1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 19 #define DM_MSG_PREFIX "thin" 20 21 /* 22 * Tunable constants 23 */ 24 #define ENDIO_HOOK_POOL_SIZE 1024 25 #define MAPPING_POOL_SIZE 1024 26 #define PRISON_CELLS 1024 27 #define COMMIT_PERIOD HZ 28 29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 30 "A percentage of time allocated for copy on write"); 31 32 /* 33 * The block size of the device holding pool data must be 34 * between 64KB and 1GB. 35 */ 36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 38 39 /* 40 * Device id is restricted to 24 bits. 41 */ 42 #define MAX_DEV_ID ((1 << 24) - 1) 43 44 /* 45 * How do we handle breaking sharing of data blocks? 46 * ================================================= 47 * 48 * We use a standard copy-on-write btree to store the mappings for the 49 * devices (note I'm talking about copy-on-write of the metadata here, not 50 * the data). When you take an internal snapshot you clone the root node 51 * of the origin btree. After this there is no concept of an origin or a 52 * snapshot. They are just two device trees that happen to point to the 53 * same data blocks. 54 * 55 * When we get a write in we decide if it's to a shared data block using 56 * some timestamp magic. If it is, we have to break sharing. 57 * 58 * Let's say we write to a shared block in what was the origin. The 59 * steps are: 60 * 61 * i) plug io further to this physical block. (see bio_prison code). 62 * 63 * ii) quiesce any read io to that shared data block. Obviously 64 * including all devices that share this block. (see dm_deferred_set code) 65 * 66 * iii) copy the data block to a newly allocate block. This step can be 67 * missed out if the io covers the block. (schedule_copy). 68 * 69 * iv) insert the new mapping into the origin's btree 70 * (process_prepared_mapping). This act of inserting breaks some 71 * sharing of btree nodes between the two devices. Breaking sharing only 72 * effects the btree of that specific device. Btrees for the other 73 * devices that share the block never change. The btree for the origin 74 * device as it was after the last commit is untouched, ie. we're using 75 * persistent data structures in the functional programming sense. 76 * 77 * v) unplug io to this physical block, including the io that triggered 78 * the breaking of sharing. 79 * 80 * Steps (ii) and (iii) occur in parallel. 81 * 82 * The metadata _doesn't_ need to be committed before the io continues. We 83 * get away with this because the io is always written to a _new_ block. 84 * If there's a crash, then: 85 * 86 * - The origin mapping will point to the old origin block (the shared 87 * one). This will contain the data as it was before the io that triggered 88 * the breaking of sharing came in. 89 * 90 * - The snap mapping still points to the old block. As it would after 91 * the commit. 92 * 93 * The downside of this scheme is the timestamp magic isn't perfect, and 94 * will continue to think that data block in the snapshot device is shared 95 * even after the write to the origin has broken sharing. I suspect data 96 * blocks will typically be shared by many different devices, so we're 97 * breaking sharing n + 1 times, rather than n, where n is the number of 98 * devices that reference this data block. At the moment I think the 99 * benefits far, far outweigh the disadvantages. 100 */ 101 102 /*----------------------------------------------------------------*/ 103 104 /* 105 * Key building. 106 */ 107 static void build_data_key(struct dm_thin_device *td, 108 dm_block_t b, struct dm_cell_key *key) 109 { 110 key->virtual = 0; 111 key->dev = dm_thin_dev_id(td); 112 key->block = b; 113 } 114 115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 116 struct dm_cell_key *key) 117 { 118 key->virtual = 1; 119 key->dev = dm_thin_dev_id(td); 120 key->block = b; 121 } 122 123 /*----------------------------------------------------------------*/ 124 125 /* 126 * A pool device ties together a metadata device and a data device. It 127 * also provides the interface for creating and destroying internal 128 * devices. 129 */ 130 struct dm_thin_new_mapping; 131 132 /* 133 * The pool runs in 3 modes. Ordered in degraded order for comparisons. 134 */ 135 enum pool_mode { 136 PM_WRITE, /* metadata may be changed */ 137 PM_READ_ONLY, /* metadata may not be changed */ 138 PM_FAIL, /* all I/O fails */ 139 }; 140 141 struct pool_features { 142 enum pool_mode mode; 143 144 bool zero_new_blocks:1; 145 bool discard_enabled:1; 146 bool discard_passdown:1; 147 bool error_if_no_space:1; 148 }; 149 150 struct thin_c; 151 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 152 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 153 154 struct pool { 155 struct list_head list; 156 struct dm_target *ti; /* Only set if a pool target is bound */ 157 158 struct mapped_device *pool_md; 159 struct block_device *md_dev; 160 struct dm_pool_metadata *pmd; 161 162 dm_block_t low_water_blocks; 163 uint32_t sectors_per_block; 164 int sectors_per_block_shift; 165 166 struct pool_features pf; 167 bool low_water_triggered:1; /* A dm event has been sent */ 168 169 struct dm_bio_prison *prison; 170 struct dm_kcopyd_client *copier; 171 172 struct workqueue_struct *wq; 173 struct work_struct worker; 174 struct delayed_work waker; 175 176 unsigned long last_commit_jiffies; 177 unsigned ref_count; 178 179 spinlock_t lock; 180 struct bio_list deferred_bios; 181 struct bio_list deferred_flush_bios; 182 struct list_head prepared_mappings; 183 struct list_head prepared_discards; 184 185 struct bio_list retry_on_resume_list; 186 187 struct dm_deferred_set *shared_read_ds; 188 struct dm_deferred_set *all_io_ds; 189 190 struct dm_thin_new_mapping *next_mapping; 191 mempool_t *mapping_pool; 192 193 process_bio_fn process_bio; 194 process_bio_fn process_discard; 195 196 process_mapping_fn process_prepared_mapping; 197 process_mapping_fn process_prepared_discard; 198 }; 199 200 static enum pool_mode get_pool_mode(struct pool *pool); 201 static void out_of_data_space(struct pool *pool); 202 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 203 204 /* 205 * Target context for a pool. 206 */ 207 struct pool_c { 208 struct dm_target *ti; 209 struct pool *pool; 210 struct dm_dev *data_dev; 211 struct dm_dev *metadata_dev; 212 struct dm_target_callbacks callbacks; 213 214 dm_block_t low_water_blocks; 215 struct pool_features requested_pf; /* Features requested during table load */ 216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 217 }; 218 219 /* 220 * Target context for a thin. 221 */ 222 struct thin_c { 223 struct dm_dev *pool_dev; 224 struct dm_dev *origin_dev; 225 dm_thin_id dev_id; 226 227 struct pool *pool; 228 struct dm_thin_device *td; 229 }; 230 231 /*----------------------------------------------------------------*/ 232 233 /* 234 * wake_worker() is used when new work is queued and when pool_resume is 235 * ready to continue deferred IO processing. 236 */ 237 static void wake_worker(struct pool *pool) 238 { 239 queue_work(pool->wq, &pool->worker); 240 } 241 242 /*----------------------------------------------------------------*/ 243 244 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 245 struct dm_bio_prison_cell **cell_result) 246 { 247 int r; 248 struct dm_bio_prison_cell *cell_prealloc; 249 250 /* 251 * Allocate a cell from the prison's mempool. 252 * This might block but it can't fail. 253 */ 254 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 255 256 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 257 if (r) 258 /* 259 * We reused an old cell; we can get rid of 260 * the new one. 261 */ 262 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 263 264 return r; 265 } 266 267 static void cell_release(struct pool *pool, 268 struct dm_bio_prison_cell *cell, 269 struct bio_list *bios) 270 { 271 dm_cell_release(pool->prison, cell, bios); 272 dm_bio_prison_free_cell(pool->prison, cell); 273 } 274 275 static void cell_release_no_holder(struct pool *pool, 276 struct dm_bio_prison_cell *cell, 277 struct bio_list *bios) 278 { 279 dm_cell_release_no_holder(pool->prison, cell, bios); 280 dm_bio_prison_free_cell(pool->prison, cell); 281 } 282 283 static void cell_defer_no_holder_no_free(struct thin_c *tc, 284 struct dm_bio_prison_cell *cell) 285 { 286 struct pool *pool = tc->pool; 287 unsigned long flags; 288 289 spin_lock_irqsave(&pool->lock, flags); 290 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios); 291 spin_unlock_irqrestore(&pool->lock, flags); 292 293 wake_worker(pool); 294 } 295 296 static void cell_error(struct pool *pool, 297 struct dm_bio_prison_cell *cell) 298 { 299 dm_cell_error(pool->prison, cell); 300 dm_bio_prison_free_cell(pool->prison, cell); 301 } 302 303 /*----------------------------------------------------------------*/ 304 305 /* 306 * A global list of pools that uses a struct mapped_device as a key. 307 */ 308 static struct dm_thin_pool_table { 309 struct mutex mutex; 310 struct list_head pools; 311 } dm_thin_pool_table; 312 313 static void pool_table_init(void) 314 { 315 mutex_init(&dm_thin_pool_table.mutex); 316 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 317 } 318 319 static void __pool_table_insert(struct pool *pool) 320 { 321 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 322 list_add(&pool->list, &dm_thin_pool_table.pools); 323 } 324 325 static void __pool_table_remove(struct pool *pool) 326 { 327 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 328 list_del(&pool->list); 329 } 330 331 static struct pool *__pool_table_lookup(struct mapped_device *md) 332 { 333 struct pool *pool = NULL, *tmp; 334 335 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 336 337 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 338 if (tmp->pool_md == md) { 339 pool = tmp; 340 break; 341 } 342 } 343 344 return pool; 345 } 346 347 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 348 { 349 struct pool *pool = NULL, *tmp; 350 351 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 352 353 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 354 if (tmp->md_dev == md_dev) { 355 pool = tmp; 356 break; 357 } 358 } 359 360 return pool; 361 } 362 363 /*----------------------------------------------------------------*/ 364 365 struct dm_thin_endio_hook { 366 struct thin_c *tc; 367 struct dm_deferred_entry *shared_read_entry; 368 struct dm_deferred_entry *all_io_entry; 369 struct dm_thin_new_mapping *overwrite_mapping; 370 }; 371 372 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master) 373 { 374 struct bio *bio; 375 struct bio_list bios; 376 377 bio_list_init(&bios); 378 bio_list_merge(&bios, master); 379 bio_list_init(master); 380 381 while ((bio = bio_list_pop(&bios))) { 382 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 383 384 if (h->tc == tc) 385 bio_endio(bio, DM_ENDIO_REQUEUE); 386 else 387 bio_list_add(master, bio); 388 } 389 } 390 391 static void requeue_io(struct thin_c *tc) 392 { 393 struct pool *pool = tc->pool; 394 unsigned long flags; 395 396 spin_lock_irqsave(&pool->lock, flags); 397 __requeue_bio_list(tc, &pool->deferred_bios); 398 __requeue_bio_list(tc, &pool->retry_on_resume_list); 399 spin_unlock_irqrestore(&pool->lock, flags); 400 } 401 402 /* 403 * This section of code contains the logic for processing a thin device's IO. 404 * Much of the code depends on pool object resources (lists, workqueues, etc) 405 * but most is exclusively called from the thin target rather than the thin-pool 406 * target. 