1 /* 2 * Copyright (C) 2011-2012 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "persistent-data/dm-btree.h" 9 #include "persistent-data/dm-space-map.h" 10 #include "persistent-data/dm-space-map-disk.h" 11 #include "persistent-data/dm-transaction-manager.h" 12 13 #include <linux/list.h> 14 #include <linux/device-mapper.h> 15 #include <linux/workqueue.h> 16 17 /*-------------------------------------------------------------------------- 18 * As far as the metadata goes, there is: 19 * 20 * - A superblock in block zero, taking up fewer than 512 bytes for 21 * atomic writes. 22 * 23 * - A space map managing the metadata blocks. 24 * 25 * - A space map managing the data blocks. 26 * 27 * - A btree mapping our internal thin dev ids onto struct disk_device_details. 28 * 29 * - A hierarchical btree, with 2 levels which effectively maps (thin 30 * dev id, virtual block) -> block_time. Block time is a 64-bit 31 * field holding the time in the low 24 bits, and block in the top 40 32 * bits. 33 * 34 * BTrees consist solely of btree_nodes, that fill a block. Some are 35 * internal nodes, as such their values are a __le64 pointing to other 36 * nodes. Leaf nodes can store data of any reasonable size (ie. much 37 * smaller than the block size). The nodes consist of the header, 38 * followed by an array of keys, followed by an array of values. We have 39 * to binary search on the keys so they're all held together to help the 40 * cpu cache. 41 * 42 * Space maps have 2 btrees: 43 * 44 * - One maps a uint64_t onto a struct index_entry. Which points to a 45 * bitmap block, and has some details about how many free entries there 46 * are etc. 47 * 48 * - The bitmap blocks have a header (for the checksum). Then the rest 49 * of the block is pairs of bits. With the meaning being: 50 * 51 * 0 - ref count is 0 52 * 1 - ref count is 1 53 * 2 - ref count is 2 54 * 3 - ref count is higher than 2 55 * 56 * - If the count is higher than 2 then the ref count is entered in a 57 * second btree that directly maps the block_address to a uint32_t ref 58 * count. 59 * 60 * The space map metadata variant doesn't have a bitmaps btree. Instead 61 * it has one single blocks worth of index_entries. This avoids 62 * recursive issues with the bitmap btree needing to allocate space in 63 * order to insert. With a small data block size such as 64k the 64 * metadata support data devices that are hundreds of terrabytes. 65 * 66 * The space maps allocate space linearly from front to back. Space that 67 * is freed in a transaction is never recycled within that transaction. 68 * To try and avoid fragmenting _free_ space the allocator always goes 69 * back and fills in gaps. 70 * 71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks 72 * from the block manager. 73 *--------------------------------------------------------------------------*/ 74 75 #define DM_MSG_PREFIX "thin metadata" 76 77 #define THIN_SUPERBLOCK_MAGIC 27022010 78 #define THIN_SUPERBLOCK_LOCATION 0 79 #define THIN_VERSION 2 80 #define SECTOR_TO_BLOCK_SHIFT 3 81 82 /* 83 * For btree insert: 84 * 3 for btree insert + 85 * 2 for btree lookup used within space map 86 * For btree remove: 87 * 2 for shadow spine + 88 * 4 for rebalance 3 child node 89 */ 90 #define THIN_MAX_CONCURRENT_LOCKS 6 91 92 /* This should be plenty */ 93 #define SPACE_MAP_ROOT_SIZE 128 94 95 /* 96 * Little endian on-disk superblock and device details. 97 */ 98 struct thin_disk_superblock { 99 __le32 csum; /* Checksum of superblock except for this field. */ 100 __le32 flags; 101 __le64 blocknr; /* This block number, dm_block_t. */ 102 103 __u8 uuid[16]; 104 __le64 magic; 105 __le32 version; 106 __le32 time; 107 108 __le64 trans_id; 109 110 /* 111 * Root held by userspace transactions. 