1 /* 2 * Copyright (C) 2011-2012 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "persistent-data/dm-btree.h" 9 #include "persistent-data/dm-space-map.h" 10 #include "persistent-data/dm-space-map-disk.h" 11 #include "persistent-data/dm-transaction-manager.h" 12 13 #include <linux/list.h> 14 #include <linux/device-mapper.h> 15 #include <linux/workqueue.h> 16 17 /*-------------------------------------------------------------------------- 18 * As far as the metadata goes, there is: 19 * 20 * - A superblock in block zero, taking up fewer than 512 bytes for 21 * atomic writes. 22 * 23 * - A space map managing the metadata blocks. 24 * 25 * - A space map managing the data blocks. 26 * 27 * - A btree mapping our internal thin dev ids onto struct disk_device_details. 28 * 29 * - A hierarchical btree, with 2 levels which effectively maps (thin 30 * dev id, virtual block) -> block_time. Block time is a 64-bit 31 * field holding the time in the low 24 bits, and block in the top 48 32 * bits. 33 * 34 * BTrees consist solely of btree_nodes, that fill a block. Some are 35 * internal nodes, as such their values are a __le64 pointing to other 36 * nodes. Leaf nodes can store data of any reasonable size (ie. much 37 * smaller than the block size). The nodes consist of the header, 38 * followed by an array of keys, followed by an array of values. We have 39 * to binary search on the keys so they're all held together to help the 40 * cpu cache. 41 * 42 * Space maps have 2 btrees: 43 * 44 * - One maps a uint64_t onto a struct index_entry. Which points to a 45 * bitmap block, and has some details about how many free entries there 46 * are etc. 47 * 48 * - The bitmap blocks have a header (for the checksum). Then the rest 49 * of the block is pairs of bits. With the meaning being: 50 * 51 * 0 - ref count is 0 52 * 1 - ref count is 1 53 * 2 - ref count is 2 54 * 3 - ref count is higher than 2 55 * 56 * - If the count is higher than 2 then the ref count is entered in a 57 * second btree that directly maps the block_address to a uint32_t ref 58 * count. 59 * 60 * The space map metadata variant doesn't have a bitmaps btree. Instead 61 * it has one single blocks worth of index_entries. This avoids 62 * recursive issues with the bitmap btree needing to allocate space in 63 * order to insert. With a small data block size such as 64k the 64 * metadata support data devices that are hundreds of terrabytes. 65 * 66 * The space maps allocate space linearly from front to back. Space that 67 * is freed in a transaction is never recycled within that transaction. 68 * To try and avoid fragmenting _free_ space the allocator always goes 69 * back and fills in gaps. 70 * 71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks 72 * from the block manager. 73 *--------------------------------------------------------------------------*/ 74 75 #define DM_MSG_PREFIX "thin metadata" 76 77 #define THIN_SUPERBLOCK_MAGIC 27022010 78 #define THIN_SUPERBLOCK_LOCATION 0 79 #define THIN_VERSION 2 80 #define THIN_METADATA_CACHE_SIZE 64 81 #define SECTOR_TO_BLOCK_SHIFT 3 82 83 /* 84 * 3 for btree insert + 85 * 2 for btree lookup used within space map 86 */ 87 #define THIN_MAX_CONCURRENT_LOCKS 5 88 89 /* This should be plenty */ 90 #define SPACE_MAP_ROOT_SIZE 128 91 92 /* 93 * Little endian on-disk superblock and device details. 94 */ 95 struct thin_disk_superblock { 96 __le32 csum; /* Checksum of superblock except for this field. */ 97 __le32 flags; 98 __le64 blocknr; /* This block number, dm_block_t. */ 99 100 __u8 uuid[16]; 101 __le64 magic; 102 __le32 version; 103 __le32 time; 104 105 __le64 trans_id; 106 107 /* 108 * Root held by userspace transactions. 109 */ 110 __le64 held_root; 111 112 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 113 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 114 115 /* 116 * 2-level btree mapping (dev_id, (dev block, time)) -> data block 117 */ 118 __le64 data_mapping_root; 119 120 /* 121 * Device detail root mapping dev_id -> device_details 122 */ 123 __le64 device_details_root; 124 125 __le32 data_block_size; /* In 512-byte sectors. */ 126 127 __le32 metadata_block_size; /* In 512-byte sectors. */ 128 __le64 metadata_nr_blocks; 129 130 __le32 compat_flags; 131 __le32 compat_ro_flags; 132 __le32 incompat_flags; 133 } __packed; 134 135 struct disk_device_details { 136 __le64 mapped_blocks; 137 __le64 transaction_id; /* When created. */ 138 __le32 creation_time; 139 __le32 snapshotted_time; 140 } __packed; 141 142 struct dm_pool_metadata { 143 struct hlist_node hash; 144 145 struct block_device *bdev; 146 struct dm_block_manager *bm; 147 struct dm_space_map *metadata_sm; 148 struct dm_space_map *data_sm; 149 struct dm_transaction_manager *tm; 150 struct dm_transaction_manager *nb_tm; 151 152 /* 153 * Two-level btree. 154 * First level holds thin_dev_t. 155 * Second level holds mappings. 156 */ 157 struct dm_btree_info info; 158 159 /* 160 * Non-blocking version of the above. 161 */ 162 struct dm_btree_info nb_info; 163 164 /* 165 * Just the top level for deleting whole devices. 166 */ 167 struct dm_btree_info tl_info; 168 169 /* 170 * Just the bottom level for creating new devices. 171 */ 172 struct dm_btree_info bl_info; 173 174 /* 175 * Describes the device details btree. 176 */ 177 struct dm_btree_info details_info; 178 179 struct rw_semaphore root_lock; 180 uint32_t time; 181 dm_block_t root; 182 dm_block_t details_root; 183 struct list_head thin_devices; 184 uint64_t trans_id; 185 unsigned long flags; 186 sector_t data_block_size; 187 188 /* 189 * Set if a transaction has to be aborted but the attempt to roll back 190 * to the previous (good) transaction failed. The only pool metadata 191 * operation possible in this state is the closing of the device. 192 */ 193 bool fail_io:1; 194 195 /* 196 * Reading the space map roots can fail, so we read it into these 197 * buffers before the superblock is locked and updated. 