1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011-2012 Red Hat UK. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-thin-metadata.h" 9 #include "dm-bio-prison-v1.h" 10 #include "dm.h" 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/jiffies.h> 16 #include <linux/log2.h> 17 #include <linux/list.h> 18 #include <linux/rculist.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 #include <linux/sort.h> 24 #include <linux/rbtree.h> 25 26 #define DM_MSG_PREFIX "thin" 27 28 /* 29 * Tunable constants 30 */ 31 #define ENDIO_HOOK_POOL_SIZE 1024 32 #define MAPPING_POOL_SIZE 1024 33 #define COMMIT_PERIOD HZ 34 #define NO_SPACE_TIMEOUT_SECS 60 35 36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 37 38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 39 "A percentage of time allocated for copy on write"); 40 41 /* 42 * The block size of the device holding pool data must be 43 * between 64KB and 1GB. 44 */ 45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 47 48 /* 49 * Device id is restricted to 24 bits. 50 */ 51 #define MAX_DEV_ID ((1 << 24) - 1) 52 53 /* 54 * How do we handle breaking sharing of data blocks? 55 * ================================================= 56 * 57 * We use a standard copy-on-write btree to store the mappings for the 58 * devices (note I'm talking about copy-on-write of the metadata here, not 59 * the data). When you take an internal snapshot you clone the root node 60 * of the origin btree. After this there is no concept of an origin or a 61 * snapshot. They are just two device trees that happen to point to the 62 * same data blocks. 63 * 64 * When we get a write in we decide if it's to a shared data block using 65 * some timestamp magic. If it is, we have to break sharing. 66 * 67 * Let's say we write to a shared block in what was the origin. The 68 * steps are: 69 * 70 * i) plug io further to this physical block. (see bio_prison code). 71 * 72 * ii) quiesce any read io to that shared data block. Obviously 73 * including all devices that share this block. (see dm_deferred_set code) 74 * 75 * iii) copy the data block to a newly allocate block. This step can be 76 * missed out if the io covers the block. (schedule_copy). 77 * 78 * iv) insert the new mapping into the origin's btree 79 * (process_prepared_mapping). This act of inserting breaks some 80 * sharing of btree nodes between the two devices. Breaking sharing only 81 * effects the btree of that specific device. Btrees for the other 82 * devices that share the block never change. The btree for the origin 83 * device as it was after the last commit is untouched, ie. we're using 84 * persistent data structures in the functional programming sense. 85 * 86 * v) unplug io to this physical block, including the io that triggered 87 * the breaking of sharing. 88 * 89 * Steps (ii) and (iii) occur in parallel. 90 * 91 * The metadata _doesn't_ need to be committed before the io continues. We 92 * get away with this because the io is always written to a _new_ block. 93 * If there's a crash, then: 94 * 95 * - The origin mapping will point to the old origin block (the shared 96 * one). This will contain the data as it was before the io that triggered 97 * the breaking of sharing came in. 98 * 99 * - The snap mapping still points to the old block. As it would after 100 * the commit. 101 * 102 * The downside of this scheme is the timestamp magic isn't perfect, and 103 * will continue to think that data block in the snapshot device is shared 104 * even after the write to the origin has broken sharing. I suspect data 105 * blocks will typically be shared by many different devices, so we're 106 * breaking sharing n + 1 times, rather than n, where n is the number of 107 * devices that reference this data block. At the moment I think the 108 * benefits far, far outweigh the disadvantages. 109 */ 110 111 /*----------------------------------------------------------------*/ 112 113 /* 114 * Key building. 115 */ 116 enum lock_space { 117 VIRTUAL, 118 PHYSICAL 119 }; 120 121 static bool build_key(struct dm_thin_device *td, enum lock_space ls, 122 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 123 { 124 key->virtual = (ls == VIRTUAL); 125 key->dev = dm_thin_dev_id(td); 126 key->block_begin = b; 127 key->block_end = e; 128 129 return dm_cell_key_has_valid_range(key); 130 } 131 132 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 133 struct dm_cell_key *key) 134 { 135 (void) build_key(td, PHYSICAL, b, b + 1llu, key); 136 } 137 138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 139 struct dm_cell_key *key) 140 { 141 (void) build_key(td, VIRTUAL, b, b + 1llu, key); 142 } 143 144 /*----------------------------------------------------------------*/ 145 146 #define THROTTLE_THRESHOLD (1 * HZ) 147 148 struct throttle { 149 struct rw_semaphore lock; 150 unsigned long threshold; 151 bool throttle_applied; 152 }; 153 154 static void throttle_init(struct throttle *t) 155 { 156 init_rwsem(&t->lock); 157 t->throttle_applied = false; 158 } 159 160 static void throttle_work_start(struct throttle *t) 161 { 162 t->threshold = jiffies + THROTTLE_THRESHOLD; 163 } 164 165 static void throttle_work_update(struct throttle *t) 166 { 167 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) { 168 down_write(&t->lock); 169 t->throttle_applied = true; 170 } 171 } 172 173 static void throttle_work_complete(struct throttle *t) 174 { 175 if (t->throttle_applied) { 176 t->throttle_applied = false; 177 up_write(&t->lock); 178 } 179 } 180 181 static void throttle_lock(struct throttle *t) 182 { 183 down_read(&t->lock); 184 } 185 186 static void throttle_unlock(struct throttle *t) 187 { 188 up_read(&t->lock); 189 } 190 191 /*----------------------------------------------------------------*/ 192 193 /* 194 * A pool device ties together a metadata device and a data device. It 195 * also provides the interface for creating and destroying internal 196 * devices. 197 */ 198 struct dm_thin_new_mapping; 199 200 /* 201 * The pool runs in various modes. Ordered in degraded order for comparisons. 202 */ 203 enum pool_mode { 204 PM_WRITE, /* metadata may be changed */ 205 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 206 207 /* 208 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 209 */ 210 PM_OUT_OF_METADATA_SPACE, 211 PM_READ_ONLY, /* metadata may not be changed */ 212 213 PM_FAIL, /* all I/O fails */ 214 }; 215 216 struct pool_features { 217 enum pool_mode mode; 218 219 bool zero_new_blocks:1; 220 bool discard_enabled:1; 221 bool discard_passdown:1; 222 bool error_if_no_space:1; 223 }; 224 225 struct thin_c; 226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 229 230 #define CELL_SORT_ARRAY_SIZE 8192 231 232 struct pool { 233 struct list_head list; 234 struct dm_target *ti; /* Only set if a pool target is bound */ 235 236 struct mapped_device *pool_md; 237 struct block_device *data_dev; 238 struct block_device *md_dev; 239 struct dm_pool_metadata *pmd; 240 241 dm_block_t low_water_blocks; 242 uint32_t sectors_per_block; 243 int sectors_per_block_shift; 244 245 struct pool_features pf; 246 bool low_water_triggered:1; /* A dm event has been sent */ 247 bool suspended:1; 248 bool out_of_data_space:1; 249 250 struct dm_bio_prison *prison; 251 struct dm_kcopyd_client *copier; 252 253 struct work_struct worker; 254 struct workqueue_struct *wq; 255 struct throttle throttle; 256 struct delayed_work waker; 257 struct delayed_work no_space_timeout; 258 259 unsigned long last_commit_jiffies; 260 unsigned int ref_count; 261 262 spinlock_t lock; 263 struct bio_list deferred_flush_bios; 264 struct bio_list deferred_flush_completions; 265 struct list_head prepared_mappings; 266 struct list_head prepared_discards; 267 struct list_head prepared_discards_pt2; 268 struct list_head active_thins; 269 270 struct dm_deferred_set *shared_read_ds; 271 struct dm_deferred_set *all_io_ds; 272 273 struct dm_thin_new_mapping *next_mapping; 274 275 process_bio_fn process_bio; 276 process_bio_fn process_discard; 277 278 process_cell_fn process_cell; 279 process_cell_fn process_discard_cell; 280 281 process_mapping_fn process_prepared_mapping; 282 process_mapping_fn process_prepared_discard; 283 process_mapping_fn process_prepared_discard_pt2; 284 285 struct dm_bio_prison_cell **cell_sort_array; 286 287 mempool_t mapping_pool; 288 }; 289 290 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 291 292 static enum pool_mode get_pool_mode(struct pool *pool) 293 { 294 return pool->pf.mode; 295 } 296 297 static void notify_of_pool_mode_change(struct pool *pool) 298 { 299 static const char *descs[] = { 300 "write", 301 "out-of-data-space", 302 "read-only", 303 "read-only", 304 "fail" 305 }; 306 const char *extra_desc = NULL; 307 enum pool_mode mode = get_pool_mode(pool); 308 309 if (mode == PM_OUT_OF_DATA_SPACE) { 310 if (!pool->pf.error_if_no_space) 311 extra_desc = " (queue IO)"; 312 else 313 extra_desc = " (error IO)"; 314 } 315 316 dm_table_event(pool->ti->table); 317 DMINFO("%s: switching pool to %s%s mode", 318 dm_device_name(pool->pool_md), 319 descs[(int)mode], extra_desc ? : ""); 320 } 321 322 /* 323 * Target context for a pool. 324 */ 325 struct pool_c { 326 struct dm_target *ti; 327 struct pool *pool; 328 struct dm_dev *data_dev; 329 struct dm_dev *metadata_dev; 330 331 dm_block_t low_water_blocks; 332 struct pool_features requested_pf; /* Features requested during table load */ 333 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 334 }; 335 336 /* 337 * Target context for a thin. 338 */ 339 struct thin_c { 340 struct list_head list; 341 struct dm_dev *pool_dev; 342 struct dm_dev *origin_dev; 343 sector_t origin_size; 344 dm_thin_id dev_id; 345 346 struct pool *pool; 347 struct dm_thin_device *td; 348 struct mapped_device *thin_md; 349 350 bool requeue_mode:1; 351 spinlock_t lock; 352 struct list_head deferred_cells; 353 struct bio_list deferred_bio_list; 354 struct bio_list retry_on_resume_list; 355 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 356 357 /* 358 * Ensures the thin is not destroyed until the worker has finished 359 * iterating the active_thins list. 360 */ 361 refcount_t refcount; 362 struct completion can_destroy; 363 }; 364 365 /*----------------------------------------------------------------*/ 366 367 static bool block_size_is_power_of_two(struct pool *pool) 368 { 369 return pool->sectors_per_block_shift >= 0; 370 } 371 372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 373 { 374 return block_size_is_power_of_two(pool) ? 375 (b << pool->sectors_per_block_shift) : 376 (b * pool->sectors_per_block); 377 } 378 379 /*----------------------------------------------------------------*/ 380 381 struct discard_op { 382 struct thin_c *tc; 383 struct blk_plug plug; 384 struct bio *parent_bio; 385 struct bio *bio; 386 }; 387 388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 389 { 390 BUG_ON(!parent); 391 392 op->tc = tc; 393 blk_start_plug(&op->plug); 394 op->parent_bio = parent; 395 op->bio = NULL; 396 } 397 398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 399 { 400 struct thin_c *tc = op->tc; 401 sector_t s = block_to_sectors(tc->pool, data_b); 402 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 403 404 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOWAIT, 405 &op->bio); 406 } 407 408 static void end_discard(struct discard_op *op, int r) 409 { 410 if (op->bio) { 411 /* 412 * Even if one of the calls to issue_discard failed, we 413 * need to wait for the chain to complete. 414 */ 415 bio_chain(op->bio, op->parent_bio); 416 op->bio->bi_opf = REQ_OP_DISCARD; 417 submit_bio(op->bio); 418 } 419 420 blk_finish_plug(&op->plug); 421 422 /* 423 * Even if r is set, there could be sub discards in flight that we 424 * need to wait for. 425 */ 426 if (r && !op->parent_bio->bi_status) 427 op->parent_bio->bi_status = errno_to_blk_status(r); 428 bio_endio(op->parent_bio); 429 } 430 431 /*----------------------------------------------------------------*/ 432 433 /* 434 * wake_worker() is used when new work is queued and when pool_resume is 435 * ready to continue deferred IO processing. 436 */ 437 static void wake_worker(struct pool *pool) 438 { 439 queue_work(pool->wq, &pool->worker); 440 } 441 442 /*----------------------------------------------------------------*/ 443 444 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 445 struct dm_bio_prison_cell **cell_result) 446 { 447 int r; 448 struct dm_bio_prison_cell *cell_prealloc; 449 450 /* 451 * Allocate a cell from the prison's mempool. 452 * This might block but it can't fail. 453 */ 454 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 455 456 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 457 if (r) 458 /* 459 * We reused an old cell; we can get rid of 460 * the new one. 461 */ 462 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 463 464 return r; 465 } 466 467 static void cell_release(struct pool *pool, 468 struct dm_bio_prison_cell *cell, 469 struct bio_list *bios) 470 { 471 dm_cell_release(pool->prison, cell, bios); 472 dm_bio_prison_free_cell(pool->prison, cell); 473 } 474 475 static void cell_visit_release(struct pool *pool, 476 void (*fn)(void *, struct dm_bio_prison_cell *), 477 void *context, 478 struct dm_bio_prison_cell *cell) 479 { 480 dm_cell_visit_release(pool->prison, fn, context, cell); 481 dm_bio_prison_free_cell(pool->prison, cell); 482 } 483 484 static void cell_release_no_holder(struct pool *pool, 485 struct dm_bio_prison_cell *cell, 486 struct bio_list *bios) 487 { 488 dm_cell_release_no_holder(pool->prison, cell, bios); 489 dm_bio_prison_free_cell(pool->prison, cell); 490 } 491 492 static void cell_error_with_code(struct pool *pool, 493 struct dm_bio_prison_cell *cell, blk_status_t error_code) 494 { 495 dm_cell_error(pool->prison, cell, error_code); 496 dm_bio_prison_free_cell(pool->prison, cell); 497 } 498 499 static blk_status_t get_pool_io_error_code(struct pool *pool) 500 { 501 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 502 } 503 504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 505 { 506 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 507 } 508 509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 510 { 511 cell_error_with_code(pool, cell, 0); 512 } 513 514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 515 { 516 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 517 } 518 519 /*----------------------------------------------------------------*/ 520 521 /* 522 * A global list of pools that uses a struct mapped_device as a key. 523 */ 524 static struct dm_thin_pool_table { 525 struct mutex mutex; 526 struct list_head pools; 527 } dm_thin_pool_table; 528 529 static void pool_table_init(void) 530 { 531 mutex_init(&dm_thin_pool_table.mutex); 532 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 533 } 534 535 static void pool_table_exit(void) 536 { 537 mutex_destroy(&dm_thin_pool_table.mutex); 538 } 539 540 static void __pool_table_insert(struct pool *pool) 541 { 542 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 543 list_add(&pool->list, &dm_thin_pool_table.pools); 544 } 545 546 static void __pool_table_remove(struct pool *pool) 547 { 548 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 549 list_del(&pool->list); 550 } 551 552 static struct pool *__pool_table_lookup(struct mapped_device *md) 553 { 554 struct pool *pool = NULL, *tmp; 555 556 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 557 558 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 559 if (tmp->pool_md == md) { 560 pool = tmp; 561 break; 562 } 563 } 564 565 return pool; 566 } 567 568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 569 { 570 struct pool *pool = NULL, *tmp; 571 572 