1 /* 2 * Copyright (C) 2011-2012 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "persistent-data/dm-btree.h" 9 #include "persistent-data/dm-space-map.h" 10 #include "persistent-data/dm-space-map-disk.h" 11 #include "persistent-data/dm-transaction-manager.h" 12 13 #include <linux/list.h> 14 #include <linux/device-mapper.h> 15 #include <linux/workqueue.h> 16 17 /*-------------------------------------------------------------------------- 18 * As far as the metadata goes, there is: 19 * 20 * - A superblock in block zero, taking up fewer than 512 bytes for 21 * atomic writes. 22 * 23 * - A space map managing the metadata blocks. 24 * 25 * - A space map managing the data blocks. 26 * 27 * - A btree mapping our internal thin dev ids onto struct disk_device_details. 28 * 29 * - A hierarchical btree, with 2 levels which effectively maps (thin 30 * dev id, virtual block) -> block_time. Block time is a 64-bit 31 * field holding the time in the low 24 bits, and block in the top 48 32 * bits. 33 * 34 * BTrees consist solely of btree_nodes, that fill a block. Some are 35 * internal nodes, as such their values are a __le64 pointing to other 36 * nodes. Leaf nodes can store data of any reasonable size (ie. much 37 * smaller than the block size). The nodes consist of the header, 38 * followed by an array of keys, followed by an array of values. We have 39 * to binary search on the keys so they're all held together to help the 40 * cpu cache. 41 * 42 * Space maps have 2 btrees: 43 * 44 * - One maps a uint64_t onto a struct index_entry. Which points to a 45 * bitmap block, and has some details about how many free entries there 46 * are etc. 47 * 48 * - The bitmap blocks have a header (for the checksum). Then the rest 49 * of the block is pairs of bits. With the meaning being: 50 * 51 * 0 - ref count is 0 52 * 1 - ref count is 1 53 * 2 - ref count is 2 54 * 3 - ref count is higher than 2 55 * 56 * - If the count is higher than 2 then the ref count is entered in a 57 * second btree that directly maps the block_address to a uint32_t ref 58 * count. 59 * 60 * The space map metadata variant doesn't have a bitmaps btree. Instead 61 * it has one single blocks worth of index_entries. This avoids 62 * recursive issues with the bitmap btree needing to allocate space in 63 * order to insert. With a small data block size such as 64k the 64 * metadata support data devices that are hundreds of terrabytes. 65 * 66 * The space maps allocate space linearly from front to back. Space that 67 * is freed in a transaction is never recycled within that transaction. 68 * To try and avoid fragmenting _free_ space the allocator always goes 69 * back and fills in gaps. 70 * 71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks 72 * from the block manager. 73 *--------------------------------------------------------------------------*/ 74 75 #define DM_MSG_PREFIX "thin metadata" 76 77 #define THIN_SUPERBLOCK_MAGIC 27022010 78 #define THIN_SUPERBLOCK_LOCATION 0 79 #define THIN_VERSION 2 80 #define SECTOR_TO_BLOCK_SHIFT 3 81 82 /* 83 * For btree insert: 84 * 3 for btree insert + 85 * 2 for btree lookup used within space map 86 * For btree remove: 87 * 2 for shadow spine + 88 * 4 for rebalance 3 child node 89 */ 90 #define THIN_MAX_CONCURRENT_LOCKS 6 91 92 /* This should be plenty */ 93 #define SPACE_MAP_ROOT_SIZE 128 94 95 /* 96 * Little endian on-disk superblock and device details. 97 */ 98 struct thin_disk_superblock { 99 __le32 csum; /* Checksum of superblock except for this field. */ 100 __le32 flags; 101 __le64 blocknr; /* This block number, dm_block_t. */ 102 103 __u8 uuid[16]; 104 __le64 magic; 105 __le32 version; 106 __le32 time; 107 108 __le64 trans_id; 109 110 /* 111 * Root held by userspace transactions. 112 */ 113 __le64 held_root; 114 115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 117 118 /* 119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block 120 */ 121 __le64 data_mapping_root; 122 123 /* 124 * Device detail root mapping dev_id -> device_details 125 */ 126 __le64 device_details_root; 127 128 __le32 data_block_size; /* In 512-byte sectors. */ 129 130 __le32 metadata_block_size; /* In 512-byte sectors. */ 131 __le64 metadata_nr_blocks; 132 133 __le32 compat_flags; 134 __le32 compat_ro_flags; 135 __le32 incompat_flags; 136 } __packed; 137 138 struct disk_device_details { 139 __le64 mapped_blocks; 140 __le64 transaction_id; /* When created. */ 141 __le32 creation_time; 142 __le32 snapshotted_time; 143 } __packed; 144 145 struct dm_pool_metadata { 146 struct hlist_node hash; 147 148 struct block_device *bdev; 149 struct dm_block_manager *bm; 150 struct dm_space_map *metadata_sm; 151 struct dm_space_map *data_sm; 152 struct dm_transaction_manager *tm; 153 struct dm_transaction_manager *nb_tm; 154 155 /* 156 * Two-level btree. 157 * First level holds thin_dev_t. 158 * Second level holds mappings. 159 */ 160 struct dm_btree_info info; 161 162 /* 163 * Non-blocking version of the above. 164 */ 165 struct dm_btree_info nb_info; 166 167 /* 168 * Just the top level for deleting whole devices. 169 */ 170 struct dm_btree_info tl_info; 171 172 /* 173 * Just the bottom level for creating new devices. 174 */ 175 struct dm_btree_info bl_info; 176 177 /* 178 * Describes the device details btree. 179 */ 180 struct dm_btree_info details_info; 181 182 struct rw_semaphore root_lock; 183 uint32_t time; 184 dm_block_t root; 185 dm_block_t details_root; 186 struct list_head thin_devices; 187 uint64_t trans_id; 188 unsigned long flags; 189 sector_t data_block_size; 190 191 /* 192 * We reserve a section of the metadata for commit overhead. 193 * All reported space does *not* include this. 194 */ 195 dm_block_t metadata_reserve; 196 197 /* 198 * Set if a transaction has to be aborted but the attempt to roll back 199 * to the previous (good) transaction failed. The only pool metadata 200 * operation possible in this state is the closing of the device. 201 */ 202 bool fail_io:1; 203 204 /* 205 * Reading the space map roots can fail, so we read it into these 206 * buffers before the superblock is locked and updated. 