1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011-2012 Red Hat UK. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-thin-metadata.h" 9 #include "dm-bio-prison-v1.h" 10 #include "dm.h" 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/jiffies.h> 16 #include <linux/log2.h> 17 #include <linux/list.h> 18 #include <linux/rculist.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 #include <linux/sort.h> 24 #include <linux/rbtree.h> 25 26 #define DM_MSG_PREFIX "thin" 27 28 /* 29 * Tunable constants 30 */ 31 #define ENDIO_HOOK_POOL_SIZE 1024 32 #define MAPPING_POOL_SIZE 1024 33 #define COMMIT_PERIOD HZ 34 #define NO_SPACE_TIMEOUT_SECS 60 35 36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 37 38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 39 "A percentage of time allocated for copy on write"); 40 41 /* 42 * The block size of the device holding pool data must be 43 * between 64KB and 1GB. 44 */ 45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 47 48 /* 49 * Device id is restricted to 24 bits. 50 */ 51 #define MAX_DEV_ID ((1 << 24) - 1) 52 53 /* 54 * How do we handle breaking sharing of data blocks? 55 * ================================================= 56 * 57 * We use a standard copy-on-write btree to store the mappings for the 58 * devices (note I'm talking about copy-on-write of the metadata here, not 59 * the data). When you take an internal snapshot you clone the root node 60 * of the origin btree. After this there is no concept of an origin or a 61 * snapshot. They are just two device trees that happen to point to the 62 * same data blocks. 63 * 64 * When we get a write in we decide if it's to a shared data block using 65 * some timestamp magic. If it is, we have to break sharing. 66 * 67 * Let's say we write to a shared block in what was the origin. The 68 * steps are: 69 * 70 * i) plug io further to this physical block. (see bio_prison code). 71 * 72 * ii) quiesce any read io to that shared data block. Obviously 73 * including all devices that share this block. (see dm_deferred_set code) 74 * 75 * iii) copy the data block to a newly allocate block. This step can be 76 * missed out if the io covers the block. (schedule_copy). 77 * 78 * iv) insert the new mapping into the origin's btree 79 * (process_prepared_mapping). This act of inserting breaks some 80 * sharing of btree nodes between the two devices. Breaking sharing only 81 * effects the btree of that specific device. Btrees for the other 82 * devices that share the block never change. The btree for the origin 83 * device as it was after the last commit is untouched, ie. we're using 84 * persistent data structures in the functional programming sense. 85 * 86 * v) unplug io to this physical block, including the io that triggered 87 * the breaking of sharing. 88 * 89 * Steps (ii) and (iii) occur in parallel. 90 * 91 * The metadata _doesn't_ need to be committed before the io continues. We 92 * get away with this because the io is always written to a _new_ block. 93 * If there's a crash, then: 94 * 95 * - The origin mapping will point to the old origin block (the shared 96 * one). This will contain the data as it was before the io that triggered 97 * the breaking of sharing came in. 98 * 99 * - The snap mapping still points to the old block. As it would after 100 * the commit. 101 * 102 * The downside of this scheme is the timestamp magic isn't perfect, and 103 * will continue to think that data block in the snapshot device is shared 104 * even after the write to the origin has broken sharing. I suspect data 105 * blocks will typically be shared by many different devices, so we're 106 * breaking sharing n + 1 times, rather than n, where n is the number of 107 * devices that reference this data block. At the moment I think the 108 * benefits far, far outweigh the disadvantages. 109 */ 110 111 /*----------------------------------------------------------------*/ 112 113 /* 114 * Key building. 115 */ 116 enum lock_space { 117 VIRTUAL, 118 PHYSICAL 119 }; 120 121 static bool build_key(struct dm_thin_device *td, enum lock_space ls, 122 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 123 { 124 key->virtual = (ls == VIRTUAL); 125 key->dev = dm_thin_dev_id(td); 126 key->block_begin = b; 127 key->block_end = e; 128 129 return dm_cell_key_has_valid_range(key); 130 } 131 132 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 133 struct dm_cell_key *key) 134 { 135 (void) build_key(td, PHYSICAL, b, b + 1llu, key); 136 } 137 138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 139 struct dm_cell_key *key) 140 { 141 (void) build_key(td, VIRTUAL, b, b + 1llu, key); 142 } 143 144 /*----------------------------------------------------------------*/ 145 146 #define THROTTLE_THRESHOLD (1 * HZ) 147 148 struct throttle { 149 struct rw_semaphore lock; 150 unsigned long threshold; 151 bool throttle_applied; 152 }; 153 154 static void throttle_init(struct throttle *t) 155 { 156 init_rwsem(&t->lock); 157 t->throttle_applied = false; 158 } 159 160 static void throttle_work_start(struct throttle *t) 161 { 162 t->threshold = jiffies + THROTTLE_THRESHOLD; 163 } 164 165 static void throttle_work_update(struct throttle *t) 166 { 167 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) { 168 down_write(&t->lock); 169 t->throttle_applied = true; 170 } 171 } 172 173 static void throttle_work_complete(struct throttle *t) 174 { 175 if (t->throttle_applied) { 176 t->throttle_applied = false; 177 up_write(&t->lock); 178 } 179 } 180 181 static void throttle_lock(struct throttle *t) 182 { 183 down_read(&t->lock); 184 } 185 186 static void throttle_unlock(struct throttle *t) 187 { 188 up_read(&t->lock); 189 } 190 191 /*----------------------------------------------------------------*/ 192 193 /* 194 * A pool device ties together a metadata device and a data device. It 195 * also provides the interface for creating and destroying internal 196 * devices. 197 */ 198 struct dm_thin_new_mapping; 199 200 /* 201 * The pool runs in various modes. Ordered in degraded order for comparisons. 202 */ 203 enum pool_mode { 204 PM_WRITE, /* metadata may be changed */ 205 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 206 207 /* 208 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 209 */ 210 PM_OUT_OF_METADATA_SPACE, 211 PM_READ_ONLY, /* metadata may not be changed */ 212 213 PM_FAIL, /* all I/O fails */ 214 }; 215 216 struct pool_features { 217 enum pool_mode mode; 218 219 bool zero_new_blocks:1; 220 bool discard_enabled:1; 221 bool discard_passdown:1; 222 bool error_if_no_space:1; 223 }; 224 225 struct thin_c; 226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 229 230 #define CELL_SORT_ARRAY_SIZE 8192 231 232 struct pool { 233 struct list_head list; 234 struct dm_target *ti; /* Only set if a pool target is bound */ 235 236 struct mapped_device *pool_md; 237 struct block_device *data_dev; 238 struct block_device *md_dev; 239 struct dm_pool_metadata *pmd; 240 241 dm_block_t low_water_blocks; 242 uint32_t sectors_per_block; 243 int sectors_per_block_shift; 244 245 struct pool_features pf; 246 bool low_water_triggered:1; /* A dm event has been sent */ 247 bool suspended:1; 248 bool out_of_data_space:1; 249 250 struct dm_bio_prison *prison; 251 struct dm_kcopyd_client *copier; 252 253 struct work_struct worker; 254 struct workqueue_struct *wq; 255 struct throttle throttle; 256 struct delayed_work waker; 257 struct delayed_work no_space_timeout; 258 259 unsigned long last_commit_jiffies; 260 unsigned int ref_count; 261 262 spinlock_t lock; 263 struct bio_list deferred_flush_bios; 264 struct bio_list deferred_flush_completions; 265 struct list_head prepared_mappings; 266 struct list_head prepared_discards; 267 struct list_head prepared_discards_pt2; 268 struct list_head active_thins; 269 270 struct dm_deferred_set *shared_read_ds; 271 struct dm_deferred_set *all_io_ds; 272 273 struct dm_thin_new_mapping *next_mapping; 274 275 process_bio_fn process_bio; 276 process_bio_fn process_discard; 277 278 process_cell_fn process_cell; 279 process_cell_fn process_discard_cell; 280 281 process_mapping_fn process_prepared_mapping; 282 process_mapping_fn process_prepared_discard; 283 process_mapping_fn process_prepared_discard_pt2; 284 285 struct dm_bio_prison_cell **cell_sort_array; 286 287 mempool_t mapping_pool; 288 }; 289 290 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 291 292 static enum pool_mode get_pool_mode(struct pool *pool) 293 { 294 return pool->pf.mode; 295 } 296 297 static void notify_of_pool_mode_change(struct pool *pool) 298 { 299 static const char *descs[] = { 300 "write", 301 "out-of-data-space", 302 "read-only", 303 "read-only", 304 "fail" 305 }; 306 const char *extra_desc = NULL; 307 enum pool_mode mode = get_pool_mode(pool); 308 309 if (mode == PM_OUT_OF_DATA_SPACE) { 310 if (!pool->pf.error_if_no_space) 311 extra_desc = " (queue IO)"; 312 else 313 extra_desc = " (error IO)"; 314 } 315 316 dm_table_event(pool->ti->table); 317 DMINFO("%s: switching pool to %s%s mode", 318 dm_device_name(pool->pool_md), 319 descs[(int)mode], extra_desc ? : ""); 320 } 321 322 /* 323 * Target context for a pool. 324 */ 325 struct pool_c { 326 struct dm_target *ti; 327 struct pool *pool; 328 struct dm_dev *data_dev; 329 struct dm_dev *metadata_dev; 330 331 dm_block_t low_water_blocks; 332 struct pool_features requested_pf; /* Features requested during table load */ 333 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 334 }; 335 336 /* 337 * Target context for a thin. 338 */ 339 struct thin_c { 340 struct list_head list; 341 struct dm_dev *pool_dev; 342 struct dm_dev *origin_dev; 343 sector_t origin_size; 344 dm_thin_id dev_id; 345 346 struct pool *pool; 347 struct dm_thin_device *td; 348 struct mapped_device *thin_md; 349 350 bool requeue_mode:1; 351 spinlock_t lock; 352 struct list_head deferred_cells; 353 struct bio_list deferred_bio_list; 354 struct bio_list retry_on_resume_list; 355 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 356 357 /* 358 * Ensures the thin is not destroyed until the worker has finished 359 * iterating the active_thins list. 360 */ 361 refcount_t refcount; 362 struct completion can_destroy; 363 }; 364 365 /*----------------------------------------------------------------*/ 366 367 static bool block_size_is_power_of_two(struct pool *pool) 368 { 369 return pool->sectors_per_block_shift >= 0; 370 } 371 372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 373 { 374 return block_size_is_power_of_two(pool) ? 375 (b << pool->sectors_per_block_shift) : 376 (b * pool->sectors_per_block); 377 } 378 379 /*----------------------------------------------------------------*/ 380 381 struct discard_op { 382 struct thin_c *tc; 383 struct blk_plug plug; 384 struct bio *parent_bio; 385 struct bio *bio; 386 }; 387 388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 389 { 390 BUG_ON(!parent); 391 392 op->tc = tc; 393 blk_start_plug(&op->plug); 394 op->parent_bio = parent; 395 op->bio = NULL; 396 } 397 398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 399 { 400 struct thin_c *tc = op->tc; 401 sector_t s = block_to_sectors(tc->pool, data_b); 402 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 403 404 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT, 405 &op->bio); 406 } 407 408 static void end_discard(struct discard_op *op, int r) 409 { 410 if (op->bio) { 411 /* 412 * Even if one of the calls to issue_discard failed, we 413 * need to wait for the chain to complete. 414 */ 415 bio_chain(op->bio, op->parent_bio); 416 op->bio->bi_opf = REQ_OP_DISCARD; 417 submit_bio(op->bio); 418 } 419 420 blk_finish_plug(&op->plug); 421 422 /* 423 * Even if r is set, there could be sub discards in flight that we 424 * need to wait for. 425 */ 426 if (r && !op->parent_bio->bi_status) 427 op->parent_bio->bi_status = errno_to_blk_status(r); 428 bio_endio(op->parent_bio); 429 } 430 431 /*----------------------------------------------------------------*/ 432 433 /* 434 * wake_worker() is used when new work is queued and when pool_resume is 435 * ready to continue deferred IO processing. 436 */ 437 static void wake_worker(struct pool *pool) 438 { 439 queue_work(pool->wq, &pool->worker); 440 } 441 442 /*----------------------------------------------------------------*/ 443 444 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 445 struct dm_bio_prison_cell **cell_result) 446 { 447 int r; 448 struct dm_bio_prison_cell *cell_prealloc; 449 450 /* 451 * Allocate a cell from the prison's mempool. 452 * This might block but it can't fail. 453 */ 454 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 455 456 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 457 if (r) 458 /* 459 * We reused an old cell; we can get rid of 460 * the new one. 461 */ 462 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 463 464 return r; 465 } 466 467 static void cell_release(struct pool *pool, 468 struct dm_bio_prison_cell *cell, 469 struct bio_list *bios) 470 { 471 dm_cell_release(pool->prison, cell, bios); 472 dm_bio_prison_free_cell(pool->prison, cell); 473 } 474 475 static void cell_visit_release(struct pool *pool, 476 void (*fn)(void *, struct dm_bio_prison_cell *), 477 void *context, 478 struct dm_bio_prison_cell *cell) 479 { 480 dm_cell_visit_release(pool->prison, fn, context, cell); 481 dm_bio_prison_free_cell(pool->prison, cell); 482 } 483 484 static void cell_release_no_holder(struct pool *pool, 485 struct dm_bio_prison_cell *cell, 486 struct bio_list *bios) 487 { 488 dm_cell_release_no_holder(pool->prison, cell, bios); 489 dm_bio_prison_free_cell(pool->prison, cell); 490 } 491 492 static void cell_error_with_code(struct pool *pool, 493 struct dm_bio_prison_cell *cell, blk_status_t error_code) 494 { 495 dm_cell_error(pool->prison, cell, error_code); 496 dm_bio_prison_free_cell(pool->prison, cell); 497 } 498 499 static blk_status_t get_pool_io_error_code(struct pool *pool) 500 { 501 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 502 } 503 504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 505 { 506 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 507 } 508 509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 510 { 511 cell_error_with_code(pool, cell, 0); 512 } 513 514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 515 { 516 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 517 } 518 519 /*----------------------------------------------------------------*/ 520 521 /* 522 * A global list of pools that uses a struct mapped_device as a key. 523 */ 524 static struct dm_thin_pool_table { 525 struct mutex mutex; 526 struct list_head pools; 527 } dm_thin_pool_table; 528 529 static void pool_table_init(void) 530 { 531 mutex_init(&dm_thin_pool_table.mutex); 532 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 533 } 534 535 static void pool_table_exit(void) 536 { 537 mutex_destroy(&dm_thin_pool_table.mutex); 538 } 539 540 static void __pool_table_insert(struct pool *pool) 541 { 542 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 543 list_add(&pool->list, &dm_thin_pool_table.pools); 544 } 545 546 static void __pool_table_remove(struct pool *pool) 547 { 548 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 549 list_del(&pool->list); 550 } 551 552 static struct pool *__pool_table_lookup(struct mapped_device *md) 553 { 554 struct pool *pool = NULL, *tmp; 555 556 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 557 558 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 559 if (tmp->pool_md == md) { 560 pool = tmp; 561 break; 562 } 563 } 564 565 return pool; 566 } 567 568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 569 { 570 struct pool *pool = NULL, *tmp; 571 572 