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 573 574 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 575 if (tmp->md_dev == md_dev) { 576 pool = tmp; 577 break; 578 } 579 } 580 581 return pool; 582 } 583 584 /*----------------------------------------------------------------*/ 585 586 struct dm_thin_endio_hook { 587 struct thin_c *tc; 588 struct dm_deferred_entry *shared_read_entry; 589 struct dm_deferred_entry *all_io_entry; 590 struct dm_thin_new_mapping *overwrite_mapping; 591 struct rb_node rb_node; 592 struct dm_bio_prison_cell *cell; 593 }; 594 595 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 596 { 597 bio_list_merge(bios, master); 598 bio_list_init(master); 599 } 600 601 static void error_bio_list(struct bio_list *bios, blk_status_t error) 602 { 603 struct bio *bio; 604 605 while ((bio = bio_list_pop(bios))) { 606 bio->bi_status = error; 607 bio_endio(bio); 608 } 609 } 610 611 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 612 blk_status_t error) 613 { 614 struct bio_list bios; 615 616 bio_list_init(&bios); 617 618 spin_lock_irq(&tc->lock); 619 __merge_bio_list(&bios, master); 620 spin_unlock_irq(&tc->lock); 621 622 error_bio_list(&bios, error); 623 } 624 625 static void requeue_deferred_cells(struct thin_c *tc) 626 { 627 struct pool *pool = tc->pool; 628 struct list_head cells; 629 struct dm_bio_prison_cell *cell, *tmp; 630 631 INIT_LIST_HEAD(&cells); 632 633 spin_lock_irq(&tc->lock); 634 list_splice_init(&tc->deferred_cells, &cells); 635 spin_unlock_irq(&tc->lock); 636 637 list_for_each_entry_safe(cell, tmp, &cells, user_list) 638 cell_requeue(pool, cell); 639 } 640 641 static void requeue_io(struct thin_c *tc) 642 { 643 struct bio_list bios; 644 645 bio_list_init(&bios); 646 647 spin_lock_irq(&tc->lock); 648 __merge_bio_list(&bios, &tc->deferred_bio_list); 649 __merge_bio_list(&bios, &tc->retry_on_resume_list); 650 spin_unlock_irq(&tc->lock); 651 652 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 653 requeue_deferred_cells(tc); 654 } 655 656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 657 { 658 struct thin_c *tc; 659 660 rcu_read_lock(); 661 list_for_each_entry_rcu(tc, &pool->active_thins, list) 662 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 663 rcu_read_unlock(); 664 } 665 666 static void error_retry_list(struct pool *pool) 667 { 668 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 669 } 670 671 /* 672 * This section of code contains the logic for processing a thin device's IO. 673 * Much of the code depends on pool object resources (lists, workqueues, etc) 674 * but most is exclusively called from the thin target rather than the thin-pool 675 * target. 676 */ 677 678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 679 { 680 struct pool *pool = tc->pool; 681 sector_t block_nr = bio->bi_iter.bi_sector; 682 683 if (block_size_is_power_of_two(pool)) 684 block_nr >>= pool->sectors_per_block_shift; 685 else 686 (void) sector_div(block_nr, pool->sectors_per_block); 687 688 return block_nr; 689 } 690 691 /* 692 * Returns the _complete_ blocks that this bio covers. 693 */ 694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 695 dm_block_t *begin, dm_block_t *end) 696 { 697 struct pool *pool = tc->pool; 698 sector_t b = bio->bi_iter.bi_sector; 699 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 700 701 b += pool->sectors_per_block - 1ull; /* so we round up */ 702 703 if (block_size_is_power_of_two(pool)) { 704 b >>= pool->sectors_per_block_shift; 705 e >>= pool->sectors_per_block_shift; 706 } else { 707 (void) sector_div(b, pool->sectors_per_block); 708 (void) sector_div(e, pool->sectors_per_block); 709 } 710 711 if (e < b) 712 /* Can happen if the bio is within a single block. */ 713 e = b; 714 715 *begin = b; 716 *end = e; 717 } 718 719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 720 { 721 struct pool *pool = tc->pool; 722 sector_t bi_sector = bio->bi_iter.bi_sector; 723 724 bio_set_dev(bio, tc->pool_dev->bdev); 725 if (block_size_is_power_of_two(pool)) 726 bio->bi_iter.bi_sector = 727 (block << pool->sectors_per_block_shift) | 728 (bi_sector & (pool->sectors_per_block - 1)); 729 else 730 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 731 sector_div(bi_sector, pool->sectors_per_block); 732 } 733 734 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 735 { 736 bio_set_dev(bio, tc->origin_dev->bdev); 737 } 738 739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 740 { 741 return op_is_flush(bio->bi_opf) && 742 dm_thin_changed_this_transaction(tc->td); 743 } 744 745 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 746 { 747 struct dm_thin_endio_hook *h; 748 749 if (bio_op(bio) == REQ_OP_DISCARD) 750 return; 751 752 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 753 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 754 } 755 756 static void issue(struct thin_c *tc, struct bio *bio) 757 { 758 struct pool *pool = tc->pool; 759 760 if (!bio_triggers_commit(tc, bio)) { 761 dm_submit_bio_remap(bio, NULL); 762 return; 763 } 764 765 /* 766 * Complete bio with an error if earlier I/O caused changes to 767 * the metadata that can't be committed e.g, due to I/O errors 768 * on the metadata device. 769 */ 770 if (dm_thin_aborted_changes(tc->td)) { 771 bio_io_error(bio); 772 return; 773 } 774 775 /* 776 * Batch together any bios that trigger commits and then issue a 777 * single commit for them in process_deferred_bios(). 778 */ 779 spin_lock_irq(&pool->lock); 780 bio_list_add(&pool->deferred_flush_bios, bio); 781 spin_unlock_irq(&pool->lock); 782 } 783 784 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 785 { 786 remap_to_origin(tc, bio); 787 issue(tc, bio); 788 } 789 790 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 791 dm_block_t block) 792 { 793 remap(tc, bio, block); 794 issue(tc, bio); 795 } 796 797 /*----------------------------------------------------------------*/ 798 799 /* 800 * Bio endio functions. 801 */ 802 struct dm_thin_new_mapping { 803 struct list_head list; 804 805 bool pass_discard:1; 806 bool maybe_shared:1; 807 808 /* 809 * Track quiescing, copying and zeroing preparation actions. When this 810 * counter hits zero the block is prepared and can be inserted into the 811 * btree. 812 */ 813 atomic_t prepare_actions; 814 815 blk_status_t status; 816 struct thin_c *tc; 817 dm_block_t virt_begin, virt_end; 818 dm_block_t data_block; 819 struct dm_bio_prison_cell *cell; 820 821 /* 822 * If the bio covers the whole area of a block then we can avoid 823 * zeroing or copying. Instead this bio is hooked. The bio will 824 * still be in the cell, so care has to be taken to avoid issuing 825 * the bio twice. 826 */ 827 struct bio *bio; 828 bio_end_io_t *saved_bi_end_io; 829 }; 830 831 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 832 { 833 struct pool *pool = m->tc->pool; 834 835 if (atomic_dec_and_test(&m->prepare_actions)) { 836 list_add_tail(&m->list, &pool->prepared_mappings); 837 wake_worker(pool); 838 } 839 } 840 841 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 842 { 843 unsigned long flags; 844 struct pool *pool = m->tc->pool; 845 846 spin_lock_irqsave(&pool->lock, flags); 847 __complete_mapping_preparation(m); 848 spin_unlock_irqrestore(&pool->lock, flags); 849 } 850 851 static void copy_complete(int read_err, unsigned long write_err, void *context) 852 { 853 struct dm_thin_new_mapping *m = context; 854 855 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 856 complete_mapping_preparation(m); 857 } 858 859 static void overwrite_endio(struct bio *bio) 860 { 861 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 862 struct dm_thin_new_mapping *m = h->overwrite_mapping; 863 864 bio->bi_end_io = m->saved_bi_end_io; 865 866 m->status = bio->bi_status; 867 complete_mapping_preparation(m); 868 } 869 870 /*----------------------------------------------------------------*/ 871 872 /* 873 * Workqueue. 874 */ 875 876 /* 877 * Prepared mapping jobs. 878 */ 879 880 /* 881 * This sends the bios in the cell, except the original holder, back 882 * to the deferred_bios list. 883 */ 884 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 885 { 886 struct pool *pool = tc->pool; 887 unsigned long flags; 888 struct bio_list bios; 889 890 bio_list_init(&bios); 891 cell_release_no_holder(pool, cell, &bios); 892 893 if (!bio_list_empty(&bios)) { 894 spin_lock_irqsave(&tc->lock, flags); 895 bio_list_merge(&tc->deferred_bio_list, &bios); 896 spin_unlock_irqrestore(&tc->lock, flags); 897 wake_worker(pool); 898 } 899 } 900 901 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 902 903 struct remap_info { 904 struct thin_c *tc; 905 struct bio_list defer_bios; 906 struct bio_list issue_bios; 907 }; 908 909 static void __inc_remap_and_issue_cell(void *context, 910 struct dm_bio_prison_cell *cell) 911 { 912 struct remap_info *info = context; 913 struct bio *bio; 914 915 while ((bio = bio_list_pop(&cell->bios))) { 916 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 917 bio_list_add(&info->defer_bios, bio); 918 else { 919 inc_all_io_entry(info->tc->pool, bio); 920 921 /* 922 * We can't issue the bios with the bio prison lock 923 * held, so we add them to a list to issue on 924 * return from this function. 925 */ 926 bio_list_add(&info->issue_bios, bio); 927 } 928 } 929 } 930 931 static void inc_remap_and_issue_cell(struct thin_c *tc, 932 struct dm_bio_prison_cell *cell, 933 dm_block_t block) 934 { 935 struct bio *bio; 936 struct remap_info info; 937 938 info.tc = tc; 939 bio_list_init(&info.defer_bios); 940 bio_list_init(&info.issue_bios); 941 942 /* 943 * We have to be careful to inc any bios we're about to issue 944 * before the cell is released, and avoid a race with new bios 945 * being added to the cell. 946 */ 947 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 948 &info, cell); 949 950 while ((bio = bio_list_pop(&info.defer_bios))) 951 thin_defer_bio(tc, bio); 952 953 while ((bio = bio_list_pop(&info.issue_bios))) 954 remap_and_issue(info.tc, bio, block); 955 } 956 957 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 958 { 959 cell_error(m->tc->pool, m->cell); 960 list_del(&m->list); 961 mempool_free(m, &m->tc->pool->mapping_pool); 962 } 963 964 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 965 { 966 struct pool *pool = tc->pool; 967 968 /* 969 * If the bio has the REQ_FUA flag set we must commit the metadata 970 * before signaling its completion. 971 */ 972 if (!bio_triggers_commit(tc, bio)) { 973 bio_endio(bio); 974 return; 975 } 976 977 /* 978 * Complete bio with an error if earlier I/O caused changes to the 979 * metadata that can't be committed, e.g, due to I/O errors on the 980 * metadata device. 981 */ 982 if (dm_thin_aborted_changes(tc->td)) { 983 bio_io_error(bio); 984 return; 985 } 986 987 /* 988 * Batch together any bios that trigger commits and then issue a 989 * single commit for them in process_deferred_bios(). 990 */ 991 spin_lock_irq(&pool->lock); 992 bio_list_add(&pool->deferred_flush_completions, bio); 993 spin_unlock_irq(&pool->lock); 994 } 995 996 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 997 { 998 struct thin_c *tc = m->tc; 999 struct pool *pool = tc->pool; 1000 struct bio *bio = m->bio; 1001 int r; 1002 1003 if (m->status) { 1004 cell_error(pool, m->cell); 1005 goto out; 1006 } 1007 1008 /* 1009 * Commit the prepared block into the mapping btree. 1010 * Any I/O for this block arriving after this point will get 1011 * remapped to it directly. 1012 */ 1013 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1014 if (r) { 1015 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1016 cell_error(pool, m->cell); 1017 goto out; 1018 } 1019 1020 /* 1021 * Release any bios held while the block was being provisioned. 1022 * If we are processing a write bio that completely covers the block, 1023 * we already processed it so can ignore it now when processing 1024 * the bios in the cell. 1025 */ 1026 if (bio) { 1027 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1028 complete_overwrite_bio(tc, bio); 1029 } else { 1030 inc_all_io_entry(tc->pool, m->cell->holder); 1031 remap_and_issue(tc, m->cell->holder, m->data_block); 1032 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1033 } 1034 1035 out: 1036 list_del(&m->list); 1037 mempool_free(m, &pool->mapping_pool); 1038 } 1039 1040 /*----------------------------------------------------------------*/ 1041 1042 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1043 { 1044 struct thin_c *tc = m->tc; 1045 1046 if (m->cell) 1047 cell_defer_no_holder(tc, m->cell); 1048 mempool_free(m, &tc->pool->mapping_pool); 1049 } 1050 1051 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1052 { 1053 bio_io_error(m->bio); 1054 free_discard_mapping(m); 1055 } 1056 1057 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1058 { 1059 bio_endio(m->bio); 1060 free_discard_mapping(m); 1061 } 1062 1063 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1064 { 1065 int r; 1066 struct thin_c *tc = m->tc; 1067 1068 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1069 if (r) { 1070 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1071 bio_io_error(m->bio); 1072 } else 1073 bio_endio(m->bio); 1074 1075 cell_defer_no_holder(tc, m->cell); 1076 mempool_free(m, &tc->pool->mapping_pool); 1077 } 1078 1079 /*----------------------------------------------------------------*/ 1080 1081 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1082 struct bio *discard_parent) 1083 { 1084 /* 1085 * We've already unmapped this range of blocks, but before we 1086 * passdown we have to check that these blocks are now unused. 1087 */ 1088 int r = 0; 1089 bool shared = true; 1090 struct thin_c *tc = m->tc; 1091 struct pool *pool = tc->pool; 1092 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1093 struct discard_op op; 1094 1095 begin_discard(&op, tc, discard_parent); 1096 while (b != end) { 1097 /* find start of unmapped run */ 1098 for (; b < end; b++) { 1099 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1100 if (r) 1101 goto out; 1102 1103 if (!shared) 1104 break; 1105 } 1106 1107 if (b == end) 1108 break; 1109 1110 /* find end of run */ 1111 for (e = b + 1; e != end; e++) { 1112 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1113 if (r) 1114 goto out; 1115 1116 if (shared) 1117 break; 1118 } 1119 1120 r = issue_discard(&op, b, e); 1121 if (r) 1122 goto out; 1123 1124 b = e; 1125 } 1126 out: 1127 end_discard(&op, r); 1128 } 1129 1130 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1131 { 1132 unsigned long flags; 1133 struct pool *pool = m->tc->pool; 1134 1135 spin_lock_irqsave(&pool->lock, flags); 1136 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1137 spin_unlock_irqrestore(&pool->lock, flags); 1138 wake_worker(pool); 1139 } 1140 1141 static void passdown_endio(struct bio *bio) 1142 { 1143 /* 1144 * It doesn't matter if the passdown discard failed, we still want 1145 * to unmap (we ignore err). 1146 */ 1147 queue_passdown_pt2(bio->bi_private); 1148 bio_put(bio); 1149 } 1150 1151 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1152 { 1153 int r; 1154 struct thin_c *tc = m->tc; 1155 struct pool *pool = tc->pool; 1156 struct bio *discard_parent; 1157 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1158 1159 /* 1160 * Only this thread allocates blocks, so we can be sure that the 1161 * newly unmapped blocks will not be allocated before the end of 1162 * the function. 1163 */ 1164 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1165 if (r) { 1166 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1167 bio_io_error(m->bio); 1168 cell_defer_no_holder(tc, m->cell); 1169 mempool_free(m, &pool->mapping_pool); 1170 return; 1171 } 1172 1173 /* 1174 * Increment the unmapped blocks. This prevents a race between the 1175 * passdown io and reallocation of freed blocks. 