207 */ 208 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 209 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 210 }; 211 212 struct dm_thin_device { 213 struct list_head list; 214 struct dm_pool_metadata *pmd; 215 dm_thin_id id; 216 217 int open_count; 218 bool changed:1; 219 bool aborted_with_changes:1; 220 uint64_t mapped_blocks; 221 uint64_t transaction_id; 222 uint32_t creation_time; 223 uint32_t snapshotted_time; 224 }; 225 226 /*---------------------------------------------------------------- 227 * superblock validator 228 *--------------------------------------------------------------*/ 229 230 #define SUPERBLOCK_CSUM_XOR 160774 231 232 static void sb_prepare_for_write(struct dm_block_validator *v, 233 struct dm_block *b, 234 size_t block_size) 235 { 236 struct thin_disk_superblock *disk_super = dm_block_data(b); 237 238 disk_super->blocknr = cpu_to_le64(dm_block_location(b)); 239 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 240 block_size - sizeof(__le32), 241 SUPERBLOCK_CSUM_XOR)); 242 } 243 244 static int sb_check(struct dm_block_validator *v, 245 struct dm_block *b, 246 size_t block_size) 247 { 248 struct thin_disk_superblock *disk_super = dm_block_data(b); 249 __le32 csum_le; 250 251 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { 252 DMERR("sb_check failed: blocknr %llu: " 253 "wanted %llu", le64_to_cpu(disk_super->blocknr), 254 (unsigned long long)dm_block_location(b)); 255 return -ENOTBLK; 256 } 257 258 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) { 259 DMERR("sb_check failed: magic %llu: " 260 "wanted %llu", le64_to_cpu(disk_super->magic), 261 (unsigned long long)THIN_SUPERBLOCK_MAGIC); 262 return -EILSEQ; 263 } 264 265 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 266 block_size - sizeof(__le32), 267 SUPERBLOCK_CSUM_XOR)); 268 if (csum_le != disk_super->csum) { 269 DMERR("sb_check failed: csum %u: wanted %u", 270 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); 271 return -EILSEQ; 272 } 273 274 return 0; 275 } 276 277 static struct dm_block_validator sb_validator = { 278 .name = "superblock", 279 .prepare_for_write = sb_prepare_for_write, 280 .check = sb_check 281 }; 282 283 /*---------------------------------------------------------------- 284 * Methods for the btree value types 285 *--------------------------------------------------------------*/ 286 287 static uint64_t pack_block_time(dm_block_t b, uint32_t t) 288 { 289 return (b << 24) | t; 290 } 291 292 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) 293 { 294 *b = v >> 24; 295 *t = v & ((1 << 24) - 1); 296 } 297 298 static void data_block_inc(void *context, const void *value_le) 299 { 300 struct dm_space_map *sm = context; 301 __le64 v_le; 302 uint64_t b; 303 uint32_t t; 304 305 memcpy(&v_le, value_le, sizeof(v_le)); 306 unpack_block_time(le64_to_cpu(v_le), &b, &t); 307 dm_sm_inc_block(sm, b); 308 } 309 310 static void data_block_dec(void *context, const void *value_le) 311 { 312 struct dm_space_map *sm = context; 313 __le64 v_le; 314 uint64_t b; 315 uint32_t t; 316 317 memcpy(&v_le, value_le, sizeof(v_le)); 318 unpack_block_time(le64_to_cpu(v_le), &b, &t); 319 dm_sm_dec_block(sm, b); 320 } 321 322 static int data_block_equal(void *context, const void *value1_le, const void *value2_le) 323 { 324 __le64 v1_le, v2_le; 325 uint64_t b1, b2; 326 uint32_t t; 327 328 memcpy(&v1_le, value1_le, sizeof(v1_le)); 329 memcpy(&v2_le, value2_le, sizeof(v2_le)); 330 unpack_block_time(le64_to_cpu(v1_le), &b1, &t); 331 unpack_block_time(le64_to_cpu(v2_le), &b2, &t); 332 333 return b1 == b2; 334 } 335 336 static void subtree_inc(void *context, const void *value) 337 { 338 struct dm_btree_info *info = context; 339 __le64 root_le; 340 uint64_t root; 341 342 memcpy(&root_le, value, sizeof(root_le)); 343 root = le64_to_cpu(root_le); 344 dm_tm_inc(info->tm, root); 345 } 346 347 static void subtree_dec(void *context, const void *value) 348 { 349 struct dm_btree_info *info = context; 350 __le64 root_le; 351 uint64_t root; 352 353 memcpy(&root_le, value, sizeof(root_le)); 354 root = le64_to_cpu(root_le); 355 if (dm_btree_del(info, root)) 356 DMERR("btree delete failed"); 357 } 358 359 static int subtree_equal(void *context, const void *value1_le, const void *value2_le) 360 { 361 __le64 v1_le, v2_le; 362 memcpy(&v1_le, value1_le, sizeof(v1_le)); 363 memcpy(&v2_le, value2_le, sizeof(v2_le)); 364 365 return v1_le == v2_le; 366 } 367 368 /*----------------------------------------------------------------*/ 369 370 static int superblock_lock_zero(struct dm_pool_metadata *pmd, 371 struct dm_block **sblock) 372 { 373 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION, 374 &sb_validator, sblock); 375 } 376 377 static int superblock_lock(struct dm_pool_metadata *pmd, 378 struct dm_block **sblock) 379 { 380 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 381 &sb_validator, sblock); 382 } 383 384 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) 385 { 386 int r; 387 unsigned i; 388 struct dm_block *b; 389 __le64 *data_le, zero = cpu_to_le64(0); 390 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); 391 392 /* 393 * We can't use a validator here - it may be all zeroes. 394 */ 395 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b); 396 if (r) 397 return r; 398 399 data_le = dm_block_data(b); 400 *result = 1; 401 for (i = 0; i < block_size; i++) { 402 if (data_le[i] != zero) { 403 *result = 0; 404 break; 405 } 406 } 407 408 dm_bm_unlock(b); 409 410 return 0; 411 } 412 413 static void __setup_btree_details(struct dm_pool_metadata *pmd) 414 { 415 pmd->info.tm = pmd->tm; 416 pmd->info.levels = 2; 417 pmd->info.value_type.context = pmd->data_sm; 418 pmd->info.value_type.size = sizeof(__le64); 419 pmd->info.value_type.inc = data_block_inc; 420 pmd->info.value_type.dec = data_block_dec; 421 pmd->info.value_type.equal = data_block_equal; 422 423 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info)); 424 pmd->nb_info.tm = pmd->nb_tm; 425 426 pmd->tl_info.tm = pmd->tm; 427 pmd->tl_info.levels = 1; 428 pmd->tl_info.value_type.context = &pmd->bl_info; 429 pmd->tl_info.value_type.size = sizeof(__le64); 430 pmd->tl_info.value_type.inc = subtree_inc; 431 pmd->tl_info.value_type.dec = subtree_dec; 432 pmd->tl_info.value_type.equal = subtree_equal; 433 434 pmd->bl_info.tm = pmd->tm; 435 pmd->bl_info.levels = 1; 436 pmd->bl_info.value_type.context = pmd->data_sm; 437 pmd->bl_info.value_type.size = sizeof(__le64); 438 pmd->bl_info.value_type.inc = data_block_inc; 439 pmd->bl_info.value_type.dec = data_block_dec; 440 pmd->bl_info.value_type.equal = data_block_equal; 441 442 pmd->details_info.tm = pmd->tm; 443 pmd->details_info.levels = 1; 444 pmd->details_info.value_type.context = NULL; 445 pmd->details_info.value_type.size = sizeof(struct