xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision e3b9f1e8)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81 
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91 
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94 
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99 	__le32 csum;	/* Checksum of superblock except for this field. */
100 	__le32 flags;
101 	__le64 blocknr;	/* This block number, dm_block_t. */
102 
103 	__u8 uuid[16];
104 	__le64 magic;
105 	__le32 version;
106 	__le32 time;
107 
108 	__le64 trans_id;
109 
110 	/*
111 	 * Root held by userspace transactions.
112 	 */
113 	__le64 held_root;
114 
115 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117 
118 	/*
119 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 	 */
121 	__le64 data_mapping_root;
122 
123 	/*
124 	 * Device detail root mapping dev_id -> device_details
125 	 */
126 	__le64 device_details_root;
127 
128 	__le32 data_block_size;		/* In 512-byte sectors. */
129 
130 	__le32 metadata_block_size;	/* In 512-byte sectors. */
131 	__le64 metadata_nr_blocks;
132 
133 	__le32 compat_flags;
134 	__le32 compat_ro_flags;
135 	__le32 incompat_flags;
136 } __packed;
137 
138 struct disk_device_details {
139 	__le64 mapped_blocks;
140 	__le64 transaction_id;		/* When created. */
141 	__le32 creation_time;
142 	__le32 snapshotted_time;
143 } __packed;
144 
145 struct dm_pool_metadata {
146 	struct hlist_node hash;
147 
148 	struct block_device *bdev;
149 	struct dm_block_manager *bm;
150 	struct dm_space_map *metadata_sm;
151 	struct dm_space_map *data_sm;
152 	struct dm_transaction_manager *tm;
153 	struct dm_transaction_manager *nb_tm;
154 
155 	/*
156 	 * Two-level btree.
157 	 * First level holds thin_dev_t.
158 	 * Second level holds mappings.
159 	 */
160 	struct dm_btree_info info;
161 
162 	/*
163 	 * Non-blocking version of the above.
164 	 */
165 	struct dm_btree_info nb_info;
166 
167 	/*
168 	 * Just the top level for deleting whole devices.
169 	 */
170 	struct dm_btree_info tl_info;
171 
172 	/*
173 	 * Just the bottom level for creating new devices.
174 	 */
175 	struct dm_btree_info bl_info;
176 
177 	/*
178 	 * Describes the device details btree.
179 	 */
180 	struct dm_btree_info details_info;
181 
182 	struct rw_semaphore root_lock;
183 	uint32_t time;
184 	dm_block_t root;
185 	dm_block_t details_root;
186 	struct list_head thin_devices;
187 	uint64_t trans_id;
188 	unsigned long flags;
189 	sector_t data_block_size;
190 
191 	/*
192 	 * Set if a transaction has to be aborted but the attempt to roll back
193 	 * to the previous (good) transaction failed.  The only pool metadata
194 	 * operation possible in this state is the closing of the device.
195 	 */
196 	bool fail_io:1;
197 
198 	/*
199 	 * Reading the space map roots can fail, so we read it into these
200 	 * buffers before the superblock is locked and updated.
201 	 */
202 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
203 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
204 };
205 
206 struct dm_thin_device {
207 	struct list_head list;
208 	struct dm_pool_metadata *pmd;
209 	dm_thin_id id;
210 
211 	int open_count;
212 	bool changed:1;
213 	bool aborted_with_changes:1;
214 	uint64_t mapped_blocks;
215 	uint64_t transaction_id;
216 	uint32_t creation_time;
217 	uint32_t snapshotted_time;
218 };
219 
220 /*----------------------------------------------------------------
221  * superblock validator
222  *--------------------------------------------------------------*/
223 
224 #define SUPERBLOCK_CSUM_XOR 160774
225 
226 static void sb_prepare_for_write(struct dm_block_validator *v,
227 				 struct dm_block *b,
228 				 size_t block_size)
229 {
230 	struct thin_disk_superblock *disk_super = dm_block_data(b);
231 
232 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
233 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
234 						      block_size - sizeof(__le32),
235 						      SUPERBLOCK_CSUM_XOR));
236 }
237 
238 static int sb_check(struct dm_block_validator *v,
239 		    struct dm_block *b,
240 		    size_t block_size)
241 {
242 	struct thin_disk_superblock *disk_super = dm_block_data(b);
243 	__le32 csum_le;
244 
245 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
246 		DMERR("sb_check failed: blocknr %llu: "
247 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
248 		      (unsigned long long)dm_block_location(b));
249 		return -ENOTBLK;
250 	}
251 
252 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
253 		DMERR("sb_check failed: magic %llu: "
254 		      "wanted %llu", le64_to_cpu(disk_super->magic),
255 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
256 		return -EILSEQ;
257 	}
258 
259 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
260 					     block_size - sizeof(__le32),
261 					     SUPERBLOCK_CSUM_XOR));
262 	if (csum_le != disk_super->csum) {
263 		DMERR("sb_check failed: csum %u: wanted %u",
264 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
265 		return -EILSEQ;
266 	}
267 
268 	return 0;
269 }
270 
271 static struct dm_block_validator sb_validator = {
272 	.name = "superblock",
273 	.prepare_for_write = sb_prepare_for_write,
274 	.check = sb_check
275 };
276 
277 /*----------------------------------------------------------------
278  * Methods for the btree value types
279  *--------------------------------------------------------------*/
280 
281 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
282 {
283 	return (b << 24) | t;
284 }
285 
286 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
287 {
288 	*b = v >> 24;
289 	*t = v & ((1 << 24) - 1);
290 }
291 
292 static void data_block_inc(void *context, const void *value_le)
293 {
294 	struct dm_space_map *sm = context;
295 	__le64 v_le;
296 	uint64_t b;
297 	uint32_t t;
298 
299 	memcpy(&v_le, value_le, sizeof(v_le));
300 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
301 	dm_sm_inc_block(sm, b);
302 }
303 
304 static void data_block_dec(void *context, const void *value_le)
305 {
306 	struct dm_space_map *sm = context;
307 	__le64 v_le;
308 	uint64_t b;
309 	uint32_t t;
310 
311 	memcpy(&v_le, value_le, sizeof(v_le));
312 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
313 	dm_sm_dec_block(sm, b);
314 }
315 
316 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
317 {
318 	__le64 v1_le, v2_le;
319 	uint64_t b1, b2;
320 	uint32_t t;
321 
322 	memcpy(&v1_le, value1_le, sizeof(v1_le));
323 	memcpy(&v2_le, value2_le, sizeof(v2_le));
324 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
325 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
326 
327 	return b1 == b2;
328 }
329 
330 static void subtree_inc(void *context, const void *value)
331 {
332 	struct dm_btree_info *info = context;
333 	__le64 root_le;
334 	uint64_t root;
335 
336 	memcpy(&root_le, value, sizeof(root_le));
337 	root = le64_to_cpu(root_le);
338 	dm_tm_inc(info->tm, root);
339 }
340 
341 static void subtree_dec(void *context, const void *value)
342 {
343 	struct dm_btree_info *info = context;
344 	__le64 root_le;
345 	uint64_t root;
346 
347 	memcpy(&root_le, value, sizeof(root_le));
348 	root = le64_to_cpu(root_le);
349 	if (dm_btree_del(info, root))
350 		DMERR("btree delete failed");
351 }
352 
353 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
354 {
355 	__le64 v1_le, v2_le;
356 	memcpy(&v1_le, value1_le, sizeof(v1_le));
357 	memcpy(&v2_le, value2_le, sizeof(v2_le));
358 
359 	return v1_le == v2_le;
360 }
361 
362 /*----------------------------------------------------------------*/
363 
364 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
365 				struct dm_block **sblock)
366 {
367 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
368 				     &sb_validator, sblock);
369 }
370 
371 static int superblock_lock(struct dm_pool_metadata *pmd,
372 			   struct dm_block **sblock)
373 {
374 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
375 				&sb_validator, sblock);
376 }
377 
378 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
379 {
380 	int r;
381 	unsigned i;
382 	struct dm_block *b;
383 	__le64 *data_le, zero = cpu_to_le64(0);
384 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
385 
386 	/*
387 	 * We can't use a validator here - it may be all zeroes.