1176 */ 1177 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1178 if (r) { 1179 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1180 bio_io_error(m->bio); 1181 cell_defer_no_holder(tc, m->cell); 1182 mempool_free(m, &pool->mapping_pool); 1183 return; 1184 } 1185 1186 discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO); 1187 discard_parent->bi_end_io = passdown_endio; 1188 discard_parent->bi_private = m; 1189 if (m->maybe_shared) 1190 passdown_double_checking_shared_status(m, discard_parent); 1191 else { 1192 struct discard_op op; 1193 1194 begin_discard(&op, tc, discard_parent); 1195 r = issue_discard(&op, m->data_block, data_end); 1196 end_discard(&op, r); 1197 } 1198 } 1199 1200 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1201 { 1202 int r; 1203 struct thin_c *tc = m->tc; 1204 struct pool *pool = tc->pool; 1205 1206 /* 1207 * The passdown has completed, so now we can decrement all those 1208 * unmapped blocks. 1209 */ 1210 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1211 m->data_block + (m->virt_end - m->virt_begin)); 1212 if (r) { 1213 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1214 bio_io_error(m->bio); 1215 } else 1216 bio_endio(m->bio); 1217 1218 cell_defer_no_holder(tc, m->cell); 1219 mempool_free(m, &pool->mapping_pool); 1220 } 1221 1222 static void process_prepared(struct pool *pool, struct list_head *head, 1223 process_mapping_fn *fn) 1224 { 1225 struct list_head maps; 1226 struct dm_thin_new_mapping *m, *tmp; 1227 1228 INIT_LIST_HEAD(&maps); 1229 spin_lock_irq(&pool->lock); 1230 list_splice_init(head, &maps); 1231 spin_unlock_irq(&pool->lock); 1232 1233 list_for_each_entry_safe(m, tmp, &maps, list) 1234 (*fn)(m); 1235 } 1236 1237 /* 1238 * Deferred bio jobs. 1239 */ 1240 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1241 { 1242 return bio->bi_iter.bi_size == 1243 (pool->sectors_per_block << SECTOR_SHIFT); 1244 } 1245 1246 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1247 { 1248 return (bio_data_dir(bio) == WRITE) && 1249 io_overlaps_block(pool, bio); 1250 } 1251 1252 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1253 bio_end_io_t *fn) 1254 { 1255 *save = bio->bi_end_io; 1256 bio->bi_end_io = fn; 1257 } 1258 1259 static int ensure_next_mapping(struct pool *pool) 1260 { 1261 if (pool->next_mapping) 1262 return 0; 1263 1264 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1265 1266 return pool->next_mapping ? 0 : -ENOMEM; 1267 } 1268 1269 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1270 { 1271 struct dm_thin_new_mapping *m = pool->next_mapping; 1272 1273 BUG_ON(!pool->next_mapping); 1274 1275 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1276 INIT_LIST_HEAD(&m->list); 1277 m->bio = NULL; 1278 1279 pool->next_mapping = NULL; 1280 1281 return m; 1282 } 1283 1284 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1285 sector_t begin, sector_t end) 1286 { 1287 struct dm_io_region to; 1288 1289 to.bdev = tc->pool_dev->bdev; 1290 to.sector = begin; 1291 to.count = end - begin; 1292 1293 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1294 } 1295 1296 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1297 dm_block_t data_begin, 1298 struct dm_thin_new_mapping *m) 1299 { 1300 struct pool *pool = tc->pool; 1301 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1302 1303 h->overwrite_mapping = m; 1304 m->bio = bio; 1305 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1306 inc_all_io_entry(pool, bio); 1307 remap_and_issue(tc, bio, data_begin); 1308 } 1309 1310 /* 1311 * A partial copy also needs to zero the uncopied region. 1312 */ 1313 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1314 struct dm_dev *origin, dm_block_t data_origin, 1315 dm_block_t data_dest, 1316 struct dm_bio_prison_cell *cell, struct bio *bio, 1317 sector_t len) 1318 { 1319 struct pool *pool = tc->pool; 1320 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1321 1322 m->tc = tc; 1323 m->virt_begin = virt_block; 1324 m->virt_end = virt_block + 1u; 1325 m->data_block = data_dest; 1326 m->cell = cell; 1327 1328 /* 1329 * quiesce action + copy action + an extra reference held for the 1330 * duration of this function (we may need to inc later for a 1331 * partial zero). 1332 */ 1333 atomic_set(&m->prepare_actions, 3); 1334 1335 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1336 complete_mapping_preparation(m); /* already quiesced */ 1337 1338 /* 1339 * IO to pool_dev remaps to the pool target's data_dev. 1340 * 1341 * If the whole block of data is being overwritten, we can issue the 1342 * bio immediately. Otherwise we use kcopyd to clone the data first. 1343 */ 1344 if (io_overwrites_block(pool, bio)) 1345 remap_and_issue_overwrite(tc, bio, data_dest, m); 1346 else { 1347 struct dm_io_region from, to; 1348 1349 from.bdev = origin->bdev; 1350 from.sector = data_origin * pool->sectors_per_block; 1351 from.count = len; 1352 1353 to.bdev = tc->pool_dev->bdev; 1354 to.sector = data_dest * pool->sectors_per_block; 1355 to.count = len; 1356 1357 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1358 0, copy_complete, m); 1359 1360 /* 1361 * Do we need to zero a tail region? 1362 */ 1363 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1364 atomic_inc(&m->prepare_actions); 1365 ll_zero(tc, m, 1366 data_dest * pool->sectors_per_block + len, 1367 (data_dest + 1) * pool->sectors_per_block); 1368 } 1369 } 1370 1371 complete_mapping_preparation(m); /* drop our ref */ 1372 } 1373 1374 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1375 dm_block_t data_origin, dm_block_t data_dest, 1376 struct dm_bio_prison_cell *cell, struct bio *bio) 1377 { 1378 schedule_copy(tc, virt_block, tc->pool_dev, 1379 data_origin, data_dest, cell, bio, 1380 tc->pool->sectors_per_block); 1381 } 1382 1383 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1384 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1385 struct bio *bio) 1386 { 1387 struct pool *pool = tc->pool; 1388 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1389 1390 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1391 m->tc = tc; 1392 m->virt_begin = virt_block; 1393 m->virt_end = virt_block + 1u; 1394 m->data_block = data_block; 1395 m->cell = cell; 1396 1397 /* 1398 * If the whole block of data is being overwritten or we are not 1399 * zeroing pre-existing data, we can issue the bio immediately. 1400 * Otherwise we use kcopyd to zero the data first. 1401 */ 1402 if (pool->pf.zero_new_blocks) { 1403 if (io_overwrites_block(pool, bio)) 1404 remap_and_issue_overwrite(tc, bio, data_block, m); 1405 else 1406 ll_zero(tc, m, data_block * pool->sectors_per_block, 1407 (data_block + 1) * pool->sectors_per_block); 1408 } else 1409 process_prepared_mapping(m); 1410 } 1411 1412 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1413 dm_block_t data_dest, 1414 struct dm_bio_prison_cell *cell, struct bio *bio) 1415 { 1416 struct pool *pool = tc->pool; 1417 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1418 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1419 1420 if (virt_block_end <= tc->origin_size) 1421 schedule_copy(tc, virt_block, tc->origin_dev, 1422 virt_block, data_dest, cell, bio, 1423 pool->sectors_per_block); 1424 1425 else if (virt_block_begin < tc->origin_size) 1426 schedule_copy(tc, virt_block, tc->origin_dev, 1427 virt_block, data_dest, cell, bio, 1428 tc->origin_size - virt_block_begin); 1429 1430 else 1431 schedule_zero(tc, virt_block, data_dest, cell, bio); 1432 } 1433 1434 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1435 1436 static void requeue_bios(struct pool *pool); 1437 1438 static bool is_read_only_pool_mode(enum pool_mode mode) 1439 { 1440 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1441 } 1442 1443 static bool is_read_only(struct pool *pool) 1444 { 1445 return is_read_only_pool_mode(get_pool_mode(pool)); 1446 } 1447 1448 static void check_for_metadata_space(struct pool *pool) 1449 { 1450 int r; 1451 const char *ooms_reason = NULL; 1452 dm_block_t nr_free; 1453 1454 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1455 if (r) 1456 ooms_reason = "Could not get free metadata blocks"; 1457 else if (!nr_free) 1458 ooms_reason = "No free metadata blocks"; 1459 1460 if (ooms_reason && !is_read_only(pool)) { 1461 DMERR("%s", ooms_reason); 1462 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1463 } 1464 } 1465 1466 static void check_for_data_space(struct pool *pool) 1467 { 1468 int r; 1469 dm_block_t nr_free; 1470 1471 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1472 return; 1473 1474 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1475 if (r) 1476 return; 1477 1478 if (nr_free) { 1479 set_pool_mode(pool, PM_WRITE); 1480 requeue_bios(pool); 1481 } 1482 } 1483 1484 /* 1485 * A non-zero return indicates read_only or fail_io mode. 1486 * Many callers don't care about the return value. 1487 */ 1488 static int commit(struct pool *pool) 1489 { 1490 int r; 1491 1492 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1493 return -EINVAL; 1494 1495 r = dm_pool_commit_metadata(pool->pmd); 1496 if (r) 1497 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1498 else { 1499 check_for_metadata_space(pool); 1500 check_for_data_space(pool); 1501 } 1502 1503 return r; 1504 } 1505 1506 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1507 { 1508 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1509 DMWARN("%s: reached low water mark for data device: sending event.", 1510 dm_device_name(pool->pool_md)); 1511 spin_lock_irq(&pool->lock); 1512 pool->low_water_triggered = true; 1513 spin_unlock_irq(&pool->lock); 1514 dm_table_event(pool->ti->table); 1515 } 1516 } 1517 1518 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1519 { 1520 int r; 1521 dm_block_t free_blocks; 1522 struct pool *pool = tc->pool; 1523 1524 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1525 return -EINVAL; 1526 1527 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1528 if (r) { 1529 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1530 return r; 1531 } 1532 1533 check_low_water_mark(pool, free_blocks); 1534 1535 if (!free_blocks) { 1536 /* 1537 * Try to commit to see if that will free up some 1538 * more space. 1539 */ 1540 r = commit(pool); 1541 if (r) 1542 return r; 1543 1544 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1545 if (r) { 1546 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1547 return r; 1548 } 1549 1550 if (!free_blocks) { 1551 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1552 return -ENOSPC; 1553 } 1554 } 1555 1556 r = dm_pool_alloc_data_block(pool->pmd, result); 1557 if (r) { 1558 if (r == -ENOSPC) 1559 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1560 else 1561 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1562 return r; 1563 } 1564 1565 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1566 if (r) { 1567 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1568 return r; 1569 } 1570 1571 if (!free_blocks) { 1572 /* Let's commit before we use up the metadata reserve. */ 1573 r = commit(pool); 1574 if (r) 1575 return r; 1576 } 1577 1578 return 0; 1579 } 1580 1581 /* 1582 * If we have run out of space, queue bios until the device is 1583 * resumed, presumably after having been reloaded with more space. 1584 */ 1585 static void retry_on_resume(struct bio *bio) 1586 { 1587 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1588 struct thin_c *tc = h->tc; 1589 1590 spin_lock_irq(&tc->lock); 1591 bio_list_add(&tc->retry_on_resume_list, bio); 1592 spin_unlock_irq(&tc->lock); 1593 } 1594 1595 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1596 { 1597 enum pool_mode m = get_pool_mode(pool); 1598 1599 switch (m) { 1600 case PM_WRITE: 1601 /* Shouldn't get here */ 1602 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1603 return BLK_STS_IOERR; 1604 1605 case PM_OUT_OF_DATA_SPACE: 1606 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1607 1608 case PM_OUT_OF_METADATA_SPACE: 1609 case PM_READ_ONLY: 1610 case PM_FAIL: 1611 return BLK_STS_IOERR; 1612 default: 1613 /* Shouldn't get here */ 1614 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1615 return BLK_STS_IOERR; 1616 } 1617 } 1618 1619 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1620 { 1621 blk_status_t error = should_error_unserviceable_bio(pool); 1622 1623 if (error) { 1624 bio->bi_status = error; 1625 bio_endio(bio); 1626 } else 1627 retry_on_resume(bio); 1628 } 1629 1630 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1631 { 1632 struct bio *bio; 1633 struct bio_list bios; 1634 blk_status_t error; 1635 1636 error = should_error_unserviceable_bio(pool); 1637 if (error) { 1638 cell_error_with_code(pool, cell, error); 1639 return; 1640 } 1641 1642 bio_list_init(&bios); 1643 cell_release(pool, cell, &bios); 1644 1645 while ((bio = bio_list_pop(&bios))) 1646 retry_on_resume(bio); 1647 } 1648 1649 static void process_discard_cell_no_passdown(struct thin_c *tc, 1650 struct dm_bio_prison_cell *virt_cell) 1651 { 1652 struct pool *pool = tc->pool; 1653 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1654 1655 /* 1656 * We don't need to lock the data blocks, since there's no 1657 * passdown. We only lock data blocks for allocation and breaking sharing. 1658 */ 1659 m->tc = tc; 1660 m->virt_begin = virt_cell->key.block_begin; 1661 m->virt_end = virt_cell->key.block_end; 1662 m->cell = virt_cell; 1663 m->bio = virt_cell->holder; 1664 1665 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1666 pool->process_prepared_discard(m); 1667 } 1668 1669 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1670 struct bio *bio) 1671 { 1672 struct pool *pool = tc->pool; 1673 1674 int r; 1675 bool maybe_shared; 1676 struct dm_cell_key data_key; 1677 struct dm_bio_prison_cell *data_cell; 1678 struct dm_thin_new_mapping *m; 1679 dm_block_t virt_begin, virt_end, data_begin, data_end; 1680 dm_block_t len, next_boundary; 1681 1682 while (begin != end) { 1683 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1684 &data_begin, &maybe_shared); 1685 if (r) { 1686 /* 1687 * Silently fail, letting any mappings we've 1688 * created complete. 1689 */ 1690 break; 1691 } 1692 1693 data_end = data_begin + (virt_end - virt_begin); 1694 1695 /* 1696 * Make sure the data region obeys the bio prison restrictions. 1697 */ 1698 while (data_begin < data_end) { 1699 r = ensure_next_mapping(pool); 1700 if (r) 1701 return; /* we did our best */ 1702 1703 next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1) 1704 << BIO_PRISON_MAX_RANGE_SHIFT; 1705 len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin); 1706 1707 /* This key is certainly within range given the above splitting */ 1708 (void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key); 1709 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1710 /* contention, we'll give up with this range */ 1711 data_begin += len; 1712 continue; 1713 } 1714 1715 /* 1716 * IO may still be going to the destination block. We must 1717 * quiesce before we can do the removal. 1718 */ 1719 m = get_next_mapping(pool); 1720 m->tc = tc; 1721 m->maybe_shared = maybe_shared; 1722 m->virt_begin = virt_begin; 1723 m->virt_end = virt_begin + len; 1724 m->data_block = data_begin; 1725 m->cell = data_cell; 1726 m->bio = bio; 1727 1728 /* 1729 * The parent bio must not complete before sub discard bios are 1730 * chained to it (see end_discard's bio_chain)! 1731 * 1732 * This per-mapping bi_remaining increment is paired with 1733 * the implicit decrement that occurs via bio_endio() in 1734 * end_discard(). 