xref: /openbmc/linux/drivers/md/dm-thin.c (revision 160b8e75)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 	bool out_of_data_space:1;
239 
240 	struct dm_bio_prison *prison;
241 	struct dm_kcopyd_client *copier;
242 
243 	struct workqueue_struct *wq;
244 	struct throttle throttle;
245 	struct work_struct worker;
246 	struct delayed_work waker;
247 	struct delayed_work no_space_timeout;
248 
249 	unsigned long last_commit_jiffies;
250 	unsigned ref_count;
251 
252 	spinlock_t lock;
253 	struct bio_list deferred_flush_bios;
254 	struct list_head prepared_mappings;
255 	struct list_head prepared_discards;
256 	struct list_head prepared_discards_pt2;
257 	struct list_head active_thins;
258 
259 	struct dm_deferred_set *shared_read_ds;
260 	struct dm_deferred_set *all_io_ds;
261 
262 	struct dm_thin_new_mapping *next_mapping;
263 	mempool_t *mapping_pool;
264 
265 	process_bio_fn process_bio;
266 	process_bio_fn process_discard;
267 
268 	process_cell_fn process_cell;
269 	process_cell_fn process_discard_cell;
270 
271 	process_mapping_fn process_prepared_mapping;
272 	process_mapping_fn process_prepared_discard;
273 	process_mapping_fn process_prepared_discard_pt2;
274 
275 	struct dm_bio_prison_cell **cell_sort_array;
276 };
277 
278 static enum pool_mode get_pool_mode(struct pool *pool);
279 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280 
281 /*
282  * Target context for a pool.
283  */
284 struct pool_c {
285 	struct dm_target *ti;
286 	struct pool *pool;
287 	struct dm_dev *data_dev;
288 	struct dm_dev *metadata_dev;
289 	struct dm_target_callbacks callbacks;
290 
291 	dm_block_t low_water_blocks;
292 	struct pool_features requested_pf; /* Features requested during table load */
293 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
294 };
295 
296 /*
297  * Target context for a thin.
298  */
299 struct thin_c {
300 	struct list_head list;
301 	struct dm_dev *pool_dev;
302 	struct dm_dev *origin_dev;
303 	sector_t origin_size;
304 	dm_thin_id dev_id;
305 
306 	struct pool *pool;
307 	struct dm_thin_device *td;
308 	struct mapped_device *thin_md;
309 
310 	bool requeue_mode:1;
311 	spinlock_t lock;
312 	struct list_head deferred_cells;
313 	struct bio_list deferred_bio_list;
314 	struct bio_list retry_on_resume_list;
315 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
316 
317 	/*
318 	 * Ensures the thin is not destroyed until the worker has finished
319 	 * iterating the active_thins list.
320 	 */
321 	atomic_t refcount;
322 	struct completion can_destroy;
323 };
324 
325 /*----------------------------------------------------------------*/
326 
327 static bool block_size_is_power_of_two(struct pool *pool)
328 {
329 	return pool->sectors_per_block_shift >= 0;
330 }
331 
332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
333 {
334 	return block_size_is_power_of_two(pool) ?
335 		(b << pool->sectors_per_block_shift) :
336 		(b * pool->sectors_per_block);
337 }
338 
339 /*----------------------------------------------------------------*/
340 
341 struct discard_op {
342 	struct thin_c *tc;
343 	struct blk_plug plug;
344 	struct bio *parent_bio;
345 	struct bio *bio;
346 };
347 
348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
349 {
350 	BUG_ON(!parent);
351 
352 	op->tc = tc;
353 	blk_start_plug(&op->plug);
354 	op->parent_bio = parent;
355 	op->bio = NULL;
356 }
357 
358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
359 {
360 	struct thin_c *tc = op->tc;
361 	sector_t s = block_to_sectors(tc->pool, data_b);
362 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363 
364 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365 				      GFP_NOWAIT, 0, &op->bio);
366 }
367 
368 static void end_discard(struct discard_op *op, int r)
369 {
370 	if (op->bio) {
371 		/*
372 		 * Even if one of the calls to issue_discard failed, we
373 		 * need to wait for the chain to complete.
374 		 */
375 		bio_chain(op->bio, op->parent_bio);
376 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377 		submit_bio(op->bio);
378 	}
379 
380 	blk_finish_plug(&op->plug);
381 
382 	/*
383 	 * Even if r is set, there could be sub discards in flight that we
384 	 * need to wait for.
385 	 */
386 	if (r && !op->parent_bio->bi_status)
387 		op->parent_bio->bi_status = errno_to_blk_status(r);
388 	bio_endio(op->parent_bio);
389 }
390 
391 /*----------------------------------------------------------------*/
392 
393 /*
394  * wake_worker() is used when new work is queued and when pool_resume is
395  * ready to continue deferred IO processing.
396  */
397 static void wake_worker(struct pool *pool)
398 {
399 	queue_work(pool->wq, &pool->worker);
400 }
401 
402 /*----------------------------------------------------------------*/
403 
404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405 		      struct dm_bio_prison_cell **cell_result)
406 {
407 	int r;
408 	struct dm_bio_prison_cell *cell_prealloc;
409 
410 	/*
411 	 * Allocate a cell from the prison's mempool.
412 	 * This might block but it can't fail.
413 	 */
414 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
415 
416 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417 	if (r)
418 		/*
419 		 * We reused an old cell; we can get rid of
420 		 * the new one.
421 		 */
422 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
423 
424 	return r;
425 }
426 
427 static void cell_release(struct pool *pool,
428 			 struct dm_bio_prison_cell *cell,
429 			 struct bio_list *bios)
430 {
431 	dm_cell_release(pool->prison, cell, bios);
432 	dm_bio_prison_free_cell(pool->prison, cell);
433 }
434 
435 static void cell_visit_release(struct pool *pool,
436 			       void (*fn)(void *, struct dm_bio_prison_cell *),
437 			       void *context,
438 			       struct dm_bio_prison_cell *cell)
439 {
440 	dm_cell_visit_release(pool->prison, fn, context, cell);
441 	dm_bio_prison_free_cell(pool->prison, cell);
442 }
443 
444 static void cell_release_no_holder(struct pool *pool,
445 				   struct dm_bio_prison_cell *cell,
446 				   struct bio_list *bios)
447 {
448 	dm_cell_release_no_holder(pool->prison, cell, bios);
449 	dm_bio_prison_free_cell(pool->prison, cell);
450 }
451 
452 static void cell_error_with_code(struct pool *pool,
453 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
454 {
455 	dm_cell_error(pool->prison, cell, error_code);
456 	dm_bio_prison_free_cell(pool->prison, cell);
457 }
458 
459 static blk_status_t get_pool_io_error_code(struct pool *pool)
460 {
461 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
462 }
463 
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
467 }
468 
469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
470 {
471 	cell_error_with_code(pool, cell, 0);
472 }
473 
474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
475 {
476 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
477 }
478 
479 /*----------------------------------------------------------------*/
480 
481 /*
482  * A global list of pools that uses a struct mapped_device as a key.
483  */
484 static struct dm_thin_pool_table {
485 	struct mutex mutex;
486 	struct list_head pools;
487 } dm_thin_pool_table;
488 
489 static void pool_table_init(void)
490 {
491 	mutex_init(&dm_thin_pool_table.mutex);
492 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
493 }
494 
495 static void pool_table_exit(void)
496 {
497 	mutex_destroy(&dm_thin_pool_table.mutex);
498 }
499 
500 static void __pool_table_insert(struct pool *pool)
501 {
502 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
503 	list_add(&pool->list, &dm_thin_pool_table.pools);
504 }
505 
506 static void __pool_table_remove(struct pool *pool)
507 {
508 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
509 	list_del(&pool->list);
510 }
511 
512 static struct pool *__pool_table_lookup(struct mapped_device *md)
513 {
514 	struct pool *pool = NULL, *tmp;
515 
516 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
517 
518 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
519 		if (tmp->pool_md == md) {
520 			pool = tmp;
521 			break;
522 		}
523 	}
524 
525 	return pool;
526 }
527 
528 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
529 {
530 	struct pool *pool = NULL, *tmp;
531 
532 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
533 
534 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
535 		if (tmp->md_dev == md_dev) {
536 			pool = tmp;
537 			break;
538 		}
539 	}
540 
541 	return pool;
542 }
543 
544 /*----------------------------------------------------------------*/
545 
546 struct dm_thin_endio_hook {
547 	struct thin_c *tc;
548 	struct dm_deferred_entry *shared_read_entry;
549 	struct dm_deferred_entry *all_io_entry;
550 	struct dm_thin_new_mapping *overwrite_mapping;
551 	struct rb_node rb_node;
552 	struct dm_bio_prison_cell *cell;
553 };
554 
555 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
556 {
557 	bio_list_merge(bios, master);
558 	bio_list_init(master);
559 }
560 
561 static void error_bio_list(struct bio_list *bios, blk_status_t error)
562 {
563 	struct bio *bio;
564 
565 	while ((bio = bio_list_pop(bios))) {
566 		bio->bi_status = error;
567 		bio_endio(bio);
568 	}
569 }
570 
571 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
572 		blk_status_t error)
573 {
574 	struct bio_list bios;
575 	unsigned long flags;
576 
577 	bio_list_init(&bios);
578 
579 	spin_lock_irqsave(&tc->lock, flags);
580 	__merge_bio_list(&bios, master);
581 	spin_unlock_irqrestore(&tc->lock, flags);
582 
583 	error_bio_list(&bios, error);
584 }
585 
586 static void requeue_deferred_cells(struct thin_c *tc)
587 {
588 	struct pool *pool = tc->pool;
589 	unsigned long flags;
590 	struct list_head cells;
591 	struct dm_bio_prison_cell *cell, *tmp;
592 
593 	INIT_LIST_HEAD(&cells);
594 
595 	spin_lock_irqsave(&tc->lock, flags);
596 	list_splice_init(&tc->deferred_cells, &cells);
597 	spin_unlock_irqrestore(&tc->lock, flags);
598 
599 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
600 		cell_requeue(pool, cell);
601 }
602 
603 static void requeue_io(struct thin_c *tc)
604 {
605 	struct bio_list bios;
606 	unsigned long flags;
607 
608 	bio_list_init(&bios);
609 
610 	spin_lock_irqsave(&tc->lock, flags);
611 	__merge_bio_list(&bios, &tc->deferred_bio_list);
612 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
613 	spin_unlock_irqrestore(&tc->lock, flags);
614 
615 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
616 	requeue_deferred_cells(tc);
617 }
618 
619 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
620 {
621 	struct thin_c *tc;
622 
623 	rcu_read_lock();
624 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
625 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
626 	rcu_read_unlock();
627 }
628 
629 static void error_retry_list(struct pool *pool)
630 {
631 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
632 }
633 
634 /*
635  * This section of code contains the logic for processing a thin device's IO.
636  * Much of the code depends on pool object resources (lists, workqueues, etc)
637  * but most is exclusively called from the thin target rather than the thin-pool
638  * target.
639  */
640 
641 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
642 {
643 	struct pool *pool = tc->pool;
644 	sector_t block_nr = bio->bi_iter.bi_sector;
645 
646 	if (block_size_is_power_of_two(pool))
647 		block_nr >>= pool->sectors_per_block_shift;
648 	else
649 		(void) sector_div(block_nr, pool->sectors_per_block);
650 
651 	return block_nr;
652 }
653 
654 /*
655  * Returns the _complete_ blocks that this bio covers.
656  */
657 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
658 				dm_block_t *begin, dm_block_t *end)
659 {
660 	struct pool *pool = tc->pool;
661 	sector_t b = bio->bi_iter.bi_sector;
662 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
663 
664 	b += pool->sectors_per_block - 1ull; /* so we round up */
665 
666 	if (block_size_is_power_of_two(pool)) {
667 		b >>= pool->sectors_per_block_shift;
668 		e >>= pool->sectors_per_block_shift;
669 	} else {
670 		(void) sector_div(b, pool->sectors_per_block);
671 		(void) sector_div(e, pool->sectors_per_block);
672 	}
673 
674 	if (e < b)
675 		/* Can happen if the bio is within a single block. */
676 		e = b;
677 
678 	*begin = b;
679 	*end = e;
680 }
681 
682 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
683 {
684 	struct pool *pool = tc->pool;
685 	sector_t bi_sector = bio->bi_iter.bi_sector;
686 
687 	bio_set_dev(bio, tc->pool_dev->bdev);
688 	if (block_size_is_power_of_two(pool))
689 		bio->bi_iter.bi_sector =
690 			(block << pool->sectors_per_block_shift) |
691 			(bi_sector & (pool->sectors_per_block - 1));
692 	else
693 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
694 				 sector_div(bi_sector, pool->sectors_per_block);
695 }
696 
697 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
698 {
699 	bio_set_dev(bio, tc->origin_dev->bdev);
700 }
701 
702 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
703 {
704 	return op_is_flush(bio->bi_opf) &&
705 		dm_thin_changed_this_transaction(tc->td);
706 }
707 
708 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
709 {
710 	struct dm_thin_endio_hook *h;
711 
712 	if (bio_op(bio) == REQ_OP_DISCARD)
713 		return;
714 
715 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
716 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
717 }
718 
719 static void issue(struct thin_c *tc, struct bio *bio)
720 {
721 	struct pool *pool = tc->pool;
722 	unsigned long flags;
723 
724 	if (!bio_triggers_commit(tc, bio)) {
725 		generic_make_request(bio);
726 		return;
727 	}
728 
729 	/*
730 	 * Complete bio with an error if earlier I/O caused changes to
731 	 * the metadata that can't be committed e.g, due to I/O errors
732 	 * on the metadata device.
733 	 */
734 	if (dm_thin_aborted_changes(tc->td)) {
735 		bio_io_error(bio);
736 		return;
737 	}
738 
739 	/*
740 	 * Batch together any bios that trigger commits and then issue a
741 	 * single commit for them in process_deferred_bios().
742 	 */
743 	spin_lock_irqsave(&pool->lock, flags);
744 	bio_list_add(&pool->deferred_flush_bios, bio);
745 	spin_unlock_irqrestore(&pool->lock, flags);
746 }
747 
748 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
749 {
750 	remap_to_origin(tc, bio);
751 	issue(tc, bio);
752 }
753 
754 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
755 			    dm_block_t block)
756 {
757 	remap(tc, bio, block);
758 	issue(tc, bio);
759 }
760 
761 /*----------------------------------------------------------------*/
762 
763 /*
764  * Bio endio functions.
765  */
766 struct dm_thin_new_mapping {
767 	struct list_head list;
768 
769 	bool pass_discard:1;
770 	bool maybe_shared:1;
771 
772 	/*
773 	 * Track quiescing, copying and zeroing preparation actions.  When this
774 	 * counter hits zero the block is prepared and can be inserted into the
775 	 * btree.
776 	 */
777 	atomic_t prepare_actions;
778 
779 	blk_status_t status;
780 	struct thin_c *tc;
781 	dm_block_t virt_begin, virt_end;
782 	dm_block_t data_block;
783 	struct dm_bio_prison_cell *cell;
784 
785 	/*
786 	 * If the bio covers the whole area of a block then we can avoid
787 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
788 	 * still be in the cell, so care has to be taken to avoid issuing
789 	 * the bio twice.
