xref: /openbmc/linux/drivers/md/dm-thin.c (revision 110e6f26)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 	bool out_of_data_space:1;
239 
240 	struct dm_bio_prison *prison;
241 	struct dm_kcopyd_client *copier;
242 
243 	struct workqueue_struct *wq;
244 	struct throttle throttle;
245 	struct work_struct worker;
246 	struct delayed_work waker;
247 	struct delayed_work no_space_timeout;
248 
249 	unsigned long last_commit_jiffies;
250 	unsigned ref_count;
251 
252 	spinlock_t lock;
253 	struct bio_list deferred_flush_bios;
254 	struct list_head prepared_mappings;
255 	struct list_head prepared_discards;
256 	struct list_head active_thins;
257 
258 	struct dm_deferred_set *shared_read_ds;
259 	struct dm_deferred_set *all_io_ds;
260 
261 	struct dm_thin_new_mapping *next_mapping;
262 	mempool_t *mapping_pool;
263 
264 	process_bio_fn process_bio;
265 	process_bio_fn process_discard;
266 
267 	process_cell_fn process_cell;
268 	process_cell_fn process_discard_cell;
269 
270 	process_mapping_fn process_prepared_mapping;
271 	process_mapping_fn process_prepared_discard;
272 
273 	struct dm_bio_prison_cell **cell_sort_array;
274 };
275 
276 static enum pool_mode get_pool_mode(struct pool *pool);
277 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
278 
279 /*
280  * Target context for a pool.
281  */
282 struct pool_c {
283 	struct dm_target *ti;
284 	struct pool *pool;
285 	struct dm_dev *data_dev;
286 	struct dm_dev *metadata_dev;
287 	struct dm_target_callbacks callbacks;
288 
289 	dm_block_t low_water_blocks;
290 	struct pool_features requested_pf; /* Features requested during table load */
291 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
292 };
293 
294 /*
295  * Target context for a thin.
296  */
297 struct thin_c {
298 	struct list_head list;
299 	struct dm_dev *pool_dev;
300 	struct dm_dev *origin_dev;
301 	sector_t origin_size;
302 	dm_thin_id dev_id;
303 
304 	struct pool *pool;
305 	struct dm_thin_device *td;
306 	struct mapped_device *thin_md;
307 
308 	bool requeue_mode:1;
309 	spinlock_t lock;
310 	struct list_head deferred_cells;
311 	struct bio_list deferred_bio_list;
312 	struct bio_list retry_on_resume_list;
313 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
314 
315 	/*
316 	 * Ensures the thin is not destroyed until the worker has finished
317 	 * iterating the active_thins list.
318 	 */
319 	atomic_t refcount;
320 	struct completion can_destroy;
321 };
322 
323 /*----------------------------------------------------------------*/
324 
325 /**
326  * __blkdev_issue_discard_async - queue a discard with async completion
327  * @bdev:	blockdev to issue discard for
328  * @sector:	start sector
329  * @nr_sects:	number of sectors to discard
330  * @gfp_mask:	memory allocation flags (for bio_alloc)
331  * @flags:	BLKDEV_IFL_* flags to control behaviour
332  * @parent_bio: parent discard bio that all sub discards get chained to
333  *
334  * Description:
335  *    Asynchronously issue a discard request for the sectors in question.
336  */
337 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
338 					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
339 					struct bio *parent_bio)
340 {
341 	struct request_queue *q = bdev_get_queue(bdev);
342 	int type = REQ_WRITE | REQ_DISCARD;
343 	struct bio *bio;
344 
345 	if (!q || !nr_sects)
346 		return -ENXIO;
347 
348 	if (!blk_queue_discard(q))
349 		return -EOPNOTSUPP;
350 
351 	if (flags & BLKDEV_DISCARD_SECURE) {
352 		if (!blk_queue_secdiscard(q))
353 			return -EOPNOTSUPP;
354 		type |= REQ_SECURE;
355 	}
356 
357 	/*
358 	 * Required bio_put occurs in bio_endio thanks to bio_chain below
359 	 */
360 	bio = bio_alloc(gfp_mask, 1);
361 	if (!bio)
362 		return -ENOMEM;
363 
364 	bio_chain(bio, parent_bio);
365 
366 	bio->bi_iter.bi_sector = sector;
367 	bio->bi_bdev = bdev;
368 	bio->bi_iter.bi_size = nr_sects << 9;
369 
370 	submit_bio(type, bio);
371 
372 	return 0;
373 }
374 
375 static bool block_size_is_power_of_two(struct pool *pool)
376 {
377 	return pool->sectors_per_block_shift >= 0;
378 }
379 
380 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
381 {
382 	return block_size_is_power_of_two(pool) ?
383 		(b << pool->sectors_per_block_shift) :
384 		(b * pool->sectors_per_block);
385 }
386 
387 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
388 			 struct bio *parent_bio)
389 {
390 	sector_t s = block_to_sectors(tc->pool, data_b);
391 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
392 
393 	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
394 					    GFP_NOWAIT, 0, parent_bio);
395 }
396 
397 /*----------------------------------------------------------------*/
398 
399 /*
400  * wake_worker() is used when new work is queued and when pool_resume is
401  * ready to continue deferred IO processing.
402  */
403 static void wake_worker(struct pool *pool)
404 {
405 	queue_work(pool->wq, &pool->worker);
406 }
407 
408 /*----------------------------------------------------------------*/
409 
410 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
411 		      struct dm_bio_prison_cell **cell_result)
412 {
413 	int r;
414 	struct dm_bio_prison_cell *cell_prealloc;
415 
416 	/*
417 	 * Allocate a cell from the prison's mempool.
418 	 * This might block but it can't fail.
419 	 */
420 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
421 
422 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
423 	if (r)
424 		/*
425 		 * We reused an old cell; we can get rid of
426 		 * the new one.
427 		 */
428 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
429 
430 	return r;
431 }
432 
433 static void cell_release(struct pool *pool,
434 			 struct dm_bio_prison_cell *cell,
435 			 struct bio_list *bios)
436 {
437 	dm_cell_release(pool->prison, cell, bios);
438 	dm_bio_prison_free_cell(pool->prison, cell);
439 }
440 
441 static void cell_visit_release(struct pool *pool,
442 			       void (*fn)(void *, struct dm_bio_prison_cell *),
443 			       void *context,
444 			       struct dm_bio_prison_cell *cell)
445 {
446 	dm_cell_visit_release(pool->prison, fn, context, cell);
447 	dm_bio_prison_free_cell(pool->prison, cell);
448 }
449 
450 static void cell_release_no_holder(struct pool *pool,
451 				   struct dm_bio_prison_cell *cell,
452 				   struct bio_list *bios)
453 {
454 	dm_cell_release_no_holder(pool->prison, cell, bios);
455 	dm_bio_prison_free_cell(pool->prison, cell);
456 }
457 
458 static void cell_error_with_code(struct pool *pool,
459 				 struct dm_bio_prison_cell *cell, int error_code)
460 {
461 	dm_cell_error(pool->prison, cell, error_code);
462 	dm_bio_prison_free_cell(pool->prison, cell);
463 }
464 
465 static int get_pool_io_error_code(struct pool *pool)
466 {
467 	return pool->out_of_data_space ? -ENOSPC : -EIO;
468 }
469 
470 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
471 {
472 	int error = get_pool_io_error_code(pool);
473 
474 	cell_error_with_code(pool, cell, error);
475 }
476 
477 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
478 {
479 	cell_error_with_code(pool, cell, 0);
480 }
481 
482 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
483 {
484 	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
485 }
486 
487 /*----------------------------------------------------------------*/
488 
489 /*
490  * A global list of pools that uses a struct mapped_device as a key.
491  */
492 static struct dm_thin_pool_table {
493 	struct mutex mutex;
494 	struct list_head pools;
495 } dm_thin_pool_table;
496 
497 static void pool_table_init(void)
498 {
499 	mutex_init(&dm_thin_pool_table.mutex);
500 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
501 }
502 
503 static void __pool_table_insert(struct pool *pool)
504 {
505 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
506 	list_add(&pool->list, &dm_thin_pool_table.pools);
507 }
508 
509 static void __pool_table_remove(struct pool *pool)
510 {
511 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
512 	list_del(&pool->list);
513 }
514 
515 static struct pool *__pool_table_lookup(struct mapped_device *md)
516 {
517 	struct pool *pool = NULL, *tmp;
518 
519 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
520 
521 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
522 		if (tmp->pool_md == md) {
523 			pool = tmp;
524 			break;
525 		}
526 	}
527 
528 	return pool;
529 }
530 
531 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
532 {
533 	struct pool *pool = NULL, *tmp;
534 
535 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
536 
537 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
538 		if (tmp->md_dev == md_dev) {
539 			pool = tmp;
540 			break;
541 		}
542 	}
543 
544 	return pool;
545 }
546 
547 /*----------------------------------------------------------------*/
548 
549 struct dm_thin_endio_hook {
550 	struct thin_c *tc;
551 	struct dm_deferred_entry *shared_read_entry;
552 	struct dm_deferred_entry *all_io_entry;
553 	struct dm_thin_new_mapping *overwrite_mapping;
554 	struct rb_node rb_node;
555 	struct dm_bio_prison_cell *cell;
556 };
557 
558 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
559 {
560 	bio_list_merge(bios, master);
561 	bio_list_init(master);
562 }
563 
564 static void error_bio_list(struct bio_list *bios, int error)
565 {
566 	struct bio *bio;
567 
568 	while ((bio = bio_list_pop(bios))) {
569 		bio->bi_error = error;
570 		bio_endio(bio);
571 	}
572 }
573 
574 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
575 {
576 	struct bio_list bios;
577 	unsigned long flags;
578 
579 	bio_list_init(&bios);
580 
581 	spin_lock_irqsave(&tc->lock, flags);
582 	__merge_bio_list(&bios, master);
583 	spin_unlock_irqrestore(&tc->lock, flags);
584 
585 	error_bio_list(&bios, error);
586 }
587 
588 static void requeue_deferred_cells(struct thin_c *tc)
589 {
590 	struct pool *pool = tc->pool;
591 	unsigned long flags;
592 	struct list_head cells;
593 	struct dm_bio_prison_cell *cell, *tmp;
594 
595 	INIT_LIST_HEAD(&cells);
596 
597 	spin_lock_irqsave(&tc->lock, flags);
598 	list_splice_init(&tc->deferred_cells, &cells);
599 	spin_unlock_irqrestore(&tc->lock, flags);
600 
601 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
602 		cell_requeue(pool, cell);
603 }
604 
605 static void requeue_io(struct thin_c *tc)
606 {
607 	struct bio_list bios;
608 	unsigned long flags;
609 
610 	bio_list_init(&bios);
611 
612 	spin_lock_irqsave(&tc->lock, flags);
613 	__merge_bio_list(&bios, &tc->deferred_bio_list);
614 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
615 	spin_unlock_irqrestore(&tc->lock, flags);
616 
617 	error_bio_list(&bios, DM_ENDIO_REQUEUE);
618 	requeue_deferred_cells(tc);
619 }
620 
621 static void error_retry_list_with_code(struct pool *pool, int error)
622 {
623 	struct thin_c *tc;
624 
625 	rcu_read_lock();
626 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
627 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
628 	rcu_read_unlock();
629 }
630 
631 static void error_retry_list(struct pool *pool)
632 {
633 	int error = get_pool_io_error_code(pool);
634 
635 	return error_retry_list_with_code(pool, error);
636 }
637 
638 /*
639  * This section of code contains the logic for processing a thin device's IO.
640  * Much of the code depends on pool object resources (lists, workqueues, etc)
641  * but most is exclusively called from the thin target rather than the thin-pool
642  * target.
643  */
644 
645 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
646 {
647 	struct pool *pool = tc->pool;
648 	sector_t block_nr = bio->bi_iter.bi_sector;
649 
650 	if (block_size_is_power_of_two(pool))
651 		block_nr >>= pool->sectors_per_block_shift;
652 	else
653 		(void) sector_div(block_nr, pool->sectors_per_block);
654 
655 	return block_nr;
656 }
657 
658 /*
659  * Returns the _complete_ blocks that this bio covers.
660  */
661 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
662 				dm_block_t *begin, dm_block_t *end)
663 {
664 	struct pool *pool = tc->pool;
665 	sector_t b = bio->bi_iter.bi_sector;
666 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
667 
668 	b += pool->sectors_per_block - 1ull; /* so we round up */
669 
670 	if (block_size_is_power_of_two(pool)) {
671 		b >>= pool->sectors_per_block_shift;
672 		e >>= pool->sectors_per_block_shift;
673 	} else {
674 		(void) sector_div(b, pool->sectors_per_block);
675 		(void) sector_div(e, pool->sectors_per_block);
676 	}
677 
678 	if (e < b)
679 		/* Can happen if the bio is within a single block. */
680 		e = b;
681 
682 	*begin = b;
683 	*end = e;
684 }
685 
686 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
687 {
688 	struct pool *pool = tc->pool;
689 	sector_t bi_sector = bio->bi_iter.bi_sector;
690 
691 	bio->bi_bdev = tc->pool_dev->bdev;
692 	if (block_size_is_power_of_two(pool))
693 		bio->bi_iter.bi_sector =
694 			(block << pool->sectors_per_block_shift) |
695 			(bi_sector & (pool->sectors_per_block - 1));
696 	else
697 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
698 				 sector_div(bi_sector, pool->sectors_per_block);
699 }
700 
701 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
702 {
703 	bio->bi_bdev = tc->origin_dev->bdev;
704 }
705 
706 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
707 {
708 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
709 		dm_thin_changed_this_transaction(tc->td);
710 }
711 
712 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
713 {
714 	struct dm_thin_endio_hook *h;
715 
716 	if (bio->bi_rw & REQ_DISCARD)
717 		return;
718 
719 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
720 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
721 }
722 
723 static void issue(struct thin_c *tc, struct bio *bio)
724 {
725 	struct pool *pool = tc->pool;
726 	unsigned long flags;
727 
728 	if (!bio_triggers_commit(tc, bio)) {
729 		generic_make_request(bio);
730 		return;
731 	}
732 
733 	/*
734 	 * Complete bio with an error if earlier I/O caused changes to
735 	 * the metadata that can't be committed e.g, due to I/O errors
736 	 * on the metadata device.
737 	 */
738 	if (dm_thin_aborted_changes(tc->td)) {
739 		bio_io_error(bio);
740 		return;
741 	}
742 
743 	/*
744 	 * Batch together any bios that trigger commits and then issue a
745 	 * single commit for them in process_deferred_bios().
746 	 */
747 	spin_lock_irqsave(&pool->lock, flags);
748 	bio_list_add(&pool->deferred_flush_bios, bio);
749 	spin_unlock_irqrestore(&pool->lock, flags);
750 }
751 
752 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
753 {
754 	remap_to_origin(tc, bio);
755 	issue(tc, bio);
756 }
757 
758 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
759 			    dm_block_t block)
760 {
761 	remap(tc, bio, block);
762 	issue(tc, bio);
763 }
764 
765 /*----------------------------------------------------------------*/
766 
767 /*
768  * Bio endio functions.