407 */ 408 409 static bool block_size_is_power_of_two(struct pool *pool) 410 { 411 return pool->sectors_per_block_shift >= 0; 412 } 413 414 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 415 { 416 struct pool *pool = tc->pool; 417 sector_t block_nr = bio->bi_iter.bi_sector; 418 419 if (block_size_is_power_of_two(pool)) 420 block_nr >>= pool->sectors_per_block_shift; 421 else 422 (void) sector_div(block_nr, pool->sectors_per_block); 423 424 return block_nr; 425 } 426 427 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 428 { 429 struct pool *pool = tc->pool; 430 sector_t bi_sector = bio->bi_iter.bi_sector; 431 432 bio->bi_bdev = tc->pool_dev->bdev; 433 if (block_size_is_power_of_two(pool)) 434 bio->bi_iter.bi_sector = 435 (block << pool->sectors_per_block_shift) | 436 (bi_sector & (pool->sectors_per_block - 1)); 437 else 438 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 439 sector_div(bi_sector, pool->sectors_per_block); 440 } 441 442 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 443 { 444 bio->bi_bdev = tc->origin_dev->bdev; 445 } 446 447 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 448 { 449 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 450 dm_thin_changed_this_transaction(tc->td); 451 } 452 453 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 454 { 455 struct dm_thin_endio_hook *h; 456 457 if (bio->bi_rw & REQ_DISCARD) 458 return; 459 460 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 461 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 462 } 463 464 static void issue(struct thin_c *tc, struct bio *bio) 465 { 466 struct pool *pool = tc->pool; 467 unsigned long flags; 468 469 if (!bio_triggers_commit(tc, bio)) { 470 generic_make_request(bio); 471 return; 472 } 473 474 /* 475 * Complete bio with an error if earlier I/O caused changes to 476 * the metadata that can't be committed e.g, due to I/O errors 477 * on the metadata device. 478 */ 479 if (dm_thin_aborted_changes(tc->td)) { 480 bio_io_error(bio); 481 return; 482 } 483 484 /* 485 * Batch together any bios that trigger commits and then issue a 486 * single commit for them in process_deferred_bios(). 487 */ 488 spin_lock_irqsave(&pool->lock, flags); 489 bio_list_add(&pool->deferred_flush_bios, bio); 490 spin_unlock_irqrestore(&pool->lock, flags); 491 } 492 493 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 494 { 495 remap_to_origin(tc, bio); 496 issue(tc, bio); 497 } 498 499 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 500 dm_block_t block) 501 { 502 remap(tc, bio, block); 503 issue(tc, bio); 504 } 505 506 /*----------------------------------------------------------------*/ 507 508 /* 509 * Bio endio functions. 510 */ 511 struct dm_thin_new_mapping { 512 struct list_head list; 513 514 bool quiesced:1; 515 bool prepared:1; 516 bool pass_discard:1; 517 bool definitely_not_shared:1; 518 519 int err; 520 struct thin_c *tc; 521 dm_block_t virt_block; 522 dm_block_t data_block; 523 struct dm_bio_prison_cell *cell, *cell2; 524 525 /* 526 * If the bio covers the whole area of a block then we can avoid 527 * zeroing or copying. Instead this bio is hooked. The bio will 528 * still be in the cell, so care has to be taken to avoid issuing 529 * the bio twice. 530 */ 531 struct bio *bio; 532 bio_end_io_t *saved_bi_end_io; 533 }; 534 535 static void __maybe_add_mapping(struct dm_thin_new_mapping *m) 536 { 537 struct pool *pool = m->tc->pool; 538 539 if (m->quiesced && m->prepared) { 540 list_add_tail(&m->list, &pool->prepared_mappings); 541 wake_worker(pool); 542 } 543 } 544 545 static void copy_complete(int read_err, unsigned long write_err, void *context) 546 { 547 unsigned long flags; 548 struct dm_thin_new_mapping *m = context; 549 struct pool *pool = m->tc->pool; 550 551 m->err = read_err || write_err ? -EIO : 0; 552 553 spin_lock_irqsave(&pool->lock, flags); 554 m->prepared = true; 555 __maybe_add_mapping(m); 556 spin_unlock_irqrestore(&pool->lock, flags); 557 } 558 559 static void overwrite_endio(struct bio *bio, int err) 560 { 561 unsigned long flags; 562 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 563 struct dm_thin_new_mapping *m = h->overwrite_mapping; 564 struct pool *pool = m->tc->pool; 565 566 m->err = err; 567 568 spin_lock_irqsave(&pool->lock, flags); 569 m->prepared = true; 570 __maybe_add_mapping(m); 571 spin_unlock_irqrestore(&pool->lock, flags); 572 } 573 574 /*----------------------------------------------------------------*/ 575 576 /* 577 * Workqueue. 578 */ 579 580 /* 581 * Prepared mapping jobs. 582 */ 583 584 /* 585 * This sends the bios in the cell back to the deferred_bios list. 586 */ 587 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) 588 { 589 struct pool *pool = tc->pool; 590 unsigned long flags; 591 592 spin_lock_irqsave(&pool->lock, flags); 593 cell_release(pool, cell, &pool->deferred_bios); 594 spin_unlock_irqrestore(&tc->pool->lock, flags); 595 596 wake_worker(pool); 597 } 598 599 /* 600 * Same as cell_defer above, except it omits the original holder of the cell. 601 */ 602 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 603 { 604 struct pool *pool = tc->pool; 605 unsigned long flags; 606 607 spin_lock_irqsave(&pool->lock, flags); 608 cell_release_no_holder(pool, cell, &pool->deferred_bios); 609 spin_unlock_irqrestore(&pool->lock, flags); 610 611 wake_worker(pool); 612 } 613 614 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 615 { 616 if (m->bio) { 617 m->bio->bi_end_io = m->saved_bi_end_io; 618 atomic_inc(&m->bio->bi_remaining); 619 } 620 cell_error(m->tc->pool, m->cell); 621 list_del(&m->list); 622 mempool_free(m, m->tc->pool->mapping_pool); 623 } 624 625 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 626 { 627 struct thin_c *tc = m->tc; 628 struct pool *pool = tc->pool; 629 struct bio *bio; 630 int r; 631 632 bio = m->bio; 633 if (bio) { 634 bio->bi_end_io = m->saved_bi_end_io; 635 atomic_inc(&bio->bi_remaining); 636 } 637 638 if (m->err) { 639 cell_error(pool, m->cell); 640 goto out; 641 } 642 643 /* 644 * Commit the prepared block into the mapping btree. 645 * Any I/O for this block arriving after this point will get 646 * remapped to it directly. 647 */ 648 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 649 if (r) { 650 metadata_operation_failed(pool, "dm_thin_insert_block", r); 651 cell_error(pool, m->cell); 652 goto out; 653 } 654 655 /* 656 * Release any bios held while the block was being provisioned. 657 * If we are processing a write bio that completely covers the block, 658 * we already processed it so can ignore it now when processing 659 * the bios in the cell. 660 */ 661 if (bio) { 662 cell_defer_no_holder(tc, m->cell); 663 bio_endio(bio, 0); 664 } else 665 cell_defer(tc, m->cell); 666 667 out: 668 list_del(&m->list); 669 mempool_free(m, pool->mapping_pool); 670 } 671 672 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 673 { 674 struct thin_c *tc = m->tc; 675 676 bio_io_error(m->bio); 677 cell_defer_no_holder(tc, m->cell); 678 cell_defer_no_holder(tc, m->cell2); 679 mempool_free(m, tc->pool->mapping_pool); 680 } 681 682 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 683 { 684 struct thin_c *tc = m->tc; 685 686 inc_all_io_entry(tc->pool, m->bio); 687 cell_defer_no_holder(tc, m->cell); 688 cell_defer_no_holder(tc, m->cell2); 689 690 if (m->pass_discard) 691 if (m->definitely_not_shared) 692 remap_and_issue(tc, m->bio, m->data_block); 693 else { 694 bool used = false; 695 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used) 696 bio_endio(m->bio, 0); 697 else 698 remap_and_issue(tc, m->bio, m->data_block); 699 } 700 else 701 bio_endio(m->bio, 0); 702 703 mempool_free(m, tc->pool->mapping_pool); 704 } 705 706 static void process_prepared_discard(struct dm_thin_new_mapping *m) 707 { 708 int r; 709 struct thin_c *tc = m->tc; 710 711 r = dm_thin_remove_block(tc->td, m->virt_block); 712 if (r) 713 DMERR_LIMIT("dm_thin_remove_block() failed"); 714 715 process_prepared_discard_passdown(m); 716 } 717 718 static void process_prepared(struct pool *pool, struct list_head *head, 719 process_mapping_fn *fn) 720 { 721 unsigned long flags; 722 struct list_head maps; 723 struct dm_thin_new_mapping *m, *tmp; 724 725 INIT_LIST_HEAD(&maps); 726 spin_lock_irqsave(&pool->lock, flags); 727 list_splice_init(head, &maps); 728 spin_unlock_irqrestore(&pool->lock, flags); 729 730 list_for_each_entry_safe(m, tmp, &maps, list) 731 (*fn)(m); 732 } 733 734 /* 735 * Deferred bio jobs. 736 */ 737 static int io_overlaps_block(struct pool *pool, struct bio *bio) 738 { 739 return bio->bi_iter.bi_size == 740 (pool->sectors_per_block << SECTOR_SHIFT); 741 } 742 743 static int io_overwrites_block(struct pool *pool, struct bio *bio) 744 { 745 return (bio_data_dir(bio) == WRITE) && 746 io_overlaps_block(pool, bio); 747 } 748 749 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 750 bio_end_io_t *fn) 751 { 752 *save = bio->bi_end_io; 753 bio->bi_end_io = fn; 754 } 755 756 static int ensure_next_mapping(struct pool *pool) 757 { 758 if (pool->next_mapping) 759 return 0; 760 761 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 762 763 return pool->next_mapping ? 0 : -ENOMEM; 764 } 765 766 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 767 { 768 struct dm_thin_new_mapping *m = pool->next_mapping; 769 770 BUG_ON(!pool->next_mapping); 771 772 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 773 INIT_LIST_HEAD(&m->list); 774 m->bio = NULL; 775 776 pool->next_mapping = NULL; 777 778 return m; 779 } 780 781 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 782 struct dm_dev *origin, dm_block_t data_origin, 783 dm_block_t data_dest, 784 struct dm_bio_prison_cell *cell, struct bio *bio) 785 { 786 int r; 787 struct pool *pool = tc->pool; 788 struct dm_thin_new_mapping *m = get_next_mapping(pool); 789 790 m->tc = tc; 791 m->virt_block = virt_block; 792 m->data_block = data_dest; 793 m->cell = cell; 794 795 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 796 m->quiesced = true; 797 798 /* 799 * IO to pool_dev remaps to the pool target's data_dev. 800 * 801 * If the whole block of data is being overwritten, we can issue the 802 * bio immediately. Otherwise we use kcopyd to clone the data first. 