790 	 */
791 	struct bio *bio;
792 	bio_end_io_t *saved_bi_end_io;
793 };
794 
795 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
796 {
797 	struct pool *pool = m->tc->pool;
798 
799 	if (atomic_dec_and_test(&m->prepare_actions)) {
800 		list_add_tail(&m->list, &pool->prepared_mappings);
801 		wake_worker(pool);
802 	}
803 }
804 
805 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
806 {
807 	unsigned long flags;
808 	struct pool *pool = m->tc->pool;
809 
810 	spin_lock_irqsave(&pool->lock, flags);
811 	__complete_mapping_preparation(m);
812 	spin_unlock_irqrestore(&pool->lock, flags);
813 }
814 
815 static void copy_complete(int read_err, unsigned long write_err, void *context)
816 {
817 	struct dm_thin_new_mapping *m = context;
818 
819 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
820 	complete_mapping_preparation(m);
821 }
822 
823 static void overwrite_endio(struct bio *bio)
824 {
825 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
826 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
827 
828 	bio->bi_end_io = m->saved_bi_end_io;
829 
830 	m->status = bio->bi_status;
831 	complete_mapping_preparation(m);
832 }
833 
834 /*----------------------------------------------------------------*/
835 
836 /*
837  * Workqueue.
838  */
839 
840 /*
841  * Prepared mapping jobs.
842  */
843 
844 /*
845  * This sends the bios in the cell, except the original holder, back
846  * to the deferred_bios list.
847  */
848 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
849 {
850 	struct pool *pool = tc->pool;
851 	unsigned long flags;
852 
853 	spin_lock_irqsave(&tc->lock, flags);
854 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
855 	spin_unlock_irqrestore(&tc->lock, flags);
856 
857 	wake_worker(pool);
858 }
859 
860 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
861 
862 struct remap_info {
863 	struct thin_c *tc;
864 	struct bio_list defer_bios;
865 	struct bio_list issue_bios;
866 };
867 
868 static void __inc_remap_and_issue_cell(void *context,
869 				       struct dm_bio_prison_cell *cell)
870 {
871 	struct remap_info *info = context;
872 	struct bio *bio;
873 
874 	while ((bio = bio_list_pop(&cell->bios))) {
875 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
876 			bio_list_add(&info->defer_bios, bio);
877 		else {
878 			inc_all_io_entry(info->tc->pool, bio);
879 
880 			/*
881 			 * We can't issue the bios with the bio prison lock
882 			 * held, so we add them to a list to issue on
883 			 * return from this function.
884 			 */
885 			bio_list_add(&info->issue_bios, bio);
886 		}
887 	}
888 }
889 
890 static void inc_remap_and_issue_cell(struct thin_c *tc,
891 				     struct dm_bio_prison_cell *cell,
892 				     dm_block_t block)
893 {
894 	struct bio *bio;
895 	struct remap_info info;
896 
897 	info.tc = tc;
898 	bio_list_init(&info.defer_bios);
899 	bio_list_init(&info.issue_bios);
900 
901 	/*
902 	 * We have to be careful to inc any bios we're about to issue
903 	 * before the cell is released, and avoid a race with new bios
904 	 * being added to the cell.
905 	 */
906 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
907 			   &info, cell);
908 
909 	while ((bio = bio_list_pop(&info.defer_bios)))
910 		thin_defer_bio(tc, bio);
911 
912 	while ((bio = bio_list_pop(&info.issue_bios)))
913 		remap_and_issue(info.tc, bio, block);
914 }
915 
916 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
917 {
918 	cell_error(m->tc->pool, m->cell);
919 	list_del(&m->list);
920 	mempool_free(m, m->tc->pool->mapping_pool);
921 }
922 
923 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
924 {
925 	struct thin_c *tc = m->tc;
926 	struct pool *pool = tc->pool;
927 	struct bio *bio = m->bio;
928 	int r;
929 
930 	if (m->status) {
931 		cell_error(pool, m->cell);
932 		goto out;
933 	}
934 
935 	/*
936 	 * Commit the prepared block into the mapping btree.
937 	 * Any I/O for this block arriving after this point will get
938 	 * remapped to it directly.
939 	 */
940 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
941 	if (r) {
942 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
943 		cell_error(pool, m->cell);
944 		goto out;
945 	}
946 
947 	/*
948 	 * Release any bios held while the block was being provisioned.
949 	 * If we are processing a write bio that completely covers the block,
950 	 * we already processed it so can ignore it now when processing
951 	 * the bios in the cell.
952 	 */
953 	if (bio) {
954 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
955 		bio_endio(bio);
956 	} else {
957 		inc_all_io_entry(tc->pool, m->cell->holder);
958 		remap_and_issue(tc, m->cell->holder, m->data_block);
959 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
960 	}
961 
962 out:
963 	list_del(&m->list);
964 	mempool_free(m, pool->mapping_pool);
965 }
966 
967 /*----------------------------------------------------------------*/
968 
969 static void free_discard_mapping(struct dm_thin_new_mapping *m)
970 {
971 	struct thin_c *tc = m->tc;
972 	if (m->cell)
973 		cell_defer_no_holder(tc, m->cell);
974 	mempool_free(m, tc->pool->mapping_pool);
975 }
976 
977 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
978 {
979 	bio_io_error(m->bio);
980 	free_discard_mapping(m);
981 }
982 
983 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
984 {
985 	bio_endio(m->bio);
986 	free_discard_mapping(m);
987 }
988 
989 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
990 {
991 	int r;
992 	struct thin_c *tc = m->tc;
993 
994 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
995 	if (r) {
996 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
997 		bio_io_error(m->bio);
998 	} else
999 		bio_endio(m->bio);
1000 
1001 	cell_defer_no_holder(tc, m->cell);
1002 	mempool_free(m, tc->pool->mapping_pool);
1003 }
1004 
1005 /*----------------------------------------------------------------*/
1006 
1007 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1008 						   struct bio *discard_parent)
1009 {
1010 	/*
1011 	 * We've already unmapped this range of blocks, but before we
1012 	 * passdown we have to check that these blocks are now unused.
1013 	 */
1014 	int r = 0;
1015 	bool used = true;
1016 	struct thin_c *tc = m->tc;
1017 	struct pool *pool = tc->pool;
1018 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1019 	struct discard_op op;
1020 
1021 	begin_discard(&op, tc, discard_parent);
1022 	while (b != end) {
1023 		/* find start of unmapped run */
1024 		for (; b < end; b++) {
1025 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1026 			if (r)
1027 				goto out;
1028 
1029 			if (!used)
1030 				break;
1031 		}
1032 
1033 		if (b == end)
1034 			break;
1035 
1036 		/* find end of run */
1037 		for (e = b + 1; e != end; e++) {
1038 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1039 			if (r)
1040 				goto out;
1041 
1042 			if (used)
1043 				break;
1044 		}
1045 
1046 		r = issue_discard(&op, b, e);
1047 		if (r)
1048 			goto out;
1049 
1050 		b = e;
1051 	}
1052 out:
1053 	end_discard(&op, r);
1054 }
1055 
1056 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1057 {
1058 	unsigned long flags;
1059 	struct pool *pool = m->tc->pool;
1060 
1061 	spin_lock_irqsave(&pool->lock, flags);
1062 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1063 	spin_unlock_irqrestore(&pool->lock, flags);
1064 	wake_worker(pool);
1065 }
1066 
1067 static void passdown_endio(struct bio *bio)
1068 {
1069 	/*
1070 	 * It doesn't matter if the passdown discard failed, we still want
1071 	 * to unmap (we ignore err).
1072 	 */
1073 	queue_passdown_pt2(bio->bi_private);
1074 	bio_put(bio);
1075 }
1076 
1077 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1078 {
1079 	int r;
1080 	struct thin_c *tc = m->tc;
1081 	struct pool *pool = tc->pool;
1082 	struct bio *discard_parent;
1083 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1084 
1085 	/*
1086 	 * Only this thread allocates blocks, so we can be sure that the
1087 	 * newly unmapped blocks will not be allocated before the end of
1088 	 * the function.
1089 	 */
1090 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1091 	if (r) {
1092 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1093 		bio_io_error(m->bio);
1094 		cell_defer_no_holder(tc, m->cell);
1095 		mempool_free(m, pool->mapping_pool);
1096 		return;
1097 	}
1098 
1099 	/*
1100 	 * Increment the unmapped blocks.  This prevents a race between the
1101 	 * passdown io and reallocation of freed blocks.
1102 	 */
1103 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1104 	if (r) {
1105 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1106 		bio_io_error(m->bio);
1107 		cell_defer_no_holder(tc, m->cell);
1108 		mempool_free(m, pool->mapping_pool);
1109 		return;
1110 	}
1111 
1112 	discard_parent = bio_alloc(GFP_NOIO, 1);
1113 	if (!discard_parent) {
1114 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1115 		       dm_device_name(tc->pool->pool_md));
1116 		queue_passdown_pt2(m);
1117 
1118 	} else {
1119 		discard_parent->bi_end_io = passdown_endio;
1120 		discard_parent->bi_private = m;
1121 
1122 		if (m->maybe_shared)
1123 			passdown_double_checking_shared_status(m, discard_parent);
1124 		else {
1125 			struct discard_op op;
1126 
1127 			begin_discard(&op, tc, discard_parent);
1128 			r = issue_discard(&op, m->data_block, data_end);
1129 			end_discard(&op, r);
1130 		}
1131 	}
1132 }
1133 
1134 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1135 {
1136 	int r;
1137 	struct thin_c *tc = m->tc;
1138 	struct pool *pool = tc->pool;
1139 
1140 	/*
1141 	 * The passdown has completed, so now we can decrement all those
1142 	 * unmapped blocks.
1143 	 */
1144 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1145 				   m->data_block + (m->virt_end - m->virt_begin));
1146 	if (r) {
1147 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1148 		bio_io_error(m->bio);
1149 	} else
1150 		bio_endio(m->bio);
1151 
1152 	cell_defer_no_holder(tc, m->cell);
1153 	mempool_free(m, pool->mapping_pool);
1154 }
1155 
1156 static void process_prepared(struct pool *pool, struct list_head *head,
1157 			     process_mapping_fn *fn)
1158 {
1159 	unsigned long flags;
1160 	struct list_head maps;
1161 	struct dm_thin_new_mapping *m, *tmp;
1162 
1163 	INIT_LIST_HEAD(&maps);
1164 	spin_lock_irqsave(&pool->lock, flags);
1165 	list_splice_init(head, &maps);
1166 	spin_unlock_irqrestore(&pool->lock, flags);
1167 
1168 	list_for_each_entry_safe(m, tmp, &maps, list)
1169 		(*fn)(m);
1170 }
1171 
1172 /*
1173  * Deferred bio jobs.
1174  */
1175 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1176 {
1177 	return bio->bi_iter.bi_size ==
1178 		(pool->sectors_per_block << SECTOR_SHIFT);
1179 }
1180 
1181 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1182 {
1183 	return (bio_data_dir(bio) == WRITE) &&
1184 		io_overlaps_block(pool, bio);
1185 }
1186 
1187 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1188 			       bio_end_io_t *fn)
1189 {
1190 	*save = bio->bi_end_io;
1191 	bio->bi_end_io = fn;
1192 }
1193 
1194 static int ensure_next_mapping(struct pool *pool)
1195 {
1196 	if (pool->next_mapping)
1197 		return 0;
1198 
1199 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1200 
1201 	return pool->next_mapping ? 0 : -ENOMEM;
1202 }
1203 
1204 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1205 {
1206 	struct dm_thin_new_mapping *m = pool->next_mapping;
1207 
1208 	BUG_ON(!pool->next_mapping);
1209 
1210 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1211 	INIT_LIST_HEAD(&m->list);
1212 	m->bio = NULL;
1213 
1214 	pool->next_mapping = NULL;
1215 
1216 	return m;
1217 }
1218 
1219 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1220 		    sector_t begin, sector_t end)
1221 {
1222 	int r;
1223 	struct dm_io_region to;
1224 
1225 	to.bdev = tc->pool_dev->bdev;
1226 	to.sector = begin;
1227 	to.count = end - begin;
1228 
1229 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1230 	if (r < 0) {
1231 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1232 		copy_complete(1, 1, m);
1233 	}
1234 }
1235 
1236 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1237 				      dm_block_t data_begin,
1238 				      struct dm_thin_new_mapping *m)
1239 {
1240 	struct pool *pool = tc->pool;
1241 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1242 
1243 	h->overwrite_mapping = m;
1244 	m->bio = bio;
1245 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1246 	inc_all_io_entry(pool, bio);
1247 	remap_and_issue(tc, bio, data_begin);
1248 }
1249 
1250 /*
1251  * A partial copy also needs to zero the uncopied region.
1252  */
1253 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1254 			  struct dm_dev *origin, dm_block_t data_origin,
1255 			  dm_block_t data_dest,
1256 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1257 			  sector_t len)
1258 {
1259 	int r;
1260 	struct pool *pool = tc->pool;
1261 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1262 
1263 	m->tc = tc;
1264 	m->virt_begin = virt_block;
1265 	m->virt_end = virt_block + 1u;
1266 	m->data_block = data_dest;
1267 	m->cell = cell;
1268 
1269 	/*
1270 	 * quiesce action + copy action + an extra reference held for the
1271 	 * duration of this function (we may need to inc later for a
1272 	 * partial zero).
1273 	 */
1274 	atomic_set(&m->prepare_actions, 3);
1275 
1276 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1277 		complete_mapping_preparation(m); /* already quiesced */
1278 
1279 	/*
1280 	 * IO to pool_dev remaps to the pool target's data_dev.
1281 	 *
1282 	 * If the whole block of data is being overwritten, we can issue the
1283 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1284 	 */
1285 	if (io_overwrites_block(pool, bio))
1286 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1287 	else {
1288 		struct dm_io_region from, to;
1289 
1290 		from.bdev = origin->bdev;
1291 		from.sector = data_origin * pool->sectors_per_block;
1292 		from.count = len;
1293 
1294 		to.bdev = tc->pool_dev->bdev;
1295 		to.sector = data_dest * pool->sectors_per_block;
1296 		to.count = len;
1297 
1298 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1299 				   0, copy_complete, m);
1300 		if (r < 0) {
1301 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1302 			copy_complete(1, 1, m);
1303 
1304 			/*
1305 			 * We allow the zero to be issued, to simplify the
1306 			 * error path.  Otherwise we'd need to start
1307 			 * worrying about decrementing the prepare_actions
1308 			 * counter.
1309 			 */
1310 		}
1311 
1312 		/*
1313 		 * Do we need to zero a tail region?
1314 		 */
1315 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1316 			atomic_inc(&m->prepare_actions);
1317 			ll_zero(tc, m,
1318 				data_dest * pool->sectors_per_block + len,
1319 				(data_dest + 1) * pool->sectors_per_block);
1320 		}
1321 	}
1322 
1323 	complete_mapping_preparation(m); /* drop our ref */
1324 }
1325 
1326 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1327 				   dm_block_t data_origin, dm_block_t data_dest,
1328 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1329 {
1330 	schedule_copy(tc, virt_block, tc->pool_dev,
1331 		      data_origin, data_dest, cell, bio,
1332 		      tc->pool->sectors_per_block);
1333 }
1334 
1335 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1336 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1337 			  struct bio *bio)
1338 {
1339 	struct pool *pool = tc->pool;
1340 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1341 
1342 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1343 	m->tc = tc;
1344 	m->virt_begin = virt_block;
1345 	m->virt_end = virt_block + 1u;
1346 	m->data_block = data_block;
1347 	m->cell = cell;
1348 
1349 	/*
1350 	 * If the whole block of data is being overwritten or we are not
1351 	 * zeroing pre-existing data, we can issue the bio immediately.
