xref: /openbmc/linux/drivers/md/dm-thin.c (revision 242cdad8)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 	bool out_of_data_space:1;
239 
240 	struct dm_bio_prison *prison;
241 	struct dm_kcopyd_client *copier;
242 
243 	struct work_struct worker;
244 	struct workqueue_struct *wq;
245 	struct throttle throttle;
246 	struct delayed_work waker;
247 	struct delayed_work no_space_timeout;
248 
249 	unsigned long last_commit_jiffies;
250 	unsigned ref_count;
251 
252 	spinlock_t lock;
253 	struct bio_list deferred_flush_bios;
254 	struct list_head prepared_mappings;
255 	struct list_head prepared_discards;
256 	struct list_head prepared_discards_pt2;
257 	struct list_head active_thins;
258 
259 	struct dm_deferred_set *shared_read_ds;
260 	struct dm_deferred_set *all_io_ds;
261 
262 	struct dm_thin_new_mapping *next_mapping;
263 
264 	process_bio_fn process_bio;
265 	process_bio_fn process_discard;
266 
267 	process_cell_fn process_cell;
268 	process_cell_fn process_discard_cell;
269 
270 	process_mapping_fn process_prepared_mapping;
271 	process_mapping_fn process_prepared_discard;
272 	process_mapping_fn process_prepared_discard_pt2;
273 
274 	struct dm_bio_prison_cell **cell_sort_array;
275 
276 	mempool_t mapping_pool;
277 };
278 
279 static enum pool_mode get_pool_mode(struct pool *pool);
280 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
281 
282 /*
283  * Target context for a pool.
284  */
285 struct pool_c {
286 	struct dm_target *ti;
287 	struct pool *pool;
288 	struct dm_dev *data_dev;
289 	struct dm_dev *metadata_dev;
290 	struct dm_target_callbacks callbacks;
291 
292 	dm_block_t low_water_blocks;
293 	struct pool_features requested_pf; /* Features requested during table load */
294 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
295 };
296 
297 /*
298  * Target context for a thin.
299  */
300 struct thin_c {
301 	struct list_head list;
302 	struct dm_dev *pool_dev;
303 	struct dm_dev *origin_dev;
304 	sector_t origin_size;
305 	dm_thin_id dev_id;
306 
307 	struct pool *pool;
308 	struct dm_thin_device *td;
309 	struct mapped_device *thin_md;
310 
311 	bool requeue_mode:1;
312 	spinlock_t lock;
313 	struct list_head deferred_cells;
314 	struct bio_list deferred_bio_list;
315 	struct bio_list retry_on_resume_list;
316 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
317 
318 	/*
319 	 * Ensures the thin is not destroyed until the worker has finished
320 	 * iterating the active_thins list.
321 	 */
322 	atomic_t refcount;
323 	struct completion can_destroy;
324 };
325 
326 /*----------------------------------------------------------------*/
327 
328 static bool block_size_is_power_of_two(struct pool *pool)
329 {
330 	return pool->sectors_per_block_shift >= 0;
331 }
332 
333 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
334 {
335 	return block_size_is_power_of_two(pool) ?
336 		(b << pool->sectors_per_block_shift) :
337 		(b * pool->sectors_per_block);
338 }
339 
340 /*----------------------------------------------------------------*/
341 
342 struct discard_op {
343 	struct thin_c *tc;
344 	struct blk_plug plug;
345 	struct bio *parent_bio;
346 	struct bio *bio;
347 };
348 
349 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
350 {
351 	BUG_ON(!parent);
352 
353 	op->tc = tc;
354 	blk_start_plug(&op->plug);
355 	op->parent_bio = parent;
356 	op->bio = NULL;
357 }
358 
359 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
360 {
361 	struct thin_c *tc = op->tc;
362 	sector_t s = block_to_sectors(tc->pool, data_b);
363 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
364 
365 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
366 				      GFP_NOWAIT, 0, &op->bio);
367 }
368 
369 static void end_discard(struct discard_op *op, int r)
370 {
371 	if (op->bio) {
372 		/*
373 		 * Even if one of the calls to issue_discard failed, we
374 		 * need to wait for the chain to complete.
375 		 */
376 		bio_chain(op->bio, op->parent_bio);
377 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
378 		submit_bio(op->bio);
379 	}
380 
381 	blk_finish_plug(&op->plug);
382 
383 	/*
384 	 * Even if r is set, there could be sub discards in flight that we
385 	 * need to wait for.
386 	 */
387 	if (r && !op->parent_bio->bi_status)
388 		op->parent_bio->bi_status = errno_to_blk_status(r);
389 	bio_endio(op->parent_bio);
390 }
391 
392 /*----------------------------------------------------------------*/
393 
394 /*
395  * wake_worker() is used when new work is queued and when pool_resume is
396  * ready to continue deferred IO processing.
397  */
398 static void wake_worker(struct pool *pool)
399 {
400 	queue_work(pool->wq, &pool->worker);
401 }
402 
403 /*----------------------------------------------------------------*/
404 
405 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
406 		      struct dm_bio_prison_cell **cell_result)
407 {
408 	int r;
409 	struct dm_bio_prison_cell *cell_prealloc;
410 
411 	/*
412 	 * Allocate a cell from the prison's mempool.
413 	 * This might block but it can't fail.
414 	 */
415 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
416 
417 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
418 	if (r)
419 		/*
420 		 * We reused an old cell; we can get rid of
421 		 * the new one.
422 		 */
423 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
424 
425 	return r;
426 }
427 
428 static void cell_release(struct pool *pool,
429 			 struct dm_bio_prison_cell *cell,
430 			 struct bio_list *bios)
431 {
432 	dm_cell_release(pool->prison, cell, bios);
433 	dm_bio_prison_free_cell(pool->prison, cell);
434 }
435 
436 static void cell_visit_release(struct pool *pool,
437 			       void (*fn)(void *, struct dm_bio_prison_cell *),
438 			       void *context,
439 			       struct dm_bio_prison_cell *cell)
440 {
441 	dm_cell_visit_release(pool->prison, fn, context, cell);
442 	dm_bio_prison_free_cell(pool->prison, cell);
443 }
444 
445 static void cell_release_no_holder(struct pool *pool,
446 				   struct dm_bio_prison_cell *cell,
447 				   struct bio_list *bios)
448 {
449 	dm_cell_release_no_holder(pool->prison, cell, bios);
450 	dm_bio_prison_free_cell(pool->prison, cell);
451 }
452 
453 static void cell_error_with_code(struct pool *pool,
454 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
455 {
456 	dm_cell_error(pool->prison, cell, error_code);
457 	dm_bio_prison_free_cell(pool->prison, cell);
458 }
459 
460 static blk_status_t get_pool_io_error_code(struct pool *pool)
461 {
462 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
463 }
464 
465 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
466 {
467 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
468 }
469 
470 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
471 {
472 	cell_error_with_code(pool, cell, 0);
473 }
474 
475 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
476 {
477 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
478 }
479 
480 /*----------------------------------------------------------------*/
481 
482 /*
483  * A global list of pools that uses a struct mapped_device as a key.
484  */
485 static struct dm_thin_pool_table {
486 	struct mutex mutex;
487 	struct list_head pools;
488 } dm_thin_pool_table;
489 
490 static void pool_table_init(void)
491 {
492 	mutex_init(&dm_thin_pool_table.mutex);
493 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
494 }
495 
496 static void pool_table_exit(void)
497 {
498 	mutex_destroy(&dm_thin_pool_table.mutex);
499 }
500 
501 static void __pool_table_insert(struct pool *pool)
502 {
503 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
504 	list_add(&pool->list, &dm_thin_pool_table.pools);
505 }
506 
507 static void __pool_table_remove(struct pool *pool)
508 {
509 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
510 	list_del(&pool->list);
511 }
512 
513 static struct pool *__pool_table_lookup(struct mapped_device *md)
514 {
515 	struct pool *pool = NULL, *tmp;
516 
517 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
518 
519 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
520 		if (tmp->pool_md == md) {
521 			pool = tmp;
522 			break;
523 		}
524 	}
525 
526 	return pool;
527 }
528 
529 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
530 {
531 	struct pool *pool = NULL, *tmp;
532 
533 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
534 
535 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
536 		if (tmp->md_dev == md_dev) {
537 			pool = tmp;
538 			break;
539 		}
540 	}
541 
542 	return pool;
543 }
544 
545 /*----------------------------------------------------------------*/
546 
547 struct dm_thin_endio_hook {
548 	struct thin_c *tc;
549 	struct dm_deferred_entry *shared_read_entry;
550 	struct dm_deferred_entry *all_io_entry;
551 	struct dm_thin_new_mapping *overwrite_mapping;
552 	struct rb_node rb_node;
553 	struct dm_bio_prison_cell *cell;
554 };
555 
556 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
557 {
558 	bio_list_merge(bios, master);
559 	bio_list_init(master);
560 }
561 
562 static void error_bio_list(struct bio_list *bios, blk_status_t error)
563 {
564 	struct bio *bio;
565 
566 	while ((bio = bio_list_pop(bios))) {
567 		bio->bi_status = error;
568 		bio_endio(bio);
569 	}
570 }
571 
572 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
573 		blk_status_t error)
574 {
575 	struct bio_list bios;
576 	unsigned long flags;
577 
578 	bio_list_init(&bios);
579 
580 	spin_lock_irqsave(&tc->lock, flags);
581 	__merge_bio_list(&bios, master);
582 	spin_unlock_irqrestore(&tc->lock, flags);
583 
584 	error_bio_list(&bios, error);
585 }
586 
587 static void requeue_deferred_cells(struct thin_c *tc)
588 {
589 	struct pool *pool = tc->pool;
590 	unsigned long flags;
591 	struct list_head cells;
592 	struct dm_bio_prison_cell *cell, *tmp;
593 
594 	INIT_LIST_HEAD(&cells);
595 
596 	spin_lock_irqsave(&tc->lock, flags);
597 	list_splice_init(&tc->deferred_cells, &cells);
598 	spin_unlock_irqrestore(&tc->lock, flags);
599 
600 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
601 		cell_requeue(pool, cell);
602 }
603 
604 static void requeue_io(struct thin_c *tc)
605 {
606 	struct bio_list bios;
607 	unsigned long flags;
608 
609 	bio_list_init(&bios);
610 
611 	spin_lock_irqsave(&tc->lock, flags);
612 	__merge_bio_list(&bios, &tc->deferred_bio_list);
613 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
614 	spin_unlock_irqrestore(&tc->lock, flags);
615 
616 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
617 	requeue_deferred_cells(tc);
618 }
619 
620 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
621 {
622 	struct thin_c *tc;
623 
624 	rcu_read_lock();
625 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
626 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
627 	rcu_read_unlock();
628 }
629 
630 static void error_retry_list(struct pool *pool)
631 {
632 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
633 }
634 
635 /*
636  * This section of code contains the logic for processing a thin device's IO.
637  * Much of the code depends on pool object resources (lists, workqueues, etc)
638  * but most is exclusively called from the thin target rather than the thin-pool
639  * target.
640  */
641 
642 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
643 {
644 	struct pool *pool = tc->pool;
645 	sector_t block_nr = bio->bi_iter.bi_sector;
646 
647 	if (block_size_is_power_of_two(pool))
648 		block_nr >>= pool->sectors_per_block_shift;
649 	else
650 		(void) sector_div(block_nr, pool->sectors_per_block);
651 
652 	return block_nr;
653 }
654 
655 /*
656  * Returns the _complete_ blocks that this bio covers.
657  */
658 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
659 				dm_block_t *begin, dm_block_t *end)
660 {
661 	struct pool *pool = tc->pool;
662 	sector_t b = bio->bi_iter.bi_sector;
663 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
664 
665 	b += pool->sectors_per_block - 1ull; /* so we round up */
666 
667 	if (block_size_is_power_of_two(pool)) {
668 		b >>= pool->sectors_per_block_shift;
669 		e >>= pool->sectors_per_block_shift;
670 	} else {
671 		(void) sector_div(b, pool->sectors_per_block);
672 		(void) sector_div(e, pool->sectors_per_block);
673 	}
674 
675 	if (e < b)
676 		/* Can happen if the bio is within a single block. */
677 		e = b;
678 
679 	*begin = b;
680 	*end = e;
681 }
682 
683 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
684 {
685 	struct pool *pool = tc->pool;
686 	sector_t bi_sector = bio->bi_iter.bi_sector;
687 
688 	bio_set_dev(bio, tc->pool_dev->bdev);
689 	if (block_size_is_power_of_two(pool))
690 		bio->bi_iter.bi_sector =
691 			(block << pool->sectors_per_block_shift) |
692 			(bi_sector & (pool->sectors_per_block - 1));
693 	else
694 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
695 				 sector_div(bi_sector, pool->sectors_per_block);
696 }
697 
698 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
699 {
700 	bio_set_dev(bio, tc->origin_dev->bdev);
701 }
702 
703 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
704 {
705 	return op_is_flush(bio->bi_opf) &&
706 		dm_thin_changed_this_transaction(tc->td);
707 }
708 
709 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
710 {
711 	struct dm_thin_endio_hook *h;
712 
713 	if (bio_op(bio) == REQ_OP_DISCARD)
714 		return;
715 
716 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
717 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
718 }
719 
720 static void issue(struct thin_c *tc, struct bio *bio)
721 {
722 	struct pool *pool = tc->pool;
723 	unsigned long flags;
724 
725 	if (!bio_triggers_commit(tc, bio)) {
726 		generic_make_request(bio);
727 		return;
728 	}
729 
730 	/*
731 	 * Complete bio with an error if earlier I/O caused changes to
732 	 * the metadata that can't be committed e.g, due to I/O errors
733 	 * on the metadata device.
734 	 */
735 	if (dm_thin_aborted_changes(tc->td)) {
736 		bio_io_error(bio);
737 		return;
738 	}
739 
740 	/*
741 	 * Batch together any bios that trigger commits and then issue a
742 	 * single commit for them in process_deferred_bios().
743 	 */
744 	spin_lock_irqsave(&pool->lock, flags);
745 	bio_list_add(&pool->deferred_flush_bios, bio);
746 	spin_unlock_irqrestore(&pool->lock, flags);
747 }
748 
749 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
750 {
751 	remap_to_origin(tc, bio);
752 	issue(tc, bio);
753 }
754 
755 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
756 			    dm_block_t block)
757 {
758 	remap(tc, bio, block);
759 	issue(tc, bio);
760 }
761 
762 /*----------------------------------------------------------------*/
763 
764 /*
765  * Bio endio functions.
766  */
767 struct dm_thin_new_mapping {
768 	struct list_head list;
769 
770 	bool pass_discard:1;
771 	bool maybe_shared:1;
772 
773 	/*
774 	 * Track quiescing, copying and zeroing preparation actions.  When this
775 	 * counter hits zero the block is prepared and can be inserted into the
776 	 * btree.
777 	 */
778 	atomic_t prepare_actions;
779 
780 	blk_status_t status;
781 	struct thin_c *tc;
782 	dm_block_t virt_begin, virt_end;
783 	dm_block_t data_block;
784 	struct dm_bio_prison_cell *cell;
785 
786 	/*
787 	 * If the bio covers the whole area of a block then we can avoid
788 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
789 	 * still be in the cell, so care has to be taken to avoid issuing
790 	 * the bio twice.