769  */
770 struct dm_thin_new_mapping {
771 	struct list_head list;
772 
773 	bool pass_discard:1;
774 	bool maybe_shared:1;
775 
776 	/*
777 	 * Track quiescing, copying and zeroing preparation actions.  When this
778 	 * counter hits zero the block is prepared and can be inserted into the
779 	 * btree.
780 	 */
781 	atomic_t prepare_actions;
782 
783 	int err;
784 	struct thin_c *tc;
785 	dm_block_t virt_begin, virt_end;
786 	dm_block_t data_block;
787 	struct dm_bio_prison_cell *cell;
788 
789 	/*
790 	 * If the bio covers the whole area of a block then we can avoid
791 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
792 	 * still be in the cell, so care has to be taken to avoid issuing
793 	 * the bio twice.
794 	 */
795 	struct bio *bio;
796 	bio_end_io_t *saved_bi_end_io;
797 };
798 
799 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
800 {
801 	struct pool *pool = m->tc->pool;
802 
803 	if (atomic_dec_and_test(&m->prepare_actions)) {
804 		list_add_tail(&m->list, &pool->prepared_mappings);
805 		wake_worker(pool);
806 	}
807 }
808 
809 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
810 {
811 	unsigned long flags;
812 	struct pool *pool = m->tc->pool;
813 
814 	spin_lock_irqsave(&pool->lock, flags);
815 	__complete_mapping_preparation(m);
816 	spin_unlock_irqrestore(&pool->lock, flags);
817 }
818 
819 static void copy_complete(int read_err, unsigned long write_err, void *context)
820 {
821 	struct dm_thin_new_mapping *m = context;
822 
823 	m->err = read_err || write_err ? -EIO : 0;
824 	complete_mapping_preparation(m);
825 }
826 
827 static void overwrite_endio(struct bio *bio)
828 {
829 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
830 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
831 
832 	bio->bi_end_io = m->saved_bi_end_io;
833 
834 	m->err = bio->bi_error;
835 	complete_mapping_preparation(m);
836 }
837 
838 /*----------------------------------------------------------------*/
839 
840 /*
841  * Workqueue.
842  */
843 
844 /*
845  * Prepared mapping jobs.
846  */
847 
848 /*
849  * This sends the bios in the cell, except the original holder, back
850  * to the deferred_bios list.
851  */
852 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
853 {
854 	struct pool *pool = tc->pool;
855 	unsigned long flags;
856 
857 	spin_lock_irqsave(&tc->lock, flags);
858 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
859 	spin_unlock_irqrestore(&tc->lock, flags);
860 
861 	wake_worker(pool);
862 }
863 
864 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
865 
866 struct remap_info {
867 	struct thin_c *tc;
868 	struct bio_list defer_bios;
869 	struct bio_list issue_bios;
870 };
871 
872 static void __inc_remap_and_issue_cell(void *context,
873 				       struct dm_bio_prison_cell *cell)
874 {
875 	struct remap_info *info = context;
876 	struct bio *bio;
877 
878 	while ((bio = bio_list_pop(&cell->bios))) {
879 		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
880 			bio_list_add(&info->defer_bios, bio);
881 		else {
882 			inc_all_io_entry(info->tc->pool, bio);
883 
884 			/*
885 			 * We can't issue the bios with the bio prison lock
886 			 * held, so we add them to a list to issue on
887 			 * return from this function.
888 			 */
889 			bio_list_add(&info->issue_bios, bio);
890 		}
891 	}
892 }
893 
894 static void inc_remap_and_issue_cell(struct thin_c *tc,
895 				     struct dm_bio_prison_cell *cell,
896 				     dm_block_t block)
897 {
898 	struct bio *bio;
899 	struct remap_info info;
900 
901 	info.tc = tc;
902 	bio_list_init(&info.defer_bios);
903 	bio_list_init(&info.issue_bios);
904 
905 	/*
906 	 * We have to be careful to inc any bios we're about to issue
907 	 * before the cell is released, and avoid a race with new bios
908 	 * being added to the cell.
909 	 */
910 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
911 			   &info, cell);
912 
913 	while ((bio = bio_list_pop(&info.defer_bios)))
914 		thin_defer_bio(tc, bio);
915 
916 	while ((bio = bio_list_pop(&info.issue_bios)))
917 		remap_and_issue(info.tc, bio, block);
918 }
919 
920 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
921 {
922 	cell_error(m->tc->pool, m->cell);
923 	list_del(&m->list);
924 	mempool_free(m, m->tc->pool->mapping_pool);
925 }
926 
927 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
928 {
929 	struct thin_c *tc = m->tc;
930 	struct pool *pool = tc->pool;
931 	struct bio *bio = m->bio;
932 	int r;
933 
934 	if (m->err) {
935 		cell_error(pool, m->cell);
936 		goto out;
937 	}
938 
939 	/*
940 	 * Commit the prepared block into the mapping btree.
941 	 * Any I/O for this block arriving after this point will get
942 	 * remapped to it directly.
943 	 */
944 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
945 	if (r) {
946 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
947 		cell_error(pool, m->cell);
948 		goto out;
949 	}
950 
951 	/*
952 	 * Release any bios held while the block was being provisioned.
953 	 * If we are processing a write bio that completely covers the block,
954 	 * we already processed it so can ignore it now when processing
955 	 * the bios in the cell.
956 	 */
957 	if (bio) {
958 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
959 		bio_endio(bio);
960 	} else {
961 		inc_all_io_entry(tc->pool, m->cell->holder);
962 		remap_and_issue(tc, m->cell->holder, m->data_block);
963 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
964 	}
965 
966 out:
967 	list_del(&m->list);
968 	mempool_free(m, pool->mapping_pool);
969 }
970 
971 /*----------------------------------------------------------------*/
972 
973 static void free_discard_mapping(struct dm_thin_new_mapping *m)
974 {
975 	struct thin_c *tc = m->tc;
976 	if (m->cell)
977 		cell_defer_no_holder(tc, m->cell);
978 	mempool_free(m, tc->pool->mapping_pool);
979 }
980 
981 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
982 {
983 	bio_io_error(m->bio);
984 	free_discard_mapping(m);
985 }
986 
987 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
988 {
989 	bio_endio(m->bio);
990 	free_discard_mapping(m);
991 }
992 
993 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
994 {
995 	int r;
996 	struct thin_c *tc = m->tc;
997 
998 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
999 	if (r) {
1000 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1001 		bio_io_error(m->bio);
1002 	} else
1003 		bio_endio(m->bio);
1004 
1005 	cell_defer_no_holder(tc, m->cell);
1006 	mempool_free(m, tc->pool->mapping_pool);
1007 }
1008 
1009 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1010 {
1011 	/*
1012 	 * We've already unmapped this range of blocks, but before we
1013 	 * passdown we have to check that these blocks are now unused.
1014 	 */
1015 	int r;
1016 	bool used = true;
1017 	struct thin_c *tc = m->tc;
1018 	struct pool *pool = tc->pool;
1019 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1020 
1021 	while (b != end) {
1022 		/* find start of unmapped run */
1023 		for (; b < end; b++) {
1024 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1025 			if (r)
1026 				return r;
1027 
1028 			if (!used)
1029 				break;
1030 		}
1031 
1032 		if (b == end)
1033 			break;
1034 
1035 		/* find end of run */
1036 		for (e = b + 1; e != end; e++) {
1037 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1038 			if (r)
1039 				return r;
1040 
1041 			if (used)
1042 				break;
1043 		}
1044 
1045 		r = issue_discard(tc, b, e, m->bio);
1046 		if (r)
1047 			return r;
1048 
1049 		b = e;
1050 	}
1051 
1052 	return 0;
1053 }
1054 
1055 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1056 {
1057 	int r;
1058 	struct thin_c *tc = m->tc;
1059 	struct pool *pool = tc->pool;
1060 
1061 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1062 	if (r)
1063 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1064 
1065 	else if (m->maybe_shared)
1066 		r = passdown_double_checking_shared_status(m);
1067 	else
1068 		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1069 
1070 	/*
1071 	 * Even if r is set, there could be sub discards in flight that we
1072 	 * need to wait for.
1073 	 */
1074 	m->bio->bi_error = r;
1075 	bio_endio(m->bio);
1076 	cell_defer_no_holder(tc, m->cell);
1077 	mempool_free(m, pool->mapping_pool);
1078 }
1079 
1080 static void process_prepared(struct pool *pool, struct list_head *head,
1081 			     process_mapping_fn *fn)
1082 {
1083 	unsigned long flags;
1084 	struct list_head maps;
1085 	struct dm_thin_new_mapping *m, *tmp;
1086 
1087 	INIT_LIST_HEAD(&maps);
1088 	spin_lock_irqsave(&pool->lock, flags);
1089 	list_splice_init(head, &maps);
1090 	spin_unlock_irqrestore(&pool->lock, flags);
1091 
1092 	list_for_each_entry_safe(m, tmp, &maps, list)
1093 		(*fn)(m);
1094 }
1095 
1096 /*
1097  * Deferred bio jobs.
1098  */
1099 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1100 {
1101 	return bio->bi_iter.bi_size ==
1102 		(pool->sectors_per_block << SECTOR_SHIFT);
1103 }
1104 
1105 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1106 {
1107 	return (bio_data_dir(bio) == WRITE) &&
1108 		io_overlaps_block(pool, bio);
1109 }
1110 
1111 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1112 			       bio_end_io_t *fn)
1113 {
1114 	*save = bio->bi_end_io;
1115 	bio->bi_end_io = fn;
1116 }
1117 
1118 static int ensure_next_mapping(struct pool *pool)
1119 {
1120 	if (pool->next_mapping)
1121 		return 0;
1122 
1123 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1124 
1125 	return pool->next_mapping ? 0 : -ENOMEM;
1126 }
1127 
1128 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1129 {
1130 	struct dm_thin_new_mapping *m = pool->next_mapping;
1131 
1132 	BUG_ON(!pool->next_mapping);
1133 
1134 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1135 	INIT_LIST_HEAD(&m->list);
1136 	m->bio = NULL;
1137 
1138 	pool->next_mapping = NULL;
1139 
1140 	return m;
1141 }
1142 
1143 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1144 		    sector_t begin, sector_t end)
1145 {
1146 	int r;
1147 	struct dm_io_region to;
1148 
1149 	to.bdev = tc->pool_dev->bdev;
1150 	to.sector = begin;
1151 	to.count = end - begin;
1152 
1153 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1154 	if (r < 0) {
1155 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1156 		copy_complete(1, 1, m);
1157 	}
1158 }
1159 
1160 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1161 				      dm_block_t data_begin,
1162 				      struct dm_thin_new_mapping *m)
1163 {
1164 	struct pool *pool = tc->pool;
1165 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1166 
1167 	h->overwrite_mapping = m;
1168 	m->bio = bio;
1169 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1170 	inc_all_io_entry(pool, bio);
1171 	remap_and_issue(tc, bio, data_begin);
1172 }
1173 
1174 /*
1175  * A partial copy also needs to zero the uncopied region.
1176  */
1177 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1178 			  struct dm_dev *origin, dm_block_t data_origin,
1179 			  dm_block_t data_dest,
1180 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1181 			  sector_t len)
1182 {
1183 	int r;
1184 	struct pool *pool = tc->pool;
1185 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1186 
1187 	m->tc = tc;
1188 	m->virt_begin = virt_block;
1189 	m->virt_end = virt_block + 1u;
1190 	m->data_block = data_dest;
1191 	m->cell = cell;
1192 
1193 	/*
1194 	 * quiesce action + copy action + an extra reference held for the
1195 	 * duration of this function (we may need to inc later for a
1196 	 * partial zero).
1197 	 */
1198 	atomic_set(&m->prepare_actions, 3);
1199 
1200 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1201 		complete_mapping_preparation(m); /* already quiesced */
1202 
1203 	/*
1204 	 * IO to pool_dev remaps to the pool target's data_dev.
1205 	 *
1206 	 * If the whole block of data is being overwritten, we can issue the
1207 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1208 	 */
1209 	if (io_overwrites_block(pool, bio))
1210 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1211 	else {
1212 		struct dm_io_region from, to;
1213 
1214 		from.bdev = origin->bdev;
1215 		from.sector = data_origin * pool->sectors_per_block;
1216 		from.count = len;
1217 
1218 		to.bdev = tc->pool_dev->bdev;
1219 		to.sector = data_dest * pool->sectors_per_block;
1220 		to.count = len;
1221 
1222 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1223 				   0, copy_complete, m);
1224 		if (r < 0) {
1225 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1226 			copy_complete(1, 1, m);
1227 
1228 			/*
1229 			 * We allow the zero to be issued, to simplify the
1230 			 * error path.  Otherwise we'd need to start
1231 			 * worrying about decrementing the prepare_actions
1232 			 * counter.
1233 			 */
1234 		}
1235 
1236 		/*
1237 		 * Do we need to zero a tail region?
1238 		 */
1239 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1240 			atomic_inc(&m->prepare_actions);
1241 			ll_zero(tc, m,
1242 				data_dest * pool->sectors_per_block + len,
1243 				(data_dest + 1) * pool->sectors_per_block);
1244 		}
1245 	}
1246 
1247 	complete_mapping_preparation(m); /* drop our ref */
1248 }
1249 
1250 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1251 				   dm_block_t data_origin, dm_block_t data_dest,
1252 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1253 {
1254 	schedule_copy(tc, virt_block, tc->pool_dev,
1255 		      data_origin, data_dest, cell, bio,
1256 		      tc->pool->sectors_per_block);
1257 }
1258 
1259 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1260 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1261 			  struct bio *bio)
1262 {
1263 	struct pool *pool = tc->pool;
1264 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1265 
1266 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1267 	m->tc = tc;
1268 	m->virt_begin = virt_block;
1269 	m->virt_end = virt_block + 1u;
1270 	m->data_block = data_block;
1271 	m->cell = cell;
1272 
1273 	/*
1274 	 * If the whole block of data is being overwritten or we are not
1275 	 * zeroing pre-existing data, we can issue the bio immediately.
1276 	 * Otherwise we use kcopyd to zero the data first.
1277 	 */
1278 	if (pool->pf.zero_new_blocks) {
1279 		if (io_overwrites_block(pool, bio))
1280 			remap_and_issue_overwrite(tc, bio, data_block, m);
1281 		else
1282 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1283 				(data_block + 1) * pool->sectors_per_block);
1284 	} else
1285 		process_prepared_mapping(m);
1286 }
1287 
1288 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1289 				   dm_block_t data_dest,
1290 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1291 {
1292 	struct pool *pool = tc->pool;
1293 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1294 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1295 
1296 	if (virt_block_end <= tc->origin_size)
1297 		schedule_copy(tc, virt_block, tc->origin_dev,
1298 			      virt_block, data_dest, cell, bio,
1299 			      pool->sectors_per_block);
1300 
1301 	else if (virt_block_begin < tc->origin_size)
1302 		schedule_copy(tc, virt_block, tc->origin_dev,
1303 			      virt_block, data_dest, cell, bio,
1304 			      tc->origin_size - virt_block_begin);
1305 
1306 	else
1307 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1308 }
1309 
1310 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1311 
1312 static void check_for_space(struct pool *pool)
1313 {
1314 	int r;
1315 	dm_block_t nr_free;
1316 
1317 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1318 		return;
1319 
1320 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1321 	if (r)
1322 		return;
1323 
1324 	if (nr_free)
1325 		set_pool_mode(pool, PM_WRITE);
1326 }
1327 
1328 /*
1329  * A non-zero return indicates read_only or fail_io mode.