1352 	 * Otherwise we use kcopyd to zero the data first.
1353 	 */
1354 	if (pool->pf.zero_new_blocks) {
1355 		if (io_overwrites_block(pool, bio))
1356 			remap_and_issue_overwrite(tc, bio, data_block, m);
1357 		else
1358 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1359 				(data_block + 1) * pool->sectors_per_block);
1360 	} else
1361 		process_prepared_mapping(m);
1362 }
1363 
1364 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1365 				   dm_block_t data_dest,
1366 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1367 {
1368 	struct pool *pool = tc->pool;
1369 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1370 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1371 
1372 	if (virt_block_end <= tc->origin_size)
1373 		schedule_copy(tc, virt_block, tc->origin_dev,
1374 			      virt_block, data_dest, cell, bio,
1375 			      pool->sectors_per_block);
1376 
1377 	else if (virt_block_begin < tc->origin_size)
1378 		schedule_copy(tc, virt_block, tc->origin_dev,
1379 			      virt_block, data_dest, cell, bio,
1380 			      tc->origin_size - virt_block_begin);
1381 
1382 	else
1383 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1384 }
1385 
1386 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1387 
1388 static void check_for_space(struct pool *pool)
1389 {
1390 	int r;
1391 	dm_block_t nr_free;
1392 
1393 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1394 		return;
1395 
1396 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1397 	if (r)
1398 		return;
1399 
1400 	if (nr_free)
1401 		set_pool_mode(pool, PM_WRITE);
1402 }
1403 
1404 /*
1405  * A non-zero return indicates read_only or fail_io mode.
1406  * Many callers don't care about the return value.
1407  */
1408 static int commit(struct pool *pool)
1409 {
1410 	int r;
1411 
1412 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1413 		return -EINVAL;
1414 
1415 	r = dm_pool_commit_metadata(pool->pmd);
1416 	if (r)
1417 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1418 	else
1419 		check_for_space(pool);
1420 
1421 	return r;
1422 }
1423 
1424 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1425 {
1426 	unsigned long flags;
1427 
1428 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1429 		DMWARN("%s: reached low water mark for data device: sending event.",
1430 		       dm_device_name(pool->pool_md));
1431 		spin_lock_irqsave(&pool->lock, flags);
1432 		pool->low_water_triggered = true;
1433 		spin_unlock_irqrestore(&pool->lock, flags);
1434 		dm_table_event(pool->ti->table);
1435 	}
1436 }
1437 
1438 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1439 {
1440 	int r;
1441 	dm_block_t free_blocks;
1442 	struct pool *pool = tc->pool;
1443 
1444 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1445 		return -EINVAL;
1446 
1447 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1448 	if (r) {
1449 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1450 		return r;
1451 	}
1452 
1453 	check_low_water_mark(pool, free_blocks);
1454 
1455 	if (!free_blocks) {
1456 		/*
1457 		 * Try to commit to see if that will free up some
1458 		 * more space.
1459 		 */
1460 		r = commit(pool);
1461 		if (r)
1462 			return r;
1463 
1464 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1465 		if (r) {
1466 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1467 			return r;
1468 		}
1469 
1470 		if (!free_blocks) {
1471 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1472 			return -ENOSPC;
1473 		}
1474 	}
1475 
1476 	r = dm_pool_alloc_data_block(pool->pmd, result);
1477 	if (r) {
1478 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1479 		return r;
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 /*
1486  * If we have run out of space, queue bios until the device is
1487  * resumed, presumably after having been reloaded with more space.
1488  */
1489 static void retry_on_resume(struct bio *bio)
1490 {
1491 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1492 	struct thin_c *tc = h->tc;
1493 	unsigned long flags;
1494 
1495 	spin_lock_irqsave(&tc->lock, flags);
1496 	bio_list_add(&tc->retry_on_resume_list, bio);
1497 	spin_unlock_irqrestore(&tc->lock, flags);
1498 }
1499 
1500 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1501 {
1502 	enum pool_mode m = get_pool_mode(pool);
1503 
1504 	switch (m) {
1505 	case PM_WRITE:
1506 		/* Shouldn't get here */
1507 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1508 		return BLK_STS_IOERR;
1509 
1510 	case PM_OUT_OF_DATA_SPACE:
1511 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1512 
1513 	case PM_READ_ONLY:
1514 	case PM_FAIL:
1515 		return BLK_STS_IOERR;
1516 	default:
1517 		/* Shouldn't get here */
1518 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1519 		return BLK_STS_IOERR;
1520 	}
1521 }
1522 
1523 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1524 {
1525 	blk_status_t error = should_error_unserviceable_bio(pool);
1526 
1527 	if (error) {
1528 		bio->bi_status = error;
1529 		bio_endio(bio);
1530 	} else
1531 		retry_on_resume(bio);
1532 }
1533 
1534 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1535 {
1536 	struct bio *bio;
1537 	struct bio_list bios;
1538 	blk_status_t error;
1539 
1540 	error = should_error_unserviceable_bio(pool);
1541 	if (error) {
1542 		cell_error_with_code(pool, cell, error);
1543 		return;
1544 	}
1545 
1546 	bio_list_init(&bios);
1547 	cell_release(pool, cell, &bios);
1548 
1549 	while ((bio = bio_list_pop(&bios)))
1550 		retry_on_resume(bio);
1551 }
1552 
1553 static void process_discard_cell_no_passdown(struct thin_c *tc,
1554 					     struct dm_bio_prison_cell *virt_cell)
1555 {
1556 	struct pool *pool = tc->pool;
1557 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1558 
1559 	/*
1560 	 * We don't need to lock the data blocks, since there's no
1561 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1562 	 */
1563 	m->tc = tc;
1564 	m->virt_begin = virt_cell->key.block_begin;
1565 	m->virt_end = virt_cell->key.block_end;
1566 	m->cell = virt_cell;
1567 	m->bio = virt_cell->holder;
1568 
1569 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1570 		pool->process_prepared_discard(m);
1571 }
1572 
1573 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1574 				 struct bio *bio)
1575 {
1576 	struct pool *pool = tc->pool;
1577 
1578 	int r;
1579 	bool maybe_shared;
1580 	struct dm_cell_key data_key;
1581 	struct dm_bio_prison_cell *data_cell;
1582 	struct dm_thin_new_mapping *m;
1583 	dm_block_t virt_begin, virt_end, data_begin;
1584 
1585 	while (begin != end) {
1586 		r = ensure_next_mapping(pool);
1587 		if (r)
1588 			/* we did our best */
1589 			return;
1590 
1591 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1592 					      &data_begin, &maybe_shared);
1593 		if (r)
1594 			/*
1595 			 * Silently fail, letting any mappings we've
1596 			 * created complete.
1597 			 */
1598 			break;
1599 
1600 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1601 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1602 			/* contention, we'll give up with this range */
1603 			begin = virt_end;
1604 			continue;
1605 		}
1606 
1607 		/*
1608 		 * IO may still be going to the destination block.  We must
1609 		 * quiesce before we can do the removal.
1610 		 */
1611 		m = get_next_mapping(pool);
1612 		m->tc = tc;
1613 		m->maybe_shared = maybe_shared;
1614 		m->virt_begin = virt_begin;
1615 		m->virt_end = virt_end;
1616 		m->data_block = data_begin;
1617 		m->cell = data_cell;
1618 		m->bio = bio;
1619 
1620 		/*
1621 		 * The parent bio must not complete before sub discard bios are
1622 		 * chained to it (see end_discard's bio_chain)!
1623 		 *
1624 		 * This per-mapping bi_remaining increment is paired with
1625 		 * the implicit decrement that occurs via bio_endio() in
1626 		 * end_discard().
1627 		 */
1628 		bio_inc_remaining(bio);
1629 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1630 			pool->process_prepared_discard(m);
1631 
1632 		begin = virt_end;
1633 	}
1634 }
1635 
1636 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1637 {
1638 	struct bio *bio = virt_cell->holder;
1639 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1640 
1641 	/*
1642 	 * The virt_cell will only get freed once the origin bio completes.
1643 	 * This means it will remain locked while all the individual
1644 	 * passdown bios are in flight.
1645 	 */
1646 	h->cell = virt_cell;
1647 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1648 
1649 	/*
1650 	 * We complete the bio now, knowing that the bi_remaining field
1651 	 * will prevent completion until the sub range discards have
1652 	 * completed.
1653 	 */
1654 	bio_endio(bio);
1655 }
1656 
1657 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1658 {
1659 	dm_block_t begin, end;
1660 	struct dm_cell_key virt_key;
1661 	struct dm_bio_prison_cell *virt_cell;
1662 
1663 	get_bio_block_range(tc, bio, &begin, &end);
1664 	if (begin == end) {
1665 		/*
1666 		 * The discard covers less than a block.
1667 		 */
1668 		bio_endio(bio);
1669 		return;
1670 	}
1671 
1672 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1673 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1674 		/*
1675 		 * Potential starvation issue: We're relying on the
1676 		 * fs/application being well behaved, and not trying to
1677 		 * send IO to a region at the same time as discarding it.
1678 		 * If they do this persistently then it's possible this
1679 		 * cell will never be granted.
1680 		 */
1681 		return;
1682 
1683 	tc->pool->process_discard_cell(tc, virt_cell);
1684 }
1685 
1686 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1687 			  struct dm_cell_key *key,
1688 			  struct dm_thin_lookup_result *lookup_result,
1689 			  struct dm_bio_prison_cell *cell)
1690 {
1691 	int r;
1692 	dm_block_t data_block;
1693 	struct pool *pool = tc->pool;
1694 
1695 	r = alloc_data_block(tc, &data_block);
1696 	switch (r) {
1697 	case 0:
1698 		schedule_internal_copy(tc, block, lookup_result->block,
1699 				       data_block, cell, bio);
1700 		break;
1701 
1702 	case -ENOSPC:
1703 		retry_bios_on_resume(pool, cell);
1704 		break;
1705 
1706 	default:
1707 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1708 			    __func__, r);
1709 		cell_error(pool, cell);
1710 		break;
1711 	}
1712 }
1713 
1714 static void __remap_and_issue_shared_cell(void *context,
1715 					  struct dm_bio_prison_cell *cell)
1716 {
1717 	struct remap_info *info = context;
1718 	struct bio *bio;
1719 
1720 	while ((bio = bio_list_pop(&cell->bios))) {
1721 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1722 		    bio_op(bio) == REQ_OP_DISCARD)
1723 			bio_list_add(&info->defer_bios, bio);
1724 		else {
1725 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1726 
1727 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1728 			inc_all_io_entry(info->tc->pool, bio);
1729 			bio_list_add(&info->issue_bios, bio);
1730 		}
1731 	}
1732 }
1733 
1734 static void remap_and_issue_shared_cell(struct thin_c *tc,
1735 					struct dm_bio_prison_cell *cell,
1736 					dm_block_t block)
1737 {
1738 	struct bio *bio;
1739 	struct remap_info info;
1740 
1741 	info.tc = tc;
1742 	bio_list_init(&info.defer_bios);
1743 	bio_list_init(&info.issue_bios);
1744 
1745 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1746 			   &info, cell);
1747 
1748 	while ((bio = bio_list_pop(&info.defer_bios)))
1749 		thin_defer_bio(tc, bio);
1750 
1751 	while ((bio = bio_list_pop(&info.issue_bios)))
1752 		remap_and_issue(tc, bio, block);
1753 }
1754 
1755 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1756 			       dm_block_t block,
1757 			       struct dm_thin_lookup_result *lookup_result,
1758 			       struct dm_bio_prison_cell *virt_cell)
1759 {
1760 	struct dm_bio_prison_cell *data_cell;
1761 	struct pool *pool = tc->pool;
1762 	struct dm_cell_key key;
1763 
1764 	/*
1765 	 * If cell is already occupied, then sharing is already in the process
1766 	 * of being broken so we have nothing further to do here.
1767 	 */
1768 	build_data_key(tc->td, lookup_result->block, &key);
1769 	if (bio_detain(pool, &key, bio, &data_cell)) {
1770 		cell_defer_no_holder(tc, virt_cell);
1771 		return;
1772 	}
1773 
1774 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1775 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1776 		cell_defer_no_holder(tc, virt_cell);
1777 	} else {
1778 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1779 
1780 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1781 		inc_all_io_entry(pool, bio);
1782 		remap_and_issue(tc, bio, lookup_result->block);
1783 
1784 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1785 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1786 	}
1787 }
1788 
1789 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1790 			    struct dm_bio_prison_cell *cell)
1791 {
1792 	int r;
1793 	dm_block_t data_block;
1794 	struct pool *pool = tc->pool;
1795 
1796 	/*
1797 	 * Remap empty bios (flushes) immediately, without provisioning.
1798 	 */
1799 	if (!bio->bi_iter.bi_size) {
1800 		inc_all_io_entry(pool, bio);
1801 		cell_defer_no_holder(tc, cell);
1802 
1803 		remap_and_issue(tc, bio, 0);
1804 		return;
1805 	}
1806 
1807 	/*
1808 	 * Fill read bios with zeroes and complete them immediately.
1809 	 */
1810 	if (bio_data_dir(bio) == READ) {
1811 		zero_fill_bio(bio);
1812 		cell_defer_no_holder(tc, cell);
1813 		bio_endio(bio);
1814 		return;
1815 	}
1816 
1817 	r = alloc_data_block(tc, &data_block);
1818 	switch (r) {
1819 	case 0:
1820 		if (tc->origin_dev)
1821 			schedule_external_copy(tc, block, data_block, cell, bio);
1822 		else
1823 			schedule_zero(tc, block, data_block, cell, bio);
1824 		break;
1825 
1826 	case -ENOSPC:
1827 		retry_bios_on_resume(pool, cell);
1828 		break;
1829 
1830 	default:
1831 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1832 			    __func__, r);
1833 		cell_error(pool, cell);
1834 		break;
1835 	}
1836 }
1837 
1838 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1839 {
1840 	int r;
1841 	struct pool *pool = tc->pool;
1842 	struct bio *bio = cell->holder;
1843 	dm_block_t block = get_bio_block(tc, bio);
1844 	struct dm_thin_lookup_result lookup_result;
1845 
1846 	if (tc->requeue_mode) {
1847 		cell_requeue(pool, cell);
1848 		return;
1849 	}
1850 
1851 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1852 	switch (r) {
1853 	case 0:
1854 		if (lookup_result.shared)
1855 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1856 		else {
1857 			inc_all_io_entry(pool, bio);
1858 			remap_and_issue(tc, bio, lookup_result.block);
1859 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1860 		}
1861 		break;
1862 
1863 	case -ENODATA:
1864 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1865 			inc_all_io_entry(pool, bio);
1866 			cell_defer_no_holder(tc, cell);
1867 
1868 			if (bio_end_sector(bio) <= tc->origin_size)
1869 				remap_to_origin_and_issue(tc, bio);
1870 
1871 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1872 				zero_fill_bio(bio);
1873 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1874 				remap_to_origin_and_issue(tc, bio);
1875 
1876 			} else {
1877 				zero_fill_bio(bio);
1878 				bio_endio(bio);
1879 			}
1880 		} else
1881 			provision_block(tc, bio, block, cell);
1882 		break;
1883 
1884 	default:
1885 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1886 			    __func__, r);
1887 		cell_defer_no_holder(tc, cell);
1888 		bio_io_error(bio);
1889 		break;
1890 	}
1891 }
1892 
1893 static void process_bio(struct thin_c *tc, struct bio *bio)
1894 {
1895 	struct pool *pool = tc->pool;
1896 	dm_block_t block = get_bio_block(tc, bio);
1897 	struct dm_bio_prison_cell *cell;
1898 	struct dm_cell_key key;
1899 
1900 	/*
1901 	 * If cell is already occupied, then the block is already
1902 	 * being provisioned so we have nothing further to do here.