388 	 */
389 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
390 	if (r)
391 		return r;
392 
393 	data_le = dm_block_data(b);
394 	*result = 1;
395 	for (i = 0; i < block_size; i++) {
396 		if (data_le[i] != zero) {
397 			*result = 0;
398 			break;
399 		}
400 	}
401 
402 	dm_bm_unlock(b);
403 
404 	return 0;
405 }
406 
407 static void __setup_btree_details(struct dm_pool_metadata *pmd)
408 {
409 	pmd->info.tm = pmd->tm;
410 	pmd->info.levels = 2;
411 	pmd->info.value_type.context = pmd->data_sm;
412 	pmd->info.value_type.size = sizeof(__le64);
413 	pmd->info.value_type.inc = data_block_inc;
414 	pmd->info.value_type.dec = data_block_dec;
415 	pmd->info.value_type.equal = data_block_equal;
416 
417 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
418 	pmd->nb_info.tm = pmd->nb_tm;
419 
420 	pmd->tl_info.tm = pmd->tm;
421 	pmd->tl_info.levels = 1;
422 	pmd->tl_info.value_type.context = &pmd->bl_info;
423 	pmd->tl_info.value_type.size = sizeof(__le64);
424 	pmd->tl_info.value_type.inc = subtree_inc;
425 	pmd->tl_info.value_type.dec = subtree_dec;
426 	pmd->tl_info.value_type.equal = subtree_equal;
427 
428 	pmd->bl_info.tm = pmd->tm;
429 	pmd->bl_info.levels = 1;
430 	pmd->bl_info.value_type.context = pmd->data_sm;
431 	pmd->bl_info.value_type.size = sizeof(__le64);
432 	pmd->bl_info.value_type.inc = data_block_inc;
433 	pmd->bl_info.value_type.dec = data_block_dec;
434 	pmd->bl_info.value_type.equal = data_block_equal;
435 
436 	pmd->details_info.tm = pmd->tm;
437 	pmd->details_info.levels = 1;
438 	pmd->details_info.value_type.context = NULL;
439 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
440 	pmd->details_info.value_type.inc = NULL;
441 	pmd->details_info.value_type.dec = NULL;
442 	pmd->details_info.value_type.equal = NULL;
443 }
444 
445 static int save_sm_roots(struct dm_pool_metadata *pmd)
446 {
447 	int r;
448 	size_t len;
449 
450 	r = dm_sm_root_size(pmd->metadata_sm, &len);
451 	if (r < 0)
452 		return r;
453 
454 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
455 	if (r < 0)
456 		return r;
457 
458 	r = dm_sm_root_size(pmd->data_sm, &len);
459 	if (r < 0)
460 		return r;
461 
462 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
463 }
464 
465 static void copy_sm_roots(struct dm_pool_metadata *pmd,
466 			  struct thin_disk_superblock *disk)
467 {
468 	memcpy(&disk->metadata_space_map_root,
469 	       &pmd->metadata_space_map_root,
470 	       sizeof(pmd->metadata_space_map_root));
471 
472 	memcpy(&disk->data_space_map_root,
473 	       &pmd->data_space_map_root,
474 	       sizeof(pmd->data_space_map_root));
475 }
476 
477 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
478 {
479 	int r;
480 	struct dm_block *sblock;
481 	struct thin_disk_superblock *disk_super;
482 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
483 
484 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
485 		bdev_size = THIN_METADATA_MAX_SECTORS;
486 
487 	r = dm_sm_commit(pmd->data_sm);
488 	if (r < 0)
489 		return r;
490 
491 	r = dm_tm_pre_commit(pmd->tm);
492 	if (r < 0)
493 		return r;
494 
495 	r = save_sm_roots(pmd);
496 	if (r < 0)
497 		return r;
498 
499 	r = superblock_lock_zero(pmd, &sblock);
500 	if (r)
501 		return r;
502 
503 	disk_super = dm_block_data(sblock);
504 	disk_super->flags = 0;
505 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
506 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
507 	disk_super->version = cpu_to_le32(THIN_VERSION);
508 	disk_super->time = 0;
509 	disk_super->trans_id = 0;
510 	disk_super->held_root = 0;
511 
512 	copy_sm_roots(pmd, disk_super);
513 
514 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
515 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
516 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
517 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
518 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
519 
520 	return dm_tm_commit(pmd->tm, sblock);
521 }
522 
523 static int __format_metadata(struct dm_pool_metadata *pmd)
524 {
525 	int r;
526 
527 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
528 				 &pmd->tm, &pmd->metadata_sm);
529 	if (r < 0) {
530 		DMERR("tm_create_with_sm failed");
531 		return r;
532 	}
533 
534 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
535 	if (IS_ERR(pmd->data_sm)) {
536 		DMERR("sm_disk_create failed");
537 		r = PTR_ERR(pmd->data_sm);
538 		goto bad_cleanup_tm;
539 	}
540 
541 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
542 	if (!pmd->nb_tm) {
543 		DMERR("could not create non-blocking clone tm");
544 		r = -ENOMEM;
545 		goto bad_cleanup_data_sm;
546 	}
547 
548 	__setup_btree_details(pmd);
549 
550 	r = dm_btree_empty(&pmd->info, &pmd->root);
551 	if (r < 0)
552 		goto bad_cleanup_nb_tm;
553 
554 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
555 	if (r < 0) {
556 		DMERR("couldn't create devices root");
557 		goto bad_cleanup_nb_tm;
558 	}
559 
560 	r = __write_initial_superblock(pmd);
561 	if (r)
562 		goto bad_cleanup_nb_tm;
563 
564 	return 0;
565 
566 bad_cleanup_nb_tm:
567 	dm_tm_destroy(pmd->nb_tm);
568 bad_cleanup_data_sm:
569 	dm_sm_destroy(pmd->data_sm);
570 bad_cleanup_tm:
571 	dm_tm_destroy(pmd->tm);
572 	dm_sm_destroy(pmd->metadata_sm);
573 
574 	return r;
575 }
576 
577 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
578 				     struct dm_pool_metadata *pmd)
579 {
580 	uint32_t features;
581 
582 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
583 	if (features) {
584 		DMERR("could not access metadata due to unsupported optional features (%lx).",
585 		      (unsigned long)features);
586 		return -EINVAL;
587 	}
588 
589 	/*
590 	 * Check for read-only metadata to skip the following RDWR checks.
