti->error = "Invalid low water mark";
2122 		r = -EINVAL;
2123 		goto out;
2124 	}
2125 
2126 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2127 	if (!pt) {
2128 		r = -ENOMEM;
2129 		goto out;
2130 	}
2131 
2132 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2133 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2134 	if (IS_ERR(pool)) {
2135 		r = PTR_ERR(pool);
2136 		goto out_free_pt;
2137 	}
2138 
2139 	/*
2140 	 * 'pool_created' reflects whether this is the first table load.
2141 	 * Top level discard support is not allowed to be changed after
2142 	 * initial load.  This would require a pool reload to trigger thin
2143 	 * device changes.
2144 	 */
2145 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2146 		ti->error = "Discard support cannot be disabled once enabled";
2147 		r = -EINVAL;
2148 		goto out_flags_changed;
2149 	}
2150 
2151 	pt->pool = pool;
2152 	pt->ti = ti;
2153 	pt->metadata_dev = metadata_dev;
2154 	pt->data_dev = data_dev;
2155 	pt->low_water_blocks = low_water_blocks;
2156 	pt->adjusted_pf = pt->requested_pf = pf;
2157 	ti->num_flush_bios = 1;
2158 
2159 	/*
2160 	 * Only need to enable discards if the pool should pass
2161 	 * them down to the data device.  The thin device's discard
2162 	 * processing will cause mappings to be removed from the btree.
2163 	 */
2164 	ti->discard_zeroes_data_unsupported = true;
2165 	if (pf.discard_enabled && pf.discard_passdown) {
2166 		ti->num_discard_bios = 1;
2167 
2168 		/*
2169 		 * Setting 'discards_supported' circumvents the normal
2170 		 * stacking of discard limits (this keeps the pool and
2171 		 * thin devices' discard limits consistent).
2172 		 */
2173 		ti->discards_supported = true;
2174 	}
2175 	ti->private = pt;
2176 
2177 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2178 						calc_metadata_threshold(pt),
2179 						metadata_low_callback,
2180 						pool);
2181 	if (r)
2182 		goto out_free_pt;
2183 
2184 	pt->callbacks.congested_fn = pool_is_congested;
2185 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2186 
2187 	mutex_unlock(&dm_thin_pool_table.mutex);
2188 
2189 	return 0;
2190 
2191 out_flags_changed:
2192 	__pool_dec(pool);
2193 out_free_pt:
2194 	kfree(pt);
2195 out:
2196 	dm_put_device(ti, data_dev);
2197 out_metadata:
2198 	dm_put_device(ti, metadata_dev);
2199 out_unlock:
2200 	mutex_unlock(&dm_thin_pool_table.mutex);
2201 
2202 	return r;
2203 }
2204 
2205 static int pool_map(struct dm_target *ti, struct bio *bio)
2206 {
2207 	int r;
2208 	struct pool_c *pt = ti->private;
2209 	struct pool *pool = pt->pool;
2210 	unsigned long flags;
2211 
2212 	/*
2213 	 * As this is a singleton target, ti->begin is always zero.