1903 	 */
1904 	build_virtual_key(tc->td, block, &key);
1905 	if (bio_detain(pool, &key, bio, &cell))
1906 		return;
1907 
1908 	process_cell(tc, cell);
1909 }
1910 
1911 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1912 				    struct dm_bio_prison_cell *cell)
1913 {
1914 	int r;
1915 	int rw = bio_data_dir(bio);
1916 	dm_block_t block = get_bio_block(tc, bio);
1917 	struct dm_thin_lookup_result lookup_result;
1918 
1919 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1920 	switch (r) {
1921 	case 0:
1922 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1923 			handle_unserviceable_bio(tc->pool, bio);
1924 			if (cell)
1925 				cell_defer_no_holder(tc, cell);
1926 		} else {
1927 			inc_all_io_entry(tc->pool, bio);
1928 			remap_and_issue(tc, bio, lookup_result.block);
1929 			if (cell)
1930 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1931 		}
1932 		break;
1933 
1934 	case -ENODATA:
1935 		if (cell)
1936 			cell_defer_no_holder(tc, cell);
1937 		if (rw != READ) {
1938 			handle_unserviceable_bio(tc->pool, bio);
1939 			break;
1940 		}
1941 
1942 		if (tc->origin_dev) {
1943 			inc_all_io_entry(tc->pool, bio);
1944 			remap_to_origin_and_issue(tc, bio);
1945 			break;
1946 		}
1947 
1948 		zero_fill_bio(bio);
1949 		bio_endio(bio);
1950 		break;
1951 
1952 	default:
1953 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1954 			    __func__, r);
1955 		if (cell)
1956 			cell_defer_no_holder(tc, cell);
1957 		bio_io_error(bio);
1958 		break;
1959 	}
1960 }
1961 
1962 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1963 {
1964 	__process_bio_read_only(tc, bio, NULL);
1965 }
1966 
1967 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1968 {
1969 	__process_bio_read_only(tc, cell->holder, cell);
1970 }
1971 
1972 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1973 {
1974 	bio_endio(bio);
1975 }
1976 
1977 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1978 {
1979 	bio_io_error(bio);
1980 }
1981 
1982 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1983 {
1984 	cell_success(tc->pool, cell);
1985 }
1986 
1987 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1988 {
1989 	cell_error(tc->pool, cell);
1990 }
1991 
1992 /*
1993  * FIXME: should we also commit due to size of transaction, measured in
1994  * metadata blocks?
1995  */
1996 static int need_commit_due_to_time(struct pool *pool)
1997 {
1998 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1999 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2000 }
2001 
2002 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2003 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2004 
2005 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2006 {
2007 	struct rb_node **rbp, *parent;
2008 	struct dm_thin_endio_hook *pbd;
2009 	sector_t bi_sector = bio->bi_iter.bi_sector;
2010 
2011 	rbp = &tc->sort_bio_list.rb_node;
2012 	parent = NULL;
2013 	while (*rbp) {
2014 		parent = *rbp;
2015 		pbd = thin_pbd(parent);
2016 
2017 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2018 			rbp = &(*rbp)->rb_left;
2019 		else
2020 			rbp = &(*rbp)->rb_right;
2021 	}
2022 
2023 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2024 	rb_link_node(&pbd->rb_node, parent, rbp);
2025 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2026 }
2027 
2028 static void __extract_sorted_bios(struct thin_c *tc)
2029 {
2030 	struct rb_node *node;
2031 	struct dm_thin_endio_hook *pbd;
2032 	struct bio *bio;
2033 
2034 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2035 		pbd = thin_pbd(node);
2036 		bio = thin_bio(pbd);
2037 
2038 		bio_list_add(&tc->deferred_bio_list, bio);
2039 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2040 	}
2041 
2042 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2043 }
2044 
2045 static void __sort_thin_deferred_bios(struct thin_c *tc)
2046 {
2047 	struct bio *bio;
2048 	struct bio_list bios;
2049 
2050 	bio_list_init(&bios);
2051 	bio_list_merge(&bios, &tc->deferred_bio_list);
2052 	bio_list_init(&tc->deferred_bio_list);
2053 
2054 	/* Sort deferred_bio_list using rb-tree */
2055 	while ((bio = bio_list_pop(&bios)))
2056 		__thin_bio_rb_add(tc, bio);
2057 
2058 	/*
2059 	 * Transfer the sorted bios in sort_bio_list back to
2060 	 * deferred_bio_list to allow lockless submission of
2061 	 * all bios.
2062 	 */
2063 	__extract_sorted_bios(tc);
2064 }
2065 
2066 static void process_thin_deferred_bios(struct thin_c *tc)
2067 {
2068 	struct pool *pool = tc->pool;
2069 	unsigned long flags;
2070 	struct bio *bio;
2071 	struct bio_list bios;
2072 	struct blk_plug plug;
2073 	unsigned count = 0;
2074 
2075 	if (tc->requeue_mode) {
2076 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2077 				BLK_STS_DM_REQUEUE);
2078 		return;
2079 	}
2080 
2081 	bio_list_init(&bios);
2082 
2083 	spin_lock_irqsave(&tc->lock, flags);
2084 
2085 	if (bio_list_empty(&tc->deferred_bio_list)) {
2086 		spin_unlock_irqrestore(&tc->lock, flags);
2087 		return;
2088 	}
2089 
2090 	__sort_thin_deferred_bios(tc);
2091 
2092 	bio_list_merge(&bios, &tc->deferred_bio_list);
2093 	bio_list_init(&tc->deferred_bio_list);
2094 
2095 	spin_unlock_irqrestore(&tc->lock, flags);
2096 
2097 	blk_start_plug(&plug);
2098 	while ((bio = bio_list_pop(&bios))) {
2099 		/*
2100 		 * If we've got no free new_mapping structs, and processing
2101 		 * this bio might require one, we pause until there are some
2102 		 * prepared mappings to process.
2103 		 */
2104 		if (ensure_next_mapping(pool)) {
2105 			spin_lock_irqsave(&tc->lock, flags);
2106 			bio_list_add(&tc->deferred_bio_list, bio);
2107 			bio_list_merge(&tc->deferred_bio_list, &bios);
2108 			spin_unlock_irqrestore(&tc->lock, flags);
2109 			break;
2110 		}
2111 
2112 		if (bio_op(bio) == REQ_OP_DISCARD)
2113 			pool->process_discard(tc, bio);
2114 		else
2115 			pool->process_bio(tc, bio);
2116 
2117 		if ((count++ & 127) == 0) {
2118 			throttle_work_update(&pool->throttle);
2119 			dm_pool_issue_prefetches(pool->pmd);
2120 		}
2121 	}
2122 	blk_finish_plug(&plug);
2123 }
2124 
2125 static int cmp_cells(const void *lhs, const void *rhs)
2126 {
2127 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2128 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2129 
2130 	BUG_ON(!lhs_cell->holder);
2131 	BUG_ON(!rhs_cell->holder);
2132 
2133 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2134 		return -1;
2135 
2136 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2137 		return 1;
2138 
2139 	return 0;
2140 }
2141 
2142 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2143 {
2144 	unsigned count = 0;
2145 	struct dm_bio_prison_cell *cell, *tmp;
2146 
2147 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2148 		if (count >= CELL_SORT_ARRAY_SIZE)
2149 			break;
2150 
2151 		pool->cell_sort_array[count++] = cell;
2152 		list_del(&cell->user_list);
2153 	}
2154 
2155 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2156 
2157 	return count;
2158 }
2159 
2160 static void process_thin_deferred_cells(struct thin_c *tc)
2161 {
2162 	struct pool *pool = tc->pool;
2163 	unsigned long flags;
2164 	struct list_head cells;
2165 	struct dm_bio_prison_cell *cell;
2166 	unsigned i, j, count;
2167 
2168 	INIT_LIST_HEAD(&cells);
2169 
2170 	spin_lock_irqsave(&tc->lock, flags);
2171 	list_splice_init(&tc->deferred_cells, &cells);
2172 	spin_unlock_irqrestore(&tc->lock, flags);
2173 
2174 	if (list_empty(&cells))
2175 		return;
2176 
2177 	do {
2178 		count = sort_cells(tc->pool, &cells);
2179 
2180 		for (i = 0; i < count; i++) {
2181 			cell = pool->cell_sort_array[i];
2182 			BUG_ON(!cell->holder);
2183 
2184 			/*
2185 			 * If we've got no free new_mapping structs, and processing
2186 			 * this bio might require one, we pause until there are some
2187 			 * prepared mappings to process.
2188 			 */
2189 			if (ensure_next_mapping(pool)) {
2190 				for (j = i; j < count; j++)
2191 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2192 
2193 				spin_lock_irqsave(&tc->lock, flags);
2194 				list_splice(&cells, &tc->deferred_cells);
2195 				spin_unlock_irqrestore(&tc->lock, flags);
2196 				return;
2197 			}
2198 
2199 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2200 				pool->process_discard_cell(tc, cell);
2201 			else
2202 				pool->process_cell(tc, cell);
2203 		}
2204 	} while (!list_empty(&cells));
2205 }
2206 
2207 static void thin_get(struct thin_c *tc);
2208 static void thin_put(struct thin_c *tc);
2209 
2210 /*
2211  * We can't hold rcu_read_lock() around code that can block.  So we
2212  * find a thin with the rcu lock held; bump a refcount; then drop
2213  * the lock.
2214  */
2215 static struct thin_c *get_first_thin(struct pool *pool)
2216 {
2217 	struct thin_c *tc = NULL;
2218 
2219 	rcu_read_lock();
2220 	if (!list_empty(&pool->active_thins)) {
2221 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2222 		thin_get(tc);
2223 	}
2224 	rcu_read_unlock();
2225 
2226 	return tc;
2227 }
2228 
2229 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2230 {
2231 	struct thin_c *old_tc = tc;
2232 
2233 	rcu_read_lock();
2234 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2235 		thin_get(tc);
2236 		thin_put(old_tc);
2237 		rcu_read_unlock();
2238 		return tc;
2239 	}
2240 	thin_put(old_tc);
2241 	rcu_read_unlock();
2242 
2243 	return NULL;
2244 }
2245 
2246 static void process_deferred_bios(struct pool *pool)
2247 {
2248 	unsigned long flags;
2249 	struct bio *bio;
2250 	struct bio_list bios;
2251 	struct thin_c *tc;
2252 
2253 	tc = get_first_thin(pool);
2254 	while (tc) {
2255 		process_thin_deferred_cells(tc);
2256 		process_thin_deferred_bios(tc);
2257 		tc = get_next_thin(pool, tc);
2258 	}
2259 
2260 	/*
2261 	 * If there are any deferred flush bios, we must commit
2262 	 * the metadata before issuing them.
2263 	 */
2264 	bio_list_init(&bios);
2265 	spin_lock_irqsave(&pool->lock, flags);
2266 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2267 	bio_list_init(&pool->deferred_flush_bios);
2268 	spin_unlock_irqrestore(&pool->lock, flags);
2269 
2270 	if (bio_list_empty(&bios) &&
2271 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2272 		return;
2273 
2274 	if (commit(pool)) {
2275 		while ((bio = bio_list_pop(&bios)))
2276 			bio_io_error(bio);
2277 		return;
2278 	}
2279 	pool->last_commit_jiffies = jiffies;
2280 
2281 	while ((bio = bio_list_pop(&bios)))
2282 		generic_make_request(bio);
2283 }
2284 
2285 static void do_worker(struct work_struct *ws)
2286 {
2287 	struct pool *pool = container_of(ws, struct pool, worker);
2288 
2289 	throttle_work_start(&pool->throttle);
2290 	dm_pool_issue_prefetches(pool->pmd);
2291 	throttle_work_update(&pool->throttle);
2292 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2293 	throttle_work_update(&pool->throttle);
2294 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2295 	throttle_work_update(&pool->throttle);
2296 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2297 	throttle_work_update(&pool->throttle);
2298 	process_deferred_bios(pool);
2299 	throttle_work_complete(&pool->throttle);
2300 }
2301 
2302 /*
2303  * We want to commit periodically so that not too much
2304  * unwritten data builds up.
2305  */
2306 static void do_waker(struct work_struct *ws)
2307 {
2308 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2309 	wake_worker(pool);
2310 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2311 }
2312 
2313 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2314 
2315 /*
2316  * We're holding onto IO to allow userland time to react.  After the
2317  * timeout either the pool will have been resized (and thus back in
2318  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2319  */
2320 static void do_no_space_timeout(struct work_struct *ws)
2321 {
2322 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2323 					 no_space_timeout);
2324 
2325 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2326 		pool->pf.error_if_no_space = true;
2327 		notify_of_pool_mode_change_to_oods(pool);
2328 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2329 	}
2330 }
2331 
2332 /*----------------------------------------------------------------*/
2333 
2334 struct pool_work {
2335 	struct work_struct worker;
2336 	struct completion complete;
2337 };
2338 
2339 static struct pool_work *to_pool_work(struct work_struct *ws)
2340 {
2341 	return container_of(ws, struct pool_work, worker);
2342 }
2343 
2344 static void pool_work_complete(struct pool_work *pw)
2345 {
2346 	complete(&pw->complete);
2347 }
2348 
2349 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2350 			   void (*fn)(struct work_struct *))
2351 {
2352 	INIT_WORK_ONSTACK(&pw->worker, fn);
2353 	init_completion(&pw->complete);
2354 	queue_work(pool->wq, &pw->worker);
2355 	wait_for_completion(&pw->complete);
2356 }
2357 
2358 /*----------------------------------------------------------------*/
2359 
2360 struct noflush_work {
2361 	struct pool_work pw;
2362 	struct thin_c *tc;
2363 };
2364 
2365 static struct noflush_work *to_noflush(struct work_struct *ws)
2366 {
2367 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2368 }
2369 
2370 static void do_noflush_start(struct work_struct *ws)
2371 {
2372 	struct noflush_work *w = to_noflush(ws);
2373 	w->tc->requeue_mode = true;
2374 	requeue_io(w->tc);
2375 	pool_work_complete(&w->pw);
2376 }
2377 
2378 static void do_noflush_stop(struct work_struct *ws)
2379 {
2380 	struct noflush_work *w = to_noflush(ws);
2381 	w->tc->requeue_mode = false;
2382 	pool_work_complete(&w->pw);
2383 }
2384 
2385 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2386 {
2387 	struct noflush_work w;
2388 
2389 	w.tc = tc;
2390 	pool_work_wait(&w.pw, tc->pool, fn);
2391 }
2392 
2393 /*----------------------------------------------------------------*/
2394 
2395 static enum pool_mode get_pool_mode(struct pool *pool)
2396 {
2397 	return pool->pf.mode;
2398 }
2399 
2400 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2401 {
2402 	dm_table_event(pool->ti->table);
2403 	DMINFO("%s: switching pool to %s mode",
2404 	       dm_device_name(pool->pool_md), new_mode);
2405 }
2406 
2407 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2408 {
2409 	if (!pool->pf.error_if_no_space)
2410 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2411 	else
2412 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2413 }
2414 
2415 static bool passdown_enabled(struct pool_c *pt)
2416 {
2417 	return pt->adjusted_pf.discard_passdown;
2418 }
2419 
2420 static void set_discard_callbacks(struct pool *pool)
2421 {
2422 	struct pool_c *pt = pool->ti->private;
2423 
2424 	if (passdown_enabled(pt)) {
2425 		pool->process_discard_cell = process_discard_cell_passdown;
2426 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2427 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2428 	} else {
2429 		pool->process_discard_cell = process_discard_cell_no_passdown;
2430 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2431 	}
2432 }
2433 
2434 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2435 {
2436 	struct pool_c *pt = pool->ti->private;
2437 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2438 	enum pool_mode old_mode = get_pool_mode(pool);
2439 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2440 
2441 	/*
2442 	 * Never allow the pool to transition to PM_WRITE mode if user
2443 	 * intervention is required to verify metadata and data consistency.
