1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/list.h> 15 #include <linux/rculist.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/rbtree.h> 20 21 #define DM_MSG_PREFIX "thin" 22 23 /* 24 * Tunable constants 25 */ 26 #define ENDIO_HOOK_POOL_SIZE 1024 27 #define MAPPING_POOL_SIZE 1024 28 #define PRISON_CELLS 1024 29 #define COMMIT_PERIOD HZ 30 #define NO_SPACE_TIMEOUT_SECS 60 31 32 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 33 34 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 35 "A percentage of time allocated for copy on write"); 36 37 /* 38 * The block size of the device holding pool data must be 39 * between 64KB and 1GB. 40 */ 41 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 42 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 43 44 /* 45 * Device id is restricted to 24 bits. 46 */ 47 #define MAX_DEV_ID ((1 << 24) - 1) 48 49 /* 50 * How do we handle breaking sharing of data blocks? 51 * ================================================= 52 * 53 * We use a standard copy-on-write btree to store the mappings for the 54 * devices (note I'm talking about copy-on-write of the metadata here, not 55 * the data). When you take an internal snapshot you clone the root node 56 * of the origin btree. After this there is no concept of an origin or a 57 * snapshot. They are just two device trees that happen to point to the 58 * same data blocks. 59 * 60 * When we get a write in we decide if it's to a shared data block using 61 * some timestamp magic. If it is, we have to break sharing. 62 * 63 * Let's say we write to a shared block in what was the origin. The 64 * steps are: 65 * 66 * i) plug io further to this physical block. (see bio_prison code). 67 * 68 * ii) quiesce any read io to that shared data block. Obviously 69 * including all devices that share this block. (see dm_deferred_set code) 70 * 71 * iii) copy the data block to a newly allocate block. This step can be 72 * missed out if the io covers the block. (schedule_copy). 73 * 74 * iv) insert the new mapping into the origin's btree 75 * (process_prepared_mapping). This act of inserting breaks some 76 * sharing of btree nodes between the two devices. Breaking sharing only 77 * effects the btree of that specific device. Btrees for the other 78 * devices that share the block never change. The btree for the origin 79 * device as it was after the last commit is untouched, ie. we're using 80 * persistent data structures in the functional programming sense. 81 * 82 * v) unplug io to this physical block, including the io that triggered 83 * the breaking of sharing. 84 * 85 * Steps (ii) and (iii) occur in parallel. 86 * 87 * The metadata _doesn't_ need to be committed before the io continues. We 88 * get away with this because the io is always written to a _new_ block. 89 * If there's a crash, then: 90 * 91 * - The origin mapping will point to the old origin block (the shared 92 * one). This will contain the data as it was before the io that triggered 93 * the breaking of sharing came in. 94 * 95 * - The snap mapping still points to the old block. As it would after 96 * the commit. 97 * 98 * The downside of this scheme is the timestamp magic isn't perfect, and 99 * will continue to think that data block in the snapshot device is shared 100 * even after the write to the origin has broken sharing. I suspect data 101 * blocks will typically be shared by many different devices, so we're 102 * breaking sharing n + 1 times, rather than n, where n is the number of 103 * devices that reference this data block. At the moment I think the 104 * benefits far, far outweigh the disadvantages. 105 */ 106 107 /*----------------------------------------------------------------*/ 108 109 /* 110 * Key building. 111 */ 112 static void build_data_key(struct dm_thin_device *td, 113 dm_block_t b, struct dm_cell_key *key) 114 { 115 key->virtual = 0; 116 key->dev = dm_thin_dev_id(td); 117 key->block = b; 118 } 119 120 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 121 struct dm_cell_key *key) 122 { 123 key->virtual = 1; 124 key->dev = dm_thin_dev_id(td); 125 key->block = b; 126 } 127 128 /*----------------------------------------------------------------*/ 129 130 /* 131 * A pool device ties together a metadata device and a data device. It 132 * also provides the interface for creating and destroying internal 133 * devices. 134 */ 135 struct dm_thin_new_mapping; 136 137 /* 138 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 139 */ 140 enum pool_mode { 141 PM_WRITE, /* metadata may be changed */ 142 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 143 PM_READ_ONLY, /* metadata may not be changed */ 144 PM_FAIL, /* all I/O fails */ 145 }; 146 147 struct pool_features { 148 enum pool_mode mode; 149 150 bool zero_new_blocks:1; 151 bool discard_enabled:1; 152 bool discard_passdown:1; 153 bool error_if_no_space:1; 154 }; 155 156 struct thin_c; 157 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 158 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 159 160 struct pool { 161 struct list_head list; 162 struct dm_target *ti; /* Only set if a pool target is bound */ 163 164 struct mapped_device *pool_md; 165 struct block_device *md_dev; 166 struct dm_pool_metadata *pmd; 167 168 dm_block_t low_water_blocks; 169 uint32_t sectors_per_block; 170 int sectors_per_block_shift; 171 172 struct pool_features pf; 173 bool low_water_triggered:1; /* A dm event has been sent */ 174 175 struct dm_bio_prison *prison; 176 struct dm_kcopyd_client *copier; 177 178 struct workqueue_struct *wq; 179 struct work_struct worker; 180 struct delayed_work waker; 181 struct delayed_work no_space_timeout; 182 183 unsigned long last_commit_jiffies; 184 unsigned ref_count; 185 186 spinlock_t lock; 187 struct bio_list deferred_flush_bios; 188 struct list_head prepared_mappings; 189 struct list_head prepared_discards; 190 struct list_head active_thins; 191 192 struct dm_deferred_set *shared_read_ds; 193 struct dm_deferred_set *all_io_ds; 194 195 struct dm_thin_new_mapping *next_mapping; 196 mempool_t *mapping_pool; 197 198 process_bio_fn process_bio; 199 process_bio_fn process_discard; 200 201 process_mapping_fn process_prepared_mapping; 202 process_mapping_fn process_prepared_discard; 203 }; 204 205 static enum pool_mode get_pool_mode(struct pool *pool); 206 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 207 208 /* 209 * Target context for a pool. 210 */ 211 struct pool_c { 212 struct dm_target *ti; 213 struct pool *pool; 214 struct dm_dev *data_dev; 215 struct dm_dev *metadata_dev; 216 struct dm_target_callbacks callbacks; 217 218 dm_block_t low_water_blocks; 219 struct pool_features requested_pf; /* Features requested during table load */ 220 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 221 }; 222 223 /* 224 * Target context for a thin. 225 */ 226 struct thin_c { 227 struct list_head list; 228 struct dm_dev *pool_dev; 229 struct dm_dev *origin_dev; 230 sector_t origin_size; 231 dm_thin_id dev_id; 232 233 struct pool *pool; 234 struct dm_thin_device *td; 235 bool requeue_mode:1; 236 spinlock_t lock; 237 struct bio_list deferred_bio_list; 238 struct bio_list retry_on_resume_list; 239 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 240 241 /* 242 * Ensures the thin is not destroyed until the worker has finished 243 * iterating the active_thins list. 244 */ 245 atomic_t refcount; 246 struct completion can_destroy; 247 }; 248 249 /*----------------------------------------------------------------*/ 250 251 /* 252 * wake_worker() is used when new work is queued and when pool_resume is 253 * ready to continue deferred IO processing. 254 */ 255 static void wake_worker(struct pool *pool) 256 { 257 queue_work(pool->wq, &pool->worker); 258 } 259 260 /*----------------------------------------------------------------*/ 261 262 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 263 struct dm_bio_prison_cell **cell_result) 264 { 265 int r; 266 struct dm_bio_prison_cell *cell_prealloc; 267 268 /* 269 * Allocate a cell from the prison's mempool. 270 * This might block but it can't fail. 271 */ 272 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 273 274 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 275 if (r) 276 /* 277 * We reused an old cell; we can get rid of 278 * the new one. 279 */ 280 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 281 282 return r; 283 } 284 285 static void cell_release(struct pool *pool, 286 struct dm_bio_prison_cell *cell, 287 struct bio_list *bios) 288 { 289 dm_cell_release(pool->prison, cell, bios); 290 dm_bio_prison_free_cell(pool->prison, cell); 291 } 292 293 static void cell_release_no_holder(struct pool *pool, 294 struct dm_bio_prison_cell *cell, 295 struct bio_list *bios) 296 { 297 dm_cell_release_no_holder(pool->prison, cell, bios); 298 dm_bio_prison_free_cell(pool->prison, cell); 299 } 300 301 static void cell_defer_no_holder_no_free(struct thin_c *tc, 302 struct dm_bio_prison_cell *cell) 303 { 304 struct pool *pool = tc->pool; 305 unsigned long flags; 306 307 spin_lock_irqsave(&tc->lock, flags); 308 dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list); 309 spin_unlock_irqrestore(&tc->lock, flags); 310 311 wake_worker(pool); 312 } 313 314 static void cell_error_with_code(struct pool *pool, 315 struct dm_bio_prison_cell *cell, int error_code) 316 { 317 dm_cell_error(pool->prison, cell, error_code); 318 dm_bio_prison_free_cell(pool->prison, cell); 319 } 320 321 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 322 { 323 cell_error_with_code(pool, cell, -EIO); 324 } 325 326 /*----------------------------------------------------------------*/ 327 328 /* 329 * A global list of pools that uses a struct mapped_device as a key. 330 */ 331 static struct dm_thin_pool_table { 332 struct mutex mutex; 333 struct list_head pools; 334 } dm_thin_pool_table; 335 336 static void pool_table_init(void) 337 { 338 mutex_init(&dm_thin_pool_table.mutex); 339 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 340 } 341 342 static void __pool_table_insert(struct pool *pool) 343 { 344 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 345 list_add(&pool->list, &dm_thin_pool_table.pools); 346 } 347 348 static void __pool_table_remove(struct pool *pool) 349 { 350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 351 list_del(&pool->list); 352 } 353 354 static struct pool *__pool_table_lookup(struct mapped_device *md) 355 { 356 struct pool *pool = NULL, *tmp; 357 358 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 359 360 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 361 if (tmp->pool_md == md) { 362 pool = tmp; 363 break; 364 } 365 } 366 367 return pool; 368 } 369 370 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 371 { 372 struct pool *pool = NULL, *tmp; 373 374 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 375 376 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 377 if (tmp->md_dev == md_dev) { 378 pool = tmp; 379 break; 380 } 381 } 382 383 return pool; 384 } 385 386 /*----------------------------------------------------------------*/ 387 388 struct dm_thin_endio_hook { 389 struct thin_c *tc; 390 struct dm_deferred_entry *shared_read_entry; 391 struct dm_deferred_entry *all_io_entry; 392 struct dm_thin_new_mapping *overwrite_mapping; 393 struct rb_node rb_node; 394 }; 395 396 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master) 397 { 398 struct bio *bio; 399 struct bio_list bios; 400 unsigned long flags; 401 402 bio_list_init(&bios); 403 404 spin_lock_irqsave(&tc->lock, flags); 405 bio_list_merge(&bios, master); 406 bio_list_init(master); 407 spin_unlock_irqrestore(&tc->lock, flags); 408 409 while ((bio = bio_list_pop(&bios))) 410 bio_endio(bio, DM_ENDIO_REQUEUE); 411 } 412 413 static void requeue_io(struct thin_c *tc) 414 { 415 requeue_bio_list(tc, &tc->deferred_bio_list); 416 requeue_bio_list(tc, &tc->retry_on_resume_list); 417 } 418 419 static void error_thin_retry_list(struct thin_c *tc) 420 { 421 struct bio *bio; 422 unsigned long flags; 423 struct bio_list bios; 424 425 bio_list_init(&bios); 426 427 spin_lock_irqsave(&tc->lock, flags); 428 bio_list_merge(&bios, &tc->retry_on_resume_list); 429 bio_list_init(&tc->retry_on_resume_list); 430 spin_unlock_irqrestore(&tc->lock, flags); 431 432 while ((bio = bio_list_pop(&bios))) 433 bio_io_error(bio); 434 } 435 436 static void error_retry_list(struct pool *pool) 437 { 438 struct thin_c *tc; 439 440 rcu_read_lock(); 441 list_for_each_entry_rcu(tc, &pool->active_thins, list) 442 error_thin_retry_list(tc); 443 rcu_read_unlock(); 444 } 445 446 /* 447 * This section of code contains the logic for processing a thin device's IO. 448 * Much of the code depends on pool object resources (lists, workqueues, etc) 449 * but most is exclusively called from the thin target rather than the thin-pool 450 * target. 