1735 */ 1736 bio_inc_remaining(bio); 1737 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1738 pool->process_prepared_discard(m); 1739 1740 virt_begin += len; 1741 data_begin += len; 1742 } 1743 1744 begin = virt_end; 1745 } 1746 } 1747 1748 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1749 { 1750 struct bio *bio = virt_cell->holder; 1751 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1752 1753 /* 1754 * The virt_cell will only get freed once the origin bio completes. 1755 * This means it will remain locked while all the individual 1756 * passdown bios are in flight. 1757 */ 1758 h->cell = virt_cell; 1759 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1760 1761 /* 1762 * We complete the bio now, knowing that the bi_remaining field 1763 * will prevent completion until the sub range discards have 1764 * completed. 1765 */ 1766 bio_endio(bio); 1767 } 1768 1769 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1770 { 1771 dm_block_t begin, end; 1772 struct dm_cell_key virt_key; 1773 struct dm_bio_prison_cell *virt_cell; 1774 1775 get_bio_block_range(tc, bio, &begin, &end); 1776 if (begin == end) { 1777 /* 1778 * The discard covers less than a block. 1779 */ 1780 bio_endio(bio); 1781 return; 1782 } 1783 1784 if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) { 1785 DMERR_LIMIT("Discard doesn't respect bio prison limits"); 1786 bio_endio(bio); 1787 return; 1788 } 1789 1790 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) { 1791 /* 1792 * Potential starvation issue: We're relying on the 1793 * fs/application being well behaved, and not trying to 1794 * send IO to a region at the same time as discarding it. 1795 * If they do this persistently then it's possible this 1796 * cell will never be granted. 1797 */ 1798 return; 1799 } 1800 1801 tc->pool->process_discard_cell(tc, virt_cell); 1802 } 1803 1804 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1805 struct dm_cell_key *key, 1806 struct dm_thin_lookup_result *lookup_result, 1807 struct dm_bio_prison_cell *cell) 1808 { 1809 int r; 1810 dm_block_t data_block; 1811 struct pool *pool = tc->pool; 1812 1813 r = alloc_data_block(tc, &data_block); 1814 switch (r) { 1815 case 0: 1816 schedule_internal_copy(tc, block, lookup_result->block, 1817 data_block, cell, bio); 1818 break; 1819 1820 case -ENOSPC: 1821 retry_bios_on_resume(pool, cell); 1822 break; 1823 1824 default: 1825 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1826 __func__, r); 1827 cell_error(pool, cell); 1828 break; 1829 } 1830 } 1831 1832 static void __remap_and_issue_shared_cell(void *context, 1833 struct dm_bio_prison_cell *cell) 1834 { 1835 struct remap_info *info = context; 1836 struct bio *bio; 1837 1838 while ((bio = bio_list_pop(&cell->bios))) { 1839 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1840 bio_op(bio) == REQ_OP_DISCARD) 1841 bio_list_add(&info->defer_bios, bio); 1842 else { 1843 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1844 1845 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1846 inc_all_io_entry(info->tc->pool, bio); 1847 bio_list_add(&info->issue_bios, bio); 1848 } 1849 } 1850 } 1851 1852 static void remap_and_issue_shared_cell(struct thin_c *tc, 1853 struct dm_bio_prison_cell *cell, 1854 dm_block_t block) 1855 { 1856 struct bio *bio; 1857 struct remap_info info; 1858 1859 info.tc = tc; 1860 bio_list_init(&info.defer_bios); 1861 bio_list_init(&info.issue_bios); 1862 1863 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1864 &info, cell); 1865 1866 while ((bio = bio_list_pop(&info.defer_bios))) 1867 thin_defer_bio(tc, bio); 1868 1869 while ((bio = bio_list_pop(&info.issue_bios))) 1870 remap_and_issue(tc, bio, block); 1871 } 1872 1873 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1874 dm_block_t block, 1875 struct dm_thin_lookup_result *lookup_result, 1876 struct dm_bio_prison_cell *virt_cell) 1877 { 1878 struct dm_bio_prison_cell *data_cell; 1879 struct pool *pool = tc->pool; 1880 struct dm_cell_key key; 1881 1882 /* 1883 * If cell is already occupied, then sharing is already in the process 1884 * of being broken so we have nothing further to do here. 1885 */ 1886 build_data_key(tc->td, lookup_result->block, &key); 1887 if (bio_detain(pool, &key, bio, &data_cell)) { 1888 cell_defer_no_holder(tc, virt_cell); 1889 return; 1890 } 1891 1892 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1893 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1894 cell_defer_no_holder(tc, virt_cell); 1895 } else { 1896 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1897 1898 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1899 inc_all_io_entry(pool, bio); 1900 remap_and_issue(tc, bio, lookup_result->block); 1901 1902 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1903 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1904 } 1905 } 1906 1907 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1908 struct dm_bio_prison_cell *cell) 1909 { 1910 int r; 1911 dm_block_t data_block; 1912 struct pool *pool = tc->pool; 1913 1914 /* 1915 * Remap empty bios (flushes) immediately, without provisioning. 1916 */ 1917 if (!bio->bi_iter.bi_size) { 1918 inc_all_io_entry(pool, bio); 1919 cell_defer_no_holder(tc, cell); 1920 1921 remap_and_issue(tc, bio, 0); 1922 return; 1923 } 1924 1925 /* 1926 * Fill read bios with zeroes and complete them immediately. 1927 */ 1928 if (bio_data_dir(bio) == READ) { 1929 zero_fill_bio(bio); 1930 cell_defer_no_holder(tc, cell); 1931 bio_endio(bio); 1932 return; 1933 } 1934 1935 r = alloc_data_block(tc, &data_block); 1936 switch (r) { 1937 case 0: 1938 if (tc->origin_dev) 1939 schedule_external_copy(tc, block, data_block, cell, bio); 1940 else 1941 schedule_zero(tc, block, data_block, cell, bio); 1942 break; 1943 1944 case -ENOSPC: 1945 retry_bios_on_resume(pool, cell); 1946 break; 1947 1948 default: 1949 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1950 __func__, r); 1951 cell_error(pool, cell); 1952 break; 1953 } 1954 } 1955 1956 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1957 { 1958 int r; 1959 struct pool *pool = tc->pool; 1960 struct bio *bio = cell->holder; 1961 dm_block_t block = get_bio_block(tc, bio); 1962 struct dm_thin_lookup_result lookup_result; 1963 1964 if (tc->requeue_mode) { 1965 cell_requeue(pool, cell); 1966 return; 1967 } 1968 1969 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1970 switch (r) { 1971 case 0: 1972 if (lookup_result.shared) 1973 process_shared_bio(tc, bio, block, &lookup_result, cell); 1974 else { 1975 inc_all_io_entry(pool, bio); 1976 remap_and_issue(tc, bio, lookup_result.block); 1977 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1978 } 1979 break; 1980 1981 case -ENODATA: 1982 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1983 inc_all_io_entry(pool, bio); 1984 cell_defer_no_holder(tc, cell); 1985 1986 if (bio_end_sector(bio) <= tc->origin_size) 1987 remap_to_origin_and_issue(tc, bio); 1988 1989 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1990 zero_fill_bio(bio); 1991 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1992 remap_to_origin_and_issue(tc, bio); 1993 1994 } else { 1995 zero_fill_bio(bio); 1996 bio_endio(bio); 1997 } 1998 } else 1999 provision_block(tc, bio, block, cell); 2000 break; 2001 2002 default: 2003 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2004 __func__, r); 2005 cell_defer_no_holder(tc, cell); 2006 bio_io_error(bio); 2007 break; 2008 } 2009 } 2010 2011 static void process_bio(struct thin_c *tc, struct bio *bio) 2012 { 2013 struct pool *pool = tc->pool; 2014 dm_block_t block = get_bio_block(tc, bio); 2015 struct dm_bio_prison_cell *cell; 2016 struct dm_cell_key key; 2017 2018 /* 2019 * If cell is already occupied, then the block is already 2020 * being provisioned so we have nothing further to do here. 2021 */ 2022 build_virtual_key(tc->td, block, &key); 2023 if (bio_detain(pool, &key, bio, &cell)) 2024 return; 2025 2026 process_cell(tc, cell); 2027 } 2028 2029 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2030 struct dm_bio_prison_cell *cell) 2031 { 2032 int r; 2033 int rw = bio_data_dir(bio); 2034 dm_block_t block = get_bio_block(tc, bio); 2035 struct dm_thin_lookup_result lookup_result; 2036 2037 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2038 switch (r) { 2039 case 0: 2040 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2041 handle_unserviceable_bio(tc->pool, bio); 2042 if (cell) 2043 cell_defer_no_holder(tc, cell); 2044 } else { 2045 inc_all_io_entry(tc->pool, bio); 2046 remap_and_issue(tc, bio, lookup_result.block); 2047 if (cell) 2048 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2049 } 2050 break; 2051 2052 case -ENODATA: 2053 if (cell) 2054 cell_defer_no_holder(tc, cell); 2055 if (rw != READ) { 2056 handle_unserviceable_bio(tc->pool, bio); 2057 break; 2058 } 2059 2060 if (tc->origin_dev) { 2061 inc_all_io_entry(tc->pool, bio); 2062 remap_to_origin_and_issue(tc, bio); 2063 break; 2064 } 2065 2066 zero_fill_bio(bio); 2067 bio_endio(bio); 2068 break; 2069 2070 default: 2071 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2072 __func__, r); 2073 if (cell) 2074 cell_defer_no_holder(tc, cell); 2075 bio_io_error(bio); 2076 break; 2077 } 2078 } 2079 2080 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2081 { 2082 __process_bio_read_only(tc, bio, NULL); 2083 } 2084 2085 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2086 { 2087 __process_bio_read_only(tc, cell->holder, cell); 2088 } 2089 2090 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2091 { 2092 bio_endio(bio); 2093 } 2094 2095 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2096 { 2097 bio_io_error(bio); 2098 } 2099 2100 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2101 { 2102 cell_success(tc->pool, cell); 2103 } 2104 2105 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2106 { 2107 cell_error(tc->pool, cell); 2108 } 2109 2110 /* 2111 * FIXME: should we also commit due to size of transaction, measured in 2112 * metadata blocks? 2113 */ 2114 static int need_commit_due_to_time(struct pool *pool) 2115 { 2116 return !time_in_range(jiffies, pool->last_commit_jiffies, 2117 pool->last_commit_jiffies + COMMIT_PERIOD); 2118 } 2119 2120 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2121 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2122 2123 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2124 { 2125 struct rb_node **rbp, *parent; 2126 struct dm_thin_endio_hook *pbd; 2127 sector_t bi_sector = bio->bi_iter.bi_sector; 2128 2129 rbp = &tc->sort_bio_list.rb_node; 2130 parent = NULL; 2131 while (*rbp) { 2132 parent = *rbp; 2133 pbd = thin_pbd(parent); 2134 2135 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2136 rbp = &(*rbp)->rb_left; 2137 else 2138 rbp = &(*rbp)->rb_right; 2139 } 2140 2141 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2142 rb_link_node(&pbd->rb_node, parent, rbp); 2143 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2144 } 2145 2146 static void __extract_sorted_bios(struct thin_c *tc) 2147 { 2148 struct rb_node *node; 2149 struct dm_thin_endio_hook *pbd; 2150 struct bio *bio; 2151 2152 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2153 pbd = thin_pbd(node); 2154 bio = thin_bio(pbd); 2155 2156 bio_list_add(&tc->deferred_bio_list, bio); 2157 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2158 } 2159 2160 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2161 } 2162 2163 static void __sort_thin_deferred_bios(struct thin_c *tc) 2164 { 2165 struct bio *bio; 2166 struct bio_list bios; 2167 2168 bio_list_init(&bios); 2169 bio_list_merge(&bios, &tc->deferred_bio_list); 2170 bio_list_init(&tc->deferred_bio_list); 2171 2172 /* Sort deferred_bio_list using rb-tree */ 2173 while ((bio = bio_list_pop(&bios))) 2174 __thin_bio_rb_add(tc, bio); 2175 2176 /* 2177 * Transfer the sorted bios in sort_bio_list back to 2178 * deferred_bio_list to allow lockless submission of 2179 * all bios. 2180 */ 2181 __extract_sorted_bios(tc); 2182 } 2183 2184 static void process_thin_deferred_bios(struct thin_c *tc) 2185 { 2186 struct pool *pool = tc->pool; 2187 struct bio *bio; 2188 struct bio_list bios; 2189 struct blk_plug plug; 2190 unsigned int count = 0; 2191 2192 if (tc->requeue_mode) { 2193 error_thin_bio_list(tc, &tc->deferred_bio_list, 2194 BLK_STS_DM_REQUEUE); 2195 return; 2196 } 2197 2198 bio_list_init(&bios); 2199 2200 spin_lock_irq(&tc->lock); 2201 2202 if (bio_list_empty(&tc->deferred_bio_list)) { 2203 spin_unlock_irq(&tc->lock); 2204 return; 2205 } 2206 2207 __sort_thin_deferred_bios(tc); 2208 2209 bio_list_merge(&bios, &tc->deferred_bio_list); 2210 bio_list_init(&tc->deferred_bio_list); 2211 2212 spin_unlock_irq(&tc->lock); 2213 2214 blk_start_plug(&plug); 2215 while ((bio = bio_list_pop(&bios))) { 2216 /* 2217 * If we've got no free new_mapping structs, and processing 2218 * this bio might require one, we pause until there are some 2219 * prepared mappings to process. 2220 */ 2221 if (ensure_next_mapping(pool)) { 2222 spin_lock_irq(&tc->lock); 2223 bio_list_add(&tc->deferred_bio_list, bio); 2224 bio_list_merge(&tc->deferred_bio_list, &bios); 2225 spin_unlock_irq(&tc->lock); 2226 break; 2227 } 2228 2229 if (bio_op(bio) == REQ_OP_DISCARD) 2230 pool->process_discard(tc, bio); 2231 else 2232 pool->process_bio(tc, bio); 2233 2234 if ((count++ & 127) == 0) { 2235 throttle_work_update(&pool->throttle); 2236 dm_pool_issue_prefetches(pool->pmd); 2237 } 2238 cond_resched(); 2239 } 2240 blk_finish_plug(&plug); 2241 } 2242 2243 static int cmp_cells(const void *lhs, const void *rhs) 2244 { 2245 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2246 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2247 2248 BUG_ON(!lhs_cell->holder); 2249 BUG_ON(!rhs_cell->holder); 2250 2251 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2252 return -1; 2253 2254 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2255 return 1; 2256 2257 return 0; 2258 } 2259 2260 static unsigned int sort_cells(struct pool *pool, struct list_head *cells) 2261 { 2262 unsigned int count = 0; 2263 struct dm_bio_prison_cell *cell, *tmp; 2264 2265 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2266 if (count >= CELL_SORT_ARRAY_SIZE) 2267 break; 2268 2269 pool->cell_sort_array[count++] = cell; 2270 list_del(&cell->user_list); 2271 } 2272 2273 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2274 2275 return count; 2276 } 2277 2278 static void process_thin_deferred_cells(struct thin_c *tc) 2279 { 2280 struct pool *pool = tc->pool; 2281 struct list_head cells; 2282 struct dm_bio_prison_cell *cell; 2283 unsigned int i, j, count; 2284 2285 INIT_LIST_HEAD(&cells); 2286 2287 spin_lock_irq(&tc->lock); 2288 list_splice_init(&tc->deferred_cells, &cells); 2289 spin_unlock_irq(&tc->lock); 2290 2291 if (list_empty(&cells)) 2292 return; 2293 2294 do { 2295 count = sort_cells(tc->pool, &cells); 2296 2297 for (i = 0; i < count; i++) { 2298 cell = pool->cell_sort_array[i]; 2299 BUG_ON(!cell->holder); 2300 2301 /* 2302 * If we've got no free new_mapping structs, and processing 2303 * this bio might require one, we pause until there are some 2304 * prepared mappings to process. 