1330  * Many callers don't care about the return value.
1331  */
1332 static int commit(struct pool *pool)
1333 {
1334 	int r;
1335 
1336 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1337 		return -EINVAL;
1338 
1339 	r = dm_pool_commit_metadata(pool->pmd);
1340 	if (r)
1341 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1342 	else
1343 		check_for_space(pool);
1344 
1345 	return r;
1346 }
1347 
1348 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1349 {
1350 	unsigned long flags;
1351 
1352 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1353 		DMWARN("%s: reached low water mark for data device: sending event.",
1354 		       dm_device_name(pool->pool_md));
1355 		spin_lock_irqsave(&pool->lock, flags);
1356 		pool->low_water_triggered = true;
1357 		spin_unlock_irqrestore(&pool->lock, flags);
1358 		dm_table_event(pool->ti->table);
1359 	}
1360 }
1361 
1362 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1363 {
1364 	int r;
1365 	dm_block_t free_blocks;
1366 	struct pool *pool = tc->pool;
1367 
1368 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1369 		return -EINVAL;
1370 
1371 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1372 	if (r) {
1373 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1374 		return r;
1375 	}
1376 
1377 	check_low_water_mark(pool, free_blocks);
1378 
1379 	if (!free_blocks) {
1380 		/*
1381 		 * Try to commit to see if that will free up some
1382 		 * more space.
1383 		 */
1384 		r = commit(pool);
1385 		if (r)
1386 			return r;
1387 
1388 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1389 		if (r) {
1390 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1391 			return r;
1392 		}
1393 
1394 		if (!free_blocks) {
1395 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1396 			return -ENOSPC;
1397 		}
1398 	}
1399 
1400 	r = dm_pool_alloc_data_block(pool->pmd, result);
1401 	if (r) {
1402 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1403 		return r;
1404 	}
1405 
1406 	return 0;
1407 }
1408 
1409 /*
1410  * If we have run out of space, queue bios until the device is
1411  * resumed, presumably after having been reloaded with more space.
1412  */
1413 static void retry_on_resume(struct bio *bio)
1414 {
1415 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1416 	struct thin_c *tc = h->tc;
1417 	unsigned long flags;
1418 
1419 	spin_lock_irqsave(&tc->lock, flags);
1420 	bio_list_add(&tc->retry_on_resume_list, bio);
1421 	spin_unlock_irqrestore(&tc->lock, flags);
1422 }
1423 
1424 static int should_error_unserviceable_bio(struct pool *pool)
1425 {
1426 	enum pool_mode m = get_pool_mode(pool);
1427 
1428 	switch (m) {
1429 	case PM_WRITE:
1430 		/* Shouldn't get here */
1431 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1432 		return -EIO;
1433 
1434 	case PM_OUT_OF_DATA_SPACE:
1435 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1436 
1437 	case PM_READ_ONLY:
1438 	case PM_FAIL:
1439 		return -EIO;
1440 	default:
1441 		/* Shouldn't get here */
1442 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1443 		return -EIO;
1444 	}
1445 }
1446 
1447 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1448 {
1449 	int error = should_error_unserviceable_bio(pool);
1450 
1451 	if (error) {
1452 		bio->bi_error = error;
1453 		bio_endio(bio);
1454 	} else
1455 		retry_on_resume(bio);
1456 }
1457 
1458 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1459 {
1460 	struct bio *bio;
1461 	struct bio_list bios;
1462 	int error;
1463 
1464 	error = should_error_unserviceable_bio(pool);
1465 	if (error) {
1466 		cell_error_with_code(pool, cell, error);
1467 		return;
1468 	}
1469 
1470 	bio_list_init(&bios);
1471 	cell_release(pool, cell, &bios);
1472 
1473 	while ((bio = bio_list_pop(&bios)))
1474 		retry_on_resume(bio);
1475 }
1476 
1477 static void process_discard_cell_no_passdown(struct thin_c *tc,
1478 					     struct dm_bio_prison_cell *virt_cell)
1479 {
1480 	struct pool *pool = tc->pool;
1481 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1482 
1483 	/*
1484 	 * We don't need to lock the data blocks, since there's no
1485 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1486 	 */
1487 	m->tc = tc;
1488 	m->virt_begin = virt_cell->key.block_begin;
1489 	m->virt_end = virt_cell->key.block_end;
1490 	m->cell = virt_cell;
1491 	m->bio = virt_cell->holder;
1492 
1493 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1494 		pool->process_prepared_discard(m);
1495 }
1496 
1497 /*
1498  * __bio_inc_remaining() is used to defer parent bios's end_io until
1499  * we _know_ all chained sub range discard bios have completed.
1500  */
1501 static inline void __bio_inc_remaining(struct bio *bio)
1502 {
1503 	bio->bi_flags |= (1 << BIO_CHAIN);
1504 	smp_mb__before_atomic();
1505 	atomic_inc(&bio->__bi_remaining);
1506 }
1507 
1508 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1509 				 struct bio *bio)
1510 {
1511 	struct pool *pool = tc->pool;
1512 
1513 	int r;
1514 	bool maybe_shared;
1515 	struct dm_cell_key data_key;
1516 	struct dm_bio_prison_cell *data_cell;
1517 	struct dm_thin_new_mapping *m;
1518 	dm_block_t virt_begin, virt_end, data_begin;
1519 
1520 	while (begin != end) {
1521 		r = ensure_next_mapping(pool);
1522 		if (r)
1523 			/* we did our best */
1524 			return;
1525 
1526 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1527 					      &data_begin, &maybe_shared);
1528 		if (r)
1529 			/*
1530 			 * Silently fail, letting any mappings we've
1531 			 * created complete.
1532 			 */
1533 			break;
1534 
1535 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1536 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1537 			/* contention, we'll give up with this range */
1538 			begin = virt_end;
1539 			continue;
1540 		}
1541 
1542 		/*
1543 		 * IO may still be going to the destination block.  We must
1544 		 * quiesce before we can do the removal.
1545 		 */
1546 		m = get_next_mapping(pool);
1547 		m->tc = tc;
1548 		m->maybe_shared = maybe_shared;
1549 		m->virt_begin = virt_begin;
1550 		m->virt_end = virt_end;
1551 		m->data_block = data_begin;
1552 		m->cell = data_cell;
1553 		m->bio = bio;
1554 
1555 		/*
1556 		 * The parent bio must not complete before sub discard bios are
1557 		 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1558 		 *
1559 		 * This per-mapping bi_remaining increment is paired with
1560 		 * the implicit decrement that occurs via bio_endio() in
1561 		 * process_prepared_discard_{passdown,no_passdown}.
1562 		 */
1563 		__bio_inc_remaining(bio);
1564 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1565 			pool->process_prepared_discard(m);
1566 
1567 		begin = virt_end;
1568 	}
1569 }
1570 
1571 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1572 {
1573 	struct bio *bio = virt_cell->holder;
1574 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1575 
1576 	/*
1577 	 * The virt_cell will only get freed once the origin bio completes.
1578 	 * This means it will remain locked while all the individual
1579 	 * passdown bios are in flight.
1580 	 */
1581 	h->cell = virt_cell;
1582 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1583 
1584 	/*
1585 	 * We complete the bio now, knowing that the bi_remaining field
1586 	 * will prevent completion until the sub range discards have
1587 	 * completed.
1588 	 */
1589 	bio_endio(bio);
1590 }
1591 
1592 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1593 {
1594 	dm_block_t begin, end;
1595 	struct dm_cell_key virt_key;
1596 	struct dm_bio_prison_cell *virt_cell;
1597 
1598 	get_bio_block_range(tc, bio, &begin, &end);
1599 	if (begin == end) {
1600 		/*
1601 		 * The discard covers less than a block.
1602 		 */
1603 		bio_endio(bio);
1604 		return;
1605 	}
1606 
1607 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1608 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1609 		/*
1610 		 * Potential starvation issue: We're relying on the
1611 		 * fs/application being well behaved, and not trying to
1612 		 * send IO to a region at the same time as discarding it.
1613 		 * If they do this persistently then it's possible this
1614 		 * cell will never be granted.
1615 		 */
1616 		return;
1617 
1618 	tc->pool->process_discard_cell(tc, virt_cell);
1619 }
1620 
1621 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1622 			  struct dm_cell_key *key,
1623 			  struct dm_thin_lookup_result *lookup_result,
1624 			  struct dm_bio_prison_cell *cell)
1625 {
1626 	int r;
1627 	dm_block_t data_block;
1628 	struct pool *pool = tc->pool;
1629 
1630 	r = alloc_data_block(tc, &data_block);
1631 	switch (r) {
1632 	case 0:
1633 		schedule_internal_copy(tc, block, lookup_result->block,
1634 				       data_block, cell, bio);
1635 		break;
1636 
1637 	case -ENOSPC:
1638 		retry_bios_on_resume(pool, cell);
1639 		break;
1640 
1641 	default:
1642 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1643 			    __func__, r);
1644 		cell_error(pool, cell);
1645 		break;
1646 	}
1647 }
1648 
1649 static void __remap_and_issue_shared_cell(void *context,
1650 					  struct dm_bio_prison_cell *cell)
1651 {
1652 	struct remap_info *info = context;
1653 	struct bio *bio;
1654 
1655 	while ((bio = bio_list_pop(&cell->bios))) {
1656 		if ((bio_data_dir(bio) == WRITE) ||
1657 		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1658 			bio_list_add(&info->defer_bios, bio);
1659 		else {
1660 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1661 
1662 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1663 			inc_all_io_entry(info->tc->pool, bio);
1664 			bio_list_add(&info->issue_bios, bio);
1665 		}
1666 	}
1667 }
1668 
1669 static void remap_and_issue_shared_cell(struct thin_c *tc,
1670 					struct dm_bio_prison_cell *cell,
1671 					dm_block_t block)
1672 {
1673 	struct bio *bio;
1674 	struct remap_info info;
1675 
1676 	info.tc = tc;
1677 	bio_list_init(&info.defer_bios);
1678 	bio_list_init(&info.issue_bios);
1679 
1680 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1681 			   &info, cell);
1682 
1683 	while ((bio = bio_list_pop(&info.defer_bios)))
1684 		thin_defer_bio(tc, bio);
1685 
1686 	while ((bio = bio_list_pop(&info.issue_bios)))
1687 		remap_and_issue(tc, bio, block);
1688 }
1689 
1690 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1691 			       dm_block_t block,
1692 			       struct dm_thin_lookup_result *lookup_result,
1693 			       struct dm_bio_prison_cell *virt_cell)
1694 {
1695 	struct dm_bio_prison_cell *data_cell;
1696 	struct pool *pool = tc->pool;
1697 	struct dm_cell_key key;
1698 
1699 	/*
1700 	 * If cell is already occupied, then sharing is already in the process
1701 	 * of being broken so we have nothing further to do here.
1702 	 */
1703 	build_data_key(tc->td, lookup_result->block, &key);
1704 	if (bio_detain(pool, &key, bio, &data_cell)) {
1705 		cell_defer_no_holder(tc, virt_cell);
1706 		return;
1707 	}
1708 
1709 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1710 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1711 		cell_defer_no_holder(tc, virt_cell);
1712 	} else {
1713 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1714 
1715 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1716 		inc_all_io_entry(pool, bio);
1717 		remap_and_issue(tc, bio, lookup_result->block);
1718 
1719 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1720 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1721 	}
1722 }
1723 
1724 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1725 			    struct dm_bio_prison_cell *cell)
1726 {
1727 	int r;
1728 	dm_block_t data_block;
1729 	struct pool *pool = tc->pool;
1730 
1731 	/*
1732 	 * Remap empty bios (flushes) immediately, without provisioning.
1733 	 */
1734 	if (!bio->bi_iter.bi_size) {
1735 		inc_all_io_entry(pool, bio);
1736 		cell_defer_no_holder(tc, cell);
1737 
1738 		remap_and_issue(tc, bio, 0);
1739 		return;
1740 	}
1741 
1742 	/*
1743 	 * Fill read bios with zeroes and complete them immediately.
1744 	 */
1745 	if (bio_data_dir(bio) == READ) {
1746 		zero_fill_bio(bio);
1747 		cell_defer_no_holder(tc, cell);
1748 		bio_endio(bio);
1749 		return;
1750 	}
1751 
1752 	r = alloc_data_block(tc, &data_block);
1753 	switch (r) {
1754 	case 0:
1755 		if (tc->origin_dev)
1756 			schedule_external_copy(tc, block, data_block, cell, bio);
1757 		else
1758 			schedule_zero(tc, block, data_block, cell, bio);
1759 		break;
1760 
1761 	case -ENOSPC:
1762 		retry_bios_on_resume(pool, cell);
1763 		break;
1764 
1765 	default:
1766 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1767 			    __func__, r);
1768 		cell_error(pool, cell);
1769 		break;
1770 	}
1771 }
1772 
1773 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1774 {
1775 	int r;
1776 	struct pool *pool = tc->pool;
1777 	struct bio *bio = cell->holder;
1778 	dm_block_t block = get_bio_block(tc, bio);
1779 	struct dm_thin_lookup_result lookup_result;
1780 
1781 	if (tc->requeue_mode) {
1782 		cell_requeue(pool, cell);
1783 		return;
1784 	}
1785 
1786 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1787 	switch (r) {
1788 	case 0:
1789 		if (lookup_result.shared)
1790 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1791 		else {
1792 			inc_all_io_entry(pool, bio);
1793 			remap_and_issue(tc, bio, lookup_result.block);
1794 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1795 		}
1796 		break;
1797 
1798 	case -ENODATA:
1799 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1800 			inc_all_io_entry(pool, bio);
1801 			cell_defer_no_holder(tc, cell);
1802 
1803 			if (bio_end_sector(bio) <= tc->origin_size)
1804 				remap_to_origin_and_issue(tc, bio);
1805 
1806 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1807 				zero_fill_bio(bio);
1808 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1809 				remap_to_origin_and_issue(tc, bio);
1810 
1811 			} else {
1812 				zero_fill_bio(bio);
1813 				bio_endio(bio);
1814 			}
1815 		} else
1816 			provision_block(tc, bio, block, cell);
1817 		break;
1818 
1819 	default:
1820 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1821 			    __func__, r);
1822 		cell_defer_no_holder(tc, cell);
1823 		bio_io_error(bio);
1824 		break;
1825 	}
1826 }
1827 
1828 static void process_bio(struct thin_c *tc, struct bio *bio)
1829 {
1830 	struct pool *pool = tc->pool;
1831 	dm_block_t block = get_bio_block(tc, bio);
1832 	struct dm_bio_prison_cell *cell;
1833 	struct dm_cell_key key;
1834 
1835 	/*
1836 	 * If cell is already occupied, then the block is already
1837 	 * being provisioned so we have nothing further to do here.