791 	 */
792 	struct bio *bio;
793 	bio_end_io_t *saved_bi_end_io;
794 };
795 
796 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
797 {
798 	struct pool *pool = m->tc->pool;
799 
800 	if (atomic_dec_and_test(&m->prepare_actions)) {
801 		list_add_tail(&m->list, &pool->prepared_mappings);
802 		wake_worker(pool);
803 	}
804 }
805 
806 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
807 {
808 	unsigned long flags;
809 	struct pool *pool = m->tc->pool;
810 
811 	spin_lock_irqsave(&pool->lock, flags);
812 	__complete_mapping_preparation(m);
813 	spin_unlock_irqrestore(&pool->lock, flags);
814 }
815 
816 static void copy_complete(int read_err, unsigned long write_err, void *context)
817 {
818 	struct dm_thin_new_mapping *m = context;
819 
820 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
821 	complete_mapping_preparation(m);
822 }
823 
824 static void overwrite_endio(struct bio *bio)
825 {
826 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
827 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
828 
829 	bio->bi_end_io = m->saved_bi_end_io;
830 
831 	m->status = bio->bi_status;
832 	complete_mapping_preparation(m);
833 }
834 
835 /*----------------------------------------------------------------*/
836 
837 /*
838  * Workqueue.
839  */
840 
841 /*
842  * Prepared mapping jobs.
843  */
844 
845 /*
846  * This sends the bios in the cell, except the original holder, back
847  * to the deferred_bios list.
848  */
849 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
850 {
851 	struct pool *pool = tc->pool;
852 	unsigned long flags;
853 
854 	spin_lock_irqsave(&tc->lock, flags);
855 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
856 	spin_unlock_irqrestore(&tc->lock, flags);
857 
858 	wake_worker(pool);
859 }
860 
861 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
862 
863 struct remap_info {
864 	struct thin_c *tc;
865 	struct bio_list defer_bios;
866 	struct bio_list issue_bios;
867 };
868 
869 static void __inc_remap_and_issue_cell(void *context,
870 				       struct dm_bio_prison_cell *cell)
871 {
872 	struct remap_info *info = context;
873 	struct bio *bio;
874 
875 	while ((bio = bio_list_pop(&cell->bios))) {
876 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
877 			bio_list_add(&info->defer_bios, bio);
878 		else {
879 			inc_all_io_entry(info->tc->pool, bio);
880 
881 			/*
882 			 * We can't issue the bios with the bio prison lock
883 			 * held, so we add them to a list to issue on
884 			 * return from this function.
885 			 */
886 			bio_list_add(&info->issue_bios, bio);
887 		}
888 	}
889 }
890 
891 static void inc_remap_and_issue_cell(struct thin_c *tc,
892 				     struct dm_bio_prison_cell *cell,
893 				     dm_block_t block)
894 {
895 	struct bio *bio;
896 	struct remap_info info;
897 
898 	info.tc = tc;
899 	bio_list_init(&info.defer_bios);
900 	bio_list_init(&info.issue_bios);
901 
902 	/*
903 	 * We have to be careful to inc any bios we're about to issue
904 	 * before the cell is released, and avoid a race with new bios
905 	 * being added to the cell.
906 	 */
907 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
908 			   &info, cell);
909 
910 	while ((bio = bio_list_pop(&info.defer_bios)))
911 		thin_defer_bio(tc, bio);
912 
913 	while ((bio = bio_list_pop(&info.issue_bios)))
914 		remap_and_issue(info.tc, bio, block);
915 }
916 
917 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
918 {
919 	cell_error(m->tc->pool, m->cell);
920 	list_del(&m->list);
921 	mempool_free(m, &m->tc->pool->mapping_pool);
922 }
923 
924 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
925 {
926 	struct thin_c *tc = m->tc;
927 	struct pool *pool = tc->pool;
928 	struct bio *bio = m->bio;
929 	int r;
930 
931 	if (m->status) {
932 		cell_error(pool, m->cell);
933 		goto out;
934 	}
935 
936 	/*
937 	 * Commit the prepared block into the mapping btree.
938 	 * Any I/O for this block arriving after this point will get
939 	 * remapped to it directly.
940 	 */
941 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
942 	if (r) {
943 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
944 		cell_error(pool, m->cell);
945 		goto out;
946 	}
947 
948 	/*
949 	 * Release any bios held while the block was being provisioned.
950 	 * If we are processing a write bio that completely covers the block,
951 	 * we already processed it so can ignore it now when processing
952 	 * the bios in the cell.
953 	 */
954 	if (bio) {
955 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
956 		bio_endio(bio);
957 	} else {
958 		inc_all_io_entry(tc->pool, m->cell->holder);
959 		remap_and_issue(tc, m->cell->holder, m->data_block);
960 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
961 	}
962 
963 out:
964 	list_del(&m->list);
965 	mempool_free(m, &pool->mapping_pool);
966 }
967 
968 /*----------------------------------------------------------------*/
969 
970 static void free_discard_mapping(struct dm_thin_new_mapping *m)
971 {
972 	struct thin_c *tc = m->tc;
973 	if (m->cell)
974 		cell_defer_no_holder(tc, m->cell);
975 	mempool_free(m, &tc->pool->mapping_pool);
976 }
977 
978 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
979 {
980 	bio_io_error(m->bio);
981 	free_discard_mapping(m);
982 }
983 
984 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
985 {
986 	bio_endio(m->bio);
987 	free_discard_mapping(m);
988 }
989 
990 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
991 {
992 	int r;
993 	struct thin_c *tc = m->tc;
994 
995 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
996 	if (r) {
997 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
998 		bio_io_error(m->bio);
999 	} else
1000 		bio_endio(m->bio);
1001 
1002 	cell_defer_no_holder(tc, m->cell);
1003 	mempool_free(m, &tc->pool->mapping_pool);
1004 }
1005 
1006 /*----------------------------------------------------------------*/
1007 
1008 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1009 						   struct bio *discard_parent)
1010 {
1011 	/*
1012 	 * We've already unmapped this range of blocks, but before we
1013 	 * passdown we have to check that these blocks are now unused.
1014 	 */
1015 	int r = 0;
1016 	bool used = true;
1017 	struct thin_c *tc = m->tc;
1018 	struct pool *pool = tc->pool;
1019 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1020 	struct discard_op op;
1021 
1022 	begin_discard(&op, tc, discard_parent);
1023 	while (b != end) {
1024 		/* find start of unmapped run */
1025 		for (; b < end; b++) {
1026 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1027 			if (r)
1028 				goto out;
1029 
1030 			if (!used)
1031 				break;
1032 		}
1033 
1034 		if (b == end)
1035 			break;
1036 
1037 		/* find end of run */
1038 		for (e = b + 1; e != end; e++) {
1039 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1040 			if (r)
1041 				goto out;
1042 
1043 			if (used)
1044 				break;
1045 		}
1046 
1047 		r = issue_discard(&op, b, e);
1048 		if (r)
1049 			goto out;
1050 
1051 		b = e;
1052 	}
1053 out:
1054 	end_discard(&op, r);
1055 }
1056 
1057 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1058 {
1059 	unsigned long flags;
1060 	struct pool *pool = m->tc->pool;
1061 
1062 	spin_lock_irqsave(&pool->lock, flags);
1063 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1064 	spin_unlock_irqrestore(&pool->lock, flags);
1065 	wake_worker(pool);
1066 }
1067 
1068 static void passdown_endio(struct bio *bio)
1069 {
1070 	/*
1071 	 * It doesn't matter if the passdown discard failed, we still want
1072 	 * to unmap (we ignore err).
1073 	 */
1074 	queue_passdown_pt2(bio->bi_private);
1075 	bio_put(bio);
1076 }
1077 
1078 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1079 {
1080 	int r;
1081 	struct thin_c *tc = m->tc;
1082 	struct pool *pool = tc->pool;
1083 	struct bio *discard_parent;
1084 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1085 
1086 	/*
1087 	 * Only this thread allocates blocks, so we can be sure that the
1088 	 * newly unmapped blocks will not be allocated before the end of
1089 	 * the function.
1090 	 */
1091 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1092 	if (r) {
1093 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1094 		bio_io_error(m->bio);
1095 		cell_defer_no_holder(tc, m->cell);
1096 		mempool_free(m, &pool->mapping_pool);
1097 		return;
1098 	}
1099 
1100 	/*
1101 	 * Increment the unmapped blocks.  This prevents a race between the
1102 	 * passdown io and reallocation of freed blocks.
1103 	 */
1104 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1105 	if (r) {
1106 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1107 		bio_io_error(m->bio);
1108 		cell_defer_no_holder(tc, m->cell);
1109 		mempool_free(m, &pool->mapping_pool);
1110 		return;
1111 	}
1112 
1113 	discard_parent = bio_alloc(GFP_NOIO, 1);
1114 	if (!discard_parent) {
1115 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1116 		       dm_device_name(tc->pool->pool_md));
1117 		queue_passdown_pt2(m);
1118 
1119 	} else {
1120 		discard_parent->bi_end_io = passdown_endio;
1121 		discard_parent->bi_private = m;
1122 
1123 		if (m->maybe_shared)
1124 			passdown_double_checking_shared_status(m, discard_parent);
1125 		else {
1126 			struct discard_op op;
1127 
1128 			begin_discard(&op, tc, discard_parent);
1129 			r = issue_discard(&op, m->data_block, data_end);
1130 			end_discard(&op, r);
1131 		}
1132 	}
1133 }
1134 
1135 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1136 {
1137 	int r;
1138 	struct thin_c *tc = m->tc;
1139 	struct pool *pool = tc->pool;
1140 
1141 	/*
1142 	 * The passdown has completed, so now we can decrement all those
1143 	 * unmapped blocks.
1144 	 */
1145 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1146 				   m->data_block + (m->virt_end - m->virt_begin));
1147 	if (r) {
1148 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1149 		bio_io_error(m->bio);
1150 	} else
1151 		bio_endio(m->bio);
1152 
1153 	cell_defer_no_holder(tc, m->cell);
1154 	mempool_free(m, &pool->mapping_pool);
1155 }
1156 
1157 static void process_prepared(struct pool *pool, struct list_head *head,
1158 			     process_mapping_fn *fn)
1159 {
1160 	unsigned long flags;
1161 	struct list_head maps;
1162 	struct dm_thin_new_mapping *m, *tmp;
1163 
1164 	INIT_LIST_HEAD(&maps);
1165 	spin_lock_irqsave(&pool->lock, flags);
1166 	list_splice_init(head, &maps);
1167 	spin_unlock_irqrestore(&pool->lock, flags);
1168 
1169 	list_for_each_entry_safe(m, tmp, &maps, list)
1170 		(*fn)(m);
1171 }
1172 
1173 /*
1174  * Deferred bio jobs.
1175  */
1176 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1177 {
1178 	return bio->bi_iter.bi_size ==
1179 		(pool->sectors_per_block << SECTOR_SHIFT);
1180 }
1181 
1182 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1183 {
1184 	return (bio_data_dir(bio) == WRITE) &&
1185 		io_overlaps_block(pool, bio);
1186 }
1187 
1188 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1189 			       bio_end_io_t *fn)
1190 {
1191 	*save = bio->bi_end_io;
1192 	bio->bi_end_io = fn;
1193 }
1194 
1195 static int ensure_next_mapping(struct pool *pool)
1196 {
1197 	if (pool->next_mapping)
1198 		return 0;
1199 
1200 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1201 
1202 	return pool->next_mapping ? 0 : -ENOMEM;
1203 }
1204 
1205 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1206 {
1207 	struct dm_thin_new_mapping *m = pool->next_mapping;
1208 
1209 	BUG_ON(!pool->next_mapping);
1210 
1211 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1212 	INIT_LIST_HEAD(&m->list);
1213 	m->bio = NULL;
1214 
1215 	pool->next_mapping = NULL;
1216 
1217 	return m;
1218 }
1219 
1220 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1221 		    sector_t begin, sector_t end)
1222 {
1223 	struct dm_io_region to;
1224 
1225 	to.bdev = tc->pool_dev->bdev;
1226 	to.sector = begin;
1227 	to.count = end - begin;
1228 
1229 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1230 }
1231 
1232 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1233 				      dm_block_t data_begin,
1234 				      struct dm_thin_new_mapping *m)
1235 {
1236 	struct pool *pool = tc->pool;
1237 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1238 
1239 	h->overwrite_mapping = m;
1240 	m->bio = bio;
1241 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1242 	inc_all_io_entry(pool, bio);
1243 	remap_and_issue(tc, bio, data_begin);
1244 }
1245 
1246 /*
1247  * A partial copy also needs to zero the uncopied region.
1248  */
1249 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1250 			  struct dm_dev *origin, dm_block_t data_origin,
1251 			  dm_block_t data_dest,
1252 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1253 			  sector_t len)
1254 {
1255 	struct pool *pool = tc->pool;
1256 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1257 
1258 	m->tc = tc;
1259 	m->virt_begin = virt_block;
1260 	m->virt_end = virt_block + 1u;
1261 	m->data_block = data_dest;
1262 	m->cell = cell;
1263 
1264 	/*
1265 	 * quiesce action + copy action + an extra reference held for the
1266 	 * duration of this function (we may need to inc later for a
1267 	 * partial zero).
1268 	 */
1269 	atomic_set(&m->prepare_actions, 3);
1270 
1271 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1272 		complete_mapping_preparation(m); /* already quiesced */
1273 
1274 	/*
1275 	 * IO to pool_dev remaps to the pool target's data_dev.
1276 	 *
1277 	 * If the whole block of data is being overwritten, we can issue the
1278 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1279 	 */
1280 	if (io_overwrites_block(pool, bio))
1281 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1282 	else {
1283 		struct dm_io_region from, to;
1284 
1285 		from.bdev = origin->bdev;
1286 		from.sector = data_origin * pool->sectors_per_block;
1287 		from.count = len;
1288 
1289 		to.bdev = tc->pool_dev->bdev;
1290 		to.sector = data_dest * pool->sectors_per_block;
1291 		to.count = len;
1292 
1293 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1294 			       0, copy_complete, m);
1295 
1296 		/*
1297 		 * Do we need to zero a tail region?
1298 		 */
1299 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1300 			atomic_inc(&m->prepare_actions);
1301 			ll_zero(tc, m,
1302 				data_dest * pool->sectors_per_block + len,
1303 				(data_dest + 1) * pool->sectors_per_block);
1304 		}
1305 	}
1306 
1307 	complete_mapping_preparation(m); /* drop our ref */
1308 }
1309 
1310 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1311 				   dm_block_t data_origin, dm_block_t data_dest,
1312 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1313 {
1314 	schedule_copy(tc, virt_block, tc->pool_dev,
1315 		      data_origin, data_dest, cell, bio,
1316 		      tc->pool->sectors_per_block);
1317 }
1318 
1319 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1320 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1321 			  struct bio *bio)
1322 {
1323 	struct pool *pool = tc->pool;
1324 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1325 
1326 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1327 	m->tc = tc;
1328 	m->virt_begin = virt_block;
1329 	m->virt_end = virt_block + 1u;
1330 	m->data_block = data_block;
1331 	m->cell = cell;
1332 
1333 	/*
1334 	 * If the whole block of data is being overwritten or we are not
1335 	 * zeroing pre-existing data, we can issue the bio immediately.