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 573 574 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 575 if (tmp->md_dev == md_dev) { 576 pool = tmp; 577 break; 578 } 579 } 580 581 return pool; 582 } 583 584 /*----------------------------------------------------------------*/ 585 586 struct dm_thin_endio_hook { 587 struct thin_c *tc; 588 struct dm_deferred_entry *shared_read_entry; 589 struct dm_deferred_entry *all_io_entry; 590 struct dm_thin_new_mapping *overwrite_mapping; 591 struct rb_node rb_node; 592 struct dm_bio_prison_cell *cell; 593 }; 594 595 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 596 { 597 bio_list_merge(bios, master); 598 bio_list_init(master); 599 } 600 601 static void error_bio_list(struct bio_list *bios, blk_status_t error) 602 { 603 struct bio *bio; 604 605 while ((bio = bio_list_pop(bios))) { 606 bio->bi_status = error; 607 bio_endio(bio); 608 } 609 } 610 611 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 612 blk_status_t error) 613 { 614 struct bio_list bios; 615 616 bio_list_init(&bios); 617 618 spin_lock_irq(&tc->lock); 619 __merge_bio_list(&bios, master); 620 spin_unlock_irq(&tc->lock); 621 622 error_bio_list(&bios, error); 623 } 624 625 static void requeue_deferred_cells(struct thin_c *tc) 626 { 627 struct pool *pool = tc->pool; 628 struct list_head cells; 629 struct dm_bio_prison_cell *cell, *tmp; 630 631 INIT_LIST_HEAD(&cells); 632 633 spin_lock_irq(&tc->lock); 634 list_splice_init(&tc->deferred_cells, &cells); 635 spin_unlock_irq(&tc->lock); 636 637 list_for_each_entry_safe(cell, tmp, &cells, user_list) 638 cell_requeue(pool, cell); 639 } 640 641 static void requeue_io(struct thin_c *tc) 642 { 643 struct bio_list bios; 644 645 bio_list_init(&bios); 646 647 spin_lock_irq(&tc->lock); 648 __merge_bio_list(&bios, &tc->deferred_bio_list); 649 __merge_bio_list(&bios, &tc->retry_on_resume_list); 650 spin_unlock_irq(&tc->lock); 651 652 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 653 requeue_deferred_cells(tc); 654 } 655 656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 657 { 658 struct thin_c *tc; 659 660 rcu_read_lock(); 661 list_for_each_entry_rcu(tc, &pool->active_thins, list) 662 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 663 rcu_read_unlock(); 664 } 665 666 static void error_retry_list(struct pool *pool) 667 { 668 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 669 } 670 671 /* 672 * This section of code contains the logic for processing a thin device's IO. 673 * Much of the code depends on pool object resources (lists, workqueues, etc) 674 * but most is exclusively called from the thin target rather than the thin-pool 675 * target. 676 */ 677 678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 679 { 680 struct pool *pool = tc->pool; 681 sector_t block_nr = bio->bi_iter.bi_sector; 682 683 if (block_size_is_power_of_two(pool)) 684 block_nr >>= pool->sectors_per_block_shift; 685 else 686 (void) sector_div(block_nr, pool->sectors_per_block); 687 688 return block_nr; 689 } 690 691 /* 692 * Returns the _complete_ blocks that this bio covers. 693 */ 694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 695 dm_block_t *begin, dm_block_t *end) 696 { 697 struct pool *pool = tc->pool; 698 sector_t b = bio->bi_iter.bi_sector; 699 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 700 701 b += pool->sectors_per_block - 1ull; /* so we round up */ 702 703 if (block_size_is_power_of_two(pool)) { 704 b >>= pool->sectors_per_block_shift; 705 e >>= pool->sectors_per_block_shift; 706 } else { 707 (void) sector_div(b, pool->sectors_per_block); 708 (void) sector_div(e, pool->sectors_per_block); 709 } 710 711 if (e < b) 712 /* Can happen if the bio is within a single block. */ 713 e = b; 714 715 *begin = b; 716 *end = e; 717 } 718 719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 720 { 721 struct pool *pool = tc->pool; 722 sector_t bi_sector = bio->bi_iter.bi_sector; 723 724 bio_set_dev(bio, tc->pool_dev->bdev); 725 if (block_size_is_power_of_two(pool)) 726 bio->bi_iter.bi_sector = 727 (block << pool->sectors_per_block_shift) | 728 (bi_sector & (pool->sectors_per_block - 1)); 729 else 730 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 731 sector_div(bi_sector, pool->sectors_per_block); 732 } 733 734 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 735 { 736 bio_set_dev(bio, tc->origin_dev->bdev); 737 } 738 739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 740 { 741 return op_is_flush(bio->bi_opf) && 742 dm_thin_changed_this_transaction(tc->td); 743 } 744 745 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 746 { 747 struct dm_thin_endio_hook *h; 748 749 if (bio_op(bio) == REQ_OP_DISCARD) 750 return; 751 752 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 753 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 754 } 755 756 static void issue(struct thin_c *tc, struct bio *bio) 757 { 758 struct pool *pool = tc->pool; 759 760 if (!bio_triggers_commit(tc, bio)) { 761 dm_submit_bio_remap(bio, NULL); 762 return; 763 } 764 765 /* 766 * Complete bio with an error if earlier I/O caused changes to 767 * the metadata that can't be committed e.g, due to I/O errors 768 * on the metadata device. 769 */ 770 if (dm_thin_aborted_changes(tc->td)) { 771 bio_io_error(bio); 772 return; 773 } 774 775 /* 776 * Batch together any bios that trigger commits and then issue a 777 * single commit for them in process_deferred_bios(). 778 */ 779 spin_lock_irq(&pool->lock); 780 bio_list_add(&pool->deferred_flush_bios, bio); 781 spin_unlock_irq(&pool->lock); 782 } 783 784 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 785 { 786 remap_to_origin(tc, bio); 787 issue(tc, bio); 788 } 789 790 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 791 dm_block_t block) 792 { 793 remap(tc, bio, block); 794 issue(tc, bio); 795 } 796 797 /*----------------------------------------------------------------*/ 798 799 /* 800 * Bio endio functions. 801 */ 802 struct dm_thin_new_mapping { 803 struct list_head list; 804 805 bool pass_discard:1; 806 bool maybe_shared:1; 807 808 /* 809 * Track quiescing, copying and zeroing preparation actions. When this 810 * counter hits zero the block is prepared and can be inserted into the 811 * btree. 812 */ 813 atomic_t prepare_actions; 814 815 blk_status_t status; 816 struct thin_c *tc; 817 dm_block_t virt_begin, virt_end; 818 dm_block_t data_block; 819 struct dm_bio_prison_cell *cell; 820 821 /* 822 * If the bio covers the whole area of a block then we can avoid 823 * zeroing or copying. Instead this bio is hooked. The bio will 824 * still be in the cell, so care has to be taken to avoid issuing 825 * the bio twice. 826 */ 827 struct bio *bio; 828 bio_end_io_t *saved_bi_end_io; 829 }; 830 831 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 832 { 833 struct pool *pool = m->tc->pool; 834 835 if (atomic_dec_and_test(&m->prepare_actions)) { 836 list_add_tail(&m->list, &pool->prepared_mappings); 837 wake_worker(pool); 838 } 839 } 840 841 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 842 { 843 unsigned long flags; 844 struct pool *pool = m->tc->pool; 845 846 spin_lock_irqsave(&pool->lock, flags); 847 __complete_mapping_preparation(m); 848 spin_unlock_irqrestore(&pool->lock, flags); 849 } 850 851 static void copy_complete(int read_err, unsigned long write_err, void *context) 852 { 853 struct dm_thin_new_mapping *m = context; 854 855 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 856 complete_mapping_preparation(m); 857 } 858 859 static void overwrite_endio(struct bio *bio) 860 { 861 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 862 struct dm_thin_new_mapping *m = h->overwrite_mapping; 863 864 bio->bi_end_io = m->saved_bi_end_io; 865 866 m->status = bio->bi_status; 867 complete_mapping_preparation(m); 868 } 869 870 /*----------------------------------------------------------------*/ 871 872 /* 873 * Workqueue. 874 */ 875 876 /* 877 * Prepared mapping jobs. 878 */ 879 880 /* 881 * This sends the bios in the cell, except the original holder, back 882 * to the deferred_bios list. 883 */ 884 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 885 { 886 struct pool *pool = tc->pool; 887 unsigned long flags; 888 struct bio_list bios; 889 890 bio_list_init(&bios); 891 cell_release_no_holder(pool, cell, &bios); 892 893 if (!bio_list_empty(&bios)) { 894 spin_lock_irqsave(&tc->lock, flags); 895 bio_list_merge(&tc->deferred_bio_list, &bios); 896 spin_unlock_irqrestore(&tc->lock, flags); 897 wake_worker(pool); 898 } 899 } 900 901 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 902 903 struct remap_info { 904 struct thin_c *tc; 905 struct bio_list defer_bios; 906 struct bio_list issue_bios; 907 }; 908 909 static void __inc_remap_and_issue_cell(void *context, 910 struct dm_bio_prison_cell *cell) 911 { 912 struct remap_info *info = context; 913 struct bio *bio; 914 915 while ((bio = bio_list_pop(&cell->bios))) { 916 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 917 bio_list_add(&info->defer_bios, bio); 918 else { 919 inc_all_io_entry(info->tc->pool, bio); 920 921 /* 922 * We can't issue the bios with the bio prison lock 923 * held, so we add them to a list to issue on 924 * return from this function. 925 */ 926 bio_list_add(&info->issue_bios, bio); 927 } 928 } 929 } 930 931 static void inc_remap_and_issue_cell(struct thin_c *tc, 932 struct dm_bio_prison_cell *cell, 933 dm_block_t block) 934 { 935 struct bio *bio; 936 struct remap_info info; 937 938 info.tc = tc; 939 bio_list_init(&info.defer_bios); 940 bio_list_init(&info.issue_bios); 941 942 /* 943 * We have to be careful to inc any bios we're about to issue 944 * before the cell is released, and avoid a race with new bios 945 * being added to the cell. 946 */ 947 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 948 &info, cell); 949 950 while ((bio = bio_list_pop(&info.defer_bios))) 951 thin_defer_bio(tc, bio); 952 953 while ((bio = bio_list_pop(&info.issue_bios))) 954 remap_and_issue(info.tc, bio, block); 955 } 956 957 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 958 { 959 cell_error(m->tc->pool, m->cell); 960 list_del(&m->list); 961 mempool_free(m, &m->tc->pool->mapping_pool); 962 } 963 964 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 965 { 966 struct pool *pool = tc->pool; 967 968 /* 969 * If the bio has the REQ_FUA flag set we must commit the metadata 970 * before signaling its completion. 971 */ 972 if (!bio_triggers_commit(tc, bio)) { 973 bio_endio(bio); 974 return; 975 } 976 977 /* 978 * Complete bio with an error if earlier I/O caused changes to the 979 * metadata that can't be committed, e.g, due to I/O errors on the 980 * metadata device. 981 */ 982 if (dm_thin_aborted_changes(tc->td)) { 983 bio_io_error(bio); 984 return; 985 } 986 987 /* 988 * Batch together any bios that trigger commits and then issue a 989 * single commit for them in process_deferred_bios(). 990 */ 991 spin_lock_irq(&pool->lock); 992 bio_list_add(&pool->deferred_flush_completions, bio); 993 spin_unlock_irq(&pool->lock); 994 } 995 996 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 997 { 998 struct thin_c *tc = m->tc; 999 struct pool *pool = tc->pool; 1000 struct bio *bio = m->bio; 1001 int r; 1002 1003 if (m->status) { 1004 cell_error(pool, m->cell); 1005 goto out; 1006 } 1007 1008 /* 1009 * Commit the prepared block into the mapping btree. 1010 * Any I/O for this block arriving after this point will get 1011 * remapped to it directly. 1012 */ 1013 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1014 if (r) { 1015 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1016 cell_error(pool, m->cell); 1017 goto out; 1018 } 1019 1020 /* 1021 * Release any bios held while the block was being provisioned. 1022 * If we are processing a write bio that completely covers the block, 1023 * we already processed it so can ignore it now when processing 1024 * the bios in the cell. 1025 */ 1026 if (bio) { 1027 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1028 complete_overwrite_bio(tc, bio); 1029 } else { 1030 inc_all_io_entry(tc->pool, m->cell->holder); 1031 remap_and_issue(tc, m->cell->holder, m->data_block); 1032 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1033 } 1034 1035 out: 1036 list_del(&m->list); 1037 mempool_free(m, &pool->mapping_pool); 1038 } 1039 1040 /*----------------------------------------------------------------*/ 1041 1042 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1043 { 1044 struct thin_c *tc = m->tc; 1045 1046 if (m->cell) 1047 cell_defer_no_holder(tc, m->cell); 1048 mempool_free(m, &tc->pool->mapping_pool); 1049 } 1050 1051 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1052 { 1053 bio_io_error(m->bio); 1054 free_discard_mapping(m); 1055 } 1056 1057 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1058 { 1059 bio_endio(m->bio); 1060 free_discard_mapping(m); 1061 } 1062 1063 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1064 { 1065 int r; 1066 struct thin_c *tc = m->tc; 1067 1068 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1069 if (r) { 1070 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1071 bio_io_error(m->bio); 1072 } else 1073 bio_endio(m->bio); 1074 1075 cell_defer_no_holder(tc, m->cell); 1076 mempool_free(m, &tc->pool->mapping_pool); 1077 } 1078 1079 /*----------------------------------------------------------------*/ 1080 1081 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1082 struct bio *discard_parent) 1083 { 1084 /* 1085 * We've already unmapped this range of blocks, but before we 1086 * passdown we have to check that these blocks are now unused. 1087 */ 1088 int r = 0; 1089 bool shared = true; 1090 struct thin_c *tc = m->tc; 1091 struct pool *pool = tc->pool; 1092 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1093 struct discard_op op; 1094 1095 begin_discard(&op, tc, discard_parent); 1096 while (b != end) { 1097 /* find start of unmapped run */ 1098 for (; b < end; b++) { 1099 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1100 if (r) 1101 goto out; 1102 1103 if (!shared) 1104 break; 1105 } 1106 1107 if (b == end) 1108 break; 1109 1110 /* find end of run */ 1111 for (e = b + 1; e != end; e++) { 1112 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1113 if (r) 1114 goto out; 1115 1116 if (shared) 1117 break; 1118 } 1119 1120 r = issue_discard(&op, b, e); 1121 if (r) 1122 goto out; 1123 1124 b = e; 1125 } 1126 out: 1127 end_discard(&op, r); 1128 } 1129 1130 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1131 { 1132 unsigned long flags; 1133 struct pool *pool = m->tc->pool; 1134 1135 spin_lock_irqsave(&pool->lock, flags); 1136 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1137 spin_unlock_irqrestore(&pool->lock, flags); 1138 wake_worker(pool); 1139 } 1140 1141 static void passdown_endio(struct bio *bio) 1142 { 1143 /* 1144 * It doesn't matter if the passdown discard failed, we still want 1145 * to unmap (we ignore err). 1146 */ 1147 queue_passdown_pt2(bio->bi_private); 1148 bio_put(bio); 1149 } 1150 1151 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1152 { 1153 int r; 1154 struct thin_c *tc = m->tc; 1155 struct pool *pool = tc->pool; 1156 struct bio *discard_parent; 1157 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1158 1159 /* 1160 * Only this thread allocates blocks, so we can be sure that the 1161 * newly unmapped blocks will not be allocated before the end of 1162 * the function. 1163 */ 1164 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1165 if (r) { 1166 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1167 bio_io_error(m->bio); 1168 cell_defer_no_holder(tc, m->cell); 1169 mempool_free(m, &pool->mapping_pool); 1170 return; 1171 } 1172 1173 /* 1174 * Increment the unmapped blocks. This prevents a race between the 1175 * passdown io and reallocation of freed blocks. 