1838 	 */
1839 	build_virtual_key(tc->td, block, &key);
1840 	if (bio_detain(pool, &key, bio, &cell))
1841 		return;
1842 
1843 	process_cell(tc, cell);
1844 }
1845 
1846 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1847 				    struct dm_bio_prison_cell *cell)
1848 {
1849 	int r;
1850 	int rw = bio_data_dir(bio);
1851 	dm_block_t block = get_bio_block(tc, bio);
1852 	struct dm_thin_lookup_result lookup_result;
1853 
1854 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1855 	switch (r) {
1856 	case 0:
1857 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1858 			handle_unserviceable_bio(tc->pool, bio);
1859 			if (cell)
1860 				cell_defer_no_holder(tc, cell);
1861 		} else {
1862 			inc_all_io_entry(tc->pool, bio);
1863 			remap_and_issue(tc, bio, lookup_result.block);
1864 			if (cell)
1865 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1866 		}
1867 		break;
1868 
1869 	case -ENODATA:
1870 		if (cell)
1871 			cell_defer_no_holder(tc, cell);
1872 		if (rw != READ) {
1873 			handle_unserviceable_bio(tc->pool, bio);
1874 			break;
1875 		}
1876 
1877 		if (tc->origin_dev) {
1878 			inc_all_io_entry(tc->pool, bio);
1879 			remap_to_origin_and_issue(tc, bio);
1880 			break;
1881 		}
1882 
1883 		zero_fill_bio(bio);
1884 		bio_endio(bio);
1885 		break;
1886 
1887 	default:
1888 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1889 			    __func__, r);
1890 		if (cell)
1891 			cell_defer_no_holder(tc, cell);
1892 		bio_io_error(bio);
1893 		break;
1894 	}
1895 }
1896 
1897 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1898 {
1899 	__process_bio_read_only(tc, bio, NULL);
1900 }
1901 
1902 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1903 {
1904 	__process_bio_read_only(tc, cell->holder, cell);
1905 }
1906 
1907 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1908 {
1909 	bio_endio(bio);
1910 }
1911 
1912 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1913 {
1914 	bio_io_error(bio);
1915 }
1916 
1917 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1918 {
1919 	cell_success(tc->pool, cell);
1920 }
1921 
1922 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1923 {
1924 	cell_error(tc->pool, cell);
1925 }
1926 
1927 /*
1928  * FIXME: should we also commit due to size of transaction, measured in
1929  * metadata blocks?
1930  */
1931 static int need_commit_due_to_time(struct pool *pool)
1932 {
1933 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1934 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1935 }
1936 
1937 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1938 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1939 
1940 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1941 {
1942 	struct rb_node **rbp, *parent;
1943 	struct dm_thin_endio_hook *pbd;
1944 	sector_t bi_sector = bio->bi_iter.bi_sector;
1945 
1946 	rbp = &tc->sort_bio_list.rb_node;
1947 	parent = NULL;
1948 	while (*rbp) {
1949 		parent = *rbp;
1950 		pbd = thin_pbd(parent);
1951 
1952 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1953 			rbp = &(*rbp)->rb_left;
1954 		else
1955 			rbp = &(*rbp)->rb_right;
1956 	}
1957 
1958 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1959 	rb_link_node(&pbd->rb_node, parent, rbp);
1960 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1961 }
1962 
1963 static void __extract_sorted_bios(struct thin_c *tc)
1964 {
1965 	struct rb_node *node;
1966 	struct dm_thin_endio_hook *pbd;
1967 	struct bio *bio;
1968 
1969 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1970 		pbd = thin_pbd(node);
1971 		bio = thin_bio(pbd);
1972 
1973 		bio_list_add(&tc->deferred_bio_list, bio);
1974 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1975 	}
1976 
1977 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1978 }
1979 
1980 static void __sort_thin_deferred_bios(struct thin_c *tc)
1981 {
1982 	struct bio *bio;
1983 	struct bio_list bios;
1984 
1985 	bio_list_init(&bios);
1986 	bio_list_merge(&bios, &tc->deferred_bio_list);
1987 	bio_list_init(&tc->deferred_bio_list);
1988 
1989 	/* Sort deferred_bio_list using rb-tree */
1990 	while ((bio = bio_list_pop(&bios)))
1991 		__thin_bio_rb_add(tc, bio);
1992 
1993 	/*
1994 	 * Transfer the sorted bios in sort_bio_list back to
1995 	 * deferred_bio_list to allow lockless submission of
1996 	 * all bios.
1997 	 */
1998 	__extract_sorted_bios(tc);
1999 }
2000 
2001 static void process_thin_deferred_bios(struct thin_c *tc)
2002 {
2003 	struct pool *pool = tc->pool;
2004 	unsigned long flags;
2005 	struct bio *bio;
2006 	struct bio_list bios;
2007 	struct blk_plug plug;
2008 	unsigned count = 0;
2009 
2010 	if (tc->requeue_mode) {
2011 		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2012 		return;
2013 	}
2014 
2015 	bio_list_init(&bios);
2016 
2017 	spin_lock_irqsave(&tc->lock, flags);
2018 
2019 	if (bio_list_empty(&tc->deferred_bio_list)) {
2020 		spin_unlock_irqrestore(&tc->lock, flags);
2021 		return;
2022 	}
2023 
2024 	__sort_thin_deferred_bios(tc);
2025 
2026 	bio_list_merge(&bios, &tc->deferred_bio_list);
2027 	bio_list_init(&tc->deferred_bio_list);
2028 
2029 	spin_unlock_irqrestore(&tc->lock, flags);
2030 
2031 	blk_start_plug(&plug);
2032 	while ((bio = bio_list_pop(&bios))) {
2033 		/*
2034 		 * If we've got no free new_mapping structs, and processing
2035 		 * this bio might require one, we pause until there are some
2036 		 * prepared mappings to process.
2037 		 */
2038 		if (ensure_next_mapping(pool)) {
2039 			spin_lock_irqsave(&tc->lock, flags);
2040 			bio_list_add(&tc->deferred_bio_list, bio);
2041 			bio_list_merge(&tc->deferred_bio_list, &bios);
2042 			spin_unlock_irqrestore(&tc->lock, flags);
2043 			break;
2044 		}
2045 
2046 		if (bio->bi_rw & REQ_DISCARD)
2047 			pool->process_discard(tc, bio);
2048 		else
2049 			pool->process_bio(tc, bio);
2050 
2051 		if ((count++ & 127) == 0) {
2052 			throttle_work_update(&pool->throttle);
2053 			dm_pool_issue_prefetches(pool->pmd);
2054 		}
2055 	}
2056 	blk_finish_plug(&plug);
2057 }
2058 
2059 static int cmp_cells(const void *lhs, const void *rhs)
2060 {
2061 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2062 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2063 
2064 	BUG_ON(!lhs_cell->holder);
2065 	BUG_ON(!rhs_cell->holder);
2066 
2067 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2068 		return -1;
2069 
2070 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2071 		return 1;
2072 
2073 	return 0;
2074 }
2075 
2076 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2077 {
2078 	unsigned count = 0;
2079 	struct dm_bio_prison_cell *cell, *tmp;
2080 
2081 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2082 		if (count >= CELL_SORT_ARRAY_SIZE)
2083 			break;
2084 
2085 		pool->cell_sort_array[count++] = cell;
2086 		list_del(&cell->user_list);
2087 	}
2088 
2089 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2090 
2091 	return count;
2092 }
2093 
2094 static void process_thin_deferred_cells(struct thin_c *tc)
2095 {
2096 	struct pool *pool = tc->pool;
2097 	unsigned long flags;
2098 	struct list_head cells;
2099 	struct dm_bio_prison_cell *cell;
2100 	unsigned i, j, count;
2101 
2102 	INIT_LIST_HEAD(&cells);
2103 
2104 	spin_lock_irqsave(&tc->lock, flags);
2105 	list_splice_init(&tc->deferred_cells, &cells);
2106 	spin_unlock_irqrestore(&tc->lock, flags);
2107 
2108 	if (list_empty(&cells))
2109 		return;
2110 
2111 	do {
2112 		count = sort_cells(tc->pool, &cells);
2113 
2114 		for (i = 0; i < count; i++) {
2115 			cell = pool->cell_sort_array[i];
2116 			BUG_ON(!cell->holder);
2117 
2118 			/*
2119 			 * If we've got no free new_mapping structs, and processing
2120 			 * this bio might require one, we pause until there are some
2121 			 * prepared mappings to process.
2122 			 */
2123 			if (ensure_next_mapping(pool)) {
2124 				for (j = i; j < count; j++)
2125 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2126 
2127 				spin_lock_irqsave(&tc->lock, flags);
2128 				list_splice(&cells, &tc->deferred_cells);
2129 				spin_unlock_irqrestore(&tc->lock, flags);
2130 				return;
2131 			}
2132 
2133 			if (cell->holder->bi_rw & REQ_DISCARD)
2134 				pool->process_discard_cell(tc, cell);
2135 			else
2136 				pool->process_cell(tc, cell);
2137 		}
2138 	} while (!list_empty(&cells));
2139 }
2140 
2141 static void thin_get(struct thin_c *tc);
2142 static void thin_put(struct thin_c *tc);
2143 
2144 /*
2145  * We can't hold rcu_read_lock() around code that can block.  So we
2146  * find a thin with the rcu lock held; bump a refcount; then drop
2147  * the lock.
2148  */
2149 static struct thin_c *get_first_thin(struct pool *pool)
2150 {
2151 	struct thin_c *tc = NULL;
2152 
2153 	rcu_read_lock();
2154 	if (!list_empty(&pool->active_thins)) {
2155 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2156 		thin_get(tc);
2157 	}
2158 	rcu_read_unlock();
2159 
2160 	return tc;
2161 }
2162 
2163 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2164 {
2165 	struct thin_c *old_tc = tc;
2166 
2167 	rcu_read_lock();
2168 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2169 		thin_get(tc);
2170 		thin_put(old_tc);
2171 		rcu_read_unlock();
2172 		return tc;
2173 	}
2174 	thin_put(old_tc);
2175 	rcu_read_unlock();
2176 
2177 	return NULL;
2178 }
2179 
2180 static void process_deferred_bios(struct pool *pool)
2181 {
2182 	unsigned long flags;
2183 	struct bio *bio;
2184 	struct bio_list bios;
2185 	struct thin_c *tc;
2186 
2187 	tc = get_first_thin(pool);
2188 	while (tc) {
2189 		process_thin_deferred_cells(tc);
2190 		process_thin_deferred_bios(tc);
2191 		tc = get_next_thin(pool, tc);
2192 	}
2193 
2194 	/*
2195 	 * If there are any deferred flush bios, we must commit
2196 	 * the metadata before issuing them.
2197 	 */
2198 	bio_list_init(&bios);
2199 	spin_lock_irqsave(&pool->lock, flags);
2200 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2201 	bio_list_init(&pool->deferred_flush_bios);
2202 	spin_unlock_irqrestore(&pool->lock, flags);
2203 
2204 	if (bio_list_empty(&bios) &&
2205 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2206 		return;
2207 
2208 	if (commit(pool)) {
2209 		while ((bio = bio_list_pop(&bios)))
2210 			bio_io_error(bio);
2211 		return;
2212 	}
2213 	pool->last_commit_jiffies = jiffies;
2214 
2215 	while ((bio = bio_list_pop(&bios)))
2216 		generic_make_request(bio);
2217 }
2218 
2219 static void do_worker(struct work_struct *ws)
2220 {
2221 	struct pool *pool = container_of(ws, struct pool, worker);
2222 
2223 	throttle_work_start(&pool->throttle);
2224 	dm_pool_issue_prefetches(pool->pmd);
2225 	throttle_work_update(&pool->throttle);
2226 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2227 	throttle_work_update(&pool->throttle);
2228 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2229 	throttle_work_update(&pool->throttle);
2230 	process_deferred_bios(pool);
2231 	throttle_work_complete(&pool->throttle);
2232 }
2233 
2234 /*
2235  * We want to commit periodically so that not too much
2236  * unwritten data builds up.
2237  */
2238 static void do_waker(struct work_struct *ws)
2239 {
2240 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2241 	wake_worker(pool);
2242 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2243 }
2244 
2245 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2246 
2247 /*
2248  * We're holding onto IO to allow userland time to react.  After the
2249  * timeout either the pool will have been resized (and thus back in
2250  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2251  */
2252 static void do_no_space_timeout(struct work_struct *ws)
2253 {
2254 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2255 					 no_space_timeout);
2256 
2257 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2258 		pool->pf.error_if_no_space = true;
2259 		notify_of_pool_mode_change_to_oods(pool);
2260 		error_retry_list_with_code(pool, -ENOSPC);
2261 	}
2262 }
2263 
2264 /*----------------------------------------------------------------*/
2265 
2266 struct pool_work {
2267 	struct work_struct worker;
2268 	struct completion complete;
2269 };
2270 
2271 static struct pool_work *to_pool_work(struct work_struct *ws)
2272 {
2273 	return container_of(ws, struct pool_work, worker);
2274 }
2275 
2276 static void pool_work_complete(struct pool_work *pw)
2277 {
2278 	complete(&pw->complete);
2279 }
2280 
2281 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2282 			   void (*fn)(struct work_struct *))
2283 {
2284 	INIT_WORK_ONSTACK(&pw->worker, fn);
2285 	init_completion(&pw->complete);
2286 	queue_work(pool->wq, &pw->worker);
2287 	wait_for_completion(&pw->complete);
2288 }
2289 
2290 /*----------------------------------------------------------------*/
2291 
2292 struct noflush_work {
2293 	struct pool_work pw;
2294 	struct thin_c *tc;
2295 };
2296 
2297 static struct noflush_work *to_noflush(struct work_struct *ws)
2298 {
2299 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2300 }
2301 
2302 static void do_noflush_start(struct work_struct *ws)
2303 {
2304 	struct noflush_work *w = to_noflush(ws);
2305 	w->tc->requeue_mode = true;
2306 	requeue_io(w->tc);
2307 	pool_work_complete(&w->pw);
2308 }
2309 
2310 static void do_noflush_stop(struct work_struct *ws)
2311 {
2312 	struct noflush_work *w = to_noflush(ws);
2313 	w->tc->requeue_mode = false;
2314 	pool_work_complete(&w->pw);
2315 }
2316 
2317 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2318 {
2319 	struct noflush_work w;
2320 
2321 	w.tc = tc;
2322 	pool_work_wait(&w.pw, tc->pool, fn);
2323 }
2324 
2325 /*----------------------------------------------------------------*/
2326 
2327 static enum pool_mode get_pool_mode(struct pool *pool)
2328 {
2329 	return pool->pf.mode;
2330 }
2331 
2332 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2333 {
2334 	dm_table_event(pool->ti->table);
2335 	DMINFO("%s: switching pool to %s mode",
2336 	       dm_device_name(pool->pool_md), new_mode);
2337 }
2338 
2339 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2340 {
2341 	if (!pool->pf.error_if_no_space)
2342 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2343 	else
2344 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2345 }
2346 
2347 static bool passdown_enabled(struct pool_c *pt)
2348 {
2349 	return pt->adjusted_pf.discard_passdown;
2350 }
2351 
2352 static void set_discard_callbacks(struct pool *pool)
2353 {
2354 	struct pool_c *pt = pool->ti->private;
2355 
2356 	if (passdown_enabled(pt)) {
2357 		pool->process_discard_cell = process_discard_cell_passdown;
2358 		pool->process_prepared_discard = process_prepared_discard_passdown;
2359 	} else {
2360 		pool->process_discard_cell = process_discard_cell_no_passdown;
2361 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2362 	}
2363 }
2364 
2365 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2366 {
2367 	struct pool_c *pt = pool->ti->private;
2368 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2369 	enum pool_mode old_mode = get_pool_mode(pool);
2370 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2371 
2372 	/*
2373 	 * Never allow the pool to transition to PM_WRITE mode if user
2374 	 * intervention is required to verify metadata and data consistency.
