1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 19 #define DM_MSG_PREFIX "thin" 20 21 /* 22 * Tunable constants 23 */ 24 #define ENDIO_HOOK_POOL_SIZE 1024 25 #define MAPPING_POOL_SIZE 1024 26 #define PRISON_CELLS 1024 27 #define COMMIT_PERIOD HZ 28 29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 30 "A percentage of time allocated for copy on write"); 31 32 /* 33 * The block size of the device holding pool data must be 34 * between 64KB and 1GB. 35 */ 36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 38 39 /* 40 * Device id is restricted to 24 bits. 41 */ 42 #define MAX_DEV_ID ((1 << 24) - 1) 43 44 /* 45 * How do we handle breaking sharing of data blocks? 46 * ================================================= 47 * 48 * We use a standard copy-on-write btree to store the mappings for the 49 * devices (note I'm talking about copy-on-write of the metadata here, not 50 * the data). When you take an internal snapshot you clone the root node 51 * of the origin btree. After this there is no concept of an origin or a 52 * snapshot. They are just two device trees that happen to point to the 53 * same data blocks. 54 * 55 * When we get a write in we decide if it's to a shared data block using 56 * some timestamp magic. If it is, we have to break sharing. 57 * 58 * Let's say we write to a shared block in what was the origin. The 59 * steps are: 60 * 61 * i) plug io further to this physical block. (see bio_prison code). 62 * 63 * ii) quiesce any read io to that shared data block. Obviously 64 * including all devices that share this block. (see dm_deferred_set code) 65 * 66 * iii) copy the data block to a newly allocate block. This step can be 67 * missed out if the io covers the block. (schedule_copy). 68 * 69 * iv) insert the new mapping into the origin's btree 70 * (process_prepared_mapping). This act of inserting breaks some 71 * sharing of btree nodes between the two devices. Breaking sharing only 72 * effects the btree of that specific device. Btrees for the other 73 * devices that share the block never change. The btree for the origin 74 * device as it was after the last commit is untouched, ie. we're using 75 * persistent data structures in the functional programming sense. 76 * 77 * v) unplug io to this physical block, including the io that triggered 78 * the breaking of sharing. 79 * 80 * Steps (ii) and (iii) occur in parallel. 81 * 82 * The metadata _doesn't_ need to be committed before the io continues. We 83 * get away with this because the io is always written to a _new_ block. 84 * If there's a crash, then: 85 * 86 * - The origin mapping will point to the old origin block (the shared 87 * one). This will contain the data as it was before the io that triggered 88 * the breaking of sharing came in. 89 * 90 * - The snap mapping still points to the old block. As it would after 91 * the commit. 92 * 93 * The downside of this scheme is the timestamp magic isn't perfect, and 94 * will continue to think that data block in the snapshot device is shared 95 * even after the write to the origin has broken sharing. I suspect data 96 * blocks will typically be shared by many different devices, so we're 97 * breaking sharing n + 1 times, rather than n, where n is the number of 98 * devices that reference this data block. At the moment I think the 99 * benefits far, far outweigh the disadvantages. 100 */ 101 102 /*----------------------------------------------------------------*/ 103 104 /* 105 * Key building. 106 */ 107 static void build_data_key(struct dm_thin_device *td, 108 dm_block_t b, struct dm_cell_key *key) 109 { 110 key->virtual = 0; 111 key->dev = dm_thin_dev_id(td); 112 key->block = b; 113 } 114 115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 116 struct dm_cell_key *key) 117 { 118 key->virtual = 1; 119 key->dev = dm_thin_dev_id(td); 120 key->block = b; 121 } 122 123 /*----------------------------------------------------------------*/ 124 125 /* 126 * A pool device ties together a metadata device and a data device. It 127 * also provides the interface for creating and destroying internal 128 * devices. 129 */ 130 struct dm_thin_new_mapping; 131 132 /* 133 * The pool runs in 3 modes. Ordered in degraded order for comparisons. 134 */ 135 enum pool_mode { 136 PM_WRITE, /* metadata may be changed */ 137 PM_READ_ONLY, /* metadata may not be changed */ 138 PM_FAIL, /* all I/O fails */ 139 }; 140 141 struct pool_features { 142 enum pool_mode mode; 143 144 bool zero_new_blocks:1; 145 bool discard_enabled:1; 146 bool discard_passdown:1; 147 }; 148 149 struct thin_c; 150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 152 153 struct pool { 154 struct list_head list; 155 struct dm_target *ti; /* Only set if a pool target is bound */ 156 157 struct mapped_device *pool_md; 158 struct block_device *md_dev; 159 struct dm_pool_metadata *pmd; 160 161 dm_block_t low_water_blocks; 162 uint32_t sectors_per_block; 163 int sectors_per_block_shift; 164 165 struct pool_features pf; 166 unsigned low_water_triggered:1; /* A dm event has been sent */ 167 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */ 168 169 struct dm_bio_prison *prison; 170 struct dm_kcopyd_client *copier; 171 172 struct workqueue_struct *wq; 173 struct work_struct worker; 174 struct delayed_work waker; 175 176 unsigned long last_commit_jiffies; 177 unsigned ref_count; 178 179 spinlock_t lock; 180 struct bio_list deferred_bios; 181 struct bio_list deferred_flush_bios; 182 struct list_head prepared_mappings; 183 struct list_head prepared_discards; 184 185 struct bio_list retry_on_resume_list; 186 187 struct dm_deferred_set *shared_read_ds; 188 struct dm_deferred_set *all_io_ds; 189 190 struct dm_thin_new_mapping *next_mapping; 191 mempool_t *mapping_pool; 192 193 process_bio_fn process_bio; 194 process_bio_fn process_discard; 195 196 process_mapping_fn process_prepared_mapping; 197 process_mapping_fn process_prepared_discard; 198 }; 199 200 static enum pool_mode get_pool_mode(struct pool *pool); 201 static void set_pool_mode(struct pool *pool, enum pool_mode mode); 202 203 /* 204 * Target context for a pool. 205 */ 206 struct pool_c { 207 struct dm_target *ti; 208 struct pool *pool; 209 struct dm_dev *data_dev; 210 struct dm_dev *metadata_dev; 211 struct dm_target_callbacks callbacks; 212 213 dm_block_t low_water_blocks; 214 struct pool_features requested_pf; /* Features requested during table load */ 215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 216 }; 217 218 /* 219 * Target context for a thin. 220 */ 221 struct thin_c { 222 struct dm_dev *pool_dev; 223 struct dm_dev *origin_dev; 224 dm_thin_id dev_id; 225 226 struct pool *pool; 227 struct dm_thin_device *td; 228 }; 229 230 /*----------------------------------------------------------------*/ 231 232 /* 233 * wake_worker() is used when new work is queued and when pool_resume is 234 * ready to continue deferred IO processing. 235 */ 236 static void wake_worker(struct pool *pool) 237 { 238 queue_work(pool->wq, &pool->worker); 239 } 240 241 /*----------------------------------------------------------------*/ 242 243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 244 struct dm_bio_prison_cell **cell_result) 245 { 246 int r; 247 struct dm_bio_prison_cell *cell_prealloc; 248 249 /* 250 * Allocate a cell from the prison's mempool. 251 * This might block but it can't fail. 252 */ 253 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 254 255 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 256 if (r) 257 /* 258 * We reused an old cell; we can get rid of 259 * the new one. 260 */ 261 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 262 263 return r; 264 } 265 266 static void cell_release(struct pool *pool, 267 struct dm_bio_prison_cell *cell, 268 struct bio_list *bios) 269 { 270 dm_cell_release(pool->prison, cell, bios); 271 dm_bio_prison_free_cell(pool->prison, cell); 272 } 273 274 static void cell_release_no_holder(struct pool *pool, 275 struct dm_bio_prison_cell *cell, 276 struct bio_list *bios) 277 { 278 dm_cell_release_no_holder(pool->prison, cell, bios); 279 dm_bio_prison_free_cell(pool->prison, cell); 280 } 281 282 static void cell_defer_no_holder_no_free(struct thin_c *tc, 283 struct dm_bio_prison_cell *cell) 284 { 285 struct pool *pool = tc->pool; 286 unsigned long flags; 287 288 spin_lock_irqsave(&pool->lock, flags); 289 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios); 290 spin_unlock_irqrestore(&pool->lock, flags); 291 292 wake_worker(pool); 293 } 294 295 static void cell_error(struct pool *pool, 296 struct dm_bio_prison_cell *cell) 297 { 298 dm_cell_error(pool->prison, cell); 299 dm_bio_prison_free_cell(pool->prison, cell); 300 } 301 302 /*----------------------------------------------------------------*/ 303 304 /* 305 * A global list of pools that uses a struct mapped_device as a key. 306 */ 307 static struct dm_thin_pool_table { 308 struct mutex mutex; 309 struct list_head pools; 310 } dm_thin_pool_table; 311 312 static void pool_table_init(void) 313 { 314 mutex_init(&dm_thin_pool_table.mutex); 315 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 316 } 317 318 static void __pool_table_insert(struct pool *pool) 319 { 320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 321 list_add(&pool->list, &dm_thin_pool_table.pools); 322 } 323 324 static void __pool_table_remove(struct pool *pool) 325 { 326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 327 list_del(&pool->list); 328 } 329 330 static struct pool *__pool_table_lookup(struct mapped_device *md) 331 { 332 struct pool *pool = NULL, *tmp; 333 334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 335 336 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 337 if (tmp->pool_md == md) { 338 pool = tmp; 339 break; 340 } 341 } 342 343 return pool; 344 } 345 346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 347 { 348 struct pool *pool = NULL, *tmp; 349 350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 351 352 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 353 if (tmp->md_dev == md_dev) { 354 pool = tmp; 355 break; 356 } 357 } 358 359 return pool; 360 } 361 362 /*----------------------------------------------------------------*/ 363 364 struct dm_thin_endio_hook { 365 struct thin_c *tc; 366 struct dm_deferred_entry *shared_read_entry; 367 struct dm_deferred_entry *all_io_entry; 368 struct dm_thin_new_mapping *overwrite_mapping; 369 }; 370 371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master) 372 { 373 struct bio *bio; 374 struct bio_list bios; 375 376 bio_list_init(&bios); 377 bio_list_merge(&bios, master); 378 bio_list_init(master); 379 380 while ((bio = bio_list_pop(&bios))) { 381 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 382 383 if (h->tc == tc) 384 bio_endio(bio, DM_ENDIO_REQUEUE); 385 else 386 bio_list_add(master, bio); 387 } 388 } 389 390 static void requeue_io(struct thin_c *tc) 391 { 392 struct pool *pool = tc->pool; 393 unsigned long flags; 394 395 spin_lock_irqsave(&pool->lock, flags); 396 __requeue_bio_list(tc, &pool->deferred_bios); 397 __requeue_bio_list(tc, &pool->retry_on_resume_list); 398 spin_unlock_irqrestore(&pool->lock, flags); 399 } 400 401 /* 402 * This section of code contains the logic for processing a thin device's IO. 403 * Much of the code depends on pool object resources (lists, workqueues, etc) 404 * but most is exclusively called from the thin target rather than the thin-pool 405 * target. 