2214 	 */
2215 	spin_lock_irqsave(&pool->lock, flags);
2216 	bio->bi_bdev = pt->data_dev->bdev;
2217 	r = DM_MAPIO_REMAPPED;
2218 	spin_unlock_irqrestore(&pool->lock, flags);
2219 
2220 	return r;
2221 }
2222 
2223 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2224 {
2225 	int r;
2226 	struct pool_c *pt = ti->private;
2227 	struct pool *pool = pt->pool;
2228 	sector_t data_size = ti->len;
2229 	dm_block_t sb_data_size;
2230 
2231 	*need_commit = false;
2232 
2233 	(void) sector_div(data_size, pool->sectors_per_block);
2234 
2235 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2236 	if (r) {
2237 		DMERR("%s: failed to retrieve data device size",
2238 		      dm_device_name(pool->pool_md));
2239 		return r;
2240 	}
2241 
2242 	if (data_size < sb_data_size) {
2243 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2244 		      dm_device_name(pool->pool_md),
2245 		      (unsigned long long)data_size, sb_data_size);
2246 		return -EINVAL;
2247 
2248 	} else if (data_size > sb_data_size) {
2249 		if (sb_data_size)
2250 			DMINFO("%s: growing the data device from %llu to %llu blocks",
2251 			       dm_device_name(pool->pool_md),
2252 			       sb_data_size, (unsigned long long)data_size);
2253 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2254 		if (r) {
2255 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2256 			return r;
2257 		}
2258 
2259 		*need_commit = true;
2260 	}
2261 
2262 	return 0;
2263 }
2264 
2265 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2266 {
2267 	int r;
2268 	struct pool_c *pt = ti->private;
2269 	struct pool *pool = pt->pool;
2270 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2271 
2272 	*need_commit = false;
2273 
2274 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2275 
2276 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2277 	if (r) {
2278 		DMERR("%s: failed to retrieve metadata device size",
2279 		      dm_device_name(pool->pool_md));
2280 		return r;
2281 	}
2282 
2283 	if (metadata_dev_size < sb_metadata_dev_size) {
2284 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2285 		      dm_device_name(pool->pool_md),
2286 		      metadata_dev_size, sb_metadata_dev_size);
2287 		return -EINVAL;
2288 
2289 	} else if (metadata_dev_size > sb_metadata_dev_size) {
2290 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2291 		       dm_device_name(pool->pool_md),
2292 		       sb_metadata_dev_size, metadata_dev_size);
2293 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2294 		if (r) {
2295 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2296 			return r;
2297 		}
2298 
2299 		*need_commit = true;
2300 	}
2301 
2302 	return 0;
2303 }
2304 
2305 /*
2306  * Retrieves the number of blocks of the data device from
2307  * the superblock and compares it to the actual device size,
2308  * thus resizing the data device in case it has grown.
2309  *
2310  * This both copes with opening preallocated data devices in the ctr
2311  * being followed by a resume
2312  * -and-
2313  * calling the resume method individually after userspace has
2314  * grown the data device in reaction to a table event.
2315  */
2316 static int pool_preresume(struct dm_target *ti)
2317 {
2318 	int r;
2319 	bool need_commit1, need_commit2;
2320 	struct pool_c *pt = ti->private;
2321 	struct pool *pool = pt->pool;
2322 
2323 	/*
2324 	 * Take control of the pool object.
2325 	 */
2326 	r = bind_control_target(pool, ti);
2327 	if (r)
2328 		return r;
2329 
2330 	r = maybe_resize_data_dev(ti, &need_commit1);
2331 	if (r)
2332 		return r;
2333 
2334 	r = maybe_resize_metadata_dev(ti, &need_commit2);
2335 	if (r)
2336 		return r;
2337 
2338 	if (need_commit1 || need_commit2)
2339 		(void) commit(pool);
2340 
2341 	return 0;
2342 }
2343 
2344 static void pool_resume(struct dm_target *ti)
2345 {
2346 	struct pool_c *pt = ti->private;
2347 	struct pool *pool = pt->pool;
2348 	unsigned long flags;
2349 
2350 	spin_lock_irqsave(&pool->lock, flags);
2351 	pool->low_water_triggered = false;
2352 	__requeue_bios(pool);
2353 	spin_unlock_irqrestore(&pool->lock, flags);
2354 
2355 	do_waker(&pool->waker.work);
2356 }
2357 
2358 static void pool_postsuspend(struct dm_target *ti)
2359 {
2360 	struct pool_c *pt = ti->private;
2361 	struct pool *pool = pt->pool;
2362 
2363 	cancel_delayed_work(&pool->waker);
2364 	flush_workqueue(pool->wq);
2365 	(void) commit(pool);
2366 }
2367 
2368 static int check_arg_count(unsigned argc, unsigned args_required)
2369 {
2370 	if (argc != args_required) {
2371 		DMWARN("Message received with %u arguments instead of %u.",
2372 		       argc, args_required);
2373 		return -EINVAL;
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2380 {
2381 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2382 	    *dev_id <= MAX_DEV_ID)