disk_device_details); 446 pmd->details_info.value_type.inc = NULL; 447 pmd->details_info.value_type.dec = NULL; 448 pmd->details_info.value_type.equal = NULL; 449 } 450 451 static int save_sm_roots(struct dm_pool_metadata *pmd) 452 { 453 int r; 454 size_t len; 455 456 r = dm_sm_root_size(pmd->metadata_sm, &len); 457 if (r < 0) 458 return r; 459 460 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); 461 if (r < 0) 462 return r; 463 464 r = dm_sm_root_size(pmd->data_sm, &len); 465 if (r < 0) 466 return r; 467 468 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); 469 } 470 471 static void copy_sm_roots(struct dm_pool_metadata *pmd, 472 struct thin_disk_superblock *disk) 473 { 474 memcpy(&disk->metadata_space_map_root, 475 &pmd->metadata_space_map_root, 476 sizeof(pmd->metadata_space_map_root)); 477 478 memcpy(&disk->data_space_map_root, 479 &pmd->data_space_map_root, 480 sizeof(pmd->data_space_map_root)); 481 } 482 483 static int __write_initial_superblock(struct dm_pool_metadata *pmd) 484 { 485 int r; 486 struct dm_block *sblock; 487 struct thin_disk_superblock *disk_super; 488 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT; 489 490 if (bdev_size > THIN_METADATA_MAX_SECTORS) 491 bdev_size = THIN_METADATA_MAX_SECTORS; 492 493 r = dm_sm_commit(pmd->data_sm); 494 if (r < 0) 495 return r; 496 497 r = dm_tm_pre_commit(pmd->tm); 498 if (r < 0) 499 return r; 500 501 r = save_sm_roots(pmd); 502 if (r < 0) 503 return r; 504 505 r = superblock_lock_zero(pmd, &sblock); 506 if (r) 507 return r; 508 509 disk_super = dm_block_data(sblock); 510 disk_super->flags = 0; 511 memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); 512 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC); 513 disk_super->version = cpu_to_le32(THIN_VERSION); 514 disk_super->time = 0; 515 disk_super->trans_id = 0; 516 disk_super->held_root = 0; 517 518 copy_sm_roots(pmd, disk_super); 519 520 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 521 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 522 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); 523 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); 524 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); 525 526 return dm_tm_commit(pmd->tm, sblock); 527 } 528 529 static int __format_metadata(struct dm_pool_metadata *pmd) 530 { 531 int r; 532 533 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 534 &pmd->tm, &pmd->metadata_sm); 535 if (r < 0) { 536 DMERR("tm_create_with_sm failed"); 537 return r; 538 } 539 540 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0); 541 if (IS_ERR(pmd->data_sm)) { 542 DMERR("sm_disk_create failed"); 543 r = PTR_ERR(pmd->data_sm); 544 goto bad_cleanup_tm; 545 } 546 547 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 548 if (!pmd->nb_tm) { 549 DMERR("could not create non-blocking clone tm"); 550 r = -ENOMEM; 551 goto bad_cleanup_data_sm; 552 } 553 554 __setup_btree_details(pmd); 555 556 r = dm_btree_empty(&pmd->info, &pmd->root); 557 if (r < 0) 558 goto bad_cleanup_nb_tm; 559 560 r = dm_btree_empty(&pmd->details_info, &pmd->details_root); 561 if (r < 0) { 562 DMERR("couldn't create devices root"); 563 goto bad_cleanup_nb_tm; 564 } 565 566 r = __write_initial_superblock(pmd); 567 if (r) 568 goto bad_cleanup_nb_tm; 569 570 return 0; 571 572 bad_cleanup_nb_tm: 573 dm_tm_destroy(pmd->nb_tm); 574 bad_cleanup_data_sm: 575 dm_sm_destroy(pmd->data_sm); 576 bad_cleanup_tm: 577 dm_tm_destroy(pmd->tm); 578 dm_sm_destroy(pmd->metadata_sm); 579 580 return r; 581 } 582 583 static int __check_incompat_features(struct thin_disk_superblock *disk_super, 584 struct dm_pool_metadata *pmd) 585 { 586 uint32_t features; 587 588 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP; 589 if (features) { 590 DMERR("could not access metadata due to unsupported optional features (%lx).", 591 (unsigned long)features); 592 return -EINVAL; 593 } 594 595 /* 596 * Check for read-only metadata to skip the following RDWR checks. 597 */ 598 if (get_disk_ro(pmd->bdev->bd_disk)) 599 return 0; 600 601 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP; 602 if (features) { 603 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", 604 (unsigned long)features); 605 return -EINVAL; 606 } 607 608 return 0; 609 } 610 611 static int __open_metadata(struct dm_pool_metadata *pmd) 612 { 613 int r; 614 struct dm_block *sblock; 615 struct thin_disk_superblock *disk_super; 616 617 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 618 &sb_validator, &sblock); 619 if (r < 0) { 620 DMERR("couldn't read superblock"); 621 return r; 622 } 623 624 disk_super = dm_block_data(sblock); 625 626 /* Verify the data block size hasn't changed */ 627 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) { 628 DMERR("changing the data block size (from %u to %llu) is not supported", 629 le32_to_cpu(disk_super->data_block_size), 630 (unsigned long long)pmd->data_block_size); 631 r = -EINVAL; 632 goto bad_unlock_sblock; 633 } 634 635 r = __check_incompat_features(disk_super, pmd); 636 if (r < 0) 637 goto bad_unlock_sblock; 638 639 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 640 disk_super->metadata_space_map_root, 641 sizeof(disk_super->metadata_space_map_root), 642 &pmd->tm, &pmd->metadata_sm); 643 if (r < 0) { 644 DMERR("tm_open_with_sm failed"); 645 goto bad_unlock_sblock; 646 } 647 648 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root, 649 sizeof(disk_super->data_space_map_root)); 650 if (IS_ERR(pmd->data_sm)) { 651 DMERR("sm_disk_open failed"); 652 r = PTR_ERR(pmd->data_sm); 653 goto bad_cleanup_tm; 654 } 655 656 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 657 if (!pmd->nb_tm) { 658 DMERR("could not create non-blocking clone tm"); 659 r = -ENOMEM; 660 goto bad_cleanup_data_sm; 661 } 662 663 __setup_btree_details(pmd); 664 dm_bm_unlock(sblock); 665 666 return 0; 667 668 bad_cleanup_data_sm: 669 dm_sm_destroy(pmd->data_sm); 670 bad_cleanup_tm: 671 dm_tm_destroy(pmd->tm); 672 dm_sm_destroy(pmd->metadata_sm); 673 bad_unlock_sblock: 674 dm_bm_unlock(sblock); 675 676 return r; 677 } 678 679 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device) 680 { 681 int r, unformatted; 682 683 r = __superblock_all_zeroes(pmd->bm, &unformatted); 684 if (r) 685 return r; 686 687 if (unformatted) 688 return format_device ? __format_metadata(pmd) : -EPERM; 689 690 return __open_metadata(pmd); 691 } 692 693 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device) 694 { 695 int r; 696 697 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, 698 THIN_MAX_CONCURRENT_LOCKS); 699 if (IS_ERR(pmd->bm)) { 700 DMERR("could not create block manager"); 701 return PTR_ERR(pmd->bm); 702 } 703 704 r = __open_or_format_metadata(pmd, format_device); 705 if (r) 706 dm_block_manager_destroy(pmd->bm); 707 708 return r; 709 } 710 711 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd) 712 { 713 dm_sm_destroy(pmd->data_sm); 714 dm_sm_destroy(pmd->metadata_sm); 715 dm_tm_destroy(pmd->nb_tm); 716 dm_tm_destroy(pmd->tm); 717 dm_block_manager_destroy(pmd->bm); 718 } 719 720 static int __begin_transaction(struct dm_pool_metadata *pmd) 721 { 722 int r; 723 struct thin_disk_superblock *disk_super; 724 struct dm_block *sblock; 725 726 /* 727 * We re-read the superblock every time. Shouldn't need to do this 728 * really. 