406 */ 407 408 static bool block_size_is_power_of_two(struct pool *pool) 409 { 410 return pool->sectors_per_block_shift >= 0; 411 } 412 413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 414 { 415 struct pool *pool = tc->pool; 416 sector_t block_nr = bio->bi_sector; 417 418 if (block_size_is_power_of_two(pool)) 419 block_nr >>= pool->sectors_per_block_shift; 420 else 421 (void) sector_div(block_nr, pool->sectors_per_block); 422 423 return block_nr; 424 } 425 426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 427 { 428 struct pool *pool = tc->pool; 429 sector_t bi_sector = bio->bi_sector; 430 431 bio->bi_bdev = tc->pool_dev->bdev; 432 if (block_size_is_power_of_two(pool)) 433 bio->bi_sector = (block << pool->sectors_per_block_shift) | 434 (bi_sector & (pool->sectors_per_block - 1)); 435 else 436 bio->bi_sector = (block * pool->sectors_per_block) + 437 sector_div(bi_sector, pool->sectors_per_block); 438 } 439 440 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 441 { 442 bio->bi_bdev = tc->origin_dev->bdev; 443 } 444 445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 446 { 447 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 448 dm_thin_changed_this_transaction(tc->td); 449 } 450 451 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 452 { 453 struct dm_thin_endio_hook *h; 454 455 if (bio->bi_rw & REQ_DISCARD) 456 return; 457 458 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 459 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 460 } 461 462 static void issue(struct thin_c *tc, struct bio *bio) 463 { 464 struct pool *pool = tc->pool; 465 unsigned long flags; 466 467 if (!bio_triggers_commit(tc, bio)) { 468 generic_make_request(bio); 469 return; 470 } 471 472 /* 473 * Complete bio with an error if earlier I/O caused changes to 474 * the metadata that can't be committed e.g, due to I/O errors 475 * on the metadata device. 476 */ 477 if (dm_thin_aborted_changes(tc->td)) { 478 bio_io_error(bio); 479 return; 480 } 481 482 /* 483 * Batch together any bios that trigger commits and then issue a 484 * single commit for them in process_deferred_bios(). 485 */ 486 spin_lock_irqsave(&pool->lock, flags); 487 bio_list_add(&pool->deferred_flush_bios, bio); 488 spin_unlock_irqrestore(&pool->lock, flags); 489 } 490 491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 492 { 493 remap_to_origin(tc, bio); 494 issue(tc, bio); 495 } 496 497 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 498 dm_block_t block) 499 { 500 remap(tc, bio, block); 501 issue(tc, bio); 502 } 503 504 /*----------------------------------------------------------------*/ 505 506 /* 507 * Bio endio functions. 508 */ 509 struct dm_thin_new_mapping { 510 struct list_head list; 511 512 unsigned quiesced:1; 513 unsigned prepared:1; 514 unsigned pass_discard:1; 515 516 struct thin_c *tc; 517 dm_block_t virt_block; 518 dm_block_t data_block; 519 struct dm_bio_prison_cell *cell, *cell2; 520 int err; 521 522 /* 523 * If the bio covers the whole area of a block then we can avoid 524 * zeroing or copying. Instead this bio is hooked. The bio will 525 * still be in the cell, so care has to be taken to avoid issuing 526 * the bio twice. 527 */ 528 struct bio *bio; 529 bio_end_io_t *saved_bi_end_io; 530 }; 531 532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m) 533 { 534 struct pool *pool = m->tc->pool; 535 536 if (m->quiesced && m->prepared) { 537 list_add(&m->list, &pool->prepared_mappings); 538 wake_worker(pool); 539 } 540 } 541 542 static void copy_complete(int read_err, unsigned long write_err, void *context) 543 { 544 unsigned long flags; 545 struct dm_thin_new_mapping *m = context; 546 struct pool *pool = m->tc->pool; 547 548 m->err = read_err || write_err ? -EIO : 0; 549 550 spin_lock_irqsave(&pool->lock, flags); 551 m->prepared = 1; 552 __maybe_add_mapping(m); 553 spin_unlock_irqrestore(&pool->lock, flags); 554 } 555 556 static void overwrite_endio(struct bio *bio, int err) 557 { 558 unsigned long flags; 559 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 560 struct dm_thin_new_mapping *m = h->overwrite_mapping; 561 struct pool *pool = m->tc->pool; 562 563 m->err = err; 564 565 spin_lock_irqsave(&pool->lock, flags); 566 m->prepared = 1; 567 __maybe_add_mapping(m); 568 spin_unlock_irqrestore(&pool->lock, flags); 569 } 570 571 /*----------------------------------------------------------------*/ 572 573 /* 574 * Workqueue. 575 */ 576 577 /* 578 * Prepared mapping jobs. 579 */ 580 581 /* 582 * This sends the bios in the cell back to the deferred_bios list. 583 */ 584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) 585 { 586 struct pool *pool = tc->pool; 587 unsigned long flags; 588 589 spin_lock_irqsave(&pool->lock, flags); 590 cell_release(pool, cell, &pool->deferred_bios); 591 spin_unlock_irqrestore(&tc->pool->lock, flags); 592 593 wake_worker(pool); 594 } 595 596 /* 597 * Same as cell_defer above, except it omits the original holder of the cell. 598 */ 599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 600 { 601 struct pool *pool = tc->pool; 602 unsigned long flags; 603 604 spin_lock_irqsave(&pool->lock, flags); 605 cell_release_no_holder(pool, cell, &pool->deferred_bios); 606 spin_unlock_irqrestore(&pool->lock, flags); 607 608 wake_worker(pool); 609 } 610 611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 612 { 613 if (m->bio) 614 m->bio->bi_end_io = m->saved_bi_end_io; 615 cell_error(m->tc->pool, m->cell); 616 list_del(&m->list); 617 mempool_free(m, m->tc->pool->mapping_pool); 618 } 619 620 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 621 { 622 struct thin_c *tc = m->tc; 623 struct pool *pool = tc->pool; 624 struct bio *bio; 625 int r; 626 627 bio = m->bio; 628 if (bio) 629 bio->bi_end_io = m->saved_bi_end_io; 630 631 if (m->err) { 632 cell_error(pool, m->cell); 633 goto out; 634 } 635 636 /* 637 * Commit the prepared block into the mapping btree. 638 * Any I/O for this block arriving after this point will get 639 * remapped to it directly. 640 */ 641 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 642 if (r) { 643 DMERR_LIMIT("dm_thin_insert_block() failed"); 644 cell_error(pool, m->cell); 645 goto out; 646 } 647 648 /* 649 * Release any bios held while the block was being provisioned. 650 * If we are processing a write bio that completely covers the block, 651 * we already processed it so can ignore it now when processing 652 * the bios in the cell. 653 */ 654 if (bio) { 655 cell_defer_no_holder(tc, m->cell); 656 bio_endio(bio, 0); 657 } else 658 cell_defer(tc, m->cell); 659 660 out: 661 list_del(&m->list); 662 mempool_free(m, pool->mapping_pool); 663 } 664 665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 666 { 667 struct thin_c *tc = m->tc; 668 669 bio_io_error(m->bio); 670 cell_defer_no_holder(tc, m->cell); 671 cell_defer_no_holder(tc, m->cell2); 672 mempool_free(m, tc->pool->mapping_pool); 673 } 674 675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 676 { 677 struct thin_c *tc = m->tc; 678 679 inc_all_io_entry(tc->pool, m->bio); 680 cell_defer_no_holder(tc, m->cell); 681 cell_defer_no_holder(tc, m->cell2); 682 683 if (m->pass_discard) 684 remap_and_issue(tc, m->bio, m->data_block); 685 else 686 bio_endio(m->bio, 0); 687 688 mempool_free(m, tc->pool->mapping_pool); 689 } 690 691 static void process_prepared_discard(struct dm_thin_new_mapping *m) 692 { 693 int r; 694 struct thin_c *tc = m->tc; 695 696 r = dm_thin_remove_block(tc->td, m->virt_block); 697 if (r) 698 DMERR_LIMIT("dm_thin_remove_block() failed"); 699 700 process_prepared_discard_passdown(m); 701 } 702 703 static void process_prepared(struct pool *pool, struct list_head *head, 704 process_mapping_fn *fn) 705 { 706 unsigned long flags; 707 struct list_head maps; 708 struct dm_thin_new_mapping *m, *tmp; 709 710 INIT_LIST_HEAD(&maps); 711 spin_lock_irqsave(&pool->lock, flags); 712 list_splice_init(head, &maps); 713 spin_unlock_irqrestore(&pool->lock, flags); 714 715 list_for_each_entry_safe(m, tmp, &maps, list) 716 (*fn)(m); 717 } 718 719 /* 720 * Deferred bio jobs. 721 */ 722 static int io_overlaps_block(struct pool *pool, struct bio *bio) 723 { 724 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT); 725 } 726 727 static int io_overwrites_block(struct pool *pool, struct bio *bio) 728 { 729 return (bio_data_dir(bio) == WRITE) && 730 io_overlaps_block(pool, bio); 731 } 732 733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 734 bio_end_io_t *fn) 735 { 736 *save = bio->bi_end_io; 737 bio->bi_end_io = fn; 738 } 739 740 static int ensure_next_mapping(struct pool *pool) 741 { 742 if (pool->next_mapping) 743 return 0; 744 745 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 746 747 return pool->next_mapping ? 0 : -ENOMEM; 748 } 749 750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 751 { 752 struct dm_thin_new_mapping *r = pool->next_mapping; 753 754 BUG_ON(!pool->next_mapping); 755 756 pool->next_mapping = NULL; 757 758 return r; 759 } 760 761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 762 struct dm_dev *origin, dm_block_t data_origin, 763 dm_block_t data_dest, 764 struct dm_bio_prison_cell *cell, struct bio *bio) 765 { 766 int r; 767 struct pool *pool = tc->pool; 768 struct dm_thin_new_mapping *m = get_next_mapping(pool); 769 770 INIT_LIST_HEAD(&m->list); 771 m->quiesced = 0; 772 m->prepared = 0; 773 m->tc = tc; 774 m->virt_block = virt_block; 775 m->data_block = data_dest; 776 m->cell = cell; 777 m->err = 0; 778 m->bio = NULL; 779 780 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 781 m->quiesced = 1; 782 783 /* 784 * IO to pool_dev remaps to the pool target's data_dev. 785 * 786 * If the whole block of data is being overwritten, we can issue the 787 * bio immediately. Otherwise we use kcopyd to clone the data first. 