2383 		return 0;
2384 
2385 	if (warning)
2386 		DMWARN("Message received with invalid device id: %s", arg);
2387 
2388 	return -EINVAL;
2389 }
2390 
2391 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2392 {
2393 	dm_thin_id dev_id;
2394 	int r;
2395 
2396 	r = check_arg_count(argc, 2);
2397 	if (r)
2398 		return r;
2399 
2400 	r = read_dev_id(argv[1], &dev_id, 1);
2401 	if (r)
2402 		return r;
2403 
2404 	r = dm_pool_create_thin(pool->pmd, dev_id);
2405 	if (r) {
2406 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2407 		       argv[1]);
2408 		return r;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2415 {
2416 	dm_thin_id dev_id;
2417 	dm_thin_id origin_dev_id;
2418 	int r;
2419 
2420 	r = check_arg_count(argc, 3);
2421 	if (r)
2422 		return r;
2423 
2424 	r = read_dev_id(argv[1], &dev_id, 1);
2425 	if (r)
2426 		return r;
2427 
2428 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2429 	if (r)
2430 		return r;
2431 
2432 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2433 	if (r) {
2434 		DMWARN("Creation of new snapshot %s of device %s failed.",
2435 		       argv[1], argv[2]);
2436 		return r;
2437 	}
2438 
2439 	return 0;
2440 }
2441 
2442 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2443 {
2444 	dm_thin_id dev_id;
2445 	int r;
2446 
2447 	r = check_arg_count(argc, 2);
2448 	if (r)
2449 		return r;
2450 
2451 	r = read_dev_id(argv[1], &dev_id, 1);
2452 	if (r)
2453 		return r;
2454 
2455 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2456 	if (r)
2457 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2458 
2459 	return r;
2460 }
2461 
2462 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2463 {
2464 	dm_thin_id old_id, new_id;
2465 	int r;
2466 
2467 	r = check_arg_count(argc, 3);
2468 	if (r)
2469 		return r;
2470 
2471 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2472 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2473 		return -EINVAL;
2474 	}
2475 
2476 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2477 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2478 		return -EINVAL;
2479 	}
2480 
2481 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2482 	if (r) {
2483 		DMWARN("Failed to change transaction id from %s to %s.",
2484 		       argv[1], argv[2]);
2485 		return r;
2486 	}
2487 
2488 	return 0;
2489 }
2490 
2491 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2492 {
2493 	int r;
2494 
2495 	r = check_arg_count(argc, 1);
2496 	if (r)
2497 		return r;
2498 
2499 	(void) commit(pool);
2500 
2501 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2502 	if (r)
2503 		DMWARN("reserve_metadata_snap message failed.");
2504 
2505 	return r;
2506 }
2507 
2508 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2509 {
2510 	int r;
2511 
2512 	r = check_arg_count(argc, 1);
2513 	if (r)
2514 		return r;
2515 
2516 	r = dm_pool_release_metadata_snap(pool->pmd);
2517 	if (r)
2518 		DMWARN("release_metadata_snap message failed.");
2519 
2520 	return r;
2521 }
2522 
2523 /*
2524  * Messages supported:
2525  *   create_thin	<dev_id>
2526  *   create_snap	<dev_id> <origin_id>
2527  *   delete		<dev_id>
2528  *   trim		<dev_id> <new_size_in_sectors>
2529  *   set_transaction_id <current_trans_id> <new_trans_id>
2530  *   reserve_metadata_snap
2531  *   release_metadata_snap
2532  */
2533 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2534 {
2535 	int r = -EINVAL;
2536 	struct pool_c *pt = ti->private;
2537 	struct pool *pool = pt->pool;
2538 
2539 	if (!strcasecmp(argv[0], "create_thin"))
2540 		r = process_create_thin_mesg(argc, argv, pool);
2541 
2542 	else if (!strcasecmp(argv[0], "create_snap"))
2543 		r = process_create_snap_mesg(argc, argv, pool);
2544 
2545 	else if (!strcasecmp(argv[0], "delete"))
2546 		r = process_delete_mesg(argc, argv, pool);
2547 
2548 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2549 		r = process_set_transaction_id_mesg(argc, argv, pool);
2550 
2551 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2552 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2553 
2554 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2555 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2556 
2557 	else
2558 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2559 
2560 	if (!r)
2561 		(void) commit(pool);
2562 
2563 	return r;
2564 }
2565 
2566 static void emit_flags(struct pool_features *pf, char *result,
2567 		       unsigned sz, unsigned maxlen)
2568 {
2569 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2570 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2571 		pf->error_if_no_space;
2572 	DMEMIT("%u ", count);
2573 
2574 	if (!pf->zero_new_blocks)
2575 		DMEMIT("skip_block_zeroing ");
2576 
2577 	if (!pf->discard_enabled)
2578 		DMEMIT("ignore_discard ");