1336 	 * Otherwise we use kcopyd to zero the data first.
1337 	 */
1338 	if (pool->pf.zero_new_blocks) {
1339 		if (io_overwrites_block(pool, bio))
1340 			remap_and_issue_overwrite(tc, bio, data_block, m);
1341 		else
1342 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1343 				(data_block + 1) * pool->sectors_per_block);
1344 	} else
1345 		process_prepared_mapping(m);
1346 }
1347 
1348 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1349 				   dm_block_t data_dest,
1350 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1351 {
1352 	struct pool *pool = tc->pool;
1353 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1354 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1355 
1356 	if (virt_block_end <= tc->origin_size)
1357 		schedule_copy(tc, virt_block, tc->origin_dev,
1358 			      virt_block, data_dest, cell, bio,
1359 			      pool->sectors_per_block);
1360 
1361 	else if (virt_block_begin < tc->origin_size)
1362 		schedule_copy(tc, virt_block, tc->origin_dev,
1363 			      virt_block, data_dest, cell, bio,
1364 			      tc->origin_size - virt_block_begin);
1365 
1366 	else
1367 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1368 }
1369 
1370 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1371 
1372 static void requeue_bios(struct pool *pool);
1373 
1374 static void check_for_space(struct pool *pool)
1375 {
1376 	int r;
1377 	dm_block_t nr_free;
1378 
1379 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1380 		return;
1381 
1382 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1383 	if (r)
1384 		return;
1385 
1386 	if (nr_free) {
1387 		set_pool_mode(pool, PM_WRITE);
1388 		requeue_bios(pool);
1389 	}
1390 }
1391 
1392 /*
1393  * A non-zero return indicates read_only or fail_io mode.
1394  * Many callers don't care about the return value.
1395  */
1396 static int commit(struct pool *pool)
1397 {
1398 	int r;
1399 
1400 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1401 		return -EINVAL;
1402 
1403 	r = dm_pool_commit_metadata(pool->pmd);
1404 	if (r)
1405 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1406 	else
1407 		check_for_space(pool);
1408 
1409 	return r;
1410 }
1411 
1412 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1413 {
1414 	unsigned long flags;
1415 
1416 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1417 		DMWARN("%s: reached low water mark for data device: sending event.",
1418 		       dm_device_name(pool->pool_md));
1419 		spin_lock_irqsave(&pool->lock, flags);
1420 		pool->low_water_triggered = true;
1421 		spin_unlock_irqrestore(&pool->lock, flags);
1422 		dm_table_event(pool->ti->table);
1423 	}
1424 }
1425 
1426 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1427 {
1428 	int r;
1429 	dm_block_t free_blocks;
1430 	struct pool *pool = tc->pool;
1431 
1432 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1433 		return -EINVAL;
1434 
1435 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1436 	if (r) {
1437 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1438 		return r;
1439 	}
1440 
1441 	check_low_water_mark(pool, free_blocks);
1442 
1443 	if (!free_blocks) {
1444 		/*
1445 		 * Try to commit to see if that will free up some
1446 		 * more space.
1447 		 */
1448 		r = commit(pool);
1449 		if (r)
1450 			return r;
1451 
1452 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1453 		if (r) {
1454 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1455 			return r;
1456 		}
1457 
1458 		if (!free_blocks) {
1459 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1460 			return -ENOSPC;
1461 		}
1462 	}
1463 
1464 	r = dm_pool_alloc_data_block(pool->pmd, result);
1465 	if (r) {
1466 		if (r == -ENOSPC)
1467 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1468 		else
1469 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1470 		return r;
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 /*
1477  * If we have run out of space, queue bios until the device is
1478  * resumed, presumably after having been reloaded with more space.
1479  */
1480 static void retry_on_resume(struct bio *bio)
1481 {
1482 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1483 	struct thin_c *tc = h->tc;
1484 	unsigned long flags;
1485 
1486 	spin_lock_irqsave(&tc->lock, flags);
1487 	bio_list_add(&tc->retry_on_resume_list, bio);
1488 	spin_unlock_irqrestore(&tc->lock, flags);
1489 }
1490 
1491 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1492 {
1493 	enum pool_mode m = get_pool_mode(pool);
1494 
1495 	switch (m) {
1496 	case PM_WRITE:
1497 		/* Shouldn't get here */
1498 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1499 		return BLK_STS_IOERR;
1500 
1501 	case PM_OUT_OF_DATA_SPACE:
1502 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1503 
1504 	case PM_READ_ONLY:
1505 	case PM_FAIL:
1506 		return BLK_STS_IOERR;
1507 	default:
1508 		/* Shouldn't get here */
1509 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1510 		return BLK_STS_IOERR;
1511 	}
1512 }
1513 
1514 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1515 {
1516 	blk_status_t error = should_error_unserviceable_bio(pool);
1517 
1518 	if (error) {
1519 		bio->bi_status = error;
1520 		bio_endio(bio);
1521 	} else
1522 		retry_on_resume(bio);
1523 }
1524 
1525 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1526 {
1527 	struct bio *bio;
1528 	struct bio_list bios;
1529 	blk_status_t error;
1530 
1531 	error = should_error_unserviceable_bio(pool);
1532 	if (error) {
1533 		cell_error_with_code(pool, cell, error);
1534 		return;
1535 	}
1536 
1537 	bio_list_init(&bios);
1538 	cell_release(pool, cell, &bios);
1539 
1540 	while ((bio = bio_list_pop(&bios)))
1541 		retry_on_resume(bio);
1542 }
1543 
1544 static void process_discard_cell_no_passdown(struct thin_c *tc,
1545 					     struct dm_bio_prison_cell *virt_cell)
1546 {
1547 	struct pool *pool = tc->pool;
1548 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1549 
1550 	/*
1551 	 * We don't need to lock the data blocks, since there's no
1552 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1553 	 */
1554 	m->tc = tc;
1555 	m->virt_begin = virt_cell->key.block_begin;
1556 	m->virt_end = virt_cell->key.block_end;
1557 	m->cell = virt_cell;
1558 	m->bio = virt_cell->holder;
1559 
1560 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1561 		pool->process_prepared_discard(m);
1562 }
1563 
1564 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1565 				 struct bio *bio)
1566 {
1567 	struct pool *pool = tc->pool;
1568 
1569 	int r;
1570 	bool maybe_shared;
1571 	struct dm_cell_key data_key;
1572 	struct dm_bio_prison_cell *data_cell;
1573 	struct dm_thin_new_mapping *m;
1574 	dm_block_t virt_begin, virt_end, data_begin;
1575 
1576 	while (begin != end) {
1577 		r = ensure_next_mapping(pool);
1578 		if (r)
1579 			/* we did our best */
1580 			return;
1581 
1582 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1583 					      &data_begin, &maybe_shared);
1584 		if (r)
1585 			/*
1586 			 * Silently fail, letting any mappings we've
1587 			 * created complete.
1588 			 */
1589 			break;
1590 
1591 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1592 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1593 			/* contention, we'll give up with this range */
1594 			begin = virt_end;
1595 			continue;
1596 		}
1597 
1598 		/*
1599 		 * IO may still be going to the destination block.  We must
1600 		 * quiesce before we can do the removal.
1601 		 */
1602 		m = get_next_mapping(pool);
1603 		m->tc = tc;
1604 		m->maybe_shared = maybe_shared;
1605 		m->virt_begin = virt_begin;
1606 		m->virt_end = virt_end;
1607 		m->data_block = data_begin;
1608 		m->cell = data_cell;
1609 		m->bio = bio;
1610 
1611 		/*
1612 		 * The parent bio must not complete before sub discard bios are
1613 		 * chained to it (see end_discard's bio_chain)!
1614 		 *
1615 		 * This per-mapping bi_remaining increment is paired with
1616 		 * the implicit decrement that occurs via bio_endio() in
1617 		 * end_discard().
1618 		 */
1619 		bio_inc_remaining(bio);
1620 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1621 			pool->process_prepared_discard(m);
1622 
1623 		begin = virt_end;
1624 	}
1625 }
1626 
1627 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1628 {
1629 	struct bio *bio = virt_cell->holder;
1630 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1631 
1632 	/*
1633 	 * The virt_cell will only get freed once the origin bio completes.
1634 	 * This means it will remain locked while all the individual
1635 	 * passdown bios are in flight.
1636 	 */
1637 	h->cell = virt_cell;
1638 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1639 
1640 	/*
1641 	 * We complete the bio now, knowing that the bi_remaining field
1642 	 * will prevent completion until the sub range discards have
1643 	 * completed.
1644 	 */
1645 	bio_endio(bio);
1646 }
1647 
1648 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1649 {
1650 	dm_block_t begin, end;
1651 	struct dm_cell_key virt_key;
1652 	struct dm_bio_prison_cell *virt_cell;
1653 
1654 	get_bio_block_range(tc, bio, &begin, &end);
1655 	if (begin == end) {
1656 		/*
1657 		 * The discard covers less than a block.
1658 		 */
1659 		bio_endio(bio);
1660 		return;
1661 	}
1662 
1663 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1664 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1665 		/*
1666 		 * Potential starvation issue: We're relying on the
1667 		 * fs/application being well behaved, and not trying to
1668 		 * send IO to a region at the same time as discarding it.
1669 		 * If they do this persistently then it's possible this
1670 		 * cell will never be granted.
1671 		 */
1672 		return;
1673 
1674 	tc->pool->process_discard_cell(tc, virt_cell);
1675 }
1676 
1677 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1678 			  struct dm_cell_key *key,
1679 			  struct dm_thin_lookup_result *lookup_result,
1680 			  struct dm_bio_prison_cell *cell)
1681 {
1682 	int r;
1683 	dm_block_t data_block;
1684 	struct pool *pool = tc->pool;
1685 
1686 	r = alloc_data_block(tc, &data_block);
1687 	switch (r) {
1688 	case 0:
1689 		schedule_internal_copy(tc, block, lookup_result->block,
1690 				       data_block, cell, bio);
1691 		break;
1692 
1693 	case -ENOSPC:
1694 		retry_bios_on_resume(pool, cell);
1695 		break;
1696 
1697 	default:
1698 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1699 			    __func__, r);
1700 		cell_error(pool, cell);
1701 		break;
1702 	}
1703 }
1704 
1705 static void __remap_and_issue_shared_cell(void *context,
1706 					  struct dm_bio_prison_cell *cell)
1707 {
1708 	struct remap_info *info = context;
1709 	struct bio *bio;
1710 
1711 	while ((bio = bio_list_pop(&cell->bios))) {
1712 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1713 		    bio_op(bio) == REQ_OP_DISCARD)
1714 			bio_list_add(&info->defer_bios, bio);
1715 		else {
1716 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1717 
1718 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1719 			inc_all_io_entry(info->tc->pool, bio);
1720 			bio_list_add(&info->issue_bios, bio);
1721 		}
1722 	}
1723 }
1724 
1725 static void remap_and_issue_shared_cell(struct thin_c *tc,
1726 					struct dm_bio_prison_cell *cell,
1727 					dm_block_t block)
1728 {
1729 	struct bio *bio;
1730 	struct remap_info info;
1731 
1732 	info.tc = tc;
1733 	bio_list_init(&info.defer_bios);
1734 	bio_list_init(&info.issue_bios);
1735 
1736 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1737 			   &info, cell);
1738 
1739 	while ((bio = bio_list_pop(&info.defer_bios)))
1740 		thin_defer_bio(tc, bio);
1741 
1742 	while ((bio = bio_list_pop(&info.issue_bios)))
1743 		remap_and_issue(tc, bio, block);
1744 }
1745 
1746 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1747 			       dm_block_t block,
1748 			       struct dm_thin_lookup_result *lookup_result,
1749 			       struct dm_bio_prison_cell *virt_cell)
1750 {
1751 	struct dm_bio_prison_cell *data_cell;
1752 	struct pool *pool = tc->pool;
1753 	struct dm_cell_key key;
1754 
1755 	/*
1756 	 * If cell is already occupied, then sharing is already in the process
1757 	 * of being broken so we have nothing further to do here.
1758 	 */
1759 	build_data_key(tc->td, lookup_result->block, &key);
1760 	if (bio_detain(pool, &key, bio, &data_cell)) {
1761 		cell_defer_no_holder(tc, virt_cell);
1762 		return;
1763 	}
1764 
1765 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1766 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1767 		cell_defer_no_holder(tc, virt_cell);
1768 	} else {
1769 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1770 
1771 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1772 		inc_all_io_entry(pool, bio);
1773 		remap_and_issue(tc, bio, lookup_result->block);
1774 
1775 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1776 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1777 	}
1778 }
1779 
1780 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1781 			    struct dm_bio_prison_cell *cell)
1782 {
1783 	int r;
1784 	dm_block_t data_block;
1785 	struct pool *pool = tc->pool;
1786 
1787 	/*
1788 	 * Remap empty bios (flushes) immediately, without provisioning.
1789 	 */
1790 	if (!bio->bi_iter.bi_size) {
1791 		inc_all_io_entry(pool, bio);
1792 		cell_defer_no_holder(tc, cell);
1793 
1794 		remap_and_issue(tc, bio, 0);
1795 		return;
1796 	}
1797 
1798 	/*
1799 	 * Fill read bios with zeroes and complete them immediately.
1800 	 */
1801 	if (bio_data_dir(bio) == READ) {
1802 		zero_fill_bio(bio);
1803 		cell_defer_no_holder(tc, cell);
1804 		bio_endio(bio);
1805 		return;
1806 	}
1807 
1808 	r = alloc_data_block(tc, &data_block);
1809 	switch (r) {
1810 	case 0:
1811 		if (tc->origin_dev)
1812 			schedule_external_copy(tc, block, data_block, cell, bio);
1813 		else
1814 			schedule_zero(tc, block, data_block, cell, bio);
1815 		break;
1816 
1817 	case -ENOSPC:
1818 		retry_bios_on_resume(pool, cell);
1819 		break;
1820 
1821 	default:
1822 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1823 			    __func__, r);
1824 		cell_error(pool, cell);
1825 		break;
1826 	}
1827 }
1828 
1829 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1830 {
1831 	int r;
1832 	struct pool *pool = tc->pool;
1833 	struct bio *bio = cell->holder;
1834 	dm_block_t block = get_bio_block(tc, bio);
1835 	struct dm_thin_lookup_result lookup_result;
1836 
1837 	if (tc->requeue_mode) {
1838 		cell_requeue(pool, cell);
1839 		return;
1840 	}
1841 
1842 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1843 	switch (r) {
1844 	case 0:
1845 		if (lookup_result.shared)
1846 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1847 		else {
1848 			inc_all_io_entry(pool, bio);
1849 			remap_and_issue(tc, bio, lookup_result.block);
1850 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1851 		}
1852 		break;
1853 
1854 	case -ENODATA:
1855 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1856 			inc_all_io_entry(pool, bio);
1857 			cell_defer_no_holder(tc, cell);
1858 
1859 			if (bio_end_sector(bio) <= tc->origin_size)
1860 				remap_to_origin_and_issue(tc, bio);
1861 
1862 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1863 				zero_fill_bio(bio);
1864 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1865 				remap_to_origin_and_issue(tc, bio);
1866 
1867 			} else {
1868 				zero_fill_bio(bio);
1869 				bio_endio(bio);
1870 			}
1871 		} else
1872 			provision_block(tc, bio, block, cell);
1873 		break;
1874 
1875 	default:
1876 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1877 			    __func__, r);
1878 		cell_defer_no_holder(tc, cell);
1879 		bio_io_error(bio);
1880 		break;
1881 	}
1882 }
1883 
1884 static void process_bio(struct thin_c *tc, struct bio *bio)
1885 {
1886 	struct pool *pool = tc->pool;
1887 	dm_block_t block = get_bio_block(tc, bio);
1888 	struct dm_bio_prison_cell *cell;
1889 	struct dm_cell_key key;
1890 
1891 	/*
1892 	 * If cell is already occupied, then the block is already
1893 	 * being provisioned so we have nothing further to do here.