788 */ 789 if (io_overwrites_block(pool, bio)) { 790 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 791 792 h->overwrite_mapping = m; 793 m->bio = bio; 794 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 795 inc_all_io_entry(pool, bio); 796 remap_and_issue(tc, bio, data_dest); 797 } else { 798 struct dm_io_region from, to; 799 800 from.bdev = origin->bdev; 801 from.sector = data_origin * pool->sectors_per_block; 802 from.count = pool->sectors_per_block; 803 804 to.bdev = tc->pool_dev->bdev; 805 to.sector = data_dest * pool->sectors_per_block; 806 to.count = pool->sectors_per_block; 807 808 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 809 0, copy_complete, m); 810 if (r < 0) { 811 mempool_free(m, pool->mapping_pool); 812 DMERR_LIMIT("dm_kcopyd_copy() failed"); 813 cell_error(pool, cell); 814 } 815 } 816 } 817 818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 819 dm_block_t data_origin, dm_block_t data_dest, 820 struct dm_bio_prison_cell *cell, struct bio *bio) 821 { 822 schedule_copy(tc, virt_block, tc->pool_dev, 823 data_origin, data_dest, cell, bio); 824 } 825 826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 827 dm_block_t data_dest, 828 struct dm_bio_prison_cell *cell, struct bio *bio) 829 { 830 schedule_copy(tc, virt_block, tc->origin_dev, 831 virt_block, data_dest, cell, bio); 832 } 833 834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 835 dm_block_t data_block, struct dm_bio_prison_cell *cell, 836 struct bio *bio) 837 { 838 struct pool *pool = tc->pool; 839 struct dm_thin_new_mapping *m = get_next_mapping(pool); 840 841 INIT_LIST_HEAD(&m->list); 842 m->quiesced = 1; 843 m->prepared = 0; 844 m->tc = tc; 845 m->virt_block = virt_block; 846 m->data_block = data_block; 847 m->cell = cell; 848 m->err = 0; 849 m->bio = NULL; 850 851 /* 852 * If the whole block of data is being overwritten or we are not 853 * zeroing pre-existing data, we can issue the bio immediately. 854 * Otherwise we use kcopyd to zero the data first. 855 */ 856 if (!pool->pf.zero_new_blocks) 857 process_prepared_mapping(m); 858 859 else if (io_overwrites_block(pool, bio)) { 860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 861 862 h->overwrite_mapping = m; 863 m->bio = bio; 864 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 865 inc_all_io_entry(pool, bio); 866 remap_and_issue(tc, bio, data_block); 867 } else { 868 int r; 869 struct dm_io_region to; 870 871 to.bdev = tc->pool_dev->bdev; 872 to.sector = data_block * pool->sectors_per_block; 873 to.count = pool->sectors_per_block; 874 875 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); 876 if (r < 0) { 877 mempool_free(m, pool->mapping_pool); 878 DMERR_LIMIT("dm_kcopyd_zero() failed"); 879 cell_error(pool, cell); 880 } 881 } 882 } 883 884 static int commit(struct pool *pool) 885 { 886 int r; 887 888 r = dm_pool_commit_metadata(pool->pmd); 889 if (r) 890 DMERR_LIMIT("%s: commit failed: error = %d", 891 dm_device_name(pool->pool_md), r); 892 893 return r; 894 } 895 896 /* 897 * A non-zero return indicates read_only or fail_io mode. 898 * Many callers don't care about the return value. 899 */ 900 static int commit_or_fallback(struct pool *pool) 901 { 902 int r; 903 904 if (get_pool_mode(pool) != PM_WRITE) 905 return -EINVAL; 906 907 r = commit(pool); 908 if (r) 909 set_pool_mode(pool, PM_READ_ONLY); 910 911 return r; 912 } 913 914 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 915 { 916 int r; 917 dm_block_t free_blocks; 918 unsigned long flags; 919 struct pool *pool = tc->pool; 920 921 /* 922 * Once no_free_space is set we must not allow allocation to succeed. 923 * Otherwise it is difficult to explain, debug, test and support. 924 */ 925 if (pool->no_free_space) 926 return -ENOSPC; 927 928 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 929 if (r) 930 return r; 931 932 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 933 DMWARN("%s: reached low water mark for data device: sending event.", 934 dm_device_name(pool->pool_md)); 935 spin_lock_irqsave(&pool->lock, flags); 936 pool->low_water_triggered = 1; 937 spin_unlock_irqrestore(&pool->lock, flags); 938 dm_table_event(pool->ti->table); 939 } 940 941 if (!free_blocks) { 942 /* 943 * Try to commit to see if that will free up some 944 * more space. 945 */ 946 (void) commit_or_fallback(pool); 947 948 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 949 if (r) 950 return r; 951 952 /* 953 * If we still have no space we set a flag to avoid 954 * doing all this checking and return -ENOSPC. This 955 * flag serves as a latch that disallows allocations from 956 * this pool until the admin takes action (e.g. resize or 957 * table reload). 958 */ 959 if (!free_blocks) { 960 DMWARN("%s: no free space available.", 961 dm_device_name(pool->pool_md)); 962 spin_lock_irqsave(&pool->lock, flags); 963 pool->no_free_space = 1; 964 spin_unlock_irqrestore(&pool->lock, flags); 965 return -ENOSPC; 966 } 967 } 968 969 r = dm_pool_alloc_data_block(pool->pmd, result); 970 if (r) 971 return r; 972 973 return 0; 974 } 975 976 /* 977 * If we have run out of space, queue bios until the device is 978 * resumed, presumably after having been reloaded with more space. 979 */ 980 static void retry_on_resume(struct bio *bio) 981 { 982 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 983 struct thin_c *tc = h->tc; 984 struct pool *pool = tc->pool; 985 unsigned long flags; 986 987 spin_lock_irqsave(&pool->lock, flags); 988 bio_list_add(&pool->retry_on_resume_list, bio); 989 spin_unlock_irqrestore(&pool->lock, flags); 990 } 991 992 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell) 993 { 994 struct bio *bio; 995 struct bio_list bios; 996 997 bio_list_init(&bios); 998 cell_release(pool, cell, &bios); 999 1000 while ((bio = bio_list_pop(&bios))) 1001 retry_on_resume(bio); 1002 } 1003 1004 static void process_discard(struct thin_c *tc, struct bio *bio) 1005 { 1006 int r; 1007 unsigned long flags; 1008 struct pool *pool = tc->pool; 1009 struct dm_bio_prison_cell *cell, *cell2; 1010 struct dm_cell_key key, key2; 1011 dm_block_t block = get_bio_block(tc, bio); 1012 struct dm_thin_lookup_result lookup_result; 1013 struct dm_thin_new_mapping *m; 1014 1015 build_virtual_key(tc->td, block, &key); 1016 if (bio_detain(tc->pool, &key, bio, &cell)) 1017 return; 1018 1019 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1020 switch (r) { 1021 case 0: 1022 /* 1023 * Check nobody is fiddling with this pool block. This can 1024 * happen if someone's in the process of breaking sharing 1025 * on this block. 1026 */ 1027 build_data_key(tc->td, lookup_result.block, &key2); 1028 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1029 cell_defer_no_holder(tc, cell); 1030 break; 1031 } 1032 1033 if (io_overlaps_block(pool, bio)) { 1034 /* 1035 * IO may still be going to the destination block. We must 1036 * quiesce before we can do the removal. 1037 */ 1038 m = get_next_mapping(pool); 1039 m->tc = tc; 1040 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown; 1041 m->virt_block = block; 1042 m->data_block = lookup_result.block; 1043 m->cell = cell; 1044 m->cell2 = cell2; 1045 m->err = 0; 1046 m->bio = bio; 1047 1048 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { 1049 spin_lock_irqsave(&pool->lock, flags); 1050 list_add(&m->list, &pool->prepared_discards); 1051 spin_unlock_irqrestore(&pool->lock, flags); 1052 wake_worker(pool); 1053 } 1054 } else { 1055 inc_all_io_entry(pool, bio); 1056 cell_defer_no_holder(tc, cell); 1057 cell_defer_no_holder(tc, cell2); 1058 1059 /* 1060 * The DM core makes sure that the discard doesn't span 1061 * a block boundary. So we submit the discard of a 1062 * partial block appropriately. 1063 */ 1064 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1065 remap_and_issue(tc, bio, lookup_result.block); 1066 else 1067 bio_endio(bio, 0); 1068 } 1069 break; 1070 1071 case -ENODATA: 1072 /* 1073 * It isn't provisioned, just forget it. 1074 */ 1075 cell_defer_no_holder(tc, cell); 1076 bio_endio(bio, 0); 1077 break; 1078 1079 default: 1080 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1081 __func__, r); 1082 cell_defer_no_holder(tc, cell); 1083 bio_io_error(bio); 1084 break; 1085 } 1086 } 1087 1088 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1089 struct dm_cell_key *key, 1090 struct dm_thin_lookup_result *lookup_result, 1091 struct dm_bio_prison_cell *cell) 1092 { 1093 int r; 1094 dm_block_t data_block; 1095 struct pool *pool = tc->pool; 1096 1097 r = alloc_data_block(tc, &data_block); 1098 switch (r) { 1099 case 0: 1100 schedule_internal_copy(tc, block, lookup_result->block, 1101 data_block, cell, bio); 1102 break; 1103 1104 case -ENOSPC: 1105 no_space(pool, cell); 1106 break; 1107 1108 default: 1109 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1110 __func__, r); 1111 set_pool_mode(pool, PM_READ_ONLY); 1112 cell_error(pool, cell); 1113 break; 1114 } 1115 } 1116 1117 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1118 dm_block_t block, 1119 struct dm_thin_lookup_result *lookup_result) 1120 { 1121 struct dm_bio_prison_cell *cell; 1122 struct pool *pool = tc->pool; 1123 struct dm_cell_key key; 1124 1125 /* 1126 * If cell is already occupied, then sharing is already in the process 1127 * of being broken so we have nothing further to do here. 1128 */ 1129 build_data_key(tc->td, lookup_result->block, &key); 1130 if (bio_detain(pool, &key, bio, &cell)) 1131 return; 1132 1133 if (bio_data_dir(bio) == WRITE && bio->bi_size) 1134 break_sharing(tc, bio, block, &key, lookup_result, cell); 1135 else { 1136 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1137 1138 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1139 inc_all_io_entry(pool, bio); 1140 cell_defer_no_holder(tc, cell); 1141 1142 remap_and_issue(tc, bio, lookup_result->block); 1143 } 1144 } 1145 1146 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1147 struct dm_bio_prison_cell *cell) 1148 { 1149 int r; 1150 dm_block_t data_block; 1151 struct pool *pool = tc->pool; 1152 1153 /* 1154 * Remap empty bios (flushes) immediately, without provisioning. 