2579 
2580 	if (!pf->discard_passdown)
2581 		DMEMIT("no_discard_passdown ");
2582 
2583 	if (pf->mode == PM_READ_ONLY)
2584 		DMEMIT("read_only ");
2585 
2586 	if (pf->error_if_no_space)
2587 		DMEMIT("error_if_no_space ");
2588 }
2589 
2590 /*
2591  * Status line is:
2592  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2593  *    <used data sectors>/<total data sectors> <held metadata root>
2594  */
2595 static void pool_status(struct dm_target *ti, status_type_t type,
2596 			unsigned status_flags, char *result, unsigned maxlen)
2597 {
2598 	int r;
2599 	unsigned sz = 0;
2600 	uint64_t transaction_id;
2601 	dm_block_t nr_free_blocks_data;
2602 	dm_block_t nr_free_blocks_metadata;
2603 	dm_block_t nr_blocks_data;
2604 	dm_block_t nr_blocks_metadata;
2605 	dm_block_t held_root;
2606 	char buf[BDEVNAME_SIZE];
2607 	char buf2[BDEVNAME_SIZE];
2608 	struct pool_c *pt = ti->private;
2609 	struct pool *pool = pt->pool;
2610 
2611 	switch (type) {
2612 	case STATUSTYPE_INFO:
2613 		if (get_pool_mode(pool) == PM_FAIL) {
2614 			DMEMIT("Fail");
2615 			break;
2616 		}
2617 
2618 		/* Commit to ensure statistics aren't out-of-date */
2619 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2620 			(void) commit(pool);
2621 
2622 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2623 		if (r) {
2624 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2625 			      dm_device_name(pool->pool_md), r);
2626 			goto err;
2627 		}
2628 
2629 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2630 		if (r) {
2631 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2632 			      dm_device_name(pool->pool_md), r);
2633 			goto err;
2634 		}
2635 
2636 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2637 		if (r) {
2638 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2639 			      dm_device_name(pool->pool_md), r);
2640 			goto err;
2641 		}
2642 
2643 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2644 		if (r) {
2645 			DMERR("%s: dm_pool_get_free_block_count returned %d",
2646 			      dm_device_name(pool->pool_md), r);
2647 			goto err;
2648 		}
2649 
2650 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2651 		if (r) {
2652 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
2653 			      dm_device_name(pool->pool_md), r);
2654 			goto err;
2655 		}
2656 
2657 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2658 		if (r) {
2659 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
2660 			      dm_device_name(pool->pool_md), r);
2661 			goto err;
2662 		}
2663 
2664 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2665 		       (unsigned long long)transaction_id,
2666 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2667 		       (unsigned long long)nr_blocks_metadata,
2668 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2669 		       (unsigned long long)nr_blocks_data);
2670 
2671 		if (held_root)
2672 			DMEMIT("%llu ", held_root);
2673 		else
2674 			DMEMIT("- ");
2675 
2676 		if (pool->pf.mode == PM_READ_ONLY)
2677 			DMEMIT("ro ");
2678 		else
2679 			DMEMIT("rw ");
2680 
2681 		if (!pool->pf.discard_enabled)
2682 			DMEMIT("ignore_discard ");
2683 		else if (pool->pf.discard_passdown)
2684 			DMEMIT("discard_passdown ");
2685 		else
2686 			DMEMIT("no_discard_passdown ");
2687 
2688 		if (pool->pf.error_if_no_space)
2689 			DMEMIT("error_if_no_space ");
2690 		else
2691 			DMEMIT("queue_if_no_space ");
2692 
2693 		break;
2694 
2695 	case STATUSTYPE_TABLE:
2696 		DMEMIT("%s %s %lu %llu ",
2697 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2698 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2699 		       (unsigned long)pool->sectors_per_block,
2700 		       (unsigned long long)pt->low_water_blocks);
2701 		emit_flags(&pt->requested_pf, result, sz, maxlen);
2702 		break;
2703 	}
2704 	return;
2705 
2706 err:
2707 	DMEMIT("Error");
2708 }
2709 
2710 static int pool_iterate_devices(struct dm_target *ti,
2711 				iterate_devices_callout_fn fn, void *data)
2712 {
2713 	struct pool_c *pt = ti->private;
2714 
2715 	return fn(ti, pt->data_dev, 0, ti->len, data);
2716 }
2717 
2718 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2719 		      struct bio_vec *biovec, int max_size)
2720 {
2721 	struct pool_c *pt = ti->private;
2722 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2723 
2724 	if (!q->merge_bvec_fn)
2725 		return max_size;
2726 
2727 	bvm->bi_bdev = pt->data_dev->bdev;
2728 
2729 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2730 }
2731 
2732 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2733 {
2734 	struct pool *pool = pt->pool;
2735 	struct queue_limits *data_limits;
2736 
2737 	limits->max_discard_sectors = pool->sectors_per_block;
2738 
2739 	/*
2740 	 * discard_granularity is just a hint, and not enforced.