2444 	 */
2445 	if (new_mode == PM_WRITE && needs_check) {
2446 		DMERR("%s: unable to switch pool to write mode until repaired.",
2447 		      dm_device_name(pool->pool_md));
2448 		if (old_mode != new_mode)
2449 			new_mode = old_mode;
2450 		else
2451 			new_mode = PM_READ_ONLY;
2452 	}
2453 	/*
2454 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2455 	 * not going to recover without a thin_repair.	So we never let the
2456 	 * pool move out of the old mode.
2457 	 */
2458 	if (old_mode == PM_FAIL)
2459 		new_mode = old_mode;
2460 
2461 	switch (new_mode) {
2462 	case PM_FAIL:
2463 		if (old_mode != new_mode)
2464 			notify_of_pool_mode_change(pool, "failure");
2465 		dm_pool_metadata_read_only(pool->pmd);
2466 		pool->process_bio = process_bio_fail;
2467 		pool->process_discard = process_bio_fail;
2468 		pool->process_cell = process_cell_fail;
2469 		pool->process_discard_cell = process_cell_fail;
2470 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2471 		pool->process_prepared_discard = process_prepared_discard_fail;
2472 
2473 		error_retry_list(pool);
2474 		break;
2475 
2476 	case PM_READ_ONLY:
2477 		if (old_mode != new_mode)
2478 			notify_of_pool_mode_change(pool, "read-only");
2479 		dm_pool_metadata_read_only(pool->pmd);
2480 		pool->process_bio = process_bio_read_only;
2481 		pool->process_discard = process_bio_success;
2482 		pool->process_cell = process_cell_read_only;
2483 		pool->process_discard_cell = process_cell_success;
2484 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2485 		pool->process_prepared_discard = process_prepared_discard_success;
2486 
2487 		error_retry_list(pool);
2488 		break;
2489 
2490 	case PM_OUT_OF_DATA_SPACE:
2491 		/*
2492 		 * Ideally we'd never hit this state; the low water mark
2493 		 * would trigger userland to extend the pool before we
2494 		 * completely run out of data space.  However, many small
2495 		 * IOs to unprovisioned space can consume data space at an
2496 		 * alarming rate.  Adjust your low water mark if you're
2497 		 * frequently seeing this mode.
2498 		 */
2499 		if (old_mode != new_mode)
2500 			notify_of_pool_mode_change_to_oods(pool);
2501 		pool->out_of_data_space = true;
2502 		pool->process_bio = process_bio_read_only;
2503 		pool->process_discard = process_discard_bio;
2504 		pool->process_cell = process_cell_read_only;
2505 		pool->process_prepared_mapping = process_prepared_mapping;
2506 		set_discard_callbacks(pool);
2507 
2508 		if (!pool->pf.error_if_no_space && no_space_timeout)
2509 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2510 		break;
2511 
2512 	case PM_WRITE:
2513 		if (old_mode != new_mode)
2514 			notify_of_pool_mode_change(pool, "write");
2515 		pool->out_of_data_space = false;
2516 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2517 		dm_pool_metadata_read_write(pool->pmd);
2518 		pool->process_bio = process_bio;
2519 		pool->process_discard = process_discard_bio;
2520 		pool->process_cell = process_cell;
2521 		pool->process_prepared_mapping = process_prepared_mapping;
2522 		set_discard_callbacks(pool);
2523 		break;
2524 	}
2525 
2526 	pool->pf.mode = new_mode;
2527 	/*
2528 	 * The pool mode may have changed, sync it so bind_control_target()
2529 	 * doesn't cause an unexpected mode transition on resume.
2530 	 */
2531 	pt->adjusted_pf.mode = new_mode;
2532 }
2533 
2534 static void abort_transaction(struct pool *pool)
2535 {
2536 	const char *dev_name = dm_device_name(pool->pool_md);
2537 
2538 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2539 	if (dm_pool_abort_metadata(pool->pmd)) {
2540 		DMERR("%s: failed to abort metadata transaction", dev_name);
2541 		set_pool_mode(pool, PM_FAIL);
2542 	}
2543 
2544 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2545 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2546 		set_pool_mode(pool, PM_FAIL);
2547 	}
2548 }
2549 
2550 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2551 {
2552 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2553 		    dm_device_name(pool->pool_md), op, r);
2554 
2555 	abort_transaction(pool);
2556 	set_pool_mode(pool, PM_READ_ONLY);
2557 }
2558 
2559 /*----------------------------------------------------------------*/
2560 
2561 /*
2562  * Mapping functions.
2563  */
2564 
2565 /*
2566  * Called only while mapping a thin bio to hand it over to the workqueue.
2567  */
2568 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2569 {
2570 	unsigned long flags;
2571 	struct pool *pool = tc->pool;
2572 
2573 	spin_lock_irqsave(&tc->lock, flags);
2574 	bio_list_add(&tc->deferred_bio_list, bio);
2575 	spin_unlock_irqrestore(&tc->lock, flags);
2576 
2577 	wake_worker(pool);
2578 }
2579 
2580 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2581 {
2582 	struct pool *pool = tc->pool;
2583 
2584 	throttle_lock(&pool->throttle);
2585 	thin_defer_bio(tc, bio);
2586 	throttle_unlock(&pool->throttle);
2587 }
2588 
2589 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2590 {
2591 	unsigned long flags;
2592 	struct pool *pool = tc->pool;
2593 
2594 	throttle_lock(&pool->throttle);
2595 	spin_lock_irqsave(&tc->lock, flags);
2596 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2597 	spin_unlock_irqrestore(&tc->lock, flags);
2598 	throttle_unlock(&pool->throttle);
2599 
2600 	wake_worker(pool);
2601 }
2602 
2603 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2604 {
2605 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2606 
2607 	h->tc = tc;
2608 	h->shared_read_entry = NULL;
2609 	h->all_io_entry = NULL;
2610 	h->overwrite_mapping = NULL;
2611 	h->cell = NULL;
2612 }
2613 
2614 /*
2615  * Non-blocking function called from the thin target's map function.
2616  */
2617 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2618 {
2619 	int r;
2620 	struct thin_c *tc = ti->private;
2621 	dm_block_t block = get_bio_block(tc, bio);
2622 	struct dm_thin_device *td = tc->td;
2623 	struct dm_thin_lookup_result result;
2624 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2625 	struct dm_cell_key key;
2626 
2627 	thin_hook_bio(tc, bio);
2628 
2629 	if (tc->requeue_mode) {
2630 		bio->bi_status = BLK_STS_DM_REQUEUE;
2631 		bio_endio(bio);
2632 		return DM_MAPIO_SUBMITTED;
2633 	}
2634 
2635 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2636 		bio_io_error(bio);
2637 		return DM_MAPIO_SUBMITTED;
2638 	}
2639 
2640 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2641 		thin_defer_bio_with_throttle(tc, bio);
2642 		return DM_MAPIO_SUBMITTED;
2643 	}
2644 
2645 	/*
2646 	 * We must hold the virtual cell before doing the lookup, otherwise
2647 	 * there's a race with discard.
2648 	 */
2649 	build_virtual_key(tc->td, block, &key);
2650 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2651 		return DM_MAPIO_SUBMITTED;
2652 
2653 	r = dm_thin_find_block(td, block, 0, &result);
2654 
2655 	/*
2656 	 * Note that we defer readahead too.
2657 	 */
2658 	switch (r) {
2659 	case 0:
2660 		if (unlikely(result.shared)) {
2661 			/*
2662 			 * We have a race condition here between the
2663 			 * result.shared value returned by the lookup and
2664 			 * snapshot creation, which may cause new
2665 			 * sharing.
2666 			 *
2667 			 * To avoid this always quiesce the origin before
2668 			 * taking the snap.  You want to do this anyway to
2669 			 * ensure a consistent application view
2670 			 * (i.e. lockfs).
2671 			 *
2672 			 * More distant ancestors are irrelevant. The
2673 			 * shared flag will be set in their case.
2674 			 */
2675 			thin_defer_cell(tc, virt_cell);
2676 			return DM_MAPIO_SUBMITTED;
2677 		}
2678 
2679 		build_data_key(tc->td, result.block, &key);
2680 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2681 			cell_defer_no_holder(tc, virt_cell);
2682 			return DM_MAPIO_SUBMITTED;
2683 		}
2684 
2685 		inc_all_io_entry(tc->pool, bio);
2686 		cell_defer_no_holder(tc, data_cell);
2687 		cell_defer_no_holder(tc, virt_cell);
2688 
2689 		remap(tc, bio, result.block);
2690 		return DM_MAPIO_REMAPPED;
2691 
2692 	case -ENODATA:
2693 	case -EWOULDBLOCK:
2694 		thin_defer_cell(tc, virt_cell);
2695 		return DM_MAPIO_SUBMITTED;
2696 
2697 	default:
2698 		/*
2699 		 * Must always call bio_io_error on failure.
2700 		 * dm_thin_find_block can fail with -EINVAL if the
2701 		 * pool is switched to fail-io mode.
2702 		 */
2703 		bio_io_error(bio);
2704 		cell_defer_no_holder(tc, virt_cell);
2705 		return DM_MAPIO_SUBMITTED;
2706 	}
2707 }
2708 
2709 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2710 {
2711 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2712 	struct request_queue *q;
2713 
2714 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2715 		return 1;
2716 
2717 	q = bdev_get_queue(pt->data_dev->bdev);
2718 	return bdi_congested(q->backing_dev_info, bdi_bits);
2719 }
2720 
2721 static void requeue_bios(struct pool *pool)
2722 {
2723 	unsigned long flags;
2724 	struct thin_c *tc;
2725 
2726 	rcu_read_lock();
2727 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2728 		spin_lock_irqsave(&tc->lock, flags);
2729 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2730 		bio_list_init(&tc->retry_on_resume_list);
2731 		spin_unlock_irqrestore(&tc->lock, flags);
2732 	}
2733 	rcu_read_unlock();
2734 }
2735 
2736 /*----------------------------------------------------------------
2737  * Binding of control targets to a pool object
2738  *--------------------------------------------------------------*/
2739 static bool data_dev_supports_discard(struct pool_c *pt)
2740 {
2741 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2742 
2743 	return q && blk_queue_discard(q);
2744 }
2745 
2746 static bool is_factor(sector_t block_size, uint32_t n)
2747 {
2748 	return !sector_div(block_size, n);
2749 }
2750 
2751 /*
2752  * If discard_passdown was enabled verify that the data device
2753  * supports discards.  Disable discard_passdown if not.
2754  */
2755 static void disable_passdown_if_not_supported(struct pool_c *pt)
2756 {
2757 	struct pool *pool = pt->pool;
2758 	struct block_device *data_bdev = pt->data_dev->bdev;
2759 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2760 	const char *reason = NULL;
2761 	char buf[BDEVNAME_SIZE];
2762 
2763 	if (!pt->adjusted_pf.discard_passdown)
2764 		return;
2765 
2766 	if (!data_dev_supports_discard(pt))
2767 		reason = "discard unsupported";
2768 
2769 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2770 		reason = "max discard sectors smaller than a block";
2771 
2772 	if (reason) {
2773 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2774 		pt->adjusted_pf.discard_passdown = false;
2775 	}
2776 }
2777 
2778 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2779 {
2780 	struct pool_c *pt = ti->private;
2781 
2782 	/*
2783 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2784 	 */
2785 	enum pool_mode old_mode = get_pool_mode(pool);
2786 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2787 
2788 	/*
2789 	 * Don't change the pool's mode until set_pool_mode() below.
2790 	 * Otherwise the pool's process_* function pointers may
2791 	 * not match the desired pool mode.
2792 	 */
2793 	pt->adjusted_pf.mode = old_mode;
2794 
2795 	pool->ti = ti;
2796 	pool->pf = pt->adjusted_pf;
2797 	pool->low_water_blocks = pt->low_water_blocks;
2798 
2799 	set_pool_mode(pool, new_mode);
2800 
2801 	return 0;
2802 }
2803 
2804 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2805 {
2806 	if (pool->ti == ti)
2807 		pool->ti = NULL;
2808 }
2809 
2810 /*----------------------------------------------------------------
2811  * Pool creation
2812  *--------------------------------------------------------------*/
2813 /* Initialize pool features. */
2814 static void pool_features_init(struct pool_features *pf)
2815 {
2816 	pf->mode = PM_WRITE;
2817 	pf->zero_new_blocks = true;
2818 	pf->discard_enabled = true;
2819 	pf->discard_passdown = true;
2820 	pf->error_if_no_space = false;
2821 }
2822 
2823 static void __pool_destroy(struct pool *pool)
2824 {
2825 	__pool_table_remove(pool);
2826 
2827 	vfree(pool->cell_sort_array);
2828 	if (dm_pool_metadata_close(pool->pmd) < 0)
2829 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2830 
2831 	dm_bio_prison_destroy(pool->prison);
2832 	dm_kcopyd_client_destroy(pool->copier);
2833 
2834 	if (pool->wq)
2835 		destroy_workqueue(pool->wq);
2836 
2837 	if (pool->next_mapping)
2838 		mempool_free(pool->next_mapping, pool->mapping_pool);
2839 	mempool_destroy(pool->mapping_pool);
2840 	dm_deferred_set_destroy(pool->shared_read_ds);
2841 	dm_deferred_set_destroy(pool->all_io_ds);
2842 	kfree(pool);
2843 }
2844 
2845 static struct kmem_cache *_new_mapping_cache;
2846 
2847 static struct pool *pool_create(struct mapped_device *pool_md,
2848 				struct block_device *metadata_dev,
2849 				unsigned long block_size,
2850 				int read_only, char **error)
2851 {
2852 	int r;
2853 	void *err_p;
2854 	struct pool *pool;
2855 	struct dm_pool_metadata *pmd;
2856 	bool format_device = read_only ? false : true;
2857 
2858 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2859 	if (IS_ERR(pmd)) {
2860 		*error = "Error creating metadata object";
2861 		return (struct pool *)pmd;
2862 	}
2863 
2864 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2865 	if (!pool) {
2866 		*error = "Error allocating memory for pool";
2867 		err_p = ERR_PTR(-ENOMEM);
2868 		goto bad_pool;
2869 	}
2870 
2871 	pool->pmd = pmd;
2872 	pool->sectors_per_block = block_size;
2873 	if (block_size & (block_size - 1))
2874 		pool->sectors_per_block_shift = -1;
2875 	else
2876 		pool->sectors_per_block_shift = __ffs(block_size);
2877 	pool->low_water_blocks = 0;
2878 	pool_features_init(&pool->pf);
2879 	pool->prison = dm_bio_prison_create();
2880 	if (!pool->prison) {
2881 		*error = "Error creating pool's bio prison";
2882 		err_p = ERR_PTR(-ENOMEM);
2883 		goto bad_prison;
2884 	}
2885 
2886 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2887 	if (IS_ERR(pool->copier)) {
2888 		r = PTR_ERR(pool->copier);
2889 		*error = "Error creating pool's kcopyd client";
2890 		err_p = ERR_PTR(r);
2891 		goto bad_kcopyd_client;
2892 	}
2893 
2894 	/*
2895 	 * Create singlethreaded workqueue that will service all devices
2896 	 * that use this metadata.