1176 */ 1177 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1178 if (r) { 1179 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1180 bio_io_error(m->bio); 1181 cell_defer_no_holder(tc, m->cell); 1182 mempool_free(m, &pool->mapping_pool); 1183 return; 1184 } 1185 1186 discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO); 1187 discard_parent->bi_end_io = passdown_endio; 1188 discard_parent->bi_private = m; 1189 if (m->maybe_shared) 1190 passdown_double_checking_shared_status(m, discard_parent); 1191 else { 1192 struct discard_op op; 1193 1194 begin_discard(&op, tc, discard_parent); 1195 r = issue_discard(&op, m->data_block, data_end); 1196 end_discard(&op, r); 1197 } 1198 } 1199 1200 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1201 { 1202 int r; 1203 struct thin_c *tc = m->tc; 1204 struct pool *pool = tc->pool; 1205 1206 /* 1207 * The passdown has completed, so now we can decrement all those 1208 * unmapped blocks. 1209 */ 1210 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1211 m->data_block + (m->virt_end - m->virt_begin)); 1212 if (r) { 1213 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1214 bio_io_error(m->bio); 1215 } else 1216 bio_endio(m->bio); 1217 1218 cell_defer_no_holder(tc, m->cell); 1219 mempool_free(m, &pool->mapping_pool); 1220 } 1221 1222 static void process_prepared(struct pool *pool, struct list_head *head, 1223 process_mapping_fn *fn) 1224 { 1225 struct list_head maps; 1226 struct dm_thin_new_mapping *m, *tmp; 1227 1228 INIT_LIST_HEAD(&maps); 1229 spin_lock_irq(&pool->lock); 1230 list_splice_init(head, &maps); 1231 spin_unlock_irq(&pool->lock); 1232 1233 list_for_each_entry_safe(m, tmp, &maps, list) 1234 (*fn)(m); 1235 } 1236 1237 /* 1238 * Deferred bio jobs. 1239 */ 1240 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1241 { 1242 return bio->bi_iter.bi_size == 1243 (pool->sectors_per_block << SECTOR_SHIFT); 1244 } 1245 1246 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1247 { 1248 return (bio_data_dir(bio) == WRITE) && 1249 io_overlaps_block(pool, bio); 1250 } 1251 1252 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1253 bio_end_io_t *fn) 1254 { 1255 *save = bio->bi_end_io; 1256 bio->bi_end_io = fn; 1257 } 1258 1259 static int ensure_next_mapping(struct pool *pool) 1260 { 1261 if (pool->next_mapping) 1262 return 0; 1263 1264 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1265 1266 return pool->next_mapping ? 0 : -ENOMEM; 1267 } 1268 1269 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1270 { 1271 struct dm_thin_new_mapping *m = pool->next_mapping; 1272 1273 BUG_ON(!pool->next_mapping); 1274 1275 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1276 INIT_LIST_HEAD(&m->list); 1277 m->bio = NULL; 1278 1279 pool->next_mapping = NULL; 1280 1281 return m; 1282 } 1283 1284 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1285 sector_t begin, sector_t end) 1286 { 1287 struct dm_io_region to; 1288 1289 to.bdev = tc->pool_dev->bdev; 1290 to.sector = begin; 1291 to.count = end - begin; 1292 1293 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1294 } 1295 1296 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1297 dm_block_t data_begin, 1298 struct dm_thin_new_mapping *m) 1299 { 1300 struct pool *pool = tc->pool; 1301 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1302 1303 h->overwrite_mapping = m; 1304 m->bio = bio; 1305 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1306 inc_all_io_entry(pool, bio); 1307 remap_and_issue(tc, bio, data_begin); 1308 } 1309 1310 /* 1311 * A partial copy also needs to zero the uncopied region. 1312 */ 1313 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1314 struct dm_dev *origin, dm_block_t data_origin, 1315 dm_block_t data_dest, 1316 struct dm_bio_prison_cell *cell, struct bio *bio, 1317 sector_t len) 1318 { 1319 struct pool *pool = tc->pool; 1320 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1321 1322 m->tc = tc; 1323 m->virt_begin = virt_block; 1324 m->virt_end = virt_block + 1u; 1325 m->data_block = data_dest; 1326 m->cell = cell; 1327 1328 /* 1329 * quiesce action + copy action + an extra reference held for the 1330 * duration of this function (we may need to inc later for a 1331 * partial zero). 1332 */ 1333 atomic_set(&m->prepare_actions, 3); 1334 1335 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1336 complete_mapping_preparation(m); /* already quiesced */ 1337 1338 /* 1339 * IO to pool_dev remaps to the pool target's data_dev. 1340 * 1341 * If the whole block of data is being overwritten, we can issue the 1342 * bio immediately. Otherwise we use kcopyd to clone the data first. 1343 */ 1344 if (io_overwrites_block(pool, bio)) 1345 remap_and_issue_overwrite(tc, bio, data_dest, m); 1346 else { 1347 struct dm_io_region from, to; 1348 1349 from.bdev = origin->bdev; 1350 from.sector = data_origin * pool->sectors_per_block; 1351 from.count = len; 1352 1353 to.bdev = tc->pool_dev->bdev; 1354 to.sector = data_dest * pool->sectors_per_block; 1355 to.count = len; 1356 1357 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1358 0, copy_complete, m); 1359 1360 /* 1361 * Do we need to zero a tail region? 1362 */ 1363 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1364 atomic_inc(&m->prepare_actions); 1365 ll_zero(tc, m, 1366 data_dest * pool->sectors_per_block + len, 1367 (data_dest + 1) * pool->sectors_per_block); 1368 } 1369 } 1370 1371 complete_mapping_preparation(m); /* drop our ref */ 1372 } 1373 1374 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1375 dm_block_t data_origin, dm_block_t data_dest, 1376 struct dm_bio_prison_cell *cell, struct bio *bio) 1377 { 1378 schedule_copy(tc, virt_block, tc->pool_dev, 1379 data_origin, data_dest, cell, bio, 1380 tc->pool->sectors_per_block); 1381 } 1382 1383 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1384 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1385 struct bio *bio) 1386 { 1387 struct pool *pool = tc->pool; 1388 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1389 1390 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1391 m->tc = tc; 1392 m->virt_begin = virt_block; 1393 m->virt_end = virt_block + 1u; 1394 m->data_block = data_block; 1395 m->cell = cell; 1396 1397 /* 1398 * If the whole block of data is being overwritten or we are not 1399 * zeroing pre-existing data, we can issue the bio immediately. 1400 * Otherwise we use kcopyd to zero the data first. 1401 */ 1402 if (pool->pf.zero_new_blocks) { 1403 if (io_overwrites_block(pool, bio)) 1404 remap_and_issue_overwrite(tc, bio, data_block, m); 1405 else 1406 ll_zero(tc, m, data_block * pool->sectors_per_block, 1407 (data_block + 1) * pool->sectors_per_block); 1408 } else 1409 process_prepared_mapping(m); 1410 } 1411 1412 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1413 dm_block_t data_dest, 1414 struct dm_bio_prison_cell *cell, struct bio *bio) 1415 { 1416 struct pool *pool = tc->pool; 1417 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1418 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1419 1420 if (virt_block_end <= tc->origin_size) 1421 schedule_copy(tc, virt_block, tc->origin_dev, 1422 virt_block, data_dest, cell, bio, 1423 pool->sectors_per_block); 1424 1425 else if (virt_block_begin < tc->origin_size) 1426 schedule_copy(tc, virt_block, tc->origin_dev, 1427 virt_block, data_dest, cell, bio, 1428 tc->origin_size - virt_block_begin); 1429 1430 else 1431 schedule_zero(tc, virt_block, data_dest, cell, bio); 1432 } 1433 1434 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1435 1436 static void requeue_bios(struct pool *pool); 1437 1438 static bool is_read_only_pool_mode(enum pool_mode mode) 1439 { 1440 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1441 } 1442 1443 static bool is_read_only(struct pool *pool) 1444 { 1445 return is_read_only_pool_mode(get_pool_mode(pool)); 1446 } 1447 1448 static void check_for_metadata_space(struct pool *pool) 1449 { 1450 int r; 1451 const char *ooms_reason = NULL; 1452 dm_block_t nr_free; 1453 1454 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1455 if (r) 1456 ooms_reason = "Could not get free metadata blocks"; 1457 else if (!nr_free) 1458 ooms_reason = "No free metadata blocks"; 1459 1460 if (ooms_reason && !is_read_only(pool)) { 1461 DMERR("%s", ooms_reason); 1462 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1463 } 1464 } 1465 1466 static void check_for_data_space(struct pool *pool) 1467 { 1468 int r; 1469 dm_block_t nr_free; 1470 1471 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1472 return; 1473 1474 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1475 if (r) 1476 return; 1477 1478 if (nr_free) { 1479 set_pool_mode(pool, PM_WRITE); 1480 requeue_bios(pool); 1481 } 1482 } 1483 1484 /* 1485 * A non-zero return indicates read_only or fail_io mode. 1486 * Many callers don't care about the return value. 1487 */ 1488 static int commit(struct pool *pool) 1489 { 1490 int r; 1491 1492 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1493 return -EINVAL; 1494 1495 r = dm_pool_commit_metadata(pool->pmd); 1496 if (r) 1497 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1498 else { 1499 check_for_metadata_space(pool); 1500 check_for_data_space(pool); 1501 } 1502 1503 return r; 1504 } 1505 1506 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1507 { 1508 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1509 DMWARN("%s: reached low water mark for data device: sending event.", 1510 dm_device_name(pool->pool_md)); 1511 spin_lock_irq(&pool->lock); 1512 pool->low_water_triggered = true; 1513 spin_unlock_irq(&pool->lock); 1514 dm_table_event(pool->ti->table); 1515 } 1516 } 1517 1518 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1519 { 1520 int r; 1521 dm_block_t free_blocks; 1522 struct pool *pool = tc->pool; 1523 1524 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1525 return -EINVAL; 1526 1527 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1528 if (r) { 1529 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1530 return r; 1531 } 1532 1533 check_low_water_mark(pool, free_blocks); 1534 1535 if (!free_blocks) { 1536 /* 1537 * Try to commit to see if that will free up some 1538 * more space. 1539 */ 1540 r = commit(pool); 1541 if (r) 1542 return r; 1543 1544 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1545 if (r) { 1546 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1547 return r; 1548 } 1549 1550 if (!free_blocks) { 1551 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1552 return -ENOSPC; 1553 } 1554 } 1555 1556 r = dm_pool_alloc_data_block(pool->pmd, result); 1557 if (r) { 1558 if (r == -ENOSPC) 1559 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1560 else 1561 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1562 return r; 1563 } 1564 1565 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1566 if (r) { 1567 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1568 return r; 1569 } 1570 1571 if (!free_blocks) { 1572 /* Let's commit before we use up the metadata reserve. */ 1573 r = commit(pool); 1574 if (r) 1575 return r; 1576 } 1577 1578 return 0; 1579 } 1580 1581 /* 1582 * If we have run out of space, queue bios until the device is 1583 * resumed, presumably after having been reloaded with more space. 1584 */ 1585 static void retry_on_resume(struct bio *bio) 1586 { 1587 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1588 struct thin_c *tc = h->tc; 1589 1590 spin_lock_irq(&tc->lock); 1591 bio_list_add(&tc->retry_on_resume_list, bio); 1592 spin_unlock_irq(&tc->lock); 1593 } 1594 1595 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1596 { 1597 enum pool_mode m = get_pool_mode(pool); 1598 1599 switch (m) { 1600 case PM_WRITE: 1601 /* Shouldn't get here */ 1602 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1603 return BLK_STS_IOERR; 1604 1605 case PM_OUT_OF_DATA_SPACE: 1606 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1607 1608 case PM_OUT_OF_METADATA_SPACE: 1609 case PM_READ_ONLY: 1610 case PM_FAIL: 1611 return BLK_STS_IOERR; 1612 default: 1613 /* Shouldn't get here */ 1614 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1615 return BLK_STS_IOERR; 1616 } 1617 } 1618 1619 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1620 { 1621 blk_status_t error = should_error_unserviceable_bio(pool); 1622 1623 if (error) { 1624 bio->bi_status = error; 1625 bio_endio(bio); 1626 } else 1627 retry_on_resume(bio); 1628 } 1629 1630 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1631 { 1632 struct bio *bio; 1633 struct bio_list bios; 1634 blk_status_t error; 1635 1636 error = should_error_unserviceable_bio(pool); 1637 if (error) { 1638 cell_error_with_code(pool, cell, error); 1639 return; 1640 } 1641 1642 bio_list_init(&bios); 1643 cell_release(pool, cell, &bios); 1644 1645 while ((bio = bio_list_pop(&bios))) 1646 retry_on_resume(bio); 1647 } 1648 1649 static void process_discard_cell_no_passdown(struct thin_c *tc, 1650 struct dm_bio_prison_cell *virt_cell) 1651 { 1652 struct pool *pool = tc->pool; 1653 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1654 1655 /* 1656 * We don't need to lock the data blocks, since there's no 1657 * passdown. We only lock data blocks for allocation and breaking sharing. 1658 */ 1659 m->tc = tc; 1660 m->virt_begin = virt_cell->key.block_begin; 1661 m->virt_end = virt_cell->key.block_end; 1662 m->cell = virt_cell; 1663 m->bio = virt_cell->holder; 1664 1665 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1666 pool->process_prepared_discard(m); 1667 } 1668 1669 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1670 struct bio *bio) 1671 { 1672 struct pool *pool = tc->pool; 1673 1674 int r; 1675 bool maybe_shared; 1676 struct dm_cell_key data_key; 1677 struct dm_bio_prison_cell *data_cell; 1678 struct dm_thin_new_mapping *m; 1679 dm_block_t virt_begin, virt_end, data_begin, data_end; 1680 dm_block_t len, next_boundary; 1681 1682 while (begin != end) { 1683 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1684 &data_begin, &maybe_shared); 1685 if (r) { 1686 /* 1687 * Silently fail, letting any mappings we've 1688 * created complete. 1689 */ 1690 break; 1691 } 1692 1693 data_end = data_begin + (virt_end - virt_begin); 1694 1695 /* 1696 * Make sure the data region obeys the bio prison restrictions. 1697 */ 1698 while (data_begin < data_end) { 1699 r = ensure_next_mapping(pool); 1700 if (r) 1701 return; /* we did our best */ 1702 1703 next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1) 1704 << BIO_PRISON_MAX_RANGE_SHIFT; 1705 len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin); 1706 1707 /* This key is certainly within range given the above splitting */ 1708 (void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key); 1709 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1710 /* contention, we'll give up with this range */ 1711 data_begin += len; 1712 continue; 1713 } 1714 1715 /* 1716 * IO may still be going to the destination block. We must 1717 * quiesce before we can do the removal. 1718 */ 1719 m = get_next_mapping(pool); 1720 m->tc = tc; 1721 m->maybe_shared = maybe_shared; 1722 m->virt_begin = virt_begin; 1723 m->virt_end = virt_begin + len; 1724 m->data_block = data_begin; 1725 m->cell = data_cell; 1726 m->bio = bio; 1727 1728 /* 1729 * The parent bio must not complete before sub discard bios are 1730 * chained to it (see end_discard's bio_chain)! 1731 * 1732 * This per-mapping bi_remaining increment is paired with 1733 * the implicit decrement that occurs via bio_endio() in 1734 * end_discard(). 