591 	 */
592 	if (get_disk_ro(pmd->bdev->bd_disk))
593 		return 0;
594 
595 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
596 	if (features) {
597 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
598 		      (unsigned long)features);
599 		return -EINVAL;
600 	}
601 
602 	return 0;
603 }
604 
605 static int __open_metadata(struct dm_pool_metadata *pmd)
606 {
607 	int r;
608 	struct dm_block *sblock;
609 	struct thin_disk_superblock *disk_super;
610 
611 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
612 			    &sb_validator, &sblock);
613 	if (r < 0) {
614 		DMERR("couldn't read superblock");
615 		return r;
616 	}
617 
618 	disk_super = dm_block_data(sblock);
619 
620 	/* Verify the data block size hasn't changed */
621 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
622 		DMERR("changing the data block size (from %u to %llu) is not supported",
623 		      le32_to_cpu(disk_super->data_block_size),
624 		      (unsigned long long)pmd->data_block_size);
625 		r = -EINVAL;
626 		goto bad_unlock_sblock;
627 	}
628 
629 	r = __check_incompat_features(disk_super, pmd);
630 	if (r < 0)
631 		goto bad_unlock_sblock;
632 
633 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
634 			       disk_super->metadata_space_map_root,
635 			       sizeof(disk_super->metadata_space_map_root),
636 			       &pmd->tm, &pmd->metadata_sm);
637 	if (r < 0) {
638 		DMERR("tm_open_with_sm failed");
639 		goto bad_unlock_sblock;
640 	}
641 
642 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
643 				       sizeof(disk_super->data_space_map_root));
644 	if (IS_ERR(pmd->data_sm)) {
645 		DMERR("sm_disk_open failed");
646 		r = PTR_ERR(pmd->data_sm);
647 		goto bad_cleanup_tm;
648 	}
649 
650 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
651 	if (!pmd->nb_tm) {
652 		DMERR("could not create non-blocking clone tm");
653 		r = -ENOMEM;
654 		goto bad_cleanup_data_sm;
655 	}
656 
657 	__setup_btree_details(pmd);
658 	dm_bm_unlock(sblock);
659 
660 	return 0;
661 
662 bad_cleanup_data_sm:
663 	dm_sm_destroy(pmd->data_sm);
664 bad_cleanup_tm:
665 	dm_tm_destroy(pmd->tm);
666 	dm_sm_destroy(pmd->metadata_sm);
667 bad_unlock_sblock:
668 	dm_bm_unlock(sblock);
669 
670 	return r;
671 }
672 
673 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
674 {
675 	int r, unformatted;
676 
677 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
678 	if (r)
679 		return r;
680 
681 	if (unformatted)
682 		return format_device ? __format_metadata(pmd) : -EPERM;
683 
684 	return __open_metadata(pmd);
685 }
686 
687 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
688 {
689 	int r;
690 
691 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
692 					  THIN_MAX_CONCURRENT_LOCKS);
693 	if (IS_ERR(pmd->bm)) {
694 		DMERR("could not create block manager");
695 		return PTR_ERR(pmd->bm);
696 	}
697 
698 	r = __open_or_format_metadata(pmd, format_device);
699 	if (r)
700 		dm_block_manager_destroy(pmd->bm);
701 
702 	return r;
703 }
704 
705 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
706 {
707 	dm_sm_destroy(pmd->data_sm);
708 	dm_sm_destroy(pmd->metadata_sm);
709 	dm_tm_destroy(pmd->nb_tm);
710 	dm_tm_destroy(pmd->tm);
711 	dm_block_manager_destroy(pmd->bm);
712 }
713 
714 static int __begin_transaction(struct dm_pool_metadata *pmd)
715 {
716 	int r;
717 	struct thin_disk_superblock *disk_super;
718 	struct dm_block *sblock;
719 
720 	/*
721 	 * We re-read the superblock every time.  Shouldn't need to do this
722 	 * really.