2741 	 */
2742 	if (pt->adjusted_pf.discard_passdown) {
2743 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2744 		limits->discard_granularity = data_limits->discard_granularity;
2745 	} else
2746 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2747 }
2748 
2749 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2750 {
2751 	struct pool_c *pt = ti->private;
2752 	struct pool *pool = pt->pool;
2753 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
2754 
2755 	/*
2756 	 * If the system-determined stacked limits are compatible with the
2757 	 * pool's blocksize (io_opt is a factor) do not override them.
2758 	 */
2759 	if (io_opt_sectors < pool->sectors_per_block ||
2760 	    do_div(io_opt_sectors, pool->sectors_per_block)) {
2761 		blk_limits_io_min(limits, 0);
2762 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2763 	}
2764 
2765 	/*
2766 	 * pt->adjusted_pf is a staging area for the actual features to use.
2767 	 * They get transferred to the live pool in bind_control_target()
2768 	 * called from pool_preresume().
2769 	 */
2770 	if (!pt->adjusted_pf.discard_enabled) {
2771 		/*
2772 		 * Must explicitly disallow stacking discard limits otherwise the
2773 		 * block layer will stack them if pool's data device has support.
2774 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2775 		 * user to see that, so make sure to set all discard limits to 0.
2776 		 */
2777 		limits->discard_granularity = 0;
2778 		return;
2779 	}
2780 
2781 	disable_passdown_if_not_supported(pt);
2782 
2783 	set_discard_limits(pt, limits);
2784 }
2785 
2786 static struct target_type pool_target = {
2787 	.name = "thin-pool",
2788 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2789 		    DM_TARGET_IMMUTABLE,
2790 	.version = {1, 10, 0},
2791 	.module = THIS_MODULE,
2792 	.ctr = pool_ctr,
2793 	.dtr = pool_dtr,
2794 	.map = pool_map,
2795 	.postsuspend = pool_postsuspend,
2796 	.preresume = pool_preresume,
2797 	.resume = pool_resume,
2798 	.message = pool_message,
2799 	.status = pool_status,
2800 	.merge = pool_merge,
2801 	.iterate_devices = pool_iterate_devices,
2802 	.io_hints = pool_io_hints,
2803 };
2804 
2805 /*----------------------------------------------------------------
2806  * Thin target methods
2807  *--------------------------------------------------------------*/
2808 static void thin_dtr(struct dm_target *ti)
2809 {
2810 	struct thin_c *tc = ti->private;
2811 
2812 	mutex_lock(&dm_thin_pool_table.mutex);
2813 
2814 	__pool_dec(tc->pool);
2815 	dm_pool_close_thin_device(tc->td);
2816 	dm_put_device(ti, tc->pool_dev);
2817 	if (tc->origin_dev)
2818 		dm_put_device(ti, tc->origin_dev);
2819 	kfree(tc);
2820 
2821 	mutex_unlock(&dm_thin_pool_table.mutex);
2822 }
2823 
2824 /*
2825  * Thin target parameters:
2826  *
2827  * <pool_dev> <dev_id> [origin_dev]
2828  *
2829  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2830  * dev_id: the internal device identifier
2831  * origin_dev: a device external to the pool that should act as the origin
2832  *
2833  * If the pool device has discards disabled, they get disabled for the thin
2834  * device as well.