729 */ 730 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 731 &sb_validator, &sblock); 732 if (r) 733 return r; 734 735 disk_super = dm_block_data(sblock); 736 pmd->time = le32_to_cpu(disk_super->time); 737 pmd->root = le64_to_cpu(disk_super->data_mapping_root); 738 pmd->details_root = le64_to_cpu(disk_super->device_details_root); 739 pmd->trans_id = le64_to_cpu(disk_super->trans_id); 740 pmd->flags = le32_to_cpu(disk_super->flags); 741 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size); 742 743 dm_bm_unlock(sblock); 744 return 0; 745 } 746 747 static int __write_changed_details(struct dm_pool_metadata *pmd) 748 { 749 int r; 750 struct dm_thin_device *td, *tmp; 751 struct disk_device_details details; 752 uint64_t key; 753 754 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 755 if (!td->changed) 756 continue; 757 758 key = td->id; 759 760 details.mapped_blocks = cpu_to_le64(td->mapped_blocks); 761 details.transaction_id = cpu_to_le64(td->transaction_id); 762 details.creation_time = cpu_to_le32(td->creation_time); 763 details.snapshotted_time = cpu_to_le32(td->snapshotted_time); 764 __dm_bless_for_disk(&details); 765 766 r = dm_btree_insert(&pmd->details_info, pmd->details_root, 767 &key, &details, &pmd->details_root); 768 if (r) 769 return r; 770 771 if (td->open_count) 772 td->changed = 0; 773 else { 774 list_del(&td->list); 775 kfree(td); 776 } 777 } 778 779 return 0; 780 } 781 782 static int __commit_transaction(struct dm_pool_metadata *pmd) 783 { 784 int r; 785 struct thin_disk_superblock *disk_super; 786 struct dm_block *sblock; 787 788 /* 789 * We need to know if the thin_disk_superblock exceeds a 512-byte sector. 790 */ 791 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512); 792 793 r = __write_changed_details(pmd); 794 if (r < 0) 795 return r; 796 797 r = dm_sm_commit(pmd->data_sm); 798 if (r < 0) 799 return r; 800 801 r = dm_tm_pre_commit(pmd->tm); 802 if (r < 0) 803 return r; 804 805 r = save_sm_roots(pmd); 806 if (r < 0) 807 return r; 808 809 r = superblock_lock(pmd, &sblock); 810 if (r) 811 return r; 812 813 disk_super = dm_block_data(sblock); 814 disk_super->time = cpu_to_le32(pmd->time); 815 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 816 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 817 disk_super->trans_id = cpu_to_le64(pmd->trans_id); 818 disk_super->flags = cpu_to_le32(pmd->flags); 819 820 copy_sm_roots(pmd, disk_super); 821 822 return dm_tm_commit(pmd->tm, sblock); 823 } 824 825 static void __set_metadata_reserve(struct dm_pool_metadata *pmd) 826 { 827 int r; 828 dm_block_t total; 829 dm_block_t max_blocks = 4096; /* 16M */ 830 831 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total); 832 if (r) { 833 DMERR("could not get size of metadata device"); 834 pmd->metadata_reserve = max_blocks; 835 } else { 836 sector_div(total, 10); 837 pmd->metadata_reserve = min(max_blocks, total); 838 } 839 } 840 841 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, 842 sector_t data_block_size, 843 bool format_device) 844 { 845 int r; 846 struct dm_pool_metadata *pmd; 847 848 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL); 849 if (!pmd) { 850 DMERR("could not allocate metadata struct"); 851 return ERR_PTR(-ENOMEM); 852 } 853 854 init_rwsem(&pmd->root_lock); 855 pmd->time = 0; 856 INIT_LIST_HEAD(&pmd->thin_devices); 857 pmd->fail_io = false; 858 pmd->bdev = bdev; 859 pmd->data_block_size = data_block_size; 860 861 r = __create_persistent_data_objects(pmd, format_device); 862 if (r) { 863 kfree(pmd); 864 return ERR_PTR(r); 865 } 866 867 r = __begin_transaction(pmd); 868 if (r < 0) { 869 if (dm_pool_metadata_close(pmd) < 0) 870 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 871 return ERR_PTR(r); 872 } 873 874 __set_metadata_reserve(pmd); 875 876 return pmd; 877 } 878 879 int dm_pool_metadata_close(struct dm_pool_metadata *pmd) 880 { 881 int r; 882 unsigned open_devices = 0; 883 struct dm_thin_device *td, *tmp; 884 885 down_read(&pmd->root_lock); 886 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 887 if (td->open_count) 888 open_devices++; 889 else { 890 list_del(&td->list); 891 kfree(td); 892 } 893 } 894 up_read(&pmd->root_lock); 895 896 if (open_devices) { 897 DMERR("attempt to close pmd when %u device(s) are still open", 898 open_devices); 899 return -EBUSY; 900 } 901 902 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) { 903 r = __commit_transaction(pmd); 904 if (r < 0) 905 DMWARN("%s: __commit_transaction() failed, error = %d", 906 __func__, r); 907 } 908 909 if (!pmd->fail_io) 910 __destroy_persistent_data_objects(pmd); 911 912 kfree(pmd); 913 return 0; 914 } 915 916 /* 917 * __open_device: Returns @td corresponding to device with id @dev, 918 * creating it if @create is set and incrementing @td->open_count. 919 * On failure, @td is undefined. 920 */ 921 static int __open_device(struct dm_pool_metadata *pmd, 922 dm_thin_id dev, int create, 923 struct dm_thin_device **td) 924 { 925 int r, changed = 0; 926 struct dm_thin_device *td2; 927 uint64_t key = dev; 928 struct disk_device_details details_le; 929 930 /* 931 * If the device is already open, return it. 932 */ 933 list_for_each_entry(td2, &pmd->thin_devices, list) 934 if (td2->id == dev) { 935 /* 936 * May not create an already-open device. 937 */ 938 if (create) 939 return -EEXIST; 940 941 td2->open_count++; 942 *td = td2; 943 return 0; 944 } 945 946 /* 947 * Check the device exists. 948 */ 949 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 950 &key, &details_le); 951 if (r) { 952 if (r != -ENODATA || !create) 953 return r; 954 955 /* 956 * Create new device. 