2897 	 */
2898 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2899 	if (!pool->wq) {
2900 		*error = "Error creating pool's workqueue";
2901 		err_p = ERR_PTR(-ENOMEM);
2902 		goto bad_wq;
2903 	}
2904 
2905 	throttle_init(&pool->throttle);
2906 	INIT_WORK(&pool->worker, do_worker);
2907 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2908 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2909 	spin_lock_init(&pool->lock);
2910 	bio_list_init(&pool->deferred_flush_bios);
2911 	INIT_LIST_HEAD(&pool->prepared_mappings);
2912 	INIT_LIST_HEAD(&pool->prepared_discards);
2913 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2914 	INIT_LIST_HEAD(&pool->active_thins);
2915 	pool->low_water_triggered = false;
2916 	pool->suspended = true;
2917 	pool->out_of_data_space = false;
2918 
2919 	pool->shared_read_ds = dm_deferred_set_create();
2920 	if (!pool->shared_read_ds) {
2921 		*error = "Error creating pool's shared read deferred set";
2922 		err_p = ERR_PTR(-ENOMEM);
2923 		goto bad_shared_read_ds;
2924 	}
2925 
2926 	pool->all_io_ds = dm_deferred_set_create();
2927 	if (!pool->all_io_ds) {
2928 		*error = "Error creating pool's all io deferred set";
2929 		err_p = ERR_PTR(-ENOMEM);
2930 		goto bad_all_io_ds;
2931 	}
2932 
2933 	pool->next_mapping = NULL;
2934 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2935 						      _new_mapping_cache);
2936 	if (!pool->mapping_pool) {
2937 		*error = "Error creating pool's mapping mempool";
2938 		err_p = ERR_PTR(-ENOMEM);
2939 		goto bad_mapping_pool;
2940 	}
2941 
2942 	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2943 	if (!pool->cell_sort_array) {
2944 		*error = "Error allocating cell sort array";
2945 		err_p = ERR_PTR(-ENOMEM);
2946 		goto bad_sort_array;
2947 	}
2948 
2949 	pool->ref_count = 1;
2950 	pool->last_commit_jiffies = jiffies;
2951 	pool->pool_md = pool_md;
2952 	pool->md_dev = metadata_dev;
2953 	__pool_table_insert(pool);
2954 
2955 	return pool;
2956 
2957 bad_sort_array:
2958 	mempool_destroy(pool->mapping_pool);
2959 bad_mapping_pool:
2960 	dm_deferred_set_destroy(pool->all_io_ds);
2961 bad_all_io_ds:
2962 	dm_deferred_set_destroy(pool->shared_read_ds);
2963 bad_shared_read_ds:
2964 	destroy_workqueue(pool->wq);
2965 bad_wq:
2966 	dm_kcopyd_client_destroy(pool->copier);
2967 bad_kcopyd_client:
2968 	dm_bio_prison_destroy(pool->prison);
2969 bad_prison:
2970 	kfree(pool);
2971 bad_pool:
2972 	if (dm_pool_metadata_close(pmd))
2973 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2974 
2975 	return err_p;
2976 }
2977 
2978 static void __pool_inc(struct pool *pool)
2979 {
2980 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2981 	pool->ref_count++;
2982 }
2983 
2984 static void __pool_dec(struct pool *pool)
2985 {
2986 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2987 	BUG_ON(!pool->ref_count);
2988 	if (!--pool->ref_count)
2989 		__pool_destroy(pool);
2990 }
2991 
2992 static struct pool *__pool_find(struct mapped_device *pool_md,
2993 				struct block_device *metadata_dev,
2994 				unsigned long block_size, int read_only,
2995 				char **error, int *created)
2996 {
2997 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2998 
2999 	if (pool) {
3000 		if (pool->pool_md != pool_md) {
3001 			*error = "metadata device already in use by a pool";
3002 			return ERR_PTR(-EBUSY);
3003 		}
3004 		__pool_inc(pool);
3005 
3006 	} else {
3007 		pool = __pool_table_lookup(pool_md);
3008 		if (pool) {
3009 			if (pool->md_dev != metadata_dev) {
3010 				*error = "different pool cannot replace a pool";
3011 				return ERR_PTR(-EINVAL);
3012 			}
3013 			__pool_inc(pool);
3014 
3015 		} else {
3016 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3017 			*created = 1;
3018 		}
3019 	}
3020 
3021 	return pool;
3022 }
3023 
3024 /*----------------------------------------------------------------
3025  * Pool target methods
3026  *--------------------------------------------------------------*/
3027 static void pool_dtr(struct dm_target *ti)
3028 {
3029 	struct pool_c *pt = ti->private;
3030 
3031 	mutex_lock(&dm_thin_pool_table.mutex);
3032 
3033 	unbind_control_target(pt->pool, ti);
3034 	__pool_dec(pt->pool);
3035 	dm_put_device(ti, pt->metadata_dev);
3036 	dm_put_device(ti, pt->data_dev);
3037 	kfree(pt);
3038 
3039 	mutex_unlock(&dm_thin_pool_table.mutex);
3040 }
3041 
3042 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3043 			       struct dm_target *ti)
3044 {
3045 	int r;
3046 	unsigned argc;
3047 	const char *arg_name;
3048 
3049 	static const struct dm_arg _args[] = {
3050 		{0, 4, "Invalid number of pool feature arguments"},
3051 	};
3052 
3053 	/*
3054 	 * No feature arguments supplied.
3055 	 */
3056 	if (!as->argc)
3057 		return 0;
3058 
3059 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3060 	if (r)
3061 		return -EINVAL;
3062 
3063 	while (argc && !r) {
3064 		arg_name = dm_shift_arg(as);
3065 		argc--;
3066 
3067 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3068 			pf->zero_new_blocks = false;
3069 
3070 		else if (!strcasecmp(arg_name, "ignore_discard"))
3071 			pf->discard_enabled = false;
3072 
3073 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3074 			pf->discard_passdown = false;
3075 
3076 		else if (!strcasecmp(arg_name, "read_only"))
3077 			pf->mode = PM_READ_ONLY;
3078 
3079 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3080 			pf->error_if_no_space = true;
3081 
3082 		else {
3083 			ti->error = "Unrecognised pool feature requested";
3084 			r = -EINVAL;
3085 			break;
3086 		}
3087 	}
3088 
3089 	return r;
3090 }
3091 
3092 static void metadata_low_callback(void *context)
3093 {
3094 	struct pool *pool = context;
3095 
3096 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3097 	       dm_device_name(pool->pool_md));
3098 
3099 	dm_table_event(pool->ti->table);
3100 }
3101 
3102 static sector_t get_dev_size(struct block_device *bdev)
3103 {
3104 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3105 }
3106 
3107 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3108 {
3109 	sector_t metadata_dev_size = get_dev_size(bdev);
3110 	char buffer[BDEVNAME_SIZE];
3111 
3112 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3113 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3114 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3115 }
3116 
3117 static sector_t get_metadata_dev_size(struct block_device *bdev)
3118 {
3119 	sector_t metadata_dev_size = get_dev_size(bdev);
3120 
3121 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3122 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3123 
3124 	return metadata_dev_size;
3125 }
3126 
3127 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3128 {
3129 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3130 
3131 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3132 
3133 	return metadata_dev_size;
3134 }
3135 
3136 /*
3137  * When a metadata threshold is crossed a dm event is triggered, and
3138  * userland should respond by growing the metadata device.  We could let
3139  * userland set the threshold, like we do with the data threshold, but I'm
3140  * not sure they know enough to do this well.
3141  */
3142 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3143 {
3144 	/*
3145 	 * 4M is ample for all ops with the possible exception of thin
3146 	 * device deletion which is harmless if it fails (just retry the
3147 	 * delete after you've grown the device).
3148 	 */
3149 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3150 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3151 }
3152 
3153 /*
3154  * thin-pool <metadata dev> <data dev>
3155  *	     <data block size (sectors)>
3156  *	     <low water mark (blocks)>
3157  *	     [<#feature args> [<arg>]*]
3158  *
3159  * Optional feature arguments are:
3160  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3161  *	     ignore_discard: disable discard
3162  *	     no_discard_passdown: don't pass discards down to the data device
3163  *	     read_only: Don't allow any changes to be made to the pool metadata.
3164  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3165  */
3166 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3167 {
3168 	int r, pool_created = 0;
3169 	struct pool_c *pt;
3170 	struct pool *pool;
3171 	struct pool_features pf;
3172 	struct dm_arg_set as;
3173 	struct dm_dev *data_dev;
3174 	unsigned long block_size;
3175 	dm_block_t low_water_blocks;
3176 	struct dm_dev *metadata_dev;
3177 	fmode_t metadata_mode;
3178 
3179 	/*
3180 	 * FIXME Remove validation from scope of lock.
3181 	 */
3182 	mutex_lock(&dm_thin_pool_table.mutex);
3183 
3184 	if (argc < 4) {
3185 		ti->error = "Invalid argument count";
3186 		r = -EINVAL;
3187 		goto out_unlock;
3188 	}
3189 
3190 	as.argc = argc;
3191 	as.argv = argv;
3192 
3193 	/*
3194 	 * Set default pool features.
3195 	 */
3196 	pool_features_init(&pf);
3197 
3198 	dm_consume_args(&as, 4);
3199 	r = parse_pool_features(&as, &pf, ti);
3200 	if (r)
3201 		goto out_unlock;
3202 
3203 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3204 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3205 	if (r) {
3206 		ti->error = "Error opening metadata block device";
3207 		goto out_unlock;
3208 	}
3209 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3210 
3211 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3212 	if (r) {
3213 		ti->error = "Error getting data device";
3214 		goto out_metadata;
3215 	}
3216 
3217 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3218 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3219 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3220 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3221 		ti->error = "Invalid block size";
3222 		r = -EINVAL;
3223 		goto out;
3224 	}
3225 
3226 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3227 		ti->error = "Invalid low water mark";
3228 		r = -EINVAL;
3229 		goto out;
3230 	}
3231 
3232 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3233 	if (!pt) {
3234 		r = -ENOMEM;
3235 		goto out;
3236 	}
3237 
3238 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3239 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3240 	if (IS_ERR(pool)) {
3241 		r = PTR_ERR(pool);
3242 		goto out_free_pt;
3243 	}
3244 
3245 	/*
3246 	 * 'pool_created' reflects whether this is the first table load.
3247 	 * Top level discard support is not allowed to be changed after
3248 	 * initial load.  This would require a pool reload to trigger thin
3249 	 * device changes.
3250 	 */
3251 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3252 		ti->error = "Discard support cannot be disabled once enabled";
3253 		r = -EINVAL;
3254 		goto out_flags_changed;
3255 	}
3256 
3257 	pt->pool = pool;
3258 	pt->ti = ti;
3259 	pt->metadata_dev = metadata_dev;
3260 	pt->data_dev = data_dev;
3261 	pt->low_water_blocks = low_water_blocks;
3262 	pt->adjusted_pf = pt->requested_pf = pf;
3263 	ti->num_flush_bios = 1;
3264 
3265 	/*
3266 	 * Only need to enable discards if the pool should pass
3267 	 * them down to the data device.  The thin device's discard
3268 	 * processing will cause mappings to be removed from the btree.
3269 	 */
3270 	if (pf.discard_enabled && pf.discard_passdown) {
3271 		ti->num_discard_bios = 1;
3272 
3273 		/*
3274 		 * Setting 'discards_supported' circumvents the normal
3275 		 * stacking of discard limits (this keeps the pool and
3276 		 * thin devices' discard limits consistent).
3277 		 */
3278 		ti->discards_supported = true;
3279 	}
3280 	ti->private = pt;
3281 
3282 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3283 						calc_metadata_threshold(pt),
3284 						metadata_low_callback,
3285 						pool);
3286 	if (r)
3287 		goto out_flags_changed;
3288 
3289 	pt->callbacks.congested_fn = pool_is_congested;
3290 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3291 
3292 	mutex_unlock(&dm_thin_pool_table.mutex);
3293 
3294 	return 0;
3295 
3296 out_flags_changed:
3297 	__pool_dec(pool);
3298 out_free_pt:
3299 	kfree(pt);
3300 out:
3301 	dm_put_device(ti, data_dev);
3302 out_metadata:
3303 	dm_put_device(ti, metadata_dev);
3304 out_unlock:
3305 	mutex_unlock(&dm_thin_pool_table.mutex);
3306 
3307 	return r;
3308 }
3309 
3310 static int pool_map(struct dm_target *ti, struct bio *bio)
3311 {
3312 	int r;
3313 	struct pool_c *pt = ti->private;
3314 	struct pool *pool = pt->pool;
3315 	unsigned long flags;
3316 
3317 	/*
3318 	 * As this is a singleton target, ti->begin is always zero.