2305 */ 2306 if (ensure_next_mapping(pool)) { 2307 for (j = i; j < count; j++) 2308 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2309 2310 spin_lock_irq(&tc->lock); 2311 list_splice(&cells, &tc->deferred_cells); 2312 spin_unlock_irq(&tc->lock); 2313 return; 2314 } 2315 2316 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2317 pool->process_discard_cell(tc, cell); 2318 else 2319 pool->process_cell(tc, cell); 2320 } 2321 cond_resched(); 2322 } while (!list_empty(&cells)); 2323 } 2324 2325 static void thin_get(struct thin_c *tc); 2326 static void thin_put(struct thin_c *tc); 2327 2328 /* 2329 * We can't hold rcu_read_lock() around code that can block. So we 2330 * find a thin with the rcu lock held; bump a refcount; then drop 2331 * the lock. 2332 */ 2333 static struct thin_c *get_first_thin(struct pool *pool) 2334 { 2335 struct thin_c *tc = NULL; 2336 2337 rcu_read_lock(); 2338 if (!list_empty(&pool->active_thins)) { 2339 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2340 thin_get(tc); 2341 } 2342 rcu_read_unlock(); 2343 2344 return tc; 2345 } 2346 2347 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2348 { 2349 struct thin_c *old_tc = tc; 2350 2351 rcu_read_lock(); 2352 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2353 thin_get(tc); 2354 thin_put(old_tc); 2355 rcu_read_unlock(); 2356 return tc; 2357 } 2358 thin_put(old_tc); 2359 rcu_read_unlock(); 2360 2361 return NULL; 2362 } 2363 2364 static void process_deferred_bios(struct pool *pool) 2365 { 2366 struct bio *bio; 2367 struct bio_list bios, bio_completions; 2368 struct thin_c *tc; 2369 2370 tc = get_first_thin(pool); 2371 while (tc) { 2372 process_thin_deferred_cells(tc); 2373 process_thin_deferred_bios(tc); 2374 tc = get_next_thin(pool, tc); 2375 } 2376 2377 /* 2378 * If there are any deferred flush bios, we must commit the metadata 2379 * before issuing them or signaling their completion. 2380 */ 2381 bio_list_init(&bios); 2382 bio_list_init(&bio_completions); 2383 2384 spin_lock_irq(&pool->lock); 2385 bio_list_merge(&bios, &pool->deferred_flush_bios); 2386 bio_list_init(&pool->deferred_flush_bios); 2387 2388 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2389 bio_list_init(&pool->deferred_flush_completions); 2390 spin_unlock_irq(&pool->lock); 2391 2392 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2393 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2394 return; 2395 2396 if (commit(pool)) { 2397 bio_list_merge(&bios, &bio_completions); 2398 2399 while ((bio = bio_list_pop(&bios))) 2400 bio_io_error(bio); 2401 return; 2402 } 2403 pool->last_commit_jiffies = jiffies; 2404 2405 while ((bio = bio_list_pop(&bio_completions))) 2406 bio_endio(bio); 2407 2408 while ((bio = bio_list_pop(&bios))) { 2409 /* 2410 * The data device was flushed as part of metadata commit, 2411 * so complete redundant flushes immediately. 2412 */ 2413 if (bio->bi_opf & REQ_PREFLUSH) 2414 bio_endio(bio); 2415 else 2416 dm_submit_bio_remap(bio, NULL); 2417 } 2418 } 2419 2420 static void do_worker(struct work_struct *ws) 2421 { 2422 struct pool *pool = container_of(ws, struct pool, worker); 2423 2424 throttle_work_start(&pool->throttle); 2425 dm_pool_issue_prefetches(pool->pmd); 2426 throttle_work_update(&pool->throttle); 2427 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2428 throttle_work_update(&pool->throttle); 2429 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2430 throttle_work_update(&pool->throttle); 2431 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2432 throttle_work_update(&pool->throttle); 2433 process_deferred_bios(pool); 2434 throttle_work_complete(&pool->throttle); 2435 } 2436 2437 /* 2438 * We want to commit periodically so that not too much 2439 * unwritten data builds up. 2440 */ 2441 static void do_waker(struct work_struct *ws) 2442 { 2443 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2444 2445 wake_worker(pool); 2446 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2447 } 2448 2449 /* 2450 * We're holding onto IO to allow userland time to react. After the 2451 * timeout either the pool will have been resized (and thus back in 2452 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2453 */ 2454 static void do_no_space_timeout(struct work_struct *ws) 2455 { 2456 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2457 no_space_timeout); 2458 2459 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2460 pool->pf.error_if_no_space = true; 2461 notify_of_pool_mode_change(pool); 2462 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2463 } 2464 } 2465 2466 /*----------------------------------------------------------------*/ 2467 2468 struct pool_work { 2469 struct work_struct worker; 2470 struct completion complete; 2471 }; 2472 2473 static struct pool_work *to_pool_work(struct work_struct *ws) 2474 { 2475 return container_of(ws, struct pool_work, worker); 2476 } 2477 2478 static void pool_work_complete(struct pool_work *pw) 2479 { 2480 complete(&pw->complete); 2481 } 2482 2483 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2484 void (*fn)(struct work_struct *)) 2485 { 2486 INIT_WORK_ONSTACK(&pw->worker, fn); 2487 init_completion(&pw->complete); 2488 queue_work(pool->wq, &pw->worker); 2489 wait_for_completion(&pw->complete); 2490 } 2491 2492 /*----------------------------------------------------------------*/ 2493 2494 struct noflush_work { 2495 struct pool_work pw; 2496 struct thin_c *tc; 2497 }; 2498 2499 static struct noflush_work *to_noflush(struct work_struct *ws) 2500 { 2501 return container_of(to_pool_work(ws), struct noflush_work, pw); 2502 } 2503 2504 static void do_noflush_start(struct work_struct *ws) 2505 { 2506 struct noflush_work *w = to_noflush(ws); 2507 2508 w->tc->requeue_mode = true; 2509 requeue_io(w->tc); 2510 pool_work_complete(&w->pw); 2511 } 2512 2513 static void do_noflush_stop(struct work_struct *ws) 2514 { 2515 struct noflush_work *w = to_noflush(ws); 2516 2517 w->tc->requeue_mode = false; 2518 pool_work_complete(&w->pw); 2519 } 2520 2521 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2522 { 2523 struct noflush_work w; 2524 2525 w.tc = tc; 2526 pool_work_wait(&w.pw, tc->pool, fn); 2527 } 2528 2529 /*----------------------------------------------------------------*/ 2530 2531 static void set_discard_callbacks(struct pool *pool) 2532 { 2533 struct pool_c *pt = pool->ti->private; 2534 2535 if (pt->adjusted_pf.discard_passdown) { 2536 pool->process_discard_cell = process_discard_cell_passdown; 2537 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2538 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2539 } else { 2540 pool->process_discard_cell = process_discard_cell_no_passdown; 2541 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2542 } 2543 } 2544 2545 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2546 { 2547 struct pool_c *pt = pool->ti->private; 2548 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2549 enum pool_mode old_mode = get_pool_mode(pool); 2550 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2551 2552 /* 2553 * Never allow the pool to transition to PM_WRITE mode if user 2554 * intervention is required to verify metadata and data consistency. 2555 */ 2556 if (new_mode == PM_WRITE && needs_check) { 2557 DMERR("%s: unable to switch pool to write mode until repaired.", 2558 dm_device_name(pool->pool_md)); 2559 if (old_mode != new_mode) 2560 new_mode = old_mode; 2561 else 2562 new_mode = PM_READ_ONLY; 2563 } 2564 /* 2565 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2566 * not going to recover without a thin_repair. So we never let the 2567 * pool move out of the old mode. 2568 */ 2569 if (old_mode == PM_FAIL) 2570 new_mode = old_mode; 2571 2572 switch (new_mode) { 2573 case PM_FAIL: 2574 dm_pool_metadata_read_only(pool->pmd); 2575 pool->process_bio = process_bio_fail; 2576 pool->process_discard = process_bio_fail; 2577 pool->process_cell = process_cell_fail; 2578 pool->process_discard_cell = process_cell_fail; 2579 pool->process_prepared_mapping = process_prepared_mapping_fail; 2580 pool->process_prepared_discard = process_prepared_discard_fail; 2581 2582 error_retry_list(pool); 2583 break; 2584 2585 case PM_OUT_OF_METADATA_SPACE: 2586 case PM_READ_ONLY: 2587 dm_pool_metadata_read_only(pool->pmd); 2588 pool->process_bio = process_bio_read_only; 2589 pool->process_discard = process_bio_success; 2590 pool->process_cell = process_cell_read_only; 2591 pool->process_discard_cell = process_cell_success; 2592 pool->process_prepared_mapping = process_prepared_mapping_fail; 2593 pool->process_prepared_discard = process_prepared_discard_success; 2594 2595 error_retry_list(pool); 2596 break; 2597 2598 case PM_OUT_OF_DATA_SPACE: 2599 /* 2600 * Ideally we'd never hit this state; the low water mark 2601 * would trigger userland to extend the pool before we 2602 * completely run out of data space. However, many small 2603 * IOs to unprovisioned space can consume data space at an 2604 * alarming rate. Adjust your low water mark if you're 2605 * frequently seeing this mode. 2606 */ 2607 pool->out_of_data_space = true; 2608 pool->process_bio = process_bio_read_only; 2609 pool->process_discard = process_discard_bio; 2610 pool->process_cell = process_cell_read_only; 2611 pool->process_prepared_mapping = process_prepared_mapping; 2612 set_discard_callbacks(pool); 2613 2614 if (!pool->pf.error_if_no_space && no_space_timeout) 2615 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2616 break; 2617 2618 case PM_WRITE: 2619 if (old_mode == PM_OUT_OF_DATA_SPACE) 2620 cancel_delayed_work_sync(&pool->no_space_timeout); 2621 pool->out_of_data_space = false; 2622 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2623 dm_pool_metadata_read_write(pool->pmd); 2624 pool->process_bio = process_bio; 2625 pool->process_discard = process_discard_bio; 2626 pool->process_cell = process_cell; 2627 pool->process_prepared_mapping = process_prepared_mapping; 2628 set_discard_callbacks(pool); 2629 break; 2630 } 2631 2632 pool->pf.mode = new_mode; 2633 /* 2634 * The pool mode may have changed, sync it so bind_control_target() 2635 * doesn't cause an unexpected mode transition on resume. 2636 */ 2637 pt->adjusted_pf.mode = new_mode; 2638 2639 if (old_mode != new_mode) 2640 notify_of_pool_mode_change(pool); 2641 } 2642 2643 static void abort_transaction(struct pool *pool) 2644 { 2645 const char *dev_name = dm_device_name(pool->pool_md); 2646 2647 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2648 if (dm_pool_abort_metadata(pool->pmd)) { 2649 DMERR("%s: failed to abort metadata transaction", dev_name); 2650 set_pool_mode(pool, PM_FAIL); 2651 } 2652 2653 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2654 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2655 set_pool_mode(pool, PM_FAIL); 2656 } 2657 } 2658 2659 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2660 { 2661 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2662 dm_device_name(pool->pool_md), op, r); 2663 2664 abort_transaction(pool); 2665 set_pool_mode(pool, PM_READ_ONLY); 2666 } 2667 2668 /*----------------------------------------------------------------*/ 2669 2670 /* 2671 * Mapping functions. 2672 */ 2673 2674 /* 2675 * Called only while mapping a thin bio to hand it over to the workqueue. 2676 */ 2677 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2678 { 2679 struct pool *pool = tc->pool; 2680 2681 spin_lock_irq(&tc->lock); 2682 bio_list_add(&tc->deferred_bio_list, bio); 2683 spin_unlock_irq(&tc->lock); 2684 2685 wake_worker(pool); 2686 } 2687 2688 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2689 { 2690 struct pool *pool = tc->pool; 2691 2692 throttle_lock(&pool->throttle); 2693 thin_defer_bio(tc, bio); 2694 throttle_unlock(&pool->throttle); 2695 } 2696 2697 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2698 { 2699 struct pool *pool = tc->pool; 2700 2701 throttle_lock(&pool->throttle); 2702 spin_lock_irq(&tc->lock); 2703 list_add_tail(&cell->user_list, &tc->deferred_cells); 2704 spin_unlock_irq(&tc->lock); 2705 throttle_unlock(&pool->throttle); 2706 2707 wake_worker(pool); 2708 } 2709 2710 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2711 { 2712 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2713 2714 h->tc = tc; 2715 h->shared_read_entry = NULL; 2716 h->all_io_entry = NULL; 2717 h->overwrite_mapping = NULL; 2718 h->cell = NULL; 2719 } 2720 2721 /* 2722 * Non-blocking function called from the thin target's map function. 2723 */ 2724 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2725 { 2726 int r; 2727 struct thin_c *tc = ti->private; 2728 dm_block_t block = get_bio_block(tc, bio); 2729 struct dm_thin_device *td = tc->td; 2730 struct dm_thin_lookup_result result; 2731 struct dm_bio_prison_cell *virt_cell, *data_cell; 2732 struct dm_cell_key key; 2733 2734 thin_hook_bio(tc, bio); 2735 2736 if (tc->requeue_mode) { 2737 bio->bi_status = BLK_STS_DM_REQUEUE; 2738 bio_endio(bio); 2739 return DM_MAPIO_SUBMITTED; 2740 } 2741 2742 if (get_pool_mode(tc->pool) == PM_FAIL) { 2743 bio_io_error(bio); 2744 return DM_MAPIO_SUBMITTED; 2745 } 2746 2747 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2748 thin_defer_bio_with_throttle(tc, bio); 2749 return DM_MAPIO_SUBMITTED; 2750 } 2751 2752 /* 2753 * We must hold the virtual cell before doing the lookup, otherwise 2754 * there's a race with discard. 2755 */ 2756 build_virtual_key(tc->td, block, &key); 2757 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2758 return DM_MAPIO_SUBMITTED; 2759 2760 r = dm_thin_find_block(td, block, 0, &result); 2761 2762 /* 2763 * Note that we defer readahead too. 2764 */ 2765 switch (r) { 2766 case 0: 2767 if (unlikely(result.shared)) { 2768 /* 2769 * We have a race condition here between the 2770 * result.shared value returned by the lookup and 2771 * snapshot creation, which may cause new 2772 * sharing. 2773 * 2774 * To avoid this always quiesce the origin before 2775 * taking the snap. You want to do this anyway to 2776 * ensure a consistent application view 2777 * (i.e. lockfs). 2778 * 2779 * More distant ancestors are irrelevant. The 2780 * shared flag will be set in their case. 2781 */ 2782 thin_defer_cell(tc, virt_cell); 2783 return DM_MAPIO_SUBMITTED; 2784 } 2785 2786 build_data_key(tc->td, result.block, &key); 2787 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2788 cell_defer_no_holder(tc, virt_cell); 2789 return DM_MAPIO_SUBMITTED; 2790 } 2791 2792 inc_all_io_entry(tc->pool, bio); 2793 cell_defer_no_holder(tc, data_cell); 2794 cell_defer_no_holder(tc, virt_cell); 2795 2796 remap(tc, bio, result.block); 2797 return DM_MAPIO_REMAPPED; 2798 2799 case -ENODATA: 2800 case -EWOULDBLOCK: 2801 thin_defer_cell(tc, virt_cell); 2802 return DM_MAPIO_SUBMITTED; 2803 2804 default: 2805 /* 2806 * Must always call bio_io_error on failure. 2807 * dm_thin_find_block can fail with -EINVAL if the 2808 * pool is switched to fail-io mode. 2809 */ 2810 bio_io_error(bio); 2811 cell_defer_no_holder(tc, virt_cell); 2812 return DM_MAPIO_SUBMITTED; 2813 } 2814 } 2815 2816 static void requeue_bios(struct pool *pool) 2817 { 2818 struct thin_c *tc; 2819 2820 rcu_read_lock(); 2821 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2822 spin_lock_irq(&tc->lock); 2823 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2824 bio_list_init(&tc->retry_on_resume_list); 2825 spin_unlock_irq(&tc->lock); 2826 } 2827 rcu_read_unlock(); 2828 } 2829 2830 /* 2831 *-------------------------------------------------------------- 2832 * Binding of control targets to a pool object 2833 *-------------------------------------------------------------- 2834 */ 2835 static bool is_factor(sector_t block_size, uint32_t n) 2836 { 2837 return !sector_div(block_size, n); 2838 } 2839 2840 /* 2841 * If discard_passdown was enabled verify that the data device 2842 * supports discards. Disable discard_passdown if not. 2843 */ 2844 static void disable_discard_passdown_if_not_supported(struct pool_c *pt) 2845 { 2846 struct pool *pool = pt->pool; 2847 struct block_device *data_bdev = pt->data_dev->bdev; 2848 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2849 const char *reason = NULL; 2850 2851 if (!pt->adjusted_pf.discard_passdown) 2852 return; 2853 2854 if (!bdev_max_discard_sectors(pt->data_dev->bdev)) 2855 reason = "discard unsupported"; 2856 2857 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2858 reason = "max discard sectors smaller than a block"; 2859 2860 if (reason) { 2861 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason); 2862 pt->adjusted_pf.discard_passdown = false; 2863 } 2864 } 2865 2866 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2867 { 2868 struct pool_c *pt = ti->private; 2869 2870 /* 2871 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2872 */ 2873 enum pool_mode old_mode = get_pool_mode(pool); 2874 enum pool_mode new_mode = pt->adjusted_pf.mode; 2875 2876 /* 2877 * Don't change the pool's mode until set_pool_mode() below. 