451 */ 452 453 static bool block_size_is_power_of_two(struct pool *pool) 454 { 455 return pool->sectors_per_block_shift >= 0; 456 } 457 458 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 459 { 460 struct pool *pool = tc->pool; 461 sector_t block_nr = bio->bi_iter.bi_sector; 462 463 if (block_size_is_power_of_two(pool)) 464 block_nr >>= pool->sectors_per_block_shift; 465 else 466 (void) sector_div(block_nr, pool->sectors_per_block); 467 468 return block_nr; 469 } 470 471 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 472 { 473 struct pool *pool = tc->pool; 474 sector_t bi_sector = bio->bi_iter.bi_sector; 475 476 bio->bi_bdev = tc->pool_dev->bdev; 477 if (block_size_is_power_of_two(pool)) 478 bio->bi_iter.bi_sector = 479 (block << pool->sectors_per_block_shift) | 480 (bi_sector & (pool->sectors_per_block - 1)); 481 else 482 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 483 sector_div(bi_sector, pool->sectors_per_block); 484 } 485 486 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 487 { 488 bio->bi_bdev = tc->origin_dev->bdev; 489 } 490 491 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 492 { 493 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 494 dm_thin_changed_this_transaction(tc->td); 495 } 496 497 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 498 { 499 struct dm_thin_endio_hook *h; 500 501 if (bio->bi_rw & REQ_DISCARD) 502 return; 503 504 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 505 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 506 } 507 508 static void issue(struct thin_c *tc, struct bio *bio) 509 { 510 struct pool *pool = tc->pool; 511 unsigned long flags; 512 513 if (!bio_triggers_commit(tc, bio)) { 514 generic_make_request(bio); 515 return; 516 } 517 518 /* 519 * Complete bio with an error if earlier I/O caused changes to 520 * the metadata that can't be committed e.g, due to I/O errors 521 * on the metadata device. 522 */ 523 if (dm_thin_aborted_changes(tc->td)) { 524 bio_io_error(bio); 525 return; 526 } 527 528 /* 529 * Batch together any bios that trigger commits and then issue a 530 * single commit for them in process_deferred_bios(). 531 */ 532 spin_lock_irqsave(&pool->lock, flags); 533 bio_list_add(&pool->deferred_flush_bios, bio); 534 spin_unlock_irqrestore(&pool->lock, flags); 535 } 536 537 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 538 { 539 remap_to_origin(tc, bio); 540 issue(tc, bio); 541 } 542 543 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 544 dm_block_t block) 545 { 546 remap(tc, bio, block); 547 issue(tc, bio); 548 } 549 550 /*----------------------------------------------------------------*/ 551 552 /* 553 * Bio endio functions. 554 */ 555 struct dm_thin_new_mapping { 556 struct list_head list; 557 558 bool pass_discard:1; 559 bool definitely_not_shared:1; 560 561 /* 562 * Track quiescing, copying and zeroing preparation actions. When this 563 * counter hits zero the block is prepared and can be inserted into the 564 * btree. 565 */ 566 atomic_t prepare_actions; 567 568 int err; 569 struct thin_c *tc; 570 dm_block_t virt_block; 571 dm_block_t data_block; 572 struct dm_bio_prison_cell *cell, *cell2; 573 574 /* 575 * If the bio covers the whole area of a block then we can avoid 576 * zeroing or copying. Instead this bio is hooked. The bio will 577 * still be in the cell, so care has to be taken to avoid issuing 578 * the bio twice. 579 */ 580 struct bio *bio; 581 bio_end_io_t *saved_bi_end_io; 582 }; 583 584 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 585 { 586 struct pool *pool = m->tc->pool; 587 588 if (atomic_dec_and_test(&m->prepare_actions)) { 589 list_add_tail(&m->list, &pool->prepared_mappings); 590 wake_worker(pool); 591 } 592 } 593 594 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 595 { 596 unsigned long flags; 597 struct pool *pool = m->tc->pool; 598 599 spin_lock_irqsave(&pool->lock, flags); 600 __complete_mapping_preparation(m); 601 spin_unlock_irqrestore(&pool->lock, flags); 602 } 603 604 static void copy_complete(int read_err, unsigned long write_err, void *context) 605 { 606 struct dm_thin_new_mapping *m = context; 607 608 m->err = read_err || write_err ? -EIO : 0; 609 complete_mapping_preparation(m); 610 } 611 612 static void overwrite_endio(struct bio *bio, int err) 613 { 614 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 615 struct dm_thin_new_mapping *m = h->overwrite_mapping; 616 617 m->err = err; 618 complete_mapping_preparation(m); 619 } 620 621 /*----------------------------------------------------------------*/ 622 623 /* 624 * Workqueue. 625 */ 626 627 /* 628 * Prepared mapping jobs. 629 */ 630 631 /* 632 * This sends the bios in the cell back to the deferred_bios list. 633 */ 634 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) 635 { 636 struct pool *pool = tc->pool; 637 unsigned long flags; 638 639 spin_lock_irqsave(&tc->lock, flags); 640 cell_release(pool, cell, &tc->deferred_bio_list); 641 spin_unlock_irqrestore(&tc->lock, flags); 642 643 wake_worker(pool); 644 } 645 646 /* 647 * Same as cell_defer above, except it omits the original holder of the cell. 648 */ 649 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 650 { 651 struct pool *pool = tc->pool; 652 unsigned long flags; 653 654 spin_lock_irqsave(&tc->lock, flags); 655 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 656 spin_unlock_irqrestore(&tc->lock, flags); 657 658 wake_worker(pool); 659 } 660 661 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 662 { 663 if (m->bio) { 664 m->bio->bi_end_io = m->saved_bi_end_io; 665 atomic_inc(&m->bio->bi_remaining); 666 } 667 cell_error(m->tc->pool, m->cell); 668 list_del(&m->list); 669 mempool_free(m, m->tc->pool->mapping_pool); 670 } 671 672 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 673 { 674 struct thin_c *tc = m->tc; 675 struct pool *pool = tc->pool; 676 struct bio *bio; 677 int r; 678 679 bio = m->bio; 680 if (bio) { 681 bio->bi_end_io = m->saved_bi_end_io; 682 atomic_inc(&bio->bi_remaining); 683 } 684 685 if (m->err) { 686 cell_error(pool, m->cell); 687 goto out; 688 } 689 690 /* 691 * Commit the prepared block into the mapping btree. 692 * Any I/O for this block arriving after this point will get 693 * remapped to it directly. 694 */ 695 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 696 if (r) { 697 metadata_operation_failed(pool, "dm_thin_insert_block", r); 698 cell_error(pool, m->cell); 699 goto out; 700 } 701 702 /* 703 * Release any bios held while the block was being provisioned. 704 * If we are processing a write bio that completely covers the block, 705 * we already processed it so can ignore it now when processing 706 * the bios in the cell. 707 */ 708 if (bio) { 709 cell_defer_no_holder(tc, m->cell); 710 bio_endio(bio, 0); 711 } else 712 cell_defer(tc, m->cell); 713 714 out: 715 list_del(&m->list); 716 mempool_free(m, pool->mapping_pool); 717 } 718 719 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 720 { 721 struct thin_c *tc = m->tc; 722 723 bio_io_error(m->bio); 724 cell_defer_no_holder(tc, m->cell); 725 cell_defer_no_holder(tc, m->cell2); 726 mempool_free(m, tc->pool->mapping_pool); 727 } 728 729 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 730 { 731 struct thin_c *tc = m->tc; 732 733 inc_all_io_entry(tc->pool, m->bio); 734 cell_defer_no_holder(tc, m->cell); 735 cell_defer_no_holder(tc, m->cell2); 736 737 if (m->pass_discard) 738 if (m->definitely_not_shared) 739 remap_and_issue(tc, m->bio, m->data_block); 740 else { 741 bool used = false; 742 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used) 743 bio_endio(m->bio, 0); 744 else 745 remap_and_issue(tc, m->bio, m->data_block); 746 } 747 else 748 bio_endio(m->bio, 0); 749 750 mempool_free(m, tc->pool->mapping_pool); 751 } 752 753 static void process_prepared_discard(struct dm_thin_new_mapping *m) 754 { 755 int r; 756 struct thin_c *tc = m->tc; 757 758 r = dm_thin_remove_block(tc->td, m->virt_block); 759 if (r) 760 DMERR_LIMIT("dm_thin_remove_block() failed"); 761 762 process_prepared_discard_passdown(m); 763 } 764 765 static void process_prepared(struct pool *pool, struct list_head *head, 766 process_mapping_fn *fn) 767 { 768 unsigned long flags; 769 struct list_head maps; 770 struct dm_thin_new_mapping *m, *tmp; 771 772 INIT_LIST_HEAD(&maps); 773 spin_lock_irqsave(&pool->lock, flags); 774 list_splice_init(head, &maps); 775 spin_unlock_irqrestore(&pool->lock, flags); 776 777 list_for_each_entry_safe(m, tmp, &maps, list) 778 (*fn)(m); 779 } 780 781 /* 782 * Deferred bio jobs. 783 */ 784 static int io_overlaps_block(struct pool *pool, struct bio *bio) 785 { 786 return bio->bi_iter.bi_size == 787 (pool->sectors_per_block << SECTOR_SHIFT); 788 } 789 790 static int io_overwrites_block(struct pool *pool, struct bio *bio) 791 { 792 return (bio_data_dir(bio) == WRITE) && 793 io_overlaps_block(pool, bio); 794 } 795 796 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 797 bio_end_io_t *fn) 798 { 799 *save = bio->bi_end_io; 800 bio->bi_end_io = fn; 801 } 802 803 static int ensure_next_mapping(struct pool *pool) 804 { 805 if (pool->next_mapping) 806 return 0; 807 808 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 809 810 return pool->next_mapping ? 0 : -ENOMEM; 811 } 812 813 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 814 { 815 struct dm_thin_new_mapping *m = pool->next_mapping; 816 817 BUG_ON(!pool->next_mapping); 818 819 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 820 INIT_LIST_HEAD(&m->list); 821 m->bio = NULL; 822 823 pool->next_mapping = NULL; 824 825 return m; 826 } 827 828 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 829 sector_t begin, sector_t end) 830 { 831 int r; 832 struct dm_io_region to; 833 834 to.bdev = tc->pool_dev->bdev; 835 to.sector = begin; 836 to.count = end - begin; 837 838 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 839 if (r < 0) { 840 DMERR_LIMIT("dm_kcopyd_zero() failed"); 841 copy_complete(1, 1, m); 842 } 843 } 844 845 /* 846 * A partial copy also needs to zero the uncopied region. 847 */ 848 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 849 struct dm_dev *origin, dm_block_t data_origin, 850 dm_block_t data_dest, 851 struct dm_bio_prison_cell *cell, struct bio *bio, 852 sector_t len) 853 { 854 int r; 855 struct pool *pool = tc->pool; 856 struct dm_thin_new_mapping *m = get_next_mapping(pool); 857 858 m->tc = tc; 859 m->virt_block = virt_block; 860 m->data_block = data_dest; 861 m->cell = cell; 862 863 /* 864 * quiesce action + copy action + an extra reference held for the 865 * duration of this function (we may need to inc later for a 866 * partial zero). 867 */ 868 atomic_set(&m->prepare_actions, 3); 869 870 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 871 complete_mapping_preparation(m); /* already quiesced */ 872 873 /* 874 * IO to pool_dev remaps to the pool target's data_dev. 875 * 876 * If the whole block of data is being overwritten, we can issue the 877 * bio immediately. Otherwise we use kcopyd to clone the data first. 878 */ 879 if (io_overwrites_block(pool, bio)) { 880 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 881 882 h->overwrite_mapping = m; 883 m->bio = bio; 884 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 885 inc_all_io_entry(pool, bio); 886 remap_and_issue(tc, bio, data_dest); 887 } else { 888 struct dm_io_region from, to; 889 890 from.bdev = origin->bdev; 891 from.sector = data_origin * pool->sectors_per_block; 892 from.count = len; 893 894 to.bdev = tc->pool_dev->bdev; 895 to.sector = data_dest * pool->sectors_per_block; 896 to.count = len; 897 898 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 899 0, copy_complete, m); 900 if (r < 0) { 901 DMERR_LIMIT("dm_kcopyd_copy() failed"); 902 copy_complete(1, 1, m); 903 904 /* 905 * We allow the zero to be issued, to simplify the 906 * error path. Otherwise we'd need to start 907 * worrying about decrementing the prepare_actions 908 * counter. 909 */ 910 } 911 912 /* 913 * Do we need to zero a tail region? 