2375 	 */
2376 	if (new_mode == PM_WRITE && needs_check) {
2377 		DMERR("%s: unable to switch pool to write mode until repaired.",
2378 		      dm_device_name(pool->pool_md));
2379 		if (old_mode != new_mode)
2380 			new_mode = old_mode;
2381 		else
2382 			new_mode = PM_READ_ONLY;
2383 	}
2384 	/*
2385 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2386 	 * not going to recover without a thin_repair.	So we never let the
2387 	 * pool move out of the old mode.
2388 	 */
2389 	if (old_mode == PM_FAIL)
2390 		new_mode = old_mode;
2391 
2392 	switch (new_mode) {
2393 	case PM_FAIL:
2394 		if (old_mode != new_mode)
2395 			notify_of_pool_mode_change(pool, "failure");
2396 		dm_pool_metadata_read_only(pool->pmd);
2397 		pool->process_bio = process_bio_fail;
2398 		pool->process_discard = process_bio_fail;
2399 		pool->process_cell = process_cell_fail;
2400 		pool->process_discard_cell = process_cell_fail;
2401 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2402 		pool->process_prepared_discard = process_prepared_discard_fail;
2403 
2404 		error_retry_list(pool);
2405 		break;
2406 
2407 	case PM_READ_ONLY:
2408 		if (old_mode != new_mode)
2409 			notify_of_pool_mode_change(pool, "read-only");
2410 		dm_pool_metadata_read_only(pool->pmd);
2411 		pool->process_bio = process_bio_read_only;
2412 		pool->process_discard = process_bio_success;
2413 		pool->process_cell = process_cell_read_only;
2414 		pool->process_discard_cell = process_cell_success;
2415 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2416 		pool->process_prepared_discard = process_prepared_discard_success;
2417 
2418 		error_retry_list(pool);
2419 		break;
2420 
2421 	case PM_OUT_OF_DATA_SPACE:
2422 		/*
2423 		 * Ideally we'd never hit this state; the low water mark
2424 		 * would trigger userland to extend the pool before we
2425 		 * completely run out of data space.  However, many small
2426 		 * IOs to unprovisioned space can consume data space at an
2427 		 * alarming rate.  Adjust your low water mark if you're
2428 		 * frequently seeing this mode.
2429 		 */
2430 		if (old_mode != new_mode)
2431 			notify_of_pool_mode_change_to_oods(pool);
2432 		pool->out_of_data_space = true;
2433 		pool->process_bio = process_bio_read_only;
2434 		pool->process_discard = process_discard_bio;
2435 		pool->process_cell = process_cell_read_only;
2436 		pool->process_prepared_mapping = process_prepared_mapping;
2437 		set_discard_callbacks(pool);
2438 
2439 		if (!pool->pf.error_if_no_space && no_space_timeout)
2440 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2441 		break;
2442 
2443 	case PM_WRITE:
2444 		if (old_mode != new_mode)
2445 			notify_of_pool_mode_change(pool, "write");
2446 		pool->out_of_data_space = false;
2447 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2448 		dm_pool_metadata_read_write(pool->pmd);
2449 		pool->process_bio = process_bio;
2450 		pool->process_discard = process_discard_bio;
2451 		pool->process_cell = process_cell;
2452 		pool->process_prepared_mapping = process_prepared_mapping;
2453 		set_discard_callbacks(pool);
2454 		break;
2455 	}
2456 
2457 	pool->pf.mode = new_mode;
2458 	/*
2459 	 * The pool mode may have changed, sync it so bind_control_target()
2460 	 * doesn't cause an unexpected mode transition on resume.
2461 	 */
2462 	pt->adjusted_pf.mode = new_mode;
2463 }
2464 
2465 static void abort_transaction(struct pool *pool)
2466 {
2467 	const char *dev_name = dm_device_name(pool->pool_md);
2468 
2469 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2470 	if (dm_pool_abort_metadata(pool->pmd)) {
2471 		DMERR("%s: failed to abort metadata transaction", dev_name);
2472 		set_pool_mode(pool, PM_FAIL);
2473 	}
2474 
2475 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2476 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2477 		set_pool_mode(pool, PM_FAIL);
2478 	}
2479 }
2480 
2481 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2482 {
2483 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2484 		    dm_device_name(pool->pool_md), op, r);
2485 
2486 	abort_transaction(pool);
2487 	set_pool_mode(pool, PM_READ_ONLY);
2488 }
2489 
2490 /*----------------------------------------------------------------*/
2491 
2492 /*
2493  * Mapping functions.
2494  */
2495 
2496 /*
2497  * Called only while mapping a thin bio to hand it over to the workqueue.
2498  */
2499 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2500 {
2501 	unsigned long flags;
2502 	struct pool *pool = tc->pool;
2503 
2504 	spin_lock_irqsave(&tc->lock, flags);
2505 	bio_list_add(&tc->deferred_bio_list, bio);
2506 	spin_unlock_irqrestore(&tc->lock, flags);
2507 
2508 	wake_worker(pool);
2509 }
2510 
2511 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2512 {
2513 	struct pool *pool = tc->pool;
2514 
2515 	throttle_lock(&pool->throttle);
2516 	thin_defer_bio(tc, bio);
2517 	throttle_unlock(&pool->throttle);
2518 }
2519 
2520 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2521 {
2522 	unsigned long flags;
2523 	struct pool *pool = tc->pool;
2524 
2525 	throttle_lock(&pool->throttle);
2526 	spin_lock_irqsave(&tc->lock, flags);
2527 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2528 	spin_unlock_irqrestore(&tc->lock, flags);
2529 	throttle_unlock(&pool->throttle);
2530 
2531 	wake_worker(pool);
2532 }
2533 
2534 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2535 {
2536 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2537 
2538 	h->tc = tc;
2539 	h->shared_read_entry = NULL;
2540 	h->all_io_entry = NULL;
2541 	h->overwrite_mapping = NULL;
2542 	h->cell = NULL;
2543 }
2544 
2545 /*
2546  * Non-blocking function called from the thin target's map function.
2547  */
2548 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2549 {
2550 	int r;
2551 	struct thin_c *tc = ti->private;
2552 	dm_block_t block = get_bio_block(tc, bio);
2553 	struct dm_thin_device *td = tc->td;
2554 	struct dm_thin_lookup_result result;
2555 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2556 	struct dm_cell_key key;
2557 
2558 	thin_hook_bio(tc, bio);
2559 
2560 	if (tc->requeue_mode) {
2561 		bio->bi_error = DM_ENDIO_REQUEUE;
2562 		bio_endio(bio);
2563 		return DM_MAPIO_SUBMITTED;
2564 	}
2565 
2566 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2567 		bio_io_error(bio);
2568 		return DM_MAPIO_SUBMITTED;
2569 	}
2570 
2571 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2572 		thin_defer_bio_with_throttle(tc, bio);
2573 		return DM_MAPIO_SUBMITTED;
2574 	}
2575 
2576 	/*
2577 	 * We must hold the virtual cell before doing the lookup, otherwise
2578 	 * there's a race with discard.
2579 	 */
2580 	build_virtual_key(tc->td, block, &key);
2581 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2582 		return DM_MAPIO_SUBMITTED;
2583 
2584 	r = dm_thin_find_block(td, block, 0, &result);
2585 
2586 	/*
2587 	 * Note that we defer readahead too.
2588 	 */
2589 	switch (r) {
2590 	case 0:
2591 		if (unlikely(result.shared)) {
2592 			/*
2593 			 * We have a race condition here between the
2594 			 * result.shared value returned by the lookup and
2595 			 * snapshot creation, which may cause new
2596 			 * sharing.
2597 			 *
2598 			 * To avoid this always quiesce the origin before
2599 			 * taking the snap.  You want to do this anyway to
2600 			 * ensure a consistent application view
2601 			 * (i.e. lockfs).
2602 			 *
2603 			 * More distant ancestors are irrelevant. The
2604 			 * shared flag will be set in their case.
2605 			 */
2606 			thin_defer_cell(tc, virt_cell);
2607 			return DM_MAPIO_SUBMITTED;
2608 		}
2609 
2610 		build_data_key(tc->td, result.block, &key);
2611 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2612 			cell_defer_no_holder(tc, virt_cell);
2613 			return DM_MAPIO_SUBMITTED;
2614 		}
2615 
2616 		inc_all_io_entry(tc->pool, bio);
2617 		cell_defer_no_holder(tc, data_cell);
2618 		cell_defer_no_holder(tc, virt_cell);
2619 
2620 		remap(tc, bio, result.block);
2621 		return DM_MAPIO_REMAPPED;
2622 
2623 	case -ENODATA:
2624 	case -EWOULDBLOCK:
2625 		thin_defer_cell(tc, virt_cell);
2626 		return DM_MAPIO_SUBMITTED;
2627 
2628 	default:
2629 		/*
2630 		 * Must always call bio_io_error on failure.
2631 		 * dm_thin_find_block can fail with -EINVAL if the
2632 		 * pool is switched to fail-io mode.
2633 		 */
2634 		bio_io_error(bio);
2635 		cell_defer_no_holder(tc, virt_cell);
2636 		return DM_MAPIO_SUBMITTED;
2637 	}
2638 }
2639 
2640 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2641 {
2642 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2643 	struct request_queue *q;
2644 
2645 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2646 		return 1;
2647 
2648 	q = bdev_get_queue(pt->data_dev->bdev);
2649 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2650 }
2651 
2652 static void requeue_bios(struct pool *pool)
2653 {
2654 	unsigned long flags;
2655 	struct thin_c *tc;
2656 
2657 	rcu_read_lock();
2658 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2659 		spin_lock_irqsave(&tc->lock, flags);
2660 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2661 		bio_list_init(&tc->retry_on_resume_list);
2662 		spin_unlock_irqrestore(&tc->lock, flags);
2663 	}
2664 	rcu_read_unlock();
2665 }
2666 
2667 /*----------------------------------------------------------------
2668  * Binding of control targets to a pool object
2669  *--------------------------------------------------------------*/
2670 static bool data_dev_supports_discard(struct pool_c *pt)
2671 {
2672 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2673 
2674 	return q && blk_queue_discard(q);
2675 }
2676 
2677 static bool is_factor(sector_t block_size, uint32_t n)
2678 {
2679 	return !sector_div(block_size, n);
2680 }
2681 
2682 /*
2683  * If discard_passdown was enabled verify that the data device
2684  * supports discards.  Disable discard_passdown if not.
2685  */
2686 static void disable_passdown_if_not_supported(struct pool_c *pt)
2687 {
2688 	struct pool *pool = pt->pool;
2689 	struct block_device *data_bdev = pt->data_dev->bdev;
2690 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2691 	const char *reason = NULL;
2692 	char buf[BDEVNAME_SIZE];
2693 
2694 	if (!pt->adjusted_pf.discard_passdown)
2695 		return;
2696 
2697 	if (!data_dev_supports_discard(pt))
2698 		reason = "discard unsupported";
2699 
2700 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2701 		reason = "max discard sectors smaller than a block";
2702 
2703 	if (reason) {
2704 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2705 		pt->adjusted_pf.discard_passdown = false;
2706 	}
2707 }
2708 
2709 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2710 {
2711 	struct pool_c *pt = ti->private;
2712 
2713 	/*
2714 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2715 	 */
2716 	enum pool_mode old_mode = get_pool_mode(pool);
2717 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2718 
2719 	/*
2720 	 * Don't change the pool's mode until set_pool_mode() below.
2721 	 * Otherwise the pool's process_* function pointers may
2722 	 * not match the desired pool mode.
2723 	 */
2724 	pt->adjusted_pf.mode = old_mode;
2725 
2726 	pool->ti = ti;
2727 	pool->pf = pt->adjusted_pf;
2728 	pool->low_water_blocks = pt->low_water_blocks;
2729 
2730 	set_pool_mode(pool, new_mode);
2731 
2732 	return 0;
2733 }
2734 
2735 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2736 {
2737 	if (pool->ti == ti)
2738 		pool->ti = NULL;
2739 }
2740 
2741 /*----------------------------------------------------------------
2742  * Pool creation
2743  *--------------------------------------------------------------*/
2744 /* Initialize pool features. */
2745 static void pool_features_init(struct pool_features *pf)
2746 {
2747 	pf->mode = PM_WRITE;
2748 	pf->zero_new_blocks = true;
2749 	pf->discard_enabled = true;
2750 	pf->discard_passdown = true;
2751 	pf->error_if_no_space = false;
2752 }
2753 
2754 static void __pool_destroy(struct pool *pool)
2755 {
2756 	__pool_table_remove(pool);
2757 
2758 	vfree(pool->cell_sort_array);
2759 	if (dm_pool_metadata_close(pool->pmd) < 0)
2760 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2761 
2762 	dm_bio_prison_destroy(pool->prison);
2763 	dm_kcopyd_client_destroy(pool->copier);
2764 
2765 	if (pool->wq)
2766 		destroy_workqueue(pool->wq);
2767 
2768 	if (pool->next_mapping)
2769 		mempool_free(pool->next_mapping, pool->mapping_pool);
2770 	mempool_destroy(pool->mapping_pool);
2771 	dm_deferred_set_destroy(pool->shared_read_ds);
2772 	dm_deferred_set_destroy(pool->all_io_ds);
2773 	kfree(pool);
2774 }
2775 
2776 static struct kmem_cache *_new_mapping_cache;
2777 
2778 static struct pool *pool_create(struct mapped_device *pool_md,
2779 				struct block_device *metadata_dev,
2780 				unsigned long block_size,
2781 				int read_only, char **error)
2782 {
2783 	int r;
2784 	void *err_p;
2785 	struct pool *pool;
2786 	struct dm_pool_metadata *pmd;
2787 	bool format_device = read_only ? false : true;
2788 
2789 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2790 	if (IS_ERR(pmd)) {
2791 		*error = "Error creating metadata object";
2792 		return (struct pool *)pmd;
2793 	}
2794 
2795 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2796 	if (!pool) {
2797 		*error = "Error allocating memory for pool";
2798 		err_p = ERR_PTR(-ENOMEM);
2799 		goto bad_pool;
2800 	}
2801 
2802 	pool->pmd = pmd;
2803 	pool->sectors_per_block = block_size;
2804 	if (block_size & (block_size - 1))
2805 		pool->sectors_per_block_shift = -1;
2806 	else
2807 		pool->sectors_per_block_shift = __ffs(block_size);
2808 	pool->low_water_blocks = 0;
2809 	pool_features_init(&pool->pf);
2810 	pool->prison = dm_bio_prison_create();
2811 	if (!pool->prison) {
2812 		*error = "Error creating pool's bio prison";
2813 		err_p = ERR_PTR(-ENOMEM);
2814 		goto bad_prison;
2815 	}
2816 
2817 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2818 	if (IS_ERR(pool->copier)) {
2819 		r = PTR_ERR(pool->copier);
2820 		*error = "Error creating pool's kcopyd client";
2821 		err_p = ERR_PTR(r);
2822 		goto bad_kcopyd_client;
2823 	}
2824 
2825 	/*
2826 	 * Create singlethreaded workqueue that will service all devices
2827 	 * that use this metadata.