803 */ 804 if (io_overwrites_block(pool, bio)) { 805 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 806 807 h->overwrite_mapping = m; 808 m->bio = bio; 809 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 810 inc_all_io_entry(pool, bio); 811 remap_and_issue(tc, bio, data_dest); 812 } else { 813 struct dm_io_region from, to; 814 815 from.bdev = origin->bdev; 816 from.sector = data_origin * pool->sectors_per_block; 817 from.count = pool->sectors_per_block; 818 819 to.bdev = tc->pool_dev->bdev; 820 to.sector = data_dest * pool->sectors_per_block; 821 to.count = pool->sectors_per_block; 822 823 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 824 0, copy_complete, m); 825 if (r < 0) { 826 mempool_free(m, pool->mapping_pool); 827 DMERR_LIMIT("dm_kcopyd_copy() failed"); 828 cell_error(pool, cell); 829 } 830 } 831 } 832 833 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 834 dm_block_t data_origin, dm_block_t data_dest, 835 struct dm_bio_prison_cell *cell, struct bio *bio) 836 { 837 schedule_copy(tc, virt_block, tc->pool_dev, 838 data_origin, data_dest, cell, bio); 839 } 840 841 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 842 dm_block_t data_dest, 843 struct dm_bio_prison_cell *cell, struct bio *bio) 844 { 845 schedule_copy(tc, virt_block, tc->origin_dev, 846 virt_block, data_dest, cell, bio); 847 } 848 849 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 850 dm_block_t data_block, struct dm_bio_prison_cell *cell, 851 struct bio *bio) 852 { 853 struct pool *pool = tc->pool; 854 struct dm_thin_new_mapping *m = get_next_mapping(pool); 855 856 m->quiesced = true; 857 m->prepared = false; 858 m->tc = tc; 859 m->virt_block = virt_block; 860 m->data_block = data_block; 861 m->cell = cell; 862 863 /* 864 * If the whole block of data is being overwritten or we are not 865 * zeroing pre-existing data, we can issue the bio immediately. 866 * Otherwise we use kcopyd to zero the data first. 867 */ 868 if (!pool->pf.zero_new_blocks) 869 process_prepared_mapping(m); 870 871 else if (io_overwrites_block(pool, bio)) { 872 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 873 874 h->overwrite_mapping = m; 875 m->bio = bio; 876 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 877 inc_all_io_entry(pool, bio); 878 remap_and_issue(tc, bio, data_block); 879 } else { 880 int r; 881 struct dm_io_region to; 882 883 to.bdev = tc->pool_dev->bdev; 884 to.sector = data_block * pool->sectors_per_block; 885 to.count = pool->sectors_per_block; 886 887 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); 888 if (r < 0) { 889 mempool_free(m, pool->mapping_pool); 890 DMERR_LIMIT("dm_kcopyd_zero() failed"); 891 cell_error(pool, cell); 892 } 893 } 894 } 895 896 /* 897 * A non-zero return indicates read_only or fail_io mode. 898 * Many callers don't care about the return value. 899 */ 900 static int commit(struct pool *pool) 901 { 902 int r; 903 904 if (get_pool_mode(pool) != PM_WRITE) 905 return -EINVAL; 906 907 r = dm_pool_commit_metadata(pool->pmd); 908 if (r) 909 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 910 911 return r; 912 } 913 914 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 915 { 916 unsigned long flags; 917 918 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 919 DMWARN("%s: reached low water mark for data device: sending event.", 920 dm_device_name(pool->pool_md)); 921 spin_lock_irqsave(&pool->lock, flags); 922 pool->low_water_triggered = true; 923 spin_unlock_irqrestore(&pool->lock, flags); 924 dm_table_event(pool->ti->table); 925 } 926 } 927 928 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 929 { 930 int r; 931 dm_block_t free_blocks; 932 struct pool *pool = tc->pool; 933 934 if (get_pool_mode(pool) != PM_WRITE) 935 return -EINVAL; 936 937 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 938 if (r) { 939 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 940 return r; 941 } 942 943 check_low_water_mark(pool, free_blocks); 944 945 if (!free_blocks) { 946 /* 947 * Try to commit to see if that will free up some 948 * more space. 949 */ 950 r = commit(pool); 951 if (r) 952 return r; 953 954 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 955 if (r) { 956 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 957 return r; 958 } 959 960 if (!free_blocks) { 961 out_of_data_space(pool); 962 return -ENOSPC; 963 } 964 } 965 966 r = dm_pool_alloc_data_block(pool->pmd, result); 967 if (r) { 968 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 969 return r; 970 } 971 972 return 0; 973 } 974 975 /* 976 * If we have run out of space, queue bios until the device is 977 * resumed, presumably after having been reloaded with more space. 978 */ 979 static void retry_on_resume(struct bio *bio) 980 { 981 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 982 struct thin_c *tc = h->tc; 983 struct pool *pool = tc->pool; 984 unsigned long flags; 985 986 spin_lock_irqsave(&pool->lock, flags); 987 bio_list_add(&pool->retry_on_resume_list, bio); 988 spin_unlock_irqrestore(&pool->lock, flags); 989 } 990 991 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 992 { 993 /* 994 * When pool is read-only, no cell locking is needed because 995 * nothing is changing. 996 */ 997 WARN_ON_ONCE(get_pool_mode(pool) != PM_READ_ONLY); 998 999 if (pool->pf.error_if_no_space) 1000 bio_io_error(bio); 1001 else 1002 retry_on_resume(bio); 1003 } 1004 1005 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1006 { 1007 struct bio *bio; 1008 struct bio_list bios; 1009 1010 bio_list_init(&bios); 1011 cell_release(pool, cell, &bios); 1012 1013 while ((bio = bio_list_pop(&bios))) 1014 handle_unserviceable_bio(pool, bio); 1015 } 1016 1017 static void process_discard(struct thin_c *tc, struct bio *bio) 1018 { 1019 int r; 1020 unsigned long flags; 1021 struct pool *pool = tc->pool; 1022 struct dm_bio_prison_cell *cell, *cell2; 1023 struct dm_cell_key key, key2; 1024 dm_block_t block = get_bio_block(tc, bio); 1025 struct dm_thin_lookup_result lookup_result; 1026 struct dm_thin_new_mapping *m; 1027 1028 build_virtual_key(tc->td, block, &key); 1029 if (bio_detain(tc->pool, &key, bio, &cell)) 1030 return; 1031 1032 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1033 switch (r) { 1034 case 0: 1035 /* 1036 * Check nobody is fiddling with this pool block. This can 1037 * happen if someone's in the process of breaking sharing 1038 * on this block. 1039 */ 1040 build_data_key(tc->td, lookup_result.block, &key2); 1041 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1042 cell_defer_no_holder(tc, cell); 1043 break; 1044 } 1045 1046 if (io_overlaps_block(pool, bio)) { 1047 /* 1048 * IO may still be going to the destination block. We must 1049 * quiesce before we can do the removal. 1050 */ 1051 m = get_next_mapping(pool); 1052 m->tc = tc; 1053 m->pass_discard = pool->pf.discard_passdown; 1054 m->definitely_not_shared = !lookup_result.shared; 1055 m->virt_block = block; 1056 m->data_block = lookup_result.block; 1057 m->cell = cell; 1058 m->cell2 = cell2; 1059 m->bio = bio; 1060 1061 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { 1062 spin_lock_irqsave(&pool->lock, flags); 1063 list_add_tail(&m->list, &pool->prepared_discards); 1064 spin_unlock_irqrestore(&pool->lock, flags); 1065 wake_worker(pool); 1066 } 1067 } else { 1068 inc_all_io_entry(pool, bio); 1069 cell_defer_no_holder(tc, cell); 1070 cell_defer_no_holder(tc, cell2); 1071 1072 /* 1073 * The DM core makes sure that the discard doesn't span 1074 * a block boundary. So we submit the discard of a 1075 * partial block appropriately. 1076 */ 1077 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1078 remap_and_issue(tc, bio, lookup_result.block); 1079 else 1080 bio_endio(bio, 0); 1081 } 1082 break; 1083 1084 case -ENODATA: 1085 /* 1086 * It isn't provisioned, just forget it. 1087 */ 1088 cell_defer_no_holder(tc, cell); 1089 bio_endio(bio, 0); 1090 break; 1091 1092 default: 1093 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1094 __func__, r); 1095 cell_defer_no_holder(tc, cell); 1096 bio_io_error(bio); 1097 break; 1098 } 1099 } 1100 1101 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1102 struct dm_cell_key *key, 1103 struct dm_thin_lookup_result *lookup_result, 1104 struct dm_bio_prison_cell *cell) 1105 { 1106 int r; 1107 dm_block_t data_block; 1108 struct pool *pool = tc->pool; 1109 1110 r = alloc_data_block(tc, &data_block); 1111 switch (r) { 1112 case 0: 1113 schedule_internal_copy(tc, block, lookup_result->block, 1114 data_block, cell, bio); 1115 break; 1116 1117 case -ENOSPC: 1118 retry_bios_on_resume(pool, cell); 1119 break; 1120 1121 default: 1122 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1123 __func__, r); 1124 cell_error(pool, cell); 1125 break; 1126 } 1127 } 1128 1129 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1130 dm_block_t block, 1131 struct dm_thin_lookup_result *lookup_result) 1132 { 1133 struct dm_bio_prison_cell *cell; 1134 struct pool *pool = tc->pool; 1135 struct dm_cell_key key; 1136 1137 /* 1138 * If cell is already occupied, then sharing is already in the process 1139 * of being broken so we have nothing further to do here. 1140 */ 1141 build_data_key(tc->td, lookup_result->block, &key); 1142 if (bio_detain(pool, &key, bio, &cell)) 1143 return; 1144 1145 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) 1146 break_sharing(tc, bio, block, &key, lookup_result, cell); 1147 else { 1148 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1149 1150 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1151 inc_all_io_entry(pool, bio); 1152 cell_defer_no_holder(tc, cell); 1153 1154 remap_and_issue(tc, bio, lookup_result->block); 1155 } 1156 } 1157 1158 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1159 struct dm_bio_prison_cell *cell) 1160 { 1161 int r; 1162 dm_block_t data_block; 1163 struct pool *pool = tc->pool; 1164 1165 /* 1166 * Remap empty bios (flushes) immediately, without provisioning. 1167 */ 1168 if (!bio->bi_iter.bi_size) { 1169 inc_all_io_entry(pool, bio); 1170 cell_defer_no_holder(tc, cell); 1171 1172 remap_and_issue(tc, bio, 0); 1173 return; 1174 } 1175 1176 /* 1177 * Fill read bios with zeroes and complete them immediately. 