1155 */ 1156 if (!bio->bi_size) { 1157 inc_all_io_entry(pool, bio); 1158 cell_defer_no_holder(tc, cell); 1159 1160 remap_and_issue(tc, bio, 0); 1161 return; 1162 } 1163 1164 /* 1165 * Fill read bios with zeroes and complete them immediately. 1166 */ 1167 if (bio_data_dir(bio) == READ) { 1168 zero_fill_bio(bio); 1169 cell_defer_no_holder(tc, cell); 1170 bio_endio(bio, 0); 1171 return; 1172 } 1173 1174 r = alloc_data_block(tc, &data_block); 1175 switch (r) { 1176 case 0: 1177 if (tc->origin_dev) 1178 schedule_external_copy(tc, block, data_block, cell, bio); 1179 else 1180 schedule_zero(tc, block, data_block, cell, bio); 1181 break; 1182 1183 case -ENOSPC: 1184 no_space(pool, cell); 1185 break; 1186 1187 default: 1188 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1189 __func__, r); 1190 set_pool_mode(pool, PM_READ_ONLY); 1191 cell_error(pool, cell); 1192 break; 1193 } 1194 } 1195 1196 static void process_bio(struct thin_c *tc, struct bio *bio) 1197 { 1198 int r; 1199 struct pool *pool = tc->pool; 1200 dm_block_t block = get_bio_block(tc, bio); 1201 struct dm_bio_prison_cell *cell; 1202 struct dm_cell_key key; 1203 struct dm_thin_lookup_result lookup_result; 1204 1205 /* 1206 * If cell is already occupied, then the block is already 1207 * being provisioned so we have nothing further to do here. 1208 */ 1209 build_virtual_key(tc->td, block, &key); 1210 if (bio_detain(pool, &key, bio, &cell)) 1211 return; 1212 1213 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1214 switch (r) { 1215 case 0: 1216 if (lookup_result.shared) { 1217 process_shared_bio(tc, bio, block, &lookup_result); 1218 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */ 1219 } else { 1220 inc_all_io_entry(pool, bio); 1221 cell_defer_no_holder(tc, cell); 1222 1223 remap_and_issue(tc, bio, lookup_result.block); 1224 } 1225 break; 1226 1227 case -ENODATA: 1228 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1229 inc_all_io_entry(pool, bio); 1230 cell_defer_no_holder(tc, cell); 1231 1232 remap_to_origin_and_issue(tc, bio); 1233 } else 1234 provision_block(tc, bio, block, cell); 1235 break; 1236 1237 default: 1238 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1239 __func__, r); 1240 cell_defer_no_holder(tc, cell); 1241 bio_io_error(bio); 1242 break; 1243 } 1244 } 1245 1246 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1247 { 1248 int r; 1249 int rw = bio_data_dir(bio); 1250 dm_block_t block = get_bio_block(tc, bio); 1251 struct dm_thin_lookup_result lookup_result; 1252 1253 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1254 switch (r) { 1255 case 0: 1256 if (lookup_result.shared && (rw == WRITE) && bio->bi_size) 1257 bio_io_error(bio); 1258 else { 1259 inc_all_io_entry(tc->pool, bio); 1260 remap_and_issue(tc, bio, lookup_result.block); 1261 } 1262 break; 1263 1264 case -ENODATA: 1265 if (rw != READ) { 1266 bio_io_error(bio); 1267 break; 1268 } 1269 1270 if (tc->origin_dev) { 1271 inc_all_io_entry(tc->pool, bio); 1272 remap_to_origin_and_issue(tc, bio); 1273 break; 1274 } 1275 1276 zero_fill_bio(bio); 1277 bio_endio(bio, 0); 1278 break; 1279 1280 default: 1281 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1282 __func__, r); 1283 bio_io_error(bio); 1284 break; 1285 } 1286 } 1287 1288 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1289 { 1290 bio_io_error(bio); 1291 } 1292 1293 /* 1294 * FIXME: should we also commit due to size of transaction, measured in 1295 * metadata blocks? 1296 */ 1297 static int need_commit_due_to_time(struct pool *pool) 1298 { 1299 return jiffies < pool->last_commit_jiffies || 1300 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1301 } 1302 1303 static void process_deferred_bios(struct pool *pool) 1304 { 1305 unsigned long flags; 1306 struct bio *bio; 1307 struct bio_list bios; 1308 1309 bio_list_init(&bios); 1310 1311 spin_lock_irqsave(&pool->lock, flags); 1312 bio_list_merge(&bios, &pool->deferred_bios); 1313 bio_list_init(&pool->deferred_bios); 1314 spin_unlock_irqrestore(&pool->lock, flags); 1315 1316 while ((bio = bio_list_pop(&bios))) { 1317 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1318 struct thin_c *tc = h->tc; 1319 1320 /* 1321 * If we've got no free new_mapping structs, and processing 1322 * this bio might require one, we pause until there are some 1323 * prepared mappings to process. 1324 */ 1325 if (ensure_next_mapping(pool)) { 1326 spin_lock_irqsave(&pool->lock, flags); 1327 bio_list_merge(&pool->deferred_bios, &bios); 1328 spin_unlock_irqrestore(&pool->lock, flags); 1329 1330 break; 1331 } 1332 1333 if (bio->bi_rw & REQ_DISCARD) 1334 pool->process_discard(tc, bio); 1335 else 1336 pool->process_bio(tc, bio); 1337 } 1338 1339 /* 1340 * If there are any deferred flush bios, we must commit 1341 * the metadata before issuing them. 1342 */ 1343 bio_list_init(&bios); 1344 spin_lock_irqsave(&pool->lock, flags); 1345 bio_list_merge(&bios, &pool->deferred_flush_bios); 1346 bio_list_init(&pool->deferred_flush_bios); 1347 spin_unlock_irqrestore(&pool->lock, flags); 1348 1349 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool)) 1350 return; 1351 1352 if (commit_or_fallback(pool)) { 1353 while ((bio = bio_list_pop(&bios))) 1354 bio_io_error(bio); 1355 return; 1356 } 1357 pool->last_commit_jiffies = jiffies; 1358 1359 while ((bio = bio_list_pop(&bios))) 1360 generic_make_request(bio); 1361 } 1362 1363 static void do_worker(struct work_struct *ws) 1364 { 1365 struct pool *pool = container_of(ws, struct pool, worker); 1366 1367 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1368 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1369 process_deferred_bios(pool); 1370 } 1371 1372 /* 1373 * We want to commit periodically so that not too much 1374 * unwritten data builds up. 1375 */ 1376 static void do_waker(struct work_struct *ws) 1377 { 1378 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 1379 wake_worker(pool); 1380 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 1381 } 1382 1383 /*----------------------------------------------------------------*/ 1384 1385 static enum pool_mode get_pool_mode(struct pool *pool) 1386 { 1387 return pool->pf.mode; 1388 } 1389 1390 static void set_pool_mode(struct pool *pool, enum pool_mode mode) 1391 { 1392 int r; 1393 1394 pool->pf.mode = mode; 1395 1396 switch (mode) { 1397 case PM_FAIL: 1398 DMERR("%s: switching pool to failure mode", 1399 dm_device_name(pool->pool_md)); 1400 pool->process_bio = process_bio_fail; 1401 pool->process_discard = process_bio_fail; 1402 pool->process_prepared_mapping = process_prepared_mapping_fail; 1403 pool->process_prepared_discard = process_prepared_discard_fail; 1404 break; 1405 1406 case PM_READ_ONLY: 1407 DMERR("%s: switching pool to read-only mode", 1408 dm_device_name(pool->pool_md)); 1409 r = dm_pool_abort_metadata(pool->pmd); 1410 if (r) { 1411 DMERR("%s: aborting transaction failed", 1412 dm_device_name(pool->pool_md)); 1413 set_pool_mode(pool, PM_FAIL); 1414 } else { 1415 dm_pool_metadata_read_only(pool->pmd); 1416 pool->process_bio = process_bio_read_only; 1417 pool->process_discard = process_discard; 1418 pool->process_prepared_mapping = process_prepared_mapping_fail; 1419 pool->process_prepared_discard = process_prepared_discard_passdown; 1420 } 1421 break; 1422 1423 case PM_WRITE: 1424 pool->process_bio = process_bio; 1425 pool->process_discard = process_discard; 1426 pool->process_prepared_mapping = process_prepared_mapping; 1427 pool->process_prepared_discard = process_prepared_discard; 1428 break; 1429 } 1430 } 1431 1432 /*----------------------------------------------------------------*/ 1433 1434 /* 1435 * Mapping functions. 1436 */ 1437 1438 /* 1439 * Called only while mapping a thin bio to hand it over to the workqueue. 1440 */ 1441 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 1442 { 1443 unsigned long flags; 1444 struct pool *pool = tc->pool; 1445 1446 spin_lock_irqsave(&pool->lock, flags); 1447 bio_list_add(&pool->deferred_bios, bio); 1448 spin_unlock_irqrestore(&pool->lock, flags); 1449 1450 wake_worker(pool); 1451 } 1452 1453 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 1454 { 1455 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1456 1457 h->tc = tc; 1458 h->shared_read_entry = NULL; 1459 h->all_io_entry = NULL; 1460 h->overwrite_mapping = NULL; 1461 } 1462 1463 /* 1464 * Non-blocking function called from the thin target's map function. 1465 */ 1466 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 1467 { 1468 int r; 1469 struct thin_c *tc = ti->private; 1470 dm_block_t block = get_bio_block(tc, bio); 1471 struct dm_thin_device *td = tc->td; 1472 struct dm_thin_lookup_result result; 1473 struct dm_bio_prison_cell cell1, cell2; 1474 struct dm_bio_prison_cell *cell_result; 1475 struct dm_cell_key key; 1476 1477 thin_hook_bio(tc, bio); 1478 1479 if (get_pool_mode(tc->pool) == PM_FAIL) { 1480 bio_io_error(bio); 1481 return DM_MAPIO_SUBMITTED; 1482 } 1483 1484 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 1485 thin_defer_bio(tc, bio); 1486 return DM_MAPIO_SUBMITTED; 1487 } 1488 1489 r = dm_thin_find_block(td, block, 0, &result); 1490 1491 /* 1492 * Note that we defer readahead too. 1493 */ 1494 switch (r) { 1495 case 0: 1496 if (unlikely(result.shared)) { 1497 /* 1498 * We have a race condition here between the 1499 * result.shared value returned by the lookup and 1500 * snapshot creation, which may cause new 1501 * sharing. 1502 * 1503 * To avoid this always quiesce the origin before 1504 * taking the snap. You want to do this anyway to 1505 * ensure a consistent application view 1506 * (i.e. lockfs). 1507 * 1508 * More distant ancestors are irrelevant. The 1509 * shared flag will be set in their case. 1510 */ 1511 thin_defer_bio(tc, bio); 1512 return DM_MAPIO_SUBMITTED; 1513 } 1514 1515 build_virtual_key(tc->td, block, &key); 1516 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result)) 1517 return DM_MAPIO_SUBMITTED; 1518 1519 build_data_key(tc->td, result.block, &key); 1520 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) { 1521 cell_defer_no_holder_no_free(tc, &cell1); 1522 return DM_MAPIO_SUBMITTED; 1523 } 1524 1525 inc_all_io_entry(tc->pool, bio); 1526 cell_defer_no_holder_no_free(tc, &cell2); 1527 cell_defer_no_holder_no_free(tc, &cell1); 1528 1529 remap(tc, bio, result.block); 1530 return DM_MAPIO_REMAPPED; 1531 1532 case -ENODATA: 1533 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 1534 /* 1535 * This block isn't provisioned, and we have no way 1536 * of doing so. Just error it. 1537 */ 1538 bio_io_error(bio); 1539 return DM_MAPIO_SUBMITTED; 1540 } 1541 /* fall through */ 1542 1543 case -EWOULDBLOCK: 1544 /* 1545 * In future, the failed dm_thin_find_block above could 1546 * provide the hint to load the metadata into cache. 