723 	 */
724 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
725 			    &sb_validator, &sblock);
726 	if (r)
727 		return r;
728 
729 	disk_super = dm_block_data(sblock);
730 	pmd->time = le32_to_cpu(disk_super->time);
731 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
732 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
733 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
734 	pmd->flags = le32_to_cpu(disk_super->flags);
735 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
736 
737 	dm_bm_unlock(sblock);
738 	return 0;
739 }
740 
741 static int __write_changed_details(struct dm_pool_metadata *pmd)
742 {
743 	int r;
744 	struct dm_thin_device *td, *tmp;
745 	struct disk_device_details details;
746 	uint64_t key;
747 
748 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
749 		if (!td->changed)
750 			continue;
751 
752 		key = td->id;
753 
754 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
755 		details.transaction_id = cpu_to_le64(td->transaction_id);
756 		details.creation_time = cpu_to_le32(td->creation_time);
757 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
758 		__dm_bless_for_disk(&details);
759 
760 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
761 				    &key, &details, &pmd->details_root);
762 		if (r)
763 			return r;
764 
765 		if (td->open_count)
766 			td->changed = 0;
767 		else {
768 			list_del(&td->list);
769 			kfree(td);
770 		}
771 	}
772 
773 	return 0;
774 }
775 
776 static int __commit_transaction(struct dm_pool_metadata *pmd)
777 {
778 	int r;
779 	size_t metadata_len, data_len;
780 	struct thin_disk_superblock *disk_super;
781 	struct dm_block *sblock;
782 
783 	/*
784 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
785 	 */
786 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
787 
788 	r = __write_changed_details(pmd);
789 	if (r < 0)
790 		return r;
791 
792 	r = dm_sm_commit(pmd->data_sm);
793 	if (r < 0)
794 		return r;
795 
796 	r = dm_tm_pre_commit(pmd->tm);
797 	if (r < 0)
798 		return r;
799 
800 	r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
801 	if (r < 0)
802 		return r;
803 
804 	r = dm_sm_root_size(pmd->data_sm, &data_len);
805 	if (r < 0)
806 		return r;
807 
808 	r = save_sm_roots(pmd);
809 	if (r < 0)
810 		return r;
811 
812 	r = superblock_lock(pmd, &sblock);
813 	if (r)
814 		return r;
815 
816 	disk_super = dm_block_data(sblock);
817 	disk_super->time = cpu_to_le32(pmd->time);
818 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
819 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
820 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
821 	disk_super->flags = cpu_to_le32(pmd->flags);
822 
823 	copy_sm_roots(pmd, disk_super);
824 
825 	return dm_tm_commit(pmd->tm, sblock);
826 }
827 
828 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
829 					       sector_t data_block_size,
830 					       bool format_device)
831 {
832 	int r;
833 	struct dm_pool_metadata *pmd;
834 
835 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
836 	if (!pmd) {
837 		DMERR("could not allocate metadata struct");
838 		return ERR_PTR(-ENOMEM);
839 	}
840 
841 	init_rwsem(&pmd->root_lock);
842 	pmd->time = 0;
843 	INIT_LIST_HEAD(&pmd->thin_devices);
844 	pmd->fail_io = false;
845 	pmd->bdev = bdev;
846 	pmd->data_block_size = data_block_size;
847 
848 	r = __create_persistent_data_objects(pmd, format_device);
849 	if (r) {
850 		kfree(pmd);
851 		return ERR_PTR(r);
852 	}
853 
854 	r = __begin_transaction(pmd);
855 	if (r < 0) {
856 		if (dm_pool_metadata_close(pmd) < 0)
857 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
858 		return ERR_PTR(r);
859 	}
860 
861 	return pmd;
862 }
863 
864 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
865 {
866 	int r;
867 	unsigned open_devices = 0;
868 	struct dm_thin_device *td, *tmp;
869 
870 	down_read(&pmd->root_lock);
871 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
872 		if (td->open_count)
873 			open_devices++;
874 		else {
875 			list_del(&td->list);
876 			kfree(td);
877 		}
878 	}
879 	up_read(&pmd->root_lock);
880 
881 	if (open_devices) {
882 		DMERR("attempt to close pmd when %u device(s) are still open",
883 		       open_devices);
884 		return -EBUSY;
885 	}
886 
887 	if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
888 		r = __commit_transaction(pmd);
889 		if (r < 0)
890 			DMWARN("%s: __commit_transaction() failed, error = %d",
891 			       __func__, r);
892 	}
893 
894 	if (!pmd->fail_io)
895 		__destroy_persistent_data_objects(pmd);
896 
897 	kfree(pmd);
898 	return 0;
899 }
900 
901 /*
902  * __open_device: Returns @td corresponding to device with id @dev,
903  * creating it if @create is set and incrementing @td->open_count.
904  * On failure, @td is undefined.
905  */
906 static int __open_device(struct dm_pool_metadata *pmd,
907 			 dm_thin_id dev, int create,
908 			 struct dm_thin_device **td)
909 {
910 	int r, changed = 0;
911 	struct dm_thin_device *td2;
912 	uint64_t key = dev;
913 	struct disk_device_details details_le;
914 
915 	/*
916 	 * If the device is already open, return it.
917 	 */
918 	list_for_each_entry(td2, &pmd->thin_devices, list)
919 		if (td2->id == dev) {
920 			/*
921 			 * May not create an already-open device.
922 			 */
923 			if (create)
924 				return -EEXIST;
925 
926 			td2->open_count++;
927 			*td = td2;
928 			return 0;
929 		}
930 
931 	/*
932 	 * Check the device exists.
933 	 */
934 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
935 			    &key, &details_le);
936 	if (r) {
937 		if (r != -ENODATA || !create)
938 			return r;
939 
940 		/*
941 		 * Create new device.
942 		 */
943 		changed = 1;
944 		details_le.mapped_blocks = 0;
945 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
946 		details_le.creation_time = cpu_to_le32(pmd->time);
947 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
948 	}
949 
950 	*td = kmalloc(sizeof(**td), GFP_NOIO);
951 	if (!*td)
952 		return -ENOMEM;
953 
954 	(*td)->pmd = pmd;
955 	(*td)->id = dev;
956 	(*td)->open_count = 1;
957 	(*td)->changed = changed;
958 	(*td)->aborted_with_changes = false;
959 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
960 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
961 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
962 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
963 
964 	list_add(&(*td)->list, &pmd->thin_devices);
965 
966 	return 0;
967 }
968 
969 static void __close_device(struct dm_thin_device *td)
970 {
971 	--td->open_count;
972 }
973 
974 static int __create_thin(struct dm_pool_metadata *pmd,
975 			 dm_thin_id dev)
976 {
977 	int r;
978 	dm_block_t dev_root;
979 	uint64_t key = dev;
980 	struct disk_device_details details_le;
981 	struct dm_thin_device *td;
982 	__le64 value;
983 
984 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
985 			    &key, &details_le);
986 	if (!r)
987 		return -EEXIST;
988 
989 	/*
990 	 * Create an empty btree for the mappings.
991 	 */
992 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
993 	if (r)
994 		return r;
995 
996 	/*
997 	 * Insert it into the main mapping tree.