2828 	 */
2829 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2830 	if (!pool->wq) {
2831 		*error = "Error creating pool's workqueue";
2832 		err_p = ERR_PTR(-ENOMEM);
2833 		goto bad_wq;
2834 	}
2835 
2836 	throttle_init(&pool->throttle);
2837 	INIT_WORK(&pool->worker, do_worker);
2838 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2839 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2840 	spin_lock_init(&pool->lock);
2841 	bio_list_init(&pool->deferred_flush_bios);
2842 	INIT_LIST_HEAD(&pool->prepared_mappings);
2843 	INIT_LIST_HEAD(&pool->prepared_discards);
2844 	INIT_LIST_HEAD(&pool->active_thins);
2845 	pool->low_water_triggered = false;
2846 	pool->suspended = true;
2847 	pool->out_of_data_space = false;
2848 
2849 	pool->shared_read_ds = dm_deferred_set_create();
2850 	if (!pool->shared_read_ds) {
2851 		*error = "Error creating pool's shared read deferred set";
2852 		err_p = ERR_PTR(-ENOMEM);
2853 		goto bad_shared_read_ds;
2854 	}
2855 
2856 	pool->all_io_ds = dm_deferred_set_create();
2857 	if (!pool->all_io_ds) {
2858 		*error = "Error creating pool's all io deferred set";
2859 		err_p = ERR_PTR(-ENOMEM);
2860 		goto bad_all_io_ds;
2861 	}
2862 
2863 	pool->next_mapping = NULL;
2864 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2865 						      _new_mapping_cache);
2866 	if (!pool->mapping_pool) {
2867 		*error = "Error creating pool's mapping mempool";
2868 		err_p = ERR_PTR(-ENOMEM);
2869 		goto bad_mapping_pool;
2870 	}
2871 
2872 	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2873 	if (!pool->cell_sort_array) {
2874 		*error = "Error allocating cell sort array";
2875 		err_p = ERR_PTR(-ENOMEM);
2876 		goto bad_sort_array;
2877 	}
2878 
2879 	pool->ref_count = 1;
2880 	pool->last_commit_jiffies = jiffies;
2881 	pool->pool_md = pool_md;
2882 	pool->md_dev = metadata_dev;
2883 	__pool_table_insert(pool);
2884 
2885 	return pool;
2886 
2887 bad_sort_array:
2888 	mempool_destroy(pool->mapping_pool);
2889 bad_mapping_pool:
2890 	dm_deferred_set_destroy(pool->all_io_ds);
2891 bad_all_io_ds:
2892 	dm_deferred_set_destroy(pool->shared_read_ds);
2893 bad_shared_read_ds:
2894 	destroy_workqueue(pool->wq);
2895 bad_wq:
2896 	dm_kcopyd_client_destroy(pool->copier);
2897 bad_kcopyd_client:
2898 	dm_bio_prison_destroy(pool->prison);
2899 bad_prison:
2900 	kfree(pool);
2901 bad_pool:
2902 	if (dm_pool_metadata_close(pmd))
2903 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2904 
2905 	return err_p;
2906 }
2907 
2908 static void __pool_inc(struct pool *pool)
2909 {
2910 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2911 	pool->ref_count++;
2912 }
2913 
2914 static void __pool_dec(struct pool *pool)
2915 {
2916 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2917 	BUG_ON(!pool->ref_count);
2918 	if (!--pool->ref_count)
2919 		__pool_destroy(pool);
2920 }
2921 
2922 static struct pool *__pool_find(struct mapped_device *pool_md,
2923 				struct block_device *metadata_dev,
2924 				unsigned long block_size, int read_only,
2925 				char **error, int *created)
2926 {
2927 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2928 
2929 	if (pool) {
2930 		if (pool->pool_md != pool_md) {
2931 			*error = "metadata device already in use by a pool";
2932 			return ERR_PTR(-EBUSY);
2933 		}
2934 		__pool_inc(pool);
2935 
2936 	} else {
2937 		pool = __pool_table_lookup(pool_md);
2938 		if (pool) {
2939 			if (pool->md_dev != metadata_dev) {
2940 				*error = "different pool cannot replace a pool";
2941 				return ERR_PTR(-EINVAL);
2942 			}
2943 			__pool_inc(pool);
2944 
2945 		} else {
2946 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2947 			*created = 1;
2948 		}
2949 	}
2950 
2951 	return pool;
2952 }
2953 
2954 /*----------------------------------------------------------------
2955  * Pool target methods
2956  *--------------------------------------------------------------*/
2957 static void pool_dtr(struct dm_target *ti)
2958 {
2959 	struct pool_c *pt = ti->private;
2960 
2961 	mutex_lock(&dm_thin_pool_table.mutex);
2962 
2963 	unbind_control_target(pt->pool, ti);
2964 	__pool_dec(pt->pool);
2965 	dm_put_device(ti, pt->metadata_dev);
2966 	dm_put_device(ti, pt->data_dev);
2967 	kfree(pt);
2968 
2969 	mutex_unlock(&dm_thin_pool_table.mutex);
2970 }
2971 
2972 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2973 			       struct dm_target *ti)
2974 {
2975 	int r;
2976 	unsigned argc;
2977 	const char *arg_name;
2978 
2979 	static struct dm_arg _args[] = {
2980 		{0, 4, "Invalid number of pool feature arguments"},
2981 	};
2982 
2983 	/*
2984 	 * No feature arguments supplied.
2985 	 */
2986 	if (!as->argc)
2987 		return 0;
2988 
2989 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2990 	if (r)
2991 		return -EINVAL;
2992 
2993 	while (argc && !r) {
2994 		arg_name = dm_shift_arg(as);
2995 		argc--;
2996 
2997 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2998 			pf->zero_new_blocks = false;
2999 
3000 		else if (!strcasecmp(arg_name, "ignore_discard"))
3001 			pf->discard_enabled = false;
3002 
3003 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3004 			pf->discard_passdown = false;
3005 
3006 		else if (!strcasecmp(arg_name, "read_only"))
3007 			pf->mode = PM_READ_ONLY;
3008 
3009 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3010 			pf->error_if_no_space = true;
3011 
3012 		else {
3013 			ti->error = "Unrecognised pool feature requested";
3014 			r = -EINVAL;
3015 			break;
3016 		}
3017 	}
3018 
3019 	return r;
3020 }
3021 
3022 static void metadata_low_callback(void *context)
3023 {
3024 	struct pool *pool = context;
3025 
3026 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3027 	       dm_device_name(pool->pool_md));
3028 
3029 	dm_table_event(pool->ti->table);
3030 }
3031 
3032 static sector_t get_dev_size(struct block_device *bdev)
3033 {
3034 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3035 }
3036 
3037 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3038 {
3039 	sector_t metadata_dev_size = get_dev_size(bdev);
3040 	char buffer[BDEVNAME_SIZE];
3041 
3042 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3043 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3044 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3045 }
3046 
3047 static sector_t get_metadata_dev_size(struct block_device *bdev)
3048 {
3049 	sector_t metadata_dev_size = get_dev_size(bdev);
3050 
3051 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3052 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3053 
3054 	return metadata_dev_size;
3055 }
3056 
3057 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3058 {
3059 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3060 
3061 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3062 
3063 	return metadata_dev_size;
3064 }
3065 
3066 /*
3067  * When a metadata threshold is crossed a dm event is triggered, and
3068  * userland should respond by growing the metadata device.  We could let
3069  * userland set the threshold, like we do with the data threshold, but I'm
3070  * not sure they know enough to do this well.
3071  */
3072 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3073 {
3074 	/*
3075 	 * 4M is ample for all ops with the possible exception of thin
3076 	 * device deletion which is harmless if it fails (just retry the
3077 	 * delete after you've grown the device).
3078 	 */
3079 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3080 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3081 }
3082 
3083 /*
3084  * thin-pool <metadata dev> <data dev>
3085  *	     <data block size (sectors)>
3086  *	     <low water mark (blocks)>
3087  *	     [<#feature args> [<arg>]*]
3088  *
3089  * Optional feature arguments are:
3090  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3091  *	     ignore_discard: disable discard
3092  *	     no_discard_passdown: don't pass discards down to the data device
3093  *	     read_only: Don't allow any changes to be made to the pool metadata.
3094  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3095  */
3096 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3097 {
3098 	int r, pool_created = 0;
3099 	struct pool_c *pt;
3100 	struct pool *pool;
3101 	struct pool_features pf;
3102 	struct dm_arg_set as;
3103 	struct dm_dev *data_dev;
3104 	unsigned long block_size;
3105 	dm_block_t low_water_blocks;
3106 	struct dm_dev *metadata_dev;
3107 	fmode_t metadata_mode;
3108 
3109 	/*
3110 	 * FIXME Remove validation from scope of lock.
3111 	 */
3112 	mutex_lock(&dm_thin_pool_table.mutex);
3113 
3114 	if (argc < 4) {
3115 		ti->error = "Invalid argument count";
3116 		r = -EINVAL;
3117 		goto out_unlock;
3118 	}
3119 
3120 	as.argc = argc;
3121 	as.argv = argv;
3122 
3123 	/*
3124 	 * Set default pool features.
3125 	 */
3126 	pool_features_init(&pf);
3127 
3128 	dm_consume_args(&as, 4);
3129 	r = parse_pool_features(&as, &pf, ti);
3130 	if (r)
3131 		goto out_unlock;
3132 
3133 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3134 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3135 	if (r) {
3136 		ti->error = "Error opening metadata block device";
3137 		goto out_unlock;
3138 	}
3139 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3140 
3141 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3142 	if (r) {
3143 		ti->error = "Error getting data device";
3144 		goto out_metadata;
3145 	}
3146 
3147 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3148 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3149 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3150 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3151 		ti->error = "Invalid block size";
3152 		r = -EINVAL;
3153 		goto out;
3154 	}
3155 
3156 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3157 		ti->error = "Invalid low water mark";
3158 		r = -EINVAL;
3159 		goto out;
3160 	}
3161 
3162 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3163 	if (!pt) {
3164 		r = -ENOMEM;
3165 		goto out;
3166 	}
3167 
3168 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3169 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3170 	if (IS_ERR(pool)) {
3171 		r = PTR_ERR(pool);
3172 		goto out_free_pt;
3173 	}
3174 
3175 	/*
3176 	 * 'pool_created' reflects whether this is the first table load.
3177 	 * Top level discard support is not allowed to be changed after
3178 	 * initial load.  This would require a pool reload to trigger thin
3179 	 * device changes.
3180 	 */
3181 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3182 		ti->error = "Discard support cannot be disabled once enabled";
3183 		r = -EINVAL;
3184 		goto out_flags_changed;
3185 	}
3186 
3187 	pt->pool = pool;
3188 	pt->ti = ti;
3189 	pt->metadata_dev = metadata_dev;
3190 	pt->data_dev = data_dev;
3191 	pt->low_water_blocks = low_water_blocks;
3192 	pt->adjusted_pf = pt->requested_pf = pf;
3193 	ti->num_flush_bios = 1;
3194 
3195 	/*
3196 	 * Only need to enable discards if the pool should pass
3197 	 * them down to the data device.  The thin device's discard
3198 	 * processing will cause mappings to be removed from the btree.
3199 	 */
3200 	ti->discard_zeroes_data_unsupported = true;
3201 	if (pf.discard_enabled && pf.discard_passdown) {
3202 		ti->num_discard_bios = 1;
3203 
3204 		/*
3205 		 * Setting 'discards_supported' circumvents the normal
3206 		 * stacking of discard limits (this keeps the pool and
3207 		 * thin devices' discard limits consistent).
3208 		 */
3209 		ti->discards_supported = true;
3210 	}
3211 	ti->private = pt;
3212 
3213 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3214 						calc_metadata_threshold(pt),
3215 						metadata_low_callback,
3216 						pool);
3217 	if (r)
3218 		goto out_flags_changed;
3219 
3220 	pt->callbacks.congested_fn = pool_is_congested;
3221 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3222 
3223 	mutex_unlock(&dm_thin_pool_table.mutex);
3224 
3225 	return 0;
3226 
3227 out_flags_changed:
3228 	__pool_dec(pool);
3229 out_free_pt:
3230 	kfree(pt);
3231 out:
3232 	dm_put_device(ti, data_dev);
3233 out_metadata:
3234 	dm_put_device(ti, metadata_dev);
3235 out_unlock:
3236 	mutex_unlock(&dm_thin_pool_table.mutex);
3237 
3238 	return r;
3239 }
3240 
3241 static int pool_map(struct dm_target *ti, struct bio *bio)
3242 {
3243 	int r;
3244 	struct pool_c *pt = ti->private;
3245 	struct pool *pool = pt->pool;
3246 	unsigned long flags;
3247 
3248 	/*
3249 	 * As this is a singleton target, ti->begin is always zero.