1547 */ 1548 thin_defer_bio(tc, bio); 1549 return DM_MAPIO_SUBMITTED; 1550 1551 default: 1552 /* 1553 * Must always call bio_io_error on failure. 1554 * dm_thin_find_block can fail with -EINVAL if the 1555 * pool is switched to fail-io mode. 1556 */ 1557 bio_io_error(bio); 1558 return DM_MAPIO_SUBMITTED; 1559 } 1560 } 1561 1562 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 1563 { 1564 int r; 1565 unsigned long flags; 1566 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 1567 1568 spin_lock_irqsave(&pt->pool->lock, flags); 1569 r = !bio_list_empty(&pt->pool->retry_on_resume_list); 1570 spin_unlock_irqrestore(&pt->pool->lock, flags); 1571 1572 if (!r) { 1573 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1574 r = bdi_congested(&q->backing_dev_info, bdi_bits); 1575 } 1576 1577 return r; 1578 } 1579 1580 static void __requeue_bios(struct pool *pool) 1581 { 1582 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); 1583 bio_list_init(&pool->retry_on_resume_list); 1584 } 1585 1586 /*---------------------------------------------------------------- 1587 * Binding of control targets to a pool object 1588 *--------------------------------------------------------------*/ 1589 static bool data_dev_supports_discard(struct pool_c *pt) 1590 { 1591 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1592 1593 return q && blk_queue_discard(q); 1594 } 1595 1596 static bool is_factor(sector_t block_size, uint32_t n) 1597 { 1598 return !sector_div(block_size, n); 1599 } 1600 1601 /* 1602 * If discard_passdown was enabled verify that the data device 1603 * supports discards. Disable discard_passdown if not. 1604 */ 1605 static void disable_passdown_if_not_supported(struct pool_c *pt) 1606 { 1607 struct pool *pool = pt->pool; 1608 struct block_device *data_bdev = pt->data_dev->bdev; 1609 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 1610 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 1611 const char *reason = NULL; 1612 char buf[BDEVNAME_SIZE]; 1613 1614 if (!pt->adjusted_pf.discard_passdown) 1615 return; 1616 1617 if (!data_dev_supports_discard(pt)) 1618 reason = "discard unsupported"; 1619 1620 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 1621 reason = "max discard sectors smaller than a block"; 1622 1623 else if (data_limits->discard_granularity > block_size) 1624 reason = "discard granularity larger than a block"; 1625 1626 else if (!is_factor(block_size, data_limits->discard_granularity)) 1627 reason = "discard granularity not a factor of block size"; 1628 1629 if (reason) { 1630 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 1631 pt->adjusted_pf.discard_passdown = false; 1632 } 1633 } 1634 1635 static int bind_control_target(struct pool *pool, struct dm_target *ti) 1636 { 1637 struct pool_c *pt = ti->private; 1638 1639 /* 1640 * We want to make sure that degraded pools are never upgraded. 1641 */ 1642 enum pool_mode old_mode = pool->pf.mode; 1643 enum pool_mode new_mode = pt->adjusted_pf.mode; 1644 1645 if (old_mode > new_mode) 1646 new_mode = old_mode; 1647 1648 pool->ti = ti; 1649 pool->low_water_blocks = pt->low_water_blocks; 1650 pool->pf = pt->adjusted_pf; 1651 1652 set_pool_mode(pool, new_mode); 1653 1654 return 0; 1655 } 1656 1657 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 1658 { 1659 if (pool->ti == ti) 1660 pool->ti = NULL; 1661 } 1662 1663 /*---------------------------------------------------------------- 1664 * Pool creation 1665 *--------------------------------------------------------------*/ 1666 /* Initialize pool features. */ 1667 static void pool_features_init(struct pool_features *pf) 1668 { 1669 pf->mode = PM_WRITE; 1670 pf->zero_new_blocks = true; 1671 pf->discard_enabled = true; 1672 pf->discard_passdown = true; 1673 } 1674 1675 static void __pool_destroy(struct pool *pool) 1676 { 1677 __pool_table_remove(pool); 1678 1679 if (dm_pool_metadata_close(pool->pmd) < 0) 1680 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1681 1682 dm_bio_prison_destroy(pool->prison); 1683 dm_kcopyd_client_destroy(pool->copier); 1684 1685 if (pool->wq) 1686 destroy_workqueue(pool->wq); 1687 1688 if (pool->next_mapping) 1689 mempool_free(pool->next_mapping, pool->mapping_pool); 1690 mempool_destroy(pool->mapping_pool); 1691 dm_deferred_set_destroy(pool->shared_read_ds); 1692 dm_deferred_set_destroy(pool->all_io_ds); 1693 kfree(pool); 1694 } 1695 1696 static struct kmem_cache *_new_mapping_cache; 1697 1698 static struct pool *pool_create(struct mapped_device *pool_md, 1699 struct block_device *metadata_dev, 1700 unsigned long block_size, 1701 int read_only, char **error) 1702 { 1703 int r; 1704 void *err_p; 1705 struct pool *pool; 1706 struct dm_pool_metadata *pmd; 1707 bool format_device = read_only ? false : true; 1708 1709 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 1710 if (IS_ERR(pmd)) { 1711 *error = "Error creating metadata object"; 1712 return (struct pool *)pmd; 1713 } 1714 1715 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 1716 if (!pool) { 1717 *error = "Error allocating memory for pool"; 1718 err_p = ERR_PTR(-ENOMEM); 1719 goto bad_pool; 1720 } 1721 1722 pool->pmd = pmd; 1723 pool->sectors_per_block = block_size; 1724 if (block_size & (block_size - 1)) 1725 pool->sectors_per_block_shift = -1; 1726 else 1727 pool->sectors_per_block_shift = __ffs(block_size); 1728 pool->low_water_blocks = 0; 1729 pool_features_init(&pool->pf); 1730 pool->prison = dm_bio_prison_create(PRISON_CELLS); 1731 if (!pool->prison) { 1732 *error = "Error creating pool's bio prison"; 1733 err_p = ERR_PTR(-ENOMEM); 1734 goto bad_prison; 1735 } 1736 1737 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 1738 if (IS_ERR(pool->copier)) { 1739 r = PTR_ERR(pool->copier); 1740 *error = "Error creating pool's kcopyd client"; 1741 err_p = ERR_PTR(r); 1742 goto bad_kcopyd_client; 1743 } 1744 1745 /* 1746 * Create singlethreaded workqueue that will service all devices 1747 * that use this metadata. 1748 */ 1749 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 1750 if (!pool->wq) { 1751 *error = "Error creating pool's workqueue"; 1752 err_p = ERR_PTR(-ENOMEM); 1753 goto bad_wq; 1754 } 1755 1756 INIT_WORK(&pool->worker, do_worker); 1757 INIT_DELAYED_WORK(&pool->waker, do_waker); 1758 spin_lock_init(&pool->lock); 1759 bio_list_init(&pool->deferred_bios); 1760 bio_list_init(&pool->deferred_flush_bios); 1761 INIT_LIST_HEAD(&pool->prepared_mappings); 1762 INIT_LIST_HEAD(&pool->prepared_discards); 1763 pool->low_water_triggered = 0; 1764 pool->no_free_space = 0; 1765 bio_list_init(&pool->retry_on_resume_list); 1766 1767 pool->shared_read_ds = dm_deferred_set_create(); 1768 if (!pool->shared_read_ds) { 1769 *error = "Error creating pool's shared read deferred set"; 1770 err_p = ERR_PTR(-ENOMEM); 1771 goto bad_shared_read_ds; 1772 } 1773 1774 pool->all_io_ds = dm_deferred_set_create(); 1775 if (!pool->all_io_ds) { 1776 *error = "Error creating pool's all io deferred set"; 1777 err_p = ERR_PTR(-ENOMEM); 1778 goto bad_all_io_ds; 1779 } 1780 1781 pool->next_mapping = NULL; 1782 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 1783 _new_mapping_cache); 1784 if (!pool->mapping_pool) { 1785 *error = "Error creating pool's mapping mempool"; 1786 err_p = ERR_PTR(-ENOMEM); 1787 goto bad_mapping_pool; 1788 } 1789 1790 pool->ref_count = 1; 1791 pool->last_commit_jiffies = jiffies; 1792 pool->pool_md = pool_md; 1793 pool->md_dev = metadata_dev; 1794 __pool_table_insert(pool); 1795 1796 return pool; 1797 1798 bad_mapping_pool: 1799 dm_deferred_set_destroy(pool->all_io_ds); 1800 bad_all_io_ds: 1801 dm_deferred_set_destroy(pool->shared_read_ds); 1802 bad_shared_read_ds: 1803 destroy_workqueue(pool->wq); 1804 bad_wq: 1805 dm_kcopyd_client_destroy(pool->copier); 1806 bad_kcopyd_client: 1807 dm_bio_prison_destroy(pool->prison); 1808 bad_prison: 1809 kfree(pool); 1810 bad_pool: 1811 if (dm_pool_metadata_close(pmd)) 1812 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1813 1814 return err_p; 1815 } 1816 1817 static void __pool_inc(struct pool *pool) 1818 { 1819 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 1820 pool->ref_count++; 1821 } 1822 1823 static void __pool_dec(struct pool *pool) 1824 { 1825 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 1826 BUG_ON(!pool->ref_count); 1827 if (!--pool->ref_count) 1828 __pool_destroy(pool); 1829 } 1830 1831 static struct pool *__pool_find(struct mapped_device *pool_md, 1832 struct block_device *metadata_dev, 1833 unsigned long block_size, int read_only, 1834 char **error, int *created) 1835 { 1836 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 1837 1838 if (pool) { 1839 if (pool->pool_md != pool_md) { 1840 *error = "metadata device already in use by a pool"; 1841 return ERR_PTR(-EBUSY); 1842 } 1843 __pool_inc(pool); 1844 1845 } else { 1846 pool = __pool_table_lookup(pool_md); 1847 if (pool) { 1848 if (pool->md_dev != metadata_dev) { 1849 *error = "different pool cannot replace a pool"; 1850 return ERR_PTR(-EINVAL); 1851 } 1852 __pool_inc(pool); 1853 1854 } else { 1855 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 1856 *created = 1; 1857 } 1858 } 1859 1860 return pool; 1861 } 1862 1863 /*---------------------------------------------------------------- 1864 * Pool target methods 1865 *--------------------------------------------------------------*/ 1866 static void pool_dtr(struct dm_target *ti) 1867 { 1868 struct pool_c *pt = ti->private; 1869 1870 mutex_lock(&dm_thin_pool_table.mutex); 1871 1872 unbind_control_target(pt->pool, ti); 1873 __pool_dec(pt->pool); 1874 dm_put_device(ti, pt->metadata_dev); 1875 dm_put_device(ti, pt->data_dev); 1876 kfree(pt); 1877 1878 mutex_unlock(&dm_thin_pool_table.mutex); 1879 } 1880 1881 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 1882 struct dm_target *ti) 1883 { 1884 int r; 1885 unsigned argc; 1886 const char *arg_name; 1887 1888 static struct dm_arg _args[] = { 1889 {0, 3, "Invalid number of pool feature arguments"}, 1890 }; 1891 1892 /* 1893 * No feature arguments supplied. 