3319 	 */
3320 	spin_lock_irqsave(&pool->lock, flags);
3321 	bio_set_dev(bio, pt->data_dev->bdev);
3322 	r = DM_MAPIO_REMAPPED;
3323 	spin_unlock_irqrestore(&pool->lock, flags);
3324 
3325 	return r;
3326 }
3327 
3328 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3329 {
3330 	int r;
3331 	struct pool_c *pt = ti->private;
3332 	struct pool *pool = pt->pool;
3333 	sector_t data_size = ti->len;
3334 	dm_block_t sb_data_size;
3335 
3336 	*need_commit = false;
3337 
3338 	(void) sector_div(data_size, pool->sectors_per_block);
3339 
3340 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3341 	if (r) {
3342 		DMERR("%s: failed to retrieve data device size",
3343 		      dm_device_name(pool->pool_md));
3344 		return r;
3345 	}
3346 
3347 	if (data_size < sb_data_size) {
3348 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3349 		      dm_device_name(pool->pool_md),
3350 		      (unsigned long long)data_size, sb_data_size);
3351 		return -EINVAL;
3352 
3353 	} else if (data_size > sb_data_size) {
3354 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3355 			DMERR("%s: unable to grow the data device until repaired.",
3356 			      dm_device_name(pool->pool_md));
3357 			return 0;
3358 		}
3359 
3360 		if (sb_data_size)
3361 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3362 			       dm_device_name(pool->pool_md),
3363 			       sb_data_size, (unsigned long long)data_size);
3364 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3365 		if (r) {
3366 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3367 			return r;
3368 		}
3369 
3370 		*need_commit = true;
3371 	}
3372 
3373 	return 0;
3374 }
3375 
3376 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3377 {
3378 	int r;
3379 	struct pool_c *pt = ti->private;
3380 	struct pool *pool = pt->pool;
3381 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3382 
3383 	*need_commit = false;
3384 
3385 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3386 
3387 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3388 	if (r) {
3389 		DMERR("%s: failed to retrieve metadata device size",
3390 		      dm_device_name(pool->pool_md));
3391 		return r;
3392 	}
3393 
3394 	if (metadata_dev_size < sb_metadata_dev_size) {
3395 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3396 		      dm_device_name(pool->pool_md),
3397 		      metadata_dev_size, sb_metadata_dev_size);
3398 		return -EINVAL;
3399 
3400 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3401 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3402 			DMERR("%s: unable to grow the metadata device until repaired.",
3403 			      dm_device_name(pool->pool_md));
3404 			return 0;
3405 		}
3406 
3407 		warn_if_metadata_device_too_big(pool->md_dev);
3408 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3409 		       dm_device_name(pool->pool_md),
3410 		       sb_metadata_dev_size, metadata_dev_size);
3411 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3412 		if (r) {
3413 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3414 			return r;
3415 		}
3416 
3417 		*need_commit = true;
3418 	}
3419 
3420 	return 0;
3421 }
3422 
3423 /*
3424  * Retrieves the number of blocks of the data device from
3425  * the superblock and compares it to the actual device size,
3426  * thus resizing the data device in case it has grown.
3427  *
3428  * This both copes with opening preallocated data devices in the ctr
3429  * being followed by a resume
3430  * -and-
3431  * calling the resume method individually after userspace has
3432  * grown the data device in reaction to a table event.
3433  */
3434 static int pool_preresume(struct dm_target *ti)
3435 {
3436 	int r;
3437 	bool need_commit1, need_commit2;
3438 	struct pool_c *pt = ti->private;
3439 	struct pool *pool = pt->pool;
3440 
3441 	/*
3442 	 * Take control of the pool object.
3443 	 */
3444 	r = bind_control_target(pool, ti);
3445 	if (r)
3446 		return r;
3447 
3448 	r = maybe_resize_data_dev(ti, &need_commit1);
3449 	if (r)
3450 		return r;
3451 
3452 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3453 	if (r)
3454 		return r;
3455 
3456 	if (need_commit1 || need_commit2)
3457 		(void) commit(pool);
3458 
3459 	return 0;
3460 }
3461 
3462 static void pool_suspend_active_thins(struct pool *pool)
3463 {
3464 	struct thin_c *tc;
3465 
3466 	/* Suspend all active thin devices */
3467 	tc = get_first_thin(pool);
3468 	while (tc) {
3469 		dm_internal_suspend_noflush(tc->thin_md);
3470 		tc = get_next_thin(pool, tc);
3471 	}
3472 }
3473 
3474 static void pool_resume_active_thins(struct pool *pool)
3475 {
3476 	struct thin_c *tc;
3477 
3478 	/* Resume all active thin devices */
3479 	tc = get_first_thin(pool);
3480 	while (tc) {
3481 		dm_internal_resume(tc->thin_md);
3482 		tc = get_next_thin(pool, tc);
3483 	}
3484 }
3485 
3486 static void pool_resume(struct dm_target *ti)
3487 {
3488 	struct pool_c *pt = ti->private;
3489 	struct pool *pool = pt->pool;
3490 	unsigned long flags;
3491 
3492 	/*
3493 	 * Must requeue active_thins' bios and then resume
3494 	 * active_thins _before_ clearing 'suspend' flag.
3495 	 */
3496 	requeue_bios(pool);
3497 	pool_resume_active_thins(pool);
3498 
3499 	spin_lock_irqsave(&pool->lock, flags);
3500 	pool->low_water_triggered = false;
3501 	pool->suspended = false;
3502 	spin_unlock_irqrestore(&pool->lock, flags);
3503 
3504 	do_waker(&pool->waker.work);
3505 }
3506 
3507 static void pool_presuspend(struct dm_target *ti)
3508 {
3509 	struct pool_c *pt = ti->private;
3510 	struct pool *pool = pt->pool;
3511 	unsigned long flags;
3512 
3513 	spin_lock_irqsave(&pool->lock, flags);
3514 	pool->suspended = true;
3515 	spin_unlock_irqrestore(&pool->lock, flags);
3516 
3517 	pool_suspend_active_thins(pool);
3518 }
3519 
3520 static void pool_presuspend_undo(struct dm_target *ti)
3521 {
3522 	struct pool_c *pt = ti->private;
3523 	struct pool *pool = pt->pool;
3524 	unsigned long flags;
3525 
3526 	pool_resume_active_thins(pool);
3527 
3528 	spin_lock_irqsave(&pool->lock, flags);
3529 	pool->suspended = false;
3530 	spin_unlock_irqrestore(&pool->lock, flags);
3531 }
3532 
3533 static void pool_postsuspend(struct dm_target *ti)
3534 {
3535 	struct pool_c *pt = ti->private;
3536 	struct pool *pool = pt->pool;
3537 
3538 	cancel_delayed_work_sync(&pool->waker);
3539 	cancel_delayed_work_sync(&pool->no_space_timeout);
3540 	flush_workqueue(pool->wq);
3541 	(void) commit(pool);
3542 }
3543 
3544 static int check_arg_count(unsigned argc, unsigned args_required)
3545 {
3546 	if (argc != args_required) {
3547 		DMWARN("Message received with %u arguments instead of %u.",
3548 		       argc, args_required);
3549 		return -EINVAL;
3550 	}
3551 
3552 	return 0;
3553 }
3554 
3555 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3556 {
3557 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3558 	    *dev_id <= MAX_DEV_ID)
3559 		return 0;
3560 
3561 	if (warning)
3562 		DMWARN("Message received with invalid device id: %s", arg);
3563 
3564 	return -EINVAL;
3565 }
3566 
3567 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3568 {
3569 	dm_thin_id dev_id;
3570 	int r;
3571 
3572 	r = check_arg_count(argc, 2);
3573 	if (r)
3574 		return r;
3575 
3576 	r = read_dev_id(argv[1], &dev_id, 1);
3577 	if (r)
3578 		return r;
3579 
3580 	r = dm_pool_create_thin(pool->pmd, dev_id);
3581 	if (r) {
3582 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3583 		       argv[1]);
3584 		return r;
3585 	}
3586 
3587 	return 0;
3588 }
3589 
3590 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3591 {
3592 	dm_thin_id dev_id;
3593 	dm_thin_id origin_dev_id;
3594 	int r;
3595 
3596 	r = check_arg_count(argc, 3);
3597 	if (r)
3598 		return r;
3599 
3600 	r = read_dev_id(argv[1], &dev_id, 1);
3601 	if (r)
3602 		return r;
3603 
3604 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3605 	if (r)
3606 		return r;
3607 
3608 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3609 	if (r) {
3610 		DMWARN("Creation of new snapshot %s of device %s failed.",
3611 		       argv[1], argv[2]);
3612 		return r;
3613 	}
3614 
3615 	return 0;
3616 }
3617 
3618 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3619 {
3620 	dm_thin_id dev_id;
3621 	int r;
3622 
3623 	r = check_arg_count(argc, 2);
3624 	if (r)
3625 		return r;
3626 
3627 	r = read_dev_id(argv[1], &dev_id, 1);
3628 	if (r)
3629 		return r;
3630 
3631 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3632 	if (r)
3633 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3634 
3635 	return r;
3636 }
3637 
3638 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3639 {
3640 	dm_thin_id old_id, new_id;
3641 	int r;
3642 
3643 	r = check_arg_count(argc, 3);
3644 	if (r)
3645 		return r;
3646 
3647 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3648 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3649 		return -EINVAL;
3650 	}
3651 
3652 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3653 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3654 		return -EINVAL;
3655 	}
3656 
3657 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3658 	if (r) {
3659 		DMWARN("Failed to change transaction id from %s to %s.",
3660 		       argv[1], argv[2]);
3661 		return r;
3662 	}
3663 
3664 	return 0;
3665 }
3666 
3667 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3668 {
3669 	int r;
3670 
3671 	r = check_arg_count(argc, 1);
3672 	if (r)
3673 		return r;
3674 
3675 	(void) commit(pool);
3676 
3677 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3678 	if (r)
3679 		DMWARN("reserve_metadata_snap message failed.");
3680 
3681 	return r;
3682 }
3683 
3684 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3685 {
3686 	int r;
3687 
3688 	r = check_arg_count(argc, 1);
3689 	if (r)
3690 		return r;
3691 
3692 	r = dm_pool_release_metadata_snap(pool->pmd);
3693 	if (r)
3694 		DMWARN("release_metadata_snap message failed.");
3695 
3696 	return r;
3697 }
3698 
3699 /*
3700  * Messages supported:
3701  *   create_thin	<dev_id>
3702  *   create_snap	<dev_id> <origin_id>
3703  *   delete		<dev_id>
3704  *   set_transaction_id <current_trans_id> <new_trans_id>
3705  *   reserve_metadata_snap
3706  *   release_metadata_snap
3707  */
3708 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3709 {
3710 	int r = -EINVAL;
3711 	struct pool_c *pt = ti->private;
3712 	struct pool *pool = pt->pool;
3713 
3714 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3715 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3716 		      dm_device_name(pool->pool_md));
3717 		return -EOPNOTSUPP;
3718 	}
3719 
3720 	if (!strcasecmp(argv[0], "create_thin"))
3721 		r = process_create_thin_mesg(argc, argv, pool);
3722 
3723 	else if (!strcasecmp(argv[0], "create_snap"))
3724 		r = process_create_snap_mesg(argc, argv, pool);
3725 
3726 	else if (!strcasecmp(argv[0], "delete"))
3727 		r = process_delete_mesg(argc, argv, pool);
3728 
3729 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3730 		r = process_set_transaction_id_mesg(argc, argv, pool);
3731 
3732 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3733 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3734 
3735 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3736 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3737 
3738 	else
3739 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3740 
3741 	if (!r)
3742 		(void) commit(pool);
3743 
3744 	return r;
3745 }
3746 
3747 static void emit_flags(struct pool_features *pf, char *result,
3748 		       unsigned sz, unsigned maxlen)
3749 {
3750 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3751 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3752 		pf->error_if_no_space;
3753 	DMEMIT("%u ", count);
3754 
3755 	if (!pf->zero_new_blocks)
3756 		DMEMIT("skip_block_zeroing ");
3757 
3758 	if (!pf->discard_enabled)
3759 		DMEMIT("ignore_discard ");
3760 
3761 	if (!pf->discard_passdown)
3762 		DMEMIT("no_discard_passdown ");
3763 
3764 	if (pf->mode == PM_READ_ONLY)
3765 		DMEMIT("read_only ");
3766 
3767 	if (pf->error_if_no_space)
3768 		DMEMIT("error_if_no_space ");
3769 }
3770 
3771 /*
3772  * Status line is:
3773  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3774  *    <used data sectors>/<total data sectors> <held metadata root>
3775  *    <pool mode> <discard config> <no space config> <needs_check>
3776  */
3777 static void pool_status(struct dm_target *ti, status_type_t type,
3778 			unsigned status_flags, char *result, unsigned maxlen)
3779 {
3780 	int r;
3781 	unsigned sz = 0;
3782 	uint64_t transaction_id;
3783 	dm_block_t nr_free_blocks_data;
3784 	dm_block_t nr_free_blocks_metadata;
3785 	dm_block_t nr_blocks_data;
3786 	dm_block_t nr_blocks_metadata;
3787 	dm_block_t held_root;
3788 	char buf[BDEVNAME_SIZE];
3789 	char buf2[BDEVNAME_SIZE];
3790 	struct pool_c *pt = ti->private;
3791 	struct pool *pool = pt->pool;
3792 
3793 	switch (type) {
3794 	case STATUSTYPE_INFO:
3795 		if (get_pool_mode(pool) == PM_FAIL) {
3796 			DMEMIT("Fail");
3797 			break;
3798 		}
3799 
3800 		/* Commit to ensure statistics aren't out-of-date */
3801 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3802 			(void) commit(pool);
3803 
3804 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3805 		if (r) {
3806 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3807 			      dm_device_name(pool->pool_md), r);
3808 			goto err;
3809 		}
3810 
3811 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3812 		if (r) {
3813 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3814 			      dm_device_name(pool->pool_md), r);
3815 			goto err;
3816 		}
3817 
3818 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3819 		if (r) {
3820 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3821 			      dm_device_name(pool->pool_md), r);
3822 			goto err;
3823 		}
3824 
3825 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3826 		if (r) {
3827 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3828 			      dm_device_name(pool->pool_md), r);
3829 			goto err;
3830 		}
3831 
3832 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3833 		if (r) {
3834 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3835 			      dm_device_name(pool->pool_md), r);
3836 			goto err;
3837 		}
3838 
3839 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3840 		if (r) {
3841 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3842 			      dm_device_name(pool->pool_md), r);
3843 			goto err;
3844 		}
3845 
3846 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3847 		       (unsigned long long)transaction_id,
3848 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3849 		       (unsigned long long)nr_blocks_metadata,
3850 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3851 		       (unsigned long long)nr_blocks_data);
3852 
3853 		if (held_root)
3854 			DMEMIT("%llu ", held_root);
3855 		else
3856 			DMEMIT("- ");
3857 
3858 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3859 			DMEMIT("out_of_data_space ");
3860 		else if (pool->pf.mode == PM_READ_ONLY)
3861 			DMEMIT("ro ");
3862 		else
3863 			DMEMIT("rw ");
3864 
3865 		if (!pool->pf.discard_enabled)
3866 			DMEMIT("ignore_discard ");
3867 		else if (pool->pf.discard_passdown)
3868 			DMEMIT("discard_passdown ");
3869 		else
3870 			DMEMIT("no_discard_passdown ");
3871 
3872 		if (pool->pf.error_if_no_space)
3873 			DMEMIT("error_if_no_space ");
3874 		else
3875 			DMEMIT("queue_if_no_space ");
3876 
3877 		if (dm_pool_metadata_needs_check(pool->pmd))
3878 			DMEMIT("needs_check ");
3879 		else
3880 			DMEMIT("- ");
3881 
3882 		break;
3883 
3884 	case STATUSTYPE_TABLE:
3885 		DMEMIT("%s %s %lu %llu ",
3886 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3887 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3888 		       (unsigned long)pool->sectors_per_block,
3889 		       (unsigned long long)pt->low_water_blocks);
3890 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3891 		break;
3892 	}
3893 	return;
3894 
3895 err:
3896 	DMEMIT("Error");
3897 }
3898 
3899 static int pool_iterate_devices(struct dm_target *ti,
3900 				iterate_devices_callout_fn fn, void *data)
3901 {
3902 	struct pool_c *pt = ti->private;
3903 
3904 	return fn(ti, pt->data_dev, 0, ti->len, data);
3905 }
3906 
3907 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3908 {
3909 	struct pool_c *pt = ti->private;
3910 	struct pool *pool = pt->pool;
3911 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3912 
3913 	/*
3914 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3915 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3916 	 * This is especially beneficial when the pool's data device is a RAID
3917 	 * device that has a full stripe width that matches pool->sectors_per_block
3918 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3919 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3920 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3921 	 */
3922 	if (limits->max_sectors < pool->sectors_per_block) {
3923 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3924 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3925 				limits->max_sectors--;
3926 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3927 		}
3928 	}
3929 
3930 	/*
3931 	 * If the system-determined stacked limits are compatible with the
3932 	 * pool's blocksize (io_opt is a factor) do not override them.