1735 */ 1736 bio_inc_remaining(bio); 1737 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1738 pool->process_prepared_discard(m); 1739 1740 virt_begin += len; 1741 data_begin += len; 1742 } 1743 1744 begin = virt_end; 1745 } 1746 } 1747 1748 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1749 { 1750 struct bio *bio = virt_cell->holder; 1751 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1752 1753 /* 1754 * The virt_cell will only get freed once the origin bio completes. 1755 * This means it will remain locked while all the individual 1756 * passdown bios are in flight. 1757 */ 1758 h->cell = virt_cell; 1759 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1760 1761 /* 1762 * We complete the bio now, knowing that the bi_remaining field 1763 * will prevent completion until the sub range discards have 1764 * completed. 1765 */ 1766 bio_endio(bio); 1767 } 1768 1769 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1770 { 1771 dm_block_t begin, end; 1772 struct dm_cell_key virt_key; 1773 struct dm_bio_prison_cell *virt_cell; 1774 1775 get_bio_block_range(tc, bio, &begin, &end); 1776 if (begin == end) { 1777 /* 1778 * The discard covers less than a block. 1779 */ 1780 bio_endio(bio); 1781 return; 1782 } 1783 1784 if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) { 1785 DMERR_LIMIT("Discard doesn't respect bio prison limits"); 1786 bio_endio(bio); 1787 return; 1788 } 1789 1790 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) { 1791 /* 1792 * Potential starvation issue: We're relying on the 1793 * fs/application being well behaved, and not trying to 1794 * send IO to a region at the same time as discarding it. 1795 * If they do this persistently then it's possible this 1796 * cell will never be granted. 1797 */ 1798 return; 1799 } 1800 1801 tc->pool->process_discard_cell(tc, virt_cell); 1802 } 1803 1804 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1805 struct dm_cell_key *key, 1806 struct dm_thin_lookup_result *lookup_result, 1807 struct dm_bio_prison_cell *cell) 1808 { 1809 int r; 1810 dm_block_t data_block; 1811 struct pool *pool = tc->pool; 1812 1813 r = alloc_data_block(tc, &data_block); 1814 switch (r) { 1815 case 0: 1816 schedule_internal_copy(tc, block, lookup_result->block, 1817 data_block, cell, bio); 1818 break; 1819 1820 case -ENOSPC: 1821 retry_bios_on_resume(pool, cell); 1822 break; 1823 1824 default: 1825 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1826 __func__, r); 1827 cell_error(pool, cell); 1828 break; 1829 } 1830 } 1831 1832 static void __remap_and_issue_shared_cell(void *context, 1833 struct dm_bio_prison_cell *cell) 1834 { 1835 struct remap_info *info = context; 1836 struct bio *bio; 1837 1838 while ((bio = bio_list_pop(&cell->bios))) { 1839 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1840 bio_op(bio) == REQ_OP_DISCARD) 1841 bio_list_add(&info->defer_bios, bio); 1842 else { 1843 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1844 1845 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1846 inc_all_io_entry(info->tc->pool, bio); 1847 bio_list_add(&info->issue_bios, bio); 1848 } 1849 } 1850 } 1851 1852 static void remap_and_issue_shared_cell(struct thin_c *tc, 1853 struct dm_bio_prison_cell *cell, 1854 dm_block_t block) 1855 { 1856 struct bio *bio; 1857 struct remap_info info; 1858 1859 info.tc = tc; 1860 bio_list_init(&info.defer_bios); 1861 bio_list_init(&info.issue_bios); 1862 1863 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1864 &info, cell); 1865 1866 while ((bio = bio_list_pop(&info.defer_bios))) 1867 thin_defer_bio(tc, bio); 1868 1869 while ((bio = bio_list_pop(&info.issue_bios))) 1870 remap_and_issue(tc, bio, block); 1871 } 1872 1873 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1874 dm_block_t block, 1875 struct dm_thin_lookup_result *lookup_result, 1876 struct dm_bio_prison_cell *virt_cell) 1877 { 1878 struct dm_bio_prison_cell *data_cell; 1879 struct pool *pool = tc->pool; 1880 struct dm_cell_key key; 1881 1882 /* 1883 * If cell is already occupied, then sharing is already in the process 1884 * of being broken so we have nothing further to do here. 1885 */ 1886 build_data_key(tc->td, lookup_result->block, &key); 1887 if (bio_detain(pool, &key, bio, &data_cell)) { 1888 cell_defer_no_holder(tc, virt_cell); 1889 return; 1890 } 1891 1892 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1893 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1894 cell_defer_no_holder(tc, virt_cell); 1895 } else { 1896 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1897 1898 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1899 inc_all_io_entry(pool, bio); 1900 remap_and_issue(tc, bio, lookup_result->block); 1901 1902 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1903 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1904 } 1905 } 1906 1907 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1908 struct dm_bio_prison_cell *cell) 1909 { 1910 int r; 1911 dm_block_t data_block; 1912 struct pool *pool = tc->pool; 1913 1914 /* 1915 * Remap empty bios (flushes) immediately, without provisioning. 1916 */ 1917 if (!bio->bi_iter.bi_size) { 1918 inc_all_io_entry(pool, bio); 1919 cell_defer_no_holder(tc, cell); 1920 1921 remap_and_issue(tc, bio, 0); 1922 return; 1923 } 1924 1925 /* 1926 * Fill read bios with zeroes and complete them immediately. 1927 */ 1928 if (bio_data_dir(bio) == READ) { 1929 zero_fill_bio(bio); 1930 cell_defer_no_holder(tc, cell); 1931 bio_endio(bio); 1932 return; 1933 } 1934 1935 r = alloc_data_block(tc, &data_block); 1936 switch (r) { 1937 case 0: 1938 if (tc->origin_dev) 1939 schedule_external_copy(tc, block, data_block, cell, bio); 1940 else 1941 schedule_zero(tc, block, data_block, cell, bio); 1942 break; 1943 1944 case -ENOSPC: 1945 retry_bios_on_resume(pool, cell); 1946 break; 1947 1948 default: 1949 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1950 __func__, r); 1951 cell_error(pool, cell); 1952 break; 1953 } 1954 } 1955 1956 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1957 { 1958 int r; 1959 struct pool *pool = tc->pool; 1960 struct bio *bio = cell->holder; 1961 dm_block_t block = get_bio_block(tc, bio); 1962 struct dm_thin_lookup_result lookup_result; 1963 1964 if (tc->requeue_mode) { 1965 cell_requeue(pool, cell); 1966 return; 1967 } 1968 1969 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1970 switch (r) { 1971 case 0: 1972 if (lookup_result.shared) 1973 process_shared_bio(tc, bio, block, &lookup_result, cell); 1974 else { 1975 inc_all_io_entry(pool, bio); 1976 remap_and_issue(tc, bio, lookup_result.block); 1977 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1978 } 1979 break; 1980 1981 case -ENODATA: 1982 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1983 inc_all_io_entry(pool, bio); 1984 cell_defer_no_holder(tc, cell); 1985 1986 if (bio_end_sector(bio) <= tc->origin_size) 1987 remap_to_origin_and_issue(tc, bio); 1988 1989 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1990 zero_fill_bio(bio); 1991 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1992 remap_to_origin_and_issue(tc, bio); 1993 1994 } else { 1995 zero_fill_bio(bio); 1996 bio_endio(bio); 1997 } 1998 } else 1999 provision_block(tc, bio, block, cell); 2000 break; 2001 2002 default: 2003 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2004 __func__, r); 2005 cell_defer_no_holder(tc, cell); 2006 bio_io_error(bio); 2007 break; 2008 } 2009 } 2010 2011 static void process_bio(struct thin_c *tc, struct bio *bio) 2012 { 2013 struct pool *pool = tc->pool; 2014 dm_block_t block = get_bio_block(tc, bio); 2015 struct dm_bio_prison_cell *cell; 2016 struct dm_cell_key key; 2017 2018 /* 2019 * If cell is already occupied, then the block is already 2020 * being provisioned so we have nothing further to do here. 2021 */ 2022 build_virtual_key(tc->td, block, &key); 2023 if (bio_detain(pool, &key, bio, &cell)) 2024 return; 2025 2026 process_cell(tc, cell); 2027 } 2028 2029 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2030 struct dm_bio_prison_cell *cell) 2031 { 2032 int r; 2033 int rw = bio_data_dir(bio); 2034 dm_block_t block = get_bio_block(tc, bio); 2035 struct dm_thin_lookup_result lookup_result; 2036 2037 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2038 switch (r) { 2039 case 0: 2040 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2041 handle_unserviceable_bio(tc->pool, bio); 2042 if (cell) 2043 cell_defer_no_holder(tc, cell); 2044 } else { 2045 inc_all_io_entry(tc->pool, bio); 2046 remap_and_issue(tc, bio, lookup_result.block); 2047 if (cell) 2048 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2049 } 2050 break; 2051 2052 case -ENODATA: 2053 if (cell) 2054 cell_defer_no_holder(tc, cell); 2055 if (rw != READ) { 2056 handle_unserviceable_bio(tc->pool, bio); 2057 break; 2058 } 2059 2060 if (tc->origin_dev) { 2061 inc_all_io_entry(tc->pool, bio); 2062 remap_to_origin_and_issue(tc, bio); 2063 break; 2064 } 2065 2066 zero_fill_bio(bio); 2067 bio_endio(bio); 2068 break; 2069 2070 default: 2071 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2072 __func__, r); 2073 if (cell) 2074 cell_defer_no_holder(tc, cell); 2075 bio_io_error(bio); 2076 break; 2077 } 2078 } 2079 2080 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2081 { 2082 __process_bio_read_only(tc, bio, NULL); 2083 } 2084 2085 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2086 { 2087 __process_bio_read_only(tc, cell->holder, cell); 2088 } 2089 2090 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2091 { 2092 bio_endio(bio); 2093 } 2094 2095 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2096 { 2097 bio_io_error(bio); 2098 } 2099 2100 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2101 { 2102 cell_success(tc->pool, cell); 2103 } 2104 2105 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2106 { 2107 cell_error(tc->pool, cell); 2108 } 2109 2110 /* 2111 * FIXME: should we also commit due to size of transaction, measured in 2112 * metadata blocks? 2113 */ 2114 static int need_commit_due_to_time(struct pool *pool) 2115 { 2116 return !time_in_range(jiffies, pool->last_commit_jiffies, 2117 pool->last_commit_jiffies + COMMIT_PERIOD); 2118 } 2119 2120 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2121 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2122 2123 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2124 { 2125 struct rb_node **rbp, *parent; 2126 struct dm_thin_endio_hook *pbd; 2127 sector_t bi_sector = bio->bi_iter.bi_sector; 2128 2129 rbp = &tc->sort_bio_list.rb_node; 2130 parent = NULL; 2131 while (*rbp) { 2132 parent = *rbp; 2133 pbd = thin_pbd(parent); 2134 2135 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2136 rbp = &(*rbp)->rb_left; 2137 else 2138 rbp = &(*rbp)->rb_right; 2139 } 2140 2141 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2142 rb_link_node(&pbd->rb_node, parent, rbp); 2143 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2144 } 2145 2146 static void __extract_sorted_bios(struct thin_c *tc) 2147 { 2148 struct rb_node *node; 2149 struct dm_thin_endio_hook *pbd; 2150 struct bio *bio; 2151 2152 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2153 pbd = thin_pbd(node); 2154 bio = thin_bio(pbd); 2155 2156 bio_list_add(&tc->deferred_bio_list, bio); 2157 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2158 } 2159 2160 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2161 } 2162 2163 static void __sort_thin_deferred_bios(struct thin_c *tc) 2164 { 2165 struct bio *bio; 2166 struct bio_list bios; 2167 2168 bio_list_init(&bios); 2169 bio_list_merge(&bios, &tc->deferred_bio_list); 2170 bio_list_init(&tc->deferred_bio_list); 2171 2172 /* Sort deferred_bio_list using rb-tree */ 2173 while ((bio = bio_list_pop(&bios))) 2174 __thin_bio_rb_add(tc, bio); 2175 2176 /* 2177 * Transfer the sorted bios in sort_bio_list back to 2178 * deferred_bio_list to allow lockless submission of 2179 * all bios. 2180 */ 2181 __extract_sorted_bios(tc); 2182 } 2183 2184 static void process_thin_deferred_bios(struct thin_c *tc) 2185 { 2186 struct pool *pool = tc->pool; 2187 struct bio *bio; 2188 struct bio_list bios; 2189 struct blk_plug plug; 2190 unsigned int count = 0; 2191 2192 if (tc->requeue_mode) { 2193 error_thin_bio_list(tc, &tc->deferred_bio_list, 2194 BLK_STS_DM_REQUEUE); 2195 return; 2196 } 2197 2198 bio_list_init(&bios); 2199 2200 spin_lock_irq(&tc->lock); 2201 2202 if (bio_list_empty(&tc->deferred_bio_list)) { 2203 spin_unlock_irq(&tc->lock); 2204 return; 2205 } 2206 2207 __sort_thin_deferred_bios(tc); 2208 2209 bio_list_merge(&bios, &tc->deferred_bio_list); 2210 bio_list_init(&tc->deferred_bio_list); 2211 2212 spin_unlock_irq(&tc->lock); 2213 2214 blk_start_plug(&plug); 2215 while ((bio = bio_list_pop(&bios))) { 2216 /* 2217 * If we've got no free new_mapping structs, and processing 2218 * this bio might require one, we pause until there are some 2219 * prepared mappings to process. 2220 */ 2221 if (ensure_next_mapping(pool)) { 2222 spin_lock_irq(&tc->lock); 2223 bio_list_add(&tc->deferred_bio_list, bio); 2224 bio_list_merge(&tc->deferred_bio_list, &bios); 2225 spin_unlock_irq(&tc->lock); 2226 break; 2227 } 2228 2229 if (bio_op(bio) == REQ_OP_DISCARD) 2230 pool->process_discard(tc, bio); 2231 else 2232 pool->process_bio(tc, bio); 2233 2234 if ((count++ & 127) == 0) { 2235 throttle_work_update(&pool->throttle); 2236 dm_pool_issue_prefetches(pool->pmd); 2237 } 2238 cond_resched(); 2239 } 2240 blk_finish_plug(&plug); 2241 } 2242 2243 static int cmp_cells(const void *lhs, const void *rhs) 2244 { 2245 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2246 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2247 2248 BUG_ON(!lhs_cell->holder); 2249 BUG_ON(!rhs_cell->holder); 2250 2251 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2252 return -1; 2253 2254 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2255 return 1; 2256 2257 return 0; 2258 } 2259 2260 static unsigned int sort_cells(struct pool *pool, struct list_head *cells) 2261 { 2262 unsigned int count = 0; 2263 struct dm_bio_prison_cell *cell, *tmp; 2264 2265 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2266 if (count >= CELL_SORT_ARRAY_SIZE) 2267 break; 2268 2269 pool->cell_sort_array[count++] = cell; 2270 list_del(&cell->user_list); 2271 } 2272 2273 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2274 2275 return count; 2276 } 2277 2278 static void process_thin_deferred_cells(struct thin_c *tc) 2279 { 2280 struct pool *pool = tc->pool; 2281 struct list_head cells; 2282 struct dm_bio_prison_cell *cell; 2283 unsigned int i, j, count; 2284 2285 INIT_LIST_HEAD(&cells); 2286 2287 spin_lock_irq(&tc->lock); 2288 list_splice_init(&tc->deferred_cells, &cells); 2289 spin_unlock_irq(&tc->lock); 2290 2291 if (list_empty(&cells)) 2292 return; 2293 2294 do { 2295 count = sort_cells(tc->pool, &cells); 2296 2297 for (i = 0; i < count; i++) { 2298 cell = pool->cell_sort_array[i]; 2299 BUG_ON(!cell->holder); 2300 2301 /* 2302 * If we've got no free new_mapping structs, and processing 2303 * this bio might require one, we pause until there are some 2304 * prepared mappings to process. 