2878 * Otherwise the pool's process_* function pointers may 2879 * not match the desired pool mode. 2880 */ 2881 pt->adjusted_pf.mode = old_mode; 2882 2883 pool->ti = ti; 2884 pool->pf = pt->adjusted_pf; 2885 pool->low_water_blocks = pt->low_water_blocks; 2886 2887 set_pool_mode(pool, new_mode); 2888 2889 return 0; 2890 } 2891 2892 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2893 { 2894 if (pool->ti == ti) 2895 pool->ti = NULL; 2896 } 2897 2898 /* 2899 *-------------------------------------------------------------- 2900 * Pool creation 2901 *-------------------------------------------------------------- 2902 */ 2903 /* Initialize pool features. */ 2904 static void pool_features_init(struct pool_features *pf) 2905 { 2906 pf->mode = PM_WRITE; 2907 pf->zero_new_blocks = true; 2908 pf->discard_enabled = true; 2909 pf->discard_passdown = true; 2910 pf->error_if_no_space = false; 2911 } 2912 2913 static void __pool_destroy(struct pool *pool) 2914 { 2915 __pool_table_remove(pool); 2916 2917 vfree(pool->cell_sort_array); 2918 if (dm_pool_metadata_close(pool->pmd) < 0) 2919 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2920 2921 dm_bio_prison_destroy(pool->prison); 2922 dm_kcopyd_client_destroy(pool->copier); 2923 2924 cancel_delayed_work_sync(&pool->waker); 2925 cancel_delayed_work_sync(&pool->no_space_timeout); 2926 if (pool->wq) 2927 destroy_workqueue(pool->wq); 2928 2929 if (pool->next_mapping) 2930 mempool_free(pool->next_mapping, &pool->mapping_pool); 2931 mempool_exit(&pool->mapping_pool); 2932 dm_deferred_set_destroy(pool->shared_read_ds); 2933 dm_deferred_set_destroy(pool->all_io_ds); 2934 kfree(pool); 2935 } 2936 2937 static struct kmem_cache *_new_mapping_cache; 2938 2939 static struct pool *pool_create(struct mapped_device *pool_md, 2940 struct block_device *metadata_dev, 2941 struct block_device *data_dev, 2942 unsigned long block_size, 2943 int read_only, char **error) 2944 { 2945 int r; 2946 void *err_p; 2947 struct pool *pool; 2948 struct dm_pool_metadata *pmd; 2949 bool format_device = read_only ? false : true; 2950 2951 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2952 if (IS_ERR(pmd)) { 2953 *error = "Error creating metadata object"; 2954 return (struct pool *)pmd; 2955 } 2956 2957 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2958 if (!pool) { 2959 *error = "Error allocating memory for pool"; 2960 err_p = ERR_PTR(-ENOMEM); 2961 goto bad_pool; 2962 } 2963 2964 pool->pmd = pmd; 2965 pool->sectors_per_block = block_size; 2966 if (block_size & (block_size - 1)) 2967 pool->sectors_per_block_shift = -1; 2968 else 2969 pool->sectors_per_block_shift = __ffs(block_size); 2970 pool->low_water_blocks = 0; 2971 pool_features_init(&pool->pf); 2972 pool->prison = dm_bio_prison_create(); 2973 if (!pool->prison) { 2974 *error = "Error creating pool's bio prison"; 2975 err_p = ERR_PTR(-ENOMEM); 2976 goto bad_prison; 2977 } 2978 2979 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2980 if (IS_ERR(pool->copier)) { 2981 r = PTR_ERR(pool->copier); 2982 *error = "Error creating pool's kcopyd client"; 2983 err_p = ERR_PTR(r); 2984 goto bad_kcopyd_client; 2985 } 2986 2987 /* 2988 * Create singlethreaded workqueue that will service all devices 2989 * that use this metadata. 2990 */ 2991 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2992 if (!pool->wq) { 2993 *error = "Error creating pool's workqueue"; 2994 err_p = ERR_PTR(-ENOMEM); 2995 goto bad_wq; 2996 } 2997 2998 throttle_init(&pool->throttle); 2999 INIT_WORK(&pool->worker, do_worker); 3000 INIT_DELAYED_WORK(&pool->waker, do_waker); 3001 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 3002 spin_lock_init(&pool->lock); 3003 bio_list_init(&pool->deferred_flush_bios); 3004 bio_list_init(&pool->deferred_flush_completions); 3005 INIT_LIST_HEAD(&pool->prepared_mappings); 3006 INIT_LIST_HEAD(&pool->prepared_discards); 3007 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 3008 INIT_LIST_HEAD(&pool->active_thins); 3009 pool->low_water_triggered = false; 3010 pool->suspended = true; 3011 pool->out_of_data_space = false; 3012 3013 pool->shared_read_ds = dm_deferred_set_create(); 3014 if (!pool->shared_read_ds) { 3015 *error = "Error creating pool's shared read deferred set"; 3016 err_p = ERR_PTR(-ENOMEM); 3017 goto bad_shared_read_ds; 3018 } 3019 3020 pool->all_io_ds = dm_deferred_set_create(); 3021 if (!pool->all_io_ds) { 3022 *error = "Error creating pool's all io deferred set"; 3023 err_p = ERR_PTR(-ENOMEM); 3024 goto bad_all_io_ds; 3025 } 3026 3027 pool->next_mapping = NULL; 3028 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 3029 _new_mapping_cache); 3030 if (r) { 3031 *error = "Error creating pool's mapping mempool"; 3032 err_p = ERR_PTR(r); 3033 goto bad_mapping_pool; 3034 } 3035 3036 pool->cell_sort_array = 3037 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3038 sizeof(*pool->cell_sort_array))); 3039 if (!pool->cell_sort_array) { 3040 *error = "Error allocating cell sort array"; 3041 err_p = ERR_PTR(-ENOMEM); 3042 goto bad_sort_array; 3043 } 3044 3045 pool->ref_count = 1; 3046 pool->last_commit_jiffies = jiffies; 3047 pool->pool_md = pool_md; 3048 pool->md_dev = metadata_dev; 3049 pool->data_dev = data_dev; 3050 __pool_table_insert(pool); 3051 3052 return pool; 3053 3054 bad_sort_array: 3055 mempool_exit(&pool->mapping_pool); 3056 bad_mapping_pool: 3057 dm_deferred_set_destroy(pool->all_io_ds); 3058 bad_all_io_ds: 3059 dm_deferred_set_destroy(pool->shared_read_ds); 3060 bad_shared_read_ds: 3061 destroy_workqueue(pool->wq); 3062 bad_wq: 3063 dm_kcopyd_client_destroy(pool->copier); 3064 bad_kcopyd_client: 3065 dm_bio_prison_destroy(pool->prison); 3066 bad_prison: 3067 kfree(pool); 3068 bad_pool: 3069 if (dm_pool_metadata_close(pmd)) 3070 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3071 3072 return err_p; 3073 } 3074 3075 static void __pool_inc(struct pool *pool) 3076 { 3077 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3078 pool->ref_count++; 3079 } 3080 3081 static void __pool_dec(struct pool *pool) 3082 { 3083 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3084 BUG_ON(!pool->ref_count); 3085 if (!--pool->ref_count) 3086 __pool_destroy(pool); 3087 } 3088 3089 static struct pool *__pool_find(struct mapped_device *pool_md, 3090 struct block_device *metadata_dev, 3091 struct block_device *data_dev, 3092 unsigned long block_size, int read_only, 3093 char **error, int *created) 3094 { 3095 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3096 3097 if (pool) { 3098 if (pool->pool_md != pool_md) { 3099 *error = "metadata device already in use by a pool"; 3100 return ERR_PTR(-EBUSY); 3101 } 3102 if (pool->data_dev != data_dev) { 3103 *error = "data device already in use by a pool"; 3104 return ERR_PTR(-EBUSY); 3105 } 3106 __pool_inc(pool); 3107 3108 } else { 3109 pool = __pool_table_lookup(pool_md); 3110 if (pool) { 3111 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { 3112 *error = "different pool cannot replace a pool"; 3113 return ERR_PTR(-EINVAL); 3114 } 3115 __pool_inc(pool); 3116 3117 } else { 3118 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); 3119 *created = 1; 3120 } 3121 } 3122 3123 return pool; 3124 } 3125 3126 /* 3127 *-------------------------------------------------------------- 3128 * Pool target methods 3129 *-------------------------------------------------------------- 3130 */ 3131 static void pool_dtr(struct dm_target *ti) 3132 { 3133 struct pool_c *pt = ti->private; 3134 3135 mutex_lock(&dm_thin_pool_table.mutex); 3136 3137 unbind_control_target(pt->pool, ti); 3138 __pool_dec(pt->pool); 3139 dm_put_device(ti, pt->metadata_dev); 3140 dm_put_device(ti, pt->data_dev); 3141 kfree(pt); 3142 3143 mutex_unlock(&dm_thin_pool_table.mutex); 3144 } 3145 3146 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3147 struct dm_target *ti) 3148 { 3149 int r; 3150 unsigned int argc; 3151 const char *arg_name; 3152 3153 static const struct dm_arg _args[] = { 3154 {0, 4, "Invalid number of pool feature arguments"}, 3155 }; 3156 3157 /* 3158 * No feature arguments supplied. 3159 */ 3160 if (!as->argc) 3161 return 0; 3162 3163 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3164 if (r) 3165 return -EINVAL; 3166 3167 while (argc && !r) { 3168 arg_name = dm_shift_arg(as); 3169 argc--; 3170 3171 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3172 pf->zero_new_blocks = false; 3173 3174 else if (!strcasecmp(arg_name, "ignore_discard")) 3175 pf->discard_enabled = false; 3176 3177 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3178 pf->discard_passdown = false; 3179 3180 else if (!strcasecmp(arg_name, "read_only")) 3181 pf->mode = PM_READ_ONLY; 3182 3183 else if (!strcasecmp(arg_name, "error_if_no_space")) 3184 pf->error_if_no_space = true; 3185 3186 else { 3187 ti->error = "Unrecognised pool feature requested"; 3188 r = -EINVAL; 3189 break; 3190 } 3191 } 3192 3193 return r; 3194 } 3195 3196 static void metadata_low_callback(void *context) 3197 { 3198 struct pool *pool = context; 3199 3200 DMWARN("%s: reached low water mark for metadata device: sending event.", 3201 dm_device_name(pool->pool_md)); 3202 3203 dm_table_event(pool->ti->table); 3204 } 3205 3206 /* 3207 * We need to flush the data device **before** committing the metadata. 3208 * 3209 * This ensures that the data blocks of any newly inserted mappings are 3210 * properly written to non-volatile storage and won't be lost in case of a 3211 * crash. 3212 * 3213 * Failure to do so can result in data corruption in the case of internal or 3214 * external snapshots and in the case of newly provisioned blocks, when block 3215 * zeroing is enabled. 3216 */ 3217 static int metadata_pre_commit_callback(void *context) 3218 { 3219 struct pool *pool = context; 3220 3221 return blkdev_issue_flush(pool->data_dev); 3222 } 3223 3224 static sector_t get_dev_size(struct block_device *bdev) 3225 { 3226 return bdev_nr_sectors(bdev); 3227 } 3228 3229 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3230 { 3231 sector_t metadata_dev_size = get_dev_size(bdev); 3232 3233 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3234 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", 3235 bdev, THIN_METADATA_MAX_SECTORS); 3236 } 3237 3238 static sector_t get_metadata_dev_size(struct block_device *bdev) 3239 { 3240 sector_t metadata_dev_size = get_dev_size(bdev); 3241 3242 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3243 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3244 3245 return metadata_dev_size; 3246 } 3247 3248 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3249 { 3250 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3251 3252 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3253 3254 return metadata_dev_size; 3255 } 3256 3257 /* 3258 * When a metadata threshold is crossed a dm event is triggered, and 3259 * userland should respond by growing the metadata device. We could let 3260 * userland set the threshold, like we do with the data threshold, but I'm 3261 * not sure they know enough to do this well. 3262 */ 3263 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3264 { 3265 /* 3266 * 4M is ample for all ops with the possible exception of thin 3267 * device deletion which is harmless if it fails (just retry the 3268 * delete after you've grown the device). 3269 */ 3270 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3271 3272 return min((dm_block_t)1024ULL /* 4M */, quarter); 3273 } 3274 3275 /* 3276 * thin-pool <metadata dev> <data dev> 3277 * <data block size (sectors)> 3278 * <low water mark (blocks)> 3279 * [<#feature args> [<arg>]*] 3280 * 3281 * Optional feature arguments are: 3282 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3283 * ignore_discard: disable discard 3284 * no_discard_passdown: don't pass discards down to the data device 3285 * read_only: Don't allow any changes to be made to the pool metadata. 3286 * error_if_no_space: error IOs, instead of queueing, if no space. 3287 */ 3288 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3289 { 3290 int r, pool_created = 0; 3291 struct pool_c *pt; 3292 struct pool *pool; 3293 struct pool_features pf; 3294 struct dm_arg_set as; 3295 struct dm_dev *data_dev; 3296 unsigned long block_size; 3297 dm_block_t low_water_blocks; 3298 struct dm_dev *metadata_dev; 3299 blk_mode_t metadata_mode; 3300 3301 /* 3302 * FIXME Remove validation from scope of lock. 3303 */ 3304 mutex_lock(&dm_thin_pool_table.mutex); 3305 3306 if (argc < 4) { 3307 ti->error = "Invalid argument count"; 3308 r = -EINVAL; 3309 goto out_unlock; 3310 } 3311 3312 as.argc = argc; 3313 as.argv = argv; 3314 3315 /* make sure metadata and data are different devices */ 3316 if (!strcmp(argv[0], argv[1])) { 3317 ti->error = "Error setting metadata or data device"; 3318 r = -EINVAL; 3319 goto out_unlock; 3320 } 3321 3322 /* 3323 * Set default pool features. 3324 */ 3325 pool_features_init(&pf); 3326 3327 dm_consume_args(&as, 4); 3328 r = parse_pool_features(&as, &pf, ti); 3329 if (r) 3330 goto out_unlock; 3331 3332 metadata_mode = BLK_OPEN_READ | 3333 ((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE); 3334 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3335 if (r) { 3336 ti->error = "Error opening metadata block device"; 3337 goto out_unlock; 3338 } 3339 warn_if_metadata_device_too_big(metadata_dev->bdev); 3340 3341 r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev); 3342 if (r) { 3343 ti->error = "Error getting data device"; 3344 goto out_metadata; 3345 } 3346 3347 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3348 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3349 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3350 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3351 ti->error = "Invalid block size"; 3352 r = -EINVAL; 3353 goto out; 3354 } 3355 3356 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3357 ti->error = "Invalid low water mark"; 3358 r = -EINVAL; 3359 goto out; 3360 } 3361 3362 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3363 if (!pt) { 3364 r = -ENOMEM; 3365 goto out; 3366 } 3367 3368 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, 3369 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3370 if (IS_ERR(pool)) { 3371 r = PTR_ERR(pool); 3372 goto out_free_pt; 3373 } 3374 3375 /* 3376 * 'pool_created' reflects whether this is the first table load. 3377 * Top level discard support is not allowed to be changed after 3378 * initial load. This would require a pool reload to trigger thin 3379 * device changes. 3380 */ 3381 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3382 ti->error = "Discard support cannot be disabled once enabled"; 3383 r = -EINVAL; 3384 goto out_flags_changed; 3385 } 3386 3387 pt->pool = pool; 3388 pt->ti = ti; 3389 pt->metadata_dev = metadata_dev; 3390 pt->data_dev = data_dev; 3391 pt->low_water_blocks = low_water_blocks; 3392 pt->adjusted_pf = pt->requested_pf = pf; 3393 ti->num_flush_bios = 1; 3394 ti->limit_swap_bios = true; 3395 3396 /* 3397 * Only need to enable discards if the pool should pass 3398 * them down to the data device. The thin device's discard 3399 * processing will cause mappings to be removed from the btree. 