2835  */
2836 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2837 {
2838 	int r;
2839 	struct thin_c *tc;
2840 	struct dm_dev *pool_dev, *origin_dev;
2841 	struct mapped_device *pool_md;
2842 
2843 	mutex_lock(&dm_thin_pool_table.mutex);
2844 
2845 	if (argc != 2 && argc != 3) {
2846 		ti->error = "Invalid argument count";
2847 		r = -EINVAL;
2848 		goto out_unlock;
2849 	}
2850 
2851 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2852 	if (!tc) {
2853 		ti->error = "Out of memory";
2854 		r = -ENOMEM;
2855 		goto out_unlock;
2856 	}
2857 
2858 	if (argc == 3) {
2859 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2860 		if (r) {
2861 			ti->error = "Error opening origin device";
2862 			goto bad_origin_dev;
2863 		}
2864 		tc->origin_dev = origin_dev;
2865 	}
2866 
2867 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2868 	if (r) {
2869 		ti->error = "Error opening pool device";
2870 		goto bad_pool_dev;
2871 	}
2872 	tc->pool_dev = pool_dev;
2873 
2874 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2875 		ti->error = "Invalid device id";
2876 		r = -EINVAL;
2877 		goto bad_common;
2878 	}
2879 
2880 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2881 	if (!pool_md) {
2882 		ti->error = "Couldn't get pool mapped device";
2883 		r = -EINVAL;
2884 		goto bad_common;
2885 	}
2886 
2887 	tc->pool = __pool_table_lookup(pool_md);
2888 	if (!tc->pool) {
2889 		ti->error = "Couldn't find pool object";
2890 		r = -EINVAL;
2891 		goto bad_pool_lookup;
2892 	}
2893 	__pool_inc(tc->pool);
2894 
2895 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2896 		ti->error = "Couldn't open thin device, Pool is in fail mode";
2897 		goto bad_thin_open;
2898 	}
2899 
2900 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2901 	if (r) {
2902 		ti->error = "Couldn't open thin internal device";
2903 		goto bad_thin_open;
2904 	}
2905 
2906 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2907 	if (r)
2908 		goto bad_thin_open;
2909 
2910 	ti->num_flush_bios = 1;
2911 	ti->flush_supported = true;
2912 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2913 
2914 	/* In case the pool supports discards, pass them on. */
2915 	ti->discard_zeroes_data_unsupported = true;
2916 	if (tc->pool->pf.discard_enabled) {
2917 		ti->discards_supported = true;
2918 		ti->num_discard_bios = 1;
2919 		/* Discard bios must be split on a block boundary */
2920 		ti->split_discard_bios = true;
2921 	}
2922 
2923 	dm_put(pool_md);
2924 
2925 	mutex_unlock(&dm_thin_pool_table.mutex);
2926 
2927 	return 0;
2928 
2929 bad_thin_open:
2930 	__pool_dec(tc->pool);
2931 bad_pool_lookup:
2932 	dm_put(pool_md);
2933 bad_common:
2934 	dm_put_device(ti, tc->pool_dev);
2935 bad_pool_dev:
2936 	if (tc->origin_dev)
2937 		dm_put_device(ti, tc->origin_dev);
2938 bad_origin_dev:
2939 	kfree(tc);
2940 out_unlock:
2941 	mutex_unlock(&dm_thin_pool_table.mutex);
2942 
2943 	return r;
2944 }
2945 
2946 static int thin_map(struct dm_target *ti, struct bio *bio)
2947 {
2948 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2949 
2950 	return thin_bio_map(ti, bio);
2951 }
2952 
2953 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2954 {
2955 	unsigned long flags;
2956 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2957 	struct list_head work;
2958 	struct dm_thin_new_mapping *m, *tmp;
2959 	struct pool *pool = h->tc->pool;
2960 
2961 	if (h->shared_read_entry) {
2962 		INIT_LIST_HEAD(&work);
2963 		dm_deferred_entry_dec(h->shared_read_entry, &work);
2964 
2965 		spin_lock_irqsave(&pool->lock, flags);
2966 		list_for_each_entry_safe(m, tmp, &work, list) {
2967 			list_del(&m->list);
2968 			m->quiesced = true;
2969 			__maybe_add_mapping(m);
2970 		}
2971 		spin_unlock_irqrestore(&pool->lock, flags);
2972 	}
2973 
2974 	if (h->all_io_entry) {
2975 		INIT_LIST_HEAD(&work);
2976 		dm_deferred_entry_dec(h->all_io_entry, &work);
2977 		if (!list_empty(&work)) {
2978 			spin_lock_irqsave(&pool->lock, flags);