914 */ 915 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 916 atomic_inc(&m->prepare_actions); 917 ll_zero(tc, m, 918 data_dest * pool->sectors_per_block + len, 919 (data_dest + 1) * pool->sectors_per_block); 920 } 921 } 922 923 complete_mapping_preparation(m); /* drop our ref */ 924 } 925 926 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 927 dm_block_t data_origin, dm_block_t data_dest, 928 struct dm_bio_prison_cell *cell, struct bio *bio) 929 { 930 schedule_copy(tc, virt_block, tc->pool_dev, 931 data_origin, data_dest, cell, bio, 932 tc->pool->sectors_per_block); 933 } 934 935 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 936 dm_block_t data_block, struct dm_bio_prison_cell *cell, 937 struct bio *bio) 938 { 939 struct pool *pool = tc->pool; 940 struct dm_thin_new_mapping *m = get_next_mapping(pool); 941 942 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 943 m->tc = tc; 944 m->virt_block = virt_block; 945 m->data_block = data_block; 946 m->cell = cell; 947 948 /* 949 * If the whole block of data is being overwritten or we are not 950 * zeroing pre-existing data, we can issue the bio immediately. 951 * Otherwise we use kcopyd to zero the data first. 952 */ 953 if (!pool->pf.zero_new_blocks) 954 process_prepared_mapping(m); 955 956 else if (io_overwrites_block(pool, bio)) { 957 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 958 959 h->overwrite_mapping = m; 960 m->bio = bio; 961 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 962 inc_all_io_entry(pool, bio); 963 remap_and_issue(tc, bio, data_block); 964 965 } else 966 ll_zero(tc, m, 967 data_block * pool->sectors_per_block, 968 (data_block + 1) * pool->sectors_per_block); 969 } 970 971 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 972 dm_block_t data_dest, 973 struct dm_bio_prison_cell *cell, struct bio *bio) 974 { 975 struct pool *pool = tc->pool; 976 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 977 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 978 979 if (virt_block_end <= tc->origin_size) 980 schedule_copy(tc, virt_block, tc->origin_dev, 981 virt_block, data_dest, cell, bio, 982 pool->sectors_per_block); 983 984 else if (virt_block_begin < tc->origin_size) 985 schedule_copy(tc, virt_block, tc->origin_dev, 986 virt_block, data_dest, cell, bio, 987 tc->origin_size - virt_block_begin); 988 989 else 990 schedule_zero(tc, virt_block, data_dest, cell, bio); 991 } 992 993 /* 994 * A non-zero return indicates read_only or fail_io mode. 995 * Many callers don't care about the return value. 996 */ 997 static int commit(struct pool *pool) 998 { 999 int r; 1000 1001 if (get_pool_mode(pool) >= PM_READ_ONLY) 1002 return -EINVAL; 1003 1004 r = dm_pool_commit_metadata(pool->pmd); 1005 if (r) 1006 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1007 1008 return r; 1009 } 1010 1011 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1012 { 1013 unsigned long flags; 1014 1015 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1016 DMWARN("%s: reached low water mark for data device: sending event.", 1017 dm_device_name(pool->pool_md)); 1018 spin_lock_irqsave(&pool->lock, flags); 1019 pool->low_water_triggered = true; 1020 spin_unlock_irqrestore(&pool->lock, flags); 1021 dm_table_event(pool->ti->table); 1022 } 1023 } 1024 1025 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1026 1027 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1028 { 1029 int r; 1030 dm_block_t free_blocks; 1031 struct pool *pool = tc->pool; 1032 1033 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1034 return -EINVAL; 1035 1036 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1037 if (r) { 1038 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1039 return r; 1040 } 1041 1042 check_low_water_mark(pool, free_blocks); 1043 1044 if (!free_blocks) { 1045 /* 1046 * Try to commit to see if that will free up some 1047 * more space. 1048 */ 1049 r = commit(pool); 1050 if (r) 1051 return r; 1052 1053 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1054 if (r) { 1055 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1056 return r; 1057 } 1058 1059 if (!free_blocks) { 1060 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1061 return -ENOSPC; 1062 } 1063 } 1064 1065 r = dm_pool_alloc_data_block(pool->pmd, result); 1066 if (r) { 1067 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1068 return r; 1069 } 1070 1071 return 0; 1072 } 1073 1074 /* 1075 * If we have run out of space, queue bios until the device is 1076 * resumed, presumably after having been reloaded with more space. 1077 */ 1078 static void retry_on_resume(struct bio *bio) 1079 { 1080 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1081 struct thin_c *tc = h->tc; 1082 unsigned long flags; 1083 1084 spin_lock_irqsave(&tc->lock, flags); 1085 bio_list_add(&tc->retry_on_resume_list, bio); 1086 spin_unlock_irqrestore(&tc->lock, flags); 1087 } 1088 1089 static int should_error_unserviceable_bio(struct pool *pool) 1090 { 1091 enum pool_mode m = get_pool_mode(pool); 1092 1093 switch (m) { 1094 case PM_WRITE: 1095 /* Shouldn't get here */ 1096 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1097 return -EIO; 1098 1099 case PM_OUT_OF_DATA_SPACE: 1100 return pool->pf.error_if_no_space ? -ENOSPC : 0; 1101 1102 case PM_READ_ONLY: 1103 case PM_FAIL: 1104 return -EIO; 1105 default: 1106 /* Shouldn't get here */ 1107 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1108 return -EIO; 1109 } 1110 } 1111 1112 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1113 { 1114 int error = should_error_unserviceable_bio(pool); 1115 1116 if (error) 1117 bio_endio(bio, error); 1118 else 1119 retry_on_resume(bio); 1120 } 1121 1122 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1123 { 1124 struct bio *bio; 1125 struct bio_list bios; 1126 int error; 1127 1128 error = should_error_unserviceable_bio(pool); 1129 if (error) { 1130 cell_error_with_code(pool, cell, error); 1131 return; 1132 } 1133 1134 bio_list_init(&bios); 1135 cell_release(pool, cell, &bios); 1136 1137 error = should_error_unserviceable_bio(pool); 1138 if (error) 1139 while ((bio = bio_list_pop(&bios))) 1140 bio_endio(bio, error); 1141 else 1142 while ((bio = bio_list_pop(&bios))) 1143 retry_on_resume(bio); 1144 } 1145 1146 static void process_discard(struct thin_c *tc, struct bio *bio) 1147 { 1148 int r; 1149 unsigned long flags; 1150 struct pool *pool = tc->pool; 1151 struct dm_bio_prison_cell *cell, *cell2; 1152 struct dm_cell_key key, key2; 1153 dm_block_t block = get_bio_block(tc, bio); 1154 struct dm_thin_lookup_result lookup_result; 1155 struct dm_thin_new_mapping *m; 1156 1157 build_virtual_key(tc->td, block, &key); 1158 if (bio_detain(tc->pool, &key, bio, &cell)) 1159 return; 1160 1161 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1162 switch (r) { 1163 case 0: 1164 /* 1165 * Check nobody is fiddling with this pool block. This can 1166 * happen if someone's in the process of breaking sharing 1167 * on this block. 1168 */ 1169 build_data_key(tc->td, lookup_result.block, &key2); 1170 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1171 cell_defer_no_holder(tc, cell); 1172 break; 1173 } 1174 1175 if (io_overlaps_block(pool, bio)) { 1176 /* 1177 * IO may still be going to the destination block. We must 1178 * quiesce before we can do the removal. 1179 */ 1180 m = get_next_mapping(pool); 1181 m->tc = tc; 1182 m->pass_discard = pool->pf.discard_passdown; 1183 m->definitely_not_shared = !lookup_result.shared; 1184 m->virt_block = block; 1185 m->data_block = lookup_result.block; 1186 m->cell = cell; 1187 m->cell2 = cell2; 1188 m->bio = bio; 1189 1190 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { 1191 spin_lock_irqsave(&pool->lock, flags); 1192 list_add_tail(&m->list, &pool->prepared_discards); 1193 spin_unlock_irqrestore(&pool->lock, flags); 1194 wake_worker(pool); 1195 } 1196 } else { 1197 inc_all_io_entry(pool, bio); 1198 cell_defer_no_holder(tc, cell); 1199 cell_defer_no_holder(tc, cell2); 1200 1201 /* 1202 * The DM core makes sure that the discard doesn't span 1203 * a block boundary. So we submit the discard of a 1204 * partial block appropriately. 1205 */ 1206 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1207 remap_and_issue(tc, bio, lookup_result.block); 1208 else 1209 bio_endio(bio, 0); 1210 } 1211 break; 1212 1213 case -ENODATA: 1214 /* 1215 * It isn't provisioned, just forget it. 1216 */ 1217 cell_defer_no_holder(tc, cell); 1218 bio_endio(bio, 0); 1219 break; 1220 1221 default: 1222 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1223 __func__, r); 1224 cell_defer_no_holder(tc, cell); 1225 bio_io_error(bio); 1226 break; 1227 } 1228 } 1229 1230 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1231 struct dm_cell_key *key, 1232 struct dm_thin_lookup_result *lookup_result, 1233 struct dm_bio_prison_cell *cell) 1234 { 1235 int r; 1236 dm_block_t data_block; 1237 struct pool *pool = tc->pool; 1238 1239 r = alloc_data_block(tc, &data_block); 1240 switch (r) { 1241 case 0: 1242 schedule_internal_copy(tc, block, lookup_result->block, 1243 data_block, cell, bio); 1244 break; 1245 1246 case -ENOSPC: 1247 retry_bios_on_resume(pool, cell); 1248 break; 1249 1250 default: 1251 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1252 __func__, r); 1253 cell_error(pool, cell); 1254 break; 1255 } 1256 } 1257 1258 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1259 dm_block_t block, 1260 struct dm_thin_lookup_result *lookup_result) 1261 { 1262 struct dm_bio_prison_cell *cell; 1263 struct pool *pool = tc->pool; 1264 struct dm_cell_key key; 1265 1266 /* 1267 * If cell is already occupied, then sharing is already in the process 1268 * of being broken so we have nothing further to do here. 1269 */ 1270 build_data_key(tc->td, lookup_result->block, &key); 1271 if (bio_detain(pool, &key, bio, &cell)) 1272 return; 1273 1274 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) 1275 break_sharing(tc, bio, block, &key, lookup_result, cell); 1276 else { 1277 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1278 1279 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1280 inc_all_io_entry(pool, bio); 1281 cell_defer_no_holder(tc, cell); 1282 1283 remap_and_issue(tc, bio, lookup_result->block); 1284 } 1285 } 1286 1287 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1288 struct dm_bio_prison_cell *cell) 1289 { 1290 int r; 1291 dm_block_t data_block; 1292 struct pool *pool = tc->pool; 1293 1294 /* 1295 * Remap empty bios (flushes) immediately, without provisioning. 1296 */ 1297 if (!bio->bi_iter.bi_size) { 1298 inc_all_io_entry(pool, bio); 1299 cell_defer_no_holder(tc, cell); 1300 1301 remap_and_issue(tc, bio, 0); 1302 return; 1303 } 1304 1305 /* 1306 * Fill read bios with zeroes and complete them immediately. 1307 */ 1308 if (bio_data_dir(bio) == READ) { 1309 zero_fill_bio(bio); 1310 cell_defer_no_holder(tc, cell); 1311 bio_endio(bio, 0); 1312 return; 1313 } 1314 1315 r = alloc_data_block(tc, &data_block); 1316 switch (r) { 1317 case 0: 1318 if (tc->origin_dev) 1319 schedule_external_copy(tc, block, data_block, cell, bio); 1320 else 1321 schedule_zero(tc, block, data_block, cell, bio); 1322 break; 1323 1324 case -ENOSPC: 1325 retry_bios_on_resume(pool, cell); 1326 break; 1327 1328 default: 1329 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1330 __func__, r); 1331 cell_error(pool, cell); 1332 break; 1333 } 1334 } 1335 1336 static void process_bio(struct thin_c *tc, struct bio *bio) 1337 { 1338 int r; 1339 struct pool *pool = tc->pool; 1340 dm_block_t block = get_bio_block(tc, bio); 1341 struct dm_bio_prison_cell *cell; 1342 struct dm_cell_key key; 1343 struct dm_thin_lookup_result lookup_result; 1344 1345 /* 1346 * If cell is already occupied, then the block is already 1347 * being provisioned so we have nothing further to do here. 1348 */ 1349 build_virtual_key(tc->td, block, &key); 1350 if (bio_detain(pool, &key, bio, &cell)) 1351 return; 1352 1353 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1354 switch (r) { 1355 case 0: 1356 if (lookup_result.shared) { 1357 process_shared_bio(tc, bio, block, &lookup_result); 1358 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */ 1359 } else { 1360 inc_all_io_entry(pool, bio); 1361 cell_defer_no_holder(tc, cell); 1362 1363 remap_and_issue(tc, bio, lookup_result.block); 1364 } 1365 break; 1366 1367 case -ENODATA: 1368 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1369 inc_all_io_entry(pool, bio); 1370 cell_defer_no_holder(tc, cell); 1371 1372 if (bio_end_sector(bio) <= tc->origin_size) 1373 remap_to_origin_and_issue(tc, bio); 1374 1375 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1376 zero_fill_bio(bio); 1377 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1378 remap_to_origin_and_issue(tc, bio); 1379 1380 } else { 1381 zero_fill_bio(bio); 1382 bio_endio(bio, 0); 1383 } 1384 } else 1385 provision_block(tc, bio, block, cell); 1386 break; 1387 1388 default: 1389 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1390 __func__, r); 1391 cell_defer_no_holder(tc, cell); 1392 bio_io_error(bio); 1393 break; 1394 } 1395 } 1396 1397 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1398 { 1399 int r; 1400 int rw = bio_data_dir(bio); 1401 dm_block_t block = get_bio_block(tc, bio); 1402 struct dm_thin_lookup_result lookup_result; 1403 1404 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1405 switch (r) { 1406 case 0: 1407 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) 1408 handle_unserviceable_bio(tc->pool, bio); 1409 else { 1410 inc_all_io_entry(tc->pool, bio); 1411 remap_and_issue(tc, bio, lookup_result.block); 1412 } 1413 break; 1414 1415 case -ENODATA: 1416 if (rw != READ) { 1417 handle_unserviceable_bio(tc->pool, bio); 1418 break; 1419 } 1420 1421 if (tc->origin_dev) { 1422 inc_all_io_entry(tc->pool, bio); 1423 remap_to_origin_and_issue(tc, bio); 1424 break; 1425 } 1426 1427 zero_fill_bio(bio); 1428 bio_endio(bio, 0); 1429 break; 1430 1431 default: 1432 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1433 __func__, r); 1434 bio_io_error(bio); 1435 break; 1436 } 1437 } 1438 1439 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1440 { 1441 bio_endio(bio, 0); 1442 } 1443 1444 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1445 { 1446 bio_io_error(bio); 1447 } 1448 1449 /* 1450 * FIXME: should we also commit due to size of transaction, measured in 1451 * metadata blocks? 