957 */ 958 changed = 1; 959 details_le.mapped_blocks = 0; 960 details_le.transaction_id = cpu_to_le64(pmd->trans_id); 961 details_le.creation_time = cpu_to_le32(pmd->time); 962 details_le.snapshotted_time = cpu_to_le32(pmd->time); 963 } 964 965 *td = kmalloc(sizeof(**td), GFP_NOIO); 966 if (!*td) 967 return -ENOMEM; 968 969 (*td)->pmd = pmd; 970 (*td)->id = dev; 971 (*td)->open_count = 1; 972 (*td)->changed = changed; 973 (*td)->aborted_with_changes = false; 974 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks); 975 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id); 976 (*td)->creation_time = le32_to_cpu(details_le.creation_time); 977 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time); 978 979 list_add(&(*td)->list, &pmd->thin_devices); 980 981 return 0; 982 } 983 984 static void __close_device(struct dm_thin_device *td) 985 { 986 --td->open_count; 987 } 988 989 static int __create_thin(struct dm_pool_metadata *pmd, 990 dm_thin_id dev) 991 { 992 int r; 993 dm_block_t dev_root; 994 uint64_t key = dev; 995 struct disk_device_details details_le; 996 struct dm_thin_device *td; 997 __le64 value; 998 999 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1000 &key, &details_le); 1001 if (!r) 1002 return -EEXIST; 1003 1004 /* 1005 * Create an empty btree for the mappings. 1006 */ 1007 r = dm_btree_empty(&pmd->bl_info, &dev_root); 1008 if (r) 1009 return r; 1010 1011 /* 1012 * Insert it into the main mapping tree. 1013 */ 1014 value = cpu_to_le64(dev_root); 1015 __dm_bless_for_disk(&value); 1016 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1017 if (r) { 1018 dm_btree_del(&pmd->bl_info, dev_root); 1019 return r; 1020 } 1021 1022 r = __open_device(pmd, dev, 1, &td); 1023 if (r) { 1024 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1025 dm_btree_del(&pmd->bl_info, dev_root); 1026 return r; 1027 } 1028 __close_device(td); 1029 1030 return r; 1031 } 1032 1033 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) 1034 { 1035 int r = -EINVAL; 1036 1037 down_write(&pmd->root_lock); 1038 if (!pmd->fail_io) 1039 r = __create_thin(pmd, dev); 1040 up_write(&pmd->root_lock); 1041 1042 return r; 1043 } 1044 1045 static int __set_snapshot_details(struct dm_pool_metadata *pmd, 1046 struct dm_thin_device *snap, 1047 dm_thin_id origin, uint32_t time) 1048 { 1049 int r; 1050 struct dm_thin_device *td; 1051 1052 r = __open_device(pmd, origin, 0, &td); 1053 if (r) 1054 return r; 1055 1056 td->changed = 1; 1057 td->snapshotted_time = time; 1058 1059 snap->mapped_blocks = td->mapped_blocks; 1060 snap->snapshotted_time = time; 1061 __close_device(td); 1062 1063 return 0; 1064 } 1065 1066 static int __create_snap(struct dm_pool_metadata *pmd, 1067 dm_thin_id dev, dm_thin_id origin) 1068 { 1069 int r; 1070 dm_block_t origin_root; 1071 uint64_t key = origin, dev_key = dev; 1072 struct dm_thin_device *td; 1073 struct disk_device_details details_le; 1074 __le64 value; 1075 1076 /* check this device is unused */ 1077 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1078 &dev_key, &details_le); 1079 if (!r) 1080 return -EEXIST; 1081 1082 /* find the mapping tree for the origin */ 1083 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value); 1084 if (r) 1085 return r; 1086 origin_root = le64_to_cpu(value); 1087 1088 /* clone the origin, an inc will do */ 1089 dm_tm_inc(pmd->tm, origin_root); 1090 1091 /* insert into the main mapping tree */ 1092 value = cpu_to_le64(origin_root); 1093 __dm_bless_for_disk(&value); 1094 key = dev; 1095 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1096 if (r) { 1097 dm_tm_dec(pmd->tm, origin_root); 1098 return r; 1099 } 1100 1101 pmd->time++; 1102 1103 r = __open_device(pmd, dev, 1, &td); 1104 if (r) 1105 goto bad; 1106 1107 r = __set_snapshot_details(pmd, td, origin, pmd->time); 1108 __close_device(td); 1109 1110 if (r) 1111 goto bad; 1112 1113 return 0; 1114 1115 bad: 1116 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1117 dm_btree_remove(&pmd->details_info, pmd->details_root, 1118 &key, &pmd->details_root); 1119 return r; 1120 } 1121 1122 int dm_pool_create_snap(struct dm_pool_metadata *pmd, 1123 dm_thin_id dev, 1124 dm_thin_id origin) 1125 { 1126 int r = -EINVAL; 1127 1128 down_write(&pmd->root_lock); 1129 if (!pmd->fail_io) 1130 r = __create_snap(pmd, dev, origin); 1131 up_write(&pmd->root_lock); 1132 1133 return r; 1134 } 1135 1136 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev) 1137 { 1138 int r; 1139 uint64_t key = dev; 1140 struct dm_thin_device *td; 1141 1142 /* TODO: failure should mark the transaction invalid */ 1143 r = __open_device(pmd, dev, 0, &td); 1144 if (r) 1145 return r; 1146 1147 if (td->open_count > 1) { 1148 __close_device(td); 1149 return -EBUSY; 1150 } 1151 1152 list_del(&td->list); 1153 kfree(td); 1154 r = dm_btree_remove(&pmd->details_info, pmd->details_root, 1155 &key, &pmd->details_root); 1156 if (r) 1157 return r; 1158 1159 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1160 if (r) 1161 return r; 1162 1163 return 0; 1164 } 1165 1166 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd, 1167 dm_thin_id dev) 1168 { 1169 int r = -EINVAL; 1170 1171 down_write(&pmd->root_lock); 1172 if (!pmd->fail_io) 1173 r = __delete_device(pmd, dev); 1174 up_write(&pmd->root_lock); 1175 1176 return r; 1177 } 1178 1179 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd, 1180 uint64_t current_id, 1181 uint64_t new_id) 1182 { 1183 int r = -EINVAL; 1184 1185 down_write(&pmd->root_lock); 1186 1187 if (pmd->fail_io) 1188 goto out; 1189 1190 if (pmd->trans_id != current_id) { 1191 DMERR("mismatched transaction id"); 1192 goto out; 1193 } 1194 1195 pmd->trans_id = new_id; 1196 r = 0; 1197 1198 out: 1199 up_write(&pmd->root_lock); 1200 1201 return r; 1202 } 1203 1204 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd, 1205 uint64_t *result) 1206 { 1207 int r = -EINVAL; 1208 1209 down_read(&pmd->root_lock); 1210 if (!pmd->fail_io) { 1211 *result = pmd->trans_id; 1212 r = 0; 1213 } 1214 up_read(&pmd->root_lock); 1215 1216 return r; 1217 } 1218 1219 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd) 1220 { 1221 int r, inc; 1222 struct thin_disk_superblock *disk_super; 1223 struct dm_block *copy, *sblock; 1224 dm_block_t held_root; 1225 1226 /* 1227 * We commit to ensure the btree roots which we increment in a 1228 * moment are up to date. 1229 */ 1230 __commit_transaction(pmd); 1231 1232 /* 1233 * Copy the superblock. 