1894 	 */
1895 	build_virtual_key(tc->td, block, &key);
1896 	if (bio_detain(pool, &key, bio, &cell))
1897 		return;
1898 
1899 	process_cell(tc, cell);
1900 }
1901 
1902 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1903 				    struct dm_bio_prison_cell *cell)
1904 {
1905 	int r;
1906 	int rw = bio_data_dir(bio);
1907 	dm_block_t block = get_bio_block(tc, bio);
1908 	struct dm_thin_lookup_result lookup_result;
1909 
1910 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1911 	switch (r) {
1912 	case 0:
1913 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1914 			handle_unserviceable_bio(tc->pool, bio);
1915 			if (cell)
1916 				cell_defer_no_holder(tc, cell);
1917 		} else {
1918 			inc_all_io_entry(tc->pool, bio);
1919 			remap_and_issue(tc, bio, lookup_result.block);
1920 			if (cell)
1921 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1922 		}
1923 		break;
1924 
1925 	case -ENODATA:
1926 		if (cell)
1927 			cell_defer_no_holder(tc, cell);
1928 		if (rw != READ) {
1929 			handle_unserviceable_bio(tc->pool, bio);
1930 			break;
1931 		}
1932 
1933 		if (tc->origin_dev) {
1934 			inc_all_io_entry(tc->pool, bio);
1935 			remap_to_origin_and_issue(tc, bio);
1936 			break;
1937 		}
1938 
1939 		zero_fill_bio(bio);
1940 		bio_endio(bio);
1941 		break;
1942 
1943 	default:
1944 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1945 			    __func__, r);
1946 		if (cell)
1947 			cell_defer_no_holder(tc, cell);
1948 		bio_io_error(bio);
1949 		break;
1950 	}
1951 }
1952 
1953 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1954 {
1955 	__process_bio_read_only(tc, bio, NULL);
1956 }
1957 
1958 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1959 {
1960 	__process_bio_read_only(tc, cell->holder, cell);
1961 }
1962 
1963 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1964 {
1965 	bio_endio(bio);
1966 }
1967 
1968 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1969 {
1970 	bio_io_error(bio);
1971 }
1972 
1973 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1974 {
1975 	cell_success(tc->pool, cell);
1976 }
1977 
1978 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1979 {
1980 	cell_error(tc->pool, cell);
1981 }
1982 
1983 /*
1984  * FIXME: should we also commit due to size of transaction, measured in
1985  * metadata blocks?
1986  */
1987 static int need_commit_due_to_time(struct pool *pool)
1988 {
1989 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1990 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1991 }
1992 
1993 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1994 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1995 
1996 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1997 {
1998 	struct rb_node **rbp, *parent;
1999 	struct dm_thin_endio_hook *pbd;
2000 	sector_t bi_sector = bio->bi_iter.bi_sector;
2001 
2002 	rbp = &tc->sort_bio_list.rb_node;
2003 	parent = NULL;
2004 	while (*rbp) {
2005 		parent = *rbp;
2006 		pbd = thin_pbd(parent);
2007 
2008 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2009 			rbp = &(*rbp)->rb_left;
2010 		else
2011 			rbp = &(*rbp)->rb_right;
2012 	}
2013 
2014 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2015 	rb_link_node(&pbd->rb_node, parent, rbp);
2016 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2017 }
2018 
2019 static void __extract_sorted_bios(struct thin_c *tc)
2020 {
2021 	struct rb_node *node;
2022 	struct dm_thin_endio_hook *pbd;
2023 	struct bio *bio;
2024 
2025 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2026 		pbd = thin_pbd(node);
2027 		bio = thin_bio(pbd);
2028 
2029 		bio_list_add(&tc->deferred_bio_list, bio);
2030 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2031 	}
2032 
2033 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2034 }
2035 
2036 static void __sort_thin_deferred_bios(struct thin_c *tc)
2037 {
2038 	struct bio *bio;
2039 	struct bio_list bios;
2040 
2041 	bio_list_init(&bios);
2042 	bio_list_merge(&bios, &tc->deferred_bio_list);
2043 	bio_list_init(&tc->deferred_bio_list);
2044 
2045 	/* Sort deferred_bio_list using rb-tree */
2046 	while ((bio = bio_list_pop(&bios)))
2047 		__thin_bio_rb_add(tc, bio);
2048 
2049 	/*
2050 	 * Transfer the sorted bios in sort_bio_list back to
2051 	 * deferred_bio_list to allow lockless submission of
2052 	 * all bios.
2053 	 */
2054 	__extract_sorted_bios(tc);
2055 }
2056 
2057 static void process_thin_deferred_bios(struct thin_c *tc)
2058 {
2059 	struct pool *pool = tc->pool;
2060 	unsigned long flags;
2061 	struct bio *bio;
2062 	struct bio_list bios;
2063 	struct blk_plug plug;
2064 	unsigned count = 0;
2065 
2066 	if (tc->requeue_mode) {
2067 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2068 				BLK_STS_DM_REQUEUE);
2069 		return;
2070 	}
2071 
2072 	bio_list_init(&bios);
2073 
2074 	spin_lock_irqsave(&tc->lock, flags);
2075 
2076 	if (bio_list_empty(&tc->deferred_bio_list)) {
2077 		spin_unlock_irqrestore(&tc->lock, flags);
2078 		return;
2079 	}
2080 
2081 	__sort_thin_deferred_bios(tc);
2082 
2083 	bio_list_merge(&bios, &tc->deferred_bio_list);
2084 	bio_list_init(&tc->deferred_bio_list);
2085 
2086 	spin_unlock_irqrestore(&tc->lock, flags);
2087 
2088 	blk_start_plug(&plug);
2089 	while ((bio = bio_list_pop(&bios))) {
2090 		/*
2091 		 * If we've got no free new_mapping structs, and processing
2092 		 * this bio might require one, we pause until there are some
2093 		 * prepared mappings to process.
2094 		 */
2095 		if (ensure_next_mapping(pool)) {
2096 			spin_lock_irqsave(&tc->lock, flags);
2097 			bio_list_add(&tc->deferred_bio_list, bio);
2098 			bio_list_merge(&tc->deferred_bio_list, &bios);
2099 			spin_unlock_irqrestore(&tc->lock, flags);
2100 			break;
2101 		}
2102 
2103 		if (bio_op(bio) == REQ_OP_DISCARD)
2104 			pool->process_discard(tc, bio);
2105 		else
2106 			pool->process_bio(tc, bio);
2107 
2108 		if ((count++ & 127) == 0) {
2109 			throttle_work_update(&pool->throttle);
2110 			dm_pool_issue_prefetches(pool->pmd);
2111 		}
2112 	}
2113 	blk_finish_plug(&plug);
2114 }
2115 
2116 static int cmp_cells(const void *lhs, const void *rhs)
2117 {
2118 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2119 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2120 
2121 	BUG_ON(!lhs_cell->holder);
2122 	BUG_ON(!rhs_cell->holder);
2123 
2124 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2125 		return -1;
2126 
2127 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2128 		return 1;
2129 
2130 	return 0;
2131 }
2132 
2133 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2134 {
2135 	unsigned count = 0;
2136 	struct dm_bio_prison_cell *cell, *tmp;
2137 
2138 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2139 		if (count >= CELL_SORT_ARRAY_SIZE)
2140 			break;
2141 
2142 		pool->cell_sort_array[count++] = cell;
2143 		list_del(&cell->user_list);
2144 	}
2145 
2146 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2147 
2148 	return count;
2149 }
2150 
2151 static void process_thin_deferred_cells(struct thin_c *tc)
2152 {
2153 	struct pool *pool = tc->pool;
2154 	unsigned long flags;
2155 	struct list_head cells;
2156 	struct dm_bio_prison_cell *cell;
2157 	unsigned i, j, count;
2158 
2159 	INIT_LIST_HEAD(&cells);
2160 
2161 	spin_lock_irqsave(&tc->lock, flags);
2162 	list_splice_init(&tc->deferred_cells, &cells);
2163 	spin_unlock_irqrestore(&tc->lock, flags);
2164 
2165 	if (list_empty(&cells))
2166 		return;
2167 
2168 	do {
2169 		count = sort_cells(tc->pool, &cells);
2170 
2171 		for (i = 0; i < count; i++) {
2172 			cell = pool->cell_sort_array[i];
2173 			BUG_ON(!cell->holder);
2174 
2175 			/*
2176 			 * If we've got no free new_mapping structs, and processing
2177 			 * this bio might require one, we pause until there are some
2178 			 * prepared mappings to process.
2179 			 */
2180 			if (ensure_next_mapping(pool)) {
2181 				for (j = i; j < count; j++)
2182 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2183 
2184 				spin_lock_irqsave(&tc->lock, flags);
2185 				list_splice(&cells, &tc->deferred_cells);
2186 				spin_unlock_irqrestore(&tc->lock, flags);
2187 				return;
2188 			}
2189 
2190 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2191 				pool->process_discard_cell(tc, cell);
2192 			else
2193 				pool->process_cell(tc, cell);
2194 		}
2195 	} while (!list_empty(&cells));
2196 }
2197 
2198 static void thin_get(struct thin_c *tc);
2199 static void thin_put(struct thin_c *tc);
2200 
2201 /*
2202  * We can't hold rcu_read_lock() around code that can block.  So we
2203  * find a thin with the rcu lock held; bump a refcount; then drop
2204  * the lock.
2205  */
2206 static struct thin_c *get_first_thin(struct pool *pool)
2207 {
2208 	struct thin_c *tc = NULL;
2209 
2210 	rcu_read_lock();
2211 	if (!list_empty(&pool->active_thins)) {
2212 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2213 		thin_get(tc);
2214 	}
2215 	rcu_read_unlock();
2216 
2217 	return tc;
2218 }
2219 
2220 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2221 {
2222 	struct thin_c *old_tc = tc;
2223 
2224 	rcu_read_lock();
2225 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2226 		thin_get(tc);
2227 		thin_put(old_tc);
2228 		rcu_read_unlock();
2229 		return tc;
2230 	}
2231 	thin_put(old_tc);
2232 	rcu_read_unlock();
2233 
2234 	return NULL;
2235 }
2236 
2237 static void process_deferred_bios(struct pool *pool)
2238 {
2239 	unsigned long flags;
2240 	struct bio *bio;
2241 	struct bio_list bios;
2242 	struct thin_c *tc;
2243 
2244 	tc = get_first_thin(pool);
2245 	while (tc) {
2246 		process_thin_deferred_cells(tc);
2247 		process_thin_deferred_bios(tc);
2248 		tc = get_next_thin(pool, tc);
2249 	}
2250 
2251 	/*
2252 	 * If there are any deferred flush bios, we must commit
2253 	 * the metadata before issuing them.
2254 	 */
2255 	bio_list_init(&bios);
2256 	spin_lock_irqsave(&pool->lock, flags);
2257 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2258 	bio_list_init(&pool->deferred_flush_bios);
2259 	spin_unlock_irqrestore(&pool->lock, flags);
2260 
2261 	if (bio_list_empty(&bios) &&
2262 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2263 		return;
2264 
2265 	if (commit(pool)) {
2266 		while ((bio = bio_list_pop(&bios)))
2267 			bio_io_error(bio);
2268 		return;
2269 	}
2270 	pool->last_commit_jiffies = jiffies;
2271 
2272 	while ((bio = bio_list_pop(&bios)))
2273 		generic_make_request(bio);
2274 }
2275 
2276 static void do_worker(struct work_struct *ws)
2277 {
2278 	struct pool *pool = container_of(ws, struct pool, worker);
2279 
2280 	throttle_work_start(&pool->throttle);
2281 	dm_pool_issue_prefetches(pool->pmd);
2282 	throttle_work_update(&pool->throttle);
2283 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2284 	throttle_work_update(&pool->throttle);
2285 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2286 	throttle_work_update(&pool->throttle);
2287 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2288 	throttle_work_update(&pool->throttle);
2289 	process_deferred_bios(pool);
2290 	throttle_work_complete(&pool->throttle);
2291 }
2292 
2293 /*
2294  * We want to commit periodically so that not too much
2295  * unwritten data builds up.
2296  */
2297 static void do_waker(struct work_struct *ws)
2298 {
2299 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2300 	wake_worker(pool);
2301 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2302 }
2303 
2304 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2305 
2306 /*
2307  * We're holding onto IO to allow userland time to react.  After the
2308  * timeout either the pool will have been resized (and thus back in
2309  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2310  */
2311 static void do_no_space_timeout(struct work_struct *ws)
2312 {
2313 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2314 					 no_space_timeout);
2315 
2316 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2317 		pool->pf.error_if_no_space = true;
2318 		notify_of_pool_mode_change_to_oods(pool);
2319 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2320 	}
2321 }
2322 
2323 /*----------------------------------------------------------------*/
2324 
2325 struct pool_work {
2326 	struct work_struct worker;
2327 	struct completion complete;
2328 };
2329 
2330 static struct pool_work *to_pool_work(struct work_struct *ws)
2331 {
2332 	return container_of(ws, struct pool_work, worker);
2333 }
2334 
2335 static void pool_work_complete(struct pool_work *pw)
2336 {
2337 	complete(&pw->complete);
2338 }
2339 
2340 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2341 			   void (*fn)(struct work_struct *))
2342 {
2343 	INIT_WORK_ONSTACK(&pw->worker, fn);
2344 	init_completion(&pw->complete);
2345 	queue_work(pool->wq, &pw->worker);
2346 	wait_for_completion(&pw->complete);
2347 }
2348 
2349 /*----------------------------------------------------------------*/
2350 
2351 struct noflush_work {
2352 	struct pool_work pw;
2353 	struct thin_c *tc;
2354 };
2355 
2356 static struct noflush_work *to_noflush(struct work_struct *ws)
2357 {
2358 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2359 }
2360 
2361 static void do_noflush_start(struct work_struct *ws)
2362 {
2363 	struct noflush_work *w = to_noflush(ws);
2364 	w->tc->requeue_mode = true;
2365 	requeue_io(w->tc);
2366 	pool_work_complete(&w->pw);
2367 }
2368 
2369 static void do_noflush_stop(struct work_struct *ws)
2370 {
2371 	struct noflush_work *w = to_noflush(ws);
2372 	w->tc->requeue_mode = false;
2373 	pool_work_complete(&w->pw);
2374 }
2375 
2376 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2377 {
2378 	struct noflush_work w;
2379 
2380 	w.tc = tc;
2381 	pool_work_wait(&w.pw, tc->pool, fn);
2382 }
2383 
2384 /*----------------------------------------------------------------*/
2385 
2386 static enum pool_mode get_pool_mode(struct pool *pool)
2387 {
2388 	return pool->pf.mode;
2389 }
2390 
2391 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2392 {
2393 	dm_table_event(pool->ti->table);
2394 	DMINFO("%s: switching pool to %s mode",
2395 	       dm_device_name(pool->pool_md), new_mode);
2396 }
2397 
2398 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2399 {
2400 	if (!pool->pf.error_if_no_space)
2401 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2402 	else
2403 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2404 }
2405 
2406 static bool passdown_enabled(struct pool_c *pt)
2407 {
2408 	return pt->adjusted_pf.discard_passdown;
2409 }
2410 
2411 static void set_discard_callbacks(struct pool *pool)
2412 {
2413 	struct pool_c *pt = pool->ti->private;
2414 
2415 	if (passdown_enabled(pt)) {
2416 		pool->process_discard_cell = process_discard_cell_passdown;
2417 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2418 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2419 	} else {
2420 		pool->process_discard_cell = process_discard_cell_no_passdown;
2421 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2422 	}
2423 }
2424 
2425 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2426 {
2427 	struct pool_c *pt = pool->ti->private;
2428 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2429 	enum pool_mode old_mode = get_pool_mode(pool);
2430 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2431 
2432 	/*
2433 	 * Never allow the pool to transition to PM_WRITE mode if user
2434 	 * intervention is required to verify metadata and data consistency.