998 	 */
999 	value = cpu_to_le64(dev_root);
1000 	__dm_bless_for_disk(&value);
1001 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1002 	if (r) {
1003 		dm_btree_del(&pmd->bl_info, dev_root);
1004 		return r;
1005 	}
1006 
1007 	r = __open_device(pmd, dev, 1, &td);
1008 	if (r) {
1009 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1010 		dm_btree_del(&pmd->bl_info, dev_root);
1011 		return r;
1012 	}
1013 	__close_device(td);
1014 
1015 	return r;
1016 }
1017 
1018 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1019 {
1020 	int r = -EINVAL;
1021 
1022 	down_write(&pmd->root_lock);
1023 	if (!pmd->fail_io)
1024 		r = __create_thin(pmd, dev);
1025 	up_write(&pmd->root_lock);
1026 
1027 	return r;
1028 }
1029 
1030 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1031 				  struct dm_thin_device *snap,
1032 				  dm_thin_id origin, uint32_t time)
1033 {
1034 	int r;
1035 	struct dm_thin_device *td;
1036 
1037 	r = __open_device(pmd, origin, 0, &td);
1038 	if (r)
1039 		return r;
1040 
1041 	td->changed = 1;
1042 	td->snapshotted_time = time;
1043 
1044 	snap->mapped_blocks = td->mapped_blocks;
1045 	snap->snapshotted_time = time;
1046 	__close_device(td);
1047 
1048 	return 0;
1049 }
1050 
1051 static int __create_snap(struct dm_pool_metadata *pmd,
1052 			 dm_thin_id dev, dm_thin_id origin)
1053 {
1054 	int r;
1055 	dm_block_t origin_root;
1056 	uint64_t key = origin, dev_key = dev;
1057 	struct dm_thin_device *td;
1058 	struct disk_device_details details_le;
1059 	__le64 value;
1060 
1061 	/* check this device is unused */
1062 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1063 			    &dev_key, &details_le);
1064 	if (!r)
1065 		return -EEXIST;
1066 
1067 	/* find the mapping tree for the origin */
1068 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1069 	if (r)
1070 		return r;
1071 	origin_root = le64_to_cpu(value);
1072 
1073 	/* clone the origin, an inc will do */
1074 	dm_tm_inc(pmd->tm, origin_root);
1075 
1076 	/* insert into the main mapping tree */
1077 	value = cpu_to_le64(origin_root);
1078 	__dm_bless_for_disk(&value);
1079 	key = dev;
1080 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1081 	if (r) {
1082 		dm_tm_dec(pmd->tm, origin_root);
1083 		return r;
1084 	}
1085 
1086 	pmd->time++;
1087 
1088 	r = __open_device(pmd, dev, 1, &td);
1089 	if (r)
1090 		goto bad;
1091 
1092 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1093 	__close_device(td);
1094 
1095 	if (r)
1096 		goto bad;
1097 
1098 	return 0;
1099 
1100 bad:
1101 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1102 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1103 			&key, &pmd->details_root);
1104 	return r;
1105 }
1106 
1107 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1108 				 dm_thin_id dev,
1109 				 dm_thin_id origin)
1110 {
1111 	int r = -EINVAL;
1112 
1113 	down_write(&pmd->root_lock);
1114 	if (!pmd->fail_io)
1115 		r = __create_snap(pmd, dev, origin);
1116 	up_write(&pmd->root_lock);
1117 
1118 	return r;
1119 }
1120 
1121 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1122 {
1123 	int r;
1124 	uint64_t key = dev;
1125 	struct dm_thin_device *td;
1126 
1127 	/* TODO: failure should mark the transaction invalid */
1128 	r = __open_device(pmd, dev, 0, &td);
1129 	if (r)
1130 		return r;
1131 
1132 	if (td->open_count > 1) {
1133 		__close_device(td);
1134 		return -EBUSY;
1135 	}
1136 
1137 	list_del(&td->list);
1138 	kfree(td);
1139 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1140 			    &key, &pmd->details_root);
1141 	if (r)
1142 		return r;
1143 
1144 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1145 	if (r)
1146 		return r;
1147 
1148 	return 0;
1149 }
1150 
1151 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1152 			       dm_thin_id dev)
1153 {
1154 	int r = -EINVAL;
1155 
1156 	down_write(&pmd->root_lock);
1157 	if (!pmd->fail_io)
1158 		r = __delete_device(pmd, dev);
1159 	up_write(&pmd->root_lock);
1160 
1161 	return r;
1162 }
1163 
1164 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1165 					uint64_t current_id,
1166 					uint64_t new_id)
1167 {
1168 	int r = -EINVAL;
1169 
1170 	down_write(&pmd->root_lock);
1171 
1172 	if (pmd->fail_io)
1173 		goto out;
1174 
1175 	if (pmd->trans_id != current_id) {
1176 		DMERR("mismatched transaction id");
1177 		goto out;
1178 	}
1179 
1180 	pmd->trans_id = new_id;
1181 	r = 0;
1182 
1183 out:
1184 	up_write(&pmd->root_lock);
1185 
1186 	return r;
1187 }
1188 
1189 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1190 					uint64_t *result)
1191 {
1192 	int r = -EINVAL;
1193 
1194 	down_read(&pmd->root_lock);
1195 	if (!pmd->fail_io) {
1196 		*result = pmd->trans_id;
1197 		r = 0;
1198 	}
1199 	up_read(&pmd->root_lock);
1200 
1201 	return r;
1202 }
1203 
1204 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1205 {
1206 	int r, inc;
1207 	struct thin_disk_superblock *disk_super;
1208 	struct dm_block *copy, *sblock;
1209 	dm_block_t held_root;
1210 
1211 	/*
1212 	 * We commit to ensure the btree roots which we increment in a
1213 	 * moment are up to date.
1214 	 */
1215 	__commit_transaction(pmd);
1216 
1217 	/*
1218 	 * Copy the superblock.
1219 	 */
1220 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1221 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1222 			       &sb_validator, &copy, &inc);
1223 	if (r)
1224 		return r;
1225 
1226 	BUG_ON(!inc);
1227 
1228 	held_root = dm_block_location(copy);
1229 	disk_super = dm_block_data(copy);
1230 
1231 	if (le64_to_cpu(disk_super->held_root)) {
1232 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1233 
1234 		dm_tm_dec(pmd->tm, held_root);
1235 		dm_tm_unlock(pmd->tm, copy);
1236 		return -EBUSY;
1237 	}
1238 
1239 	/*
1240 	 * Wipe the spacemap since we're not publishing this.
1241 	 */
1242 	memset(&disk_super->data_space_map_root, 0,
1243 	       sizeof(disk_super->data_space_map_root));
1244 	memset(&disk_super->metadata_space_map_root, 0,
1245 	       sizeof(disk_super->metadata_space_map_root));
1246 
1247 	/*
1248 	 * Increment the data structures that need to be preserved.
1249 	 */
1250 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1251 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1252 	dm_tm_unlock(pmd->tm, copy);
1253 
1254 	/*
1255 	 * Write the held root into the superblock.