3250 	 */
3251 	spin_lock_irqsave(&pool->lock, flags);
3252 	bio->bi_bdev = pt->data_dev->bdev;
3253 	r = DM_MAPIO_REMAPPED;
3254 	spin_unlock_irqrestore(&pool->lock, flags);
3255 
3256 	return r;
3257 }
3258 
3259 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3260 {
3261 	int r;
3262 	struct pool_c *pt = ti->private;
3263 	struct pool *pool = pt->pool;
3264 	sector_t data_size = ti->len;
3265 	dm_block_t sb_data_size;
3266 
3267 	*need_commit = false;
3268 
3269 	(void) sector_div(data_size, pool->sectors_per_block);
3270 
3271 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3272 	if (r) {
3273 		DMERR("%s: failed to retrieve data device size",
3274 		      dm_device_name(pool->pool_md));
3275 		return r;
3276 	}
3277 
3278 	if (data_size < sb_data_size) {
3279 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3280 		      dm_device_name(pool->pool_md),
3281 		      (unsigned long long)data_size, sb_data_size);
3282 		return -EINVAL;
3283 
3284 	} else if (data_size > sb_data_size) {
3285 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3286 			DMERR("%s: unable to grow the data device until repaired.",
3287 			      dm_device_name(pool->pool_md));
3288 			return 0;
3289 		}
3290 
3291 		if (sb_data_size)
3292 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3293 			       dm_device_name(pool->pool_md),
3294 			       sb_data_size, (unsigned long long)data_size);
3295 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3296 		if (r) {
3297 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3298 			return r;
3299 		}
3300 
3301 		*need_commit = true;
3302 	}
3303 
3304 	return 0;
3305 }
3306 
3307 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3308 {
3309 	int r;
3310 	struct pool_c *pt = ti->private;
3311 	struct pool *pool = pt->pool;
3312 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3313 
3314 	*need_commit = false;
3315 
3316 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3317 
3318 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3319 	if (r) {
3320 		DMERR("%s: failed to retrieve metadata device size",
3321 		      dm_device_name(pool->pool_md));
3322 		return r;
3323 	}
3324 
3325 	if (metadata_dev_size < sb_metadata_dev_size) {
3326 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3327 		      dm_device_name(pool->pool_md),
3328 		      metadata_dev_size, sb_metadata_dev_size);
3329 		return -EINVAL;
3330 
3331 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3332 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3333 			DMERR("%s: unable to grow the metadata device until repaired.",
3334 			      dm_device_name(pool->pool_md));
3335 			return 0;
3336 		}
3337 
3338 		warn_if_metadata_device_too_big(pool->md_dev);
3339 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3340 		       dm_device_name(pool->pool_md),
3341 		       sb_metadata_dev_size, metadata_dev_size);
3342 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3343 		if (r) {
3344 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3345 			return r;
3346 		}
3347 
3348 		*need_commit = true;
3349 	}
3350 
3351 	return 0;
3352 }
3353 
3354 /*
3355  * Retrieves the number of blocks of the data device from
3356  * the superblock and compares it to the actual device size,
3357  * thus resizing the data device in case it has grown.
3358  *
3359  * This both copes with opening preallocated data devices in the ctr
3360  * being followed by a resume
3361  * -and-
3362  * calling the resume method individually after userspace has
3363  * grown the data device in reaction to a table event.
3364  */
3365 static int pool_preresume(struct dm_target *ti)
3366 {
3367 	int r;
3368 	bool need_commit1, need_commit2;
3369 	struct pool_c *pt = ti->private;
3370 	struct pool *pool = pt->pool;
3371 
3372 	/*
3373 	 * Take control of the pool object.
3374 	 */
3375 	r = bind_control_target(pool, ti);
3376 	if (r)
3377 		return r;
3378 
3379 	r = maybe_resize_data_dev(ti, &need_commit1);
3380 	if (r)
3381 		return r;
3382 
3383 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3384 	if (r)
3385 		return r;
3386 
3387 	if (need_commit1 || need_commit2)
3388 		(void) commit(pool);
3389 
3390 	return 0;
3391 }
3392 
3393 static void pool_suspend_active_thins(struct pool *pool)
3394 {
3395 	struct thin_c *tc;
3396 
3397 	/* Suspend all active thin devices */
3398 	tc = get_first_thin(pool);
3399 	while (tc) {
3400 		dm_internal_suspend_noflush(tc->thin_md);
3401 		tc = get_next_thin(pool, tc);
3402 	}
3403 }
3404 
3405 static void pool_resume_active_thins(struct pool *pool)
3406 {
3407 	struct thin_c *tc;
3408 
3409 	/* Resume all active thin devices */
3410 	tc = get_first_thin(pool);
3411 	while (tc) {
3412 		dm_internal_resume(tc->thin_md);
3413 		tc = get_next_thin(pool, tc);
3414 	}
3415 }
3416 
3417 static void pool_resume(struct dm_target *ti)
3418 {
3419 	struct pool_c *pt = ti->private;
3420 	struct pool *pool = pt->pool;
3421 	unsigned long flags;
3422 
3423 	/*
3424 	 * Must requeue active_thins' bios and then resume
3425 	 * active_thins _before_ clearing 'suspend' flag.
3426 	 */
3427 	requeue_bios(pool);
3428 	pool_resume_active_thins(pool);
3429 
3430 	spin_lock_irqsave(&pool->lock, flags);
3431 	pool->low_water_triggered = false;
3432 	pool->suspended = false;
3433 	spin_unlock_irqrestore(&pool->lock, flags);
3434 
3435 	do_waker(&pool->waker.work);
3436 }
3437 
3438 static void pool_presuspend(struct dm_target *ti)
3439 {
3440 	struct pool_c *pt = ti->private;
3441 	struct pool *pool = pt->pool;
3442 	unsigned long flags;
3443 
3444 	spin_lock_irqsave(&pool->lock, flags);
3445 	pool->suspended = true;
3446 	spin_unlock_irqrestore(&pool->lock, flags);
3447 
3448 	pool_suspend_active_thins(pool);
3449 }
3450 
3451 static void pool_presuspend_undo(struct dm_target *ti)
3452 {
3453 	struct pool_c *pt = ti->private;
3454 	struct pool *pool = pt->pool;
3455 	unsigned long flags;
3456 
3457 	pool_resume_active_thins(pool);
3458 
3459 	spin_lock_irqsave(&pool->lock, flags);
3460 	pool->suspended = false;
3461 	spin_unlock_irqrestore(&pool->lock, flags);
3462 }
3463 
3464 static void pool_postsuspend(struct dm_target *ti)
3465 {
3466 	struct pool_c *pt = ti->private;
3467 	struct pool *pool = pt->pool;
3468 
3469 	cancel_delayed_work_sync(&pool->waker);
3470 	cancel_delayed_work_sync(&pool->no_space_timeout);
3471 	flush_workqueue(pool->wq);
3472 	(void) commit(pool);
3473 }
3474 
3475 static int check_arg_count(unsigned argc, unsigned args_required)
3476 {
3477 	if (argc != args_required) {
3478 		DMWARN("Message received with %u arguments instead of %u.",
3479 		       argc, args_required);
3480 		return -EINVAL;
3481 	}
3482 
3483 	return 0;
3484 }
3485 
3486 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3487 {
3488 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3489 	    *dev_id <= MAX_DEV_ID)
3490 		return 0;
3491 
3492 	if (warning)
3493 		DMWARN("Message received with invalid device id: %s", arg);
3494 
3495 	return -EINVAL;
3496 }
3497 
3498 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3499 {
3500 	dm_thin_id dev_id;
3501 	int r;
3502 
3503 	r = check_arg_count(argc, 2);
3504 	if (r)
3505 		return r;
3506 
3507 	r = read_dev_id(argv[1], &dev_id, 1);
3508 	if (r)
3509 		return r;
3510 
3511 	r = dm_pool_create_thin(pool->pmd, dev_id);
3512 	if (r) {
3513 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3514 		       argv[1]);
3515 		return r;
3516 	}
3517 
3518 	return 0;
3519 }
3520 
3521 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3522 {
3523 	dm_thin_id dev_id;
3524 	dm_thin_id origin_dev_id;
3525 	int r;
3526 
3527 	r = check_arg_count(argc, 3);
3528 	if (r)
3529 		return r;
3530 
3531 	r = read_dev_id(argv[1], &dev_id, 1);
3532 	if (r)
3533 		return r;
3534 
3535 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3536 	if (r)
3537 		return r;
3538 
3539 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3540 	if (r) {
3541 		DMWARN("Creation of new snapshot %s of device %s failed.",
3542 		       argv[1], argv[2]);
3543 		return r;
3544 	}
3545 
3546 	return 0;
3547 }
3548 
3549 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3550 {
3551 	dm_thin_id dev_id;
3552 	int r;
3553 
3554 	r = check_arg_count(argc, 2);
3555 	if (r)
3556 		return r;
3557 
3558 	r = read_dev_id(argv[1], &dev_id, 1);
3559 	if (r)
3560 		return r;
3561 
3562 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3563 	if (r)
3564 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3565 
3566 	return r;
3567 }
3568 
3569 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3570 {
3571 	dm_thin_id old_id, new_id;
3572 	int r;
3573 
3574 	r = check_arg_count(argc, 3);
3575 	if (r)
3576 		return r;
3577 
3578 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3579 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3580 		return -EINVAL;
3581 	}
3582 
3583 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3584 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3585 		return -EINVAL;
3586 	}
3587 
3588 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3589 	if (r) {
3590 		DMWARN("Failed to change transaction id from %s to %s.",
3591 		       argv[1], argv[2]);
3592 		return r;
3593 	}
3594 
3595 	return 0;
3596 }
3597 
3598 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3599 {
3600 	int r;
3601 
3602 	r = check_arg_count(argc, 1);
3603 	if (r)
3604 		return r;
3605 
3606 	(void) commit(pool);
3607 
3608 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3609 	if (r)
3610 		DMWARN("reserve_metadata_snap message failed.");
3611 
3612 	return r;
3613 }
3614 
3615 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3616 {
3617 	int r;
3618 
3619 	r = check_arg_count(argc, 1);
3620 	if (r)
3621 		return r;
3622 
3623 	r = dm_pool_release_metadata_snap(pool->pmd);
3624 	if (r)
3625 		DMWARN("release_metadata_snap message failed.");
3626 
3627 	return r;
3628 }
3629 
3630 /*
3631  * Messages supported:
3632  *   create_thin	<dev_id>
3633  *   create_snap	<dev_id> <origin_id>
3634  *   delete		<dev_id>
3635  *   set_transaction_id <current_trans_id> <new_trans_id>
3636  *   reserve_metadata_snap
3637  *   release_metadata_snap
3638  */
3639 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3640 {
3641 	int r = -EINVAL;
3642 	struct pool_c *pt = ti->private;
3643 	struct pool *pool = pt->pool;
3644 
3645 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3646 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3647 		      dm_device_name(pool->pool_md));
3648 		return -EOPNOTSUPP;
3649 	}
3650 
3651 	if (!strcasecmp(argv[0], "create_thin"))
3652 		r = process_create_thin_mesg(argc, argv, pool);
3653 
3654 	else if (!strcasecmp(argv[0], "create_snap"))
3655 		r = process_create_snap_mesg(argc, argv, pool);
3656 
3657 	else if (!strcasecmp(argv[0], "delete"))
3658 		r = process_delete_mesg(argc, argv, pool);
3659 
3660 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3661 		r = process_set_transaction_id_mesg(argc, argv, pool);
3662 
3663 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3664 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3665 
3666 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3667 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3668 
3669 	else
3670 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3671 
3672 	if (!r)
3673 		(void) commit(pool);
3674 
3675 	return r;
3676 }
3677 
3678 static void emit_flags(struct pool_features *pf, char *result,
3679 		       unsigned sz, unsigned maxlen)
3680 {
3681 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3682 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3683 		pf->error_if_no_space;
3684 	DMEMIT("%u ", count);
3685 
3686 	if (!pf->zero_new_blocks)
3687 		DMEMIT("skip_block_zeroing ");
3688 
3689 	if (!pf->discard_enabled)
3690 		DMEMIT("ignore_discard ");
3691 
3692 	if (!pf->discard_passdown)
3693 		DMEMIT("no_discard_passdown ");
3694 
3695 	if (pf->mode == PM_READ_ONLY)
3696 		DMEMIT("read_only ");
3697 
3698 	if (pf->error_if_no_space)
3699 		DMEMIT("error_if_no_space ");
3700 }
3701 
3702 /*
3703  * Status line is:
3704  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3705  *    <used data sectors>/<total data sectors> <held metadata root>
3706  *    <pool mode> <discard config> <no space config> <needs_check>
3707  */
3708 static void pool_status(struct dm_target *ti, status_type_t type,
3709 			unsigned status_flags, char *result, unsigned maxlen)
3710 {
3711 	int r;
3712 	unsigned sz = 0;
3713 	uint64_t transaction_id;
3714 	dm_block_t nr_free_blocks_data;
3715 	dm_block_t nr_free_blocks_metadata;
3716 	dm_block_t nr_blocks_data;
3717 	dm_block_t nr_blocks_metadata;
3718 	dm_block_t held_root;
3719 	char buf[BDEVNAME_SIZE];
3720 	char buf2[BDEVNAME_SIZE];
3721 	struct pool_c *pt = ti->private;
3722 	struct pool *pool = pt->pool;
3723 
3724 	switch (type) {
3725 	case STATUSTYPE_INFO:
3726 		if (get_pool_mode(pool) == PM_FAIL) {
3727 			DMEMIT("Fail");
3728 			break;
3729 		}
3730 
3731 		/* Commit to ensure statistics aren't out-of-date */
3732 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3733 			(void) commit(pool);
3734 
3735 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3736 		if (r) {
3737 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3738 			      dm_device_name(pool->pool_md), r);
3739 			goto err;
3740 		}
3741 
3742 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3743 		if (r) {
3744 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3745 			      dm_device_name(pool->pool_md), r);
3746 			goto err;
3747 		}
3748 
3749 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3750 		if (r) {
3751 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3752 			      dm_device_name(pool->pool_md), r);
3753 			goto err;
3754 		}
3755 
3756 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3757 		if (r) {
3758 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3759 			      dm_device_name(pool->pool_md), r);
3760 			goto err;
3761 		}
3762 
3763 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3764 		if (r) {
3765 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3766 			      dm_device_name(pool->pool_md), r);
3767 			goto err;
3768 		}
3769 
3770 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3771 		if (r) {
3772 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3773 			      dm_device_name(pool->pool_md), r);
3774 			goto err;
3775 		}
3776 
3777 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3778 		       (unsigned long long)transaction_id,
3779 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3780 		       (unsigned long long)nr_blocks_metadata,
3781 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3782 		       (unsigned long long)nr_blocks_data);
3783 
3784 		if (held_root)
3785 			DMEMIT("%llu ", held_root);
3786 		else
3787 			DMEMIT("- ");
3788 
3789 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3790 			DMEMIT("out_of_data_space ");
3791 		else if (pool->pf.mode == PM_READ_ONLY)
3792 			DMEMIT("ro ");
3793 		else
3794 			DMEMIT("rw ");
3795 
3796 		if (!pool->pf.discard_enabled)
3797 			DMEMIT("ignore_discard ");
3798 		else if (pool->pf.discard_passdown)
3799 			DMEMIT("discard_passdown ");
3800 		else
3801 			DMEMIT("no_discard_passdown ");
3802 
3803 		if (pool->pf.error_if_no_space)
3804 			DMEMIT("error_if_no_space ");
3805 		else
3806 			DMEMIT("queue_if_no_space ");
3807 
3808 		if (dm_pool_metadata_needs_check(pool->pmd))
3809 			DMEMIT("needs_check ");
3810 		else
3811 			DMEMIT("- ");
3812 
3813 		break;
3814 
3815 	case STATUSTYPE_TABLE:
3816 		DMEMIT("%s %s %lu %llu ",
3817 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3818 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3819 		       (unsigned long)pool->sectors_per_block,
3820 		       (unsigned long long)pt->low_water_blocks);
3821 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3822 		break;
3823 	}
3824 	return;
3825 
3826 err:
3827 	DMEMIT("Error");
3828 }
3829 
3830 static int pool_iterate_devices(struct dm_target *ti,
3831 				iterate_devices_callout_fn fn, void *data)
3832 {
3833 	struct pool_c *pt = ti->private;
3834 
3835 	return fn(ti, pt->data_dev, 0, ti->len, data);
3836 }
3837 
3838 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3839 {
3840 	struct pool_c *pt = ti->private;
3841 	struct pool *pool = pt->pool;
3842 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3843 
3844 	/*
3845 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3846 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3847 	 * This is especially beneficial when the pool's data device is a RAID
3848 	 * device that has a full stripe width that matches pool->sectors_per_block
3849 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3850 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3851 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3852 	 */
3853 	if (limits->max_sectors < pool->sectors_per_block) {
3854 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3855 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3856 				limits->max_sectors--;
3857 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3858 		}
3859 	}
3860 
3861 	/*
3862 	 * If the system-determined stacked limits are compatible with the
3863 	 * pool's blocksize (io_opt is a factor) do not override them.