112 */ 113 __le64 held_root; 114 115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 117 118 /* 119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block 120 */ 121 __le64 data_mapping_root; 122 123 /* 124 * Device detail root mapping dev_id -> device_details 125 */ 126 __le64 device_details_root; 127 128 __le32 data_block_size; /* In 512-byte sectors. */ 129 130 __le32 metadata_block_size; /* In 512-byte sectors. */ 131 __le64 metadata_nr_blocks; 132 133 __le32 compat_flags; 134 __le32 compat_ro_flags; 135 __le32 incompat_flags; 136 } __packed; 137 138 struct disk_device_details { 139 __le64 mapped_blocks; 140 __le64 transaction_id; /* When created. */ 141 __le32 creation_time; 142 __le32 snapshotted_time; 143 } __packed; 144 145 struct dm_pool_metadata { 146 struct hlist_node hash; 147 148 struct block_device *bdev; 149 struct dm_block_manager *bm; 150 struct dm_space_map *metadata_sm; 151 struct dm_space_map *data_sm; 152 struct dm_transaction_manager *tm; 153 struct dm_transaction_manager *nb_tm; 154 155 /* 156 * Two-level btree. 157 * First level holds thin_dev_t. 158 * Second level holds mappings. 159 */ 160 struct dm_btree_info info; 161 162 /* 163 * Non-blocking version of the above. 164 */ 165 struct dm_btree_info nb_info; 166 167 /* 168 * Just the top level for deleting whole devices. 169 */ 170 struct dm_btree_info tl_info; 171 172 /* 173 * Just the bottom level for creating new devices. 174 */ 175 struct dm_btree_info bl_info; 176 177 /* 178 * Describes the device details btree. 179 */ 180 struct dm_btree_info details_info; 181 182 struct rw_semaphore root_lock; 183 uint32_t time; 184 dm_block_t root; 185 dm_block_t details_root; 186 struct list_head thin_devices; 187 uint64_t trans_id; 188 unsigned long flags; 189 sector_t data_block_size; 190 191 /* 192 * Pre-commit callback. 193 * 194 * This allows the thin provisioning target to run a callback before 195 * the metadata are committed. 196 */ 197 dm_pool_pre_commit_fn pre_commit_fn; 198 void *pre_commit_context; 199 200 /* 201 * We reserve a section of the metadata for commit overhead. 202 * All reported space does *not* include this. 203 */ 204 dm_block_t metadata_reserve; 205 206 /* 207 * Set if a transaction has to be aborted but the attempt to roll back 208 * to the previous (good) transaction failed. The only pool metadata 209 * operation possible in this state is the closing of the device. 210 */ 211 bool fail_io:1; 212 213 /* 214 * Set once a thin-pool has been accessed through one of the interfaces 215 * that imply the pool is in-service (e.g. thin devices created/deleted, 216 * thin-pool message, metadata snapshots, etc). 217 */ 218 bool in_service:1; 219 220 /* 221 * Reading the space map roots can fail, so we read it into these 222 * buffers before the superblock is locked and updated. 223 */ 224 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 225 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 226 }; 227 228 struct dm_thin_device { 229 struct list_head list; 230 struct dm_pool_metadata *pmd; 231 dm_thin_id id; 232 233 int open_count; 234 bool changed:1; 235 bool aborted_with_changes:1; 236 uint64_t mapped_blocks; 237 uint64_t transaction_id; 238 uint32_t creation_time; 239 uint32_t snapshotted_time; 240 }; 241 242 /*---------------------------------------------------------------- 243 * superblock validator 244 *--------------------------------------------------------------*/ 245 246 #define SUPERBLOCK_CSUM_XOR 160774 247 248 static void sb_prepare_for_write(struct dm_block_validator *v, 249 struct dm_block *b, 250 size_t block_size) 251 { 252 struct thin_disk_superblock *disk_super = dm_block_data(b); 253 254 disk_super->blocknr = cpu_to_le64(dm_block_location(b)); 255 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 256 block_size - sizeof(__le32), 257 SUPERBLOCK_CSUM_XOR)); 258 } 259 260 static int sb_check(struct dm_block_validator *v, 261 struct dm_block *b, 262 size_t block_size) 263 { 264 struct thin_disk_superblock *disk_super = dm_block_data(b); 265 __le32 csum_le; 266 267 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { 268 DMERR("sb_check failed: blocknr %llu: " 269 "wanted %llu", le64_to_cpu(disk_super->blocknr), 270 (unsigned long long)dm_block_location(b)); 271 return -ENOTBLK; 272 } 273 274 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) { 275 