1234 */ 1235 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION); 1236 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION, 1237 &sb_validator, ©, &inc); 1238 if (r) 1239 return r; 1240 1241 BUG_ON(!inc); 1242 1243 held_root = dm_block_location(copy); 1244 disk_super = dm_block_data(copy); 1245 1246 if (le64_to_cpu(disk_super->held_root)) { 1247 DMWARN("Pool metadata snapshot already exists: release this before taking another."); 1248 1249 dm_tm_dec(pmd->tm, held_root); 1250 dm_tm_unlock(pmd->tm, copy); 1251 return -EBUSY; 1252 } 1253 1254 /* 1255 * Wipe the spacemap since we're not publishing this. 1256 */ 1257 memset(&disk_super->data_space_map_root, 0, 1258 sizeof(disk_super->data_space_map_root)); 1259 memset(&disk_super->metadata_space_map_root, 0, 1260 sizeof(disk_super->metadata_space_map_root)); 1261 1262 /* 1263 * Increment the data structures that need to be preserved. 1264 */ 1265 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root)); 1266 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root)); 1267 dm_tm_unlock(pmd->tm, copy); 1268 1269 /* 1270 * Write the held root into the superblock. 1271 */ 1272 r = superblock_lock(pmd, &sblock); 1273 if (r) { 1274 dm_tm_dec(pmd->tm, held_root); 1275 return r; 1276 } 1277 1278 disk_super = dm_block_data(sblock); 1279 disk_super->held_root = cpu_to_le64(held_root); 1280 dm_bm_unlock(sblock); 1281 return 0; 1282 } 1283 1284 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd) 1285 { 1286 int r = -EINVAL; 1287 1288 down_write(&pmd->root_lock); 1289 if (!pmd->fail_io) 1290 r = __reserve_metadata_snap(pmd); 1291 up_write(&pmd->root_lock); 1292 1293 return r; 1294 } 1295 1296 static int __release_metadata_snap(struct dm_pool_metadata *pmd) 1297 { 1298 int r; 1299 struct thin_disk_superblock *disk_super; 1300 struct dm_block *sblock, *copy; 1301 dm_block_t held_root; 1302 1303 r = superblock_lock(pmd, &sblock); 1304 if (r) 1305 return r; 1306 1307 disk_super = dm_block_data(sblock); 1308 held_root = le64_to_cpu(disk_super->held_root); 1309 disk_super->held_root = cpu_to_le64(0); 1310 1311 dm_bm_unlock(sblock); 1312 1313 if (!held_root) { 1314 DMWARN("No pool metadata snapshot found: nothing to release."); 1315 return -EINVAL; 1316 } 1317 1318 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©); 1319 if (r) 1320 return r; 1321 1322 disk_super = dm_block_data(copy); 1323 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root)); 1324 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root)); 1325 dm_sm_dec_block(pmd->metadata_sm, held_root); 1326 1327 dm_tm_unlock(pmd->tm, copy); 1328 1329 return 0; 1330 } 1331 1332 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd) 1333 { 1334 int r = -EINVAL; 1335 1336 down_write(&pmd->root_lock); 1337 if (!pmd->fail_io) 1338 r = __release_metadata_snap(pmd); 1339 up_write(&pmd->root_lock); 1340 1341 return r; 1342 } 1343 1344 static int __get_metadata_snap(struct dm_pool_metadata *pmd, 1345 dm_block_t *result) 1346 { 1347 int r; 1348 struct thin_disk_superblock *disk_super; 1349 struct dm_block *sblock; 1350 1351 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 1352 &sb_validator, &sblock); 1353 if (r) 1354 return r; 1355 1356 disk_super = dm_block_data(sblock); 1357 *result = le64_to_cpu(disk_super->held_root); 1358 1359 dm_bm_unlock(sblock); 1360 1361 return 0; 1362 } 1363 1364 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd, 1365 dm_block_t *result) 1366 { 1367 int r = -EINVAL; 1368 1369 down_read(&pmd->root_lock); 1370 if (!pmd->fail_io) 1371 r = __get_metadata_snap(pmd, result); 1372 up_read(&pmd->root_lock); 1373 1374 return r; 1375 } 1376 1377 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev, 1378 struct dm_thin_device **td) 1379 { 1380 int r = -EINVAL; 1381 1382 down_write(&pmd->root_lock); 1383 if (!pmd->fail_io) 1384 r = __open_device(pmd, dev, 0, td); 1385 up_write(&pmd->root_lock); 1386 1387 return r; 1388 } 1389 1390 int dm_pool_close_thin_device(struct dm_thin_device *td) 1391 { 1392 down_write(&td->pmd->root_lock); 1393 __close_device(td); 1394 up_write(&td->pmd->root_lock); 1395 1396 return 0; 1397 } 1398 1399 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) 1400 { 1401 return td->id; 1402 } 1403 1404 /* 1405 * Check whether @time (of block creation) is older than @td's last snapshot. 1406 * If so then the associated block is shared with the last snapshot device. 1407 * Any block on a device created *after* the device last got snapshotted is 1408 * necessarily not shared. 1409 */ 1410 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) 1411 { 1412 return td->snapshotted_time > time; 1413 } 1414 1415 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value, 1416 struct dm_thin_lookup_result *result) 1417 { 1418 uint64_t block_time = 0; 1419 dm_block_t exception_block; 1420 uint32_t exception_time; 1421 1422 block_time = le64_to_cpu(value); 1423 unpack_block_time(block_time, &exception_block, &exception_time); 1424 result->block = exception_block; 1425 result->shared = __snapshotted_since(td, exception_time); 1426 } 1427 1428 static int __find_block(struct dm_thin_device *td, dm_block_t block, 1429 int can_issue_io, struct dm_thin_lookup_result *result) 1430 { 1431 int r; 1432 __le64 value; 1433 struct dm_pool_metadata *pmd = td->pmd; 1434 dm_block_t keys[2] = { td->id, block }; 1435 struct dm_btree_info *info; 1436 1437 if (can_issue_io) { 1438 info = &pmd->info; 1439 } else 1440 info = &pmd->nb_info; 1441 1442 r = dm_btree_lookup(info, pmd->root, keys, &value); 1443 if (!r) 1444 unpack_lookup_result(td, value, result); 1445 1446 return r; 1447 } 1448 1449 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block, 1450 int can_issue_io, struct dm_thin_lookup_result *result) 1451 { 1452 int r; 1453 struct dm_pool_metadata *pmd = td->pmd; 1454 1455 down_read(&pmd->root_lock); 1456 if (pmd->fail_io) { 1457 up_read(&pmd->root_lock); 1458 return -EINVAL; 1459 } 1460 1461 r = __find_block(td, block, can_issue_io, result); 1462 1463 up_read(&pmd->root_lock); 1464 return r; 1465 } 1466 1467 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block, 1468 dm_block_t *vblock, 1469 struct dm_thin_lookup_result *result) 1470 { 1471 int r; 1472 __le64 value; 1473 struct dm_pool_metadata *pmd = td->pmd; 1474 dm_block_t keys[2] = { td->id, block }; 1475 1476 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value); 1477 if (!r) 1478 