2435 	 */
2436 	if (new_mode == PM_WRITE && needs_check) {
2437 		DMERR("%s: unable to switch pool to write mode until repaired.",
2438 		      dm_device_name(pool->pool_md));
2439 		if (old_mode != new_mode)
2440 			new_mode = old_mode;
2441 		else
2442 			new_mode = PM_READ_ONLY;
2443 	}
2444 	/*
2445 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2446 	 * not going to recover without a thin_repair.	So we never let the
2447 	 * pool move out of the old mode.
2448 	 */
2449 	if (old_mode == PM_FAIL)
2450 		new_mode = old_mode;
2451 
2452 	switch (new_mode) {
2453 	case PM_FAIL:
2454 		if (old_mode != new_mode)
2455 			notify_of_pool_mode_change(pool, "failure");
2456 		dm_pool_metadata_read_only(pool->pmd);
2457 		pool->process_bio = process_bio_fail;
2458 		pool->process_discard = process_bio_fail;
2459 		pool->process_cell = process_cell_fail;
2460 		pool->process_discard_cell = process_cell_fail;
2461 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2462 		pool->process_prepared_discard = process_prepared_discard_fail;
2463 
2464 		error_retry_list(pool);
2465 		break;
2466 
2467 	case PM_READ_ONLY:
2468 		if (old_mode != new_mode)
2469 			notify_of_pool_mode_change(pool, "read-only");
2470 		dm_pool_metadata_read_only(pool->pmd);
2471 		pool->process_bio = process_bio_read_only;
2472 		pool->process_discard = process_bio_success;
2473 		pool->process_cell = process_cell_read_only;
2474 		pool->process_discard_cell = process_cell_success;
2475 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2476 		pool->process_prepared_discard = process_prepared_discard_success;
2477 
2478 		error_retry_list(pool);
2479 		break;
2480 
2481 	case PM_OUT_OF_DATA_SPACE:
2482 		/*
2483 		 * Ideally we'd never hit this state; the low water mark
2484 		 * would trigger userland to extend the pool before we
2485 		 * completely run out of data space.  However, many small
2486 		 * IOs to unprovisioned space can consume data space at an
2487 		 * alarming rate.  Adjust your low water mark if you're
2488 		 * frequently seeing this mode.
2489 		 */
2490 		if (old_mode != new_mode)
2491 			notify_of_pool_mode_change_to_oods(pool);
2492 		pool->out_of_data_space = true;
2493 		pool->process_bio = process_bio_read_only;
2494 		pool->process_discard = process_discard_bio;
2495 		pool->process_cell = process_cell_read_only;
2496 		pool->process_prepared_mapping = process_prepared_mapping;
2497 		set_discard_callbacks(pool);
2498 
2499 		if (!pool->pf.error_if_no_space && no_space_timeout)
2500 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2501 		break;
2502 
2503 	case PM_WRITE:
2504 		if (old_mode != new_mode)
2505 			notify_of_pool_mode_change(pool, "write");
2506 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2507 			cancel_delayed_work_sync(&pool->no_space_timeout);
2508 		pool->out_of_data_space = false;
2509 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2510 		dm_pool_metadata_read_write(pool->pmd);
2511 		pool->process_bio = process_bio;
2512 		pool->process_discard = process_discard_bio;
2513 		pool->process_cell = process_cell;
2514 		pool->process_prepared_mapping = process_prepared_mapping;
2515 		set_discard_callbacks(pool);
2516 		break;
2517 	}
2518 
2519 	pool->pf.mode = new_mode;
2520 	/*
2521 	 * The pool mode may have changed, sync it so bind_control_target()
2522 	 * doesn't cause an unexpected mode transition on resume.
2523 	 */
2524 	pt->adjusted_pf.mode = new_mode;
2525 }
2526 
2527 static void abort_transaction(struct pool *pool)
2528 {
2529 	const char *dev_name = dm_device_name(pool->pool_md);
2530 
2531 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2532 	if (dm_pool_abort_metadata(pool->pmd)) {
2533 		DMERR("%s: failed to abort metadata transaction", dev_name);
2534 		set_pool_mode(pool, PM_FAIL);
2535 	}
2536 
2537 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2538 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2539 		set_pool_mode(pool, PM_FAIL);
2540 	}
2541 }
2542 
2543 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2544 {
2545 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2546 		    dm_device_name(pool->pool_md), op, r);
2547 
2548 	abort_transaction(pool);
2549 	set_pool_mode(pool, PM_READ_ONLY);
2550 }
2551 
2552 /*----------------------------------------------------------------*/
2553 
2554 /*
2555  * Mapping functions.
2556  */
2557 
2558 /*
2559  * Called only while mapping a thin bio to hand it over to the workqueue.
2560  */
2561 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2562 {
2563 	unsigned long flags;
2564 	struct pool *pool = tc->pool;
2565 
2566 	spin_lock_irqsave(&tc->lock, flags);
2567 	bio_list_add(&tc->deferred_bio_list, bio);
2568 	spin_unlock_irqrestore(&tc->lock, flags);
2569 
2570 	wake_worker(pool);
2571 }
2572 
2573 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2574 {
2575 	struct pool *pool = tc->pool;
2576 
2577 	throttle_lock(&pool->throttle);
2578 	thin_defer_bio(tc, bio);
2579 	throttle_unlock(&pool->throttle);
2580 }
2581 
2582 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2583 {
2584 	unsigned long flags;
2585 	struct pool *pool = tc->pool;
2586 
2587 	throttle_lock(&pool->throttle);
2588 	spin_lock_irqsave(&tc->lock, flags);
2589 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2590 	spin_unlock_irqrestore(&tc->lock, flags);
2591 	throttle_unlock(&pool->throttle);
2592 
2593 	wake_worker(pool);
2594 }
2595 
2596 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2597 {
2598 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2599 
2600 	h->tc = tc;
2601 	h->shared_read_entry = NULL;
2602 	h->all_io_entry = NULL;
2603 	h->overwrite_mapping = NULL;
2604 	h->cell = NULL;
2605 }
2606 
2607 /*
2608  * Non-blocking function called from the thin target's map function.
2609  */
2610 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2611 {
2612 	int r;
2613 	struct thin_c *tc = ti->private;
2614 	dm_block_t block = get_bio_block(tc, bio);
2615 	struct dm_thin_device *td = tc->td;
2616 	struct dm_thin_lookup_result result;
2617 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2618 	struct dm_cell_key key;
2619 
2620 	thin_hook_bio(tc, bio);
2621 
2622 	if (tc->requeue_mode) {
2623 		bio->bi_status = BLK_STS_DM_REQUEUE;
2624 		bio_endio(bio);
2625 		return DM_MAPIO_SUBMITTED;
2626 	}
2627 
2628 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2629 		bio_io_error(bio);
2630 		return DM_MAPIO_SUBMITTED;
2631 	}
2632 
2633 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2634 		thin_defer_bio_with_throttle(tc, bio);
2635 		return DM_MAPIO_SUBMITTED;
2636 	}
2637 
2638 	/*
2639 	 * We must hold the virtual cell before doing the lookup, otherwise
2640 	 * there's a race with discard.
2641 	 */
2642 	build_virtual_key(tc->td, block, &key);
2643 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2644 		return DM_MAPIO_SUBMITTED;
2645 
2646 	r = dm_thin_find_block(td, block, 0, &result);
2647 
2648 	/*
2649 	 * Note that we defer readahead too.
2650 	 */
2651 	switch (r) {
2652 	case 0:
2653 		if (unlikely(result.shared)) {
2654 			/*
2655 			 * We have a race condition here between the
2656 			 * result.shared value returned by the lookup and
2657 			 * snapshot creation, which may cause new
2658 			 * sharing.
2659 			 *
2660 			 * To avoid this always quiesce the origin before
2661 			 * taking the snap.  You want to do this anyway to
2662 			 * ensure a consistent application view
2663 			 * (i.e. lockfs).
2664 			 *
2665 			 * More distant ancestors are irrelevant. The
2666 			 * shared flag will be set in their case.
2667 			 */
2668 			thin_defer_cell(tc, virt_cell);
2669 			return DM_MAPIO_SUBMITTED;
2670 		}
2671 
2672 		build_data_key(tc->td, result.block, &key);
2673 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2674 			cell_defer_no_holder(tc, virt_cell);
2675 			return DM_MAPIO_SUBMITTED;
2676 		}
2677 
2678 		inc_all_io_entry(tc->pool, bio);
2679 		cell_defer_no_holder(tc, data_cell);
2680 		cell_defer_no_holder(tc, virt_cell);
2681 
2682 		remap(tc, bio, result.block);
2683 		return DM_MAPIO_REMAPPED;
2684 
2685 	case -ENODATA:
2686 	case -EWOULDBLOCK:
2687 		thin_defer_cell(tc, virt_cell);
2688 		return DM_MAPIO_SUBMITTED;
2689 
2690 	default:
2691 		/*
2692 		 * Must always call bio_io_error on failure.
2693 		 * dm_thin_find_block can fail with -EINVAL if the
2694 		 * pool is switched to fail-io mode.
2695 		 */
2696 		bio_io_error(bio);
2697 		cell_defer_no_holder(tc, virt_cell);
2698 		return DM_MAPIO_SUBMITTED;
2699 	}
2700 }
2701 
2702 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2703 {
2704 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2705 	struct request_queue *q;
2706 
2707 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2708 		return 1;
2709 
2710 	q = bdev_get_queue(pt->data_dev->bdev);
2711 	return bdi_congested(q->backing_dev_info, bdi_bits);
2712 }
2713 
2714 static void requeue_bios(struct pool *pool)
2715 {
2716 	unsigned long flags;
2717 	struct thin_c *tc;
2718 
2719 	rcu_read_lock();
2720 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2721 		spin_lock_irqsave(&tc->lock, flags);
2722 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2723 		bio_list_init(&tc->retry_on_resume_list);
2724 		spin_unlock_irqrestore(&tc->lock, flags);
2725 	}
2726 	rcu_read_unlock();
2727 }
2728 
2729 /*----------------------------------------------------------------
2730  * Binding of control targets to a pool object
2731  *--------------------------------------------------------------*/
2732 static bool data_dev_supports_discard(struct pool_c *pt)
2733 {
2734 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2735 
2736 	return q && blk_queue_discard(q);
2737 }
2738 
2739 static bool is_factor(sector_t block_size, uint32_t n)
2740 {
2741 	return !sector_div(block_size, n);
2742 }
2743 
2744 /*
2745  * If discard_passdown was enabled verify that the data device
2746  * supports discards.  Disable discard_passdown if not.
2747  */
2748 static void disable_passdown_if_not_supported(struct pool_c *pt)
2749 {
2750 	struct pool *pool = pt->pool;
2751 	struct block_device *data_bdev = pt->data_dev->bdev;
2752 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2753 	const char *reason = NULL;
2754 	char buf[BDEVNAME_SIZE];
2755 
2756 	if (!pt->adjusted_pf.discard_passdown)
2757 		return;
2758 
2759 	if (!data_dev_supports_discard(pt))
2760 		reason = "discard unsupported";
2761 
2762 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2763 		reason = "max discard sectors smaller than a block";
2764 
2765 	if (reason) {
2766 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2767 		pt->adjusted_pf.discard_passdown = false;
2768 	}
2769 }
2770 
2771 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2772 {
2773 	struct pool_c *pt = ti->private;
2774 
2775 	/*
2776 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2777 	 */
2778 	enum pool_mode old_mode = get_pool_mode(pool);
2779 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2780 
2781 	/*
2782 	 * Don't change the pool's mode until set_pool_mode() below.
2783 	 * Otherwise the pool's process_* function pointers may
2784 	 * not match the desired pool mode.
2785 	 */
2786 	pt->adjusted_pf.mode = old_mode;
2787 
2788 	pool->ti = ti;
2789 	pool->pf = pt->adjusted_pf;
2790 	pool->low_water_blocks = pt->low_water_blocks;
2791 
2792 	set_pool_mode(pool, new_mode);
2793 
2794 	return 0;
2795 }
2796 
2797 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2798 {
2799 	if (pool->ti == ti)
2800 		pool->ti = NULL;
2801 }
2802 
2803 /*----------------------------------------------------------------
2804  * Pool creation
2805  *--------------------------------------------------------------*/
2806 /* Initialize pool features. */
2807 static void pool_features_init(struct pool_features *pf)
2808 {
2809 	pf->mode = PM_WRITE;
2810 	pf->zero_new_blocks = true;
2811 	pf->discard_enabled = true;
2812 	pf->discard_passdown = true;
2813 	pf->error_if_no_space = false;
2814 }
2815 
2816 static void __pool_destroy(struct pool *pool)
2817 {
2818 	__pool_table_remove(pool);
2819 
2820 	vfree(pool->cell_sort_array);
2821 	if (dm_pool_metadata_close(pool->pmd) < 0)
2822 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2823 
2824 	dm_bio_prison_destroy(pool->prison);
2825 	dm_kcopyd_client_destroy(pool->copier);
2826 
2827 	if (pool->wq)
2828 		destroy_workqueue(pool->wq);
2829 
2830 	if (pool->next_mapping)
2831 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2832 	mempool_exit(&pool->mapping_pool);
2833 	dm_deferred_set_destroy(pool->shared_read_ds);
2834 	dm_deferred_set_destroy(pool->all_io_ds);
2835 	kfree(pool);
2836 }
2837 
2838 static struct kmem_cache *_new_mapping_cache;
2839 
2840 static struct pool *pool_create(struct mapped_device *pool_md,
2841 				struct block_device *metadata_dev,
2842 				unsigned long block_size,
2843 				int read_only, char **error)
2844 {
2845 	int r;
2846 	void *err_p;
2847 	struct pool *pool;
2848 	struct dm_pool_metadata *pmd;
2849 	bool format_device = read_only ? false : true;
2850 
2851 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2852 	if (IS_ERR(pmd)) {
2853 		*error = "Error creating metadata object";
2854 		return (struct pool *)pmd;
2855 	}
2856 
2857 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2858 	if (!pool) {
2859 		*error = "Error allocating memory for pool";
2860 		err_p = ERR_PTR(-ENOMEM);
2861 		goto bad_pool;
2862 	}
2863 
2864 	pool->pmd = pmd;
2865 	pool->sectors_per_block = block_size;
2866 	if (block_size & (block_size - 1))
2867 		pool->sectors_per_block_shift = -1;
2868 	else
2869 		pool->sectors_per_block_shift = __ffs(block_size);
2870 	pool->low_water_blocks = 0;
2871 	pool_features_init(&pool->pf);
2872 	pool->prison = dm_bio_prison_create();
2873 	if (!pool->prison) {
2874 		*error = "Error creating pool's bio prison";
2875 		err_p = ERR_PTR(-ENOMEM);
2876 		goto bad_prison;
2877 	}
2878 
2879 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2880 	if (IS_ERR(pool->copier)) {
2881 		r = PTR_ERR(pool->copier);
2882 		*error = "Error creating pool's kcopyd client";
2883 		err_p = ERR_PTR(r);
2884 		goto bad_kcopyd_client;
2885 	}
2886 
2887 	/*
2888 	 * Create singlethreaded workqueue that will service all devices
2889 	 * that use this metadata.