2305 */ 2306 if (ensure_next_mapping(pool)) { 2307 for (j = i; j < count; j++) 2308 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2309 2310 spin_lock_irq(&tc->lock); 2311 list_splice(&cells, &tc->deferred_cells); 2312 spin_unlock_irq(&tc->lock); 2313 return; 2314 } 2315 2316 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2317 pool->process_discard_cell(tc, cell); 2318 else 2319 pool->process_cell(tc, cell); 2320 } 2321 cond_resched(); 2322 } while (!list_empty(&cells)); 2323 } 2324 2325 static void thin_get(struct thin_c *tc); 2326 static void thin_put(struct thin_c *tc); 2327 2328 /* 2329 * We can't hold rcu_read_lock() around code that can block. So we 2330 * find a thin with the rcu lock held; bump a refcount; then drop 2331 * the lock. 2332 */ 2333 static struct thin_c *get_first_thin(struct pool *pool) 2334 { 2335 struct thin_c *tc = NULL; 2336 2337 rcu_read_lock(); 2338 if (!list_empty(&pool->active_thins)) { 2339 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2340 thin_get(tc); 2341 } 2342 rcu_read_unlock(); 2343 2344 return tc; 2345 } 2346 2347 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2348 { 2349 struct thin_c *old_tc = tc; 2350 2351 rcu_read_lock(); 2352 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2353 thin_get(tc); 2354 thin_put(old_tc); 2355 rcu_read_unlock(); 2356 return tc; 2357 } 2358 thin_put(old_tc); 2359 rcu_read_unlock(); 2360 2361 return NULL; 2362 } 2363 2364 static void process_deferred_bios(struct pool *pool) 2365 { 2366 struct bio *bio; 2367 struct bio_list bios, bio_completions; 2368 struct thin_c *tc; 2369 2370 tc = get_first_thin(pool); 2371 while (tc) { 2372 process_thin_deferred_cells(tc); 2373 process_thin_deferred_bios(tc); 2374 tc = get_next_thin(pool, tc); 2375 } 2376 2377 /* 2378 * If there are any deferred flush bios, we must commit the metadata 2379 * before issuing them or signaling their completion. 2380 */ 2381 bio_list_init(&bios); 2382 bio_list_init(&bio_completions); 2383 2384 spin_lock_irq(&pool->lock); 2385 bio_list_merge(&bios, &pool->deferred_flush_bios); 2386 bio_list_init(&pool->deferred_flush_bios); 2387 2388 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2389 bio_list_init(&pool->deferred_flush_completions); 2390 spin_unlock_irq(&pool->lock); 2391 2392 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2393 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2394 return; 2395 2396 if (commit(pool)) { 2397 bio_list_merge(&bios, &bio_completions); 2398 2399 while ((bio = bio_list_pop(&bios))) 2400 bio_io_error(bio); 2401 return; 2402 } 2403 pool->last_commit_jiffies = jiffies; 2404 2405 while ((bio = bio_list_pop(&bio_completions))) 2406 bio_endio(bio); 2407 2408 while ((bio = bio_list_pop(&bios))) { 2409 /* 2410 * The data device was flushed as part of metadata commit, 2411 * so complete redundant flushes immediately. 2412 */ 2413 if (bio->bi_opf & REQ_PREFLUSH) 2414 bio_endio(bio); 2415 else 2416 dm_submit_bio_remap(bio, NULL); 2417 } 2418 } 2419 2420 static void do_worker(struct work_struct *ws) 2421 { 2422 struct pool *pool = container_of(ws, struct pool, worker); 2423 2424 throttle_work_start(&pool->throttle); 2425 dm_pool_issue_prefetches(pool->pmd); 2426 throttle_work_update(&pool->throttle); 2427 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2428 throttle_work_update(&pool->throttle); 2429 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2430 throttle_work_update(&pool->throttle); 2431 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2432 throttle_work_update(&pool->throttle); 2433 process_deferred_bios(pool); 2434 throttle_work_complete(&pool->throttle); 2435 } 2436 2437 /* 2438 * We want to commit periodically so that not too much 2439 * unwritten data builds up. 2440 */ 2441 static void do_waker(struct work_struct *ws) 2442 { 2443 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2444 2445 wake_worker(pool); 2446 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2447 } 2448 2449 /* 2450 * We're holding onto IO to allow userland time to react. After the 2451 * timeout either the pool will have been resized (and thus back in 2452 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2453 */ 2454 static void do_no_space_timeout(struct work_struct *ws) 2455 { 2456 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2457 no_space_timeout); 2458 2459 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2460 pool->pf.error_if_no_space = true; 2461 notify_of_pool_mode_change(pool); 2462 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2463 } 2464 } 2465 2466 /*----------------------------------------------------------------*/ 2467 2468 struct pool_work { 2469 struct work_struct worker; 2470 struct completion complete; 2471 }; 2472 2473 static struct pool_work *to_pool_work(struct work_struct *ws) 2474 { 2475 return container_of(ws, struct pool_work, worker); 2476 } 2477 2478 static void pool_work_complete(struct pool_work *pw) 2479 { 2480 complete(&pw->complete); 2481 } 2482 2483 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2484 void (*fn)(struct work_struct *)) 2485 { 2486 INIT_WORK_ONSTACK(&pw->worker, fn); 2487 init_completion(&pw->complete); 2488 queue_work(pool->wq, &pw->worker); 2489 wait_for_completion(&pw->complete); 2490 } 2491 2492 /*----------------------------------------------------------------*/ 2493 2494 struct noflush_work { 2495 struct pool_work pw; 2496 struct thin_c *tc; 2497 }; 2498 2499 static struct noflush_work *to_noflush(struct work_struct *ws) 2500 { 2501 return container_of(to_pool_work(ws), struct noflush_work, pw); 2502 } 2503 2504 static void do_noflush_start(struct work_struct *ws) 2505 { 2506 struct noflush_work *w = to_noflush(ws); 2507 2508 w->tc->requeue_mode = true; 2509 requeue_io(w->tc); 2510 pool_work_complete(&w->pw); 2511 } 2512 2513 static void do_noflush_stop(struct work_struct *ws) 2514 { 2515 struct noflush_work *w = to_noflush(ws); 2516 2517 w->tc->requeue_mode = false; 2518 pool_work_complete(&w->pw); 2519 } 2520 2521 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2522 { 2523 struct noflush_work w; 2524 2525 w.tc = tc; 2526 pool_work_wait(&w.pw, tc->pool, fn); 2527 } 2528 2529 /*----------------------------------------------------------------*/ 2530 2531 static bool passdown_enabled(struct pool_c *pt) 2532 { 2533 return pt->adjusted_pf.discard_passdown; 2534 } 2535 2536 static void set_discard_callbacks(struct pool *pool) 2537 { 2538 struct pool_c *pt = pool->ti->private; 2539 2540 if (passdown_enabled(pt)) { 2541 pool->process_discard_cell = process_discard_cell_passdown; 2542 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2543 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2544 } else { 2545 pool->process_discard_cell = process_discard_cell_no_passdown; 2546 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2547 } 2548 } 2549 2550 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2551 { 2552 struct pool_c *pt = pool->ti->private; 2553 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2554 enum pool_mode old_mode = get_pool_mode(pool); 2555 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2556 2557 /* 2558 * Never allow the pool to transition to PM_WRITE mode if user 2559 * intervention is required to verify metadata and data consistency. 2560 */ 2561 if (new_mode == PM_WRITE && needs_check) { 2562 DMERR("%s: unable to switch pool to write mode until repaired.", 2563 dm_device_name(pool->pool_md)); 2564 if (old_mode != new_mode) 2565 new_mode = old_mode; 2566 else 2567 new_mode = PM_READ_ONLY; 2568 } 2569 /* 2570 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2571 * not going to recover without a thin_repair. So we never let the 2572 * pool move out of the old mode. 2573 */ 2574 if (old_mode == PM_FAIL) 2575 new_mode = old_mode; 2576 2577 switch (new_mode) { 2578 case PM_FAIL: 2579 dm_pool_metadata_read_only(pool->pmd); 2580 pool->process_bio = process_bio_fail; 2581 pool->process_discard = process_bio_fail; 2582 pool->process_cell = process_cell_fail; 2583 pool->process_discard_cell = process_cell_fail; 2584 pool->process_prepared_mapping = process_prepared_mapping_fail; 2585 pool->process_prepared_discard = process_prepared_discard_fail; 2586 2587 error_retry_list(pool); 2588 break; 2589 2590 case PM_OUT_OF_METADATA_SPACE: 2591 case PM_READ_ONLY: 2592 dm_pool_metadata_read_only(pool->pmd); 2593 pool->process_bio = process_bio_read_only; 2594 pool->process_discard = process_bio_success; 2595 pool->process_cell = process_cell_read_only; 2596 pool->process_discard_cell = process_cell_success; 2597 pool->process_prepared_mapping = process_prepared_mapping_fail; 2598 pool->process_prepared_discard = process_prepared_discard_success; 2599 2600 error_retry_list(pool); 2601 break; 2602 2603 case PM_OUT_OF_DATA_SPACE: 2604 /* 2605 * Ideally we'd never hit this state; the low water mark 2606 * would trigger userland to extend the pool before we 2607 * completely run out of data space. However, many small 2608 * IOs to unprovisioned space can consume data space at an 2609 * alarming rate. Adjust your low water mark if you're 2610 * frequently seeing this mode. 2611 */ 2612 pool->out_of_data_space = true; 2613 pool->process_bio = process_bio_read_only; 2614 pool->process_discard = process_discard_bio; 2615 pool->process_cell = process_cell_read_only; 2616 pool->process_prepared_mapping = process_prepared_mapping; 2617 set_discard_callbacks(pool); 2618 2619 if (!pool->pf.error_if_no_space && no_space_timeout) 2620 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2621 break; 2622 2623 case PM_WRITE: 2624 if (old_mode == PM_OUT_OF_DATA_SPACE) 2625 cancel_delayed_work_sync(&pool->no_space_timeout); 2626 pool->out_of_data_space = false; 2627 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2628 dm_pool_metadata_read_write(pool->pmd); 2629 pool->process_bio = process_bio; 2630 pool->process_discard = process_discard_bio; 2631 pool->process_cell = process_cell; 2632 pool->process_prepared_mapping = process_prepared_mapping; 2633 set_discard_callbacks(pool); 2634 break; 2635 } 2636 2637 pool->pf.mode = new_mode; 2638 /* 2639 * The pool mode may have changed, sync it so bind_control_target() 2640 * doesn't cause an unexpected mode transition on resume. 2641 */ 2642 pt->adjusted_pf.mode = new_mode; 2643 2644 if (old_mode != new_mode) 2645 notify_of_pool_mode_change(pool); 2646 } 2647 2648 static void abort_transaction(struct pool *pool) 2649 { 2650 const char *dev_name = dm_device_name(pool->pool_md); 2651 2652 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2653 if (dm_pool_abort_metadata(pool->pmd)) { 2654 DMERR("%s: failed to abort metadata transaction", dev_name); 2655 set_pool_mode(pool, PM_FAIL); 2656 } 2657 2658 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2659 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2660 set_pool_mode(pool, PM_FAIL); 2661 } 2662 } 2663 2664 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2665 { 2666 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2667 dm_device_name(pool->pool_md), op, r); 2668 2669 abort_transaction(pool); 2670 set_pool_mode(pool, PM_READ_ONLY); 2671 } 2672 2673 /*----------------------------------------------------------------*/ 2674 2675 /* 2676 * Mapping functions. 2677 */ 2678 2679 /* 2680 * Called only while mapping a thin bio to hand it over to the workqueue. 2681 */ 2682 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2683 { 2684 struct pool *pool = tc->pool; 2685 2686 spin_lock_irq(&tc->lock); 2687 bio_list_add(&tc->deferred_bio_list, bio); 2688 spin_unlock_irq(&tc->lock); 2689 2690 wake_worker(pool); 2691 } 2692 2693 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2694 { 2695 struct pool *pool = tc->pool; 2696 2697 throttle_lock(&pool->throttle); 2698 thin_defer_bio(tc, bio); 2699 throttle_unlock(&pool->throttle); 2700 } 2701 2702 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2703 { 2704 struct pool *pool = tc->pool; 2705 2706 throttle_lock(&pool->throttle); 2707 spin_lock_irq(&tc->lock); 2708 list_add_tail(&cell->user_list, &tc->deferred_cells); 2709 spin_unlock_irq(&tc->lock); 2710 throttle_unlock(&pool->throttle); 2711 2712 wake_worker(pool); 2713 } 2714 2715 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2716 { 2717 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2718 2719 h->tc = tc; 2720 h->shared_read_entry = NULL; 2721 h->all_io_entry = NULL; 2722 h->overwrite_mapping = NULL; 2723 h->cell = NULL; 2724 } 2725 2726 /* 2727 * Non-blocking function called from the thin target's map function. 2728 */ 2729 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2730 { 2731 int r; 2732 struct thin_c *tc = ti->private; 2733 dm_block_t block = get_bio_block(tc, bio); 2734 struct dm_thin_device *td = tc->td; 2735 struct dm_thin_lookup_result result; 2736 struct dm_bio_prison_cell *virt_cell, *data_cell; 2737 struct dm_cell_key key; 2738 2739 thin_hook_bio(tc, bio); 2740 2741 if (tc->requeue_mode) { 2742 bio->bi_status = BLK_STS_DM_REQUEUE; 2743 bio_endio(bio); 2744 return DM_MAPIO_SUBMITTED; 2745 } 2746 2747 if (get_pool_mode(tc->pool) == PM_FAIL) { 2748 bio_io_error(bio); 2749 return DM_MAPIO_SUBMITTED; 2750 } 2751 2752 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2753 thin_defer_bio_with_throttle(tc, bio); 2754 return DM_MAPIO_SUBMITTED; 2755 } 2756 2757 /* 2758 * We must hold the virtual cell before doing the lookup, otherwise 2759 * there's a race with discard. 2760 */ 2761 build_virtual_key(tc->td, block, &key); 2762 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2763 return DM_MAPIO_SUBMITTED; 2764 2765 r = dm_thin_find_block(td, block, 0, &result); 2766 2767 /* 2768 * Note that we defer readahead too. 2769 */ 2770 switch (r) { 2771 case 0: 2772 if (unlikely(result.shared)) { 2773 /* 2774 * We have a race condition here between the 2775 * result.shared value returned by the lookup and 2776 * snapshot creation, which may cause new 2777 * sharing. 2778 * 2779 * To avoid this always quiesce the origin before 2780 * taking the snap. You want to do this anyway to 2781 * ensure a consistent application view 2782 * (i.e. lockfs). 2783 * 2784 * More distant ancestors are irrelevant. The 2785 * shared flag will be set in their case. 2786 */ 2787 thin_defer_cell(tc, virt_cell); 2788 return DM_MAPIO_SUBMITTED; 2789 } 2790 2791 build_data_key(tc->td, result.block, &key); 2792 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2793 cell_defer_no_holder(tc, virt_cell); 2794 return DM_MAPIO_SUBMITTED; 2795 } 2796 2797 inc_all_io_entry(tc->pool, bio); 2798 cell_defer_no_holder(tc, data_cell); 2799 cell_defer_no_holder(tc, virt_cell); 2800 2801 remap(tc, bio, result.block); 2802 return DM_MAPIO_REMAPPED; 2803 2804 case -ENODATA: 2805 case -EWOULDBLOCK: 2806 thin_defer_cell(tc, virt_cell); 2807 return DM_MAPIO_SUBMITTED; 2808 2809 default: 2810 /* 2811 * Must always call bio_io_error on failure. 2812 * dm_thin_find_block can fail with -EINVAL if the 2813 * pool is switched to fail-io mode. 2814 */ 2815 bio_io_error(bio); 2816 cell_defer_no_holder(tc, virt_cell); 2817 return DM_MAPIO_SUBMITTED; 2818 } 2819 } 2820 2821 static void requeue_bios(struct pool *pool) 2822 { 2823 struct thin_c *tc; 2824 2825 rcu_read_lock(); 2826 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2827 spin_lock_irq(&tc->lock); 2828 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2829 bio_list_init(&tc->retry_on_resume_list); 2830 spin_unlock_irq(&tc->lock); 2831 } 2832 rcu_read_unlock(); 2833 } 2834 2835 /* 2836 *-------------------------------------------------------------- 2837 * Binding of control targets to a pool object 2838 *-------------------------------------------------------------- 2839 */ 2840 static bool is_factor(sector_t block_size, uint32_t n) 2841 { 2842 return !sector_div(block_size, n); 2843 } 2844 2845 /* 2846 * If discard_passdown was enabled verify that the data device 2847 * supports discards. Disable discard_passdown if not. 2848 */ 2849 static void disable_passdown_if_not_supported(struct pool_c *pt) 2850 { 2851 struct pool *pool = pt->pool; 2852 struct block_device *data_bdev = pt->data_dev->bdev; 2853 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2854 const char *reason = NULL; 2855 2856 if (!pt->adjusted_pf.discard_passdown) 2857 return; 2858 2859 if (!bdev_max_discard_sectors(pt->data_dev->bdev)) 2860 reason = "discard unsupported"; 2861 2862 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2863 reason = "max discard sectors smaller than a block"; 2864 2865 if (reason) { 2866 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason); 2867 pt->adjusted_pf.discard_passdown = false; 2868 } 2869 } 2870 2871 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2872 { 2873 struct pool_c *pt = ti->private; 2874 2875 /* 2876 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2877 */ 2878 enum pool_mode old_mode = get_pool_mode(pool); 2879 enum pool_mode new_mode = pt->adjusted_pf.mode; 2880 2881 /* 2882 * Don't change the pool's mode until set_pool_mode() below. 