1178 */ 1179 if (bio_data_dir(bio) == READ) { 1180 zero_fill_bio(bio); 1181 cell_defer_no_holder(tc, cell); 1182 bio_endio(bio, 0); 1183 return; 1184 } 1185 1186 r = alloc_data_block(tc, &data_block); 1187 switch (r) { 1188 case 0: 1189 if (tc->origin_dev) 1190 schedule_external_copy(tc, block, data_block, cell, bio); 1191 else 1192 schedule_zero(tc, block, data_block, cell, bio); 1193 break; 1194 1195 case -ENOSPC: 1196 retry_bios_on_resume(pool, cell); 1197 break; 1198 1199 default: 1200 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1201 __func__, r); 1202 cell_error(pool, cell); 1203 break; 1204 } 1205 } 1206 1207 static void process_bio(struct thin_c *tc, struct bio *bio) 1208 { 1209 int r; 1210 struct pool *pool = tc->pool; 1211 dm_block_t block = get_bio_block(tc, bio); 1212 struct dm_bio_prison_cell *cell; 1213 struct dm_cell_key key; 1214 struct dm_thin_lookup_result lookup_result; 1215 1216 /* 1217 * If cell is already occupied, then the block is already 1218 * being provisioned so we have nothing further to do here. 1219 */ 1220 build_virtual_key(tc->td, block, &key); 1221 if (bio_detain(pool, &key, bio, &cell)) 1222 return; 1223 1224 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1225 switch (r) { 1226 case 0: 1227 if (lookup_result.shared) { 1228 process_shared_bio(tc, bio, block, &lookup_result); 1229 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */ 1230 } else { 1231 inc_all_io_entry(pool, bio); 1232 cell_defer_no_holder(tc, cell); 1233 1234 remap_and_issue(tc, bio, lookup_result.block); 1235 } 1236 break; 1237 1238 case -ENODATA: 1239 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1240 inc_all_io_entry(pool, bio); 1241 cell_defer_no_holder(tc, cell); 1242 1243 remap_to_origin_and_issue(tc, bio); 1244 } else 1245 provision_block(tc, bio, block, cell); 1246 break; 1247 1248 default: 1249 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1250 __func__, r); 1251 cell_defer_no_holder(tc, cell); 1252 bio_io_error(bio); 1253 break; 1254 } 1255 } 1256 1257 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1258 { 1259 int r; 1260 int rw = bio_data_dir(bio); 1261 dm_block_t block = get_bio_block(tc, bio); 1262 struct dm_thin_lookup_result lookup_result; 1263 1264 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1265 switch (r) { 1266 case 0: 1267 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) 1268 handle_unserviceable_bio(tc->pool, bio); 1269 else { 1270 inc_all_io_entry(tc->pool, bio); 1271 remap_and_issue(tc, bio, lookup_result.block); 1272 } 1273 break; 1274 1275 case -ENODATA: 1276 if (rw != READ) { 1277 handle_unserviceable_bio(tc->pool, bio); 1278 break; 1279 } 1280 1281 if (tc->origin_dev) { 1282 inc_all_io_entry(tc->pool, bio); 1283 remap_to_origin_and_issue(tc, bio); 1284 break; 1285 } 1286 1287 zero_fill_bio(bio); 1288 bio_endio(bio, 0); 1289 break; 1290 1291 default: 1292 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1293 __func__, r); 1294 bio_io_error(bio); 1295 break; 1296 } 1297 } 1298 1299 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1300 { 1301 bio_io_error(bio); 1302 } 1303 1304 /* 1305 * FIXME: should we also commit due to size of transaction, measured in 1306 * metadata blocks? 1307 */ 1308 static int need_commit_due_to_time(struct pool *pool) 1309 { 1310 return jiffies < pool->last_commit_jiffies || 1311 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1312 } 1313 1314 static void process_deferred_bios(struct pool *pool) 1315 { 1316 unsigned long flags; 1317 struct bio *bio; 1318 struct bio_list bios; 1319 1320 bio_list_init(&bios); 1321 1322 spin_lock_irqsave(&pool->lock, flags); 1323 bio_list_merge(&bios, &pool->deferred_bios); 1324 bio_list_init(&pool->deferred_bios); 1325 spin_unlock_irqrestore(&pool->lock, flags); 1326 1327 while ((bio = bio_list_pop(&bios))) { 1328 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1329 struct thin_c *tc = h->tc; 1330 1331 /* 1332 * If we've got no free new_mapping structs, and processing 1333 * this bio might require one, we pause until there are some 1334 * prepared mappings to process. 1335 */ 1336 if (ensure_next_mapping(pool)) { 1337 spin_lock_irqsave(&pool->lock, flags); 1338 bio_list_merge(&pool->deferred_bios, &bios); 1339 spin_unlock_irqrestore(&pool->lock, flags); 1340 1341 break; 1342 } 1343 1344 if (bio->bi_rw & REQ_DISCARD) 1345 pool->process_discard(tc, bio); 1346 else 1347 pool->process_bio(tc, bio); 1348 } 1349 1350 /* 1351 * If there are any deferred flush bios, we must commit 1352 * the metadata before issuing them. 1353 */ 1354 bio_list_init(&bios); 1355 spin_lock_irqsave(&pool->lock, flags); 1356 bio_list_merge(&bios, &pool->deferred_flush_bios); 1357 bio_list_init(&pool->deferred_flush_bios); 1358 spin_unlock_irqrestore(&pool->lock, flags); 1359 1360 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool)) 1361 return; 1362 1363 if (commit(pool)) { 1364 while ((bio = bio_list_pop(&bios))) 1365 bio_io_error(bio); 1366 return; 1367 } 1368 pool->last_commit_jiffies = jiffies; 1369 1370 while ((bio = bio_list_pop(&bios))) 1371 generic_make_request(bio); 1372 } 1373 1374 static void do_worker(struct work_struct *ws) 1375 { 1376 struct pool *pool = container_of(ws, struct pool, worker); 1377 1378 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1379 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1380 process_deferred_bios(pool); 1381 } 1382 1383 /* 1384 * We want to commit periodically so that not too much 1385 * unwritten data builds up. 1386 */ 1387 static void do_waker(struct work_struct *ws) 1388 { 1389 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 1390 wake_worker(pool); 1391 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 1392 } 1393 1394 /*----------------------------------------------------------------*/ 1395 1396 static enum pool_mode get_pool_mode(struct pool *pool) 1397 { 1398 return pool->pf.mode; 1399 } 1400 1401 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 1402 { 1403 int r; 1404 enum pool_mode old_mode = pool->pf.mode; 1405 1406 switch (new_mode) { 1407 case PM_FAIL: 1408 if (old_mode != new_mode) 1409 DMERR("%s: switching pool to failure mode", 1410 dm_device_name(pool->pool_md)); 1411 dm_pool_metadata_read_only(pool->pmd); 1412 pool->process_bio = process_bio_fail; 1413 pool->process_discard = process_bio_fail; 1414 pool->process_prepared_mapping = process_prepared_mapping_fail; 1415 pool->process_prepared_discard = process_prepared_discard_fail; 1416 break; 1417 1418 case PM_READ_ONLY: 1419 if (old_mode != new_mode) 1420 DMERR("%s: switching pool to read-only mode", 1421 dm_device_name(pool->pool_md)); 1422 r = dm_pool_abort_metadata(pool->pmd); 1423 if (r) { 1424 DMERR("%s: aborting transaction failed", 1425 dm_device_name(pool->pool_md)); 1426 new_mode = PM_FAIL; 1427 set_pool_mode(pool, new_mode); 1428 } else { 1429 dm_pool_metadata_read_only(pool->pmd); 1430 pool->process_bio = process_bio_read_only; 1431 pool->process_discard = process_discard; 1432 pool->process_prepared_mapping = process_prepared_mapping_fail; 1433 pool->process_prepared_discard = process_prepared_discard_passdown; 1434 } 1435 break; 1436 1437 case PM_WRITE: 1438 if (old_mode != new_mode) 1439 DMINFO("%s: switching pool to write mode", 1440 dm_device_name(pool->pool_md)); 1441 dm_pool_metadata_read_write(pool->pmd); 1442 pool->process_bio = process_bio; 1443 pool->process_discard = process_discard; 1444 pool->process_prepared_mapping = process_prepared_mapping; 1445 pool->process_prepared_discard = process_prepared_discard; 1446 break; 1447 } 1448 1449 pool->pf.mode = new_mode; 1450 } 1451 1452 /* 1453 * Rather than calling set_pool_mode directly, use these which describe the 1454 * reason for mode degradation. 1455 */ 1456 static void out_of_data_space(struct pool *pool) 1457 { 1458 DMERR_LIMIT("%s: no free data space available.", 1459 dm_device_name(pool->pool_md)); 1460 set_pool_mode(pool, PM_READ_ONLY); 1461 } 1462 1463 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 1464 { 1465 dm_block_t free_blocks; 1466 1467 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 1468 dm_device_name(pool->pool_md), op, r); 1469 1470 if (r == -ENOSPC && 1471 !dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks) && 1472 !free_blocks) 1473 DMERR_LIMIT("%s: no free metadata space available.", 1474 dm_device_name(pool->pool_md)); 1475 1476 set_pool_mode(pool, PM_READ_ONLY); 1477 } 1478 1479 /*----------------------------------------------------------------*/ 1480 1481 /* 1482 * Mapping functions. 1483 */ 1484 1485 /* 1486 * Called only while mapping a thin bio to hand it over to the workqueue. 1487 */ 1488 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 1489 { 1490 unsigned long flags; 1491 struct pool *pool = tc->pool; 1492 1493 spin_lock_irqsave(&pool->lock, flags); 1494 bio_list_add(&pool->deferred_bios, bio); 1495 spin_unlock_irqrestore(&pool->lock, flags); 1496 1497 wake_worker(pool); 1498 } 1499 1500 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 1501 { 1502 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1503 1504 h->tc = tc; 1505 h->shared_read_entry = NULL; 1506 h->all_io_entry = NULL; 1507 h->overwrite_mapping = NULL; 1508 } 1509 1510 /* 1511 * Non-blocking function called from the thin target's map function. 1512 */ 1513 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 1514 { 1515 int r; 1516 struct thin_c *tc = ti->private; 1517 dm_block_t block = get_bio_block(tc, bio); 1518 struct dm_thin_device *td = tc->td; 1519 struct dm_thin_lookup_result result; 1520 struct dm_bio_prison_cell cell1, cell2; 1521 struct dm_bio_prison_cell *cell_result; 1522 struct dm_cell_key key; 1523 1524 thin_hook_bio(tc, bio); 1525 1526 if (get_pool_mode(tc->pool) == PM_FAIL) { 1527 bio_io_error(bio); 1528 return DM_MAPIO_SUBMITTED; 1529 } 1530 1531 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 1532 thin_defer_bio(tc, bio); 1533 return DM_MAPIO_SUBMITTED; 1534 } 1535 1536 r = dm_thin_find_block(td, block, 0, &result); 1537 1538 /* 1539 * Note that we defer readahead too. 1540 */ 1541 switch (r) { 1542 case 0: 1543 if (unlikely(result.shared)) { 1544 /* 1545 * We have a race condition here between the 1546 * result.shared value returned by the lookup and 1547 * snapshot creation, which may cause new 1548 * sharing. 1549 * 1550 * To avoid this always quiesce the origin before 1551 * taking the snap. You want to do this anyway to 1552 * ensure a consistent application view 1553 * (i.e. lockfs). 