3400 */ 3401 if (pf.discard_enabled && pf.discard_passdown) { 3402 ti->num_discard_bios = 1; 3403 /* 3404 * Setting 'discards_supported' circumvents the normal 3405 * stacking of discard limits (this keeps the pool and 3406 * thin devices' discard limits consistent). 3407 */ 3408 ti->discards_supported = true; 3409 ti->max_discard_granularity = true; 3410 } 3411 ti->private = pt; 3412 3413 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3414 calc_metadata_threshold(pt), 3415 metadata_low_callback, 3416 pool); 3417 if (r) { 3418 ti->error = "Error registering metadata threshold"; 3419 goto out_flags_changed; 3420 } 3421 3422 dm_pool_register_pre_commit_callback(pool->pmd, 3423 metadata_pre_commit_callback, pool); 3424 3425 mutex_unlock(&dm_thin_pool_table.mutex); 3426 3427 return 0; 3428 3429 out_flags_changed: 3430 __pool_dec(pool); 3431 out_free_pt: 3432 kfree(pt); 3433 out: 3434 dm_put_device(ti, data_dev); 3435 out_metadata: 3436 dm_put_device(ti, metadata_dev); 3437 out_unlock: 3438 mutex_unlock(&dm_thin_pool_table.mutex); 3439 3440 return r; 3441 } 3442 3443 static int pool_map(struct dm_target *ti, struct bio *bio) 3444 { 3445 struct pool_c *pt = ti->private; 3446 struct pool *pool = pt->pool; 3447 3448 /* 3449 * As this is a singleton target, ti->begin is always zero. 3450 */ 3451 spin_lock_irq(&pool->lock); 3452 bio_set_dev(bio, pt->data_dev->bdev); 3453 spin_unlock_irq(&pool->lock); 3454 3455 return DM_MAPIO_REMAPPED; 3456 } 3457 3458 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3459 { 3460 int r; 3461 struct pool_c *pt = ti->private; 3462 struct pool *pool = pt->pool; 3463 sector_t data_size = ti->len; 3464 dm_block_t sb_data_size; 3465 3466 *need_commit = false; 3467 3468 (void) sector_div(data_size, pool->sectors_per_block); 3469 3470 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3471 if (r) { 3472 DMERR("%s: failed to retrieve data device size", 3473 dm_device_name(pool->pool_md)); 3474 return r; 3475 } 3476 3477 if (data_size < sb_data_size) { 3478 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3479 dm_device_name(pool->pool_md), 3480 (unsigned long long)data_size, sb_data_size); 3481 return -EINVAL; 3482 3483 } else if (data_size > sb_data_size) { 3484 if (dm_pool_metadata_needs_check(pool->pmd)) { 3485 DMERR("%s: unable to grow the data device until repaired.", 3486 dm_device_name(pool->pool_md)); 3487 return 0; 3488 } 3489 3490 if (sb_data_size) 3491 DMINFO("%s: growing the data device from %llu to %llu blocks", 3492 dm_device_name(pool->pool_md), 3493 sb_data_size, (unsigned long long)data_size); 3494 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3495 if (r) { 3496 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3497 return r; 3498 } 3499 3500 *need_commit = true; 3501 } 3502 3503 return 0; 3504 } 3505 3506 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3507 { 3508 int r; 3509 struct pool_c *pt = ti->private; 3510 struct pool *pool = pt->pool; 3511 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3512 3513 *need_commit = false; 3514 3515 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3516 3517 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3518 if (r) { 3519 DMERR("%s: failed to retrieve metadata device size", 3520 dm_device_name(pool->pool_md)); 3521 return r; 3522 } 3523 3524 if (metadata_dev_size < sb_metadata_dev_size) { 3525 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3526 dm_device_name(pool->pool_md), 3527 metadata_dev_size, sb_metadata_dev_size); 3528 return -EINVAL; 3529 3530 } else if (metadata_dev_size > sb_metadata_dev_size) { 3531 if (dm_pool_metadata_needs_check(pool->pmd)) { 3532 DMERR("%s: unable to grow the metadata device until repaired.", 3533 dm_device_name(pool->pool_md)); 3534 return 0; 3535 } 3536 3537 warn_if_metadata_device_too_big(pool->md_dev); 3538 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3539 dm_device_name(pool->pool_md), 3540 sb_metadata_dev_size, metadata_dev_size); 3541 3542 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3543 set_pool_mode(pool, PM_WRITE); 3544 3545 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3546 if (r) { 3547 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3548 return r; 3549 } 3550 3551 *need_commit = true; 3552 } 3553 3554 return 0; 3555 } 3556 3557 /* 3558 * Retrieves the number of blocks of the data device from 3559 * the superblock and compares it to the actual device size, 3560 * thus resizing the data device in case it has grown. 3561 * 3562 * This both copes with opening preallocated data devices in the ctr 3563 * being followed by a resume 3564 * -and- 3565 * calling the resume method individually after userspace has 3566 * grown the data device in reaction to a table event. 3567 */ 3568 static int pool_preresume(struct dm_target *ti) 3569 { 3570 int r; 3571 bool need_commit1, need_commit2; 3572 struct pool_c *pt = ti->private; 3573 struct pool *pool = pt->pool; 3574 3575 /* 3576 * Take control of the pool object. 3577 */ 3578 r = bind_control_target(pool, ti); 3579 if (r) 3580 goto out; 3581 3582 r = maybe_resize_data_dev(ti, &need_commit1); 3583 if (r) 3584 goto out; 3585 3586 r = maybe_resize_metadata_dev(ti, &need_commit2); 3587 if (r) 3588 goto out; 3589 3590 if (need_commit1 || need_commit2) 3591 (void) commit(pool); 3592 out: 3593 /* 3594 * When a thin-pool is PM_FAIL, it cannot be rebuilt if 3595 * bio is in deferred list. Therefore need to return 0 3596 * to allow pool_resume() to flush IO. 3597 */ 3598 if (r && get_pool_mode(pool) == PM_FAIL) 3599 r = 0; 3600 3601 return r; 3602 } 3603 3604 static void pool_suspend_active_thins(struct pool *pool) 3605 { 3606 struct thin_c *tc; 3607 3608 /* Suspend all active thin devices */ 3609 tc = get_first_thin(pool); 3610 while (tc) { 3611 dm_internal_suspend_noflush(tc->thin_md); 3612 tc = get_next_thin(pool, tc); 3613 } 3614 } 3615 3616 static void pool_resume_active_thins(struct pool *pool) 3617 { 3618 struct thin_c *tc; 3619 3620 /* Resume all active thin devices */ 3621 tc = get_first_thin(pool); 3622 while (tc) { 3623 dm_internal_resume(tc->thin_md); 3624 tc = get_next_thin(pool, tc); 3625 } 3626 } 3627 3628 static void pool_resume(struct dm_target *ti) 3629 { 3630 struct pool_c *pt = ti->private; 3631 struct pool *pool = pt->pool; 3632 3633 /* 3634 * Must requeue active_thins' bios and then resume 3635 * active_thins _before_ clearing 'suspend' flag. 3636 */ 3637 requeue_bios(pool); 3638 pool_resume_active_thins(pool); 3639 3640 spin_lock_irq(&pool->lock); 3641 pool->low_water_triggered = false; 3642 pool->suspended = false; 3643 spin_unlock_irq(&pool->lock); 3644 3645 do_waker(&pool->waker.work); 3646 } 3647 3648 static void pool_presuspend(struct dm_target *ti) 3649 { 3650 struct pool_c *pt = ti->private; 3651 struct pool *pool = pt->pool; 3652 3653 spin_lock_irq(&pool->lock); 3654 pool->suspended = true; 3655 spin_unlock_irq(&pool->lock); 3656 3657 pool_suspend_active_thins(pool); 3658 } 3659 3660 static void pool_presuspend_undo(struct dm_target *ti) 3661 { 3662 struct pool_c *pt = ti->private; 3663 struct pool *pool = pt->pool; 3664 3665 pool_resume_active_thins(pool); 3666 3667 spin_lock_irq(&pool->lock); 3668 pool->suspended = false; 3669 spin_unlock_irq(&pool->lock); 3670 } 3671 3672 static void pool_postsuspend(struct dm_target *ti) 3673 { 3674 struct pool_c *pt = ti->private; 3675 struct pool *pool = pt->pool; 3676 3677 cancel_delayed_work_sync(&pool->waker); 3678 cancel_delayed_work_sync(&pool->no_space_timeout); 3679 flush_workqueue(pool->wq); 3680 (void) commit(pool); 3681 } 3682 3683 static int check_arg_count(unsigned int argc, unsigned int args_required) 3684 { 3685 if (argc != args_required) { 3686 DMWARN("Message received with %u arguments instead of %u.", 3687 argc, args_required); 3688 return -EINVAL; 3689 } 3690 3691 return 0; 3692 } 3693 3694 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3695 { 3696 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3697 *dev_id <= MAX_DEV_ID) 3698 return 0; 3699 3700 if (warning) 3701 DMWARN("Message received with invalid device id: %s", arg); 3702 3703 return -EINVAL; 3704 } 3705 3706 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool) 3707 { 3708 dm_thin_id dev_id; 3709 int r; 3710 3711 r = check_arg_count(argc, 2); 3712 if (r) 3713 return r; 3714 3715 r = read_dev_id(argv[1], &dev_id, 1); 3716 if (r) 3717 return r; 3718 3719 r = dm_pool_create_thin(pool->pmd, dev_id); 3720 if (r) { 3721 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3722 argv[1]); 3723 return r; 3724 } 3725 3726 return 0; 3727 } 3728 3729 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3730 { 3731 dm_thin_id dev_id; 3732 dm_thin_id origin_dev_id; 3733 int r; 3734 3735 r = check_arg_count(argc, 3); 3736 if (r) 3737 return r; 3738 3739 r = read_dev_id(argv[1], &dev_id, 1); 3740 if (r) 3741 return r; 3742 3743 r = read_dev_id(argv[2], &origin_dev_id, 1); 3744 if (r) 3745 return r; 3746 3747 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3748 if (r) { 3749 DMWARN("Creation of new snapshot %s of device %s failed.", 3750 argv[1], argv[2]); 3751 return r; 3752 } 3753 3754 return 0; 3755 } 3756 3757 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool) 3758 { 3759 dm_thin_id dev_id; 3760 int r; 3761 3762 r = check_arg_count(argc, 2); 3763 if (r) 3764 return r; 3765 3766 r = read_dev_id(argv[1], &dev_id, 1); 3767 if (r) 3768 return r; 3769 3770 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3771 if (r) 3772 DMWARN("Deletion of thin device %s failed.", argv[1]); 3773 3774 return r; 3775 } 3776 3777 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool) 3778 { 3779 dm_thin_id old_id, new_id; 3780 int r; 3781 3782 r = check_arg_count(argc, 3); 3783 if (r) 3784 return r; 3785 3786 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3787 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3788 return -EINVAL; 3789 } 3790 3791 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3792 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3793 return -EINVAL; 3794 } 3795 3796 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3797 if (r) { 3798 DMWARN("Failed to change transaction id from %s to %s.", 3799 argv[1], argv[2]); 3800 return r; 3801 } 3802 3803 return 0; 3804 } 3805 3806 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3807 { 3808 int r; 3809 3810 r = check_arg_count(argc, 1); 3811 if (r) 3812 return r; 3813 3814 (void) commit(pool); 3815 3816 r = dm_pool_reserve_metadata_snap(pool->pmd); 3817 if (r) 3818 DMWARN("reserve_metadata_snap message failed."); 3819 3820 return r; 3821 } 3822 3823 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3824 { 3825 int r; 3826 3827 r = check_arg_count(argc, 1); 3828 if (r) 3829 return r; 3830 3831 r = dm_pool_release_metadata_snap(pool->pmd); 3832 if (r) 3833 DMWARN("release_metadata_snap message failed."); 3834 3835 return r; 3836 } 3837 3838 /* 3839 * Messages supported: 3840 * create_thin <dev_id> 3841 * create_snap <dev_id> <origin_id> 3842 * delete <dev_id> 3843 * set_transaction_id <current_trans_id> <new_trans_id> 3844 * reserve_metadata_snap 3845 * release_metadata_snap 3846 */ 3847 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv, 3848 char *result, unsigned int maxlen) 3849 { 3850 int r = -EINVAL; 3851 struct pool_c *pt = ti->private; 3852 struct pool *pool = pt->pool; 3853 3854 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3855 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3856 dm_device_name(pool->pool_md)); 3857 return -EOPNOTSUPP; 3858 } 3859 3860 if (!strcasecmp(argv[0], "create_thin")) 3861 r = process_create_thin_mesg(argc, argv, pool); 3862 3863 else if (!strcasecmp(argv[0], "create_snap")) 3864 r = process_create_snap_mesg(argc, argv, pool); 3865 3866 else if (!strcasecmp(argv[0], "delete")) 3867 r = process_delete_mesg(argc, argv, pool); 3868 3869 else if (!strcasecmp(argv[0], "set_transaction_id")) 3870 r = process_set_transaction_id_mesg(argc, argv, pool); 3871 3872 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3873 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3874 3875 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3876 r = process_release_metadata_snap_mesg(argc, argv, pool); 3877 3878 else 3879 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3880 3881 if (!r) 3882 (void) commit(pool); 3883 3884 return r; 3885 } 3886 3887 static void emit_flags(struct pool_features *pf, char *result, 3888 unsigned int sz, unsigned int maxlen) 3889 { 3890 unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled + 3891 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3892 pf->error_if_no_space; 3893 DMEMIT("%u ", count); 3894 3895 if (!pf->zero_new_blocks) 3896 DMEMIT("skip_block_zeroing "); 3897 3898 if (!pf->discard_enabled) 3899 DMEMIT("ignore_discard "); 3900 3901 if (!pf->discard_passdown) 3902 DMEMIT("no_discard_passdown "); 3903 3904 if (pf->mode == PM_READ_ONLY) 3905 DMEMIT("read_only "); 3906 3907 if (pf->error_if_no_space) 3908 DMEMIT("error_if_no_space "); 3909 } 3910 3911 /* 3912 * Status line is: 3913 * <transaction id> <used metadata sectors>/<total metadata sectors> 3914 * <used data sectors>/<total data sectors> <held metadata root> 3915 * <pool mode> <discard config> <no space config> <needs_check> 3916 */ 3917 static void pool_status(struct dm_target *ti, status_type_t type, 3918 unsigned int status_flags, char *result, unsigned int maxlen) 3919 { 3920 int r; 3921 unsigned int sz = 0; 3922 uint64_t transaction_id; 3923 dm_block_t nr_free_blocks_data; 3924 dm_block_t nr_free_blocks_metadata; 3925 dm_block_t nr_blocks_data; 3926 dm_block_t nr_blocks_metadata; 3927 dm_block_t held_root; 3928 enum pool_mode mode; 3929 char buf[BDEVNAME_SIZE]; 3930 char buf2[BDEVNAME_SIZE]; 3931 struct pool_c *pt = ti->private; 3932 struct pool *pool = pt->pool; 3933 3934 switch (type) { 3935 case STATUSTYPE_INFO: 3936 if (get_pool_mode(pool) == PM_FAIL) { 3937 DMEMIT("Fail"); 3938 break; 3939 } 3940 3941 /* Commit to ensure statistics aren't out-of-date */ 3942 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3943 (void) commit(pool); 3944 3945 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3946 if (r) { 3947 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3948 dm_device_name(pool->pool_md), r); 3949 goto err; 3950 } 3951 3952 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3953 if (r) { 3954 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3955 dm_device_name(pool->pool_md), r); 3956 goto err; 3957 } 3958 3959 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3960 if (r) { 3961 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3962 dm_device_name(pool->pool_md), r); 3963 goto err; 3964 } 3965 3966 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3967 if (r) { 3968 DMERR("%s: dm_pool_get_free_block_count returned %d", 3969 dm_device_name(pool->pool_md), r); 3970 goto err; 3971 } 3972 3973 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3974 if (r) { 3975 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3976 dm_device_name(pool->pool_md), r); 3977 goto err; 3978 } 3979 3980 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3981 if (r) { 3982 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3983 dm_device_name(pool->pool_md), r); 3984 goto err; 3985 } 3986 3987 DMEMIT("%llu %llu/%llu %llu/%llu ", 3988 (unsigned long long)transaction_id, 3989 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3990 (unsigned long long)nr_blocks_metadata, 3991 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3992 (unsigned long long)nr_blocks_data); 3993 3994 if (held_root) 3995 DMEMIT("%llu ", held_root); 3996 else 3997 DMEMIT("- "); 3998 3999 