2883 * Otherwise the pool's process_* function pointers may 2884 * not match the desired pool mode. 2885 */ 2886 pt->adjusted_pf.mode = old_mode; 2887 2888 pool->ti = ti; 2889 pool->pf = pt->adjusted_pf; 2890 pool->low_water_blocks = pt->low_water_blocks; 2891 2892 set_pool_mode(pool, new_mode); 2893 2894 return 0; 2895 } 2896 2897 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2898 { 2899 if (pool->ti == ti) 2900 pool->ti = NULL; 2901 } 2902 2903 /* 2904 *-------------------------------------------------------------- 2905 * Pool creation 2906 *-------------------------------------------------------------- 2907 */ 2908 /* Initialize pool features. */ 2909 static void pool_features_init(struct pool_features *pf) 2910 { 2911 pf->mode = PM_WRITE; 2912 pf->zero_new_blocks = true; 2913 pf->discard_enabled = true; 2914 pf->discard_passdown = true; 2915 pf->error_if_no_space = false; 2916 } 2917 2918 static void __pool_destroy(struct pool *pool) 2919 { 2920 __pool_table_remove(pool); 2921 2922 vfree(pool->cell_sort_array); 2923 if (dm_pool_metadata_close(pool->pmd) < 0) 2924 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2925 2926 dm_bio_prison_destroy(pool->prison); 2927 dm_kcopyd_client_destroy(pool->copier); 2928 2929 cancel_delayed_work_sync(&pool->waker); 2930 cancel_delayed_work_sync(&pool->no_space_timeout); 2931 if (pool->wq) 2932 destroy_workqueue(pool->wq); 2933 2934 if (pool->next_mapping) 2935 mempool_free(pool->next_mapping, &pool->mapping_pool); 2936 mempool_exit(&pool->mapping_pool); 2937 dm_deferred_set_destroy(pool->shared_read_ds); 2938 dm_deferred_set_destroy(pool->all_io_ds); 2939 kfree(pool); 2940 } 2941 2942 static struct kmem_cache *_new_mapping_cache; 2943 2944 static struct pool *pool_create(struct mapped_device *pool_md, 2945 struct block_device *metadata_dev, 2946 struct block_device *data_dev, 2947 unsigned long block_size, 2948 int read_only, char **error) 2949 { 2950 int r; 2951 void *err_p; 2952 struct pool *pool; 2953 struct dm_pool_metadata *pmd; 2954 bool format_device = read_only ? false : true; 2955 2956 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2957 if (IS_ERR(pmd)) { 2958 *error = "Error creating metadata object"; 2959 return (struct pool *)pmd; 2960 } 2961 2962 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2963 if (!pool) { 2964 *error = "Error allocating memory for pool"; 2965 err_p = ERR_PTR(-ENOMEM); 2966 goto bad_pool; 2967 } 2968 2969 pool->pmd = pmd; 2970 pool->sectors_per_block = block_size; 2971 if (block_size & (block_size - 1)) 2972 pool->sectors_per_block_shift = -1; 2973 else 2974 pool->sectors_per_block_shift = __ffs(block_size); 2975 pool->low_water_blocks = 0; 2976 pool_features_init(&pool->pf); 2977 pool->prison = dm_bio_prison_create(); 2978 if (!pool->prison) { 2979 *error = "Error creating pool's bio prison"; 2980 err_p = ERR_PTR(-ENOMEM); 2981 goto bad_prison; 2982 } 2983 2984 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2985 if (IS_ERR(pool->copier)) { 2986 r = PTR_ERR(pool->copier); 2987 *error = "Error creating pool's kcopyd client"; 2988 err_p = ERR_PTR(r); 2989 goto bad_kcopyd_client; 2990 } 2991 2992 /* 2993 * Create singlethreaded workqueue that will service all devices 2994 * that use this metadata. 2995 */ 2996 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2997 if (!pool->wq) { 2998 *error = "Error creating pool's workqueue"; 2999 err_p = ERR_PTR(-ENOMEM); 3000 goto bad_wq; 3001 } 3002 3003 throttle_init(&pool->throttle); 3004 INIT_WORK(&pool->worker, do_worker); 3005 INIT_DELAYED_WORK(&pool->waker, do_waker); 3006 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 3007 spin_lock_init(&pool->lock); 3008 bio_list_init(&pool->deferred_flush_bios); 3009 bio_list_init(&pool->deferred_flush_completions); 3010 INIT_LIST_HEAD(&pool->prepared_mappings); 3011 INIT_LIST_HEAD(&pool->prepared_discards); 3012 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 3013 INIT_LIST_HEAD(&pool->active_thins); 3014 pool->low_water_triggered = false; 3015 pool->suspended = true; 3016 pool->out_of_data_space = false; 3017 3018 pool->shared_read_ds = dm_deferred_set_create(); 3019 if (!pool->shared_read_ds) { 3020 *error = "Error creating pool's shared read deferred set"; 3021 err_p = ERR_PTR(-ENOMEM); 3022 goto bad_shared_read_ds; 3023 } 3024 3025 pool->all_io_ds = dm_deferred_set_create(); 3026 if (!pool->all_io_ds) { 3027 *error = "Error creating pool's all io deferred set"; 3028 err_p = ERR_PTR(-ENOMEM); 3029 goto bad_all_io_ds; 3030 } 3031 3032 pool->next_mapping = NULL; 3033 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 3034 _new_mapping_cache); 3035 if (r) { 3036 *error = "Error creating pool's mapping mempool"; 3037 err_p = ERR_PTR(r); 3038 goto bad_mapping_pool; 3039 } 3040 3041 pool->cell_sort_array = 3042 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3043 sizeof(*pool->cell_sort_array))); 3044 if (!pool->cell_sort_array) { 3045 *error = "Error allocating cell sort array"; 3046 err_p = ERR_PTR(-ENOMEM); 3047 goto bad_sort_array; 3048 } 3049 3050 pool->ref_count = 1; 3051 pool->last_commit_jiffies = jiffies; 3052 pool->pool_md = pool_md; 3053 pool->md_dev = metadata_dev; 3054 pool->data_dev = data_dev; 3055 __pool_table_insert(pool); 3056 3057 return pool; 3058 3059 bad_sort_array: 3060 mempool_exit(&pool->mapping_pool); 3061 bad_mapping_pool: 3062 dm_deferred_set_destroy(pool->all_io_ds); 3063 bad_all_io_ds: 3064 dm_deferred_set_destroy(pool->shared_read_ds); 3065 bad_shared_read_ds: 3066 destroy_workqueue(pool->wq); 3067 bad_wq: 3068 dm_kcopyd_client_destroy(pool->copier); 3069 bad_kcopyd_client: 3070 dm_bio_prison_destroy(pool->prison); 3071 bad_prison: 3072 kfree(pool); 3073 bad_pool: 3074 if (dm_pool_metadata_close(pmd)) 3075 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3076 3077 return err_p; 3078 } 3079 3080 static void __pool_inc(struct pool *pool) 3081 { 3082 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3083 pool->ref_count++; 3084 } 3085 3086 static void __pool_dec(struct pool *pool) 3087 { 3088 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3089 BUG_ON(!pool->ref_count); 3090 if (!--pool->ref_count) 3091 __pool_destroy(pool); 3092 } 3093 3094 static struct pool *__pool_find(struct mapped_device *pool_md, 3095 struct block_device *metadata_dev, 3096 struct block_device *data_dev, 3097 unsigned long block_size, int read_only, 3098 char **error, int *created) 3099 { 3100 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3101 3102 if (pool) { 3103 if (pool->pool_md != pool_md) { 3104 *error = "metadata device already in use by a pool"; 3105 return ERR_PTR(-EBUSY); 3106 } 3107 if (pool->data_dev != data_dev) { 3108 *error = "data device already in use by a pool"; 3109 return ERR_PTR(-EBUSY); 3110 } 3111 __pool_inc(pool); 3112 3113 } else { 3114 pool = __pool_table_lookup(pool_md); 3115 if (pool) { 3116 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { 3117 *error = "different pool cannot replace a pool"; 3118 return ERR_PTR(-EINVAL); 3119 } 3120 __pool_inc(pool); 3121 3122 } else { 3123 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); 3124 *created = 1; 3125 } 3126 } 3127 3128 return pool; 3129 } 3130 3131 /* 3132 *-------------------------------------------------------------- 3133 * Pool target methods 3134 *-------------------------------------------------------------- 3135 */ 3136 static void pool_dtr(struct dm_target *ti) 3137 { 3138 struct pool_c *pt = ti->private; 3139 3140 mutex_lock(&dm_thin_pool_table.mutex); 3141 3142 unbind_control_target(pt->pool, ti); 3143 __pool_dec(pt->pool); 3144 dm_put_device(ti, pt->metadata_dev); 3145 dm_put_device(ti, pt->data_dev); 3146 kfree(pt); 3147 3148 mutex_unlock(&dm_thin_pool_table.mutex); 3149 } 3150 3151 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3152 struct dm_target *ti) 3153 { 3154 int r; 3155 unsigned int argc; 3156 const char *arg_name; 3157 3158 static const struct dm_arg _args[] = { 3159 {0, 4, "Invalid number of pool feature arguments"}, 3160 }; 3161 3162 /* 3163 * No feature arguments supplied. 3164 */ 3165 if (!as->argc) 3166 return 0; 3167 3168 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3169 if (r) 3170 return -EINVAL; 3171 3172 while (argc && !r) { 3173 arg_name = dm_shift_arg(as); 3174 argc--; 3175 3176 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3177 pf->zero_new_blocks = false; 3178 3179 else if (!strcasecmp(arg_name, "ignore_discard")) 3180 pf->discard_enabled = false; 3181 3182 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3183 pf->discard_passdown = false; 3184 3185 else if (!strcasecmp(arg_name, "read_only")) 3186 pf->mode = PM_READ_ONLY; 3187 3188 else if (!strcasecmp(arg_name, "error_if_no_space")) 3189 pf->error_if_no_space = true; 3190 3191 else { 3192 ti->error = "Unrecognised pool feature requested"; 3193 r = -EINVAL; 3194 break; 3195 } 3196 } 3197 3198 return r; 3199 } 3200 3201 static void metadata_low_callback(void *context) 3202 { 3203 struct pool *pool = context; 3204 3205 DMWARN("%s: reached low water mark for metadata device: sending event.", 3206 dm_device_name(pool->pool_md)); 3207 3208 dm_table_event(pool->ti->table); 3209 } 3210 3211 /* 3212 * We need to flush the data device **before** committing the metadata. 3213 * 3214 * This ensures that the data blocks of any newly inserted mappings are 3215 * properly written to non-volatile storage and won't be lost in case of a 3216 * crash. 3217 * 3218 * Failure to do so can result in data corruption in the case of internal or 3219 * external snapshots and in the case of newly provisioned blocks, when block 3220 * zeroing is enabled. 3221 */ 3222 static int metadata_pre_commit_callback(void *context) 3223 { 3224 struct pool *pool = context; 3225 3226 return blkdev_issue_flush(pool->data_dev); 3227 } 3228 3229 static sector_t get_dev_size(struct block_device *bdev) 3230 { 3231 return bdev_nr_sectors(bdev); 3232 } 3233 3234 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3235 { 3236 sector_t metadata_dev_size = get_dev_size(bdev); 3237 3238 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3239 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", 3240 bdev, THIN_METADATA_MAX_SECTORS); 3241 } 3242 3243 static sector_t get_metadata_dev_size(struct block_device *bdev) 3244 { 3245 sector_t metadata_dev_size = get_dev_size(bdev); 3246 3247 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3248 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3249 3250 return metadata_dev_size; 3251 } 3252 3253 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3254 { 3255 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3256 3257 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3258 3259 return metadata_dev_size; 3260 } 3261 3262 /* 3263 * When a metadata threshold is crossed a dm event is triggered, and 3264 * userland should respond by growing the metadata device. We could let 3265 * userland set the threshold, like we do with the data threshold, but I'm 3266 * not sure they know enough to do this well. 3267 */ 3268 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3269 { 3270 /* 3271 * 4M is ample for all ops with the possible exception of thin 3272 * device deletion which is harmless if it fails (just retry the 3273 * delete after you've grown the device). 3274 */ 3275 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3276 3277 return min((dm_block_t)1024ULL /* 4M */, quarter); 3278 } 3279 3280 /* 3281 * thin-pool <metadata dev> <data dev> 3282 * <data block size (sectors)> 3283 * <low water mark (blocks)> 3284 * [<#feature args> [<arg>]*] 3285 * 3286 * Optional feature arguments are: 3287 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3288 * ignore_discard: disable discard 3289 * no_discard_passdown: don't pass discards down to the data device 3290 * read_only: Don't allow any changes to be made to the pool metadata. 3291 * error_if_no_space: error IOs, instead of queueing, if no space. 3292 */ 3293 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3294 { 3295 int r, pool_created = 0; 3296 struct pool_c *pt; 3297 struct pool *pool; 3298 struct pool_features pf; 3299 struct dm_arg_set as; 3300 struct dm_dev *data_dev; 3301 unsigned long block_size; 3302 dm_block_t low_water_blocks; 3303 struct dm_dev *metadata_dev; 3304 fmode_t metadata_mode; 3305 3306 /* 3307 * FIXME Remove validation from scope of lock. 3308 */ 3309 mutex_lock(&dm_thin_pool_table.mutex); 3310 3311 if (argc < 4) { 3312 ti->error = "Invalid argument count"; 3313 r = -EINVAL; 3314 goto out_unlock; 3315 } 3316 3317 as.argc = argc; 3318 as.argv = argv; 3319 3320 /* make sure metadata and data are different devices */ 3321 if (!strcmp(argv[0], argv[1])) { 3322 ti->error = "Error setting metadata or data device"; 3323 r = -EINVAL; 3324 goto out_unlock; 3325 } 3326 3327 /* 3328 * Set default pool features. 3329 */ 3330 pool_features_init(&pf); 3331 3332 dm_consume_args(&as, 4); 3333 r = parse_pool_features(&as, &pf, ti); 3334 if (r) 3335 goto out_unlock; 3336 3337 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3338 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3339 if (r) { 3340 ti->error = "Error opening metadata block device"; 3341 goto out_unlock; 3342 } 3343 warn_if_metadata_device_too_big(metadata_dev->bdev); 3344 3345 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3346 if (r) { 3347 ti->error = "Error getting data device"; 3348 goto out_metadata; 3349 } 3350 3351 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3352 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3353 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3354 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3355 ti->error = "Invalid block size"; 3356 r = -EINVAL; 3357 goto out; 3358 } 3359 3360 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3361 ti->error = "Invalid low water mark"; 3362 r = -EINVAL; 3363 goto out; 3364 } 3365 3366 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3367 if (!pt) { 3368 r = -ENOMEM; 3369 goto out; 3370 } 3371 3372 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, 3373 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3374 if (IS_ERR(pool)) { 3375 r = PTR_ERR(pool); 3376 goto out_free_pt; 3377 } 3378 3379 /* 3380 * 'pool_created' reflects whether this is the first table load. 3381 * Top level discard support is not allowed to be changed after 3382 * initial load. This would require a pool reload to trigger thin 3383 * device changes. 3384 */ 3385 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3386 ti->error = "Discard support cannot be disabled once enabled"; 3387 r = -EINVAL; 3388 goto out_flags_changed; 3389 } 3390 3391 pt->pool = pool; 3392 pt->ti = ti; 3393 pt->metadata_dev = metadata_dev; 3394 pt->data_dev = data_dev; 3395 pt->low_water_blocks = low_water_blocks; 3396 pt->adjusted_pf = pt->requested_pf = pf; 3397 ti->num_flush_bios = 1; 3398 ti->limit_swap_bios = true; 3399 3400 /* 3401 * Only need to enable discards if the pool should pass 3402 * them down to the data device. The thin device's discard 3403 * processing will cause mappings to be removed from the btree. 