1894 */ 1895 if (!as->argc) 1896 return 0; 1897 1898 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1899 if (r) 1900 return -EINVAL; 1901 1902 while (argc && !r) { 1903 arg_name = dm_shift_arg(as); 1904 argc--; 1905 1906 if (!strcasecmp(arg_name, "skip_block_zeroing")) 1907 pf->zero_new_blocks = false; 1908 1909 else if (!strcasecmp(arg_name, "ignore_discard")) 1910 pf->discard_enabled = false; 1911 1912 else if (!strcasecmp(arg_name, "no_discard_passdown")) 1913 pf->discard_passdown = false; 1914 1915 else if (!strcasecmp(arg_name, "read_only")) 1916 pf->mode = PM_READ_ONLY; 1917 1918 else { 1919 ti->error = "Unrecognised pool feature requested"; 1920 r = -EINVAL; 1921 break; 1922 } 1923 } 1924 1925 return r; 1926 } 1927 1928 static void metadata_low_callback(void *context) 1929 { 1930 struct pool *pool = context; 1931 1932 DMWARN("%s: reached low water mark for metadata device: sending event.", 1933 dm_device_name(pool->pool_md)); 1934 1935 dm_table_event(pool->ti->table); 1936 } 1937 1938 static sector_t get_metadata_dev_size(struct block_device *bdev) 1939 { 1940 sector_t metadata_dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 1941 char buffer[BDEVNAME_SIZE]; 1942 1943 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) { 1944 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 1945 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 1946 metadata_dev_size = THIN_METADATA_MAX_SECTORS_WARNING; 1947 } 1948 1949 return metadata_dev_size; 1950 } 1951 1952 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 1953 { 1954 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 1955 1956 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT); 1957 1958 return metadata_dev_size; 1959 } 1960 1961 /* 1962 * When a metadata threshold is crossed a dm event is triggered, and 1963 * userland should respond by growing the metadata device. We could let 1964 * userland set the threshold, like we do with the data threshold, but I'm 1965 * not sure they know enough to do this well. 1966 */ 1967 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 1968 { 1969 /* 1970 * 4M is ample for all ops with the possible exception of thin 1971 * device deletion which is harmless if it fails (just retry the 1972 * delete after you've grown the device). 1973 */ 1974 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 1975 return min((dm_block_t)1024ULL /* 4M */, quarter); 1976 } 1977 1978 /* 1979 * thin-pool <metadata dev> <data dev> 1980 * <data block size (sectors)> 1981 * <low water mark (blocks)> 1982 * [<#feature args> [<arg>]*] 1983 * 1984 * Optional feature arguments are: 1985 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 1986 * ignore_discard: disable discard 1987 * no_discard_passdown: don't pass discards down to the data device 1988 */ 1989 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 1990 { 1991 int r, pool_created = 0; 1992 struct pool_c *pt; 1993 struct pool *pool; 1994 struct pool_features pf; 1995 struct dm_arg_set as; 1996 struct dm_dev *data_dev; 1997 unsigned long block_size; 1998 dm_block_t low_water_blocks; 1999 struct dm_dev *metadata_dev; 2000 fmode_t metadata_mode; 2001 2002 /* 2003 * FIXME Remove validation from scope of lock. 2004 */ 2005 mutex_lock(&dm_thin_pool_table.mutex); 2006 2007 if (argc < 4) { 2008 ti->error = "Invalid argument count"; 2009 r = -EINVAL; 2010 goto out_unlock; 2011 } 2012 2013 as.argc = argc; 2014 as.argv = argv; 2015 2016 /* 2017 * Set default pool features. 2018 */ 2019 pool_features_init(&pf); 2020 2021 dm_consume_args(&as, 4); 2022 r = parse_pool_features(&as, &pf, ti); 2023 if (r) 2024 goto out_unlock; 2025 2026 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 2027 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 2028 if (r) { 2029 ti->error = "Error opening metadata block device"; 2030 goto out_unlock; 2031 } 2032 2033 /* 2034 * Run for the side-effect of possibly issuing a warning if the 2035 * device is too big. 2036 */ 2037 (void) get_metadata_dev_size(metadata_dev->bdev); 2038 2039 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 2040 if (r) { 2041 ti->error = "Error getting data device"; 2042 goto out_metadata; 2043 } 2044 2045 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 2046 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2047 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2048 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2049 ti->error = "Invalid block size"; 2050 r = -EINVAL; 2051 goto out; 2052 } 2053 2054 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 2055 ti->error = "Invalid low water mark"; 2056 r = -EINVAL; 2057 goto out; 2058 } 2059 2060 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 2061 if (!pt) { 2062 r = -ENOMEM; 2063 goto out; 2064 } 2065 2066 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 2067 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2068 if (IS_ERR(pool)) { 2069 r = PTR_ERR(pool); 2070 goto out_free_pt; 2071 } 2072 2073 /* 2074 * 'pool_created' reflects whether this is the first table load. 2075 * Top level discard support is not allowed to be changed after 2076 * initial load. This would require a pool reload to trigger thin 2077 * device changes. 2078 */ 2079 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2080 ti->error = "Discard support cannot be disabled once enabled"; 2081 r = -EINVAL; 2082 goto out_flags_changed; 2083 } 2084 2085 pt->pool = pool; 2086 pt->ti = ti; 2087 pt->metadata_dev = metadata_dev; 2088 pt->data_dev = data_dev; 2089 pt->low_water_blocks = low_water_blocks; 2090 pt->adjusted_pf = pt->requested_pf = pf; 2091 ti->num_flush_bios = 1; 2092 2093 /* 2094 * Only need to enable discards if the pool should pass 2095 * them down to the data device. The thin device's discard 2096 * processing will cause mappings to be removed from the btree. 2097 */ 2098 ti->discard_zeroes_data_unsupported = true; 2099 if (pf.discard_enabled && pf.discard_passdown) { 2100 ti->num_discard_bios = 1; 2101 2102 /* 2103 * Setting 'discards_supported' circumvents the normal 2104 * stacking of discard limits (this keeps the pool and 2105 * thin devices' discard limits consistent). 2106 */ 2107 ti->discards_supported = true; 2108 } 2109 ti->private = pt; 2110 2111 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 2112 calc_metadata_threshold(pt), 2113 metadata_low_callback, 2114 pool); 2115 if (r) 2116 goto out_free_pt; 2117 2118 pt->callbacks.congested_fn = pool_is_congested; 2119 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2120 2121 mutex_unlock(&dm_thin_pool_table.mutex); 2122 2123 return 0; 2124 2125 out_flags_changed: 2126 __pool_dec(pool); 2127 out_free_pt: 2128 kfree(pt); 2129 out: 2130 dm_put_device(ti, data_dev); 2131 out_metadata: 2132 dm_put_device(ti, metadata_dev); 2133 out_unlock: 2134 mutex_unlock(&dm_thin_pool_table.mutex); 2135 2136 return r; 2137 } 2138 2139 static int pool_map(struct dm_target *ti, struct bio *bio) 2140 { 2141 int r; 2142 struct pool_c *pt = ti->private; 2143 struct pool *pool = pt->pool; 2144 unsigned long flags; 2145 2146 /* 2147 * As this is a singleton target, ti->begin is always zero. 2148 */ 2149 spin_lock_irqsave(&pool->lock, flags); 2150 bio->bi_bdev = pt->data_dev->bdev; 2151 r = DM_MAPIO_REMAPPED; 2152 spin_unlock_irqrestore(&pool->lock, flags); 2153 2154 return r; 2155 } 2156 2157 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 2158 { 2159 int r; 2160 struct pool_c *pt = ti->private; 2161 struct pool *pool = pt->pool; 2162 sector_t data_size = ti->len; 2163 dm_block_t sb_data_size; 2164 2165 *need_commit = false; 2166 2167 (void) sector_div(data_size, pool->sectors_per_block); 2168 2169 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 2170 if (r) { 2171 DMERR("%s: failed to retrieve data device size", 2172 dm_device_name(pool->pool_md)); 2173 return r; 2174 } 2175 2176 if (data_size < sb_data_size) { 2177 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 2178 dm_device_name(pool->pool_md), 2179 (unsigned long long)data_size, sb_data_size); 2180 return -EINVAL; 2181 2182 } else if (data_size > sb_data_size) { 2183 r = dm_pool_resize_data_dev(pool->pmd, data_size); 2184 if (r) { 2185 DMERR("%s: failed to resize data device", 2186 dm_device_name(pool->pool_md)); 2187 set_pool_mode(pool, PM_READ_ONLY); 2188 return r; 2189 } 2190 2191 *need_commit = true; 2192 } 2193 2194 return 0; 2195 } 2196 2197 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 2198 { 2199 int r; 2200 struct pool_c *pt = ti->private; 2201 struct pool *pool = pt->pool; 2202 dm_block_t metadata_dev_size, sb_metadata_dev_size; 2203 2204 *need_commit = false; 2205 2206 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 2207 2208 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 2209 if (r) { 2210 DMERR("%s: failed to retrieve metadata device size", 2211 dm_device_name(pool->pool_md)); 2212 return r; 2213 } 2214 2215 if (metadata_dev_size < sb_metadata_dev_size) { 2216 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 2217 dm_device_name(pool->pool_md), 2218 metadata_dev_size, sb_metadata_dev_size); 2219 return -EINVAL; 2220 2221 } else if (metadata_dev_size > sb_metadata_dev_size) { 2222 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 2223 if (r) { 2224 DMERR("%s: failed to resize metadata device", 2225 dm_device_name(pool->pool_md)); 2226 return r; 2227 } 2228 2229 *need_commit = true; 2230 } 2231 2232 return 0; 2233 } 2234 2235 /* 2236 * Retrieves the number of blocks of the data device from 2237 * the superblock and compares it to the actual device size, 2238 * thus resizing the data device in case it has grown. 2239 * 2240 * This both copes with opening preallocated data devices in the ctr 2241 * being followed by a resume 2242 * -and- 2243 * calling the resume method individually after userspace has 2244 * grown the data device in reaction to a table event. 2245 */ 2246 static int pool_preresume(struct dm_target *ti) 2247 { 2248 int r; 2249 bool need_commit1, need_commit2; 2250 struct pool_c *pt = ti->private; 2251 struct pool *pool = pt->pool; 2252 2253 /* 2254 * Take control of the pool object. 