DMERR("sb_check failed: magic %llu: " 276 "wanted %llu", le64_to_cpu(disk_super->magic), 277 (unsigned long long)THIN_SUPERBLOCK_MAGIC); 278 return -EILSEQ; 279 } 280 281 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 282 block_size - sizeof(__le32), 283 SUPERBLOCK_CSUM_XOR)); 284 if (csum_le != disk_super->csum) { 285 DMERR("sb_check failed: csum %u: wanted %u", 286 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); 287 return -EILSEQ; 288 } 289 290 return 0; 291 } 292 293 static struct dm_block_validator sb_validator = { 294 .name = "superblock", 295 .prepare_for_write = sb_prepare_for_write, 296 .check = sb_check 297 }; 298 299 /*---------------------------------------------------------------- 300 * Methods for the btree value types 301 *--------------------------------------------------------------*/ 302 303 static uint64_t pack_block_time(dm_block_t b, uint32_t t) 304 { 305 return (b << 24) | t; 306 } 307 308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) 309 { 310 *b = v >> 24; 311 *t = v & ((1 << 24) - 1); 312 } 313 314 /* 315 * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as 316 * possible. 'with_runs' reads contiguous runs of blocks, and calls the 317 * given sm function. 318 */ 319 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t); 320 321 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn) 322 { 323 uint64_t b, begin, end; 324 uint32_t t; 325 bool in_run = false; 326 unsigned i; 327 328 for (i = 0; i < count; i++, value_le++) { 329 /* We know value_le is 8 byte aligned */ 330 unpack_block_time(le64_to_cpu(*value_le), &b, &t); 331 332 if (in_run) { 333 if (b == end) { 334 end++; 335 } else { 336 fn(sm, begin, end); 337 begin = b; 338 end = b + 1; 339 } 340 } else { 341 in_run = true; 342 begin = b; 343 end = b + 1; 344 } 345 } 346 347 if (in_run) 348 fn(sm, begin, end); 349 } 350 351 static void data_block_inc(void *context, const void *value_le, unsigned count) 352 { 353 with_runs((struct dm_space_map *) context, 354 (const __le64 *) value_le, count, dm_sm_inc_blocks); 355 } 356 357 static void data_block_dec(void *context, const void *value_le, unsigned count) 358 { 359 with_runs((struct dm_space_map *) context, 360 (const __le64 *) value_le, count, dm_sm_dec_blocks); 361 } 362 363 static int data_block_equal(void *context, const void *value1_le, const void *value2_le) 364 { 365 __le64 v1_le, v2_le; 366 uint64_t b1, b2; 367 uint32_t t; 368 369 memcpy(&v1_le, value1_le, sizeof(v1_le)); 370 memcpy(&v2_le, value2_le, sizeof(v2_le)); 371 unpack_block_time(le64_to_cpu(v1_le), &b1, &t); 372 unpack_block_time(le64_to_cpu(v2_le), &b2, &t); 373 374 return b1 == b2; 375 } 376 377 static void subtree_inc(void *context, const void *value, unsigned count) 378 { 379 struct dm_btree_info *info = context; 380 const __le64 *root_le = value; 381 unsigned i; 382 383 for (i = 0; i < count; i++, root_le++) 384 dm_tm_inc(info->tm, le64_to_cpu(*root_le)); 385 } 386 387 static void subtree_dec(void *context, const void *value, unsigned count) 388 { 389 struct dm_btree_info *info = context; 390 const __le64 *root_le = value; 391 unsigned i; 392 393 for (i = 0; i < count; i++, root_le++) 394 if (dm_btree_del(info, le64_to_cpu(*root_le))) 395 DMERR("btree delete failed"); 396 } 397 398 static int subtree_equal(void *context, const void *value1_le, const void *value2_le) 399 { 400 __le64 v1_le, v2_le; 401 memcpy(&v1_le, value1_le, sizeof(v1_le)); 402 memcpy(&v2_le, value2_le, sizeof(v2_le)); 403 404 return v1_le == v2_le; 405 } 406 407 /*----------------------------------------------------------------*/ 408 409 /* 410 * Variant that is used for in-core only changes or code that 411 * shouldn't put the pool in service on its own (e.g. commit). 