198 */ 199 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 200 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 201 }; 202 203 struct dm_thin_device { 204 struct list_head list; 205 struct dm_pool_metadata *pmd; 206 dm_thin_id id; 207 208 int open_count; 209 bool changed:1; 210 bool aborted_with_changes:1; 211 uint64_t mapped_blocks; 212 uint64_t transaction_id; 213 uint32_t creation_time; 214 uint32_t snapshotted_time; 215 }; 216 217 /*---------------------------------------------------------------- 218 * superblock validator 219 *--------------------------------------------------------------*/ 220 221 #define SUPERBLOCK_CSUM_XOR 160774 222 223 static void sb_prepare_for_write(struct dm_block_validator *v, 224 struct dm_block *b, 225 size_t block_size) 226 { 227 struct thin_disk_superblock *disk_super = dm_block_data(b); 228 229 disk_super->blocknr = cpu_to_le64(dm_block_location(b)); 230 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 231 block_size - sizeof(__le32), 232 SUPERBLOCK_CSUM_XOR)); 233 } 234 235 static int sb_check(struct dm_block_validator *v, 236 struct dm_block *b, 237 size_t block_size) 238 { 239 struct thin_disk_superblock *disk_super = dm_block_data(b); 240 __le32 csum_le; 241 242 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { 243 DMERR("sb_check failed: blocknr %llu: " 244 "wanted %llu", le64_to_cpu(disk_super->blocknr), 245 (unsigned long long)dm_block_location(b)); 246 return -ENOTBLK; 247 } 248 249 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) { 250 DMERR("sb_check failed: magic %llu: " 251 "wanted %llu", le64_to_cpu(disk_super->magic), 252 (unsigned long long)THIN_SUPERBLOCK_MAGIC); 253 return -EILSEQ; 254 } 255 256 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 257 block_size - sizeof(__le32), 258 SUPERBLOCK_CSUM_XOR)); 259 if (csum_le != disk_super->csum) { 260 DMERR("sb_check failed: csum %u: wanted %u", 261 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); 262 return -EILSEQ; 263 } 264 265 return 0; 266 } 267 268 static struct dm_block_validator sb_validator = { 269 .name = "superblock", 270 .prepare_for_write = sb_prepare_for_write, 271 .check = sb_check 272 }; 273 274 /*---------------------------------------------------------------- 275 * Methods for the btree value types 276 *--------------------------------------------------------------*/ 277 278 static uint64_t pack_block_time(dm_block_t b, uint32_t t) 279 { 280 return (b << 24) | t; 281 } 282 283 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) 284 { 285 *b = v >> 24; 286 *t = v & ((1 << 24) - 1); 287 } 288 289 static void data_block_inc(void *context, const void *value_le) 290 { 291 struct dm_space_map *sm = context; 292 __le64 v_le; 293 uint64_t b; 294 uint32_t t; 295 296 memcpy(&v_le, value_le, sizeof(v_le)); 297 unpack_block_time(le64_to_cpu(v_le), &b, &t); 298 dm_sm_inc_block(sm, b); 299 } 300 301 static void data_block_dec(void *context, const void *value_le) 302 { 303 struct dm_space_map *sm = context; 304 __le64 v_le; 305 uint64_t b; 306 uint32_t t; 307 308 memcpy(&v_le, value_le, sizeof(v_le)); 309 unpack_block_time(le64_to_cpu(v_le), &b, &t); 310 dm_sm_dec_block(sm, b); 311 } 312 313 static int data_block_equal(void *context, const void *value1_le, const void *value2_le) 314 { 315 __le64 v1_le, v2_le; 316 uint64_t b1, b2; 317 uint32_t t; 318 319 memcpy(&v1_le, value1_le, sizeof(v1_le)); 320 memcpy(&v2_le, value2_le, sizeof(v2_le)); 321 unpack_block_time(le64_to_cpu(v1_le), &b1, &t); 322 unpack_block_time(le64_to_cpu(v2_le), &b2, &t); 323 324 return b1 == b2; 325 } 326 327 static void subtree_inc(void *context, const void *value) 328 { 329 struct dm_btree_info *info = context; 330 __le64 root_le; 331 uint64_t root; 332 333 memcpy(&root_le, value, sizeof(root_le)); 334 root = le64_to_cpu(root_le); 335 dm_tm_inc(info->tm, root); 336 } 337 338 static void subtree_dec(void *context, const void *value) 339 { 340 struct dm_btree_info *info = context; 341 __le64 root_le; 342 uint64_t root; 343 344 memcpy(&root_le, value, sizeof(root_le)); 345 root = le64_to_cpu(root_le); 346 if (dm_btree_del(info, root)) 347 DMERR("btree delete failed\n"); 348 } 349 350 static int subtree_equal(void *context, const void *value1_le, const void *value2_le) 351 { 352 __le64 v1_le, v2_le; 353 memcpy(&v1_le, value1_le, sizeof(v1_le)); 354 memcpy(&v2_le, value2_le, sizeof(v2_le)); 355 356 return v1_le == v2_le; 357 } 358 359 /*----------------------------------------------------------------*/ 360 361 static int superblock_lock_zero(struct dm_pool_metadata *pmd, 362 struct dm_block **sblock) 363 { 364 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION, 365 &sb_validator, sblock); 366 } 367 368 static int superblock_lock(struct dm_pool_metadata *pmd, 369 struct dm_block **sblock) 370 { 371 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 372 &sb_validator, sblock); 373 } 374 375 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) 376 { 377 int r; 378 unsigned i; 379 struct dm_block *b; 380 __le64 *data_le, zero = cpu_to_le64(0); 381 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); 382 383 /* 384 * We can't use a validator here - it may be all zeroes. 385 */ 386 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b); 387 if (r) 388 return r; 389 390 data_le = dm_block_data(b); 391 *result = 1; 392 for (i = 0; i < block_size; i++) { 393 if (data_le[i] != zero) { 394 *result = 0; 395 break; 396 } 397 } 398 399 return dm_bm_unlock(b); 400 } 401 402 static void __setup_btree_details(struct dm_pool_metadata *pmd) 403 { 404 pmd->info.tm = pmd->tm; 405 pmd->info.levels = 2; 406 pmd->info.value_type.context = pmd->data_sm; 407 pmd->info.value_type.size = sizeof(__le64); 408 pmd->info.value_type.inc = data_block_inc; 409 pmd->info.value_type.dec = data_block_dec; 410 pmd->info.value_type.equal = data_block_equal; 411 412 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info)); 413 pmd->nb_info.tm = pmd->nb_tm; 414 415 pmd->tl_info.tm = pmd->tm; 416 pmd->tl_info.levels = 1; 417 pmd->tl_info.value_type.context = &pmd->bl_info; 418 pmd->tl_info.value_type.size = sizeof(__le64); 419 pmd->tl_info.value_type.inc = subtree_inc; 420 