2255 */ 2256 r = bind_control_target(pool, ti); 2257 if (r) 2258 return r; 2259 2260 r = maybe_resize_data_dev(ti, &need_commit1); 2261 if (r) 2262 return r; 2263 2264 r = maybe_resize_metadata_dev(ti, &need_commit2); 2265 if (r) 2266 return r; 2267 2268 if (need_commit1 || need_commit2) 2269 (void) commit_or_fallback(pool); 2270 2271 return 0; 2272 } 2273 2274 static void pool_resume(struct dm_target *ti) 2275 { 2276 struct pool_c *pt = ti->private; 2277 struct pool *pool = pt->pool; 2278 unsigned long flags; 2279 2280 spin_lock_irqsave(&pool->lock, flags); 2281 pool->low_water_triggered = 0; 2282 pool->no_free_space = 0; 2283 __requeue_bios(pool); 2284 spin_unlock_irqrestore(&pool->lock, flags); 2285 2286 do_waker(&pool->waker.work); 2287 } 2288 2289 static void pool_postsuspend(struct dm_target *ti) 2290 { 2291 struct pool_c *pt = ti->private; 2292 struct pool *pool = pt->pool; 2293 2294 cancel_delayed_work(&pool->waker); 2295 flush_workqueue(pool->wq); 2296 (void) commit_or_fallback(pool); 2297 } 2298 2299 static int check_arg_count(unsigned argc, unsigned args_required) 2300 { 2301 if (argc != args_required) { 2302 DMWARN("Message received with %u arguments instead of %u.", 2303 argc, args_required); 2304 return -EINVAL; 2305 } 2306 2307 return 0; 2308 } 2309 2310 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 2311 { 2312 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 2313 *dev_id <= MAX_DEV_ID) 2314 return 0; 2315 2316 if (warning) 2317 DMWARN("Message received with invalid device id: %s", arg); 2318 2319 return -EINVAL; 2320 } 2321 2322 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 2323 { 2324 dm_thin_id dev_id; 2325 int r; 2326 2327 r = check_arg_count(argc, 2); 2328 if (r) 2329 return r; 2330 2331 r = read_dev_id(argv[1], &dev_id, 1); 2332 if (r) 2333 return r; 2334 2335 r = dm_pool_create_thin(pool->pmd, dev_id); 2336 if (r) { 2337 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 2338 argv[1]); 2339 return r; 2340 } 2341 2342 return 0; 2343 } 2344 2345 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2346 { 2347 dm_thin_id dev_id; 2348 dm_thin_id origin_dev_id; 2349 int r; 2350 2351 r = check_arg_count(argc, 3); 2352 if (r) 2353 return r; 2354 2355 r = read_dev_id(argv[1], &dev_id, 1); 2356 if (r) 2357 return r; 2358 2359 r = read_dev_id(argv[2], &origin_dev_id, 1); 2360 if (r) 2361 return r; 2362 2363 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 2364 if (r) { 2365 DMWARN("Creation of new snapshot %s of device %s failed.", 2366 argv[1], argv[2]); 2367 return r; 2368 } 2369 2370 return 0; 2371 } 2372 2373 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 2374 { 2375 dm_thin_id dev_id; 2376 int r; 2377 2378 r = check_arg_count(argc, 2); 2379 if (r) 2380 return r; 2381 2382 r = read_dev_id(argv[1], &dev_id, 1); 2383 if (r) 2384 return r; 2385 2386 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 2387 if (r) 2388 DMWARN("Deletion of thin device %s failed.", argv[1]); 2389 2390 return r; 2391 } 2392 2393 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 2394 { 2395 dm_thin_id old_id, new_id; 2396 int r; 2397 2398 r = check_arg_count(argc, 3); 2399 if (r) 2400 return r; 2401 2402 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 2403 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 2404 return -EINVAL; 2405 } 2406 2407 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 2408 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 2409 return -EINVAL; 2410 } 2411 2412 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 2413 if (r) { 2414 DMWARN("Failed to change transaction id from %s to %s.", 2415 argv[1], argv[2]); 2416 return r; 2417 } 2418 2419 return 0; 2420 } 2421 2422 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2423 { 2424 int r; 2425 2426 r = check_arg_count(argc, 1); 2427 if (r) 2428 return r; 2429 2430 (void) commit_or_fallback(pool); 2431 2432 r = dm_pool_reserve_metadata_snap(pool->pmd); 2433 if (r) 2434 DMWARN("reserve_metadata_snap message failed."); 2435 2436 return r; 2437 } 2438 2439 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2440 { 2441 int r; 2442 2443 r = check_arg_count(argc, 1); 2444 if (r) 2445 return r; 2446 2447 r = dm_pool_release_metadata_snap(pool->pmd); 2448 if (r) 2449 DMWARN("release_metadata_snap message failed."); 2450 2451 return r; 2452 } 2453 2454 /* 2455 * Messages supported: 2456 * create_thin <dev_id> 2457 * create_snap <dev_id> <origin_id> 2458 * delete <dev_id> 2459 * trim <dev_id> <new_size_in_sectors> 2460 * set_transaction_id <current_trans_id> <new_trans_id> 2461 * reserve_metadata_snap 2462 * release_metadata_snap 2463 */ 2464 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 2465 { 2466 int r = -EINVAL; 2467 struct pool_c *pt = ti->private; 2468 struct pool *pool = pt->pool; 2469 2470 if (!strcasecmp(argv[0], "create_thin")) 2471 r = process_create_thin_mesg(argc, argv, pool); 2472 2473 else if (!strcasecmp(argv[0], "create_snap")) 2474 r = process_create_snap_mesg(argc, argv, pool); 2475 2476 else if (!strcasecmp(argv[0], "delete")) 2477 r = process_delete_mesg(argc, argv, pool); 2478 2479 else if (!strcasecmp(argv[0], "set_transaction_id")) 2480 r = process_set_transaction_id_mesg(argc, argv, pool); 2481 2482 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 2483 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 2484 2485 else if (!strcasecmp(argv[0], "release_metadata_snap")) 2486 r = process_release_metadata_snap_mesg(argc, argv, pool); 2487 2488 else 2489 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 2490 2491 if (!r) 2492 (void) commit_or_fallback(pool); 2493 2494 return r; 2495 } 2496 2497 static void emit_flags(struct pool_features *pf, char *result, 2498 unsigned sz, unsigned maxlen) 2499 { 2500 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 2501 !pf->discard_passdown + (pf->mode == PM_READ_ONLY); 2502 DMEMIT("%u ", count); 2503 2504 if (!pf->zero_new_blocks) 2505 DMEMIT("skip_block_zeroing "); 2506 2507 if (!pf->discard_enabled) 2508 DMEMIT("ignore_discard "); 2509 2510 if (!pf->discard_passdown) 2511 DMEMIT("no_discard_passdown "); 2512 2513 if (pf->mode == PM_READ_ONLY) 2514 DMEMIT("read_only "); 2515 } 2516 2517 /* 2518 * Status line is: 2519 * <transaction id> <used metadata sectors>/<total metadata sectors> 2520 * <used data sectors>/<total data sectors> <held metadata root> 2521 */ 2522 static void pool_status(struct dm_target *ti, status_type_t type, 2523 unsigned status_flags, char *result, unsigned maxlen) 2524 { 2525 int r; 2526 unsigned sz = 0; 2527 uint64_t transaction_id; 2528 dm_block_t nr_free_blocks_data; 2529 dm_block_t nr_free_blocks_metadata; 2530 dm_block_t nr_blocks_data; 2531 dm_block_t nr_blocks_metadata; 2532 dm_block_t held_root; 2533 char buf[BDEVNAME_SIZE]; 2534 char buf2[BDEVNAME_SIZE]; 2535 struct pool_c *pt = ti->private; 2536 struct pool *pool = pt->pool; 2537 2538 switch (type) { 2539 case STATUSTYPE_INFO: 2540 if (get_pool_mode(pool) == PM_FAIL) { 2541 DMEMIT("Fail"); 2542 break; 2543 } 2544 2545 /* Commit to ensure statistics aren't out-of-date */ 2546 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 2547 (void) commit_or_fallback(pool); 2548 2549 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 2550 if (r) { 2551 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 2552 dm_device_name(pool->pool_md), r); 2553 goto err; 2554 } 2555 2556 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 2557 if (r) { 2558 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 2559 dm_device_name(pool->pool_md), r); 2560 goto err; 2561 } 2562 2563 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 2564 if (r) { 2565 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 2566 dm_device_name(pool->pool_md), r); 2567 goto err; 2568 } 2569 2570 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 2571 if (r) { 2572 DMERR("%s: dm_pool_get_free_block_count returned %d", 2573 dm_device_name(pool->pool_md), r); 2574 goto err; 2575 } 2576 2577 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 2578 if (r) { 2579 DMERR("%s: dm_pool_get_data_dev_size returned %d", 2580 dm_device_name(pool->pool_md), r); 2581 goto err; 2582 } 2583 2584 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 2585 if (r) { 2586 DMERR("%s: dm_pool_get_metadata_snap returned %d", 2587 dm_device_name(pool->pool_md), r); 2588 goto err; 2589 } 2590 2591 DMEMIT("%llu %llu/%llu %llu/%llu ", 2592 (unsigned long long)transaction_id, 2593 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 2594 (unsigned long long)nr_blocks_metadata, 2595 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 2596 (unsigned long long)nr_blocks_data); 2597 2598 if (held_root) 2599 DMEMIT("%llu ", held_root); 2600 else 2601 DMEMIT("- "); 2602 2603 if (pool->pf.mode == PM_READ_ONLY) 2604 DMEMIT("ro "); 2605 else 2606 DMEMIT("rw "); 2607 2608 if (!pool->pf.discard_enabled) 2609 DMEMIT("ignore_discard"); 2610 else if (pool->pf.discard_passdown) 2611 DMEMIT("discard_passdown"); 2612 else 2613 DMEMIT("no_discard_passdown"); 2614 2615 break; 2616 2617 case STATUSTYPE_TABLE: 2618 DMEMIT("%s %s %lu %llu ", 2619 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 2620 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 2621 (unsigned long)pool->sectors_per_block, 2622 (unsigned long long)pt->low_water_blocks); 2623 emit_flags(&pt->requested_pf, result, sz, maxlen); 2624 break; 2625 } 2626 return; 2627 2628 err: 2629 DMEMIT("Error"); 2630 } 2631 2632 static int pool_iterate_devices(struct dm_target *ti, 2633 iterate_devices_callout_fn fn, void *data) 2634 { 2635 struct pool_c *pt = ti->private; 2636 2637 return fn(ti, pt->data_dev, 0, ti->len, data); 2638 } 2639 2640 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 2641 struct bio_vec *biovec, int max_size) 2642 { 2643 struct pool_c *pt = ti->private; 2644 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2645 2646 if (!q->merge_bvec_fn) 2647 return max_size; 2648 2649 bvm->bi_bdev = pt->data_dev->bdev; 2650 2651 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 2652 } 2653 2654 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 2655 { 2656 struct pool *pool = pt->pool; 2657 struct queue_limits *data_limits; 2658 2659 limits->max_discard_sectors = pool->sectors_per_block; 2660 2661 /* 2662 * discard_granularity is just a hint, and not enforced. 