1256 	 */
1257 	r = superblock_lock(pmd, &sblock);
1258 	if (r) {
1259 		dm_tm_dec(pmd->tm, held_root);
1260 		return r;
1261 	}
1262 
1263 	disk_super = dm_block_data(sblock);
1264 	disk_super->held_root = cpu_to_le64(held_root);
1265 	dm_bm_unlock(sblock);
1266 	return 0;
1267 }
1268 
1269 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1270 {
1271 	int r = -EINVAL;
1272 
1273 	down_write(&pmd->root_lock);
1274 	if (!pmd->fail_io)
1275 		r = __reserve_metadata_snap(pmd);
1276 	up_write(&pmd->root_lock);
1277 
1278 	return r;
1279 }
1280 
1281 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1282 {
1283 	int r;
1284 	struct thin_disk_superblock *disk_super;
1285 	struct dm_block *sblock, *copy;
1286 	dm_block_t held_root;
1287 
1288 	r = superblock_lock(pmd, &sblock);
1289 	if (r)
1290 		return r;
1291 
1292 	disk_super = dm_block_data(sblock);
1293 	held_root = le64_to_cpu(disk_super->held_root);
1294 	disk_super->held_root = cpu_to_le64(0);
1295 
1296 	dm_bm_unlock(sblock);
1297 
1298 	if (!held_root) {
1299 		DMWARN("No pool metadata snapshot found: nothing to release.");
1300 		return -EINVAL;
1301 	}
1302 
1303 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1304 	if (r)
1305 		return r;
1306 
1307 	disk_super = dm_block_data(copy);
1308 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1309 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1310 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1311 
1312 	dm_tm_unlock(pmd->tm, copy);
1313 
1314 	return 0;
1315 }
1316 
1317 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1318 {
1319 	int r = -EINVAL;
1320 
1321 	down_write(&pmd->root_lock);
1322 	if (!pmd->fail_io)
1323 		r = __release_metadata_snap(pmd);
1324 	up_write(&pmd->root_lock);
1325 
1326 	return r;
1327 }
1328 
1329 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1330 			       dm_block_t *result)
1331 {
1332 	int r;
1333 	struct thin_disk_superblock *disk_super;
1334 	struct dm_block *sblock;
1335 
1336 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1337 			    &sb_validator, &sblock);
1338 	if (r)
1339 		return r;
1340 
1341 	disk_super = dm_block_data(sblock);
1342 	*result = le64_to_cpu(disk_super->held_root);
1343 
1344 	dm_bm_unlock(sblock);
1345 
1346 	return 0;
1347 }
1348 
1349 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1350 			      dm_block_t *result)
1351 {
1352 	int r = -EINVAL;
1353 
1354 	down_read(&pmd->root_lock);
1355 	if (!pmd->fail_io)
1356 		r = __get_metadata_snap(pmd, result);
1357 	up_read(&pmd->root_lock);
1358 
1359 	return r;
1360 }
1361 
1362 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1363 			     struct dm_thin_device **td)
1364 {
1365 	int r = -EINVAL;
1366 
1367 	down_write(&pmd->root_lock);
1368 	if (!pmd->fail_io)
1369 		r = __open_device(pmd, dev, 0, td);
1370 	up_write(&pmd->root_lock);
1371 
1372 	return r;
1373 }
1374 
1375 int dm_pool_close_thin_device(struct dm_thin_device *td)
1376 {
1377 	down_write(&td->pmd->root_lock);
1378 	__close_device(td);
1379 	up_write(&td->pmd->root_lock);
1380 
1381 	return 0;
1382 }
1383 
1384 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1385 {
1386 	return td->id;
1387 }
1388 
1389 /*
1390  * Check whether @time (of block creation) is older than @td's last snapshot.
1391  * If so then the associated block is shared with the last snapshot device.
1392  * Any block on a device created *after* the device last got snapshotted is
1393  * necessarily not shared.
1394  */
1395 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1396 {
1397 	return td->snapshotted_time > time;
1398 }
1399 
1400 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1401 				 struct dm_thin_lookup_result *result)
1402 {
1403 	uint64_t block_time = 0;
1404 	dm_block_t exception_block;
1405 	uint32_t exception_time;
1406 
1407 	block_time = le64_to_cpu(value);
1408 	unpack_block_time(block_time, &exception_block, &exception_time);
1409 	result->block = exception_block;
1410 	result->shared = __snapshotted_since(td, exception_time);
1411 }
1412 
1413 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1414 			int can_issue_io, struct dm_thin_lookup_result *result)
1415 {
1416 	int r;
1417 	__le64 value;
1418 	struct dm_pool_metadata *pmd = td->pmd;
1419 	dm_block_t keys[2] = { td->id, block };
1420 	struct dm_btree_info *info;
1421 
1422 	if (can_issue_io) {
1423 		info = &pmd->info;
1424 	} else
1425 		info = &pmd->nb_info;
1426 
1427 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1428 	if (!r)
1429 		unpack_lookup_result(td, value, result);
1430 
1431 	return r;
1432 }
1433 
1434 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1435 		       int can_issue_io, struct dm_thin_lookup_result *result)
1436 {
1437 	int r;
1438 	struct dm_pool_metadata *pmd = td->pmd;
1439 
1440 	down_read(&pmd->root_lock);
1441 	if (pmd->fail_io) {
1442 		up_read(&pmd->root_lock);
1443 		return -EINVAL;
1444 	}
1445 
1446 	r = __find_block(td, block, can_issue_io, result);
1447 
1448 	up_read(&pmd->root_lock);
1449 	return r;
1450 }
1451 
1452 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1453 					  dm_block_t *vblock,
1454 					  struct dm_thin_lookup_result *result)
1455 {
1456 	int r;
1457 	__le64 value;
1458 	struct dm_pool_metadata *pmd = td->pmd;
1459 	dm_block_t keys[2] = { td->id, block };
1460 
1461 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1462 	if (!r)
1463 		unpack_lookup_result(td, value, result);
1464 
1465 	return r;
1466 }
1467 
1468 static int __find_mapped_range(struct dm_thin_device *td,
1469 			       dm_block_t begin, dm_block_t end,
1470 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1471 			       dm_block_t *pool_begin, bool *maybe_shared)
1472 {
1473 	int r;
1474 	dm_block_t pool_end;
1475 	struct dm_thin_lookup_result lookup;
1476 
1477 	if (end < begin)
1478 		return -ENODATA;
1479 
1480 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1481 	if (r)
1482 		return r;
1483 
1484 	if (begin >= end)
1485 		return -ENODATA;
1486 
1487 	*thin_begin = begin;
1488 	*pool_begin = lookup.block;
1489 	*maybe_shared = lookup.shared;
1490 
1491 	begin++;
1492 	pool_end = *pool_begin + 1;
1493 	while (begin != end) {
1494 		r = __find_block(td, begin, true, &lookup);
1495 		if (r) {
1496 			if (r == -ENODATA)
1497 				break;
1498 			else
1499 				return r;
1500 		}
1501 