1452 */ 1453 static int need_commit_due_to_time(struct pool *pool) 1454 { 1455 return jiffies < pool->last_commit_jiffies || 1456 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1457 } 1458 1459 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1460 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1461 1462 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 1463 { 1464 struct rb_node **rbp, *parent; 1465 struct dm_thin_endio_hook *pbd; 1466 sector_t bi_sector = bio->bi_iter.bi_sector; 1467 1468 rbp = &tc->sort_bio_list.rb_node; 1469 parent = NULL; 1470 while (*rbp) { 1471 parent = *rbp; 1472 pbd = thin_pbd(parent); 1473 1474 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 1475 rbp = &(*rbp)->rb_left; 1476 else 1477 rbp = &(*rbp)->rb_right; 1478 } 1479 1480 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1481 rb_link_node(&pbd->rb_node, parent, rbp); 1482 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 1483 } 1484 1485 static void __extract_sorted_bios(struct thin_c *tc) 1486 { 1487 struct rb_node *node; 1488 struct dm_thin_endio_hook *pbd; 1489 struct bio *bio; 1490 1491 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 1492 pbd = thin_pbd(node); 1493 bio = thin_bio(pbd); 1494 1495 bio_list_add(&tc->deferred_bio_list, bio); 1496 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 1497 } 1498 1499 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 1500 } 1501 1502 static void __sort_thin_deferred_bios(struct thin_c *tc) 1503 { 1504 struct bio *bio; 1505 struct bio_list bios; 1506 1507 bio_list_init(&bios); 1508 bio_list_merge(&bios, &tc->deferred_bio_list); 1509 bio_list_init(&tc->deferred_bio_list); 1510 1511 /* Sort deferred_bio_list using rb-tree */ 1512 while ((bio = bio_list_pop(&bios))) 1513 __thin_bio_rb_add(tc, bio); 1514 1515 /* 1516 * Transfer the sorted bios in sort_bio_list back to 1517 * deferred_bio_list to allow lockless submission of 1518 * all bios. 1519 */ 1520 __extract_sorted_bios(tc); 1521 } 1522 1523 static void process_thin_deferred_bios(struct thin_c *tc) 1524 { 1525 struct pool *pool = tc->pool; 1526 unsigned long flags; 1527 struct bio *bio; 1528 struct bio_list bios; 1529 struct blk_plug plug; 1530 1531 if (tc->requeue_mode) { 1532 requeue_bio_list(tc, &tc->deferred_bio_list); 1533 return; 1534 } 1535 1536 bio_list_init(&bios); 1537 1538 spin_lock_irqsave(&tc->lock, flags); 1539 1540 if (bio_list_empty(&tc->deferred_bio_list)) { 1541 spin_unlock_irqrestore(&tc->lock, flags); 1542 return; 1543 } 1544 1545 __sort_thin_deferred_bios(tc); 1546 1547 bio_list_merge(&bios, &tc->deferred_bio_list); 1548 bio_list_init(&tc->deferred_bio_list); 1549 1550 spin_unlock_irqrestore(&tc->lock, flags); 1551 1552 blk_start_plug(&plug); 1553 while ((bio = bio_list_pop(&bios))) { 1554 /* 1555 * If we've got no free new_mapping structs, and processing 1556 * this bio might require one, we pause until there are some 1557 * prepared mappings to process. 1558 */ 1559 if (ensure_next_mapping(pool)) { 1560 spin_lock_irqsave(&tc->lock, flags); 1561 bio_list_add(&tc->deferred_bio_list, bio); 1562 bio_list_merge(&tc->deferred_bio_list, &bios); 1563 spin_unlock_irqrestore(&tc->lock, flags); 1564 break; 1565 } 1566 1567 if (bio->bi_rw & REQ_DISCARD) 1568 pool->process_discard(tc, bio); 1569 else 1570 pool->process_bio(tc, bio); 1571 } 1572 blk_finish_plug(&plug); 1573 } 1574 1575 static void thin_get(struct thin_c *tc); 1576 static void thin_put(struct thin_c *tc); 1577 1578 /* 1579 * We can't hold rcu_read_lock() around code that can block. So we 1580 * find a thin with the rcu lock held; bump a refcount; then drop 1581 * the lock. 1582 */ 1583 static struct thin_c *get_first_thin(struct pool *pool) 1584 { 1585 struct thin_c *tc = NULL; 1586 1587 rcu_read_lock(); 1588 if (!list_empty(&pool->active_thins)) { 1589 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 1590 thin_get(tc); 1591 } 1592 rcu_read_unlock(); 1593 1594 return tc; 1595 } 1596 1597 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 1598 { 1599 struct thin_c *old_tc = tc; 1600 1601 rcu_read_lock(); 1602 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 1603 thin_get(tc); 1604 thin_put(old_tc); 1605 rcu_read_unlock(); 1606 return tc; 1607 } 1608 thin_put(old_tc); 1609 rcu_read_unlock(); 1610 1611 return NULL; 1612 } 1613 1614 static void process_deferred_bios(struct pool *pool) 1615 { 1616 unsigned long flags; 1617 struct bio *bio; 1618 struct bio_list bios; 1619 struct thin_c *tc; 1620 1621 tc = get_first_thin(pool); 1622 while (tc) { 1623 process_thin_deferred_bios(tc); 1624 tc = get_next_thin(pool, tc); 1625 } 1626 1627 /* 1628 * If there are any deferred flush bios, we must commit 1629 * the metadata before issuing them. 1630 */ 1631 bio_list_init(&bios); 1632 spin_lock_irqsave(&pool->lock, flags); 1633 bio_list_merge(&bios, &pool->deferred_flush_bios); 1634 bio_list_init(&pool->deferred_flush_bios); 1635 spin_unlock_irqrestore(&pool->lock, flags); 1636 1637 if (bio_list_empty(&bios) && 1638 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 1639 return; 1640 1641 if (commit(pool)) { 1642 while ((bio = bio_list_pop(&bios))) 1643 bio_io_error(bio); 1644 return; 1645 } 1646 pool->last_commit_jiffies = jiffies; 1647 1648 while ((bio = bio_list_pop(&bios))) 1649 generic_make_request(bio); 1650 } 1651 1652 static void do_worker(struct work_struct *ws) 1653 { 1654 struct pool *pool = container_of(ws, struct pool, worker); 1655 1656 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1657 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1658 process_deferred_bios(pool); 1659 } 1660 1661 /* 1662 * We want to commit periodically so that not too much 1663 * unwritten data builds up. 1664 */ 1665 static void do_waker(struct work_struct *ws) 1666 { 1667 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 1668 wake_worker(pool); 1669 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 1670 } 1671 1672 /* 1673 * We're holding onto IO to allow userland time to react. After the 1674 * timeout either the pool will have been resized (and thus back in 1675 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO. 1676 */ 1677 static void do_no_space_timeout(struct work_struct *ws) 1678 { 1679 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 1680 no_space_timeout); 1681 1682 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) 1683 set_pool_mode(pool, PM_READ_ONLY); 1684 } 1685 1686 /*----------------------------------------------------------------*/ 1687 1688 struct pool_work { 1689 struct work_struct worker; 1690 struct completion complete; 1691 }; 1692 1693 static struct pool_work *to_pool_work(struct work_struct *ws) 1694 { 1695 return container_of(ws, struct pool_work, worker); 1696 } 1697 1698 static void pool_work_complete(struct pool_work *pw) 1699 { 1700 complete(&pw->complete); 1701 } 1702 1703 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 1704 void (*fn)(struct work_struct *)) 1705 { 1706 INIT_WORK_ONSTACK(&pw->worker, fn); 1707 init_completion(&pw->complete); 1708 queue_work(pool->wq, &pw->worker); 1709 wait_for_completion(&pw->complete); 1710 } 1711 1712 /*----------------------------------------------------------------*/ 1713 1714 struct noflush_work { 1715 struct pool_work pw; 1716 struct thin_c *tc; 1717 }; 1718 1719 static struct noflush_work *to_noflush(struct work_struct *ws) 1720 { 1721 return container_of(to_pool_work(ws), struct noflush_work, pw); 1722 } 1723 1724 static void do_noflush_start(struct work_struct *ws) 1725 { 1726 struct noflush_work *w = to_noflush(ws); 1727 w->tc->requeue_mode = true; 1728 requeue_io(w->tc); 1729 pool_work_complete(&w->pw); 1730 } 1731 1732 static void do_noflush_stop(struct work_struct *ws) 1733 { 1734 struct noflush_work *w = to_noflush(ws); 1735 w->tc->requeue_mode = false; 1736 pool_work_complete(&w->pw); 1737 } 1738 1739 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 1740 { 1741 struct noflush_work w; 1742 1743 w.tc = tc; 1744 pool_work_wait(&w.pw, tc->pool, fn); 1745 } 1746 1747 /*----------------------------------------------------------------*/ 1748 1749 static enum pool_mode get_pool_mode(struct pool *pool) 1750 { 1751 return pool->pf.mode; 1752 } 1753 1754 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 1755 { 1756 dm_table_event(pool->ti->table); 1757 DMINFO("%s: switching pool to %s mode", 1758 dm_device_name(pool->pool_md), new_mode); 1759 } 1760 1761 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 1762 { 1763 struct pool_c *pt = pool->ti->private; 1764 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 1765 enum pool_mode old_mode = get_pool_mode(pool); 1766 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ; 1767 1768 /* 1769 * Never allow the pool to transition to PM_WRITE mode if user 1770 * intervention is required to verify metadata and data consistency. 1771 */ 1772 if (new_mode == PM_WRITE && needs_check) { 1773 DMERR("%s: unable to switch pool to write mode until repaired.", 1774 dm_device_name(pool->pool_md)); 1775 if (old_mode != new_mode) 1776 new_mode = old_mode; 1777 else 1778 new_mode = PM_READ_ONLY; 1779 } 1780 /* 1781 * If we were in PM_FAIL mode, rollback of metadata failed. We're 1782 * not going to recover without a thin_repair. So we never let the 1783 * pool move out of the old mode. 1784 */ 1785 if (old_mode == PM_FAIL) 1786 new_mode = old_mode; 1787 1788 switch (new_mode) { 1789 case PM_FAIL: 1790 if (old_mode != new_mode) 1791 notify_of_pool_mode_change(pool, "failure"); 1792 dm_pool_metadata_read_only(pool->pmd); 1793 pool->process_bio = process_bio_fail; 1794 pool->process_discard = process_bio_fail; 1795 pool->process_prepared_mapping = process_prepared_mapping_fail; 1796 pool->process_prepared_discard = process_prepared_discard_fail; 1797 1798 error_retry_list(pool); 1799 break; 1800 1801 case PM_READ_ONLY: 1802 if (old_mode != new_mode) 1803 notify_of_pool_mode_change(pool, "read-only"); 1804 dm_pool_metadata_read_only(pool->pmd); 1805 pool->process_bio = process_bio_read_only; 1806 pool->process_discard = process_bio_success; 1807 pool->process_prepared_mapping = process_prepared_mapping_fail; 1808 pool->process_prepared_discard = process_prepared_discard_passdown; 1809 1810 error_retry_list(pool); 1811 break; 1812 1813 case PM_OUT_OF_DATA_SPACE: 1814 /* 1815 * Ideally we'd never hit this state; the low water mark 1816 * would trigger userland to extend the pool before we 1817 * completely run out of data space. However, many small 1818 * IOs to unprovisioned space can consume data space at an 1819 * alarming rate. Adjust your low water mark if you're 1820 * frequently seeing this mode. 1821 */ 1822 if (old_mode != new_mode) 1823 notify_of_pool_mode_change(pool, "out-of-data-space"); 1824 pool->process_bio = process_bio_read_only; 1825 pool->process_discard = process_discard; 1826 pool->process_prepared_mapping = process_prepared_mapping; 1827 pool->process_prepared_discard = process_prepared_discard_passdown; 1828 1829 if (!pool->pf.error_if_no_space && no_space_timeout) 1830 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 1831 break; 1832 1833 case PM_WRITE: 1834 if (old_mode != new_mode) 1835 notify_of_pool_mode_change(pool, "write"); 1836 dm_pool_metadata_read_write(pool->pmd); 1837 pool->process_bio = process_bio; 1838 pool->process_discard = process_discard; 1839 pool->process_prepared_mapping = process_prepared_mapping; 1840 pool->process_prepared_discard = process_prepared_discard; 1841 break; 1842 } 1843 1844 pool->pf.mode = new_mode; 1845 /* 1846 * The pool mode may have changed, sync it so bind_control_target() 1847 * doesn't cause an unexpected mode transition on resume. 