1554 * 1555 * More distant ancestors are irrelevant. The 1556 * shared flag will be set in their case. 1557 */ 1558 thin_defer_bio(tc, bio); 1559 return DM_MAPIO_SUBMITTED; 1560 } 1561 1562 build_virtual_key(tc->td, block, &key); 1563 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result)) 1564 return DM_MAPIO_SUBMITTED; 1565 1566 build_data_key(tc->td, result.block, &key); 1567 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) { 1568 cell_defer_no_holder_no_free(tc, &cell1); 1569 return DM_MAPIO_SUBMITTED; 1570 } 1571 1572 inc_all_io_entry(tc->pool, bio); 1573 cell_defer_no_holder_no_free(tc, &cell2); 1574 cell_defer_no_holder_no_free(tc, &cell1); 1575 1576 remap(tc, bio, result.block); 1577 return DM_MAPIO_REMAPPED; 1578 1579 case -ENODATA: 1580 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 1581 /* 1582 * This block isn't provisioned, and we have no way 1583 * of doing so. 1584 */ 1585 handle_unserviceable_bio(tc->pool, bio); 1586 return DM_MAPIO_SUBMITTED; 1587 } 1588 /* fall through */ 1589 1590 case -EWOULDBLOCK: 1591 /* 1592 * In future, the failed dm_thin_find_block above could 1593 * provide the hint to load the metadata into cache. 1594 */ 1595 thin_defer_bio(tc, bio); 1596 return DM_MAPIO_SUBMITTED; 1597 1598 default: 1599 /* 1600 * Must always call bio_io_error on failure. 1601 * dm_thin_find_block can fail with -EINVAL if the 1602 * pool is switched to fail-io mode. 1603 */ 1604 bio_io_error(bio); 1605 return DM_MAPIO_SUBMITTED; 1606 } 1607 } 1608 1609 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 1610 { 1611 int r; 1612 unsigned long flags; 1613 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 1614 1615 spin_lock_irqsave(&pt->pool->lock, flags); 1616 r = !bio_list_empty(&pt->pool->retry_on_resume_list); 1617 spin_unlock_irqrestore(&pt->pool->lock, flags); 1618 1619 if (!r) { 1620 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1621 r = bdi_congested(&q->backing_dev_info, bdi_bits); 1622 } 1623 1624 return r; 1625 } 1626 1627 static void __requeue_bios(struct pool *pool) 1628 { 1629 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); 1630 bio_list_init(&pool->retry_on_resume_list); 1631 } 1632 1633 /*---------------------------------------------------------------- 1634 * Binding of control targets to a pool object 1635 *--------------------------------------------------------------*/ 1636 static bool data_dev_supports_discard(struct pool_c *pt) 1637 { 1638 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1639 1640 return q && blk_queue_discard(q); 1641 } 1642 1643 static bool is_factor(sector_t block_size, uint32_t n) 1644 { 1645 return !sector_div(block_size, n); 1646 } 1647 1648 /* 1649 * If discard_passdown was enabled verify that the data device 1650 * supports discards. Disable discard_passdown if not. 1651 */ 1652 static void disable_passdown_if_not_supported(struct pool_c *pt) 1653 { 1654 struct pool *pool = pt->pool; 1655 struct block_device *data_bdev = pt->data_dev->bdev; 1656 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 1657 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 1658 const char *reason = NULL; 1659 char buf[BDEVNAME_SIZE]; 1660 1661 if (!pt->adjusted_pf.discard_passdown) 1662 return; 1663 1664 if (!data_dev_supports_discard(pt)) 1665 reason = "discard unsupported"; 1666 1667 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 1668 reason = "max discard sectors smaller than a block"; 1669 1670 else if (data_limits->discard_granularity > block_size) 1671 reason = "discard granularity larger than a block"; 1672 1673 else if (!is_factor(block_size, data_limits->discard_granularity)) 1674 reason = "discard granularity not a factor of block size"; 1675 1676 if (reason) { 1677 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 1678 pt->adjusted_pf.discard_passdown = false; 1679 } 1680 } 1681 1682 static int bind_control_target(struct pool *pool, struct dm_target *ti) 1683 { 1684 struct pool_c *pt = ti->private; 1685 1686 /* 1687 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 1688 */ 1689 enum pool_mode old_mode = pool->pf.mode; 1690 enum pool_mode new_mode = pt->adjusted_pf.mode; 1691 1692 /* 1693 * Don't change the pool's mode until set_pool_mode() below. 1694 * Otherwise the pool's process_* function pointers may 1695 * not match the desired pool mode. 1696 */ 1697 pt->adjusted_pf.mode = old_mode; 1698 1699 pool->ti = ti; 1700 pool->pf = pt->adjusted_pf; 1701 pool->low_water_blocks = pt->low_water_blocks; 1702 1703 /* 1704 * If we were in PM_FAIL mode, rollback of metadata failed. We're 1705 * not going to recover without a thin_repair. So we never let the 1706 * pool move out of the old mode. On the other hand a PM_READ_ONLY 1707 * may have been due to a lack of metadata or data space, and may 1708 * now work (ie. if the underlying devices have been resized). 1709 */ 1710 if (old_mode == PM_FAIL) 1711 new_mode = old_mode; 1712 1713 set_pool_mode(pool, new_mode); 1714 1715 return 0; 1716 } 1717 1718 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 1719 { 1720 if (pool->ti == ti) 1721 pool->ti = NULL; 1722 } 1723 1724 /*---------------------------------------------------------------- 1725 * Pool creation 1726 *--------------------------------------------------------------*/ 1727 /* Initialize pool features. */ 1728 static void pool_features_init(struct pool_features *pf) 1729 { 1730 pf->mode = PM_WRITE; 1731 pf->zero_new_blocks = true; 1732 pf->discard_enabled = true; 1733 pf->discard_passdown = true; 1734 pf->error_if_no_space = false; 1735 } 1736 1737 static void __pool_destroy(struct pool *pool) 1738 { 1739 __pool_table_remove(pool); 1740 1741 if (dm_pool_metadata_close(pool->pmd) < 0) 1742 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1743 1744 dm_bio_prison_destroy(pool->prison); 1745 dm_kcopyd_client_destroy(pool->copier); 1746 1747 if (pool->wq) 1748 destroy_workqueue(pool->wq); 1749 1750 if (pool->next_mapping) 1751 mempool_free(pool->next_mapping, pool->mapping_pool); 1752 mempool_destroy(pool->mapping_pool); 1753 dm_deferred_set_destroy(pool->shared_read_ds); 1754 dm_deferred_set_destroy(pool->all_io_ds); 1755 kfree(pool); 1756 } 1757 1758 static struct kmem_cache *_new_mapping_cache; 1759 1760 static struct pool *pool_create(struct mapped_device *pool_md, 1761 struct block_device *metadata_dev, 1762 unsigned long block_size, 1763 int read_only, char **error) 1764 { 1765 int r; 1766 void *err_p; 1767 struct pool *pool; 1768 struct dm_pool_metadata *pmd; 1769 bool format_device = read_only ? false : true; 1770 1771 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 1772 if (IS_ERR(pmd)) { 1773 *error = "Error creating metadata object"; 1774 return (struct pool *)pmd; 1775 } 1776 1777 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 1778 if (!pool) { 1779 *error = "Error allocating memory for pool"; 1780 err_p = ERR_PTR(-ENOMEM); 1781 goto bad_pool; 1782 } 1783 1784 pool->pmd = pmd; 1785 pool->sectors_per_block = block_size; 1786 if (block_size & (block_size - 1)) 1787 pool->sectors_per_block_shift = -1; 1788 else 1789 pool->sectors_per_block_shift = __ffs(block_size); 1790 pool->low_water_blocks = 0; 1791 pool_features_init(&pool->pf); 1792 pool->prison = dm_bio_prison_create(PRISON_CELLS); 1793 if (!pool->prison) { 1794 *error = "Error creating pool's bio prison"; 1795 err_p = ERR_PTR(-ENOMEM); 1796 goto bad_prison; 1797 } 1798 1799 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 1800 if (IS_ERR(pool->copier)) { 1801 r = PTR_ERR(pool->copier); 1802 *error = "Error creating pool's kcopyd client"; 1803 err_p = ERR_PTR(r); 1804 goto bad_kcopyd_client; 1805 } 1806 1807 /* 1808 * Create singlethreaded workqueue that will service all devices 1809 * that use this metadata. 1810 */ 1811 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 1812 if (!pool->wq) { 1813 *error = "Error creating pool's workqueue"; 1814 err_p = ERR_PTR(-ENOMEM); 1815 goto bad_wq; 1816 } 1817 1818 INIT_WORK(&pool->worker, do_worker); 1819 INIT_DELAYED_WORK(&pool->waker, do_waker); 1820 spin_lock_init(&pool->lock); 1821 bio_list_init(&pool->deferred_bios); 1822 bio_list_init(&pool->deferred_flush_bios); 1823 INIT_LIST_HEAD(&pool->prepared_mappings); 1824 INIT_LIST_HEAD(&pool->prepared_discards); 1825 pool->low_water_triggered = false; 1826 bio_list_init(&pool->retry_on_resume_list); 1827 1828 pool->shared_read_ds = dm_deferred_set_create(); 1829 if (!pool->shared_read_ds) { 1830 *error = "Error creating pool's shared read deferred set"; 1831 err_p = ERR_PTR(-ENOMEM); 1832 goto bad_shared_read_ds; 1833 } 1834 1835 pool->all_io_ds = dm_deferred_set_create(); 1836 if (!pool->all_io_ds) { 1837 *error = "Error creating pool's all io deferred set"; 1838 err_p = ERR_PTR(-ENOMEM); 1839 goto bad_all_io_ds; 1840 } 1841 1842 pool->next_mapping = NULL; 1843 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 1844 _new_mapping_cache); 1845 if (!pool->mapping_pool) { 1846 *error = "Error creating pool's mapping mempool"; 1847 err_p = ERR_PTR(-ENOMEM); 1848 goto bad_mapping_pool; 1849 } 1850 1851 pool->ref_count = 1; 1852 pool->last_commit_jiffies = jiffies; 1853 pool->pool_md = pool_md; 1854 pool->md_dev = metadata_dev; 1855 __pool_table_insert(pool); 1856 1857 return pool; 1858 1859 bad_mapping_pool: 1860 dm_deferred_set_destroy(pool->all_io_ds); 1861 bad_all_io_ds: 1862 dm_deferred_set_destroy(pool->shared_read_ds); 1863 bad_shared_read_ds: 1864 destroy_workqueue(pool->wq); 1865 bad_wq: 1866 dm_kcopyd_client_destroy(pool->copier); 1867 bad_kcopyd_client: 1868 dm_bio_prison_destroy(pool->prison); 1869 bad_prison: 1870 kfree(pool); 1871 bad_pool: 1872 if (dm_pool_metadata_close(pmd)) 1873 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1874 1875 return err_p; 1876 } 1877 1878 static void __pool_inc(struct pool *pool) 1879 { 1880 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 1881 pool->ref_count++; 1882 } 1883 1884 static void __pool_dec(struct pool *pool) 1885 { 1886 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 1887 BUG_ON(!pool->ref_count); 1888 if (!--pool->ref_count) 1889 __pool_destroy(pool); 1890 } 1891 1892 static struct pool *__pool_find(struct mapped_device *pool_md, 1893 struct block_device *metadata_dev, 1894 unsigned long block_size, int read_only, 1895 char **error, int *created) 1896 { 1897 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 1898 1899 if (pool) { 1900 if (pool->pool_md != pool_md) { 1901 *error = "metadata device already in use by a pool"; 1902 return ERR_PTR(-EBUSY); 1903 } 1904 __pool_inc(pool); 1905 1906 } else { 1907 pool = __pool_table_lookup(pool_md); 1908 if (pool) { 1909 if (pool->md_dev != metadata_dev) { 1910 *error = "different pool cannot replace a pool"; 1911 return ERR_PTR(-EINVAL); 1912 } 1913 __pool_inc(pool); 1914 1915 } else { 1916 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 1917 *created = 1; 1918 } 1919 } 1920 1921 return pool; 1922 } 1923 1924 /*---------------------------------------------------------------- 1925 * Pool target methods 1926 *--------------------------------------------------------------*/ 1927 static void pool_dtr(struct dm_target *ti) 1928 { 1929 struct pool_c *pt = ti->private; 1930 1931 mutex_lock(&dm_thin_pool_table.mutex); 1932 1933 unbind_control_target(pt->pool, ti); 1934 __pool_dec(pt->pool); 1935 dm_put_device(ti, pt->metadata_dev); 1936 dm_put_device(ti, pt->data_dev); 1937 kfree(pt); 1938 1939 mutex_unlock(&dm_thin_pool_table.mutex); 1940 } 1941 1942 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 1943 struct dm_target *ti) 1944 { 1945 int r; 1946 unsigned argc; 1947 const char *arg_name; 1948 1949 static struct dm_arg _args[] = { 1950 {0, 4, "Invalid number of pool feature arguments"}, 1951 }; 1952 1953 /* 1954 * No feature arguments supplied. 