2890 	 */
2891 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2892 	if (!pool->wq) {
2893 		*error = "Error creating pool's workqueue";
2894 		err_p = ERR_PTR(-ENOMEM);
2895 		goto bad_wq;
2896 	}
2897 
2898 	throttle_init(&pool->throttle);
2899 	INIT_WORK(&pool->worker, do_worker);
2900 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2901 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2902 	spin_lock_init(&pool->lock);
2903 	bio_list_init(&pool->deferred_flush_bios);
2904 	INIT_LIST_HEAD(&pool->prepared_mappings);
2905 	INIT_LIST_HEAD(&pool->prepared_discards);
2906 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2907 	INIT_LIST_HEAD(&pool->active_thins);
2908 	pool->low_water_triggered = false;
2909 	pool->suspended = true;
2910 	pool->out_of_data_space = false;
2911 
2912 	pool->shared_read_ds = dm_deferred_set_create();
2913 	if (!pool->shared_read_ds) {
2914 		*error = "Error creating pool's shared read deferred set";
2915 		err_p = ERR_PTR(-ENOMEM);
2916 		goto bad_shared_read_ds;
2917 	}
2918 
2919 	pool->all_io_ds = dm_deferred_set_create();
2920 	if (!pool->all_io_ds) {
2921 		*error = "Error creating pool's all io deferred set";
2922 		err_p = ERR_PTR(-ENOMEM);
2923 		goto bad_all_io_ds;
2924 	}
2925 
2926 	pool->next_mapping = NULL;
2927 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2928 				   _new_mapping_cache);
2929 	if (r) {
2930 		*error = "Error creating pool's mapping mempool";
2931 		err_p = ERR_PTR(r);
2932 		goto bad_mapping_pool;
2933 	}
2934 
2935 	pool->cell_sort_array =
2936 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
2937 				   sizeof(*pool->cell_sort_array)));
2938 	if (!pool->cell_sort_array) {
2939 		*error = "Error allocating cell sort array";
2940 		err_p = ERR_PTR(-ENOMEM);
2941 		goto bad_sort_array;
2942 	}
2943 
2944 	pool->ref_count = 1;
2945 	pool->last_commit_jiffies = jiffies;
2946 	pool->pool_md = pool_md;
2947 	pool->md_dev = metadata_dev;
2948 	__pool_table_insert(pool);
2949 
2950 	return pool;
2951 
2952 bad_sort_array:
2953 	mempool_exit(&pool->mapping_pool);
2954 bad_mapping_pool:
2955 	dm_deferred_set_destroy(pool->all_io_ds);
2956 bad_all_io_ds:
2957 	dm_deferred_set_destroy(pool->shared_read_ds);
2958 bad_shared_read_ds:
2959 	destroy_workqueue(pool->wq);
2960 bad_wq:
2961 	dm_kcopyd_client_destroy(pool->copier);
2962 bad_kcopyd_client:
2963 	dm_bio_prison_destroy(pool->prison);
2964 bad_prison:
2965 	kfree(pool);
2966 bad_pool:
2967 	if (dm_pool_metadata_close(pmd))
2968 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2969 
2970 	return err_p;
2971 }
2972 
2973 static void __pool_inc(struct pool *pool)
2974 {
2975 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2976 	pool->ref_count++;
2977 }
2978 
2979 static void __pool_dec(struct pool *pool)
2980 {
2981 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2982 	BUG_ON(!pool->ref_count);
2983 	if (!--pool->ref_count)
2984 		__pool_destroy(pool);
2985 }
2986 
2987 static struct pool *__pool_find(struct mapped_device *pool_md,
2988 				struct block_device *metadata_dev,
2989 				unsigned long block_size, int read_only,
2990 				char **error, int *created)
2991 {
2992 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2993 
2994 	if (pool) {
2995 		if (pool->pool_md != pool_md) {
2996 			*error = "metadata device already in use by a pool";
2997 			return ERR_PTR(-EBUSY);
2998 		}
2999 		__pool_inc(pool);
3000 
3001 	} else {
3002 		pool = __pool_table_lookup(pool_md);
3003 		if (pool) {
3004 			if (pool->md_dev != metadata_dev) {
3005 				*error = "different pool cannot replace a pool";
3006 				return ERR_PTR(-EINVAL);
3007 			}
3008 			__pool_inc(pool);
3009 
3010 		} else {
3011 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3012 			*created = 1;
3013 		}
3014 	}
3015 
3016 	return pool;
3017 }
3018 
3019 /*----------------------------------------------------------------
3020  * Pool target methods
3021  *--------------------------------------------------------------*/
3022 static void pool_dtr(struct dm_target *ti)
3023 {
3024 	struct pool_c *pt = ti->private;
3025 
3026 	mutex_lock(&dm_thin_pool_table.mutex);
3027 
3028 	unbind_control_target(pt->pool, ti);
3029 	__pool_dec(pt->pool);
3030 	dm_put_device(ti, pt->metadata_dev);
3031 	dm_put_device(ti, pt->data_dev);
3032 	kfree(pt);
3033 
3034 	mutex_unlock(&dm_thin_pool_table.mutex);
3035 }
3036 
3037 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3038 			       struct dm_target *ti)
3039 {
3040 	int r;
3041 	unsigned argc;
3042 	const char *arg_name;
3043 
3044 	static const struct dm_arg _args[] = {
3045 		{0, 4, "Invalid number of pool feature arguments"},
3046 	};
3047 
3048 	/*
3049 	 * No feature arguments supplied.
3050 	 */
3051 	if (!as->argc)
3052 		return 0;
3053 
3054 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3055 	if (r)
3056 		return -EINVAL;
3057 
3058 	while (argc && !r) {
3059 		arg_name = dm_shift_arg(as);
3060 		argc--;
3061 
3062 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3063 			pf->zero_new_blocks = false;
3064 
3065 		else if (!strcasecmp(arg_name, "ignore_discard"))
3066 			pf->discard_enabled = false;
3067 
3068 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3069 			pf->discard_passdown = false;
3070 
3071 		else if (!strcasecmp(arg_name, "read_only"))
3072 			pf->mode = PM_READ_ONLY;
3073 
3074 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3075 			pf->error_if_no_space = true;
3076 
3077 		else {
3078 			ti->error = "Unrecognised pool feature requested";
3079 			r = -EINVAL;
3080 			break;
3081 		}
3082 	}
3083 
3084 	return r;
3085 }
3086 
3087 static void metadata_low_callback(void *context)
3088 {
3089 	struct pool *pool = context;
3090 
3091 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3092 	       dm_device_name(pool->pool_md));
3093 
3094 	dm_table_event(pool->ti->table);
3095 }
3096 
3097 static sector_t get_dev_size(struct block_device *bdev)
3098 {
3099 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3100 }
3101 
3102 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3103 {
3104 	sector_t metadata_dev_size = get_dev_size(bdev);
3105 	char buffer[BDEVNAME_SIZE];
3106 
3107 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3108 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3109 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3110 }
3111 
3112 static sector_t get_metadata_dev_size(struct block_device *bdev)
3113 {
3114 	sector_t metadata_dev_size = get_dev_size(bdev);
3115 
3116 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3117 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3118 
3119 	return metadata_dev_size;
3120 }
3121 
3122 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3123 {
3124 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3125 
3126 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3127 
3128 	return metadata_dev_size;
3129 }
3130 
3131 /*
3132  * When a metadata threshold is crossed a dm event is triggered, and
3133  * userland should respond by growing the metadata device.  We could let
3134  * userland set the threshold, like we do with the data threshold, but I'm
3135  * not sure they know enough to do this well.
3136  */
3137 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3138 {
3139 	/*
3140 	 * 4M is ample for all ops with the possible exception of thin
3141 	 * device deletion which is harmless if it fails (just retry the
3142 	 * delete after you've grown the device).
3143 	 */
3144 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3145 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3146 }
3147 
3148 /*
3149  * thin-pool <metadata dev> <data dev>
3150  *	     <data block size (sectors)>
3151  *	     <low water mark (blocks)>
3152  *	     [<#feature args> [<arg>]*]
3153  *
3154  * Optional feature arguments are:
3155  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3156  *	     ignore_discard: disable discard
3157  *	     no_discard_passdown: don't pass discards down to the data device
3158  *	     read_only: Don't allow any changes to be made to the pool metadata.
3159  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3160  */
3161 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3162 {
3163 	int r, pool_created = 0;
3164 	struct pool_c *pt;
3165 	struct pool *pool;
3166 	struct pool_features pf;
3167 	struct dm_arg_set as;
3168 	struct dm_dev *data_dev;
3169 	unsigned long block_size;
3170 	dm_block_t low_water_blocks;
3171 	struct dm_dev *metadata_dev;
3172 	fmode_t metadata_mode;
3173 
3174 	/*
3175 	 * FIXME Remove validation from scope of lock.
3176 	 */
3177 	mutex_lock(&dm_thin_pool_table.mutex);
3178 
3179 	if (argc < 4) {
3180 		ti->error = "Invalid argument count";
3181 		r = -EINVAL;
3182 		goto out_unlock;
3183 	}
3184 
3185 	as.argc = argc;
3186 	as.argv = argv;
3187 
3188 	/*
3189 	 * Set default pool features.
3190 	 */
3191 	pool_features_init(&pf);
3192 
3193 	dm_consume_args(&as, 4);
3194 	r = parse_pool_features(&as, &pf, ti);
3195 	if (r)
3196 		goto out_unlock;
3197 
3198 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3199 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3200 	if (r) {
3201 		ti->error = "Error opening metadata block device";
3202 		goto out_unlock;
3203 	}
3204 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3205 
3206 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3207 	if (r) {
3208 		ti->error = "Error getting data device";
3209 		goto out_metadata;
3210 	}
3211 
3212 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3213 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3214 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3215 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3216 		ti->error = "Invalid block size";
3217 		r = -EINVAL;
3218 		goto out;
3219 	}
3220 
3221 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3222 		ti->error = "Invalid low water mark";
3223 		r = -EINVAL;
3224 		goto out;
3225 	}
3226 
3227 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3228 	if (!pt) {
3229 		r = -ENOMEM;
3230 		goto out;
3231 	}
3232 
3233 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3234 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3235 	if (IS_ERR(pool)) {
3236 		r = PTR_ERR(pool);
3237 		goto out_free_pt;
3238 	}
3239 
3240 	/*
3241 	 * 'pool_created' reflects whether this is the first table load.
3242 	 * Top level discard support is not allowed to be changed after
3243 	 * initial load.  This would require a pool reload to trigger thin
3244 	 * device changes.
3245 	 */
3246 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3247 		ti->error = "Discard support cannot be disabled once enabled";
3248 		r = -EINVAL;
3249 		goto out_flags_changed;
3250 	}
3251 
3252 	pt->pool = pool;
3253 	pt->ti = ti;
3254 	pt->metadata_dev = metadata_dev;
3255 	pt->data_dev = data_dev;
3256 	pt->low_water_blocks = low_water_blocks;
3257 	pt->adjusted_pf = pt->requested_pf = pf;
3258 	ti->num_flush_bios = 1;
3259 
3260 	/*
3261 	 * Only need to enable discards if the pool should pass
3262 	 * them down to the data device.  The thin device's discard
3263 	 * processing will cause mappings to be removed from the btree.
3264 	 */
3265 	if (pf.discard_enabled && pf.discard_passdown) {
3266 		ti->num_discard_bios = 1;
3267 
3268 		/*
3269 		 * Setting 'discards_supported' circumvents the normal
3270 		 * stacking of discard limits (this keeps the pool and
3271 		 * thin devices' discard limits consistent).
3272 		 */
3273 		ti->discards_supported = true;
3274 	}
3275 	ti->private = pt;
3276 
3277 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3278 						calc_metadata_threshold(pt),
3279 						metadata_low_callback,
3280 						pool);
3281 	if (r)
3282 		goto out_flags_changed;
3283 
3284 	pt->callbacks.congested_fn = pool_is_congested;
3285 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3286 
3287 	mutex_unlock(&dm_thin_pool_table.mutex);
3288 
3289 	return 0;
3290 
3291 out_flags_changed:
3292 	__pool_dec(pool);
3293 out_free_pt:
3294 	kfree(pt);
3295 out:
3296 	dm_put_device(ti, data_dev);
3297 out_metadata:
3298 	dm_put_device(ti, metadata_dev);
3299 out_unlock:
3300 	mutex_unlock(&dm_thin_pool_table.mutex);
3301 
3302 	return r;
3303 }
3304 
3305 static int pool_map(struct dm_target *ti, struct bio *bio)
3306 {
3307 	int r;
3308 	struct pool_c *pt = ti->private;
3309 	struct pool *pool = pt->pool;
3310 	unsigned long flags;
3311 
3312 	/*
3313 	 * As this is a singleton target, ti->begin is always zero.