pmd->tl_info.value_type.dec = subtree_dec; 421 pmd->tl_info.value_type.equal = subtree_equal; 422 423 pmd->bl_info.tm = pmd->tm; 424 pmd->bl_info.levels = 1; 425 pmd->bl_info.value_type.context = pmd->data_sm; 426 pmd->bl_info.value_type.size = sizeof(__le64); 427 pmd->bl_info.value_type.inc = data_block_inc; 428 pmd->bl_info.value_type.dec = data_block_dec; 429 pmd->bl_info.value_type.equal = data_block_equal; 430 431 pmd->details_info.tm = pmd->tm; 432 pmd->details_info.levels = 1; 433 pmd->details_info.value_type.context = NULL; 434 pmd->details_info.value_type.size = sizeof(struct disk_device_details); 435 pmd->details_info.value_type.inc = NULL; 436 pmd->details_info.value_type.dec = NULL; 437 pmd->details_info.value_type.equal = NULL; 438 } 439 440 static int save_sm_roots(struct dm_pool_metadata *pmd) 441 { 442 int r; 443 size_t len; 444 445 r = dm_sm_root_size(pmd->metadata_sm, &len); 446 if (r < 0) 447 return r; 448 449 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); 450 if (r < 0) 451 return r; 452 453 r = dm_sm_root_size(pmd->data_sm, &len); 454 if (r < 0) 455 return r; 456 457 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); 458 } 459 460 static void copy_sm_roots(struct dm_pool_metadata *pmd, 461 struct thin_disk_superblock *disk) 462 { 463 memcpy(&disk->metadata_space_map_root, 464 &pmd->metadata_space_map_root, 465 sizeof(pmd->metadata_space_map_root)); 466 467 memcpy(&disk->data_space_map_root, 468 &pmd->data_space_map_root, 469 sizeof(pmd->data_space_map_root)); 470 } 471 472 static int __write_initial_superblock(struct dm_pool_metadata *pmd) 473 { 474 int r; 475 struct dm_block *sblock; 476 struct thin_disk_superblock *disk_super; 477 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT; 478 479 if (bdev_size > THIN_METADATA_MAX_SECTORS) 480 bdev_size = THIN_METADATA_MAX_SECTORS; 481 482 r = dm_sm_commit(pmd->data_sm); 483 if (r < 0) 484 return r; 485 486 r = save_sm_roots(pmd); 487 if (r < 0) 488 return r; 489 490 r = dm_tm_pre_commit(pmd->tm); 491 if (r < 0) 492 return r; 493 494 r = superblock_lock_zero(pmd, &sblock); 495 if (r) 496 return r; 497 498 disk_super = dm_block_data(sblock); 499 disk_super->flags = 0; 500 memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); 501 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC); 502 disk_super->version = cpu_to_le32(THIN_VERSION); 503 disk_super->time = 0; 504 disk_super->trans_id = 0; 505 disk_super->held_root = 0; 506 507 copy_sm_roots(pmd, disk_super); 508 509 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 510 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 511 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); 512 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); 513 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); 514 515 return dm_tm_commit(pmd->tm, sblock); 516 } 517 518 static int __format_metadata(struct dm_pool_metadata *pmd) 519 { 520 int r; 521 522 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 523 &pmd->tm, &pmd->metadata_sm); 524 if (r < 0) { 525 DMERR("tm_create_with_sm failed"); 526 return r; 527 } 528 529 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0); 530 if (IS_ERR(pmd->data_sm)) { 531 DMERR("sm_disk_create failed"); 532 r = PTR_ERR(pmd->data_sm); 533 goto bad_cleanup_tm; 534 } 535 536 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 537 if (!pmd->nb_tm) { 538 DMERR("could not create non-blocking clone tm"); 539 r = -ENOMEM; 540 goto bad_cleanup_data_sm; 541 } 542 543 __setup_btree_details(pmd); 544 545 r = dm_btree_empty(&pmd->info, &pmd->root); 546 if (r < 0) 547 goto bad_cleanup_nb_tm; 548 549 r = dm_btree_empty(&pmd->details_info, &pmd->details_root); 550 if (r < 0) { 551 DMERR("couldn't create devices root"); 552 goto bad_cleanup_nb_tm; 553 } 554 555 r = __write_initial_superblock(pmd); 556 if (r) 557 goto bad_cleanup_nb_tm; 558 559 return 0; 560 561 bad_cleanup_nb_tm: 562 dm_tm_destroy(pmd->nb_tm); 563 bad_cleanup_data_sm: 564 dm_sm_destroy(pmd->data_sm); 565 bad_cleanup_tm: 566 dm_tm_destroy(pmd->tm); 567 dm_sm_destroy(pmd->metadata_sm); 568 569 return r; 570 } 571 572 static int __check_incompat_features(struct thin_disk_superblock *disk_super, 573 struct dm_pool_metadata *pmd) 574 { 575 uint32_t features; 576 577 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP; 578 if (features) { 579 DMERR("could not access metadata due to unsupported optional features (%lx).", 580 (unsigned long)features); 581 return -EINVAL; 582 } 583 584 /* 585 * Check for read-only metadata to skip the following RDWR checks. 586 */ 587 if (get_disk_ro(pmd->bdev->bd_disk)) 588 return 0; 589 590 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP; 591 if (features) { 592 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", 593 (unsigned long)features); 594 return -EINVAL; 595 } 596 597 return 0; 598 } 599 600 static int __open_metadata(struct dm_pool_metadata *pmd) 601 { 602 int r; 603 struct dm_block *sblock; 604 struct thin_disk_superblock *disk_super; 605 606 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 607 &sb_validator, &sblock); 608 if (r < 0) { 609 DMERR("couldn't read superblock"); 610 return r; 611 } 612 613 disk_super = dm_block_data(sblock); 614 615 /* Verify the data block size hasn't changed */ 616 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) { 617 DMERR("changing the data block size (from %u to %llu) is not supported", 618 le32_to_cpu(disk_super->data_block_size), 619 (unsigned long long)pmd->data_block_size); 620 r = -EINVAL; 621 goto bad_unlock_sblock; 622 } 623 624 r = __check_incompat_features(disk_super, pmd); 625 if (r < 0) 626 goto bad_unlock_sblock; 627 628 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 629 disk_super->metadata_space_map_root, 630 sizeof(disk_super->metadata_space_map_root), 631 &pmd->tm, &pmd->metadata_sm); 632 if (r < 0) { 633 DMERR("tm_open_with_sm failed"); 634 goto bad_unlock_sblock; 635 } 636 637 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root, 638 sizeof(disk_super->data_space_map_root)); 639 if (IS_ERR(pmd->data_sm)) { 