3864 	 */
3865 	if (io_opt_sectors < pool->sectors_per_block ||
3866 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3867 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3868 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3869 		else
3870 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3871 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3872 	}
3873 
3874 	/*
3875 	 * pt->adjusted_pf is a staging area for the actual features to use.
3876 	 * They get transferred to the live pool in bind_control_target()
3877 	 * called from pool_preresume().
3878 	 */
3879 	if (!pt->adjusted_pf.discard_enabled) {
3880 		/*
3881 		 * Must explicitly disallow stacking discard limits otherwise the
3882 		 * block layer will stack them if pool's data device has support.
3883 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3884 		 * user to see that, so make sure to set all discard limits to 0.
3885 		 */
3886 		limits->discard_granularity = 0;
3887 		return;
3888 	}
3889 
3890 	disable_passdown_if_not_supported(pt);
3891 
3892 	/*
3893 	 * The pool uses the same discard limits as the underlying data
3894 	 * device.  DM core has already set this up.
3895 	 */
3896 }
3897 
3898 static struct target_type pool_target = {
3899 	.name = "thin-pool",
3900 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3901 		    DM_TARGET_IMMUTABLE,
3902 	.version = {1, 18, 0},
3903 	.module = THIS_MODULE,
3904 	.ctr = pool_ctr,
3905 	.dtr = pool_dtr,
3906 	.map = pool_map,
3907 	.presuspend = pool_presuspend,
3908 	.presuspend_undo = pool_presuspend_undo,
3909 	.postsuspend = pool_postsuspend,
3910 	.preresume = pool_preresume,
3911 	.resume = pool_resume,
3912 	.message = pool_message,
3913 	.status = pool_status,
3914 	.iterate_devices = pool_iterate_devices,
3915 	.io_hints = pool_io_hints,
3916 };
3917 
3918 /*----------------------------------------------------------------
3919  * Thin target methods
3920  *--------------------------------------------------------------*/
3921 static void thin_get(struct thin_c *tc)
3922 {
3923 	atomic_inc(&tc->refcount);
3924 }
3925 
3926 static void thin_put(struct thin_c *tc)
3927 {
3928 	if (atomic_dec_and_test(&tc->refcount))
3929 		complete(&tc->can_destroy);
3930 }
3931 
3932 static void thin_dtr(struct dm_target *ti)
3933 {
3934 	struct thin_c *tc = ti->private;
3935 	unsigned long flags;
3936 
3937 	spin_lock_irqsave(&tc->pool->lock, flags);
3938 	list_del_rcu(&tc->list);
3939 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3940 	synchronize_rcu();
3941 
3942 	thin_put(tc);
3943 	wait_for_completion(&tc->can_destroy);
3944 
3945 	mutex_lock(&dm_thin_pool_table.mutex);
3946 
3947 	__pool_dec(tc->pool);
3948 	dm_pool_close_thin_device(tc->td);
3949 	dm_put_device(ti, tc->pool_dev);
3950 	if (tc->origin_dev)
3951 		dm_put_device(ti, tc->origin_dev);
3952 	kfree(tc);
3953 
3954 	mutex_unlock(&dm_thin_pool_table.mutex);
3955 }
3956 
3957 /*
3958  * Thin target parameters:
3959  *
3960  * <pool_dev> <dev_id> [origin_dev]
3961  *
3962  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3963  * dev_id: the internal device identifier
3964  * origin_dev: a device external to the pool that should act as the origin
3965  *
3966  * If the pool device has discards disabled, they get disabled for the thin
3967  * device as well.
3968  */
3969 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3970 {
3971 	int r;
3972 	struct thin_c *tc;
3973 	struct dm_dev *pool_dev, *origin_dev;
3974 	struct mapped_device *pool_md;
3975 	unsigned long flags;
3976 
3977 	mutex_lock(&dm_thin_pool_table.mutex);
3978 
3979 	if (argc != 2 && argc != 3) {
3980 		ti->error = "Invalid argument count";
3981 		r = -EINVAL;
3982 		goto out_unlock;
3983 	}
3984 
3985 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3986 	if (!tc) {
3987 		ti->error = "Out of memory";
3988 		r = -ENOMEM;
3989 		goto out_unlock;
3990 	}
3991 	tc->thin_md = dm_table_get_md(ti->table);
3992 	spin_lock_init(&tc->lock);
3993 	INIT_LIST_HEAD(&tc->deferred_cells);
3994 	bio_list_init(&tc->deferred_bio_list);
3995 	bio_list_init(&tc->retry_on_resume_list);
3996 	tc->sort_bio_list = RB_ROOT;
3997 
3998 	if (argc == 3) {
3999 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4000 		if (r) {
4001 			ti->error = "Error opening origin device";
4002 			goto bad_origin_dev;
4003 		}
4004 		tc->origin_dev = origin_dev;
4005 	}
4006 
4007 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4008 	if (r) {
4009 		ti->error = "Error opening pool device";
4010 		goto bad_pool_dev;
4011 	}
4012 	tc->pool_dev = pool_dev;
4013 
4014 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4015 		ti->error = "Invalid device id";
4016 		r = -EINVAL;
4017 		goto bad_common;
4018 	}
4019 
4020 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4021 	if (!pool_md) {
4022 		ti->error = "Couldn't get pool mapped device";
4023 		r = -EINVAL;
4024 		goto bad_common;
4025 	}
4026 
4027 	tc->pool = __pool_table_lookup(pool_md);
4028 	if (!tc->pool) {
4029 		ti->error = "Couldn't find pool object";
4030 		r = -EINVAL;
4031 		goto bad_pool_lookup;
4032 	}
4033 	__pool_inc(tc->pool);
4034 
4035 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4036 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4037 		r = -EINVAL;
4038 		goto bad_pool;
4039 	}
4040 
4041 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4042 	if (r) {
4043 		ti->error = "Couldn't open thin internal device";
4044 		goto bad_pool;
4045 	}
4046 
4047 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4048 	if (r)
4049 		goto bad;
4050 
4051 	ti->num_flush_bios = 1;
4052 	ti->flush_supported = true;
4053 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4054 
4055 	/* In case the pool supports discards, pass them on. */
4056 	ti->discard_zeroes_data_unsupported = true;
4057 	if (tc->pool->pf.discard_enabled) {
4058 		ti->discards_supported = true;
4059 		ti->num_discard_bios = 1;
4060 		ti->split_discard_bios = false;
4061 	}
4062 
4063 	mutex_unlock(&dm_thin_pool_table.mutex);
4064 
4065 	spin_lock_irqsave(&tc->pool->lock, flags);
4066 	if (tc->pool->suspended) {
4067 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4068 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4069 		ti->error = "Unable to activate thin device while pool is suspended";
4070 		r = -EINVAL;
4071 		goto bad;
4072 	}
4073 	atomic_set(&tc->refcount, 1);
4074 	init_completion(&tc->can_destroy);
4075 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4076 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4077 	/*
4078 	 * This synchronize_rcu() call is needed here otherwise we risk a
4079 	 * wake_worker() call finding no bios to process (because the newly
4080 	 * added tc isn't yet visible).  So this reduces latency since we
4081 	 * aren't then dependent on the periodic commit to wake_worker().
4082 	 */
4083 	synchronize_rcu();
4084 
4085 	dm_put(pool_md);
4086 
4087 	return 0;
4088 
4089 bad:
4090 	dm_pool_close_thin_device(tc->td);
4091 bad_pool:
4092 	__pool_dec(tc->pool);
4093 bad_pool_lookup:
4094 	dm_put(pool_md);
4095 bad_common:
4096 	dm_put_device(ti, tc->pool_dev);
4097 bad_pool_dev:
4098 	if (tc->origin_dev)
4099 		dm_put_device(ti, tc->origin_dev);
4100 bad_origin_dev:
4101 	kfree(tc);
4102 out_unlock:
4103 	mutex_unlock(&dm_thin_pool_table.mutex);
4104 
4105 	return r;
4106 }
4107 
4108 static int thin_map(struct dm_target *ti, struct bio *bio)
4109 {
4110 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4111 
4112 	return thin_bio_map(ti, bio);
4113 }
4114 
4115 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4116 {
4117 	unsigned long flags;
4118 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4119 	struct list_head work;
4120 	struct dm_thin_new_mapping *m, *tmp;
4121 	struct pool *pool = h->tc->pool;
4122 
4123 	if (h->shared_read_entry) {
4124 		INIT_LIST_HEAD(&work);
4125 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4126 
4127 		spin_lock_irqsave(&pool->lock, flags);
4128 		list_for_each_entry_safe(m, tmp, &work, list) {
4129 			list_del(&m->list);
4130 			__complete_mapping_preparation(m);
4131 		}
4132 		spin_unlock_irqrestore(&pool->lock, flags);
4133 	}
4134 
4135 	if (h->all_io_entry) {
4136 		INIT_LIST_HEAD(&work);
4137 		dm_deferred_entry_dec(h->all_io_entry, &work);
4138 		if (!list_empty(&work)) {
4139 			spin_lock_irqsave(&pool->lock, flags);
4140 			list_for_each_entry_safe(m, tmp, &work, list)
4141 				list_add_tail(&m->list, &pool->prepared_discards);
4142 			spin_unlock_irqrestore(&pool->lock, flags);
4143 			wake_worker(pool);
4144 		}
4145 	}
4146 
4147 	if (h->cell)
4148 		cell_defer_no_holder(h->tc, h->cell);
4149 
4150 	return 0;
4151 }
4152 
4153 static void thin_presuspend(struct dm_target *ti)
4154 {
4155 	struct thin_c *tc = ti->private;
4156 
4157 	if (dm_noflush_suspending(ti))
4158 		noflush_work(tc, do_noflush_start);
4159 }
4160 
4161 static void thin_postsuspend(struct dm_target *ti)
4162 {
4163 	struct thin_c *tc = ti->private;
4164 
4165 	/*
4166 	 * The dm_noflush_suspending flag has been cleared by now, so
4167 	 * unfortunately we must always run this.
4168 	 */
4169 	noflush_work(tc, do_noflush_stop);
4170 }
4171 
4172 static int thin_preresume(struct dm_target *ti)
4173 {
4174 	struct thin_c *tc = ti->private;
4175 
4176 	if (tc->origin_dev)
4177 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4178 
4179 	return 0;
4180 }
4181 
4182 /*
4183  * <nr mapped sectors> <highest mapped sector>
4184  */
4185 static void thin_status(struct dm_target *ti, status_type_t type,
4186 			unsigned status_flags, char *result, unsigned maxlen)
4187 {
4188 	int r;
4189 	ssize_t sz = 0;
4190 	dm_block_t mapped, highest;
4191 	char buf[BDEVNAME_SIZE];
4192 	struct thin_c *tc = ti->private;
4193 
4194 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4195 		DMEMIT("Fail");
4196 		return;
4197 	}
4198 
4199 	if (!tc->td)
4200 		DMEMIT("-");
4201 	else {
4202 		switch (type) {
4203 		case STATUSTYPE_INFO:
4204 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4205 			if (r) {
4206 				DMERR("dm_thin_get_mapped_count returned %d", r);
4207 				goto err;
4208 			}
4209 
4210 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4211 			if (r < 0) {
4212 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4213 				goto err;
4214 			}
4215 
4216 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4217 			if (r)
4218 				DMEMIT("%llu", ((highest + 1) *
4219 						tc->pool->sectors_per_block) - 1);
4220 			else
4221 				DMEMIT("-");
4222 			break;
4223 
4224 		case STATUSTYPE_TABLE:
4225 			DMEMIT("%s %lu",
4226 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4227 			       (unsigned long) tc->dev_id);
4228 			if (tc->origin_dev)
4229 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4230 			break;
4231 		}
4232 	}
4233 
4234 	return;
4235 
4236 err:
4237 	DMEMIT("Error");
4238 }
4239 
4240 static int thin_iterate_devices(struct dm_target *ti,
4241 				iterate_devices_callout_fn fn, void *data)
4242 {
4243 	sector_t blocks;
4244 	struct thin_c *tc = ti->private;
4245 	struct pool *pool = tc->pool;
4246 
4247 	/*
4248 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4249 	 * we follow a more convoluted path through to the pool's target.
4250 	 */
4251 	if (!pool->ti)
4252 		return 0;	/* nothing is bound */
4253 
4254 	blocks = pool->ti->len;
4255 	(void) sector_div(blocks, pool->sectors_per_block);
4256 	if (blocks)
4257 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4258 
4259 	return 0;
4260 }
4261 
4262 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4263 {
4264 	struct thin_c *tc = ti->private;
4265 	struct pool *pool = tc->pool;
4266 
4267 	if (!pool->pf.discard_enabled)
4268 		return;
4269 
4270 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4271 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4272 }
4273 
4274 static struct target_type thin_target = {
4275 	.name = "thin",
4276 	.version = {1, 18, 0},
4277 	.module	= THIS_MODULE,
4278 	.ctr = thin_ctr,
4279 	.dtr = thin_dtr,
4280 	.map = thin_map,
4281 	.end_io = thin_endio,
4282 	.preresume = thin_preresume,
4283 	.presuspend = thin_presuspend,
4284 	.postsuspend = thin_postsuspend,
4285 	.status = thin_status,
4286 	.iterate_devices = thin_iterate_devices,
4287 	.io_hints = thin_io_hints,
4288 };
4289 
4290 /*----------------------------------------------------------------*/
4291 
4292 static int __init dm_thin_init(void)
4293 {
4294 	int r;
4295 
4296 	pool_table_init();
4297 
4298 	r = dm_register_target(&thin_target);
4299 	if (r)
4300 		return r;
4301 
4302 	r = dm_register_target(&pool_target);
4303 	if (r)
4304 		goto bad_pool_target;
4305 
4306 	r = -ENOMEM;
4307 
4308 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4309 	if (!_new_mapping_cache)
4310 		goto bad_new_mapping_cache;
4311 
4312 	return 0;
4313 
4314 bad_new_mapping_cache:
4315 	dm_unregister_target(&pool_target);
4316 bad_pool_target:
4317 	dm_unregister_target(&thin_target);
4318 
4319 	return r;
4320 }
4321 
4322 static void dm_thin_exit(void)
4323 {
4324 	dm_unregister_target(&thin_target);
4325 	dm_unregister_target(&pool_target);
4326 
4327 	kmem_cache_destroy(_new_mapping_cache);
4328 }
4329 
4330 module_init(dm_thin_init);
4331 module_exit(dm_thin_exit);
4332 
4333 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4334 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4335 
4336 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4337 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4338 MODULE_LICENSE("GPL");
4339