1848 */ 1849 pt->adjusted_pf.mode = new_mode; 1850 } 1851 1852 static void abort_transaction(struct pool *pool) 1853 { 1854 const char *dev_name = dm_device_name(pool->pool_md); 1855 1856 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 1857 if (dm_pool_abort_metadata(pool->pmd)) { 1858 DMERR("%s: failed to abort metadata transaction", dev_name); 1859 set_pool_mode(pool, PM_FAIL); 1860 } 1861 1862 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 1863 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 1864 set_pool_mode(pool, PM_FAIL); 1865 } 1866 } 1867 1868 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 1869 { 1870 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 1871 dm_device_name(pool->pool_md), op, r); 1872 1873 abort_transaction(pool); 1874 set_pool_mode(pool, PM_READ_ONLY); 1875 } 1876 1877 /*----------------------------------------------------------------*/ 1878 1879 /* 1880 * Mapping functions. 1881 */ 1882 1883 /* 1884 * Called only while mapping a thin bio to hand it over to the workqueue. 1885 */ 1886 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 1887 { 1888 unsigned long flags; 1889 struct pool *pool = tc->pool; 1890 1891 spin_lock_irqsave(&tc->lock, flags); 1892 bio_list_add(&tc->deferred_bio_list, bio); 1893 spin_unlock_irqrestore(&tc->lock, flags); 1894 1895 wake_worker(pool); 1896 } 1897 1898 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 1899 { 1900 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1901 1902 h->tc = tc; 1903 h->shared_read_entry = NULL; 1904 h->all_io_entry = NULL; 1905 h->overwrite_mapping = NULL; 1906 } 1907 1908 /* 1909 * Non-blocking function called from the thin target's map function. 1910 */ 1911 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 1912 { 1913 int r; 1914 struct thin_c *tc = ti->private; 1915 dm_block_t block = get_bio_block(tc, bio); 1916 struct dm_thin_device *td = tc->td; 1917 struct dm_thin_lookup_result result; 1918 struct dm_bio_prison_cell cell1, cell2; 1919 struct dm_bio_prison_cell *cell_result; 1920 struct dm_cell_key key; 1921 1922 thin_hook_bio(tc, bio); 1923 1924 if (tc->requeue_mode) { 1925 bio_endio(bio, DM_ENDIO_REQUEUE); 1926 return DM_MAPIO_SUBMITTED; 1927 } 1928 1929 if (get_pool_mode(tc->pool) == PM_FAIL) { 1930 bio_io_error(bio); 1931 return DM_MAPIO_SUBMITTED; 1932 } 1933 1934 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 1935 thin_defer_bio(tc, bio); 1936 return DM_MAPIO_SUBMITTED; 1937 } 1938 1939 r = dm_thin_find_block(td, block, 0, &result); 1940 1941 /* 1942 * Note that we defer readahead too. 1943 */ 1944 switch (r) { 1945 case 0: 1946 if (unlikely(result.shared)) { 1947 /* 1948 * We have a race condition here between the 1949 * result.shared value returned by the lookup and 1950 * snapshot creation, which may cause new 1951 * sharing. 1952 * 1953 * To avoid this always quiesce the origin before 1954 * taking the snap. You want to do this anyway to 1955 * ensure a consistent application view 1956 * (i.e. lockfs). 1957 * 1958 * More distant ancestors are irrelevant. The 1959 * shared flag will be set in their case. 1960 */ 1961 thin_defer_bio(tc, bio); 1962 return DM_MAPIO_SUBMITTED; 1963 } 1964 1965 build_virtual_key(tc->td, block, &key); 1966 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result)) 1967 return DM_MAPIO_SUBMITTED; 1968 1969 build_data_key(tc->td, result.block, &key); 1970 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) { 1971 cell_defer_no_holder_no_free(tc, &cell1); 1972 return DM_MAPIO_SUBMITTED; 1973 } 1974 1975 inc_all_io_entry(tc->pool, bio); 1976 cell_defer_no_holder_no_free(tc, &cell2); 1977 cell_defer_no_holder_no_free(tc, &cell1); 1978 1979 remap(tc, bio, result.block); 1980 return DM_MAPIO_REMAPPED; 1981 1982 case -ENODATA: 1983 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 1984 /* 1985 * This block isn't provisioned, and we have no way 1986 * of doing so. 1987 */ 1988 handle_unserviceable_bio(tc->pool, bio); 1989 return DM_MAPIO_SUBMITTED; 1990 } 1991 /* fall through */ 1992 1993 case -EWOULDBLOCK: 1994 /* 1995 * In future, the failed dm_thin_find_block above could 1996 * provide the hint to load the metadata into cache. 1997 */ 1998 thin_defer_bio(tc, bio); 1999 return DM_MAPIO_SUBMITTED; 2000 2001 default: 2002 /* 2003 * Must always call bio_io_error on failure. 2004 * dm_thin_find_block can fail with -EINVAL if the 2005 * pool is switched to fail-io mode. 2006 */ 2007 bio_io_error(bio); 2008 return DM_MAPIO_SUBMITTED; 2009 } 2010 } 2011 2012 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2013 { 2014 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2015 struct request_queue *q; 2016 2017 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2018 return 1; 2019 2020 q = bdev_get_queue(pt->data_dev->bdev); 2021 return bdi_congested(&q->backing_dev_info, bdi_bits); 2022 } 2023 2024 static void requeue_bios(struct pool *pool) 2025 { 2026 unsigned long flags; 2027 struct thin_c *tc; 2028 2029 rcu_read_lock(); 2030 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2031 spin_lock_irqsave(&tc->lock, flags); 2032 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2033 bio_list_init(&tc->retry_on_resume_list); 2034 spin_unlock_irqrestore(&tc->lock, flags); 2035 } 2036 rcu_read_unlock(); 2037 } 2038 2039 /*---------------------------------------------------------------- 2040 * Binding of control targets to a pool object 2041 *--------------------------------------------------------------*/ 2042 static bool data_dev_supports_discard(struct pool_c *pt) 2043 { 2044 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2045 2046 return q && blk_queue_discard(q); 2047 } 2048 2049 static bool is_factor(sector_t block_size, uint32_t n) 2050 { 2051 return !sector_div(block_size, n); 2052 } 2053 2054 /* 2055 * If discard_passdown was enabled verify that the data device 2056 * supports discards. Disable discard_passdown if not. 2057 */ 2058 static void disable_passdown_if_not_supported(struct pool_c *pt) 2059 { 2060 struct pool *pool = pt->pool; 2061 struct block_device *data_bdev = pt->data_dev->bdev; 2062 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2063 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 2064 const char *reason = NULL; 2065 char buf[BDEVNAME_SIZE]; 2066 2067 if (!pt->adjusted_pf.discard_passdown) 2068 return; 2069 2070 if (!data_dev_supports_discard(pt)) 2071 reason = "discard unsupported"; 2072 2073 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2074 reason = "max discard sectors smaller than a block"; 2075 2076 else if (data_limits->discard_granularity > block_size) 2077 reason = "discard granularity larger than a block"; 2078 2079 else if (!is_factor(block_size, data_limits->discard_granularity)) 2080 reason = "discard granularity not a factor of block size"; 2081 2082 if (reason) { 2083 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2084 pt->adjusted_pf.discard_passdown = false; 2085 } 2086 } 2087 2088 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2089 { 2090 struct pool_c *pt = ti->private; 2091 2092 /* 2093 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2094 */ 2095 enum pool_mode old_mode = get_pool_mode(pool); 2096 enum pool_mode new_mode = pt->adjusted_pf.mode; 2097 2098 /* 2099 * Don't change the pool's mode until set_pool_mode() below. 2100 * Otherwise the pool's process_* function pointers may 2101 * not match the desired pool mode. 2102 */ 2103 pt->adjusted_pf.mode = old_mode; 2104 2105 pool->ti = ti; 2106 pool->pf = pt->adjusted_pf; 2107 pool->low_water_blocks = pt->low_water_blocks; 2108 2109 set_pool_mode(pool, new_mode); 2110 2111 return 0; 2112 } 2113 2114 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2115 { 2116 if (pool->ti == ti) 2117 pool->ti = NULL; 2118 } 2119 2120 /*---------------------------------------------------------------- 2121 * Pool creation 2122 *--------------------------------------------------------------*/ 2123 /* Initialize pool features. */ 2124 static void pool_features_init(struct pool_features *pf) 2125 { 2126 pf->mode = PM_WRITE; 2127 pf->zero_new_blocks = true; 2128 pf->discard_enabled = true; 2129 pf->discard_passdown = true; 2130 pf->error_if_no_space = false; 2131 } 2132 2133 static void __pool_destroy(struct pool *pool) 2134 { 2135 __pool_table_remove(pool); 2136 2137 if (dm_pool_metadata_close(pool->pmd) < 0) 2138 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2139 2140 dm_bio_prison_destroy(pool->prison); 2141 dm_kcopyd_client_destroy(pool->copier); 2142 2143 if (pool->wq) 2144 destroy_workqueue(pool->wq); 2145 2146 if (pool->next_mapping) 2147 mempool_free(pool->next_mapping, pool->mapping_pool); 2148 mempool_destroy(pool->mapping_pool); 2149 dm_deferred_set_destroy(pool->shared_read_ds); 2150 dm_deferred_set_destroy(pool->all_io_ds); 2151 kfree(pool); 2152 } 2153 2154 static struct kmem_cache *_new_mapping_cache; 2155 2156 static struct pool *pool_create(struct mapped_device *pool_md, 2157 struct block_device *metadata_dev, 2158 unsigned long block_size, 2159 int read_only, char **error) 2160 { 2161 int r; 2162 void *err_p; 2163 struct pool *pool; 2164 struct dm_pool_metadata *pmd; 2165 bool format_device = read_only ? false : true; 2166 2167 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2168 if (IS_ERR(pmd)) { 2169 *error = "Error creating metadata object"; 2170 return (struct pool *)pmd; 2171 } 2172 2173 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2174 if (!pool) { 2175 *error = "Error allocating memory for pool"; 2176 err_p = ERR_PTR(-ENOMEM); 2177 goto bad_pool; 2178 } 2179 2180 pool->pmd = pmd; 2181 pool->sectors_per_block = block_size; 2182 if (block_size & (block_size - 1)) 2183 pool->sectors_per_block_shift = -1; 2184 else 2185 pool->sectors_per_block_shift = __ffs(block_size); 2186 pool->low_water_blocks = 0; 2187 pool_features_init(&pool->pf); 2188 pool->prison = dm_bio_prison_create(PRISON_CELLS); 2189 if (!pool->prison) { 2190 *error = "Error creating pool's bio prison"; 2191 err_p = ERR_PTR(-ENOMEM); 2192 goto bad_prison; 2193 } 2194 2195 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2196 if (IS_ERR(pool->copier)) { 2197 r = PTR_ERR(pool->copier); 2198 *error = "Error creating pool's kcopyd client"; 2199 err_p = ERR_PTR(r); 2200 goto bad_kcopyd_client; 2201 } 2202 2203 /* 2204 * Create singlethreaded workqueue that will service all devices 2205 * that use this metadata. 