640 DMERR("sm_disk_open failed"); 641 r = PTR_ERR(pmd->data_sm); 642 goto bad_cleanup_tm; 643 } 644 645 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 646 if (!pmd->nb_tm) { 647 DMERR("could not create non-blocking clone tm"); 648 r = -ENOMEM; 649 goto bad_cleanup_data_sm; 650 } 651 652 __setup_btree_details(pmd); 653 return dm_bm_unlock(sblock); 654 655 bad_cleanup_data_sm: 656 dm_sm_destroy(pmd->data_sm); 657 bad_cleanup_tm: 658 dm_tm_destroy(pmd->tm); 659 dm_sm_destroy(pmd->metadata_sm); 660 bad_unlock_sblock: 661 dm_bm_unlock(sblock); 662 663 return r; 664 } 665 666 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device) 667 { 668 int r, unformatted; 669 670 r = __superblock_all_zeroes(pmd->bm, &unformatted); 671 if (r) 672 return r; 673 674 if (unformatted) 675 return format_device ? __format_metadata(pmd) : -EPERM; 676 677 return __open_metadata(pmd); 678 } 679 680 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device) 681 { 682 int r; 683 684 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, 685 THIN_METADATA_CACHE_SIZE, 686 THIN_MAX_CONCURRENT_LOCKS); 687 if (IS_ERR(pmd->bm)) { 688 DMERR("could not create block manager"); 689 return PTR_ERR(pmd->bm); 690 } 691 692 r = __open_or_format_metadata(pmd, format_device); 693 if (r) 694 dm_block_manager_destroy(pmd->bm); 695 696 return r; 697 } 698 699 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd) 700 { 701 dm_sm_destroy(pmd->data_sm); 702 dm_sm_destroy(pmd->metadata_sm); 703 dm_tm_destroy(pmd->nb_tm); 704 dm_tm_destroy(pmd->tm); 705 dm_block_manager_destroy(pmd->bm); 706 } 707 708 static int __begin_transaction(struct dm_pool_metadata *pmd) 709 { 710 int r; 711 struct thin_disk_superblock *disk_super; 712 struct dm_block *sblock; 713 714 /* 715 * We re-read the superblock every time. Shouldn't need to do this 716 * really. 717 */ 718 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 719 &sb_validator, &sblock); 720 if (r) 721 return r; 722 723 disk_super = dm_block_data(sblock); 724 pmd->time = le32_to_cpu(disk_super->time); 725 pmd->root = le64_to_cpu(disk_super->data_mapping_root); 726 pmd->details_root = le64_to_cpu(disk_super->device_details_root); 727 pmd->trans_id = le64_to_cpu(disk_super->trans_id); 728 pmd->flags = le32_to_cpu(disk_super->flags); 729 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size); 730 731 dm_bm_unlock(sblock); 732 return 0; 733 } 734 735 static int __write_changed_details(struct dm_pool_metadata *pmd) 736 { 737 int r; 738 struct dm_thin_device *td, *tmp; 739 struct disk_device_details details; 740 uint64_t key; 741 742 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 743 if (!td->changed) 744 continue; 745 746 key = td->id; 747 748 details.mapped_blocks = cpu_to_le64(td->mapped_blocks); 749 details.transaction_id = cpu_to_le64(td->transaction_id); 750 details.creation_time = cpu_to_le32(td->creation_time); 751 details.snapshotted_time = cpu_to_le32(td->snapshotted_time); 752 __dm_bless_for_disk(&details); 753 754 r = dm_btree_insert(&pmd->details_info, pmd->details_root, 755 &key, &details, &pmd->details_root); 756 if (r) 757 return r; 758 759 if (td->open_count) 760 td->changed = 0; 761 else { 762 list_del(&td->list); 763 kfree(td); 764 } 765 } 766 767 return 0; 768 } 769 770 static int __commit_transaction(struct dm_pool_metadata *pmd) 771 { 772 int r; 773 size_t metadata_len, data_len; 774 struct thin_disk_superblock *disk_super; 775 struct dm_block *sblock; 776 777 /* 778 * We need to know if the thin_disk_superblock exceeds a 512-byte sector. 779 */ 780 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512); 781 782 r = __write_changed_details(pmd); 783 if (r < 0) 784 return r; 785 786 r = dm_sm_commit(pmd->data_sm); 787 if (r < 0) 788 return r; 789 790 r = dm_tm_pre_commit(pmd->tm); 791 if (r < 0) 792 return r; 793 794 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len); 795 if (r < 0) 796 return r; 797 798 r = dm_sm_root_size(pmd->data_sm, &data_len); 799 if (r < 0) 800 return r; 801 802 r = save_sm_roots(pmd); 803 if (r < 0) 804 return r; 805 806 r = superblock_lock(pmd, &sblock); 807 if (r) 808 return r; 809 810 disk_super = dm_block_data(sblock); 811 disk_super->time = cpu_to_le32(pmd->time); 812 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 813 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 814 disk_super->trans_id = cpu_to_le64(pmd->trans_id); 815 disk_super->flags = cpu_to_le32(pmd->flags); 816 817 copy_sm_roots(pmd, disk_super); 818 819 return dm_tm_commit(pmd->tm, sblock); 820 } 821 822 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, 823 sector_t data_block_size, 824 bool format_device) 825 { 826 int r; 827 struct dm_pool_metadata *pmd; 828 829 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL); 830 if (!pmd) { 831 DMERR("could not allocate metadata struct"); 832 return ERR_PTR(-ENOMEM); 833 } 834 835 init_rwsem(&pmd->root_lock); 836 pmd->time = 0; 837 INIT_LIST_HEAD(&pmd->thin_devices); 838 pmd->fail_io = false; 839 pmd->bdev = bdev; 840 pmd->data_block_size = data_block_size; 841 842 r = __create_persistent_data_objects(pmd, format_device); 843 if (r) { 844 kfree(pmd); 845 return ERR_PTR(r); 846 } 847 848 r = __begin_transaction(pmd); 849 if (r < 0) { 850 if (dm_pool_metadata_close(pmd) < 0) 851 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 852 return ERR_PTR(r); 853 } 854 855 return pmd; 856 } 857 858 int dm_pool_metadata_close(struct dm_pool_metadata *pmd) 859 { 860 int r; 861 unsigned open_devices = 0; 862 struct dm_thin_device *td, *tmp; 863 864 down_read(&pmd->root_lock); 865 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 866 if (td->open_count) 867 open_devices++; 868 else { 869 list_del(&td->list); 870 kfree(td); 871 } 872 } 873 up_read(&pmd->root_lock); 874 875 if (open_devices) { 876 DMERR("attempt to close pmd when %u device(s) are still open", 877 open_devices); 878 return -EBUSY; 879 } 880 881 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) { 882 r = __commit_transaction(pmd); 883 if (r < 0) 884 DMWARN("%s: __commit_transaction() failed, error = %d", 885 __func__, r); 886 } 887 888 if (!pmd->fail_io) 889 __destroy_persistent_data_objects(pmd); 890 891 kfree(pmd); 892 return 0; 893 } 894 895 /* 896 * __open_device: Returns @td corresponding to device with id @dev, 897 * creating it if @create is set and incrementing @td->open_count. 