1955 */ 1956 if (!as->argc) 1957 return 0; 1958 1959 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1960 if (r) 1961 return -EINVAL; 1962 1963 while (argc && !r) { 1964 arg_name = dm_shift_arg(as); 1965 argc--; 1966 1967 if (!strcasecmp(arg_name, "skip_block_zeroing")) 1968 pf->zero_new_blocks = false; 1969 1970 else if (!strcasecmp(arg_name, "ignore_discard")) 1971 pf->discard_enabled = false; 1972 1973 else if (!strcasecmp(arg_name, "no_discard_passdown")) 1974 pf->discard_passdown = false; 1975 1976 else if (!strcasecmp(arg_name, "read_only")) 1977 pf->mode = PM_READ_ONLY; 1978 1979 else if (!strcasecmp(arg_name, "error_if_no_space")) 1980 pf->error_if_no_space = true; 1981 1982 else { 1983 ti->error = "Unrecognised pool feature requested"; 1984 r = -EINVAL; 1985 break; 1986 } 1987 } 1988 1989 return r; 1990 } 1991 1992 static void metadata_low_callback(void *context) 1993 { 1994 struct pool *pool = context; 1995 1996 DMWARN("%s: reached low water mark for metadata device: sending event.", 1997 dm_device_name(pool->pool_md)); 1998 1999 dm_table_event(pool->ti->table); 2000 } 2001 2002 static sector_t get_metadata_dev_size(struct block_device *bdev) 2003 { 2004 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 2005 char buffer[BDEVNAME_SIZE]; 2006 2007 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) { 2008 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2009 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 2010 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING; 2011 } 2012 2013 return metadata_dev_size; 2014 } 2015 2016 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 2017 { 2018 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 2019 2020 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT); 2021 2022 return metadata_dev_size; 2023 } 2024 2025 /* 2026 * When a metadata threshold is crossed a dm event is triggered, and 2027 * userland should respond by growing the metadata device. We could let 2028 * userland set the threshold, like we do with the data threshold, but I'm 2029 * not sure they know enough to do this well. 2030 */ 2031 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 2032 { 2033 /* 2034 * 4M is ample for all ops with the possible exception of thin 2035 * device deletion which is harmless if it fails (just retry the 2036 * delete after you've grown the device). 2037 */ 2038 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 2039 return min((dm_block_t)1024ULL /* 4M */, quarter); 2040 } 2041 2042 /* 2043 * thin-pool <metadata dev> <data dev> 2044 * <data block size (sectors)> 2045 * <low water mark (blocks)> 2046 * [<#feature args> [<arg>]*] 2047 * 2048 * Optional feature arguments are: 2049 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 2050 * ignore_discard: disable discard 2051 * no_discard_passdown: don't pass discards down to the data device 2052 * read_only: Don't allow any changes to be made to the pool metadata. 2053 * error_if_no_space: error IOs, instead of queueing, if no space. 2054 */ 2055 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 2056 { 2057 int r, pool_created = 0; 2058 struct pool_c *pt; 2059 struct pool *pool; 2060 struct pool_features pf; 2061 struct dm_arg_set as; 2062 struct dm_dev *data_dev; 2063 unsigned long block_size; 2064 dm_block_t low_water_blocks; 2065 struct dm_dev *metadata_dev; 2066 fmode_t metadata_mode; 2067 2068 /* 2069 * FIXME Remove validation from scope of lock. 2070 */ 2071 mutex_lock(&dm_thin_pool_table.mutex); 2072 2073 if (argc < 4) { 2074 ti->error = "Invalid argument count"; 2075 r = -EINVAL; 2076 goto out_unlock; 2077 } 2078 2079 as.argc = argc; 2080 as.argv = argv; 2081 2082 /* 2083 * Set default pool features. 2084 */ 2085 pool_features_init(&pf); 2086 2087 dm_consume_args(&as, 4); 2088 r = parse_pool_features(&as, &pf, ti); 2089 if (r) 2090 goto out_unlock; 2091 2092 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 2093 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 2094 if (r) { 2095 ti->error = "Error opening metadata block device"; 2096 goto out_unlock; 2097 } 2098 2099 /* 2100 * Run for the side-effect of possibly issuing a warning if the 2101 * device is too big. 2102 */ 2103 (void) get_metadata_dev_size(metadata_dev->bdev); 2104 2105 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 2106 if (r) { 2107 ti->error = "Error getting data device"; 2108 goto out_metadata; 2109 } 2110 2111 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 2112 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2113 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2114 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2115 ti->error = "Invalid block size"; 2116 r = -EINVAL; 2117 goto out; 2118 } 2119 2120 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 2121 ti->error = "Invalid low water mark"; 2122 r = -EINVAL; 2123 goto out; 2124 } 2125 2126 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 2127 if (!pt) { 2128 r = -ENOMEM; 2129 goto out; 2130 } 2131 2132 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 2133 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2134 if (IS_ERR(pool)) { 2135 r = PTR_ERR(pool); 2136 goto out_free_pt; 2137 } 2138 2139 /* 2140 * 'pool_created' reflects whether this is the first table load. 2141 * Top level discard support is not allowed to be changed after 2142 * initial load. This would require a pool reload to trigger thin 2143 * device changes. 2144 */ 2145 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2146 ti->error = "Discard support cannot be disabled once enabled"; 2147 r = -EINVAL; 2148 goto out_flags_changed; 2149 } 2150 2151 pt->pool = pool; 2152 pt->ti = ti; 2153 pt->metadata_dev = metadata_dev; 2154 pt->data_dev = data_dev; 2155 pt->low_water_blocks = low_water_blocks; 2156 pt->adjusted_pf = pt->requested_pf = pf; 2157 ti->num_flush_bios = 1; 2158 2159 /* 2160 * Only need to enable discards if the pool should pass 2161 * them down to the data device. The thin device's discard 2162 * processing will cause mappings to be removed from the btree. 2163 */ 2164 ti->discard_zeroes_data_unsupported = true; 2165 if (pf.discard_enabled && pf.discard_passdown) { 2166 ti->num_discard_bios = 1; 2167 2168 /* 2169 * Setting 'discards_supported' circumvents the normal 2170 * stacking of discard limits (this keeps the pool and 2171 * thin devices' discard limits consistent). 2172 */ 2173 ti->discards_supported = true; 2174 } 2175 ti->private = pt; 2176 2177 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 2178 calc_metadata_threshold(pt), 2179 metadata_low_callback, 2180 pool); 2181 if (r) 2182 goto out_free_pt; 2183 2184 pt->callbacks.congested_fn = pool_is_congested; 2185 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2186 2187 mutex_unlock(&dm_thin_pool_table.mutex); 2188 2189 return 0; 2190 2191 out_flags_changed: 2192 __pool_dec(pool); 2193 out_free_pt: 2194 kfree(pt); 2195 out: 2196 dm_put_device(ti, data_dev); 2197 out_metadata: 2198 dm_put_device(ti, metadata_dev); 2199 out_unlock: 2200 mutex_unlock(&dm_thin_pool_table.mutex); 2201 2202 return r; 2203 } 2204 2205 static int pool_map(struct dm_target *ti, struct bio *bio) 2206 { 2207 int r; 2208 struct pool_c *pt = ti->private; 2209 struct pool *pool = pt->pool; 2210 unsigned long flags; 2211 2212 /* 2213 * As this is a singleton target, ti->begin is always zero. 2214 */ 2215 spin_lock_irqsave(&pool->lock, flags); 2216 bio->bi_bdev = pt->data_dev->bdev; 2217 r = DM_MAPIO_REMAPPED; 2218 spin_unlock_irqrestore(&pool->lock, flags); 2219 2220 return r; 2221 } 2222 2223 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 2224 { 2225 int r; 2226 struct pool_c *pt = ti->private; 2227 struct pool *pool = pt->pool; 2228 sector_t data_size = ti->len; 2229 dm_block_t sb_data_size; 2230 2231 *need_commit = false; 2232 2233 (void) sector_div(data_size, pool->sectors_per_block); 2234 2235 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 2236 if (r) { 2237 DMERR("%s: failed to retrieve data device size", 2238 dm_device_name(pool->pool_md)); 2239 return r; 2240 } 2241 2242 if (data_size < sb_data_size) { 2243 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 2244 dm_device_name(pool->pool_md), 2245 (unsigned long long)data_size, sb_data_size); 2246 return -EINVAL; 2247 2248 } else if (data_size > sb_data_size) { 2249 if (sb_data_size) 2250 DMINFO("%s: growing the data device from %llu to %llu blocks", 2251 dm_device_name(pool->pool_md), 2252 sb_data_size, (unsigned long long)data_size); 2253 r = dm_pool_resize_data_dev(pool->pmd, data_size); 2254 if (r) { 2255 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 2256 return r; 2257 } 2258 2259 *need_commit = true; 2260 } 2261 2262 return 0; 2263 } 2264 2265 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 2266 { 2267 int r; 2268 struct pool_c *pt = ti->private; 2269 struct pool *pool = pt->pool; 2270 dm_block_t metadata_dev_size, sb_metadata_dev_size; 2271 2272 *need_commit = false; 2273 2274 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 2275 2276 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 2277 if (r) { 2278 DMERR("%s: failed to retrieve metadata device size", 2279 dm_device_name(pool->pool_md)); 2280 return r; 2281 } 2282 2283 if (metadata_dev_size < sb_metadata_dev_size) { 2284 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 2285 dm_device_name(pool->pool_md), 2286 metadata_dev_size, sb_metadata_dev_size); 2287 return -EINVAL; 2288 2289 } else if (metadata_dev_size > sb_metadata_dev_size) { 2290 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 2291 dm_device_name(pool->pool_md), 2292 sb_metadata_dev_size, metadata_dev_size); 2293 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 2294 if (r) { 2295 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 2296 return r; 2297 } 2298 2299 *need_commit = true; 2300 } 2301 2302 return 0; 2303 } 2304 2305 /* 2306 * Retrieves the number of blocks of the data device from 2307 * the superblock and compares it to the actual device size, 2308 * thus resizing the data device in case it has grown. 2309 * 2310 * This both copes with opening preallocated data devices in the ctr 2311 * being followed by a resume 2312 * -and- 2313 * calling the resume method individually after userspace has 2314 * grown the data device in reaction to a table event. 