2206 */ 2207 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2208 if (!pool->wq) { 2209 *error = "Error creating pool's workqueue"; 2210 err_p = ERR_PTR(-ENOMEM); 2211 goto bad_wq; 2212 } 2213 2214 INIT_WORK(&pool->worker, do_worker); 2215 INIT_DELAYED_WORK(&pool->waker, do_waker); 2216 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2217 spin_lock_init(&pool->lock); 2218 bio_list_init(&pool->deferred_flush_bios); 2219 INIT_LIST_HEAD(&pool->prepared_mappings); 2220 INIT_LIST_HEAD(&pool->prepared_discards); 2221 INIT_LIST_HEAD(&pool->active_thins); 2222 pool->low_water_triggered = false; 2223 2224 pool->shared_read_ds = dm_deferred_set_create(); 2225 if (!pool->shared_read_ds) { 2226 *error = "Error creating pool's shared read deferred set"; 2227 err_p = ERR_PTR(-ENOMEM); 2228 goto bad_shared_read_ds; 2229 } 2230 2231 pool->all_io_ds = dm_deferred_set_create(); 2232 if (!pool->all_io_ds) { 2233 *error = "Error creating pool's all io deferred set"; 2234 err_p = ERR_PTR(-ENOMEM); 2235 goto bad_all_io_ds; 2236 } 2237 2238 pool->next_mapping = NULL; 2239 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2240 _new_mapping_cache); 2241 if (!pool->mapping_pool) { 2242 *error = "Error creating pool's mapping mempool"; 2243 err_p = ERR_PTR(-ENOMEM); 2244 goto bad_mapping_pool; 2245 } 2246 2247 pool->ref_count = 1; 2248 pool->last_commit_jiffies = jiffies; 2249 pool->pool_md = pool_md; 2250 pool->md_dev = metadata_dev; 2251 __pool_table_insert(pool); 2252 2253 return pool; 2254 2255 bad_mapping_pool: 2256 dm_deferred_set_destroy(pool->all_io_ds); 2257 bad_all_io_ds: 2258 dm_deferred_set_destroy(pool->shared_read_ds); 2259 bad_shared_read_ds: 2260 destroy_workqueue(pool->wq); 2261 bad_wq: 2262 dm_kcopyd_client_destroy(pool->copier); 2263 bad_kcopyd_client: 2264 dm_bio_prison_destroy(pool->prison); 2265 bad_prison: 2266 kfree(pool); 2267 bad_pool: 2268 if (dm_pool_metadata_close(pmd)) 2269 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2270 2271 return err_p; 2272 } 2273 2274 static void __pool_inc(struct pool *pool) 2275 { 2276 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2277 pool->ref_count++; 2278 } 2279 2280 static void __pool_dec(struct pool *pool) 2281 { 2282 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2283 BUG_ON(!pool->ref_count); 2284 if (!--pool->ref_count) 2285 __pool_destroy(pool); 2286 } 2287 2288 static struct pool *__pool_find(struct mapped_device *pool_md, 2289 struct block_device *metadata_dev, 2290 unsigned long block_size, int read_only, 2291 char **error, int *created) 2292 { 2293 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2294 2295 if (pool) { 2296 if (pool->pool_md != pool_md) { 2297 *error = "metadata device already in use by a pool"; 2298 return ERR_PTR(-EBUSY); 2299 } 2300 __pool_inc(pool); 2301 2302 } else { 2303 pool = __pool_table_lookup(pool_md); 2304 if (pool) { 2305 if (pool->md_dev != metadata_dev) { 2306 *error = "different pool cannot replace a pool"; 2307 return ERR_PTR(-EINVAL); 2308 } 2309 __pool_inc(pool); 2310 2311 } else { 2312 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2313 *created = 1; 2314 } 2315 } 2316 2317 return pool; 2318 } 2319 2320 /*---------------------------------------------------------------- 2321 * Pool target methods 2322 *--------------------------------------------------------------*/ 2323 static void pool_dtr(struct dm_target *ti) 2324 { 2325 struct pool_c *pt = ti->private; 2326 2327 mutex_lock(&dm_thin_pool_table.mutex); 2328 2329 unbind_control_target(pt->pool, ti); 2330 __pool_dec(pt->pool); 2331 dm_put_device(ti, pt->metadata_dev); 2332 dm_put_device(ti, pt->data_dev); 2333 kfree(pt); 2334 2335 mutex_unlock(&dm_thin_pool_table.mutex); 2336 } 2337 2338 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2339 struct dm_target *ti) 2340 { 2341 int r; 2342 unsigned argc; 2343 const char *arg_name; 2344 2345 static struct dm_arg _args[] = { 2346 {0, 4, "Invalid number of pool feature arguments"}, 2347 }; 2348 2349 /* 2350 * No feature arguments supplied. 2351 */ 2352 if (!as->argc) 2353 return 0; 2354 2355 r = dm_read_arg_group(_args, as, &argc, &ti->error); 2356 if (r) 2357 return -EINVAL; 2358 2359 while (argc && !r) { 2360 arg_name = dm_shift_arg(as); 2361 argc--; 2362 2363 if (!strcasecmp(arg_name, "skip_block_zeroing")) 2364 pf->zero_new_blocks = false; 2365 2366 else if (!strcasecmp(arg_name, "ignore_discard")) 2367 pf->discard_enabled = false; 2368 2369 else if (!strcasecmp(arg_name, "no_discard_passdown")) 2370 pf->discard_passdown = false; 2371 2372 else if (!strcasecmp(arg_name, "read_only")) 2373 pf->mode = PM_READ_ONLY; 2374 2375 else if (!strcasecmp(arg_name, "error_if_no_space")) 2376 pf->error_if_no_space = true; 2377 2378 else { 2379 ti->error = "Unrecognised pool feature requested"; 2380 r = -EINVAL; 2381 break; 2382 } 2383 } 2384 2385 return r; 2386 } 2387 2388 static void metadata_low_callback(void *context) 2389 { 2390 struct pool *pool = context; 2391 2392 DMWARN("%s: reached low water mark for metadata device: sending event.", 2393 dm_device_name(pool->pool_md)); 2394 2395 dm_table_event(pool->ti->table); 2396 } 2397 2398 static sector_t get_dev_size(struct block_device *bdev) 2399 { 2400 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 2401 } 2402 2403 static void warn_if_metadata_device_too_big(struct block_device *bdev) 2404 { 2405 sector_t metadata_dev_size = get_dev_size(bdev); 2406 char buffer[BDEVNAME_SIZE]; 2407 2408 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 2409 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2410 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 2411 } 2412 2413 static sector_t get_metadata_dev_size(struct block_device *bdev) 2414 { 2415 sector_t metadata_dev_size = get_dev_size(bdev); 2416 2417 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 2418 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 2419 2420 return metadata_dev_size; 2421 } 2422 2423 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 2424 { 2425 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 2426 2427 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 2428 2429 return metadata_dev_size; 2430 } 2431 2432 /* 2433 * When a metadata threshold is crossed a dm event is triggered, and 2434 * userland should respond by growing the metadata device. We could let 2435 * userland set the threshold, like we do with the data threshold, but I'm 2436 * not sure they know enough to do this well. 2437 */ 2438 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 2439 { 2440 /* 2441 * 4M is ample for all ops with the possible exception of thin 2442 * device deletion which is harmless if it fails (just retry the 2443 * delete after you've grown the device). 2444 */ 2445 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 2446 return min((dm_block_t)1024ULL /* 4M */, quarter); 2447 } 2448 2449 /* 2450 * thin-pool <metadata dev> <data dev> 2451 * <data block size (sectors)> 2452 * <low water mark (blocks)> 2453 * [<#feature args> [<arg>]*] 2454 * 2455 * Optional feature arguments are: 2456 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 2457 * ignore_discard: disable discard 2458 * no_discard_passdown: don't pass discards down to the data device 2459 * read_only: Don't allow any changes to be made to the pool metadata. 2460 * error_if_no_space: error IOs, instead of queueing, if no space. 2461 */ 2462 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 2463 { 2464 int r, pool_created = 0; 2465 struct pool_c *pt; 2466 struct pool *pool; 2467 struct pool_features pf; 2468 struct dm_arg_set as; 2469 struct dm_dev *data_dev; 2470 unsigned long block_size; 2471 dm_block_t low_water_blocks; 2472 struct dm_dev *metadata_dev; 2473 fmode_t metadata_mode; 2474 2475 /* 2476 * FIXME Remove validation from scope of lock. 2477 */ 2478 mutex_lock(&dm_thin_pool_table.mutex); 2479 2480 if (argc < 4) { 2481 ti->error = "Invalid argument count"; 2482 r = -EINVAL; 2483 goto out_unlock; 2484 } 2485 2486 as.argc = argc; 2487 as.argv = argv; 2488 2489 /* 2490 * Set default pool features. 2491 */ 2492 pool_features_init(&pf); 2493 2494 dm_consume_args(&as, 4); 2495 r = parse_pool_features(&as, &pf, ti); 2496 if (r) 2497 goto out_unlock; 2498 2499 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 2500 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 2501 if (r) { 2502 ti->error = "Error opening metadata block device"; 2503 goto out_unlock; 2504 } 2505 warn_if_metadata_device_too_big(metadata_dev->bdev); 2506 2507 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 2508 if (r) { 2509 ti->error = "Error getting data device"; 2510 goto out_metadata; 2511 } 2512 2513 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 2514 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2515 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2516 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2517 ti->error = "Invalid block size"; 2518 r = -EINVAL; 2519 goto out; 2520 } 2521 2522 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 2523 ti->error = "Invalid low water mark"; 2524 r = -EINVAL; 2525 goto out; 2526 } 2527 2528 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 2529 if (!pt) { 2530 r = -ENOMEM; 2531 goto out; 2532 } 2533 2534 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 2535 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2536 if (IS_ERR(pool)) { 2537 r = PTR_ERR(pool); 2538 goto out_free_pt; 2539 } 2540 2541 /* 2542 * 'pool_created' reflects whether this is the first table load. 2543 * Top level discard support is not allowed to be changed after 2544 * initial load. This would require a pool reload to trigger thin 2545 * device changes. 2546 */ 2547 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2548 ti->error = "Discard support cannot be disabled once enabled"; 2549 r = -EINVAL; 2550 goto out_flags_changed; 2551 } 2552 2553 pt->pool = pool; 2554 pt->ti = ti; 2555 pt->metadata_dev = metadata_dev; 2556 pt->data_dev = data_dev; 2557 pt->low_water_blocks = low_water_blocks; 2558 pt->adjusted_pf = pt->requested_pf = pf; 2559 ti->num_flush_bios = 1; 2560 2561 /* 2562 * Only need to enable discards if the pool should pass 2563 * them down to the data device. The thin device's discard 2564 * processing will cause mappings to be removed from the btree. 2565 */ 2566 ti->discard_zeroes_data_unsupported = true; 2567 if (pf.discard_enabled && pf.discard_passdown) { 2568 ti->num_discard_bios = 1; 2569 2570 /* 2571 * Setting 'discards_supported' circumvents the normal 2572 * stacking of discard limits (this keeps the pool and 2573 * thin devices' discard limits consistent). 2574 */ 2575 ti->discards_supported = true; 2576 } 2577 ti->private = pt; 2578 2579 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 2580 calc_metadata_threshold(pt), 2581 metadata_low_callback, 2582 pool); 2583 if (r) 2584 goto out_free_pt; 2585 2586 pt->callbacks.congested_fn = pool_is_congested; 2587 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2588 2589 mutex_unlock(&dm_thin_pool_table.mutex); 2590 2591 return 0; 2592 2593 out_flags_changed: 2594 __pool_dec(pool); 2595 out_free_pt: 2596 kfree(pt); 2597 out: 2598 dm_put_device(ti, data_dev); 2599 out_metadata: 2600 dm_put_device(ti, metadata_dev); 2601 out_unlock: 2602 mutex_unlock(&dm_thin_pool_table.mutex); 2603 2604 return r; 2605 } 2606 2607 static int pool_map(struct dm_target *ti, struct bio *bio) 2608 { 2609 int r; 2610 struct pool_c *pt = ti->private; 2611 struct pool *pool = pt->pool; 2612 unsigned long flags; 2613 2614 /* 2615 * As this is a singleton target, ti->begin is always zero. 2616 */ 2617 spin_lock_irqsave(&pool->lock, flags); 2618 bio->bi_bdev = pt->data_dev->bdev; 2619 r = DM_MAPIO_REMAPPED; 2620 spin_unlock_irqrestore(&pool->lock, flags); 2621 2622 return r; 2623 } 2624 2625 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 2626 { 2627 int r; 2628 struct pool_c *pt = ti->private; 2629 struct pool *pool = pt->pool; 2630 sector_t data_size = ti->len; 2631 dm_block_t sb_data_size; 2632 2633 *need_commit = false; 2634 2635 (void) sector_div(data_size, pool->sectors_per_block); 2636 2637 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 2638 if (r) { 2639 DMERR("%s: failed to retrieve data device size", 2640 dm_device_name(pool->pool_md)); 2641 return r; 2642 } 2643 2644 if (data_size < sb_data_size) { 2645 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 2646 dm_device_name(pool->pool_md), 2647 (unsigned long long)data_size, sb_data_size); 2648 return -EINVAL; 2649 2650 } else if (data_size > sb_data_size) { 2651 if (dm_pool_metadata_needs_check(pool->pmd)) { 2652 DMERR("%s: unable to grow the data device until repaired.", 2653 dm_device_name(pool->pool_md)); 2654 return 0; 2655 } 2656 2657 if (sb_data_size) 2658 DMINFO("%s: growing the data device from %llu to %llu blocks", 2659 dm_device_name(pool->pool_md), 2660 sb_data_size, (unsigned long long)data_size); 2661 r = dm_pool_resize_data_dev(pool->pmd, data_size); 2662 if (r) { 2663 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 2664 return r; 2665 } 2666 2667 *need_commit = true; 2668 } 2669 2670 return 0; 2671 } 2672 2673 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 2674 { 2675 int r; 2676 struct pool_c *pt = ti->private; 2677 struct pool *pool = pt->pool; 2678 dm_block_t metadata_dev_size, sb_metadata_dev_size; 2679 2680 *need_commit = false; 2681 2682 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 2683 2684 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 2685 if (r) { 2686 DMERR("%s: failed to retrieve metadata device size", 2687 dm_device_name(pool->pool_md)); 2688 return r; 2689 } 2690 2691 if (metadata_dev_size < sb_metadata_dev_size) { 2692 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 2693 dm_device_name(pool->pool_md), 2694 metadata_dev_size, sb_metadata_dev_size); 2695 return -EINVAL; 2696 2697 } else if (metadata_dev_size > sb_metadata_dev_size) { 2698 if (dm_pool_metadata_needs_check(pool->pmd)) { 2699 DMERR("%s: unable to grow the metadata device until repaired.", 2700 dm_device_name(pool->pool_md)); 2701 return 0; 2702 } 2703 2704 warn_if_metadata_device_too_big(pool->md_dev); 2705 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 2706 dm_device_name(pool->pool_md), 2707 sb_metadata_dev_size, metadata_dev_size); 2708 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 2709 if (r) { 2710 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 2711 return r; 2712 } 2713 2714 *need_commit = true; 2715 } 2716 2717 return 0; 2718 } 2719 2720 /* 2721 * Retrieves the number of blocks of the data device from 2722 * the superblock and compares it to the actual device size, 2723 * thus resizing the data device in case it has grown. 