898 * On failure, @td is undefined. 899 */ 900 static int __open_device(struct dm_pool_metadata *pmd, 901 dm_thin_id dev, int create, 902 struct dm_thin_device **td) 903 { 904 int r, changed = 0; 905 struct dm_thin_device *td2; 906 uint64_t key = dev; 907 struct disk_device_details details_le; 908 909 /* 910 * If the device is already open, return it. 911 */ 912 list_for_each_entry(td2, &pmd->thin_devices, list) 913 if (td2->id == dev) { 914 /* 915 * May not create an already-open device. 916 */ 917 if (create) 918 return -EEXIST; 919 920 td2->open_count++; 921 *td = td2; 922 return 0; 923 } 924 925 /* 926 * Check the device exists. 927 */ 928 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 929 &key, &details_le); 930 if (r) { 931 if (r != -ENODATA || !create) 932 return r; 933 934 /* 935 * Create new device. 936 */ 937 changed = 1; 938 details_le.mapped_blocks = 0; 939 details_le.transaction_id = cpu_to_le64(pmd->trans_id); 940 details_le.creation_time = cpu_to_le32(pmd->time); 941 details_le.snapshotted_time = cpu_to_le32(pmd->time); 942 } 943 944 *td = kmalloc(sizeof(**td), GFP_NOIO); 945 if (!*td) 946 return -ENOMEM; 947 948 (*td)->pmd = pmd; 949 (*td)->id = dev; 950 (*td)->open_count = 1; 951 (*td)->changed = changed; 952 (*td)->aborted_with_changes = false; 953 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks); 954 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id); 955 (*td)->creation_time = le32_to_cpu(details_le.creation_time); 956 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time); 957 958 list_add(&(*td)->list, &pmd->thin_devices); 959 960 return 0; 961 } 962 963 static void __close_device(struct dm_thin_device *td) 964 { 965 --td->open_count; 966 } 967 968 static int __create_thin(struct dm_pool_metadata *pmd, 969 dm_thin_id dev) 970 { 971 int r; 972 dm_block_t dev_root; 973 uint64_t key = dev; 974 struct disk_device_details details_le; 975 struct dm_thin_device *td; 976 __le64 value; 977 978 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 979 &key, &details_le); 980 if (!r) 981 return -EEXIST; 982 983 /* 984 * Create an empty btree for the mappings. 985 */ 986 r = dm_btree_empty(&pmd->bl_info, &dev_root); 987 if (r) 988 return r; 989 990 /* 991 * Insert it into the main mapping tree. 992 */ 993 value = cpu_to_le64(dev_root); 994 __dm_bless_for_disk(&value); 995 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 996 if (r) { 997 dm_btree_del(&pmd->bl_info, dev_root); 998 return r; 999 } 1000 1001 r = __open_device(pmd, dev, 1, &td); 1002 if (r) { 1003 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1004 dm_btree_del(&pmd->bl_info, dev_root); 1005 return r; 1006 } 1007 __close_device(td); 1008 1009 return r; 1010 } 1011 1012 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) 1013 { 1014 int r = -EINVAL; 1015 1016 down_write(&pmd->root_lock); 1017 if (!pmd->fail_io) 1018 r = __create_thin(pmd, dev); 1019 up_write(&pmd->root_lock); 1020 1021 return r; 1022 } 1023 1024 static int __set_snapshot_details(struct dm_pool_metadata *pmd, 1025 struct dm_thin_device *snap, 1026 dm_thin_id origin, uint32_t time) 1027 { 1028 int r; 1029 struct dm_thin_device *td; 1030 1031 r = __open_device(pmd, origin, 0, &td); 1032 if (r) 1033 return r; 1034 1035 td->changed = 1; 1036 td->snapshotted_time = time; 1037 1038 snap->mapped_blocks = td->mapped_blocks; 1039 snap->snapshotted_time = time; 1040 __close_device(td); 1041 1042 return 0; 1043 } 1044 1045 static int __create_snap(struct dm_pool_metadata *pmd, 1046 dm_thin_id dev, dm_thin_id origin) 1047 { 1048 int r; 1049 dm_block_t origin_root; 1050 uint64_t key = origin, dev_key = dev; 1051 struct dm_thin_device *td; 1052 struct disk_device_details details_le; 1053 __le64 value; 1054 1055 /* check this device is unused */ 1056 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1057 &dev_key, &details_le); 1058 if (!r) 1059 return -EEXIST; 1060 1061 /* find the mapping tree for the origin */ 1062 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value); 1063 if (r) 1064 return r; 1065 origin_root = le64_to_cpu(value); 1066 1067 /* clone the origin, an inc will do */ 1068 dm_tm_inc(pmd->tm, origin_root); 1069 1070 /* insert into the main mapping tree */ 1071 value = cpu_to_le64(origin_root); 1072 __dm_bless_for_disk(&value); 1073 key = dev; 1074 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1075 if (r) { 1076 dm_tm_dec(pmd->tm, origin_root); 1077 return r; 1078 } 1079 1080 pmd->time++; 1081 1082 r = __open_device(pmd, dev, 1, &td); 1083 if (r) 1084 goto bad; 1085 1086 r = __set_snapshot_details(pmd, td, origin, pmd->time); 1087 __close_device(td); 1088 1089 if (r) 1090 goto bad; 1091 1092 return 0; 1093 1094 bad: 1095 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1096 dm_btree_remove(&pmd->details_info, pmd->details_root, 1097 &key, &pmd->details_root); 1098 return r; 1099 } 1100 1101 int dm_pool_create_snap(struct dm_pool_metadata *pmd, 1102 dm_thin_id dev, 1103 dm_thin_id origin) 1104 { 1105 int r = -EINVAL; 1106 1107 down_write(&pmd->root_lock); 1108 if (!pmd->fail_io) 1109 r = __create_snap(pmd, dev, origin); 1110 up_write(&pmd->root_lock); 1111 1112 return r; 1113 } 1114 1115 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev) 1116 { 1117 int r; 1118 uint64_t key = dev; 1119 struct dm_thin_device *td; 1120 1121 /* TODO: failure should mark the transaction invalid */ 1122 r = __open_device(pmd, dev, 0, &td); 1123 if (r) 1124 return r; 1125 1126 if (td->open_count > 1) { 1127 __close_device(td); 1128 return -EBUSY; 1129 } 1130 1131 list_del(&td->list); 1132 kfree(td); 1133 r = dm_btree_remove(&pmd->details_info, pmd->details_root, 1134 &key, &pmd->details_root); 1135 if (r) 1136 return r; 1137 1138 