3933 	 */
3934 	if (io_opt_sectors < pool->sectors_per_block ||
3935 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3936 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3937 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3938 		else
3939 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3940 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3941 	}
3942 
3943 	/*
3944 	 * pt->adjusted_pf is a staging area for the actual features to use.
3945 	 * They get transferred to the live pool in bind_control_target()
3946 	 * called from pool_preresume().
3947 	 */
3948 	if (!pt->adjusted_pf.discard_enabled) {
3949 		/*
3950 		 * Must explicitly disallow stacking discard limits otherwise the
3951 		 * block layer will stack them if pool's data device has support.
3952 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3953 		 * user to see that, so make sure to set all discard limits to 0.
3954 		 */
3955 		limits->discard_granularity = 0;
3956 		return;
3957 	}
3958 
3959 	disable_passdown_if_not_supported(pt);
3960 
3961 	/*
3962 	 * The pool uses the same discard limits as the underlying data
3963 	 * device.  DM core has already set this up.
3964 	 */
3965 }
3966 
3967 static struct target_type pool_target = {
3968 	.name = "thin-pool",
3969 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3970 		    DM_TARGET_IMMUTABLE,
3971 	.version = {1, 19, 0},
3972 	.module = THIS_MODULE,
3973 	.ctr = pool_ctr,
3974 	.dtr = pool_dtr,
3975 	.map = pool_map,
3976 	.presuspend = pool_presuspend,
3977 	.presuspend_undo = pool_presuspend_undo,
3978 	.postsuspend = pool_postsuspend,
3979 	.preresume = pool_preresume,
3980 	.resume = pool_resume,
3981 	.message = pool_message,
3982 	.status = pool_status,
3983 	.iterate_devices = pool_iterate_devices,
3984 	.io_hints = pool_io_hints,
3985 };
3986 
3987 /*----------------------------------------------------------------
3988  * Thin target methods
3989  *--------------------------------------------------------------*/
3990 static void thin_get(struct thin_c *tc)
3991 {
3992 	atomic_inc(&tc->refcount);
3993 }
3994 
3995 static void thin_put(struct thin_c *tc)
3996 {
3997 	if (atomic_dec_and_test(&tc->refcount))
3998 		complete(&tc->can_destroy);
3999 }
4000 
4001 static void thin_dtr(struct dm_target *ti)
4002 {
4003 	struct thin_c *tc = ti->private;
4004 	unsigned long flags;
4005 
4006 	spin_lock_irqsave(&tc->pool->lock, flags);
4007 	list_del_rcu(&tc->list);
4008 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4009 	synchronize_rcu();
4010 
4011 	thin_put(tc);
4012 	wait_for_completion(&tc->can_destroy);
4013 
4014 	mutex_lock(&dm_thin_pool_table.mutex);
4015 
4016 	__pool_dec(tc->pool);
4017 	dm_pool_close_thin_device(tc->td);
4018 	dm_put_device(ti, tc->pool_dev);
4019 	if (tc->origin_dev)
4020 		dm_put_device(ti, tc->origin_dev);
4021 	kfree(tc);
4022 
4023 	mutex_unlock(&dm_thin_pool_table.mutex);
4024 }
4025 
4026 /*
4027  * Thin target parameters:
4028  *
4029  * <pool_dev> <dev_id> [origin_dev]
4030  *
4031  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4032  * dev_id: the internal device identifier
4033  * origin_dev: a device external to the pool that should act as the origin
4034  *
4035  * If the pool device has discards disabled, they get disabled for the thin
4036  * device as well.
4037  */
4038 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4039 {
4040 	int r;
4041 	struct thin_c *tc;
4042 	struct dm_dev *pool_dev, *origin_dev;
4043 	struct mapped_device *pool_md;
4044 	unsigned long flags;
4045 
4046 	mutex_lock(&dm_thin_pool_table.mutex);
4047 
4048 	if (argc != 2 && argc != 3) {
4049 		ti->error = "Invalid argument count";
4050 		r = -EINVAL;
4051 		goto out_unlock;
4052 	}
4053 
4054 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4055 	if (!tc) {
4056 		ti->error = "Out of memory";
4057 		r = -ENOMEM;
4058 		goto out_unlock;
4059 	}
4060 	tc->thin_md = dm_table_get_md(ti->table);
4061 	spin_lock_init(&tc->lock);
4062 	INIT_LIST_HEAD(&tc->deferred_cells);
4063 	bio_list_init(&tc->deferred_bio_list);
4064 	bio_list_init(&tc->retry_on_resume_list);
4065 	tc->sort_bio_list = RB_ROOT;
4066 
4067 	if (argc == 3) {
4068 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4069 		if (r) {
4070 			ti->error = "Error opening origin device";
4071 			goto bad_origin_dev;
4072 		}
4073 		tc->origin_dev = origin_dev;
4074 	}
4075 
4076 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4077 	if (r) {
4078 		ti->error = "Error opening pool device";
4079 		goto bad_pool_dev;
4080 	}
4081 	tc->pool_dev = pool_dev;
4082 
4083 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4084 		ti->error = "Invalid device id";
4085 		r = -EINVAL;
4086 		goto bad_common;
4087 	}
4088 
4089 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4090 	if (!pool_md) {
4091 		ti->error = "Couldn't get pool mapped device";
4092 		r = -EINVAL;
4093 		goto bad_common;
4094 	}
4095 
4096 	tc->pool = __pool_table_lookup(pool_md);
4097 	if (!tc->pool) {
4098 		ti->error = "Couldn't find pool object";
4099 		r = -EINVAL;
4100 		goto bad_pool_lookup;
4101 	}
4102 	__pool_inc(tc->pool);
4103 
4104 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4105 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4106 		r = -EINVAL;
4107 		goto bad_pool;
4108 	}
4109 
4110 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4111 	if (r) {
4112 		ti->error = "Couldn't open thin internal device";
4113 		goto bad_pool;
4114 	}
4115 
4116 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4117 	if (r)
4118 		goto bad;
4119 
4120 	ti->num_flush_bios = 1;
4121 	ti->flush_supported = true;
4122 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4123 
4124 	/* In case the pool supports discards, pass them on. */
4125 	if (tc->pool->pf.discard_enabled) {
4126 		ti->discards_supported = true;
4127 		ti->num_discard_bios = 1;
4128 		ti->split_discard_bios = false;
4129 	}
4130 
4131 	mutex_unlock(&dm_thin_pool_table.mutex);
4132 
4133 	spin_lock_irqsave(&tc->pool->lock, flags);
4134 	if (tc->pool->suspended) {
4135 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4136 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4137 		ti->error = "Unable to activate thin device while pool is suspended";
4138 		r = -EINVAL;
4139 		goto bad;
4140 	}
4141 	atomic_set(&tc->refcount, 1);
4142 	init_completion(&tc->can_destroy);
4143 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4144 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4145 	/*
4146 	 * This synchronize_rcu() call is needed here otherwise we risk a
4147 	 * wake_worker() call finding no bios to process (because the newly
4148 	 * added tc isn't yet visible).  So this reduces latency since we
4149 	 * aren't then dependent on the periodic commit to wake_worker().
4150 	 */
4151 	synchronize_rcu();
4152 
4153 	dm_put(pool_md);
4154 
4155 	return 0;
4156 
4157 bad:
4158 	dm_pool_close_thin_device(tc->td);
4159 bad_pool:
4160 	__pool_dec(tc->pool);
4161 bad_pool_lookup:
4162 	dm_put(pool_md);
4163 bad_common:
4164 	dm_put_device(ti, tc->pool_dev);
4165 bad_pool_dev:
4166 	if (tc->origin_dev)
4167 		dm_put_device(ti, tc->origin_dev);
4168 bad_origin_dev:
4169 	kfree(tc);
4170 out_unlock:
4171 	mutex_unlock(&dm_thin_pool_table.mutex);
4172 
4173 	return r;
4174 }
4175 
4176 static int thin_map(struct dm_target *ti, struct bio *bio)
4177 {
4178 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4179 
4180 	return thin_bio_map(ti, bio);
4181 }
4182 
4183 static int thin_endio(struct dm_target *ti, struct bio *bio,
4184 		blk_status_t *err)
4185 {
4186 	unsigned long flags;
4187 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4188 	struct list_head work;
4189 	struct dm_thin_new_mapping *m, *tmp;
4190 	struct pool *pool = h->tc->pool;
4191 
4192 	if (h->shared_read_entry) {
4193 		INIT_LIST_HEAD(&work);
4194 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4195 
4196 		spin_lock_irqsave(&pool->lock, flags);
4197 		list_for_each_entry_safe(m, tmp, &work, list) {
4198 			list_del(&m->list);
4199 			__complete_mapping_preparation(m);
4200 		}
4201 		spin_unlock_irqrestore(&pool->lock, flags);
4202 	}
4203 
4204 	if (h->all_io_entry) {
4205 		INIT_LIST_HEAD(&work);
4206 		dm_deferred_entry_dec(h->all_io_entry, &work);
4207 		if (!list_empty(&work)) {
4208 			spin_lock_irqsave(&pool->lock, flags);
4209 			list_for_each_entry_safe(m, tmp, &work, list)
4210 				list_add_tail(&m->list, &pool->prepared_discards);
4211 			spin_unlock_irqrestore(&pool->lock, flags);
4212 			wake_worker(pool);
4213 		}
4214 	}
4215 
4216 	if (h->cell)
4217 		cell_defer_no_holder(h->tc, h->cell);
4218 
4219 	return DM_ENDIO_DONE;
4220 }
4221 
4222 static void thin_presuspend(struct dm_target *ti)
4223 {
4224 	struct thin_c *tc = ti->private;
4225 
4226 	if (dm_noflush_suspending(ti))
4227 		noflush_work(tc, do_noflush_start);
4228 }
4229 
4230 static void thin_postsuspend(struct dm_target *ti)
4231 {
4232 	struct thin_c *tc = ti->private;
4233 
4234 	/*
4235 	 * The dm_noflush_suspending flag has been cleared by now, so
4236 	 * unfortunately we must always run this.
4237 	 */
4238 	noflush_work(tc, do_noflush_stop);
4239 }
4240 
4241 static int thin_preresume(struct dm_target *ti)
4242 {
4243 	struct thin_c *tc = ti->private;
4244 
4245 	if (tc->origin_dev)
4246 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4247 
4248 	return 0;
4249 }
4250 
4251 /*
4252  * <nr mapped sectors> <highest mapped sector>
4253  */
4254 static void thin_status(struct dm_target *ti, status_type_t type,
4255 			unsigned status_flags, char *result, unsigned maxlen)
4256 {
4257 	int r;
4258 	ssize_t sz = 0;
4259 	dm_block_t mapped, highest;
4260 	char buf[BDEVNAME_SIZE];
4261 	struct thin_c *tc = ti->private;
4262 
4263 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4264 		DMEMIT("Fail");
4265 		return;
4266 	}
4267 
4268 	if (!tc->td)
4269 		DMEMIT("-");
4270 	else {
4271 		switch (type) {
4272 		case STATUSTYPE_INFO:
4273 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4274 			if (r) {
4275 				DMERR("dm_thin_get_mapped_count returned %d", r);
4276 				goto err;
4277 			}
4278 
4279 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4280 			if (r < 0) {
4281 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4282 				goto err;
4283 			}
4284 
4285 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4286 			if (r)
4287 				DMEMIT("%llu", ((highest + 1) *
4288 						tc->pool->sectors_per_block) - 1);
4289 			else
4290 				DMEMIT("-");
4291 			break;
4292 
4293 		case STATUSTYPE_TABLE:
4294 			DMEMIT("%s %lu",
4295 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4296 			       (unsigned long) tc->dev_id);
4297 			if (tc->origin_dev)
4298 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4299 			break;
4300 		}
4301 	}
4302 
4303 	return;
4304 
4305 err:
4306 	DMEMIT("Error");
4307 }
4308 
4309 static int thin_iterate_devices(struct dm_target *ti,
4310 				iterate_devices_callout_fn fn, void *data)
4311 {
4312 	sector_t blocks;
4313 	struct thin_c *tc = ti->private;
4314 	struct pool *pool = tc->pool;
4315 
4316 	/*
4317 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4318 	 * we follow a more convoluted path through to the pool's target.
4319 	 */
4320 	if (!pool->ti)
4321 		return 0;	/* nothing is bound */
4322 
4323 	blocks = pool->ti->len;
4324 	(void) sector_div(blocks, pool->sectors_per_block);
4325 	if (blocks)
4326 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4327 
4328 	return 0;
4329 }
4330 
4331 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4332 {
4333 	struct thin_c *tc = ti->private;
4334 	struct pool *pool = tc->pool;
4335 
4336 	if (!pool->pf.discard_enabled)
4337 		return;
4338 
4339 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4340 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4341 }
4342 
4343 static struct target_type thin_target = {
4344 	.name = "thin",
4345 	.version = {1, 19, 0},
4346 	.module	= THIS_MODULE,
4347 	.ctr = thin_ctr,
4348 	.dtr = thin_dtr,
4349 	.map = thin_map,
4350 	.end_io = thin_endio,
4351 	.preresume = thin_preresume,
4352 	.presuspend = thin_presuspend,
4353 	.postsuspend = thin_postsuspend,
4354 	.status = thin_status,
4355 	.iterate_devices = thin_iterate_devices,
4356 	.io_hints = thin_io_hints,
4357 };
4358 
4359 /*----------------------------------------------------------------*/
4360 
4361 static int __init dm_thin_init(void)
4362 {
4363 	int r = -ENOMEM;
4364 
4365 	pool_table_init();
4366 
4367 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4368 	if (!_new_mapping_cache)
4369 		return r;
4370 
4371 	r = dm_register_target(&thin_target);
4372 	if (r)
4373 		goto bad_new_mapping_cache;
4374 
4375 	r = dm_register_target(&pool_target);
4376 	if (r)
4377 		goto bad_thin_target;
4378 
4379 	return 0;
4380 
4381 bad_thin_target:
4382 	dm_unregister_target(&thin_target);
4383 bad_new_mapping_cache:
4384 	kmem_cache_destroy(_new_mapping_cache);
4385 
4386 	return r;
4387 }
4388 
4389 static void dm_thin_exit(void)
4390 {
4391 	dm_unregister_target(&thin_target);
4392 	dm_unregister_target(&pool_target);
4393 
4394 	kmem_cache_destroy(_new_mapping_cache);
4395 
4396 	pool_table_exit();
4397 }
4398 
4399 module_init(dm_thin_init);
4400 module_exit(dm_thin_exit);
4401 
4402 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4403 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4404 
4405 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4406 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4407 MODULE_LICENSE("GPL");
4408