2724 * 2725 * This both copes with opening preallocated data devices in the ctr 2726 * being followed by a resume 2727 * -and- 2728 * calling the resume method individually after userspace has 2729 * grown the data device in reaction to a table event. 2730 */ 2731 static int pool_preresume(struct dm_target *ti) 2732 { 2733 int r; 2734 bool need_commit1, need_commit2; 2735 struct pool_c *pt = ti->private; 2736 struct pool *pool = pt->pool; 2737 2738 /* 2739 * Take control of the pool object. 2740 */ 2741 r = bind_control_target(pool, ti); 2742 if (r) 2743 return r; 2744 2745 r = maybe_resize_data_dev(ti, &need_commit1); 2746 if (r) 2747 return r; 2748 2749 r = maybe_resize_metadata_dev(ti, &need_commit2); 2750 if (r) 2751 return r; 2752 2753 if (need_commit1 || need_commit2) 2754 (void) commit(pool); 2755 2756 return 0; 2757 } 2758 2759 static void pool_resume(struct dm_target *ti) 2760 { 2761 struct pool_c *pt = ti->private; 2762 struct pool *pool = pt->pool; 2763 unsigned long flags; 2764 2765 spin_lock_irqsave(&pool->lock, flags); 2766 pool->low_water_triggered = false; 2767 spin_unlock_irqrestore(&pool->lock, flags); 2768 requeue_bios(pool); 2769 2770 do_waker(&pool->waker.work); 2771 } 2772 2773 static void pool_postsuspend(struct dm_target *ti) 2774 { 2775 struct pool_c *pt = ti->private; 2776 struct pool *pool = pt->pool; 2777 2778 cancel_delayed_work(&pool->waker); 2779 cancel_delayed_work(&pool->no_space_timeout); 2780 flush_workqueue(pool->wq); 2781 (void) commit(pool); 2782 } 2783 2784 static int check_arg_count(unsigned argc, unsigned args_required) 2785 { 2786 if (argc != args_required) { 2787 DMWARN("Message received with %u arguments instead of %u.", 2788 argc, args_required); 2789 return -EINVAL; 2790 } 2791 2792 return 0; 2793 } 2794 2795 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 2796 { 2797 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 2798 *dev_id <= MAX_DEV_ID) 2799 return 0; 2800 2801 if (warning) 2802 DMWARN("Message received with invalid device id: %s", arg); 2803 2804 return -EINVAL; 2805 } 2806 2807 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 2808 { 2809 dm_thin_id dev_id; 2810 int r; 2811 2812 r = check_arg_count(argc, 2); 2813 if (r) 2814 return r; 2815 2816 r = read_dev_id(argv[1], &dev_id, 1); 2817 if (r) 2818 return r; 2819 2820 r = dm_pool_create_thin(pool->pmd, dev_id); 2821 if (r) { 2822 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 2823 argv[1]); 2824 return r; 2825 } 2826 2827 return 0; 2828 } 2829 2830 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2831 { 2832 dm_thin_id dev_id; 2833 dm_thin_id origin_dev_id; 2834 int r; 2835 2836 r = check_arg_count(argc, 3); 2837 if (r) 2838 return r; 2839 2840 r = read_dev_id(argv[1], &dev_id, 1); 2841 if (r) 2842 return r; 2843 2844 r = read_dev_id(argv[2], &origin_dev_id, 1); 2845 if (r) 2846 return r; 2847 2848 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 2849 if (r) { 2850 DMWARN("Creation of new snapshot %s of device %s failed.", 2851 argv[1], argv[2]); 2852 return r; 2853 } 2854 2855 return 0; 2856 } 2857 2858 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 2859 { 2860 dm_thin_id dev_id; 2861 int r; 2862 2863 r = check_arg_count(argc, 2); 2864 if (r) 2865 return r; 2866 2867 r = read_dev_id(argv[1], &dev_id, 1); 2868 if (r) 2869 return r; 2870 2871 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 2872 if (r) 2873 DMWARN("Deletion of thin device %s failed.", argv[1]); 2874 2875 return r; 2876 } 2877 2878 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 2879 { 2880 dm_thin_id old_id, new_id; 2881 int r; 2882 2883 r = check_arg_count(argc, 3); 2884 if (r) 2885 return r; 2886 2887 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 2888 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 2889 return -EINVAL; 2890 } 2891 2892 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 2893 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 2894 return -EINVAL; 2895 } 2896 2897 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 2898 if (r) { 2899 DMWARN("Failed to change transaction id from %s to %s.", 2900 argv[1], argv[2]); 2901 return r; 2902 } 2903 2904 return 0; 2905 } 2906 2907 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2908 { 2909 int r; 2910 2911 r = check_arg_count(argc, 1); 2912 if (r) 2913 return r; 2914 2915 (void) commit(pool); 2916 2917 r = dm_pool_reserve_metadata_snap(pool->pmd); 2918 if (r) 2919 DMWARN("reserve_metadata_snap message failed."); 2920 2921 return r; 2922 } 2923 2924 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2925 { 2926 int r; 2927 2928 r = check_arg_count(argc, 1); 2929 if (r) 2930 return r; 2931 2932 r = dm_pool_release_metadata_snap(pool->pmd); 2933 if (r) 2934 DMWARN("release_metadata_snap message failed."); 2935 2936 return r; 2937 } 2938 2939 /* 2940 * Messages supported: 2941 * create_thin <dev_id> 2942 * create_snap <dev_id> <origin_id> 2943 * delete <dev_id> 2944 * trim <dev_id> <new_size_in_sectors> 2945 * set_transaction_id <current_trans_id> <new_trans_id> 2946 * reserve_metadata_snap 2947 * release_metadata_snap 2948 */ 2949 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 2950 { 2951 int r = -EINVAL; 2952 struct pool_c *pt = ti->private; 2953 struct pool *pool = pt->pool; 2954 2955 if (!strcasecmp(argv[0], "create_thin")) 2956 r = process_create_thin_mesg(argc, argv, pool); 2957 2958 else if (!strcasecmp(argv[0], "create_snap")) 2959 r = process_create_snap_mesg(argc, argv, pool); 2960 2961 else if (!strcasecmp(argv[0], "delete")) 2962 r = process_delete_mesg(argc, argv, pool); 2963 2964 else if (!strcasecmp(argv[0], "set_transaction_id")) 2965 r = process_set_transaction_id_mesg(argc, argv, pool); 2966 2967 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 2968 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 2969 2970 else if (!strcasecmp(argv[0], "release_metadata_snap")) 2971 r = process_release_metadata_snap_mesg(argc, argv, pool); 2972 2973 else 2974 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 2975 2976 if (!r) 2977 (void) commit(pool); 2978 2979 return r; 2980 } 2981 2982 static void emit_flags(struct pool_features *pf, char *result, 2983 unsigned sz, unsigned maxlen) 2984 { 2985 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 2986 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 2987 pf->error_if_no_space; 2988 DMEMIT("%u ", count); 2989 2990 if (!pf->zero_new_blocks) 2991 DMEMIT("skip_block_zeroing "); 2992 2993 if (!pf->discard_enabled) 2994 DMEMIT("ignore_discard "); 2995 2996 if (!pf->discard_passdown) 2997 DMEMIT("no_discard_passdown "); 2998 2999 if (pf->mode == PM_READ_ONLY) 3000 DMEMIT("read_only "); 3001 3002 if (pf->error_if_no_space) 3003 DMEMIT("error_if_no_space "); 3004 } 3005 3006 /* 3007 * Status line is: 3008 * <transaction id> <used metadata sectors>/<total metadata sectors> 3009 * <used data sectors>/<total data sectors> <held metadata root> 3010 */ 3011 static void pool_status(struct dm_target *ti, status_type_t type, 3012 unsigned status_flags, char *result, unsigned maxlen) 3013 { 3014 int r; 3015 unsigned sz = 0; 3016 uint64_t transaction_id; 3017 dm_block_t nr_free_blocks_data; 3018 dm_block_t nr_free_blocks_metadata; 3019 dm_block_t nr_blocks_data; 3020 dm_block_t nr_blocks_metadata; 3021 dm_block_t held_root; 3022 char buf[BDEVNAME_SIZE]; 3023 char buf2[BDEVNAME_SIZE]; 3024 struct pool_c *pt = ti->private; 3025 struct pool *pool = pt->pool; 3026 3027 switch (type) { 3028 case STATUSTYPE_INFO: 3029 if (get_pool_mode(pool) == PM_FAIL) { 3030 DMEMIT("Fail"); 3031 break; 3032 } 3033 3034 /* Commit to ensure statistics aren't out-of-date */ 3035 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3036 (void) commit(pool); 3037 3038 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3039 if (r) { 3040 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3041 dm_device_name(pool->pool_md), r); 3042 goto err; 3043 } 3044 3045 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3046 if (r) { 3047 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3048 dm_device_name(pool->pool_md), r); 3049 goto err; 3050 } 3051 3052 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3053 if (r) { 3054 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3055 dm_device_name(pool->pool_md), r); 3056 goto err; 3057 } 3058 3059 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3060 if (r) { 3061 DMERR("%s: dm_pool_get_free_block_count returned %d", 3062 dm_device_name(pool->pool_md), r); 3063 goto err; 3064 } 3065 3066 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3067 if (r) { 3068 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3069 dm_device_name(pool->pool_md), r); 3070 goto err; 3071 } 3072 3073 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3074 if (r) { 3075 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3076 dm_device_name(pool->pool_md), r); 3077 goto err; 3078 } 3079 3080 DMEMIT("%llu %llu/%llu %llu/%llu ", 3081 (unsigned long long)transaction_id, 3082 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3083 (unsigned long long)nr_blocks_metadata, 3084 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3085 (unsigned long long)nr_blocks_data); 3086 3087 if (held_root) 3088 DMEMIT("%llu ", held_root); 3089 else 3090 DMEMIT("- "); 3091 3092 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 3093 DMEMIT("out_of_data_space "); 3094 else if (pool->pf.mode == PM_READ_ONLY) 3095 DMEMIT("ro "); 3096 else 3097 DMEMIT("rw "); 3098 3099 if (!pool->pf.discard_enabled) 3100 DMEMIT("ignore_discard "); 3101 else if (pool->pf.discard_passdown) 3102 DMEMIT("discard_passdown "); 3103 else 3104 DMEMIT("no_discard_passdown "); 3105 3106 if (pool->pf.error_if_no_space) 3107 DMEMIT("error_if_no_space "); 3108 else 3109 DMEMIT("queue_if_no_space "); 3110 3111 break; 3112 3113 case STATUSTYPE_TABLE: 3114 DMEMIT("%s %s %lu %llu ", 3115 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3116 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3117 (unsigned long)pool->sectors_per_block, 3118 (unsigned long long)pt->low_water_blocks); 3119 emit_flags(&pt->requested_pf, result, sz, maxlen); 3120 break; 3121 } 3122 return; 3123 3124 err: 3125 DMEMIT("Error"); 3126 } 3127 3128 static int pool_iterate_devices(struct dm_target *ti, 3129 iterate_devices_callout_fn fn, void *data) 3130 { 3131 struct pool_c *pt = ti->private; 3132 3133 return fn(ti, pt->data_dev, 0, ti->len, data); 3134 } 3135 3136 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 3137 struct bio_vec *biovec, int max_size) 3138 { 3139 struct pool_c *pt = ti->private; 3140 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 3141 3142 if (!q->merge_bvec_fn) 3143 return max_size; 3144 3145 bvm->bi_bdev = pt->data_dev->bdev; 3146 3147 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 3148 } 3149 3150 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 3151 { 3152 struct pool *pool = pt->pool; 3153 struct queue_limits *data_limits; 3154 3155 limits->max_discard_sectors = pool->sectors_per_block; 3156 3157 /* 3158 * discard_granularity is just a hint, and not enforced. 