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1139 if (r) 1140 return r; 1141 1142 return 0; 1143 } 1144 1145 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd, 1146 dm_thin_id dev) 1147 { 1148 int r = -EINVAL; 1149 1150 down_write(&pmd->root_lock); 1151 if (!pmd->fail_io) 1152 r = __delete_device(pmd, dev); 1153 up_write(&pmd->root_lock); 1154 1155 return r; 1156 } 1157 1158 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd, 1159 uint64_t current_id, 1160 uint64_t new_id) 1161 { 1162 int r = -EINVAL; 1163 1164 down_write(&pmd->root_lock); 1165 1166 if (pmd->fail_io) 1167 goto out; 1168 1169 if (pmd->trans_id != current_id) { 1170 DMERR("mismatched transaction id"); 1171 goto out; 1172 } 1173 1174 pmd->trans_id = new_id; 1175 r = 0; 1176 1177 out: 1178 up_write(&pmd->root_lock); 1179 1180 return r; 1181 } 1182 1183 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd, 1184 uint64_t *result) 1185 { 1186 int r = -EINVAL; 1187 1188 down_read(&pmd->root_lock); 1189 if (!pmd->fail_io) { 1190 *result = pmd->trans_id; 1191 r = 0; 1192 } 1193 up_read(&pmd->root_lock); 1194 1195 return r; 1196 } 1197 1198 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd) 1199 { 1200 int r, inc; 1201 struct thin_disk_superblock *disk_super; 1202 struct dm_block *copy, *sblock; 1203 dm_block_t held_root; 1204 1205 /* 1206 * Copy the superblock. 1207 */ 1208 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION); 1209 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION, 1210 &sb_validator, ©, &inc); 1211 if (r) 1212 return r; 1213 1214 BUG_ON(!inc); 1215 1216 held_root = dm_block_location(copy); 1217 disk_super = dm_block_data(copy); 1218 1219 if (le64_to_cpu(disk_super->held_root)) { 1220 DMWARN("Pool metadata snapshot already exists: release this before taking another."); 1221 1222 dm_tm_dec(pmd->tm, held_root); 1223 dm_tm_unlock(pmd->tm, copy); 1224 return -EBUSY; 1225 } 1226 1227 /* 1228 * Wipe the spacemap since we're not publishing this. 1229 */ 1230 memset(&disk_super->data_space_map_root, 0, 1231 sizeof(disk_super->data_space_map_root)); 1232 memset(&disk_super->metadata_space_map_root, 0, 1233 sizeof(disk_super->metadata_space_map_root)); 1234 1235 /* 1236 * Increment the data structures that need to be preserved. 1237 */ 1238 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root)); 1239 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root)); 1240 dm_tm_unlock(pmd->tm, copy); 1241 1242 /* 1243 * Write the held root into the superblock. 1244 */ 1245 r = superblock_lock(pmd, &sblock); 1246 if (r) { 1247 dm_tm_dec(pmd->tm, held_root); 1248 return r; 1249 } 1250 1251 disk_super = dm_block_data(sblock); 1252 disk_super->held_root = cpu_to_le64(held_root); 1253 dm_bm_unlock(sblock); 1254 return 0; 1255 } 1256 1257 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd) 1258 { 1259 int r = -EINVAL; 1260 1261 down_write(&pmd->root_lock); 1262 if (!pmd->fail_io) 1263 r = __reserve_metadata_snap(pmd); 1264 up_write(&pmd->root_lock); 1265 1266 return r; 1267 } 1268 1269 static int __release_metadata_snap(struct dm_pool_metadata *pmd) 1270 { 1271 int r; 1272 struct thin_disk_superblock *disk_super; 1273 struct dm_block *sblock, *copy; 1274 dm_block_t held_root; 1275 1276 r = superblock_lock(pmd, &sblock); 1277 if (r) 1278 return r; 1279 1280 disk_super = dm_block_data(sblock); 1281 held_root = le64_to_cpu(disk_super->held_root); 1282 disk_super->held_root = cpu_to_le64(0); 1283 1284 dm_bm_unlock(sblock); 1285 1286 if (!held_root) { 1287 DMWARN("No pool metadata snapshot found: nothing to release."); 1288 return -EINVAL; 1289 } 1290 1291 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©); 1292 if (r) 1293 return r; 1294 1295 disk_super = dm_block_data(copy); 1296 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root)); 1297 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root)); 1298 dm_sm_dec_block(pmd->metadata_sm, held_root); 1299 1300 return dm_tm_unlock(pmd->tm, copy); 1301 } 1302 1303 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd) 1304 { 1305 int r = -EINVAL; 1306 1307 down_write(&pmd->root_lock); 1308 if (!pmd->fail_io) 1309 r = __release_metadata_snap(pmd); 1310 up_write(&pmd->root_lock); 1311 1312 return r; 1313 } 1314 1315 static int __get_metadata_snap(struct dm_pool_metadata *pmd, 1316 dm_block_t *result) 1317 { 1318 int r; 1319 struct thin_disk_superblock *disk_super; 1320 struct dm_block *sblock; 1321 1322 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 1323 &sb_validator, &sblock); 1324 if (r) 1325 return r; 1326 1327 disk_super = dm_block_data(sblock); 1328 *result = le64_to_cpu(disk_super->held_root); 1329 1330 return dm_bm_unlock(sblock); 1331 } 1332 1333 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd, 1334 dm_block_t *result) 1335 { 1336 int r = -EINVAL; 1337 1338 down_read(&pmd->root_lock); 1339 if (!pmd->fail_io) 1340 r = __get_metadata_snap(pmd, result); 1341 up_read(&pmd->root_lock); 1342 1343 return r; 1344 } 1345 1346 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev, 1347 struct dm_thin_device **td) 1348 { 1349 int r = -EINVAL; 1350 1351 down_write(&pmd->root_lock); 1352 if (!pmd->fail_io) 1353 r = __open_device(pmd, dev, 0, td); 1354 up_write(&pmd->root_lock); 1355 1356 return r; 1357 } 1358 1359 int dm_pool_close_thin_device(struct dm_thin_device *td) 1360 { 1361 down_write(&td->pmd->root_lock); 1362 __close_device(td); 1363 up_write(&td->pmd->root_lock); 1364 1365 return 0; 1366 } 1367 1368 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) 1369 { 1370 return td->id; 1371 } 1372 1373 /* 1374 * Check whether @time (of block creation) is older than @td's last snapshot. 1375 * If so then the associated block is shared with the last snapshot device. 1376 * Any block on a device created *after* the device last got snapshotted is 1377 * necessarily not shared. 