3314 	 */
3315 	spin_lock_irqsave(&pool->lock, flags);
3316 	bio_set_dev(bio, pt->data_dev->bdev);
3317 	r = DM_MAPIO_REMAPPED;
3318 	spin_unlock_irqrestore(&pool->lock, flags);
3319 
3320 	return r;
3321 }
3322 
3323 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3324 {
3325 	int r;
3326 	struct pool_c *pt = ti->private;
3327 	struct pool *pool = pt->pool;
3328 	sector_t data_size = ti->len;
3329 	dm_block_t sb_data_size;
3330 
3331 	*need_commit = false;
3332 
3333 	(void) sector_div(data_size, pool->sectors_per_block);
3334 
3335 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3336 	if (r) {
3337 		DMERR("%s: failed to retrieve data device size",
3338 		      dm_device_name(pool->pool_md));
3339 		return r;
3340 	}
3341 
3342 	if (data_size < sb_data_size) {
3343 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3344 		      dm_device_name(pool->pool_md),
3345 		      (unsigned long long)data_size, sb_data_size);
3346 		return -EINVAL;
3347 
3348 	} else if (data_size > sb_data_size) {
3349 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3350 			DMERR("%s: unable to grow the data device until repaired.",
3351 			      dm_device_name(pool->pool_md));
3352 			return 0;
3353 		}
3354 
3355 		if (sb_data_size)
3356 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3357 			       dm_device_name(pool->pool_md),
3358 			       sb_data_size, (unsigned long long)data_size);
3359 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3360 		if (r) {
3361 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3362 			return r;
3363 		}
3364 
3365 		*need_commit = true;
3366 	}
3367 
3368 	return 0;
3369 }
3370 
3371 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3372 {
3373 	int r;
3374 	struct pool_c *pt = ti->private;
3375 	struct pool *pool = pt->pool;
3376 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3377 
3378 	*need_commit = false;
3379 
3380 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3381 
3382 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3383 	if (r) {
3384 		DMERR("%s: failed to retrieve metadata device size",
3385 		      dm_device_name(pool->pool_md));
3386 		return r;
3387 	}
3388 
3389 	if (metadata_dev_size < sb_metadata_dev_size) {
3390 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3391 		      dm_device_name(pool->pool_md),
3392 		      metadata_dev_size, sb_metadata_dev_size);
3393 		return -EINVAL;
3394 
3395 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3396 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3397 			DMERR("%s: unable to grow the metadata device until repaired.",
3398 			      dm_device_name(pool->pool_md));
3399 			return 0;
3400 		}
3401 
3402 		warn_if_metadata_device_too_big(pool->md_dev);
3403 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3404 		       dm_device_name(pool->pool_md),
3405 		       sb_metadata_dev_size, metadata_dev_size);
3406 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3407 		if (r) {
3408 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3409 			return r;
3410 		}
3411 
3412 		*need_commit = true;
3413 	}
3414 
3415 	return 0;
3416 }
3417 
3418 /*
3419  * Retrieves the number of blocks of the data device from
3420  * the superblock and compares it to the actual device size,
3421  * thus resizing the data device in case it has grown.
3422  *
3423  * This both copes with opening preallocated data devices in the ctr
3424  * being followed by a resume
3425  * -and-
3426  * calling the resume method individually after userspace has
3427  * grown the data device in reaction to a table event.
3428  */
3429 static int pool_preresume(struct dm_target *ti)
3430 {
3431 	int r;
3432 	bool need_commit1, need_commit2;
3433 	struct pool_c *pt = ti->private;
3434 	struct pool *pool = pt->pool;
3435 
3436 	/*
3437 	 * Take control of the pool object.
3438 	 */
3439 	r = bind_control_target(pool, ti);
3440 	if (r)
3441 		return r;
3442 
3443 	r = maybe_resize_data_dev(ti, &need_commit1);
3444 	if (r)
3445 		return r;
3446 
3447 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3448 	if (r)
3449 		return r;
3450 
3451 	if (need_commit1 || need_commit2)
3452 		(void) commit(pool);
3453 
3454 	return 0;
3455 }
3456 
3457 static void pool_suspend_active_thins(struct pool *pool)
3458 {
3459 	struct thin_c *tc;
3460 
3461 	/* Suspend all active thin devices */
3462 	tc = get_first_thin(pool);
3463 	while (tc) {
3464 		dm_internal_suspend_noflush(tc->thin_md);
3465 		tc = get_next_thin(pool, tc);
3466 	}
3467 }
3468 
3469 static void pool_resume_active_thins(struct pool *pool)
3470 {
3471 	struct thin_c *tc;
3472 
3473 	/* Resume all active thin devices */
3474 	tc = get_first_thin(pool);
3475 	while (tc) {
3476 		dm_internal_resume(tc->thin_md);
3477 		tc = get_next_thin(pool, tc);
3478 	}
3479 }
3480 
3481 static void pool_resume(struct dm_target *ti)
3482 {
3483 	struct pool_c *pt = ti->private;
3484 	struct pool *pool = pt->pool;
3485 	unsigned long flags;
3486 
3487 	/*
3488 	 * Must requeue active_thins' bios and then resume
3489 	 * active_thins _before_ clearing 'suspend' flag.
3490 	 */
3491 	requeue_bios(pool);
3492 	pool_resume_active_thins(pool);
3493 
3494 	spin_lock_irqsave(&pool->lock, flags);
3495 	pool->low_water_triggered = false;
3496 	pool->suspended = false;
3497 	spin_unlock_irqrestore(&pool->lock, flags);
3498 
3499 	do_waker(&pool->waker.work);
3500 }
3501 
3502 static void pool_presuspend(struct dm_target *ti)
3503 {
3504 	struct pool_c *pt = ti->private;
3505 	struct pool *pool = pt->pool;
3506 	unsigned long flags;
3507 
3508 	spin_lock_irqsave(&pool->lock, flags);
3509 	pool->suspended = true;
3510 	spin_unlock_irqrestore(&pool->lock, flags);
3511 
3512 	pool_suspend_active_thins(pool);
3513 }
3514 
3515 static void pool_presuspend_undo(struct dm_target *ti)
3516 {
3517 	struct pool_c *pt = ti->private;
3518 	struct pool *pool = pt->pool;
3519 	unsigned long flags;
3520 
3521 	pool_resume_active_thins(pool);
3522 
3523 	spin_lock_irqsave(&pool->lock, flags);
3524 	pool->suspended = false;
3525 	spin_unlock_irqrestore(&pool->lock, flags);
3526 }
3527 
3528 static void pool_postsuspend(struct dm_target *ti)
3529 {
3530 	struct pool_c *pt = ti->private;
3531 	struct pool *pool = pt->pool;
3532 
3533 	cancel_delayed_work_sync(&pool->waker);
3534 	cancel_delayed_work_sync(&pool->no_space_timeout);
3535 	flush_workqueue(pool->wq);
3536 	(void) commit(pool);
3537 }
3538 
3539 static int check_arg_count(unsigned argc, unsigned args_required)
3540 {
3541 	if (argc != args_required) {
3542 		DMWARN("Message received with %u arguments instead of %u.",
3543 		       argc, args_required);
3544 		return -EINVAL;
3545 	}
3546 
3547 	return 0;
3548 }
3549 
3550 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3551 {
3552 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3553 	    *dev_id <= MAX_DEV_ID)
3554 		return 0;
3555 
3556 	if (warning)
3557 		DMWARN("Message received with invalid device id: %s", arg);
3558 
3559 	return -EINVAL;
3560 }
3561 
3562 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3563 {
3564 	dm_thin_id dev_id;
3565 	int r;
3566 
3567 	r = check_arg_count(argc, 2);
3568 	if (r)
3569 		return r;
3570 
3571 	r = read_dev_id(argv[1], &dev_id, 1);
3572 	if (r)
3573 		return r;
3574 
3575 	r = dm_pool_create_thin(pool->pmd, dev_id);
3576 	if (r) {
3577 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3578 		       argv[1]);
3579 		return r;
3580 	}
3581 
3582 	return 0;
3583 }
3584 
3585 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3586 {
3587 	dm_thin_id dev_id;
3588 	dm_thin_id origin_dev_id;
3589 	int r;
3590 
3591 	r = check_arg_count(argc, 3);
3592 	if (r)
3593 		return r;
3594 
3595 	r = read_dev_id(argv[1], &dev_id, 1);
3596 	if (r)
3597 		return r;
3598 
3599 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3600 	if (r)
3601 		return r;
3602 
3603 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3604 	if (r) {
3605 		DMWARN("Creation of new snapshot %s of device %s failed.",
3606 		       argv[1], argv[2]);
3607 		return r;
3608 	}
3609 
3610 	return 0;
3611 }
3612 
3613 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3614 {
3615 	dm_thin_id dev_id;
3616 	int r;
3617 
3618 	r = check_arg_count(argc, 2);
3619 	if (r)
3620 		return r;
3621 
3622 	r = read_dev_id(argv[1], &dev_id, 1);
3623 	if (r)
3624 		return r;
3625 
3626 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3627 	if (r)
3628 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3629 
3630 	return r;
3631 }
3632 
3633 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3634 {
3635 	dm_thin_id old_id, new_id;
3636 	int r;
3637 
3638 	r = check_arg_count(argc, 3);
3639 	if (r)
3640 		return r;
3641 
3642 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3643 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3644 		return -EINVAL;
3645 	}
3646 
3647 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3648 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3649 		return -EINVAL;
3650 	}
3651 
3652 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3653 	if (r) {
3654 		DMWARN("Failed to change transaction id from %s to %s.",
3655 		       argv[1], argv[2]);
3656 		return r;
3657 	}
3658 
3659 	return 0;
3660 }
3661 
3662 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3663 {
3664 	int r;
3665 
3666 	r = check_arg_count(argc, 1);
3667 	if (r)
3668 		return r;
3669 
3670 	(void) commit(pool);
3671 
3672 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3673 	if (r)
3674 		DMWARN("reserve_metadata_snap message failed.");
3675 
3676 	return r;
3677 }
3678 
3679 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3680 {
3681 	int r;
3682 
3683 	r = check_arg_count(argc, 1);
3684 	if (r)
3685 		return r;
3686 
3687 	r = dm_pool_release_metadata_snap(pool->pmd);
3688 	if (r)
3689 		DMWARN("release_metadata_snap message failed.");
3690 
3691 	return r;
3692 }
3693 
3694 /*
3695  * Messages supported:
3696  *   create_thin	<dev_id>
3697  *   create_snap	<dev_id> <origin_id>
3698  *   delete		<dev_id>
3699  *   set_transaction_id <current_trans_id> <new_trans_id>
3700  *   reserve_metadata_snap
3701  *   release_metadata_snap
3702  */
3703 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3704 			char *result, unsigned maxlen)
3705 {
3706 	int r = -EINVAL;
3707 	struct pool_c *pt = ti->private;
3708 	struct pool *pool = pt->pool;
3709 
3710 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3711 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3712 		      dm_device_name(pool->pool_md));
3713 		return -EOPNOTSUPP;
3714 	}
3715 
3716 	if (!strcasecmp(argv[0], "create_thin"))
3717 		r = process_create_thin_mesg(argc, argv, pool);
3718 
3719 	else if (!strcasecmp(argv[0], "create_snap"))
3720 		r = process_create_snap_mesg(argc, argv, pool);
3721 
3722 	else if (!strcasecmp(argv[0], "delete"))
3723 		r = process_delete_mesg(argc, argv, pool);
3724 
3725 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3726 		r = process_set_transaction_id_mesg(argc, argv, pool);
3727 
3728 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3729 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3730 
3731 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3732 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3733 
3734 	else
3735 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3736 
3737 	if (!r)
3738 		(void) commit(pool);
3739 
3740 	return r;
3741 }
3742 
3743 static void emit_flags(struct pool_features *pf, char *result,
3744 		       unsigned sz, unsigned maxlen)
3745 {
3746 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3747 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3748 		pf->error_if_no_space;
3749 	DMEMIT("%u ", count);
3750 
3751 	if (!pf->zero_new_blocks)
3752 		DMEMIT("skip_block_zeroing ");
3753 
3754 	if (!pf->discard_enabled)
3755 		DMEMIT("ignore_discard ");
3756 
3757 	if (!pf->discard_passdown)
3758 		DMEMIT("no_discard_passdown ");
3759 
3760 	if (pf->mode == PM_READ_ONLY)
3761 		DMEMIT("read_only ");
3762 
3763 	if (pf->error_if_no_space)
3764 		DMEMIT("error_if_no_space ");
3765 }
3766 
3767 /*
3768  * Status line is:
3769  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3770  *    <used data sectors>/<total data sectors> <held metadata root>
3771  *    <pool mode> <discard config> <no space config> <needs_check>
3772  */
3773 static void pool_status(struct dm_target *ti, status_type_t type,
3774 			unsigned status_flags, char *result, unsigned maxlen)
3775 {
3776 	int r;
3777 	unsigned sz = 0;
3778 	uint64_t transaction_id;
3779 	dm_block_t nr_free_blocks_data;
3780 	dm_block_t nr_free_blocks_metadata;
3781 	dm_block_t nr_blocks_data;
3782 	dm_block_t nr_blocks_metadata;
3783 	dm_block_t held_root;
3784 	char buf[BDEVNAME_SIZE];
3785 	char buf2[BDEVNAME_SIZE];
3786 	struct pool_c *pt = ti->private;
3787 	struct pool *pool = pt->pool;
3788 
3789 	switch (type) {
3790 	case STATUSTYPE_INFO:
3791 		if (get_pool_mode(pool) == PM_FAIL) {
3792 			DMEMIT("Fail");
3793 			break;
3794 		}
3795 
3796 		/* Commit to ensure statistics aren't out-of-date */
3797 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3798 			(void) commit(pool);
3799 
3800 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3801 		if (r) {
3802 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3803 			      dm_device_name(pool->pool_md), r);
3804 			goto err;
3805 		}
3806 
3807 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3808 		if (r) {
3809 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3810 			      dm_device_name(pool->pool_md), r);
3811 			goto err;
3812 		}
3813 
3814 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3815 		if (r) {
3816 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3817 			      dm_device_name(pool->pool_md), r);
3818 			goto err;
3819 		}
3820 
3821 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3822 		if (r) {
3823 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3824 			      dm_device_name(pool->pool_md), r);
3825 			goto err;
3826 		}
3827 
3828 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3829 		if (r) {
3830 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3831 			      dm_device_name(pool->pool_md), r);
3832 			goto err;
3833 		}
3834 
3835 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3836 		if (r) {
3837 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3838 			      dm_device_name(pool->pool_md), r);
3839 			goto err;
3840 		}
3841 
3842 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3843 		       (unsigned long long)transaction_id,
3844 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3845 		       (unsigned long long)nr_blocks_metadata,
3846 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3847 		       (unsigned long long)nr_blocks_data);
3848 
3849 		if (held_root)
3850 			DMEMIT("%llu ", held_root);
3851 		else
3852 			DMEMIT("- ");
3853 
3854 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3855 			DMEMIT("out_of_data_space ");
3856 		else if (pool->pf.mode == PM_READ_ONLY)
3857 			DMEMIT("ro ");
3858 		else
3859 			DMEMIT("rw ");
3860 
3861 		if (!pool->pf.discard_enabled)
3862 			DMEMIT("ignore_discard ");
3863 		else if (pool->pf.discard_passdown)
3864 			DMEMIT("discard_passdown ");
3865 		else
3866 			DMEMIT("no_discard_passdown ");
3867 
3868 		if (pool->pf.error_if_no_space)
3869 			DMEMIT("error_if_no_space ");
3870 		else
3871 			DMEMIT("queue_if_no_space ");
3872 
3873 		if (dm_pool_metadata_needs_check(pool->pmd))
3874 			DMEMIT("needs_check ");
3875 		else
3876 			DMEMIT("- ");
3877 
3878 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3879 
3880 		break;
3881 
3882 	case STATUSTYPE_TABLE:
3883 		DMEMIT("%s %s %lu %llu ",
3884 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3885 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3886 		       (unsigned long)pool->sectors_per_block,
3887 		       (unsigned long long)pt->low_water_blocks);
3888 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3889 		break;
3890 	}
3891 	return;
3892 
3893 err:
3894 	DMEMIT("Error");
3895 }
3896 
3897 static int pool_iterate_devices(struct dm_target *ti,
3898 				iterate_devices_callout_fn fn, void *data)
3899 {
3900 	struct pool_c *pt = ti->private;
3901 
3902 	return fn(ti, pt->data_dev, 0, ti->len, data);
3903 }
3904 
3905 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3906 {
3907 	struct pool_c *pt = ti->private;
3908 	struct pool *pool = pt->pool;
3909 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3910 
3911 	/*
3912 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3913 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3914 	 * This is especially beneficial when the pool's data device is a RAID
3915 	 * device that has a full stripe width that matches pool->sectors_per_block
3916 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3917 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3918 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3919 	 */
3920 	if (limits->max_sectors < pool->sectors_per_block) {
3921 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3922 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3923 				limits->max_sectors--;
3924 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3925 		}
3926 	}
3927 
3928 	/*
3929 	 * If the system-determined stacked limits are compatible with the
3930 	 * pool's blocksize (io_opt is a factor) do not override them.