2315 */ 2316 static int pool_preresume(struct dm_target *ti) 2317 { 2318 int r; 2319 bool need_commit1, need_commit2; 2320 struct pool_c *pt = ti->private; 2321 struct pool *pool = pt->pool; 2322 2323 /* 2324 * Take control of the pool object. 2325 */ 2326 r = bind_control_target(pool, ti); 2327 if (r) 2328 return r; 2329 2330 r = maybe_resize_data_dev(ti, &need_commit1); 2331 if (r) 2332 return r; 2333 2334 r = maybe_resize_metadata_dev(ti, &need_commit2); 2335 if (r) 2336 return r; 2337 2338 if (need_commit1 || need_commit2) 2339 (void) commit(pool); 2340 2341 return 0; 2342 } 2343 2344 static void pool_resume(struct dm_target *ti) 2345 { 2346 struct pool_c *pt = ti->private; 2347 struct pool *pool = pt->pool; 2348 unsigned long flags; 2349 2350 spin_lock_irqsave(&pool->lock, flags); 2351 pool->low_water_triggered = false; 2352 __requeue_bios(pool); 2353 spin_unlock_irqrestore(&pool->lock, flags); 2354 2355 do_waker(&pool->waker.work); 2356 } 2357 2358 static void pool_postsuspend(struct dm_target *ti) 2359 { 2360 struct pool_c *pt = ti->private; 2361 struct pool *pool = pt->pool; 2362 2363 cancel_delayed_work(&pool->waker); 2364 flush_workqueue(pool->wq); 2365 (void) commit(pool); 2366 } 2367 2368 static int check_arg_count(unsigned argc, unsigned args_required) 2369 { 2370 if (argc != args_required) { 2371 DMWARN("Message received with %u arguments instead of %u.", 2372 argc, args_required); 2373 return -EINVAL; 2374 } 2375 2376 return 0; 2377 } 2378 2379 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 2380 { 2381 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 2382 *dev_id <= MAX_DEV_ID) 2383 return 0; 2384 2385 if (warning) 2386 DMWARN("Message received with invalid device id: %s", arg); 2387 2388 return -EINVAL; 2389 } 2390 2391 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 2392 { 2393 dm_thin_id dev_id; 2394 int r; 2395 2396 r = check_arg_count(argc, 2); 2397 if (r) 2398 return r; 2399 2400 r = read_dev_id(argv[1], &dev_id, 1); 2401 if (r) 2402 return r; 2403 2404 r = dm_pool_create_thin(pool->pmd, dev_id); 2405 if (r) { 2406 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 2407 argv[1]); 2408 return r; 2409 } 2410 2411 return 0; 2412 } 2413 2414 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2415 { 2416 dm_thin_id dev_id; 2417 dm_thin_id origin_dev_id; 2418 int r; 2419 2420 r = check_arg_count(argc, 3); 2421 if (r) 2422 return r; 2423 2424 r = read_dev_id(argv[1], &dev_id, 1); 2425 if (r) 2426 return r; 2427 2428 r = read_dev_id(argv[2], &origin_dev_id, 1); 2429 if (r) 2430 return r; 2431 2432 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 2433 if (r) { 2434 DMWARN("Creation of new snapshot %s of device %s failed.", 2435 argv[1], argv[2]); 2436 return r; 2437 } 2438 2439 return 0; 2440 } 2441 2442 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 2443 { 2444 dm_thin_id dev_id; 2445 int r; 2446 2447 r = check_arg_count(argc, 2); 2448 if (r) 2449 return r; 2450 2451 r = read_dev_id(argv[1], &dev_id, 1); 2452 if (r) 2453 return r; 2454 2455 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 2456 if (r) 2457 DMWARN("Deletion of thin device %s failed.", argv[1]); 2458 2459 return r; 2460 } 2461 2462 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 2463 { 2464 dm_thin_id old_id, new_id; 2465 int r; 2466 2467 r = check_arg_count(argc, 3); 2468 if (r) 2469 return r; 2470 2471 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 2472 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 2473 return -EINVAL; 2474 } 2475 2476 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 2477 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 2478 return -EINVAL; 2479 } 2480 2481 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 2482 if (r) { 2483 DMWARN("Failed to change transaction id from %s to %s.", 2484 argv[1], argv[2]); 2485 return r; 2486 } 2487 2488 return 0; 2489 } 2490 2491 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2492 { 2493 int r; 2494 2495 r = check_arg_count(argc, 1); 2496 if (r) 2497 return r; 2498 2499 (void) commit(pool); 2500 2501 r = dm_pool_reserve_metadata_snap(pool->pmd); 2502 if (r) 2503 DMWARN("reserve_metadata_snap message failed."); 2504 2505 return r; 2506 } 2507 2508 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2509 { 2510 int r; 2511 2512 r = check_arg_count(argc, 1); 2513 if (r) 2514 return r; 2515 2516 r = dm_pool_release_metadata_snap(pool->pmd); 2517 if (r) 2518 DMWARN("release_metadata_snap message failed."); 2519 2520 return r; 2521 } 2522 2523 /* 2524 * Messages supported: 2525 * create_thin <dev_id> 2526 * create_snap <dev_id> <origin_id> 2527 * delete <dev_id> 2528 * trim <dev_id> <new_size_in_sectors> 2529 * set_transaction_id <current_trans_id> <new_trans_id> 2530 * reserve_metadata_snap 2531 * release_metadata_snap 2532 */ 2533 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 2534 { 2535 int r = -EINVAL; 2536 struct pool_c *pt = ti->private; 2537 struct pool *pool = pt->pool; 2538 2539 if (!strcasecmp(argv[0], "create_thin")) 2540 r = process_create_thin_mesg(argc, argv, pool); 2541 2542 else if (!strcasecmp(argv[0], "create_snap")) 2543 r = process_create_snap_mesg(argc, argv, pool); 2544 2545 else if (!strcasecmp(argv[0], "delete")) 2546 r = process_delete_mesg(argc, argv, pool); 2547 2548 else if (!strcasecmp(argv[0], "set_transaction_id")) 2549 r = process_set_transaction_id_mesg(argc, argv, pool); 2550 2551 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 2552 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 2553 2554 else if (!strcasecmp(argv[0], "release_metadata_snap")) 2555 r = process_release_metadata_snap_mesg(argc, argv, pool); 2556 2557 else 2558 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 2559 2560 if (!r) 2561 (void) commit(pool); 2562 2563 return r; 2564 } 2565 2566 static void emit_flags(struct pool_features *pf, char *result, 2567 unsigned sz, unsigned maxlen) 2568 { 2569 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 2570 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 2571 pf->error_if_no_space; 2572 DMEMIT("%u ", count); 2573 2574 if (!pf->zero_new_blocks) 2575 DMEMIT("skip_block_zeroing "); 2576 2577 if (!pf->discard_enabled) 2578 DMEMIT("ignore_discard "); 2579 2580 if (!pf->discard_passdown) 2581 DMEMIT("no_discard_passdown "); 2582 2583 if (pf->mode == PM_READ_ONLY) 2584 DMEMIT("read_only "); 2585 2586 if (pf->error_if_no_space) 2587 DMEMIT("error_if_no_space "); 2588 } 2589 2590 /* 2591 * Status line is: 2592 * <transaction id> <used metadata sectors>/<total metadata sectors> 2593 * <used data sectors>/<total data sectors> <held metadata root> 2594 */ 2595 static void pool_status(struct dm_target *ti, status_type_t type, 2596 unsigned status_flags, char *result, unsigned maxlen) 2597 { 2598 int r; 2599 unsigned sz = 0; 2600 uint64_t transaction_id; 2601 dm_block_t nr_free_blocks_data; 2602 dm_block_t nr_free_blocks_metadata; 2603 dm_block_t nr_blocks_data; 2604 dm_block_t nr_blocks_metadata; 2605 dm_block_t held_root; 2606 char buf[BDEVNAME_SIZE]; 2607 char buf2[BDEVNAME_SIZE]; 2608 struct pool_c *pt = ti->private; 2609 struct pool *pool = pt->pool; 2610 2611 switch (type) { 2612 case STATUSTYPE_INFO: 2613 if (get_pool_mode(pool) == PM_FAIL) { 2614 DMEMIT("Fail"); 2615 break; 2616 } 2617 2618 /* Commit to ensure statistics aren't out-of-date */ 2619 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 2620 (void) commit(pool); 2621 2622 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 2623 if (r) { 2624 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 2625 dm_device_name(pool->pool_md), r); 2626 goto err; 2627 } 2628 2629 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 2630 if (r) { 2631 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 2632 dm_device_name(pool->pool_md), r); 2633 goto err; 2634 } 2635 2636 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 2637 if (r) { 2638 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 2639 dm_device_name(pool->pool_md), r); 2640 goto err; 2641 } 2642 2643 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 2644 if (r) { 2645 DMERR("%s: dm_pool_get_free_block_count returned %d", 2646 dm_device_name(pool->pool_md), r); 2647 goto err; 2648 } 2649 2650 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 2651 if (r) { 2652 DMERR("%s: dm_pool_get_data_dev_size returned %d", 2653 dm_device_name(pool->pool_md), r); 2654 goto err; 2655 } 2656 2657 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 2658 if (r) { 2659 DMERR("%s: dm_pool_get_metadata_snap returned %d", 2660 dm_device_name(pool->pool_md), r); 2661 goto err; 2662 } 2663 2664 DMEMIT("%llu %llu/%llu %llu/%llu ", 2665 (unsigned long long)transaction_id, 2666 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 2667 (unsigned long long)nr_blocks_metadata, 2668 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 2669 (unsigned long long)nr_blocks_data); 2670 2671 if (held_root) 2672 DMEMIT("%llu ", held_root); 2673 else 2674 DMEMIT("- "); 2675 2676 if (pool->pf.mode == PM_READ_ONLY) 2677 DMEMIT("ro "); 2678 else 2679 DMEMIT("rw "); 2680 2681 if (!pool->pf.discard_enabled) 2682 DMEMIT("ignore_discard "); 2683 else if (pool->pf.discard_passdown) 2684 DMEMIT("discard_passdown "); 2685 else 2686 DMEMIT("no_discard_passdown "); 2687 2688 if (pool->pf.error_if_no_space) 2689 DMEMIT("error_if_no_space "); 2690 else 2691 DMEMIT("queue_if_no_space "); 2692 2693 break; 2694 2695 case STATUSTYPE_TABLE: 2696 DMEMIT("%s %s %lu %llu ", 2697 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 2698 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 2699 (unsigned long)pool->sectors_per_block, 2700 (unsigned long long)pt->low_water_blocks); 2701 emit_flags(&pt->requested_pf, result, sz, maxlen); 2702 break; 2703 } 2704 return; 2705 2706 err: 2707 DMEMIT("Error"); 2708 } 2709 2710 static int pool_iterate_devices(struct dm_target *ti, 2711 iterate_devices_callout_fn fn, void *data) 2712 { 2713 struct pool_c *pt = ti->private; 2714 2715 return fn(ti, pt->data_dev, 0, ti->len, data); 2716 } 2717 2718 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 2719 struct bio_vec *biovec, int max_size) 2720 { 2721 struct pool_c *pt = ti->private; 2722 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2723 2724 if (!q->merge_bvec_fn) 2725 return max_size; 2726 2727 bvm->bi_bdev = pt->data_dev->bdev; 2728 2729 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 2730 } 2731 2732 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 2733 { 2734 struct pool *pool = pt->pool; 2735 struct queue_limits *data_limits; 2736 2737 limits->max_discard_sectors = pool->sectors_per_block; 2738 2739 /* 2740 * discard_granularity is just a hint, and not enforced. 