3159 */ 3160 if (pt->adjusted_pf.discard_passdown) { 3161 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 3162 limits->discard_granularity = max(data_limits->discard_granularity, 3163 pool->sectors_per_block << SECTOR_SHIFT); 3164 } else 3165 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 3166 } 3167 3168 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3169 { 3170 struct pool_c *pt = ti->private; 3171 struct pool *pool = pt->pool; 3172 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3173 3174 /* 3175 * If the system-determined stacked limits are compatible with the 3176 * pool's blocksize (io_opt is a factor) do not override them. 3177 */ 3178 if (io_opt_sectors < pool->sectors_per_block || 3179 do_div(io_opt_sectors, pool->sectors_per_block)) { 3180 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3181 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3182 } 3183 3184 /* 3185 * pt->adjusted_pf is a staging area for the actual features to use. 3186 * They get transferred to the live pool in bind_control_target() 3187 * called from pool_preresume(). 3188 */ 3189 if (!pt->adjusted_pf.discard_enabled) { 3190 /* 3191 * Must explicitly disallow stacking discard limits otherwise the 3192 * block layer will stack them if pool's data device has support. 3193 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3194 * user to see that, so make sure to set all discard limits to 0. 3195 */ 3196 limits->discard_granularity = 0; 3197 return; 3198 } 3199 3200 disable_passdown_if_not_supported(pt); 3201 3202 set_discard_limits(pt, limits); 3203 } 3204 3205 static struct target_type pool_target = { 3206 .name = "thin-pool", 3207 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3208 DM_TARGET_IMMUTABLE, 3209 .version = {1, 13, 0}, 3210 .module = THIS_MODULE, 3211 .ctr = pool_ctr, 3212 .dtr = pool_dtr, 3213 .map = pool_map, 3214 .postsuspend = pool_postsuspend, 3215 .preresume = pool_preresume, 3216 .resume = pool_resume, 3217 .message = pool_message, 3218 .status = pool_status, 3219 .merge = pool_merge, 3220 .iterate_devices = pool_iterate_devices, 3221 .io_hints = pool_io_hints, 3222 }; 3223 3224 /*---------------------------------------------------------------- 3225 * Thin target methods 3226 *--------------------------------------------------------------*/ 3227 static void thin_get(struct thin_c *tc) 3228 { 3229 atomic_inc(&tc->refcount); 3230 } 3231 3232 static void thin_put(struct thin_c *tc) 3233 { 3234 if (atomic_dec_and_test(&tc->refcount)) 3235 complete(&tc->can_destroy); 3236 } 3237 3238 static void thin_dtr(struct dm_target *ti) 3239 { 3240 struct thin_c *tc = ti->private; 3241 unsigned long flags; 3242 3243 thin_put(tc); 3244 wait_for_completion(&tc->can_destroy); 3245 3246 spin_lock_irqsave(&tc->pool->lock, flags); 3247 list_del_rcu(&tc->list); 3248 spin_unlock_irqrestore(&tc->pool->lock, flags); 3249 synchronize_rcu(); 3250 3251 mutex_lock(&dm_thin_pool_table.mutex); 3252 3253 __pool_dec(tc->pool); 3254 dm_pool_close_thin_device(tc->td); 3255 dm_put_device(ti, tc->pool_dev); 3256 if (tc->origin_dev) 3257 dm_put_device(ti, tc->origin_dev); 3258 kfree(tc); 3259 3260 mutex_unlock(&dm_thin_pool_table.mutex); 3261 } 3262 3263 /* 3264 * Thin target parameters: 3265 * 3266 * <pool_dev> <dev_id> [origin_dev] 3267 * 3268 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 3269 * dev_id: the internal device identifier 3270 * origin_dev: a device external to the pool that should act as the origin 3271 * 3272 * If the pool device has discards disabled, they get disabled for the thin 3273 * device as well. 3274 */ 3275 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 3276 { 3277 int r; 3278 struct thin_c *tc; 3279 struct dm_dev *pool_dev, *origin_dev; 3280 struct mapped_device *pool_md; 3281 unsigned long flags; 3282 3283 mutex_lock(&dm_thin_pool_table.mutex); 3284 3285 if (argc != 2 && argc != 3) { 3286 ti->error = "Invalid argument count"; 3287 r = -EINVAL; 3288 goto out_unlock; 3289 } 3290 3291 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 3292 if (!tc) { 3293 ti->error = "Out of memory"; 3294 r = -ENOMEM; 3295 goto out_unlock; 3296 } 3297 spin_lock_init(&tc->lock); 3298 bio_list_init(&tc->deferred_bio_list); 3299 bio_list_init(&tc->retry_on_resume_list); 3300 tc->sort_bio_list = RB_ROOT; 3301 3302 if (argc == 3) { 3303 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 3304 if (r) { 3305 ti->error = "Error opening origin device"; 3306 goto bad_origin_dev; 3307 } 3308 tc->origin_dev = origin_dev; 3309 } 3310 3311 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 3312 if (r) { 3313 ti->error = "Error opening pool device"; 3314 goto bad_pool_dev; 3315 } 3316 tc->pool_dev = pool_dev; 3317 3318 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 3319 ti->error = "Invalid device id"; 3320 r = -EINVAL; 3321 goto bad_common; 3322 } 3323 3324 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 3325 if (!pool_md) { 3326 ti->error = "Couldn't get pool mapped device"; 3327 r = -EINVAL; 3328 goto bad_common; 3329 } 3330 3331 tc->pool = __pool_table_lookup(pool_md); 3332 if (!tc->pool) { 3333 ti->error = "Couldn't find pool object"; 3334 r = -EINVAL; 3335 goto bad_pool_lookup; 3336 } 3337 __pool_inc(tc->pool); 3338 3339 if (get_pool_mode(tc->pool) == PM_FAIL) { 3340 ti->error = "Couldn't open thin device, Pool is in fail mode"; 3341 r = -EINVAL; 3342 goto bad_thin_open; 3343 } 3344 3345 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 3346 if (r) { 3347 ti->error = "Couldn't open thin internal device"; 3348 goto bad_thin_open; 3349 } 3350 3351 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 3352 if (r) 3353 goto bad_target_max_io_len; 3354 3355 ti->num_flush_bios = 1; 3356 ti->flush_supported = true; 3357 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 3358 3359 /* In case the pool supports discards, pass them on. */ 3360 ti->discard_zeroes_data_unsupported = true; 3361 if (tc->pool->pf.discard_enabled) { 3362 ti->discards_supported = true; 3363 ti->num_discard_bios = 1; 3364 /* Discard bios must be split on a block boundary */ 3365 ti->split_discard_bios = true; 3366 } 3367 3368 dm_put(pool_md); 3369 3370 mutex_unlock(&dm_thin_pool_table.mutex); 3371 3372 atomic_set(&tc->refcount, 1); 3373 init_completion(&tc->can_destroy); 3374 3375 spin_lock_irqsave(&tc->pool->lock, flags); 3376 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 3377 spin_unlock_irqrestore(&tc->pool->lock, flags); 3378 /* 3379 * This synchronize_rcu() call is needed here otherwise we risk a 3380 * wake_worker() call finding no bios to process (because the newly 3381 * added tc isn't yet visible). So this reduces latency since we 3382 * aren't then dependent on the periodic commit to wake_worker(). 3383 */ 3384 synchronize_rcu(); 3385 3386 return 0; 3387 3388 bad_target_max_io_len: 3389 dm_pool_close_thin_device(tc->td); 3390 bad_thin_open: 3391 __pool_dec(tc->pool); 3392 bad_pool_lookup: 3393 dm_put(pool_md); 3394 bad_common: 3395 dm_put_device(ti, tc->pool_dev); 3396 bad_pool_dev: 3397 if (tc->origin_dev) 3398 dm_put_device(ti, tc->origin_dev); 3399 bad_origin_dev: 3400 kfree(tc); 3401 out_unlock: 3402 mutex_unlock(&dm_thin_pool_table.mutex); 3403 3404 return r; 3405 } 3406 3407 static int thin_map(struct dm_target *ti, struct bio *bio) 3408 { 3409 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 3410 3411 return thin_bio_map(ti, bio); 3412 } 3413 3414 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 3415 { 3416 unsigned long flags; 3417 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 3418 struct list_head work; 3419 struct dm_thin_new_mapping *m, *tmp; 3420 struct pool *pool = h->tc->pool; 3421 3422 if (h->shared_read_entry) { 3423 INIT_LIST_HEAD(&work); 3424 dm_deferred_entry_dec(h->shared_read_entry, &work); 3425 3426 spin_lock_irqsave(&pool->lock, flags); 3427 list_for_each_entry_safe(m, tmp, &work, list) { 3428 list_del(&m->list); 3429 __complete_mapping_preparation(m); 3430 } 3431 spin_unlock_irqrestore(&pool->lock, flags); 3432 } 3433 3434 if (h->all_io_entry) { 3435 INIT_LIST_HEAD(&work); 3436 dm_deferred_entry_dec(h->all_io_entry, &work); 3437 if (!list_empty(&work)) { 3438 spin_lock_irqsave(&pool->lock, flags); 3439 list_for_each_entry_safe(m, tmp, &work, list) 3440 list_add_tail(&m->list, &pool->prepared_discards); 3441 spin_unlock_irqrestore(&pool->lock, flags); 3442 wake_worker(pool); 3443 } 3444 } 3445 3446 return 0; 3447 } 3448 3449 static void thin_presuspend(struct dm_target *ti) 3450 { 3451 struct thin_c *tc = ti->private; 3452 3453 if (dm_noflush_suspending(ti)) 3454 noflush_work(tc, do_noflush_start); 3455 } 3456 3457 static void thin_postsuspend(struct dm_target *ti) 3458 { 3459 struct thin_c *tc = ti->private; 3460 3461 /* 3462 * The dm_noflush_suspending flag has been cleared by now, so 3463 * unfortunately we must always run this. 3464 */ 3465 noflush_work(tc, do_noflush_stop); 3466 } 3467 3468 static int thin_preresume(struct dm_target *ti) 3469 { 3470 struct thin_c *tc = ti->private; 3471 3472 if (tc->origin_dev) 3473 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 3474 3475 return 0; 3476 } 3477 3478 /* 3479 * <nr mapped sectors> <highest mapped sector> 3480 */ 3481 static void thin_status(struct dm_target *ti, status_type_t type, 3482 unsigned status_flags, char *result, unsigned maxlen) 3483 { 3484 int r; 3485 ssize_t sz = 0; 3486 dm_block_t mapped, highest; 3487 char buf[BDEVNAME_SIZE]; 3488 struct thin_c *tc = ti->private; 3489 3490 if (get_pool_mode(tc->pool) == PM_FAIL) { 3491 DMEMIT("Fail"); 3492 return; 3493 } 3494 3495 if (!tc->td) 3496 DMEMIT("-"); 3497 else { 3498 switch (type) { 3499 case STATUSTYPE_INFO: 3500 r = dm_thin_get_mapped_count(tc->td, &mapped); 3501 if (r) { 3502 DMERR("dm_thin_get_mapped_count returned %d", r); 3503 goto err; 3504 } 3505 3506 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 3507 if (r < 0) { 3508 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 3509 goto err; 3510 } 3511 3512 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 3513 if (r) 3514 DMEMIT("%llu", ((highest + 1) * 3515 tc->pool->sectors_per_block) - 1); 3516 else 3517 DMEMIT("-"); 3518 break; 3519 3520 case STATUSTYPE_TABLE: 3521 DMEMIT("%s %lu", 3522 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 3523 (unsigned long) tc->dev_id); 3524 if (tc->origin_dev) 3525 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 3526 break; 3527 } 3528 } 3529 3530 return; 3531 3532 err: 3533 DMEMIT("Error"); 3534 } 3535 3536 static int thin_iterate_devices(struct dm_target *ti, 3537 iterate_devices_callout_fn fn, void *data) 3538 { 3539 sector_t blocks; 3540 struct thin_c *tc = ti->private; 3541 struct pool *pool = tc->pool; 3542 3543 /* 3544 * We can't call dm_pool_get_data_dev_size() since that blocks. So 3545 * we follow a more convoluted path through to the pool's target. 3546 */ 3547 if (!pool->ti) 3548 return 0; /* nothing is bound */ 3549 3550 blocks = pool->ti->len; 3551 (void) sector_div(blocks, pool->sectors_per_block); 3552 if (blocks) 3553 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 3554 3555 return 0; 3556 } 3557 3558 static struct target_type thin_target = { 3559 .name = "thin", 3560 .version = {1, 13, 0}, 3561 .module = THIS_MODULE, 3562 .ctr = thin_ctr, 3563 .dtr = thin_dtr, 3564 .map = thin_map, 3565 .end_io = thin_endio, 3566 .preresume = thin_preresume, 3567 .presuspend = thin_presuspend, 3568 .postsuspend = thin_postsuspend, 3569 .status = thin_status, 3570 .iterate_devices = thin_iterate_devices, 3571 }; 3572 3573 /*----------------------------------------------------------------*/ 3574 3575 static int __init dm_thin_init(void) 3576 { 3577 int r; 3578 3579 pool_table_init(); 3580 3581 r = dm_register_target(&thin_target); 3582 if (r) 3583 return r; 3584 3585 r = dm_register_target(&pool_target); 3586 if (r) 3587 goto bad_pool_target; 3588 3589 r = -ENOMEM; 3590 3591 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 3592 if (!_new_mapping_cache) 3593 goto bad_new_mapping_cache; 3594 3595 return 0; 3596 3597 bad_new_mapping_cache: 3598 dm_unregister_target(&pool_target); 3599 bad_pool_target: 3600 dm_unregister_target(&thin_target); 3601 3602 return r; 3603 } 3604 3605 static void dm_thin_exit(void) 3606 { 3607 dm_unregister_target(&thin_target); 3608 dm_unregister_target(&pool_target); 3609 3610 kmem_cache_destroy(_new_mapping_cache); 3611 } 3612 3613 module_init(dm_thin_init); 3614 module_exit(dm_thin_exit); 3615 3616 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 3617 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 3618 3619 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 3620 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3621 MODULE_LICENSE("GPL"); 3622