412 */ 413 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd) 414 __acquires(pmd->root_lock) 415 { 416 down_write(&pmd->root_lock); 417 } 418 419 static inline void pmd_write_lock(struct dm_pool_metadata *pmd) 420 { 421 pmd_write_lock_in_core(pmd); 422 if (unlikely(!pmd->in_service)) 423 pmd->in_service = true; 424 } 425 426 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd) 427 __releases(pmd->root_lock) 428 { 429 up_write(&pmd->root_lock); 430 } 431 432 /*----------------------------------------------------------------*/ 433 434 static int superblock_lock_zero(struct dm_pool_metadata *pmd, 435 struct dm_block **sblock) 436 { 437 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION, 438 &sb_validator, sblock); 439 } 440 441 static int superblock_lock(struct dm_pool_metadata *pmd, 442 struct dm_block **sblock) 443 { 444 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 445 &sb_validator, sblock); 446 } 447 448 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) 449 { 450 int r; 451 unsigned i; 452 struct dm_block *b; 453 __le64 *data_le, zero = cpu_to_le64(0); 454 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); 455 456 /* 457 * We can't use a validator here - it may be all zeroes. 458 */ 459 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b); 460 if (r) 461 return r; 462 463 data_le = dm_block_data(b); 464 *result = 1; 465 for (i = 0; i < block_size; i++) { 466 if (data_le[i] != zero) { 467 *result = 0; 468 break; 469 } 470 } 471 472 dm_bm_unlock(b); 473 474 return 0; 475 } 476 477 static void __setup_btree_details(struct dm_pool_metadata *pmd) 478 { 479 pmd->info.tm = pmd->tm; 480 pmd->info.levels = 2; 481 pmd->info.value_type.context = pmd->data_sm; 482 pmd->info.value_type.size = sizeof(__le64); 483 pmd->info.value_type.inc = data_block_inc; 484 pmd->info.value_type.dec = data_block_dec; 485 pmd->info.value_type.equal = data_block_equal; 486 487 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info)); 488 pmd->nb_info.tm = pmd->nb_tm; 489 490 pmd->tl_info.tm = pmd->tm; 491 pmd->tl_info.levels = 1; 492 pmd->tl_info.value_type.context = &pmd->bl_info; 493 pmd->tl_info.value_type.size = sizeof(__le64); 494 pmd->tl_info.value_type.inc = subtree_inc; 495 pmd->tl_info.value_type.dec = subtree_dec; 496 pmd->tl_info.value_type.equal = subtree_equal; 497 498 pmd->bl_info.tm = pmd->tm; 499 pmd->bl_info.levels = 1; 500 pmd->bl_info.value_type.context = pmd->data_sm; 501 pmd->bl_info.value_type.size = sizeof(__le64); 502 pmd->bl_info.value_type.inc = data_block_inc; 503 pmd->bl_info.value_type.dec = data_block_dec; 504 pmd->bl_info.value_type.equal = data_block_equal; 505 506 pmd->details_info.tm = pmd->tm; 507 pmd->details_info.levels = 1; 508 pmd->details_info.value_type.context = NULL; 509 pmd->details_info.value_type.size = sizeof(struct disk_device_details); 510 pmd->details_info.value_type.inc = NULL; 511 pmd->details_info.value_type.dec = NULL; 512 pmd->details_info.value_type.equal = NULL; 513 } 514 515 static int save_sm_roots(struct dm_pool_metadata *pmd) 516 { 517 int r; 518 size_t len; 519 520 r = dm_sm_root_size(pmd->metadata_sm, &len); 521 if (r < 0) 522 return r; 523 524 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); 525 if (r < 0) 526 return r; 527 528 r = dm_sm_root_size(pmd->data_sm, &len); 529 if (r < 0) 530 return r; 531 532 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); 533 } 534 535 static void copy_sm_roots(struct dm_pool_metadata *pmd, 536 struct thin_disk_superblock *disk) 537 { 538 memcpy(&disk->metadata_space_map_root, 539 &pmd->metadata_space_map_root, 540 sizeof(pmd->metadata_space_map_root)); 541 542 memcpy(&disk->data_space_map_root, 543 &pmd->data_space_map_root, 544 sizeof(pmd->data_space_map_root)); 545 } 546 547 static int __write_initial_superblock(struct dm_pool_metadata *pmd) 548 { 549 int r; 550 struct dm_block *sblock; 551 struct thin_disk_superblock *disk_super; 552 sector_t bdev_size = bdev_nr_sectors(pmd->bdev); 553 554 if (bdev_size > THIN_METADATA_MAX_SECTORS) 555 bdev_size = THIN_METADATA_MAX_SECTORS; 556 557 r = dm_sm_commit(pmd->data_sm); 558 if (r < 0) 559 return r; 560 561 r = dm_tm_pre_commit(pmd->tm); 562 if (r < 0) 563 return r; 564 565 r = save_sm_roots(pmd); 566 if (r < 0) 567 return r; 568 569 r = superblock_lock_zero(pmd, &sblock); 570 if (r) 571 return r; 572 573 disk_super = dm_block_data(sblock); 