1378 */ 1379 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) 1380 { 1381 return td->snapshotted_time > time; 1382 } 1383 1384 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block, 1385 int can_issue_io, struct dm_thin_lookup_result *result) 1386 { 1387 int r; 1388 __le64 value; 1389 struct dm_pool_metadata *pmd = td->pmd; 1390 dm_block_t keys[2] = { td->id, block }; 1391 struct dm_btree_info *info; 1392 1393 down_read(&pmd->root_lock); 1394 if (pmd->fail_io) { 1395 up_read(&pmd->root_lock); 1396 return -EINVAL; 1397 } 1398 1399 if (can_issue_io) { 1400 info = &pmd->info; 1401 } else 1402 info = &pmd->nb_info; 1403 1404 r = dm_btree_lookup(info, pmd->root, keys, &value); 1405 if (!r) { 1406 uint64_t block_time = 0; 1407 dm_block_t exception_block; 1408 uint32_t exception_time; 1409 1410 block_time = le64_to_cpu(value); 1411 unpack_block_time(block_time, &exception_block, 1412 &exception_time); 1413 result->block = exception_block; 1414 result->shared = __snapshotted_since(td, exception_time); 1415 } 1416 1417 up_read(&pmd->root_lock); 1418 return r; 1419 } 1420 1421 /* FIXME: write a more efficient one in btree */ 1422 int dm_thin_find_mapped_range(struct dm_thin_device *td, 1423 dm_block_t begin, dm_block_t end, 1424 dm_block_t *thin_begin, dm_block_t *thin_end, 1425 dm_block_t *pool_begin, bool *maybe_shared) 1426 { 1427 int r; 1428 dm_block_t pool_end; 1429 struct dm_thin_lookup_result lookup; 1430 1431 if (end < begin) 1432 return -ENODATA; 1433 1434 /* 1435 * Find first mapped block. 1436 */ 1437 while (begin < end) { 1438 r = dm_thin_find_block(td, begin, true, &lookup); 1439 if (r) { 1440 if (r != -ENODATA) 1441 return r; 1442 } else 1443 break; 1444 1445 begin++; 1446 } 1447 1448 if (begin == end) 1449 return -ENODATA; 1450 1451 *thin_begin = begin; 1452 *pool_begin = lookup.block; 1453 *maybe_shared = lookup.shared; 1454 1455 begin++; 1456 pool_end = *pool_begin + 1; 1457 while (begin != end) { 1458 r = dm_thin_find_block(td, begin, true, &lookup); 1459 if (r) { 1460 if (r == -ENODATA) 1461 break; 1462 else 1463 return r; 1464 } 1465 1466 if ((lookup.block != pool_end) || 1467 (lookup.shared != *maybe_shared)) 1468 break; 1469 1470 pool_end++; 1471 begin++; 1472 } 1473 1474 *thin_end = begin; 1475 return 0; 1476 } 1477 1478 static int __insert(struct dm_thin_device *td, dm_block_t block, 1479 dm_block_t data_block) 1480 { 1481 int r, inserted; 1482 __le64 value; 1483 struct dm_pool_metadata *pmd = td->pmd; 1484 dm_block_t keys[2] = { td->id, block }; 1485 1486 value = cpu_to_le64(pack_block_time(data_block, pmd->time)); 1487 __dm_bless_for_disk(&value); 1488 1489 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value, 1490 &pmd->root, &inserted); 1491 if (r) 1492 return r; 1493 1494 td->changed = 1; 1495 if (inserted) 1496 td->mapped_blocks++; 1497 1498 return 0; 1499 } 1500 1501 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block, 1502 dm_block_t data_block) 1503 { 1504 int r = -EINVAL; 1505 1506 down_write(&td->pmd->root_lock); 1507 if (!td->pmd->fail_io) 1508 r = __insert(td, block, data_block); 1509 up_write(&td->pmd->root_lock); 1510 1511 return r; 1512 } 1513 1514 static int __remove(struct dm_thin_device *td, dm_block_t block) 1515 { 1516 int r; 1517 struct dm_pool_metadata *pmd = td->pmd; 1518 dm_block_t keys[2] = { td->id, block }; 1519 1520 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root); 1521 if (r) 1522 return r; 1523 1524 td->mapped_blocks--; 1525 td->changed = 1; 1526 1527 return 0; 1528 } 1529 1530 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end) 1531 { 1532 int r; 1533 unsigned count; 1534 struct dm_pool_metadata *pmd = td->pmd; 1535 dm_block_t keys[1] = { td->id }; 1536 __le64 value; 1537 dm_block_t mapping_root; 1538 1539 /* 1540 * Find the mapping tree 1541 */ 1542 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value); 1543 if (r) 1544 return r; 1545 1546 /* 1547 * Remove from the mapping tree, taking care to inc the 1548 * ref count so it doesn't get deleted. 1549 */ 1550 mapping_root = le64_to_cpu(value); 1551 dm_tm_inc(pmd->tm, mapping_root); 1552 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root); 1553 if (r) 1554 return r; 1555 1556 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count); 1557 if (r) 1558 return r; 1559 1560 td->mapped_blocks -= count; 1561 td->changed = 1; 1562 1563 /* 1564 * Reinsert the mapping tree. 1565 */ 1566 value = cpu_to_le64(mapping_root); 1567 __dm_bless_for_disk(&value); 1568 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root); 1569 } 1570 1571 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block) 1572 { 1573 int r = -EINVAL; 1574 1575 down_write(&td->pmd->root_lock); 1576 if (!td->pmd->fail_io) 1577 r = __remove(td, block); 1578 up_write(&td->pmd->root_lock); 1579 1580 return r; 1581 } 1582 1583 int dm_thin_remove_range(struct dm_thin_device *td, 1584 dm_block_t begin, dm_block_t end) 1585 { 1586 int r = -EINVAL; 1587 1588 down_write(&td->pmd->root_lock); 1589 if (!td->pmd->fail_io) 1590 r = __remove_range(td, begin, end); 1591 up_write(&td->pmd->root_lock); 1592 1593 return r; 1594 } 1595 1596 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) 1597 { 1598 int r; 1599 uint32_t ref_count; 1600 1601 down_read(&pmd->root_lock); 1602 r = dm_sm_get_count(pmd->data_sm, b, &ref_count); 1603 if (!r) 1604 *result = (ref_count != 0); 1605 up_read(&pmd->root_lock); 1606 1607 return r; 1608 } 1609 1610 bool dm_thin_changed_this_transaction(struct dm_thin_device *td) 1611 { 1612 int r; 1613 1614 down_read(&td->pmd->root_lock); 1615 r = td->changed; 1616 up_read(&td->pmd->root_lock); 1617 1618 return r; 1619 } 1620 1621 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) 1622 { 1623 bool r = false; 1624 struct dm_thin_device *td, *tmp; 1625 1626 down_read(&pmd->root_lock); 1627 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 1628 if (td->changed) { 1629 r = td->changed; 1630 break; 1631 } 1632 } 1633 up_read(&pmd->root_lock); 1634 1635 return r; 1636 } 1637 1638 bool dm_thin_aborted_changes(struct dm_thin_device *td) 1639 { 1640 bool r; 1641 1642 down_read(&td->pmd->root_lock); 1643 r = td->aborted_with_changes; 1644 up_read(&td->pmd->root_lock); 1645 1646 return r; 1647 } 1648 1649 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result) 1650 { 1651 int r = -EINVAL; 1652 1653 down_write(&pmd->root_lock); 1654 if (!pmd->fail_io) 1655 r = dm_sm_new_block(pmd->data_sm, result); 1656 up_write(&pmd->root_lock); 1657 1658 return r; 1659 } 1660 1661 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd) 1662 { 1663 int r = -EINVAL; 1664 1665 down_write(&pmd->root_lock); 1666 if (pmd->fail_io) 1667 goto out; 1668 1669 r = __commit_transaction(pmd); 1670 if (r <= 0) 1671 goto out; 1672 1673 /* 1674 * Open the next transaction. 