3931 	 */
3932 	if (io_opt_sectors < pool->sectors_per_block ||
3933 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3934 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3935 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3936 		else
3937 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3938 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3939 	}
3940 
3941 	/*
3942 	 * pt->adjusted_pf is a staging area for the actual features to use.
3943 	 * They get transferred to the live pool in bind_control_target()
3944 	 * called from pool_preresume().
3945 	 */
3946 	if (!pt->adjusted_pf.discard_enabled) {
3947 		/*
3948 		 * Must explicitly disallow stacking discard limits otherwise the
3949 		 * block layer will stack them if pool's data device has support.
3950 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3951 		 * user to see that, so make sure to set all discard limits to 0.
3952 		 */
3953 		limits->discard_granularity = 0;
3954 		return;
3955 	}
3956 
3957 	disable_passdown_if_not_supported(pt);
3958 
3959 	/*
3960 	 * The pool uses the same discard limits as the underlying data
3961 	 * device.  DM core has already set this up.
3962 	 */
3963 }
3964 
3965 static struct target_type pool_target = {
3966 	.name = "thin-pool",
3967 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3968 		    DM_TARGET_IMMUTABLE,
3969 	.version = {1, 20, 0},
3970 	.module = THIS_MODULE,
3971 	.ctr = pool_ctr,
3972 	.dtr = pool_dtr,
3973 	.map = pool_map,
3974 	.presuspend = pool_presuspend,
3975 	.presuspend_undo = pool_presuspend_undo,
3976 	.postsuspend = pool_postsuspend,
3977 	.preresume = pool_preresume,
3978 	.resume = pool_resume,
3979 	.message = pool_message,
3980 	.status = pool_status,
3981 	.iterate_devices = pool_iterate_devices,
3982 	.io_hints = pool_io_hints,
3983 };
3984 
3985 /*----------------------------------------------------------------
3986  * Thin target methods
3987  *--------------------------------------------------------------*/
3988 static void thin_get(struct thin_c *tc)
3989 {
3990 	atomic_inc(&tc->refcount);
3991 }
3992 
3993 static void thin_put(struct thin_c *tc)
3994 {
3995 	if (atomic_dec_and_test(&tc->refcount))
3996 		complete(&tc->can_destroy);
3997 }
3998 
3999 static void thin_dtr(struct dm_target *ti)
4000 {
4001 	struct thin_c *tc = ti->private;
4002 	unsigned long flags;
4003 
4004 	spin_lock_irqsave(&tc->pool->lock, flags);
4005 	list_del_rcu(&tc->list);
4006 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4007 	synchronize_rcu();
4008 
4009 	thin_put(tc);
4010 	wait_for_completion(&tc->can_destroy);
4011 
4012 	mutex_lock(&dm_thin_pool_table.mutex);
4013 
4014 	__pool_dec(tc->pool);
4015 	dm_pool_close_thin_device(tc->td);
4016 	dm_put_device(ti, tc->pool_dev);
4017 	if (tc->origin_dev)
4018 		dm_put_device(ti, tc->origin_dev);
4019 	kfree(tc);
4020 
4021 	mutex_unlock(&dm_thin_pool_table.mutex);
4022 }
4023 
4024 /*
4025  * Thin target parameters:
4026  *
4027  * <pool_dev> <dev_id> [origin_dev]
4028  *
4029  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4030  * dev_id: the internal device identifier
4031  * origin_dev: a device external to the pool that should act as the origin
4032  *
4033  * If the pool device has discards disabled, they get disabled for the thin
4034  * device as well.
4035  */
4036 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4037 {
4038 	int r;
4039 	struct thin_c *tc;
4040 	struct dm_dev *pool_dev, *origin_dev;
4041 	struct mapped_device *pool_md;
4042 	unsigned long flags;
4043 
4044 	mutex_lock(&dm_thin_pool_table.mutex);
4045 
4046 	if (argc != 2 && argc != 3) {
4047 		ti->error = "Invalid argument count";
4048 		r = -EINVAL;
4049 		goto out_unlock;
4050 	}
4051 
4052 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4053 	if (!tc) {
4054 		ti->error = "Out of memory";
4055 		r = -ENOMEM;
4056 		goto out_unlock;
4057 	}
4058 	tc->thin_md = dm_table_get_md(ti->table);
4059 	spin_lock_init(&tc->lock);
4060 	INIT_LIST_HEAD(&tc->deferred_cells);
4061 	bio_list_init(&tc->deferred_bio_list);
4062 	bio_list_init(&tc->retry_on_resume_list);
4063 	tc->sort_bio_list = RB_ROOT;
4064 
4065 	if (argc == 3) {
4066 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4067 		if (r) {
4068 			ti->error = "Error opening origin device";
4069 			goto bad_origin_dev;
4070 		}
4071 		tc->origin_dev = origin_dev;
4072 	}
4073 
4074 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4075 	if (r) {
4076 		ti->error = "Error opening pool device";
4077 		goto bad_pool_dev;
4078 	}
4079 	tc->pool_dev = pool_dev;
4080 
4081 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4082 		ti->error = "Invalid device id";
4083 		r = -EINVAL;
4084 		goto bad_common;
4085 	}
4086 
4087 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4088 	if (!pool_md) {
4089 		ti->error = "Couldn't get pool mapped device";
4090 		r = -EINVAL;
4091 		goto bad_common;
4092 	}
4093 
4094 	tc->pool = __pool_table_lookup(pool_md);
4095 	if (!tc->pool) {
4096 		ti->error = "Couldn't find pool object";
4097 		r = -EINVAL;
4098 		goto bad_pool_lookup;
4099 	}
4100 	__pool_inc(tc->pool);
4101 
4102 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4103 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4104 		r = -EINVAL;
4105 		goto bad_pool;
4106 	}
4107 
4108 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4109 	if (r) {
4110 		ti->error = "Couldn't open thin internal device";
4111 		goto bad_pool;
4112 	}
4113 
4114 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4115 	if (r)
4116 		goto bad;
4117 
4118 	ti->num_flush_bios = 1;
4119 	ti->flush_supported = true;
4120 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4121 
4122 	/* In case the pool supports discards, pass them on. */
4123 	if (tc->pool->pf.discard_enabled) {
4124 		ti->discards_supported = true;
4125 		ti->num_discard_bios = 1;
4126 		ti->split_discard_bios = false;
4127 	}
4128 
4129 	mutex_unlock(&dm_thin_pool_table.mutex);
4130 
4131 	spin_lock_irqsave(&tc->pool->lock, flags);
4132 	if (tc->pool->suspended) {
4133 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4134 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4135 		ti->error = "Unable to activate thin device while pool is suspended";
4136 		r = -EINVAL;
4137 		goto bad;
4138 	}
4139 	atomic_set(&tc->refcount, 1);
4140 	init_completion(&tc->can_destroy);
4141 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4142 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4143 	/*
4144 	 * This synchronize_rcu() call is needed here otherwise we risk a
4145 	 * wake_worker() call finding no bios to process (because the newly
4146 	 * added tc isn't yet visible).  So this reduces latency since we
4147 	 * aren't then dependent on the periodic commit to wake_worker().
4148 	 */
4149 	synchronize_rcu();
4150 
4151 	dm_put(pool_md);
4152 
4153 	return 0;
4154 
4155 bad:
4156 	dm_pool_close_thin_device(tc->td);
4157 bad_pool:
4158 	__pool_dec(tc->pool);
4159 bad_pool_lookup:
4160 	dm_put(pool_md);
4161 bad_common:
4162 	dm_put_device(ti, tc->pool_dev);
4163 bad_pool_dev:
4164 	if (tc->origin_dev)
4165 		dm_put_device(ti, tc->origin_dev);
4166 bad_origin_dev:
4167 	kfree(tc);
4168 out_unlock:
4169 	mutex_unlock(&dm_thin_pool_table.mutex);
4170 
4171 	return r;
4172 }
4173 
4174 static int thin_map(struct dm_target *ti, struct bio *bio)
4175 {
4176 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4177 
4178 	return thin_bio_map(ti, bio);
4179 }
4180 
4181 static int thin_endio(struct dm_target *ti, struct bio *bio,
4182 		blk_status_t *err)
4183 {
4184 	unsigned long flags;
4185 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4186 	struct list_head work;
4187 	struct dm_thin_new_mapping *m, *tmp;
4188 	struct pool *pool = h->tc->pool;
4189 
4190 	if (h->shared_read_entry) {
4191 		INIT_LIST_HEAD(&work);
4192 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4193 
4194 		spin_lock_irqsave(&pool->lock, flags);
4195 		list_for_each_entry_safe(m, tmp, &work, list) {
4196 			list_del(&m->list);
4197 			__complete_mapping_preparation(m);
4198 		}
4199 		spin_unlock_irqrestore(&pool->lock, flags);
4200 	}
4201 
4202 	if (h->all_io_entry) {
4203 		INIT_LIST_HEAD(&work);
4204 		dm_deferred_entry_dec(h->all_io_entry, &work);
4205 		if (!list_empty(&work)) {
4206 			spin_lock_irqsave(&pool->lock, flags);
4207 			list_for_each_entry_safe(m, tmp, &work, list)
4208 				list_add_tail(&m->list, &pool->prepared_discards);
4209 			spin_unlock_irqrestore(&pool->lock, flags);
4210 			wake_worker(pool);
4211 		}
4212 	}
4213 
4214 	if (h->cell)
4215 		cell_defer_no_holder(h->tc, h->cell);
4216 
4217 	return DM_ENDIO_DONE;
4218 }
4219 
4220 static void thin_presuspend(struct dm_target *ti)
4221 {
4222 	struct thin_c *tc = ti->private;
4223 
4224 	if (dm_noflush_suspending(ti))
4225 		noflush_work(tc, do_noflush_start);
4226 }
4227 
4228 static void thin_postsuspend(struct dm_target *ti)
4229 {
4230 	struct thin_c *tc = ti->private;
4231 
4232 	/*
4233 	 * The dm_noflush_suspending flag has been cleared by now, so
4234 	 * unfortunately we must always run this.
4235 	 */
4236 	noflush_work(tc, do_noflush_stop);
4237 }
4238 
4239 static int thin_preresume(struct dm_target *ti)
4240 {
4241 	struct thin_c *tc = ti->private;
4242 
4243 	if (tc->origin_dev)
4244 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4245 
4246 	return 0;
4247 }
4248 
4249 /*
4250  * <nr mapped sectors> <highest mapped sector>
4251  */
4252 static void thin_status(struct dm_target *ti, status_type_t type,
4253 			unsigned status_flags, char *result, unsigned maxlen)
4254 {
4255 	int r;
4256 	ssize_t sz = 0;
4257 	dm_block_t mapped, highest;
4258 	char buf[BDEVNAME_SIZE];
4259 	struct thin_c *tc = ti->private;
4260 
4261 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4262 		DMEMIT("Fail");
4263 		return;
4264 	}
4265 
4266 	if (!tc->td)
4267 		DMEMIT("-");
4268 	else {
4269 		switch (type) {
4270 		case STATUSTYPE_INFO:
4271 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4272 			if (r) {
4273 				DMERR("dm_thin_get_mapped_count returned %d", r);
4274 				goto err;
4275 			}
4276 
4277 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4278 			if (r < 0) {
4279 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4280 				goto err;
4281 			}
4282 
4283 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4284 			if (r)
4285 				DMEMIT("%llu", ((highest + 1) *
4286 						tc->pool->sectors_per_block) - 1);
4287 			else
4288 				DMEMIT("-");
4289 			break;
4290 
4291 		case STATUSTYPE_TABLE:
4292 			DMEMIT("%s %lu",
4293 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4294 			       (unsigned long) tc->dev_id);
4295 			if (tc->origin_dev)
4296 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4297 			break;
4298 		}
4299 	}
4300 
4301 	return;
4302 
4303 err:
4304 	DMEMIT("Error");
4305 }
4306 
4307 static int thin_iterate_devices(struct dm_target *ti,
4308 				iterate_devices_callout_fn fn, void *data)
4309 {
4310 	sector_t blocks;
4311 	struct thin_c *tc = ti->private;
4312 	struct pool *pool = tc->pool;
4313 
4314 	/*
4315 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4316 	 * we follow a more convoluted path through to the pool's target.
4317 	 */
4318 	if (!pool->ti)
4319 		return 0;	/* nothing is bound */
4320 
4321 	blocks = pool->ti->len;
4322 	(void) sector_div(blocks, pool->sectors_per_block);
4323 	if (blocks)
4324 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4325 
4326 	return 0;
4327 }
4328 
4329 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4330 {
4331 	struct thin_c *tc = ti->private;
4332 	struct pool *pool = tc->pool;
4333 
4334 	if (!pool->pf.discard_enabled)
4335 		return;
4336 
4337 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4338 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4339 }
4340 
4341 static struct target_type thin_target = {
4342 	.name = "thin",
4343 	.version = {1, 20, 0},
4344 	.module	= THIS_MODULE,
4345 	.ctr = thin_ctr,
4346 	.dtr = thin_dtr,
4347 	.map = thin_map,
4348 	.end_io = thin_endio,
4349 	.preresume = thin_preresume,
4350 	.presuspend = thin_presuspend,
4351 	.postsuspend = thin_postsuspend,
4352 	.status = thin_status,
4353 	.iterate_devices = thin_iterate_devices,
4354 	.io_hints = thin_io_hints,
4355 };
4356 
4357 /*----------------------------------------------------------------*/
4358 
4359 static int __init dm_thin_init(void)
4360 {
4361 	int r = -ENOMEM;
4362 
4363 	pool_table_init();
4364 
4365 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4366 	if (!_new_mapping_cache)
4367 		return r;
4368 
4369 	r = dm_register_target(&thin_target);
4370 	if (r)
4371 		goto bad_new_mapping_cache;
4372 
4373 	r = dm_register_target(&pool_target);
4374 	if (r)
4375 		goto bad_thin_target;
4376 
4377 	return 0;
4378 
4379 bad_thin_target:
4380 	dm_unregister_target(&thin_target);
4381 bad_new_mapping_cache:
4382 	kmem_cache_destroy(_new_mapping_cache);
4383 
4384 	return r;
4385 }
4386 
4387 static void dm_thin_exit(void)
4388 {
4389 	dm_unregister_target(&thin_target);
4390 	dm_unregister_target(&pool_target);
4391 
4392 	kmem_cache_destroy(_new_mapping_cache);
4393 
4394 	pool_table_exit();
4395 }
4396 
4397 module_init(dm_thin_init);
4398 module_exit(dm_thin_exit);
4399 
4400 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4401 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4402 
4403 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4404 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4405 MODULE_LICENSE("GPL");
4406