unpack_lookup_result(td, value, result); 1479 1480 return r; 1481 } 1482 1483 static int __find_mapped_range(struct dm_thin_device *td, 1484 dm_block_t begin, dm_block_t end, 1485 dm_block_t *thin_begin, dm_block_t *thin_end, 1486 dm_block_t *pool_begin, bool *maybe_shared) 1487 { 1488 int r; 1489 dm_block_t pool_end; 1490 struct dm_thin_lookup_result lookup; 1491 1492 if (end < begin) 1493 return -ENODATA; 1494 1495 r = __find_next_mapped_block(td, begin, &begin, &lookup); 1496 if (r) 1497 return r; 1498 1499 if (begin >= end) 1500 return -ENODATA; 1501 1502 *thin_begin = begin; 1503 *pool_begin = lookup.block; 1504 *maybe_shared = lookup.shared; 1505 1506 begin++; 1507 pool_end = *pool_begin + 1; 1508 while (begin != end) { 1509 r = __find_block(td, begin, true, &lookup); 1510 if (r) { 1511 if (r == -ENODATA) 1512 break; 1513 else 1514 return r; 1515 } 1516 1517 if ((lookup.block != pool_end) || 1518 (lookup.shared != *maybe_shared)) 1519 break; 1520 1521 pool_end++; 1522 begin++; 1523 } 1524 1525 *thin_end = begin; 1526 return 0; 1527 } 1528 1529 int dm_thin_find_mapped_range(struct dm_thin_device *td, 1530 dm_block_t begin, dm_block_t end, 1531 dm_block_t *thin_begin, dm_block_t *thin_end, 1532 dm_block_t *pool_begin, bool *maybe_shared) 1533 { 1534 int r = -EINVAL; 1535 struct dm_pool_metadata *pmd = td->pmd; 1536 1537 down_read(&pmd->root_lock); 1538 if (!pmd->fail_io) { 1539 r = __find_mapped_range(td, begin, end, thin_begin, thin_end, 1540 pool_begin, maybe_shared); 1541 } 1542 up_read(&pmd->root_lock); 1543 1544 return r; 1545 } 1546 1547 static int __insert(struct dm_thin_device *td, dm_block_t block, 1548 dm_block_t data_block) 1549 { 1550 int r, inserted; 1551 __le64 value; 1552 struct dm_pool_metadata *pmd = td->pmd; 1553 dm_block_t keys[2] = { td->id, block }; 1554 1555 value = cpu_to_le64(pack_block_time(data_block, pmd->time)); 1556 __dm_bless_for_disk(&value); 1557 1558 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value, 1559 &pmd->root, &inserted); 1560 if (r) 1561 return r; 1562 1563 td->changed = 1; 1564 if (inserted) 1565 td->mapped_blocks++; 1566 1567 return 0; 1568 } 1569 1570 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block, 1571 dm_block_t data_block) 1572 { 1573 int r = -EINVAL; 1574 1575 down_write(&td->pmd->root_lock); 1576 if (!td->pmd->fail_io) 1577 r = __insert(td, block, data_block); 1578 up_write(&td->pmd->root_lock); 1579 1580 return r; 1581 } 1582 1583 static int __remove(struct dm_thin_device *td, dm_block_t block) 1584 { 1585 int r; 1586 struct dm_pool_metadata *pmd = td->pmd; 1587 dm_block_t keys[2] = { td->id, block }; 1588 1589 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root); 1590 if (r) 1591 return r; 1592 1593 td->mapped_blocks--; 1594 td->changed = 1; 1595 1596 return 0; 1597 } 1598 1599 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end) 1600 { 1601 int r; 1602 unsigned count, total_count = 0; 1603 struct dm_pool_metadata *pmd = td->pmd; 1604 dm_block_t keys[1] = { td->id }; 1605 __le64 value; 1606 dm_block_t mapping_root; 1607 1608 /* 1609 * Find the mapping tree 1610 */ 1611 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value); 1612 if (r) 1613 return r; 1614 1615 /* 1616 * Remove from the mapping tree, taking care to inc the 1617 * ref count so it doesn't get deleted. 1618 */ 1619 mapping_root = le64_to_cpu(value); 1620 dm_tm_inc(pmd->tm, mapping_root); 1621 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root); 1622 if (r) 1623 return r; 1624 1625 /* 1626 * Remove leaves stops at the first unmapped entry, so we have to 1627 * loop round finding mapped ranges. 1628 */ 1629 while (begin < end) { 1630 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value); 1631 if (r == -ENODATA) 1632 break; 1633 1634 if (r) 1635 return r; 1636 1637 if (begin >= end) 1638 break; 1639 1640 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count); 1641 if (r) 1642 return r; 1643 1644 total_count += count; 1645 } 1646 1647 td->mapped_blocks -= total_count; 1648 td->changed = 1; 1649 1650 /* 1651 * Reinsert the mapping tree. 1652 */ 1653 value = cpu_to_le64(mapping_root); 1654 __dm_bless_for_disk(&value); 1655 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root); 1656 } 1657 1658 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block) 1659 { 1660 int r = -EINVAL; 1661 1662 down_write(&td->pmd->root_lock); 1663 if (!td->pmd->fail_io) 1664 r = __remove(td, block); 1665 up_write(&td->pmd->root_lock); 1666 1667 return r; 1668 } 1669 1670 int dm_thin_remove_range(struct dm_thin_device *td, 1671 dm_block_t begin, dm_block_t end) 1672 { 1673 int r = -EINVAL; 1674 1675 down_write(&td->pmd->root_lock); 1676 if (!td->pmd->fail_io) 1677 r = __remove_range(td, begin, end); 1678 up_write(&td->pmd->root_lock); 1679 1680 return r; 1681 } 1682 1683 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) 1684 { 1685 int r; 1686 uint32_t ref_count; 1687 1688 down_read(&pmd->root_lock); 1689 r = dm_sm_get_count(pmd->data_sm, b, &ref_count); 1690 if (!r) 1691 *result = (ref_count != 0); 1692 up_read(&pmd->root_lock); 1693 1694 return r; 1695 } 1696 1697 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1698 { 1699 int r = 0; 1700 1701 down_write(&pmd->root_lock); 1702 for (; b != e; b++) { 1703 r = dm_sm_inc_block(pmd->data_sm, b); 1704 if (r) 1705 break; 1706 } 1707 up_write(&pmd->root_lock); 1708 1709 return r; 1710 } 1711 1712 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1713 { 1714 int r = 0; 1715 1716 down_write(&pmd->root_lock); 1717 for (; b != e; b++) { 1718 r = dm_sm_dec_block(pmd->data_sm, b); 1719 if (r) 1720 break; 1721 } 1722 up_write(&pmd->root_lock); 1723 1724 return r; 1725 } 1726 1727 bool dm_thin_changed_this_transaction(struct dm_thin_device *td) 1728 { 1729 int r; 1730 1731 down_read(&td->pmd->root_lock); 1732 r = td->changed; 1733 up_read(&td->pmd->root_lock); 1734 1735 return r; 1736 } 1737 1738 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) 1739 { 1740 bool r = false; 1741 struct dm_thin_device *td, *tmp; 1742 1743 down_read(&pmd->root_lock); 1744 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 1745 if (td->changed) { 1746 r = td->changed; 1747 break; 1748 } 1749 } 1750 up_read(&pmd->root_lock); 1751 1752 return r; 1753 } 1754 1755 bool dm_thin_aborted_changes(struct dm_thin_device *td) 1756 { 1757 bool r; 1758 1759 down_read(&td->pmd->root_lock); 1760 r = td->aborted_with_changes; 1761 up_read(&td->pmd->root_lock); 1762 1763 return r; 1764 } 1765 1766 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result) 1767 { 1768 int r = -EINVAL; 1769 1770 down_write(&pmd->root_lock); 1771 if (!pmd->fail_io) 1772 r = dm_sm_new_block(pmd->data_sm, result); 1773 up_write(&pmd->root_lock); 1774 1775 return r; 1776 } 1777 1778 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd) 1779 { 1780 int r = -EINVAL; 1781 1782 down_write(&pmd->root_lock); 1783 if (pmd->fail_io) 1784 goto out; 1785 1786 r = __commit_transaction(pmd); 1787 if (r <= 0) 1788 goto out; 1789 1790 /* 1791 * Open the next transaction. 