1675 */ 1676 r = __begin_transaction(pmd); 1677 out: 1678 up_write(&pmd->root_lock); 1679 return r; 1680 } 1681 1682 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd) 1683 { 1684 struct dm_thin_device *td; 1685 1686 list_for_each_entry(td, &pmd->thin_devices, list) 1687 td->aborted_with_changes = td->changed; 1688 } 1689 1690 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd) 1691 { 1692 int r = -EINVAL; 1693 1694 down_write(&pmd->root_lock); 1695 if (pmd->fail_io) 1696 goto out; 1697 1698 __set_abort_with_changes_flags(pmd); 1699 __destroy_persistent_data_objects(pmd); 1700 r = __create_persistent_data_objects(pmd, false); 1701 if (r) 1702 pmd->fail_io = true; 1703 1704 out: 1705 up_write(&pmd->root_lock); 1706 1707 return r; 1708 } 1709 1710 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) 1711 { 1712 int r = -EINVAL; 1713 1714 down_read(&pmd->root_lock); 1715 if (!pmd->fail_io) 1716 r = dm_sm_get_nr_free(pmd->data_sm, result); 1717 up_read(&pmd->root_lock); 1718 1719 return r; 1720 } 1721 1722 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd, 1723 dm_block_t *result) 1724 { 1725 int r = -EINVAL; 1726 1727 down_read(&pmd->root_lock); 1728 if (!pmd->fail_io) 1729 r = dm_sm_get_nr_free(pmd->metadata_sm, result); 1730 up_read(&pmd->root_lock); 1731 1732 return r; 1733 } 1734 1735 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd, 1736 dm_block_t *result) 1737 { 1738 int r = -EINVAL; 1739 1740 down_read(&pmd->root_lock); 1741 if (!pmd->fail_io) 1742 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); 1743 up_read(&pmd->root_lock); 1744 1745 return r; 1746 } 1747 1748 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) 1749 { 1750 int r = -EINVAL; 1751 1752 down_read(&pmd->root_lock); 1753 if (!pmd->fail_io) 1754 r = dm_sm_get_nr_blocks(pmd->data_sm, result); 1755 up_read(&pmd->root_lock); 1756 1757 return r; 1758 } 1759 1760 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result) 1761 { 1762 int r = -EINVAL; 1763 struct dm_pool_metadata *pmd = td->pmd; 1764 1765 down_read(&pmd->root_lock); 1766 if (!pmd->fail_io) { 1767 *result = td->mapped_blocks; 1768 r = 0; 1769 } 1770 up_read(&pmd->root_lock); 1771 1772 return r; 1773 } 1774 1775 static int __highest_block(struct dm_thin_device *td, dm_block_t *result) 1776 { 1777 int r; 1778 __le64 value_le; 1779 dm_block_t thin_root; 1780 struct dm_pool_metadata *pmd = td->pmd; 1781 1782 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le); 1783 if (r) 1784 return r; 1785 1786 thin_root = le64_to_cpu(value_le); 1787 1788 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result); 1789 } 1790 1791 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, 1792 dm_block_t *result) 1793 { 1794 int r = -EINVAL; 1795 struct dm_pool_metadata *pmd = td->pmd; 1796 1797 down_read(&pmd->root_lock); 1798 if (!pmd->fail_io) 1799 r = __highest_block(td, result); 1800 up_read(&pmd->root_lock); 1801 1802 return r; 1803 } 1804 1805 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) 1806 { 1807 int r; 1808 dm_block_t old_count; 1809 1810 r = dm_sm_get_nr_blocks(sm, &old_count); 1811 if (r) 1812 return r; 1813 1814 if (new_count == old_count) 1815 return 0; 1816 1817 if (new_count < old_count) { 1818 DMERR("cannot reduce size of space map"); 1819 return -EINVAL; 1820 } 1821 1822 return dm_sm_extend(sm, new_count - old_count); 1823 } 1824 1825 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 1826 { 1827 int r = -EINVAL; 1828 1829 down_write(&pmd->root_lock); 1830 if (!pmd->fail_io) 1831 r = __resize_space_map(pmd->data_sm, new_count); 1832 up_write(&pmd->root_lock); 1833 1834 return r; 1835 } 1836 1837 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 1838 { 1839 int r = -EINVAL; 1840 1841 down_write(&pmd->root_lock); 1842 if (!pmd->fail_io) 1843 r = __resize_space_map(pmd->metadata_sm, new_count); 1844 up_write(&pmd->root_lock); 1845 1846 return r; 1847 } 1848 1849 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) 1850 { 1851 down_write(&pmd->root_lock); 1852 dm_bm_set_read_only(pmd->bm); 1853 up_write(&pmd->root_lock); 1854 } 1855 1856 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) 1857 { 1858 down_write(&pmd->root_lock); 1859 dm_bm_set_read_write(pmd->bm); 1860 up_write(&pmd->root_lock); 1861 } 1862 1863 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, 1864 dm_block_t threshold, 1865 dm_sm_threshold_fn fn, 1866 void *context) 1867 { 1868 int r; 1869 1870 down_write(&pmd->root_lock); 1871 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context); 1872 up_write(&pmd->root_lock); 1873 1874 return r; 1875 } 1876 1877 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) 1878 { 1879 int r; 1880 struct dm_block *sblock; 1881 struct thin_disk_superblock *disk_super; 1882 1883 down_write(&pmd->root_lock); 1884 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; 1885 1886 r = superblock_lock(pmd, &sblock); 1887 if (r) { 1888 DMERR("couldn't read superblock"); 1889 goto out; 1890 } 1891 1892 disk_super = dm_block_data(sblock); 1893 disk_super->flags = cpu_to_le32(pmd->flags); 1894 1895 dm_bm_unlock(sblock); 1896 out: 1897 up_write(&pmd->root_lock); 1898 return r; 1899 } 1900 1901 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) 1902 { 1903 bool needs_check; 1904 1905 down_read(&pmd->root_lock); 1906 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; 1907 up_read(&pmd->root_lock); 1908 1909 return needs_check; 1910 } 1911 1912 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd) 1913 { 1914 dm_tm_issue_prefetches(pmd->tm); 1915 } 1916