2741 */ 2742 if (pt->adjusted_pf.discard_passdown) { 2743 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 2744 limits->discard_granularity = data_limits->discard_granularity; 2745 } else 2746 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 2747 } 2748 2749 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 2750 { 2751 struct pool_c *pt = ti->private; 2752 struct pool *pool = pt->pool; 2753 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 2754 2755 /* 2756 * If the system-determined stacked limits are compatible with the 2757 * pool's blocksize (io_opt is a factor) do not override them. 2758 */ 2759 if (io_opt_sectors < pool->sectors_per_block || 2760 do_div(io_opt_sectors, pool->sectors_per_block)) { 2761 blk_limits_io_min(limits, 0); 2762 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 2763 } 2764 2765 /* 2766 * pt->adjusted_pf is a staging area for the actual features to use. 2767 * They get transferred to the live pool in bind_control_target() 2768 * called from pool_preresume(). 2769 */ 2770 if (!pt->adjusted_pf.discard_enabled) { 2771 /* 2772 * Must explicitly disallow stacking discard limits otherwise the 2773 * block layer will stack them if pool's data device has support. 2774 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 2775 * user to see that, so make sure to set all discard limits to 0. 2776 */ 2777 limits->discard_granularity = 0; 2778 return; 2779 } 2780 2781 disable_passdown_if_not_supported(pt); 2782 2783 set_discard_limits(pt, limits); 2784 } 2785 2786 static struct target_type pool_target = { 2787 .name = "thin-pool", 2788 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 2789 DM_TARGET_IMMUTABLE, 2790 .version = {1, 10, 0}, 2791 .module = THIS_MODULE, 2792 .ctr = pool_ctr, 2793 .dtr = pool_dtr, 2794 .map = pool_map, 2795 .postsuspend = pool_postsuspend, 2796 .preresume = pool_preresume, 2797 .resume = pool_resume, 2798 .message = pool_message, 2799 .status = pool_status, 2800 .merge = pool_merge, 2801 .iterate_devices = pool_iterate_devices, 2802 .io_hints = pool_io_hints, 2803 }; 2804 2805 /*---------------------------------------------------------------- 2806 * Thin target methods 2807 *--------------------------------------------------------------*/ 2808 static void thin_dtr(struct dm_target *ti) 2809 { 2810 struct thin_c *tc = ti->private; 2811 2812 mutex_lock(&dm_thin_pool_table.mutex); 2813 2814 __pool_dec(tc->pool); 2815 dm_pool_close_thin_device(tc->td); 2816 dm_put_device(ti, tc->pool_dev); 2817 if (tc->origin_dev) 2818 dm_put_device(ti, tc->origin_dev); 2819 kfree(tc); 2820 2821 mutex_unlock(&dm_thin_pool_table.mutex); 2822 } 2823 2824 /* 2825 * Thin target parameters: 2826 * 2827 * <pool_dev> <dev_id> [origin_dev] 2828 * 2829 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 2830 * dev_id: the internal device identifier 2831 * origin_dev: a device external to the pool that should act as the origin 2832 * 2833 * If the pool device has discards disabled, they get disabled for the thin 2834 * device as well. 2835 */ 2836 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 2837 { 2838 int r; 2839 struct thin_c *tc; 2840 struct dm_dev *pool_dev, *origin_dev; 2841 struct mapped_device *pool_md; 2842 2843 mutex_lock(&dm_thin_pool_table.mutex); 2844 2845 if (argc != 2 && argc != 3) { 2846 ti->error = "Invalid argument count"; 2847 r = -EINVAL; 2848 goto out_unlock; 2849 } 2850 2851 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 2852 if (!tc) { 2853 ti->error = "Out of memory"; 2854 r = -ENOMEM; 2855 goto out_unlock; 2856 } 2857 2858 if (argc == 3) { 2859 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 2860 if (r) { 2861 ti->error = "Error opening origin device"; 2862 goto bad_origin_dev; 2863 } 2864 tc->origin_dev = origin_dev; 2865 } 2866 2867 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 2868 if (r) { 2869 ti->error = "Error opening pool device"; 2870 goto bad_pool_dev; 2871 } 2872 tc->pool_dev = pool_dev; 2873 2874 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 2875 ti->error = "Invalid device id"; 2876 r = -EINVAL; 2877 goto bad_common; 2878 } 2879 2880 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 2881 if (!pool_md) { 2882 ti->error = "Couldn't get pool mapped device"; 2883 r = -EINVAL; 2884 goto bad_common; 2885 } 2886 2887 tc->pool = __pool_table_lookup(pool_md); 2888 if (!tc->pool) { 2889 ti->error = "Couldn't find pool object"; 2890 r = -EINVAL; 2891 goto bad_pool_lookup; 2892 } 2893 __pool_inc(tc->pool); 2894 2895 if (get_pool_mode(tc->pool) == PM_FAIL) { 2896 ti->error = "Couldn't open thin device, Pool is in fail mode"; 2897 goto bad_thin_open; 2898 } 2899 2900 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 2901 if (r) { 2902 ti->error = "Couldn't open thin internal device"; 2903 goto bad_thin_open; 2904 } 2905 2906 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 2907 if (r) 2908 goto bad_thin_open; 2909 2910 ti->num_flush_bios = 1; 2911 ti->flush_supported = true; 2912 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 2913 2914 /* In case the pool supports discards, pass them on. */ 2915 ti->discard_zeroes_data_unsupported = true; 2916 if (tc->pool->pf.discard_enabled) { 2917 ti->discards_supported = true; 2918 ti->num_discard_bios = 1; 2919 /* Discard bios must be split on a block boundary */ 2920 ti->split_discard_bios = true; 2921 } 2922 2923 dm_put(pool_md); 2924 2925 mutex_unlock(&dm_thin_pool_table.mutex); 2926 2927 return 0; 2928 2929 bad_thin_open: 2930 __pool_dec(tc->pool); 2931 bad_pool_lookup: 2932 dm_put(pool_md); 2933 bad_common: 2934 dm_put_device(ti, tc->pool_dev); 2935 bad_pool_dev: 2936 if (tc->origin_dev) 2937 dm_put_device(ti, tc->origin_dev); 2938 bad_origin_dev: 2939 kfree(tc); 2940 out_unlock: 2941 mutex_unlock(&dm_thin_pool_table.mutex); 2942 2943 return r; 2944 } 2945 2946 static int thin_map(struct dm_target *ti, struct bio *bio) 2947 { 2948 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 2949 2950 return thin_bio_map(ti, bio); 2951 } 2952 2953 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 2954 { 2955 unsigned long flags; 2956 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2957 struct list_head work; 2958 struct dm_thin_new_mapping *m, *tmp; 2959 struct pool *pool = h->tc->pool; 2960 2961 if (h->shared_read_entry) { 2962 INIT_LIST_HEAD(&work); 2963 dm_deferred_entry_dec(h->shared_read_entry, &work); 2964 2965 spin_lock_irqsave(&pool->lock, flags); 2966 list_for_each_entry_safe(m, tmp, &work, list) { 2967 list_del(&m->list); 2968 m->quiesced = true; 2969 __maybe_add_mapping(m); 2970 } 2971 spin_unlock_irqrestore(&pool->lock, flags); 2972 } 2973 2974 if (h->all_io_entry) { 2975 INIT_LIST_HEAD(&work); 2976 dm_deferred_entry_dec(h->all_io_entry, &work); 2977 if (!list_empty(&work)) { 2978 spin_lock_irqsave(&pool->lock, flags); 2979 list_for_each_entry_safe(m, tmp, &work, list) 2980 list_add_tail(&m->list, &pool->prepared_discards); 2981 spin_unlock_irqrestore(&pool->lock, flags); 2982 wake_worker(pool); 2983 } 2984 } 2985 2986 return 0; 2987 } 2988 2989 static void thin_postsuspend(struct dm_target *ti) 2990 { 2991 if (dm_noflush_suspending(ti)) 2992 requeue_io((struct thin_c *)ti->private); 2993 } 2994 2995 /* 2996 * <nr mapped sectors> <highest mapped sector> 2997 */ 2998 static void thin_status(struct dm_target *ti, status_type_t type, 2999 unsigned status_flags, char *result, unsigned maxlen) 3000 { 3001 int r; 3002 ssize_t sz = 0; 3003 dm_block_t mapped, highest; 3004 char buf[BDEVNAME_SIZE]; 3005 struct thin_c *tc = ti->private; 3006 3007 if (get_pool_mode(tc->pool) == PM_FAIL) { 3008 DMEMIT("Fail"); 3009 return; 3010 } 3011 3012 if (!tc->td) 3013 DMEMIT("-"); 3014 else { 3015 switch (type) { 3016 case STATUSTYPE_INFO: 3017 r = dm_thin_get_mapped_count(tc->td, &mapped); 3018 if (r) { 3019 DMERR("dm_thin_get_mapped_count returned %d", r); 3020 goto err; 3021 } 3022 3023 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 3024 if (r < 0) { 3025 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 3026 goto err; 3027 } 3028 3029 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 3030 if (r) 3031 DMEMIT("%llu", ((highest + 1) * 3032 tc->pool->sectors_per_block) - 1); 3033 else 3034 DMEMIT("-"); 3035 break; 3036 3037 case STATUSTYPE_TABLE: 3038 DMEMIT("%s %lu", 3039 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 3040 (unsigned long) tc->dev_id); 3041 if (tc->origin_dev) 3042 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 3043 break; 3044 } 3045 } 3046 3047 return; 3048 3049 err: 3050 DMEMIT("Error"); 3051 } 3052 3053 static int thin_iterate_devices(struct dm_target *ti, 3054 iterate_devices_callout_fn fn, void *data) 3055 { 3056 sector_t blocks; 3057 struct thin_c *tc = ti->private; 3058 struct pool *pool = tc->pool; 3059 3060 /* 3061 * We can't call dm_pool_get_data_dev_size() since that blocks. So 3062 * we follow a more convoluted path through to the pool's target. 3063 */ 3064 if (!pool->ti) 3065 return 0; /* nothing is bound */ 3066 3067 blocks = pool->ti->len; 3068 (void) sector_div(blocks, pool->sectors_per_block); 3069 if (blocks) 3070 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 3071 3072 return 0; 3073 } 3074 3075 static struct target_type thin_target = { 3076 .name = "thin", 3077 .version = {1, 10, 0}, 3078 .module = THIS_MODULE, 3079 .ctr = thin_ctr, 3080 .dtr = thin_dtr, 3081 .map = thin_map, 3082 .end_io = thin_endio, 3083 .postsuspend = thin_postsuspend, 3084 .status = thin_status, 3085 .iterate_devices = thin_iterate_devices, 3086 }; 3087 3088 /*----------------------------------------------------------------*/ 3089 3090 static int __init dm_thin_init(void) 3091 { 3092 int r; 3093 3094 pool_table_init(); 3095 3096 r = dm_register_target(&thin_target); 3097 if (r) 3098 return r; 3099 3100 r = dm_register_target(&pool_target); 3101 if (r) 3102 goto bad_pool_target; 3103 3104 r = -ENOMEM; 3105 3106 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 3107 if (!_new_mapping_cache) 3108 goto bad_new_mapping_cache; 3109 3110 return 0; 3111 3112 bad_new_mapping_cache: 3113 dm_unregister_target(&pool_target); 3114 bad_pool_target: 3115 dm_unregister_target(&thin_target); 3116 3117 return r; 3118 } 3119 3120 static void dm_thin_exit(void) 3121 { 3122 dm_unregister_target(&thin_target); 3123 dm_unregister_target(&pool_target); 3124 3125 kmem_cache_destroy(_new_mapping_cache); 3126 } 3127 3128 module_init(dm_thin_init); 3129 module_exit(dm_thin_exit); 3130 3131 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 3132 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3133 MODULE_LICENSE("GPL"); 3134