1502 		if ((lookup.block != pool_end) ||
1503 		    (lookup.shared != *maybe_shared))
1504 			break;
1505 
1506 		pool_end++;
1507 		begin++;
1508 	}
1509 
1510 	*thin_end = begin;
1511 	return 0;
1512 }
1513 
1514 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1515 			      dm_block_t begin, dm_block_t end,
1516 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1517 			      dm_block_t *pool_begin, bool *maybe_shared)
1518 {
1519 	int r = -EINVAL;
1520 	struct dm_pool_metadata *pmd = td->pmd;
1521 
1522 	down_read(&pmd->root_lock);
1523 	if (!pmd->fail_io) {
1524 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1525 					pool_begin, maybe_shared);
1526 	}
1527 	up_read(&pmd->root_lock);
1528 
1529 	return r;
1530 }
1531 
1532 static int __insert(struct dm_thin_device *td, dm_block_t block,
1533 		    dm_block_t data_block)
1534 {
1535 	int r, inserted;
1536 	__le64 value;
1537 	struct dm_pool_metadata *pmd = td->pmd;
1538 	dm_block_t keys[2] = { td->id, block };
1539 
1540 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1541 	__dm_bless_for_disk(&value);
1542 
1543 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1544 				   &pmd->root, &inserted);
1545 	if (r)
1546 		return r;
1547 
1548 	td->changed = 1;
1549 	if (inserted)
1550 		td->mapped_blocks++;
1551 
1552 	return 0;
1553 }
1554 
1555 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1556 			 dm_block_t data_block)
1557 {
1558 	int r = -EINVAL;
1559 
1560 	down_write(&td->pmd->root_lock);
1561 	if (!td->pmd->fail_io)
1562 		r = __insert(td, block, data_block);
1563 	up_write(&td->pmd->root_lock);
1564 
1565 	return r;
1566 }
1567 
1568 static int __remove(struct dm_thin_device *td, dm_block_t block)
1569 {
1570 	int r;
1571 	struct dm_pool_metadata *pmd = td->pmd;
1572 	dm_block_t keys[2] = { td->id, block };
1573 
1574 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1575 	if (r)
1576 		return r;
1577 
1578 	td->mapped_blocks--;
1579 	td->changed = 1;
1580 
1581 	return 0;
1582 }
1583 
1584 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1585 {
1586 	int r;
1587 	unsigned count, total_count = 0;
1588 	struct dm_pool_metadata *pmd = td->pmd;
1589 	dm_block_t keys[1] = { td->id };
1590 	__le64 value;
1591 	dm_block_t mapping_root;
1592 
1593 	/*
1594 	 * Find the mapping tree
1595 	 */
1596 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1597 	if (r)
1598 		return r;
1599 
1600 	/*
1601 	 * Remove from the mapping tree, taking care to inc the
1602 	 * ref count so it doesn't get deleted.
1603 	 */
1604 	mapping_root = le64_to_cpu(value);
1605 	dm_tm_inc(pmd->tm, mapping_root);
1606 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1607 	if (r)
1608 		return r;
1609 
1610 	/*
1611 	 * Remove leaves stops at the first unmapped entry, so we have to
1612 	 * loop round finding mapped ranges.
1613 	 */
1614 	while (begin < end) {
1615 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1616 		if (r == -ENODATA)
1617 			break;
1618 
1619 		if (r)
1620 			return r;
1621 
1622 		if (begin >= end)
1623 			break;
1624 
1625 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1626 		if (r)
1627 			return r;
1628 
1629 		total_count += count;
1630 	}
1631 
1632 	td->mapped_blocks -= total_count;
1633 	td->changed = 1;
1634 
1635 	/*
1636 	 * Reinsert the mapping tree.
1637 	 */
1638 	value = cpu_to_le64(mapping_root);
1639 	__dm_bless_for_disk(&value);
1640 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1641 }
1642 
1643 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1644 {
1645 	int r = -EINVAL;
1646 
1647 	down_write(&td->pmd->root_lock);
1648 	if (!td->pmd->fail_io)
1649 		r = __remove(td, block);
1650 	up_write(&td->pmd->root_lock);
1651 
1652 	return r;
1653 }
1654 
1655 int dm_thin_remove_range(struct dm_thin_device *td,
1656 			 dm_block_t begin, dm_block_t end)
1657 {
1658 	int r = -EINVAL;
1659 
1660 	down_write(&td->pmd->root_lock);
1661 	if (!td->pmd->fail_io)
1662 		r = __remove_range(td, begin, end);
1663 	up_write(&td->pmd->root_lock);
1664 
1665 	return r;
1666 }
1667 
1668 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1669 {
1670 	int r;
1671 	uint32_t ref_count;
1672 
1673 	down_read(&pmd->root_lock);
1674 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1675 	if (!r)
1676 		*result = (ref_count != 0);
1677 	up_read(&pmd->root_lock);
1678 
1679 	return r;
1680 }
1681 
1682 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1683 {
1684 	int r = 0;
1685 
1686 	down_write(&pmd->root_lock);
1687 	for (; b != e; b++) {
1688 		r = dm_sm_inc_block(pmd->data_sm, b);
1689 		if (r)
1690 			break;
1691 	}
1692 	up_write(&pmd->root_lock);
1693 
1694 	return r;
1695 }
1696 
1697 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1698 {
1699 	int r = 0;
1700 
1701 	down_write(&pmd->root_lock);
1702 	for (; b != e; b++) {
1703 		r = dm_sm_dec_block(pmd->data_sm, b);
1704 		if (r)
1705 			break;
1706 	}
1707 	up_write(&pmd->root_lock);
1708 
1709 	return r;
1710 }
1711 
1712 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1713 {
1714 	int r;
1715 
1716 	down_read(&td->pmd->root_lock);
1717 	r = td->changed;
1718 	up_read(&td->pmd->root_lock);
1719 
1720 	return r;
1721 }
1722 
1723 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1724 {
1725 	bool r = false;
1726 	struct dm_thin_device *td, *tmp;
1727 
1728 	down_read(&pmd->root_lock);
1729 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1730 		if (td->changed) {
1731 			r = td->changed;
1732 			break;
1733 		}
1734 	}
1735 	up_read(&pmd->root_lock);
1736 
1737 	return r;
1738 }
1739 
1740 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1741 {
1742 	bool r;
1743 
1744 	down_read(&td->pmd->root_lock);
1745 	r = td->aborted_with_changes;
1746 	up_read(&td->pmd->root_lock);
1747 
1748 	return r;
1749 }
1750 
1751 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1752 {
1753 	int r = -EINVAL;
1754 
1755 	down_write(&pmd->root_lock);
1756 	if (!pmd->fail_io)
1757 		r = dm_sm_new_block(pmd->data_sm, result);
1758 	up_write(&pmd->root_lock);
1759 
1760 	return r;
1761 }
1762 
1763 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1764 {
1765 	int r = -EINVAL;
1766 
1767 	down_write(&pmd->root_lock);
1768 	if (pmd->fail_io)
1769 		goto out;
1770 
1771 	r = __commit_transaction(pmd);
1772 	if (r <= 0)
1773 		goto out;
1774 
1775 	/*
1776 	 * Open the next transaction.