mode = get_pool_mode(pool); 4000 if (mode == PM_OUT_OF_DATA_SPACE) 4001 DMEMIT("out_of_data_space "); 4002 else if (is_read_only_pool_mode(mode)) 4003 DMEMIT("ro "); 4004 else 4005 DMEMIT("rw "); 4006 4007 if (!pool->pf.discard_enabled) 4008 DMEMIT("ignore_discard "); 4009 else if (pool->pf.discard_passdown) 4010 DMEMIT("discard_passdown "); 4011 else 4012 DMEMIT("no_discard_passdown "); 4013 4014 if (pool->pf.error_if_no_space) 4015 DMEMIT("error_if_no_space "); 4016 else 4017 DMEMIT("queue_if_no_space "); 4018 4019 if (dm_pool_metadata_needs_check(pool->pmd)) 4020 DMEMIT("needs_check "); 4021 else 4022 DMEMIT("- "); 4023 4024 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 4025 4026 break; 4027 4028 case STATUSTYPE_TABLE: 4029 DMEMIT("%s %s %lu %llu ", 4030 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 4031 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 4032 (unsigned long)pool->sectors_per_block, 4033 (unsigned long long)pt->low_water_blocks); 4034 emit_flags(&pt->requested_pf, result, sz, maxlen); 4035 break; 4036 4037 case STATUSTYPE_IMA: 4038 *result = '\0'; 4039 break; 4040 } 4041 return; 4042 4043 err: 4044 DMEMIT("Error"); 4045 } 4046 4047 static int pool_iterate_devices(struct dm_target *ti, 4048 iterate_devices_callout_fn fn, void *data) 4049 { 4050 struct pool_c *pt = ti->private; 4051 4052 return fn(ti, pt->data_dev, 0, ti->len, data); 4053 } 4054 4055 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4056 { 4057 struct pool_c *pt = ti->private; 4058 struct pool *pool = pt->pool; 4059 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4060 4061 /* 4062 * If max_sectors is smaller than pool->sectors_per_block adjust it 4063 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4064 * This is especially beneficial when the pool's data device is a RAID 4065 * device that has a full stripe width that matches pool->sectors_per_block 4066 * -- because even though partial RAID stripe-sized IOs will be issued to a 4067 * single RAID stripe; when aggregated they will end on a full RAID stripe 4068 * boundary.. which avoids additional partial RAID stripe writes cascading 4069 */ 4070 if (limits->max_sectors < pool->sectors_per_block) { 4071 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4072 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4073 limits->max_sectors--; 4074 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4075 } 4076 } 4077 4078 /* 4079 * If the system-determined stacked limits are compatible with the 4080 * pool's blocksize (io_opt is a factor) do not override them. 4081 */ 4082 if (io_opt_sectors < pool->sectors_per_block || 4083 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4084 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4085 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4086 else 4087 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4088 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4089 } 4090 4091 /* 4092 * pt->adjusted_pf is a staging area for the actual features to use. 4093 * They get transferred to the live pool in bind_control_target() 4094 * called from pool_preresume(). 4095 */ 4096 4097 if (pt->adjusted_pf.discard_enabled) { 4098 disable_discard_passdown_if_not_supported(pt); 4099 if (!pt->adjusted_pf.discard_passdown) 4100 limits->max_discard_sectors = 0; 4101 /* 4102 * The pool uses the same discard limits as the underlying data 4103 * device. DM core has already set this up. 4104 */ 4105 } else { 4106 /* 4107 * Must explicitly disallow stacking discard limits otherwise the 4108 * block layer will stack them if pool's data device has support. 4109 */ 4110 limits->discard_granularity = 0; 4111 } 4112 } 4113 4114 static struct target_type pool_target = { 4115 .name = "thin-pool", 4116 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4117 DM_TARGET_IMMUTABLE, 4118 .version = {1, 23, 0}, 4119 .module = THIS_MODULE, 4120 .ctr = pool_ctr, 4121 .dtr = pool_dtr, 4122 .map = pool_map, 4123 .presuspend = pool_presuspend, 4124 .presuspend_undo = pool_presuspend_undo, 4125 .postsuspend = pool_postsuspend, 4126 .preresume = pool_preresume, 4127 .resume = pool_resume, 4128 .message = pool_message, 4129 .status = pool_status, 4130 .iterate_devices = pool_iterate_devices, 4131 .io_hints = pool_io_hints, 4132 }; 4133 4134 /* 4135 *-------------------------------------------------------------- 4136 * Thin target methods 4137 *-------------------------------------------------------------- 4138 */ 4139 static void thin_get(struct thin_c *tc) 4140 { 4141 refcount_inc(&tc->refcount); 4142 } 4143 4144 static void thin_put(struct thin_c *tc) 4145 { 4146 if (refcount_dec_and_test(&tc->refcount)) 4147 complete(&tc->can_destroy); 4148 } 4149 4150 static void thin_dtr(struct dm_target *ti) 4151 { 4152 struct thin_c *tc = ti->private; 4153 4154 spin_lock_irq(&tc->pool->lock); 4155 list_del_rcu(&tc->list); 4156 spin_unlock_irq(&tc->pool->lock); 4157 synchronize_rcu(); 4158 4159 thin_put(tc); 4160 wait_for_completion(&tc->can_destroy); 4161 4162 mutex_lock(&dm_thin_pool_table.mutex); 4163 4164 __pool_dec(tc->pool); 4165 dm_pool_close_thin_device(tc->td); 4166 dm_put_device(ti, tc->pool_dev); 4167 if (tc->origin_dev) 4168 dm_put_device(ti, tc->origin_dev); 4169 kfree(tc); 4170 4171 mutex_unlock(&dm_thin_pool_table.mutex); 4172 } 4173 4174 /* 4175 * Thin target parameters: 4176 * 4177 * <pool_dev> <dev_id> [origin_dev] 4178 * 4179 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4180 * dev_id: the internal device identifier 4181 * origin_dev: a device external to the pool that should act as the origin 4182 * 4183 * If the pool device has discards disabled, they get disabled for the thin 4184 * device as well. 4185 */ 4186 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4187 { 4188 int r; 4189 struct thin_c *tc; 4190 struct dm_dev *pool_dev, *origin_dev; 4191 struct mapped_device *pool_md; 4192 4193 mutex_lock(&dm_thin_pool_table.mutex); 4194 4195 if (argc != 2 && argc != 3) { 4196 ti->error = "Invalid argument count"; 4197 r = -EINVAL; 4198 goto out_unlock; 4199 } 4200 4201 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4202 if (!tc) { 4203 ti->error = "Out of memory"; 4204 r = -ENOMEM; 4205 goto out_unlock; 4206 } 4207 tc->thin_md = dm_table_get_md(ti->table); 4208 spin_lock_init(&tc->lock); 4209 INIT_LIST_HEAD(&tc->deferred_cells); 4210 bio_list_init(&tc->deferred_bio_list); 4211 bio_list_init(&tc->retry_on_resume_list); 4212 tc->sort_bio_list = RB_ROOT; 4213 4214 if (argc == 3) { 4215 if (!strcmp(argv[0], argv[2])) { 4216 ti->error = "Error setting origin device"; 4217 r = -EINVAL; 4218 goto bad_origin_dev; 4219 } 4220 4221 r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev); 4222 if (r) { 4223 ti->error = "Error opening origin device"; 4224 goto bad_origin_dev; 4225 } 4226 tc->origin_dev = origin_dev; 4227 } 4228 4229 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4230 if (r) { 4231 ti->error = "Error opening pool device"; 4232 goto bad_pool_dev; 4233 } 4234 tc->pool_dev = pool_dev; 4235 4236 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4237 ti->error = "Invalid device id"; 4238 r = -EINVAL; 4239 goto bad_common; 4240 } 4241 4242 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4243 if (!pool_md) { 4244 ti->error = "Couldn't get pool mapped device"; 4245 r = -EINVAL; 4246 goto bad_common; 4247 } 4248 4249 tc->pool = __pool_table_lookup(pool_md); 4250 if (!tc->pool) { 4251 ti->error = "Couldn't find pool object"; 4252 r = -EINVAL; 4253 goto bad_pool_lookup; 4254 } 4255 __pool_inc(tc->pool); 4256 4257 if (get_pool_mode(tc->pool) == PM_FAIL) { 4258 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4259 r = -EINVAL; 4260 goto bad_pool; 4261 } 4262 4263 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4264 if (r) { 4265 ti->error = "Couldn't open thin internal device"; 4266 goto bad_pool; 4267 } 4268 4269 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4270 if (r) 4271 goto bad; 4272 4273 ti->num_flush_bios = 1; 4274 ti->limit_swap_bios = true; 4275 ti->flush_supported = true; 4276 ti->accounts_remapped_io = true; 4277 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4278 4279 /* In case the pool supports discards, pass them on. */ 4280 if (tc->pool->pf.discard_enabled) { 4281 ti->discards_supported = true; 4282 ti->num_discard_bios = 1; 4283 ti->max_discard_granularity = true; 4284 } 4285 4286 mutex_unlock(&dm_thin_pool_table.mutex); 4287 4288 spin_lock_irq(&tc->pool->lock); 4289 if (tc->pool->suspended) { 4290 spin_unlock_irq(&tc->pool->lock); 4291 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4292 ti->error = "Unable to activate thin device while pool is suspended"; 4293 r = -EINVAL; 4294 goto bad; 4295 } 4296 refcount_set(&tc->refcount, 1); 4297 init_completion(&tc->can_destroy); 4298 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4299 spin_unlock_irq(&tc->pool->lock); 4300 /* 4301 * This synchronize_rcu() call is needed here otherwise we risk a 4302 * wake_worker() call finding no bios to process (because the newly 4303 * added tc isn't yet visible). So this reduces latency since we 4304 * aren't then dependent on the periodic commit to wake_worker(). 4305 */ 4306 synchronize_rcu(); 4307 4308 dm_put(pool_md); 4309 4310 return 0; 4311 4312 bad: 4313 dm_pool_close_thin_device(tc->td); 4314 bad_pool: 4315 __pool_dec(tc->pool); 4316 bad_pool_lookup: 4317 dm_put(pool_md); 4318 bad_common: 4319 dm_put_device(ti, tc->pool_dev); 4320 bad_pool_dev: 4321 if (tc->origin_dev) 4322 dm_put_device(ti, tc->origin_dev); 4323 bad_origin_dev: 4324 kfree(tc); 4325 out_unlock: 4326 mutex_unlock(&dm_thin_pool_table.mutex); 4327 4328 return r; 4329 } 4330 4331 static int thin_map(struct dm_target *ti, struct bio *bio) 4332 { 4333 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4334 4335 return thin_bio_map(ti, bio); 4336 } 4337 4338 static int thin_endio(struct dm_target *ti, struct bio *bio, 4339 blk_status_t *err) 4340 { 4341 unsigned long flags; 4342 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4343 struct list_head work; 4344 struct dm_thin_new_mapping *m, *tmp; 4345 struct pool *pool = h->tc->pool; 4346 4347 if (h->shared_read_entry) { 4348 INIT_LIST_HEAD(&work); 4349 dm_deferred_entry_dec(h->shared_read_entry, &work); 4350 4351 spin_lock_irqsave(&pool->lock, flags); 4352 list_for_each_entry_safe(m, tmp, &work, list) { 4353 list_del(&m->list); 4354 __complete_mapping_preparation(m); 4355 } 4356 spin_unlock_irqrestore(&pool->lock, flags); 4357 } 4358 4359 if (h->all_io_entry) { 4360 INIT_LIST_HEAD(&work); 4361 dm_deferred_entry_dec(h->all_io_entry, &work); 4362 if (!list_empty(&work)) { 4363 spin_lock_irqsave(&pool->lock, flags); 4364 list_for_each_entry_safe(m, tmp, &work, list) 4365 list_add_tail(&m->list, &pool->prepared_discards); 4366 spin_unlock_irqrestore(&pool->lock, flags); 4367 wake_worker(pool); 4368 } 4369 } 4370 4371 if (h->cell) 4372 cell_defer_no_holder(h->tc, h->cell); 4373 4374 return DM_ENDIO_DONE; 4375 } 4376 4377 static void thin_presuspend(struct dm_target *ti) 4378 { 4379 struct thin_c *tc = ti->private; 4380 4381 if (dm_noflush_suspending(ti)) 4382 noflush_work(tc, do_noflush_start); 4383 } 4384 4385 static void thin_postsuspend(struct dm_target *ti) 4386 { 4387 struct thin_c *tc = ti->private; 4388 4389 /* 4390 * The dm_noflush_suspending flag has been cleared by now, so 4391 * unfortunately we must always run this. 4392 */ 4393 noflush_work(tc, do_noflush_stop); 4394 } 4395 4396 static int thin_preresume(struct dm_target *ti) 4397 { 4398 struct thin_c *tc = ti->private; 4399 4400 if (tc->origin_dev) 4401 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4402 4403 return 0; 4404 } 4405 4406 /* 4407 * <nr mapped sectors> <highest mapped sector> 4408 */ 4409 static void thin_status(struct dm_target *ti, status_type_t type, 4410 unsigned int status_flags, char *result, unsigned int maxlen) 4411 { 4412 int r; 4413 ssize_t sz = 0; 4414 dm_block_t mapped, highest; 4415 char buf[BDEVNAME_SIZE]; 4416 struct thin_c *tc = ti->private; 4417 4418 if (get_pool_mode(tc->pool) == PM_FAIL) { 4419 DMEMIT("Fail"); 4420 return; 4421 } 4422 4423 if (!tc->td) 4424 DMEMIT("-"); 4425 else { 4426 switch (type) { 4427 case STATUSTYPE_INFO: 4428 r = dm_thin_get_mapped_count(tc->td, &mapped); 4429 if (r) { 4430 DMERR("dm_thin_get_mapped_count returned %d", r); 4431 goto err; 4432 } 4433 4434 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4435 if (r < 0) { 4436 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4437 goto err; 4438 } 4439 4440 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4441 if (r) 4442 DMEMIT("%llu", ((highest + 1) * 4443 tc->pool->sectors_per_block) - 1); 4444 else 4445 DMEMIT("-"); 4446 break; 4447 4448 case STATUSTYPE_TABLE: 4449 DMEMIT("%s %lu", 4450 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4451 (unsigned long) tc->dev_id); 4452 if (tc->origin_dev) 4453 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4454 break; 4455 4456 case STATUSTYPE_IMA: 4457 *result = '\0'; 4458 break; 4459 } 4460 } 4461 4462 return; 4463 4464 err: 4465 DMEMIT("Error"); 4466 } 4467 4468 static int thin_iterate_devices(struct dm_target *ti, 4469 iterate_devices_callout_fn fn, void *data) 4470 { 4471 sector_t blocks; 4472 struct thin_c *tc = ti->private; 4473 struct pool *pool = tc->pool; 4474 4475 /* 4476 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4477 * we follow a more convoluted path through to the pool's target. 4478 */ 4479 if (!pool->ti) 4480 return 0; /* nothing is bound */ 4481 4482 blocks = pool->ti->len; 4483 (void) sector_div(blocks, pool->sectors_per_block); 4484 if (blocks) 4485 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4486 4487 return 0; 4488 } 4489 4490 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4491 { 4492 struct thin_c *tc = ti->private; 4493 struct pool *pool = tc->pool; 4494 4495 if (pool->pf.discard_enabled) { 4496 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4497 limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE; 4498 } 4499 } 4500 4501 static struct target_type thin_target = { 4502 .name = "thin", 4503 .version = {1, 23, 0}, 4504 .module = THIS_MODULE, 4505 .ctr = thin_ctr, 4506 .dtr = thin_dtr, 4507 .map = thin_map, 4508 .end_io = thin_endio, 4509 .preresume = thin_preresume, 4510 .presuspend = thin_presuspend, 4511 .postsuspend = thin_postsuspend, 4512 .status = thin_status, 4513 .iterate_devices = thin_iterate_devices, 4514 .io_hints = thin_io_hints, 4515 }; 4516 4517 /*----------------------------------------------------------------*/ 4518 4519 static int __init dm_thin_init(void) 4520 { 4521 int r = -ENOMEM; 4522 4523 pool_table_init(); 4524 4525 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4526 if (!_new_mapping_cache) 4527 return r; 4528 4529 r = dm_register_target(&thin_target); 4530 if (r) 4531 goto bad_new_mapping_cache; 4532 4533 r = dm_register_target(&pool_target); 4534 if (r) 4535 goto bad_thin_target; 4536 4537 return 0; 4538 4539 bad_thin_target: 4540 dm_unregister_target(&thin_target); 4541 bad_new_mapping_cache: 4542 kmem_cache_destroy(_new_mapping_cache); 4543 4544 return r; 4545 } 4546 4547 static void dm_thin_exit(void) 4548 { 4549 dm_unregister_target(&thin_target); 4550 dm_unregister_target(&pool_target); 4551 4552 kmem_cache_destroy(_new_mapping_cache); 4553 4554 pool_table_exit(); 4555 } 4556 4557 module_init(dm_thin_init); 4558 module_exit(dm_thin_exit); 4559 4560 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644); 4561 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4562 4563 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4564 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4565 MODULE_LICENSE("GPL"); 4566