574 disk_super->flags = 0; 575 memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); 576 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC); 577 disk_super->version = cpu_to_le32(THIN_VERSION); 578 disk_super->time = 0; 579 disk_super->trans_id = 0; 580 disk_super->held_root = 0; 581 582 copy_sm_roots(pmd, disk_super); 583 584 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 585 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 586 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); 587 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); 588 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); 589 590 return dm_tm_commit(pmd->tm, sblock); 591 } 592 593 static int __format_metadata(struct dm_pool_metadata *pmd) 594 { 595 int r; 596 597 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 598 &pmd->tm, &pmd->metadata_sm); 599 if (r < 0) { 600 DMERR("tm_create_with_sm failed"); 601 return r; 602 } 603 604 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0); 605 if (IS_ERR(pmd->data_sm)) { 606 DMERR("sm_disk_create failed"); 607 r = PTR_ERR(pmd->data_sm); 608 goto bad_cleanup_tm; 609 } 610 611 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 612 if (!pmd->nb_tm) { 613 DMERR("could not create non-blocking clone tm"); 614 r = -ENOMEM; 615 goto bad_cleanup_data_sm; 616 } 617 618 __setup_btree_details(pmd); 619 620 r = dm_btree_empty(&pmd->info, &pmd->root); 621 if (r < 0) 622 goto bad_cleanup_nb_tm; 623 624 r = dm_btree_empty(&pmd->details_info, &pmd->details_root); 625 if (r < 0) { 626 DMERR("couldn't create devices root"); 627 goto bad_cleanup_nb_tm; 628 } 629 630 r = __write_initial_superblock(pmd); 631 if (r) 632 goto bad_cleanup_nb_tm; 633 634 return 0; 635 636 bad_cleanup_nb_tm: 637 dm_tm_destroy(pmd->nb_tm); 638 bad_cleanup_data_sm: 639 dm_sm_destroy(pmd->data_sm); 640 bad_cleanup_tm: 641 dm_tm_destroy(pmd->tm); 642 dm_sm_destroy(pmd->metadata_sm); 643 644 return r; 645 } 646 647 static int __check_incompat_features(struct thin_disk_superblock *disk_super, 648 struct dm_pool_metadata *pmd) 649 { 650 uint32_t features; 651 652 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP; 653 if (features) { 654 DMERR("could not access metadata due to unsupported optional features (%lx).", 655 (unsigned long)features); 656 return -EINVAL; 657 } 658 659 /* 660 * Check for read-only metadata to skip the following RDWR checks. 661 */ 662 if (bdev_read_only(pmd->bdev)) 663 return 0; 664 665 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP; 666 if (features) { 667 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", 668 (unsigned long)features); 669 return -EINVAL; 670 } 671 672 return 0; 673 } 674 675 static int __open_metadata(struct dm_pool_metadata *pmd) 676 { 677 int r; 678 struct dm_block *sblock; 679 struct thin_disk_superblock *disk_super; 680 681 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 682 &sb_validator, &sblock); 683 if (r < 0) { 684 DMERR("couldn't read superblock"); 685 return r; 686 } 687 688 disk_super = dm_block_data(sblock); 689 690 /* Verify the data block size hasn't changed */ 691 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) { 692 DMERR("changing the data block size (from %u to %llu) is not supported", 693 le32_to_cpu(disk_super->data_block_size), 694 (unsigned long long)pmd->data_block_size); 695 r = -EINVAL; 696 goto bad_unlock_sblock; 697 } 698 699 r = __check_incompat_features(disk_super, pmd); 700 if (r < 0) 701 goto bad_unlock_sblock; 702 703 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 704 disk_super->metadata_space_map_root, 705 sizeof(disk_super->metadata_space_map_root), 706 &pmd->tm, &pmd->metadata_sm); 707 if (r < 0) { 708 DMERR("tm_open_with_sm failed"); 709 goto bad_unlock_sblock; 710 } 711 712 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root, 713 sizeof(disk_super->data_space_map_root)); 714 if (IS_ERR(pmd->data_sm)) { 715 DMERR("sm_disk_open failed"); 716 r = PTR_ERR(pmd->data_sm); 717 goto bad_cleanup_tm; 718 } 719 720 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 721 if (!pmd->nb_tm) { 722 DMERR("could not create non-blocking clone tm"); 723 r = -ENOMEM; 724 goto bad_cleanup_data_sm; 725 } 726 727 /* 728 * For pool metadata opening process, root setting is redundant 729 * because it will be set again in __begin_transaction(). But dm 730 * pool aborting process really needs to get last transaction's 731 * root to avoid accessing broken btree. 