2979 			list_for_each_entry_safe(m, tmp, &work, list)
2980 				list_add_tail(&m->list, &pool->prepared_discards);
2981 			spin_unlock_irqrestore(&pool->lock, flags);
2982 			wake_worker(pool);
2983 		}
2984 	}
2985 
2986 	return 0;
2987 }
2988 
2989 static void thin_postsuspend(struct dm_target *ti)
2990 {
2991 	if (dm_noflush_suspending(ti))
2992 		requeue_io((struct thin_c *)ti->private);
2993 }
2994 
2995 /*
2996  * <nr mapped sectors> <highest mapped sector>
2997  */
2998 static void thin_status(struct dm_target *ti, status_type_t type,
2999 			unsigned status_flags, char *result, unsigned maxlen)
3000 {
3001 	int r;
3002 	ssize_t sz = 0;
3003 	dm_block_t mapped, highest;
3004 	char buf[BDEVNAME_SIZE];
3005 	struct thin_c *tc = ti->private;
3006 
3007 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3008 		DMEMIT("Fail");
3009 		return;
3010 	}
3011 
3012 	if (!tc->td)
3013 		DMEMIT("-");
3014 	else {
3015 		switch (type) {
3016 		case STATUSTYPE_INFO:
3017 			r = dm_thin_get_mapped_count(tc->td, &mapped);
3018 			if (r) {
3019 				DMERR("dm_thin_get_mapped_count returned %d", r);
3020 				goto err;
3021 			}
3022 
3023 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3024 			if (r < 0) {
3025 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3026 				goto err;
3027 			}
3028 
3029 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3030 			if (r)
3031 				DMEMIT("%llu", ((highest + 1) *
3032 						tc->pool->sectors_per_block) - 1);
3033 			else
3034 				DMEMIT("-");
3035 			break;
3036 
3037 		case STATUSTYPE_TABLE:
3038 			DMEMIT("%s %lu",
3039 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3040 			       (unsigned long) tc->dev_id);
3041 			if (tc->origin_dev)
3042 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3043 			break;
3044 		}
3045 	}
3046 
3047 	return;
3048 
3049 err:
3050 	DMEMIT("Error");
3051 }
3052 
3053 static int thin_iterate_devices(struct dm_target *ti,
3054 				iterate_devices_callout_fn fn, void *data)
3055 {
3056 	sector_t blocks;
3057 	struct thin_c *tc = ti->private;
3058 	struct pool *pool = tc->pool;
3059 
3060 	/*
3061 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3062 	 * we follow a more convoluted path through to the pool's target.
3063 	 */
3064 	if (!pool->ti)
3065 		return 0;	/* nothing is bound */
3066 
3067 	blocks = pool->ti->len;
3068 	(void) sector_div(blocks, pool->sectors_per_block);
3069 	if (blocks)
3070 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3071 
3072 	return 0;
3073 }
3074 
3075 static struct target_type thin_target = {
3076 	.name = "thin",
3077 	.version = {1, 10, 0},
3078 	.module	= THIS_MODULE,
3079 	.ctr = thin_ctr,
3080 	.dtr = thin_dtr,
3081 	.map = thin_map,
3082 	.end_io = thin_endio,
3083 	.postsuspend = thin_postsuspend,
3084 	.status = thin_status,
3085 	.iterate_devices = thin_iterate_devices,
3086 };
3087 
3088 /*----------------------------------------------------------------*/
3089 
3090 static int __init dm_thin_init(void)
3091 {
3092 	int r;
3093 
3094 	pool_table_init();
3095 
3096 	r = dm_register_target(&thin_target);
3097 	if (r)
3098 		return r;
3099 
3100 	r = dm_register_target(&pool_target);
3101 	if (r)
3102 		goto bad_pool_target;
3103 
3104 	r = -ENOMEM;
3105 
3106 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3107 	if (!_new_mapping_cache)
3108 		goto bad_new_mapping_cache;
3109 
3110 	return 0;
3111 
3112 bad_new_mapping_cache:
3113 	dm_unregister_target(&pool_target);
3114 bad_pool_target:
3115 	dm_unregister_target(&thin_target);
3116 
3117 	return r;
3118 }
3119 
3120 static void dm_thin_exit(void)
3121 {
3122 	dm_unregister_target(&thin_target);
3123 	dm_unregister_target(&pool_target);
3124 
3125 	kmem_cache_destroy(_new_mapping_cache);
3126 }
3127 
3128 module_init(dm_thin_init);
3129 module_exit(dm_thin_exit);
3130 
3131 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3132 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3133 MODULE_LICENSE("GPL");
3134