2663 */ 2664 if (pt->adjusted_pf.discard_passdown) { 2665 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 2666 limits->discard_granularity = data_limits->discard_granularity; 2667 } else 2668 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 2669 } 2670 2671 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 2672 { 2673 struct pool_c *pt = ti->private; 2674 struct pool *pool = pt->pool; 2675 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 2676 2677 /* 2678 * If the system-determined stacked limits are compatible with the 2679 * pool's blocksize (io_opt is a factor) do not override them. 2680 */ 2681 if (io_opt_sectors < pool->sectors_per_block || 2682 do_div(io_opt_sectors, pool->sectors_per_block)) { 2683 blk_limits_io_min(limits, 0); 2684 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 2685 } 2686 2687 /* 2688 * pt->adjusted_pf is a staging area for the actual features to use. 2689 * They get transferred to the live pool in bind_control_target() 2690 * called from pool_preresume(). 2691 */ 2692 if (!pt->adjusted_pf.discard_enabled) { 2693 /* 2694 * Must explicitly disallow stacking discard limits otherwise the 2695 * block layer will stack them if pool's data device has support. 2696 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 2697 * user to see that, so make sure to set all discard limits to 0. 2698 */ 2699 limits->discard_granularity = 0; 2700 return; 2701 } 2702 2703 disable_passdown_if_not_supported(pt); 2704 2705 set_discard_limits(pt, limits); 2706 } 2707 2708 static struct target_type pool_target = { 2709 .name = "thin-pool", 2710 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 2711 DM_TARGET_IMMUTABLE, 2712 .version = {1, 9, 0}, 2713 .module = THIS_MODULE, 2714 .ctr = pool_ctr, 2715 .dtr = pool_dtr, 2716 .map = pool_map, 2717 .postsuspend = pool_postsuspend, 2718 .preresume = pool_preresume, 2719 .resume = pool_resume, 2720 .message = pool_message, 2721 .status = pool_status, 2722 .merge = pool_merge, 2723 .iterate_devices = pool_iterate_devices, 2724 .io_hints = pool_io_hints, 2725 }; 2726 2727 /*---------------------------------------------------------------- 2728 * Thin target methods 2729 *--------------------------------------------------------------*/ 2730 static void thin_dtr(struct dm_target *ti) 2731 { 2732 struct thin_c *tc = ti->private; 2733 2734 mutex_lock(&dm_thin_pool_table.mutex); 2735 2736 __pool_dec(tc->pool); 2737 dm_pool_close_thin_device(tc->td); 2738 dm_put_device(ti, tc->pool_dev); 2739 if (tc->origin_dev) 2740 dm_put_device(ti, tc->origin_dev); 2741 kfree(tc); 2742 2743 mutex_unlock(&dm_thin_pool_table.mutex); 2744 } 2745 2746 /* 2747 * Thin target parameters: 2748 * 2749 * <pool_dev> <dev_id> [origin_dev] 2750 * 2751 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 2752 * dev_id: the internal device identifier 2753 * origin_dev: a device external to the pool that should act as the origin 2754 * 2755 * If the pool device has discards disabled, they get disabled for the thin 2756 * device as well. 2757 */ 2758 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 2759 { 2760 int r; 2761 struct thin_c *tc; 2762 struct dm_dev *pool_dev, *origin_dev; 2763 struct mapped_device *pool_md; 2764 2765 mutex_lock(&dm_thin_pool_table.mutex); 2766 2767 if (argc != 2 && argc != 3) { 2768 ti->error = "Invalid argument count"; 2769 r = -EINVAL; 2770 goto out_unlock; 2771 } 2772 2773 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 2774 if (!tc) { 2775 ti->error = "Out of memory"; 2776 r = -ENOMEM; 2777 goto out_unlock; 2778 } 2779 2780 if (argc == 3) { 2781 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 2782 if (r) { 2783 ti->error = "Error opening origin device"; 2784 goto bad_origin_dev; 2785 } 2786 tc->origin_dev = origin_dev; 2787 } 2788 2789 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 2790 if (r) { 2791 ti->error = "Error opening pool device"; 2792 goto bad_pool_dev; 2793 } 2794 tc->pool_dev = pool_dev; 2795 2796 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 2797 ti->error = "Invalid device id"; 2798 r = -EINVAL; 2799 goto bad_common; 2800 } 2801 2802 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 2803 if (!pool_md) { 2804 ti->error = "Couldn't get pool mapped device"; 2805 r = -EINVAL; 2806 goto bad_common; 2807 } 2808 2809 tc->pool = __pool_table_lookup(pool_md); 2810 if (!tc->pool) { 2811 ti->error = "Couldn't find pool object"; 2812 r = -EINVAL; 2813 goto bad_pool_lookup; 2814 } 2815 __pool_inc(tc->pool); 2816 2817 if (get_pool_mode(tc->pool) == PM_FAIL) { 2818 ti->error = "Couldn't open thin device, Pool is in fail mode"; 2819 goto bad_thin_open; 2820 } 2821 2822 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 2823 if (r) { 2824 ti->error = "Couldn't open thin internal device"; 2825 goto bad_thin_open; 2826 } 2827 2828 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 2829 if (r) 2830 goto bad_thin_open; 2831 2832 ti->num_flush_bios = 1; 2833 ti->flush_supported = true; 2834 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 2835 2836 /* In case the pool supports discards, pass them on. */ 2837 ti->discard_zeroes_data_unsupported = true; 2838 if (tc->pool->pf.discard_enabled) { 2839 ti->discards_supported = true; 2840 ti->num_discard_bios = 1; 2841 /* Discard bios must be split on a block boundary */ 2842 ti->split_discard_bios = true; 2843 } 2844 2845 dm_put(pool_md); 2846 2847 mutex_unlock(&dm_thin_pool_table.mutex); 2848 2849 return 0; 2850 2851 bad_thin_open: 2852 __pool_dec(tc->pool); 2853 bad_pool_lookup: 2854 dm_put(pool_md); 2855 bad_common: 2856 dm_put_device(ti, tc->pool_dev); 2857 bad_pool_dev: 2858 if (tc->origin_dev) 2859 dm_put_device(ti, tc->origin_dev); 2860 bad_origin_dev: 2861 kfree(tc); 2862 out_unlock: 2863 mutex_unlock(&dm_thin_pool_table.mutex); 2864 2865 return r; 2866 } 2867 2868 static int thin_map(struct dm_target *ti, struct bio *bio) 2869 { 2870 bio->bi_sector = dm_target_offset(ti, bio->bi_sector); 2871 2872 return thin_bio_map(ti, bio); 2873 } 2874 2875 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 2876 { 2877 unsigned long flags; 2878 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2879 struct list_head work; 2880 struct dm_thin_new_mapping *m, *tmp; 2881 struct pool *pool = h->tc->pool; 2882 2883 if (h->shared_read_entry) { 2884 INIT_LIST_HEAD(&work); 2885 dm_deferred_entry_dec(h->shared_read_entry, &work); 2886 2887 spin_lock_irqsave(&pool->lock, flags); 2888 list_for_each_entry_safe(m, tmp, &work, list) { 2889 list_del(&m->list); 2890 m->quiesced = 1; 2891 __maybe_add_mapping(m); 2892 } 2893 spin_unlock_irqrestore(&pool->lock, flags); 2894 } 2895 2896 if (h->all_io_entry) { 2897 INIT_LIST_HEAD(&work); 2898 dm_deferred_entry_dec(h->all_io_entry, &work); 2899 if (!list_empty(&work)) { 2900 spin_lock_irqsave(&pool->lock, flags); 2901 list_for_each_entry_safe(m, tmp, &work, list) 2902 list_add(&m->list, &pool->prepared_discards); 2903 spin_unlock_irqrestore(&pool->lock, flags); 2904 wake_worker(pool); 2905 } 2906 } 2907 2908 return 0; 2909 } 2910 2911 static void thin_postsuspend(struct dm_target *ti) 2912 { 2913 if (dm_noflush_suspending(ti)) 2914 requeue_io((struct thin_c *)ti->private); 2915 } 2916 2917 /* 2918 * <nr mapped sectors> <highest mapped sector> 2919 */ 2920 static void thin_status(struct dm_target *ti, status_type_t type, 2921 unsigned status_flags, char *result, unsigned maxlen) 2922 { 2923 int r; 2924 ssize_t sz = 0; 2925 dm_block_t mapped, highest; 2926 char buf[BDEVNAME_SIZE]; 2927 struct thin_c *tc = ti->private; 2928 2929 if (get_pool_mode(tc->pool) == PM_FAIL) { 2930 DMEMIT("Fail"); 2931 return; 2932 } 2933 2934 if (!tc->td) 2935 DMEMIT("-"); 2936 else { 2937 switch (type) { 2938 case STATUSTYPE_INFO: 2939 r = dm_thin_get_mapped_count(tc->td, &mapped); 2940 if (r) { 2941 DMERR("dm_thin_get_mapped_count returned %d", r); 2942 goto err; 2943 } 2944 2945 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 2946 if (r < 0) { 2947 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 2948 goto err; 2949 } 2950 2951 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 2952 if (r) 2953 DMEMIT("%llu", ((highest + 1) * 2954 tc->pool->sectors_per_block) - 1); 2955 else 2956 DMEMIT("-"); 2957 break; 2958 2959 case STATUSTYPE_TABLE: 2960 DMEMIT("%s %lu", 2961 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 2962 (unsigned long) tc->dev_id); 2963 if (tc->origin_dev) 2964 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 2965 break; 2966 } 2967 } 2968 2969 return; 2970 2971 err: 2972 DMEMIT("Error"); 2973 } 2974 2975 static int thin_iterate_devices(struct dm_target *ti, 2976 iterate_devices_callout_fn fn, void *data) 2977 { 2978 sector_t blocks; 2979 struct thin_c *tc = ti->private; 2980 struct pool *pool = tc->pool; 2981 2982 /* 2983 * We can't call dm_pool_get_data_dev_size() since that blocks. So 2984 * we follow a more convoluted path through to the pool's target. 2985 */ 2986 if (!pool->ti) 2987 return 0; /* nothing is bound */ 2988 2989 blocks = pool->ti->len; 2990 (void) sector_div(blocks, pool->sectors_per_block); 2991 if (blocks) 2992 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 2993 2994 return 0; 2995 } 2996 2997 static struct target_type thin_target = { 2998 .name = "thin", 2999 .version = {1, 9, 0}, 3000 .module = THIS_MODULE, 3001 .ctr = thin_ctr, 3002 .dtr = thin_dtr, 3003 .map = thin_map, 3004 .end_io = thin_endio, 3005 .postsuspend = thin_postsuspend, 3006 .status = thin_status, 3007 .iterate_devices = thin_iterate_devices, 3008 }; 3009 3010 /*----------------------------------------------------------------*/ 3011 3012 static int __init dm_thin_init(void) 3013 { 3014 int r; 3015 3016 pool_table_init(); 3017 3018 r = dm_register_target(&thin_target); 3019 if (r) 3020 return r; 3021 3022 r = dm_register_target(&pool_target); 3023 if (r) 3024 goto bad_pool_target; 3025 3026 r = -ENOMEM; 3027 3028 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 3029 if (!_new_mapping_cache) 3030 goto bad_new_mapping_cache; 3031 3032 return 0; 3033 3034 bad_new_mapping_cache: 3035 dm_unregister_target(&pool_target); 3036 bad_pool_target: 3037 dm_unregister_target(&thin_target); 3038 3039 return r; 3040 } 3041 3042 static void dm_thin_exit(void) 3043 { 3044 dm_unregister_target(&thin_target); 3045 dm_unregister_target(&pool_target); 3046 3047 kmem_cache_destroy(_new_mapping_cache); 3048 } 3049 3050 module_init(dm_thin_init); 3051 module_exit(dm_thin_exit); 3052 3053 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 3054 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3055 MODULE_LICENSE("GPL"); 3056