1792 */ 1793 r = __begin_transaction(pmd); 1794 out: 1795 up_write(&pmd->root_lock); 1796 return r; 1797 } 1798 1799 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd) 1800 { 1801 struct dm_thin_device *td; 1802 1803 list_for_each_entry(td, &pmd->thin_devices, list) 1804 td->aborted_with_changes = td->changed; 1805 } 1806 1807 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd) 1808 { 1809 int r = -EINVAL; 1810 1811 down_write(&pmd->root_lock); 1812 if (pmd->fail_io) 1813 goto out; 1814 1815 __set_abort_with_changes_flags(pmd); 1816 __destroy_persistent_data_objects(pmd); 1817 r = __create_persistent_data_objects(pmd, false); 1818 if (r) 1819 pmd->fail_io = true; 1820 1821 out: 1822 up_write(&pmd->root_lock); 1823 1824 return r; 1825 } 1826 1827 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) 1828 { 1829 int r = -EINVAL; 1830 1831 down_read(&pmd->root_lock); 1832 if (!pmd->fail_io) 1833 r = dm_sm_get_nr_free(pmd->data_sm, result); 1834 up_read(&pmd->root_lock); 1835 1836 return r; 1837 } 1838 1839 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd, 1840 dm_block_t *result) 1841 { 1842 int r = -EINVAL; 1843 1844 down_read(&pmd->root_lock); 1845 if (!pmd->fail_io) 1846 r = dm_sm_get_nr_free(pmd->metadata_sm, result); 1847 1848 if (!r) { 1849 if (*result < pmd->metadata_reserve) 1850 *result = 0; 1851 else 1852 *result -= pmd->metadata_reserve; 1853 } 1854 up_read(&pmd->root_lock); 1855 1856 return r; 1857 } 1858 1859 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd, 1860 dm_block_t *result) 1861 { 1862 int r = -EINVAL; 1863 1864 down_read(&pmd->root_lock); 1865 if (!pmd->fail_io) 1866 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); 1867 up_read(&pmd->root_lock); 1868 1869 return r; 1870 } 1871 1872 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) 1873 { 1874 int r = -EINVAL; 1875 1876 down_read(&pmd->root_lock); 1877 if (!pmd->fail_io) 1878 r = dm_sm_get_nr_blocks(pmd->data_sm, result); 1879 up_read(&pmd->root_lock); 1880 1881 return r; 1882 } 1883 1884 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result) 1885 { 1886 int r = -EINVAL; 1887 struct dm_pool_metadata *pmd = td->pmd; 1888 1889 down_read(&pmd->root_lock); 1890 if (!pmd->fail_io) { 1891 *result = td->mapped_blocks; 1892 r = 0; 1893 } 1894 up_read(&pmd->root_lock); 1895 1896 return r; 1897 } 1898 1899 static int __highest_block(struct dm_thin_device *td, dm_block_t *result) 1900 { 1901 int r; 1902 __le64 value_le; 1903 dm_block_t thin_root; 1904 struct dm_pool_metadata *pmd = td->pmd; 1905 1906 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le); 1907 if (r) 1908 return r; 1909 1910 thin_root = le64_to_cpu(value_le); 1911 1912 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result); 1913 } 1914 1915 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, 1916 dm_block_t *result) 1917 { 1918 int r = -EINVAL; 1919 struct dm_pool_metadata *pmd = td->pmd; 1920 1921 down_read(&pmd->root_lock); 1922 if (!pmd->fail_io) 1923 r = __highest_block(td, result); 1924 up_read(&pmd->root_lock); 1925 1926 return r; 1927 } 1928 1929 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) 1930 { 1931 int r; 1932 dm_block_t old_count; 1933 1934 r = dm_sm_get_nr_blocks(sm, &old_count); 1935 if (r) 1936 return r; 1937 1938 if (new_count == old_count) 1939 return 0; 1940 1941 if (new_count < old_count) { 1942 DMERR("cannot reduce size of space map"); 1943 return -EINVAL; 1944 } 1945 1946 return dm_sm_extend(sm, new_count - old_count); 1947 } 1948 1949 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 1950 { 1951 int r = -EINVAL; 1952 1953 down_write(&pmd->root_lock); 1954 if (!pmd->fail_io) 1955 r = __resize_space_map(pmd->data_sm, new_count); 1956 up_write(&pmd->root_lock); 1957 1958 return r; 1959 } 1960 1961 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 1962 { 1963 int r = -EINVAL; 1964 1965 down_write(&pmd->root_lock); 1966 if (!pmd->fail_io) { 1967 r = __resize_space_map(pmd->metadata_sm, new_count); 1968 if (!r) 1969 __set_metadata_reserve(pmd); 1970 } 1971 up_write(&pmd->root_lock); 1972 1973 return r; 1974 } 1975 1976 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) 1977 { 1978 down_write(&pmd->root_lock); 1979 dm_bm_set_read_only(pmd->bm); 1980 up_write(&pmd->root_lock); 1981 } 1982 1983 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) 1984 { 1985 down_write(&pmd->root_lock); 1986 dm_bm_set_read_write(pmd->bm); 1987 up_write(&pmd->root_lock); 1988 } 1989 1990 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, 1991 dm_block_t threshold, 1992 dm_sm_threshold_fn fn, 1993 void *context) 1994 { 1995 int r; 1996 1997 down_write(&pmd->root_lock); 1998 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context); 1999 up_write(&pmd->root_lock); 2000 2001 return r; 2002 } 2003 2004 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) 2005 { 2006 int r; 2007 struct dm_block *sblock; 2008 struct thin_disk_superblock *disk_super; 2009 2010 down_write(&pmd->root_lock); 2011 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; 2012 2013 r = superblock_lock(pmd, &sblock); 2014 if (r) { 2015 DMERR("couldn't read superblock"); 2016 goto out; 2017 } 2018 2019 disk_super = dm_block_data(sblock); 2020 disk_super->flags = cpu_to_le32(pmd->flags); 2021 2022 dm_bm_unlock(sblock); 2023 out: 2024 up_write(&pmd->root_lock); 2025 return r; 2026 } 2027 2028 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) 2029 { 2030 bool needs_check; 2031 2032 down_read(&pmd->root_lock); 2033 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; 2034 up_read(&pmd->root_lock); 2035 2036 return needs_check; 2037 } 2038 2039 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd) 2040 { 2041 down_read(&pmd->root_lock); 2042 if (!pmd->fail_io) 2043 dm_tm_issue_prefetches(pmd->tm); 2044 up_read(&pmd->root_lock); 2045 } 2046