3404 */ 3405 if (pf.discard_enabled && pf.discard_passdown) { 3406 ti->num_discard_bios = 1; 3407 /* 3408 * Setting 'discards_supported' circumvents the normal 3409 * stacking of discard limits (this keeps the pool and 3410 * thin devices' discard limits consistent). 3411 */ 3412 ti->discards_supported = true; 3413 ti->max_discard_granularity = true; 3414 } 3415 ti->private = pt; 3416 3417 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3418 calc_metadata_threshold(pt), 3419 metadata_low_callback, 3420 pool); 3421 if (r) { 3422 ti->error = "Error registering metadata threshold"; 3423 goto out_flags_changed; 3424 } 3425 3426 dm_pool_register_pre_commit_callback(pool->pmd, 3427 metadata_pre_commit_callback, pool); 3428 3429 mutex_unlock(&dm_thin_pool_table.mutex); 3430 3431 return 0; 3432 3433 out_flags_changed: 3434 __pool_dec(pool); 3435 out_free_pt: 3436 kfree(pt); 3437 out: 3438 dm_put_device(ti, data_dev); 3439 out_metadata: 3440 dm_put_device(ti, metadata_dev); 3441 out_unlock: 3442 mutex_unlock(&dm_thin_pool_table.mutex); 3443 3444 return r; 3445 } 3446 3447 static int pool_map(struct dm_target *ti, struct bio *bio) 3448 { 3449 int r; 3450 struct pool_c *pt = ti->private; 3451 struct pool *pool = pt->pool; 3452 3453 /* 3454 * As this is a singleton target, ti->begin is always zero. 3455 */ 3456 spin_lock_irq(&pool->lock); 3457 bio_set_dev(bio, pt->data_dev->bdev); 3458 r = DM_MAPIO_REMAPPED; 3459 spin_unlock_irq(&pool->lock); 3460 3461 return r; 3462 } 3463 3464 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3465 { 3466 int r; 3467 struct pool_c *pt = ti->private; 3468 struct pool *pool = pt->pool; 3469 sector_t data_size = ti->len; 3470 dm_block_t sb_data_size; 3471 3472 *need_commit = false; 3473 3474 (void) sector_div(data_size, pool->sectors_per_block); 3475 3476 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3477 if (r) { 3478 DMERR("%s: failed to retrieve data device size", 3479 dm_device_name(pool->pool_md)); 3480 return r; 3481 } 3482 3483 if (data_size < sb_data_size) { 3484 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3485 dm_device_name(pool->pool_md), 3486 (unsigned long long)data_size, sb_data_size); 3487 return -EINVAL; 3488 3489 } else if (data_size > sb_data_size) { 3490 if (dm_pool_metadata_needs_check(pool->pmd)) { 3491 DMERR("%s: unable to grow the data device until repaired.", 3492 dm_device_name(pool->pool_md)); 3493 return 0; 3494 } 3495 3496 if (sb_data_size) 3497 DMINFO("%s: growing the data device from %llu to %llu blocks", 3498 dm_device_name(pool->pool_md), 3499 sb_data_size, (unsigned long long)data_size); 3500 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3501 if (r) { 3502 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3503 return r; 3504 } 3505 3506 *need_commit = true; 3507 } 3508 3509 return 0; 3510 } 3511 3512 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3513 { 3514 int r; 3515 struct pool_c *pt = ti->private; 3516 struct pool *pool = pt->pool; 3517 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3518 3519 *need_commit = false; 3520 3521 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3522 3523 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3524 if (r) { 3525 DMERR("%s: failed to retrieve metadata device size", 3526 dm_device_name(pool->pool_md)); 3527 return r; 3528 } 3529 3530 if (metadata_dev_size < sb_metadata_dev_size) { 3531 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3532 dm_device_name(pool->pool_md), 3533 metadata_dev_size, sb_metadata_dev_size); 3534 return -EINVAL; 3535 3536 } else if (metadata_dev_size > sb_metadata_dev_size) { 3537 if (dm_pool_metadata_needs_check(pool->pmd)) { 3538 DMERR("%s: unable to grow the metadata device until repaired.", 3539 dm_device_name(pool->pool_md)); 3540 return 0; 3541 } 3542 3543 warn_if_metadata_device_too_big(pool->md_dev); 3544 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3545 dm_device_name(pool->pool_md), 3546 sb_metadata_dev_size, metadata_dev_size); 3547 3548 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3549 set_pool_mode(pool, PM_WRITE); 3550 3551 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3552 if (r) { 3553 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3554 return r; 3555 } 3556 3557 *need_commit = true; 3558 } 3559 3560 return 0; 3561 } 3562 3563 /* 3564 * Retrieves the number of blocks of the data device from 3565 * the superblock and compares it to the actual device size, 3566 * thus resizing the data device in case it has grown. 3567 * 3568 * This both copes with opening preallocated data devices in the ctr 3569 * being followed by a resume 3570 * -and- 3571 * calling the resume method individually after userspace has 3572 * grown the data device in reaction to a table event. 3573 */ 3574 static int pool_preresume(struct dm_target *ti) 3575 { 3576 int r; 3577 bool need_commit1, need_commit2; 3578 struct pool_c *pt = ti->private; 3579 struct pool *pool = pt->pool; 3580 3581 /* 3582 * Take control of the pool object. 3583 */ 3584 r = bind_control_target(pool, ti); 3585 if (r) 3586 goto out; 3587 3588 r = maybe_resize_data_dev(ti, &need_commit1); 3589 if (r) 3590 goto out; 3591 3592 r = maybe_resize_metadata_dev(ti, &need_commit2); 3593 if (r) 3594 goto out; 3595 3596 if (need_commit1 || need_commit2) 3597 (void) commit(pool); 3598 out: 3599 /* 3600 * When a thin-pool is PM_FAIL, it cannot be rebuilt if 3601 * bio is in deferred list. Therefore need to return 0 3602 * to allow pool_resume() to flush IO. 3603 */ 3604 if (r && get_pool_mode(pool) == PM_FAIL) 3605 r = 0; 3606 3607 return r; 3608 } 3609 3610 static void pool_suspend_active_thins(struct pool *pool) 3611 { 3612 struct thin_c *tc; 3613 3614 /* Suspend all active thin devices */ 3615 tc = get_first_thin(pool); 3616 while (tc) { 3617 dm_internal_suspend_noflush(tc->thin_md); 3618 tc = get_next_thin(pool, tc); 3619 } 3620 } 3621 3622 static void pool_resume_active_thins(struct pool *pool) 3623 { 3624 struct thin_c *tc; 3625 3626 /* Resume all active thin devices */ 3627 tc = get_first_thin(pool); 3628 while (tc) { 3629 dm_internal_resume(tc->thin_md); 3630 tc = get_next_thin(pool, tc); 3631 } 3632 } 3633 3634 static void pool_resume(struct dm_target *ti) 3635 { 3636 struct pool_c *pt = ti->private; 3637 struct pool *pool = pt->pool; 3638 3639 /* 3640 * Must requeue active_thins' bios and then resume 3641 * active_thins _before_ clearing 'suspend' flag. 3642 */ 3643 requeue_bios(pool); 3644 pool_resume_active_thins(pool); 3645 3646 spin_lock_irq(&pool->lock); 3647 pool->low_water_triggered = false; 3648 pool->suspended = false; 3649 spin_unlock_irq(&pool->lock); 3650 3651 do_waker(&pool->waker.work); 3652 } 3653 3654 static void pool_presuspend(struct dm_target *ti) 3655 { 3656 struct pool_c *pt = ti->private; 3657 struct pool *pool = pt->pool; 3658 3659 spin_lock_irq(&pool->lock); 3660 pool->suspended = true; 3661 spin_unlock_irq(&pool->lock); 3662 3663 pool_suspend_active_thins(pool); 3664 } 3665 3666 static void pool_presuspend_undo(struct dm_target *ti) 3667 { 3668 struct pool_c *pt = ti->private; 3669 struct pool *pool = pt->pool; 3670 3671 pool_resume_active_thins(pool); 3672 3673 spin_lock_irq(&pool->lock); 3674 pool->suspended = false; 3675 spin_unlock_irq(&pool->lock); 3676 } 3677 3678 static void pool_postsuspend(struct dm_target *ti) 3679 { 3680 struct pool_c *pt = ti->private; 3681 struct pool *pool = pt->pool; 3682 3683 cancel_delayed_work_sync(&pool->waker); 3684 cancel_delayed_work_sync(&pool->no_space_timeout); 3685 flush_workqueue(pool->wq); 3686 (void) commit(pool); 3687 } 3688 3689 static int check_arg_count(unsigned int argc, unsigned int args_required) 3690 { 3691 if (argc != args_required) { 3692 DMWARN("Message received with %u arguments instead of %u.", 3693 argc, args_required); 3694 return -EINVAL; 3695 } 3696 3697 return 0; 3698 } 3699 3700 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3701 { 3702 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3703 *dev_id <= MAX_DEV_ID) 3704 return 0; 3705 3706 if (warning) 3707 DMWARN("Message received with invalid device id: %s", arg); 3708 3709 return -EINVAL; 3710 } 3711 3712 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool) 3713 { 3714 dm_thin_id dev_id; 3715 int r; 3716 3717 r = check_arg_count(argc, 2); 3718 if (r) 3719 return r; 3720 3721 r = read_dev_id(argv[1], &dev_id, 1); 3722 if (r) 3723 return r; 3724 3725 r = dm_pool_create_thin(pool->pmd, dev_id); 3726 if (r) { 3727 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3728 argv[1]); 3729 return r; 3730 } 3731 3732 return 0; 3733 } 3734 3735 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3736 { 3737 dm_thin_id dev_id; 3738 dm_thin_id origin_dev_id; 3739 int r; 3740 3741 r = check_arg_count(argc, 3); 3742 if (r) 3743 return r; 3744 3745 r = read_dev_id(argv[1], &dev_id, 1); 3746 if (r) 3747 return r; 3748 3749 r = read_dev_id(argv[2], &origin_dev_id, 1); 3750 if (r) 3751 return r; 3752 3753 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3754 if (r) { 3755 DMWARN("Creation of new snapshot %s of device %s failed.", 3756 argv[1], argv[2]); 3757 return r; 3758 } 3759 3760 return 0; 3761 } 3762 3763 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool) 3764 { 3765 dm_thin_id dev_id; 3766 int r; 3767 3768 r = check_arg_count(argc, 2); 3769 if (r) 3770 return r; 3771 3772 r = read_dev_id(argv[1], &dev_id, 1); 3773 if (r) 3774 return r; 3775 3776 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3777 if (r) 3778 DMWARN("Deletion of thin device %s failed.", argv[1]); 3779 3780 return r; 3781 } 3782 3783 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool) 3784 { 3785 dm_thin_id old_id, new_id; 3786 int r; 3787 3788 r = check_arg_count(argc, 3); 3789 if (r) 3790 return r; 3791 3792 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3793 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3794 return -EINVAL; 3795 } 3796 3797 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3798 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3799 return -EINVAL; 3800 } 3801 3802 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3803 if (r) { 3804 DMWARN("Failed to change transaction id from %s to %s.", 3805 argv[1], argv[2]); 3806 return r; 3807 } 3808 3809 return 0; 3810 } 3811 3812 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3813 { 3814 int r; 3815 3816 r = check_arg_count(argc, 1); 3817 if (r) 3818 return r; 3819 3820 (void) commit(pool); 3821 3822 r = dm_pool_reserve_metadata_snap(pool->pmd); 3823 if (r) 3824 DMWARN("reserve_metadata_snap message failed."); 3825 3826 return r; 3827 } 3828 3829 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3830 { 3831 int r; 3832 3833 r = check_arg_count(argc, 1); 3834 if (r) 3835 return r; 3836 3837 r = dm_pool_release_metadata_snap(pool->pmd); 3838 if (r) 3839 DMWARN("release_metadata_snap message failed."); 3840 3841 return r; 3842 } 3843 3844 /* 3845 * Messages supported: 3846 * create_thin <dev_id> 3847 * create_snap <dev_id> <origin_id> 3848 * delete <dev_id> 3849 * set_transaction_id <current_trans_id> <new_trans_id> 3850 * reserve_metadata_snap 3851 * release_metadata_snap 3852 */ 3853 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv, 3854 char *result, unsigned int maxlen) 3855 { 3856 int r = -EINVAL; 3857 struct pool_c *pt = ti->private; 3858 struct pool *pool = pt->pool; 3859 3860 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3861 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3862 dm_device_name(pool->pool_md)); 3863 return -EOPNOTSUPP; 3864 } 3865 3866 if (!strcasecmp(argv[0], "create_thin")) 3867 r = process_create_thin_mesg(argc, argv, pool); 3868 3869 else if (!strcasecmp(argv[0], "create_snap")) 3870 r = process_create_snap_mesg(argc, argv, pool); 3871 3872 else if (!strcasecmp(argv[0], "delete")) 3873 r = process_delete_mesg(argc, argv, pool); 3874 3875 else if (!strcasecmp(argv[0], "set_transaction_id")) 3876 r = process_set_transaction_id_mesg(argc, argv, pool); 3877 3878 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3879 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3880 3881 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3882 r = process_release_metadata_snap_mesg(argc, argv, pool); 3883 3884 else 3885 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3886 3887 if (!r) 3888 (void) commit(pool); 3889 3890 return r; 3891 } 3892 3893 static void emit_flags(struct pool_features *pf, char *result, 3894 unsigned int sz, unsigned int maxlen) 3895 { 3896 unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled + 3897 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3898 pf->error_if_no_space; 3899 DMEMIT("%u ", count); 3900 3901 if (!pf->zero_new_blocks) 3902 DMEMIT("skip_block_zeroing "); 3903 3904 if (!pf->discard_enabled) 3905 DMEMIT("ignore_discard "); 3906 3907 if (!pf->discard_passdown) 3908 DMEMIT("no_discard_passdown "); 3909 3910 if (pf->mode == PM_READ_ONLY) 3911 DMEMIT("read_only "); 3912 3913 if (pf->error_if_no_space) 3914 DMEMIT("error_if_no_space "); 3915 } 3916 3917 /* 3918 * Status line is: 3919 * <transaction id> <used metadata sectors>/<total metadata sectors> 3920 * <used data sectors>/<total data sectors> <held metadata root> 3921 * <pool mode> <discard config> <no space config> <needs_check> 3922 */ 3923 static void pool_status(struct dm_target *ti, status_type_t type, 3924 unsigned int status_flags, char *result, unsigned int maxlen) 3925 { 3926 int r; 3927 unsigned int sz = 0; 3928 uint64_t transaction_id; 3929 dm_block_t nr_free_blocks_data; 3930 dm_block_t nr_free_blocks_metadata; 3931 dm_block_t nr_blocks_data; 3932 dm_block_t nr_blocks_metadata; 3933 dm_block_t held_root; 3934 enum pool_mode mode; 3935 char buf[BDEVNAME_SIZE]; 3936 char buf2[BDEVNAME_SIZE]; 3937 struct pool_c *pt = ti->private; 3938 struct pool *pool = pt->pool; 3939 3940 switch (type) { 3941 case STATUSTYPE_INFO: 3942 if (get_pool_mode(pool) == PM_FAIL) { 3943 DMEMIT("Fail"); 3944 break; 3945 } 3946 3947 /* Commit to ensure statistics aren't out-of-date */ 3948 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3949 (void) commit(pool); 3950 3951 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3952 if (r) { 3953 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3954 dm_device_name(pool->pool_md), r); 3955 goto err; 3956 } 3957 3958 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3959 if (r) { 3960 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3961 dm_device_name(pool->pool_md), r); 3962 goto err; 3963 } 3964 3965 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3966 if (r) { 3967 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3968 dm_device_name(pool->pool_md), r); 3969 goto err; 3970 } 3971 3972 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3973 if (r) { 3974 DMERR("%s: dm_pool_get_free_block_count returned %d", 3975 dm_device_name(pool->pool_md), r); 3976 goto err; 3977 } 3978 3979 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3980 if (r) { 3981 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3982 dm_device_name(pool->pool_md), r); 3983 goto err; 3984 } 3985 3986 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3987 if (r) { 3988 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3989 dm_device_name(pool->pool_md), r); 3990 goto err; 3991 } 3992 3993 DMEMIT("%llu %llu/%llu %llu/%llu ", 3994 (unsigned long long)transaction_id, 3995 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3996 (unsigned long long)nr_blocks_metadata, 3997 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3998 (unsigned long long)nr_blocks_data); 3999 4000 if (held_root) 4001 DMEMIT("%llu ", held_root); 4002 else 4003 DMEMIT("- "); 4004 4005 mode = get_pool_mode(pool); 4006 if (mode == PM_OUT_OF_DATA_SPACE) 4007 DMEMIT("out_of_data_space "); 4008 else if (is_read_only_pool_mode(mode)) 4009 DMEMIT("ro "); 4010 else 4011 DMEMIT("rw "); 4012 4013 if (!pool->pf.discard_enabled) 4014 DMEMIT("ignore_discard "); 4015 else if (pool->pf.discard_passdown) 4016 DMEMIT("discard_passdown "); 4017 else 4018 DMEMIT("no_discard_passdown "); 4019 4020 if (pool->pf.error_if_no_space) 4021 DMEMIT("error_if_no_space "); 4022 else 4023 DMEMIT("queue_if_no_space "); 4024 4025 if (dm_pool_metadata_needs_check(pool->pmd)) 4026 DMEMIT("needs_check "); 4027 else 4028 DMEMIT("- "); 4029 4030 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 4031 4032 break; 4033 4034 case STATUSTYPE_TABLE: 4035 DMEMIT("%s %s %lu %llu ", 4036 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 4037 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 4038 (unsigned long)pool->sectors_per_block, 4039 (unsigned long long)pt->low_water_blocks); 4040 emit_flags(&pt->requested_pf, result, sz, maxlen); 4041 break; 4042 4043 case STATUSTYPE_IMA: 4044 *result = '\0'; 4045 break; 4046 } 4047 return; 4048 4049 err: 4050 DMEMIT("Error"); 4051 } 4052 4053 static int pool_iterate_devices(struct dm_target *ti, 4054 iterate_devices_callout_fn fn, void *data) 4055 { 4056 struct pool_c *pt = ti->private; 4057 4058 return fn(ti, pt->data_dev, 0, ti->len, data); 4059 } 4060 4061 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4062 { 4063 struct pool_c *pt = ti->private; 4064 struct pool *pool = pt->pool; 4065 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4066 4067 /* 4068 * If max_sectors is smaller than pool->sectors_per_block adjust it 4069 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4070 * This is especially beneficial when the pool's data device is a RAID 4071 * device that has a full stripe width that matches pool->sectors_per_block 4072 * -- because even though partial RAID stripe-sized IOs will be issued to a 4073 * single RAID stripe; when aggregated they will end on a full RAID stripe 4074 * boundary.. which avoids additional partial RAID stripe writes cascading 4075 */ 4076 if (limits->max_sectors < pool->sectors_per_block) { 4077 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4078 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4079 limits->max_sectors--; 4080 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4081 } 4082 } 4083 4084 /* 4085 * If the system-determined stacked limits are compatible with the 4086 * pool's blocksize (io_opt is a factor) do not override them. 4087 */ 4088 if (io_opt_sectors < pool->sectors_per_block || 4089 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4090 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4091 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4092 else 4093 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4094 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4095 } 4096 4097 /* 4098 * pt->adjusted_pf is a staging area for the actual features to use. 4099 * They get transferred to the live pool in bind_control_target() 4100 * called from pool_preresume(). 4101 */ 4102 if (!pt->adjusted_pf.discard_enabled) { 4103 /* 4104 * Must explicitly disallow stacking discard limits otherwise the 4105 * block layer will stack them if pool's data device has support. 4106 */ 4107 limits->discard_granularity = 0; 4108 return; 4109 } 4110 4111 disable_passdown_if_not_supported(pt); 4112 4113 /* 4114 * The pool uses the same discard limits as the underlying data 4115 * device. DM core has already set this up. 4116 */ 4117 } 4118 4119 static struct target_type pool_target = { 4120 .name = "thin-pool", 4121 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4122 DM_TARGET_IMMUTABLE, 4123 .version = {1, 23, 0}, 4124 .module = THIS_MODULE, 4125 .ctr = pool_ctr, 4126 .dtr = pool_dtr, 4127 .map = pool_map, 4128 .presuspend = pool_presuspend, 4129 .presuspend_undo = pool_presuspend_undo, 4130 .postsuspend = pool_postsuspend, 4131 .preresume = pool_preresume, 4132 .resume = pool_resume, 4133 .message = pool_message, 4134 .status = pool_status, 4135 .iterate_devices = pool_iterate_devices, 4136 .io_hints = pool_io_hints, 4137 }; 4138 4139 /* 4140 *-------------------------------------------------------------- 4141 * Thin target methods 4142 *-------------------------------------------------------------- 4143 */ 4144 static void thin_get(struct thin_c *tc) 4145 { 4146 refcount_inc(&tc->refcount); 4147 } 4148 4149 static void thin_put(struct thin_c *tc) 4150 { 4151 if (refcount_dec_and_test(&tc->refcount)) 4152 complete(&tc->can_destroy); 4153 } 4154 4155 static void thin_dtr(struct dm_target *ti) 4156 { 4157 struct thin_c *tc = ti->private; 4158 4159 spin_lock_irq(&tc->pool->lock); 4160 list_del_rcu(&tc->list); 4161 spin_unlock_irq(&tc->pool->lock); 4162 synchronize_rcu(); 4163 4164 thin_put(tc); 4165 wait_for_completion(&tc->can_destroy); 4166 4167 mutex_lock(&dm_thin_pool_table.mutex); 4168 4169 __pool_dec(tc->pool); 4170 dm_pool_close_thin_device(tc->td); 4171 dm_put_device(ti, tc->pool_dev); 4172 if (tc->origin_dev) 4173 dm_put_device(ti, tc->origin_dev); 4174 kfree(tc); 4175 4176 mutex_unlock(&dm_thin_pool_table.mutex); 4177 } 4178 4179 /* 4180 * Thin target parameters: 4181 * 4182 * <pool_dev> <dev_id> [origin_dev] 4183 * 4184 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4185 * dev_id: the internal device identifier 4186 * origin_dev: a device external to the pool that should act as the origin 4187 * 4188 * If the pool device has discards disabled, they get disabled for the thin 4189 * device as well. 4190 */ 4191 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4192 { 4193 int r; 4194 struct thin_c *tc; 4195 struct dm_dev *pool_dev, *origin_dev; 4196 struct mapped_device *pool_md; 4197 4198 mutex_lock(&dm_thin_pool_table.mutex); 4199 4200 if (argc != 2 && argc != 3) { 4201 ti->error = "Invalid argument count"; 4202 r = -EINVAL; 4203 goto out_unlock; 4204 } 4205 4206 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4207 if (!tc) { 4208 ti->error = "Out of memory"; 4209 r = -ENOMEM; 4210 goto out_unlock; 4211 } 4212 tc->thin_md = dm_table_get_md(ti->table); 4213 spin_lock_init(&tc->lock); 4214 INIT_LIST_HEAD(&tc->deferred_cells); 4215 bio_list_init(&tc->deferred_bio_list); 4216 bio_list_init(&tc->retry_on_resume_list); 4217 tc->sort_bio_list = RB_ROOT; 4218 4219 if (argc == 3) { 4220 if (!strcmp(argv[0], argv[2])) { 4221 ti->error = "Error setting origin device"; 4222 r = -EINVAL; 4223 goto bad_origin_dev; 4224 } 4225 4226 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4227 if (r) { 4228 ti->error = "Error opening origin device"; 4229 goto bad_origin_dev; 4230 } 4231 tc->origin_dev = origin_dev; 4232 } 4233 4234 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4235 if (r) { 4236 ti->error = "Error opening pool device"; 4237 goto bad_pool_dev; 4238 } 4239 tc->pool_dev = pool_dev; 4240 4241 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4242 ti->error = "Invalid device id"; 4243 r = -EINVAL; 4244 goto bad_common; 4245 } 4246 4247 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4248 if (!pool_md) { 4249 ti->error = "Couldn't get pool mapped device"; 4250 r = -EINVAL; 4251 goto bad_common; 4252 } 4253 4254 tc->pool = __pool_table_lookup(pool_md); 4255 if (!tc->pool) { 4256 ti->error = "Couldn't find pool object"; 4257 r = -EINVAL; 4258 goto bad_pool_lookup; 4259 } 4260 __pool_inc(tc->pool); 4261 4262 if (get_pool_mode(tc->pool) == PM_FAIL) { 4263 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4264 r = -EINVAL; 4265 goto bad_pool; 4266 } 4267 4268 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4269 if (r) { 4270 ti->error = "Couldn't open thin internal device"; 4271 goto bad_pool; 4272 } 4273 4274 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4275 if (r) 4276 goto bad; 4277 4278 ti->num_flush_bios = 1; 4279 ti->limit_swap_bios = true; 4280 ti->flush_supported = true; 4281 ti->accounts_remapped_io = true; 4282 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4283 4284 /* In case the pool supports discards, pass them on. */ 4285 if (tc->pool->pf.discard_enabled) { 4286 ti->discards_supported = true; 4287 ti->num_discard_bios = 1; 4288 ti->max_discard_granularity = true; 4289 } 4290 4291 mutex_unlock(&dm_thin_pool_table.mutex); 4292 4293 spin_lock_irq(&tc->pool->lock); 4294 if (tc->pool->suspended) { 4295 spin_unlock_irq(&tc->pool->lock); 4296 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4297 ti->error = "Unable to activate thin device while pool is suspended"; 4298 r = -EINVAL; 4299 goto bad; 4300 } 4301 refcount_set(&tc->refcount, 1); 4302 init_completion(&tc->can_destroy); 4303 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4304 spin_unlock_irq(&tc->pool->lock); 4305 /* 4306 * This synchronize_rcu() call is needed here otherwise we risk a 4307 * wake_worker() call finding no bios to process (because the newly 4308 * added tc isn't yet visible). So this reduces latency since we 4309 * aren't then dependent on the periodic commit to wake_worker(). 4310 */ 4311 synchronize_rcu(); 4312 4313 dm_put(pool_md); 4314 4315 return 0; 4316 4317 bad: 4318 dm_pool_close_thin_device(tc->td); 4319 bad_pool: 4320 __pool_dec(tc->pool); 4321 bad_pool_lookup: 4322 dm_put(pool_md); 4323 bad_common: 4324 dm_put_device(ti, tc->pool_dev); 4325 bad_pool_dev: 4326 if (tc->origin_dev) 4327 dm_put_device(ti, tc->origin_dev); 4328 bad_origin_dev: 4329 kfree(tc); 4330 out_unlock: 4331 mutex_unlock(&dm_thin_pool_table.mutex); 4332 4333 return r; 4334 } 4335 4336 static int thin_map(struct dm_target *ti, struct bio *bio) 4337 { 4338 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4339 4340 return thin_bio_map(ti, bio); 4341 } 4342 4343 static int thin_endio(struct dm_target *ti, struct bio *bio, 4344 blk_status_t *err) 4345 { 4346 unsigned long flags; 4347 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4348 struct list_head work; 4349 struct dm_thin_new_mapping *m, *tmp; 4350 struct pool *pool = h->tc->pool; 4351 4352 if (h->shared_read_entry) { 4353 INIT_LIST_HEAD(&work); 4354 dm_deferred_entry_dec(h->shared_read_entry, &work); 4355 4356 spin_lock_irqsave(&pool->lock, flags); 4357 list_for_each_entry_safe(m, tmp, &work, list) { 4358 list_del(&m->list); 4359 __complete_mapping_preparation(m); 4360 } 4361 spin_unlock_irqrestore(&pool->lock, flags); 4362 } 4363 4364 if (h->all_io_entry) { 4365 INIT_LIST_HEAD(&work); 4366 dm_deferred_entry_dec(h->all_io_entry, &work); 4367 if (!list_empty(&work)) { 4368 spin_lock_irqsave(&pool->lock, flags); 4369 list_for_each_entry_safe(m, tmp, &work, list) 4370 list_add_tail(&m->list, &pool->prepared_discards); 4371 spin_unlock_irqrestore(&pool->lock, flags); 4372 wake_worker(pool); 4373 } 4374 } 4375 4376 if (h->cell) 4377 cell_defer_no_holder(h->tc, h->cell); 4378 4379 return DM_ENDIO_DONE; 4380 } 4381 4382 static void thin_presuspend(struct dm_target *ti) 4383 { 4384 struct thin_c *tc = ti->private; 4385 4386 if (dm_noflush_suspending(ti)) 4387 noflush_work(tc, do_noflush_start); 4388 } 4389 4390 static void thin_postsuspend(struct dm_target *ti) 4391 { 4392 struct thin_c *tc = ti->private; 4393 4394 /* 4395 * The dm_noflush_suspending flag has been cleared by now, so 4396 * unfortunately we must always run this. 4397 */ 4398 noflush_work(tc, do_noflush_stop); 4399 } 4400 4401 static int thin_preresume(struct dm_target *ti) 4402 { 4403 struct thin_c *tc = ti->private; 4404 4405 if (tc->origin_dev) 4406 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4407 4408 return 0; 4409 } 4410 4411 /* 4412 * <nr mapped sectors> <highest mapped sector> 4413 */ 4414 static void thin_status(struct dm_target *ti, status_type_t type, 4415 unsigned int status_flags, char *result, unsigned int maxlen) 4416 { 4417 int r; 4418 ssize_t sz = 0; 4419 dm_block_t mapped, highest; 4420 char buf[BDEVNAME_SIZE]; 4421 struct thin_c *tc = ti->private; 4422 4423 if (get_pool_mode(tc->pool) == PM_FAIL) { 4424 DMEMIT("Fail"); 4425 return; 4426 } 4427 4428 if (!tc->td) 4429 DMEMIT("-"); 4430 else { 4431 switch (type) { 4432 case STATUSTYPE_INFO: 4433 r = dm_thin_get_mapped_count(tc->td, &mapped); 4434 if (r) { 4435 DMERR("dm_thin_get_mapped_count returned %d", r); 4436 goto err; 4437 } 4438 4439 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4440 if (r < 0) { 4441 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4442 goto err; 4443 } 4444 4445 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4446 if (r) 4447 DMEMIT("%llu", ((highest + 1) * 4448 tc->pool->sectors_per_block) - 1); 4449 else 4450 DMEMIT("-"); 4451 break; 4452 4453 case STATUSTYPE_TABLE: 4454 DMEMIT("%s %lu", 4455 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4456 (unsigned long) tc->dev_id); 4457 if (tc->origin_dev) 4458 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4459 break; 4460 4461 case STATUSTYPE_IMA: 4462 *result = '\0'; 4463 break; 4464 } 4465 } 4466 4467 return; 4468 4469 err: 4470 DMEMIT("Error"); 4471 } 4472 4473 static int thin_iterate_devices(struct dm_target *ti, 4474 iterate_devices_callout_fn fn, void *data) 4475 { 4476 sector_t blocks; 4477 struct thin_c *tc = ti->private; 4478 struct pool *pool = tc->pool; 4479 4480 /* 4481 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4482 * we follow a more convoluted path through to the pool's target. 4483 */ 4484 if (!pool->ti) 4485 return 0; /* nothing is bound */ 4486 4487 blocks = pool->ti->len; 4488 (void) sector_div(blocks, pool->sectors_per_block); 4489 if (blocks) 4490 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4491 4492 return 0; 4493 } 4494 4495 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4496 { 4497 struct thin_c *tc = ti->private; 4498 struct pool *pool = tc->pool; 4499 4500 if (!pool->pf.discard_enabled) 4501 return; 4502 4503 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4504 limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE; 4505 } 4506 4507 static struct target_type thin_target = { 4508 .name = "thin", 4509 .version = {1, 23, 0}, 4510 .module = THIS_MODULE, 4511 .ctr = thin_ctr, 4512 .dtr = thin_dtr, 4513 .map = thin_map, 4514 .end_io = thin_endio, 4515 .preresume = thin_preresume, 4516 .presuspend = thin_presuspend, 4517 .postsuspend = thin_postsuspend, 4518 .status = thin_status, 4519 .iterate_devices = thin_iterate_devices, 4520 .io_hints = thin_io_hints, 4521 }; 4522 4523 /*----------------------------------------------------------------*/ 4524 4525 static int __init dm_thin_init(void) 4526 { 4527 int r = -ENOMEM; 4528 4529 pool_table_init(); 4530 4531 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4532 if (!_new_mapping_cache) 4533 return r; 4534 4535 r = dm_register_target(&thin_target); 4536 if (r) 4537 goto bad_new_mapping_cache; 4538 4539 r = dm_register_target(&pool_target); 4540 if (r) 4541 goto bad_thin_target; 4542 4543 return 0; 4544 4545 bad_thin_target: 4546 dm_unregister_target(&thin_target); 4547 bad_new_mapping_cache: 4548 kmem_cache_destroy(_new_mapping_cache); 4549 4550 return r; 4551 } 4552 4553 static void dm_thin_exit(void) 4554 { 4555 dm_unregister_target(&thin_target); 4556 dm_unregister_target(&pool_target); 4557 4558 kmem_cache_destroy(_new_mapping_cache); 4559 4560 pool_table_exit(); 4561 } 4562 4563 module_init(dm_thin_init); 4564 module_exit(dm_thin_exit); 4565 4566 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644); 4567 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4568 4569 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4570 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4571 MODULE_LICENSE("GPL"); 4572