1777 	 */
1778 	r = __begin_transaction(pmd);
1779 out:
1780 	up_write(&pmd->root_lock);
1781 	return r;
1782 }
1783 
1784 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1785 {
1786 	struct dm_thin_device *td;
1787 
1788 	list_for_each_entry(td, &pmd->thin_devices, list)
1789 		td->aborted_with_changes = td->changed;
1790 }
1791 
1792 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1793 {
1794 	int r = -EINVAL;
1795 
1796 	down_write(&pmd->root_lock);
1797 	if (pmd->fail_io)
1798 		goto out;
1799 
1800 	__set_abort_with_changes_flags(pmd);
1801 	__destroy_persistent_data_objects(pmd);
1802 	r = __create_persistent_data_objects(pmd, false);
1803 	if (r)
1804 		pmd->fail_io = true;
1805 
1806 out:
1807 	up_write(&pmd->root_lock);
1808 
1809 	return r;
1810 }
1811 
1812 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1813 {
1814 	int r = -EINVAL;
1815 
1816 	down_read(&pmd->root_lock);
1817 	if (!pmd->fail_io)
1818 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1819 	up_read(&pmd->root_lock);
1820 
1821 	return r;
1822 }
1823 
1824 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1825 					  dm_block_t *result)
1826 {
1827 	int r = -EINVAL;
1828 
1829 	down_read(&pmd->root_lock);
1830 	if (!pmd->fail_io)
1831 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1832 	up_read(&pmd->root_lock);
1833 
1834 	return r;
1835 }
1836 
1837 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1838 				  dm_block_t *result)
1839 {
1840 	int r = -EINVAL;
1841 
1842 	down_read(&pmd->root_lock);
1843 	if (!pmd->fail_io)
1844 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1845 	up_read(&pmd->root_lock);
1846 
1847 	return r;
1848 }
1849 
1850 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1851 {
1852 	int r = -EINVAL;
1853 
1854 	down_read(&pmd->root_lock);
1855 	if (!pmd->fail_io)
1856 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1857 	up_read(&pmd->root_lock);
1858 
1859 	return r;
1860 }
1861 
1862 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1863 {
1864 	int r = -EINVAL;
1865 	struct dm_pool_metadata *pmd = td->pmd;
1866 
1867 	down_read(&pmd->root_lock);
1868 	if (!pmd->fail_io) {
1869 		*result = td->mapped_blocks;
1870 		r = 0;
1871 	}
1872 	up_read(&pmd->root_lock);
1873 
1874 	return r;
1875 }
1876 
1877 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1878 {
1879 	int r;
1880 	__le64 value_le;
1881 	dm_block_t thin_root;
1882 	struct dm_pool_metadata *pmd = td->pmd;
1883 
1884 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1885 	if (r)
1886 		return r;
1887 
1888 	thin_root = le64_to_cpu(value_le);
1889 
1890 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1891 }
1892 
1893 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1894 				     dm_block_t *result)
1895 {
1896 	int r = -EINVAL;
1897 	struct dm_pool_metadata *pmd = td->pmd;
1898 
1899 	down_read(&pmd->root_lock);
1900 	if (!pmd->fail_io)
1901 		r = __highest_block(td, result);
1902 	up_read(&pmd->root_lock);
1903 
1904 	return r;
1905 }
1906 
1907 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1908 {
1909 	int r;
1910 	dm_block_t old_count;
1911 
1912 	r = dm_sm_get_nr_blocks(sm, &old_count);
1913 	if (r)
1914 		return r;
1915 
1916 	if (new_count == old_count)
1917 		return 0;
1918 
1919 	if (new_count < old_count) {
1920 		DMERR("cannot reduce size of space map");
1921 		return -EINVAL;
1922 	}
1923 
1924 	return dm_sm_extend(sm, new_count - old_count);
1925 }
1926 
1927 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1928 {
1929 	int r = -EINVAL;
1930 
1931 	down_write(&pmd->root_lock);
1932 	if (!pmd->fail_io)
1933 		r = __resize_space_map(pmd->data_sm, new_count);
1934 	up_write(&pmd->root_lock);
1935 
1936 	return r;
1937 }
1938 
1939 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1940 {
1941 	int r = -EINVAL;
1942 
1943 	down_write(&pmd->root_lock);
1944 	if (!pmd->fail_io)
1945 		r = __resize_space_map(pmd->metadata_sm, new_count);
1946 	up_write(&pmd->root_lock);
1947 
1948 	return r;
1949 }
1950 
1951 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1952 {
1953 	down_write(&pmd->root_lock);
1954 	dm_bm_set_read_only(pmd->bm);
1955 	up_write(&pmd->root_lock);
1956 }
1957 
1958 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1959 {
1960 	down_write(&pmd->root_lock);
1961 	dm_bm_set_read_write(pmd->bm);
1962 	up_write(&pmd->root_lock);
1963 }
1964 
1965 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1966 					dm_block_t threshold,
1967 					dm_sm_threshold_fn fn,
1968 					void *context)
1969 {
1970 	int r;
1971 
1972 	down_write(&pmd->root_lock);
1973 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1974 	up_write(&pmd->root_lock);
1975 
1976 	return r;
1977 }
1978 
1979 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1980 {
1981 	int r;
1982 	struct dm_block *sblock;
1983 	struct thin_disk_superblock *disk_super;
1984 
1985 	down_write(&pmd->root_lock);
1986 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1987 
1988 	r = superblock_lock(pmd, &sblock);
1989 	if (r) {
1990 		DMERR("couldn't read superblock");
1991 		goto out;
1992 	}
1993 
1994 	disk_super = dm_block_data(sblock);
1995 	disk_super->flags = cpu_to_le32(pmd->flags);
1996 
1997 	dm_bm_unlock(sblock);
1998 out:
1999 	up_write(&pmd->root_lock);
2000 	return r;
2001 }
2002 
2003 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2004 {
2005 	bool needs_check;
2006 
2007 	down_read(&pmd->root_lock);
2008 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2009 	up_read(&pmd->root_lock);
2010 
2011 	return needs_check;
2012 }
2013 
2014 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2015 {
2016 	down_read(&pmd->root_lock);
2017 	if (!pmd->fail_io)
2018 		dm_tm_issue_prefetches(pmd->tm);
2019 	up_read(&pmd->root_lock);
2020 }
2021