732 */ 733 pmd->root = le64_to_cpu(disk_super->data_mapping_root); 734 pmd->details_root = le64_to_cpu(disk_super->device_details_root); 735 736 __setup_btree_details(pmd); 737 dm_bm_unlock(sblock); 738 739 return 0; 740 741 bad_cleanup_data_sm: 742 dm_sm_destroy(pmd->data_sm); 743 bad_cleanup_tm: 744 dm_tm_destroy(pmd->tm); 745 dm_sm_destroy(pmd->metadata_sm); 746 bad_unlock_sblock: 747 dm_bm_unlock(sblock); 748 749 return r; 750 } 751 752 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device) 753 { 754 int r, unformatted; 755 756 r = __superblock_all_zeroes(pmd->bm, &unformatted); 757 if (r) 758 return r; 759 760 if (unformatted) 761 return format_device ? __format_metadata(pmd) : -EPERM; 762 763 return __open_metadata(pmd); 764 } 765 766 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device) 767 { 768 int r; 769 770 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, 771 THIN_MAX_CONCURRENT_LOCKS); 772 if (IS_ERR(pmd->bm)) { 773 DMERR("could not create block manager"); 774 r = PTR_ERR(pmd->bm); 775 pmd->bm = NULL; 776 return r; 777 } 778 779 r = __open_or_format_metadata(pmd, format_device); 780 if (r) { 781 dm_block_manager_destroy(pmd->bm); 782 pmd->bm = NULL; 783 } 784 785 return r; 786 } 787 788 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd, 789 bool destroy_bm) 790 { 791 dm_sm_destroy(pmd->data_sm); 792 dm_sm_destroy(pmd->metadata_sm); 793 dm_tm_destroy(pmd->nb_tm); 794 dm_tm_destroy(pmd->tm); 795 if (destroy_bm) 796 dm_block_manager_destroy(pmd->bm); 797 } 798 799 static int __begin_transaction(struct dm_pool_metadata *pmd) 800 { 801 int r; 802 struct thin_disk_superblock *disk_super; 803 struct dm_block *sblock; 804 805 /* 806 * We re-read the superblock every time. Shouldn't need to do this 807 * really. 808 */ 809 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 810 &sb_validator, &sblock); 811 if (r) 812 return r; 813 814 disk_super = dm_block_data(sblock); 815 pmd->time = le32_to_cpu(disk_super->time); 816 pmd->root = le64_to_cpu(disk_super->data_mapping_root); 817 pmd->details_root = le64_to_cpu(disk_super->device_details_root); 818 pmd->trans_id = le64_to_cpu(disk_super->trans_id); 819 pmd->flags = le32_to_cpu(disk_super->flags); 820 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size); 821 822 dm_bm_unlock(sblock); 823 return 0; 824 } 825 826 static int __write_changed_details(struct dm_pool_metadata *pmd) 827 { 828 int r; 829 struct dm_thin_device *td, *tmp; 830 struct disk_device_details details; 831 uint64_t key; 832 833 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 834 if (!td->changed) 835 continue; 836 837 key = td->id; 838 839 details.mapped_blocks = cpu_to_le64(td->mapped_blocks); 840 details.transaction_id = cpu_to_le64(td->transaction_id); 841 details.creation_time = cpu_to_le32(td->creation_time); 842 details.snapshotted_time = cpu_to_le32(td->snapshotted_time); 843 __dm_bless_for_disk(&details); 844 845 r = dm_btree_insert(&pmd->details_info, pmd->details_root, 846 &key, &details, &pmd->details_root); 847 if (r) 848 return r; 849 850 if (td->open_count) 851 td->changed = false; 852 else { 853 list_del(&td->list); 854 kfree(td); 855 } 856 } 857 858 return 0; 859 } 860 861 static int __commit_transaction(struct dm_pool_metadata *pmd) 862 { 863 int r; 864 struct thin_disk_superblock *disk_super; 865 struct dm_block *sblock; 866 867 /* 868 * We need to know if the thin_disk_superblock exceeds a 512-byte sector. 869 */ 870 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512); 871 BUG_ON(!rwsem_is_locked(&pmd->root_lock)); 872 873 if (unlikely(!pmd->in_service)) 874 return 0; 875 876 if (pmd->pre_commit_fn) { 877 r = pmd->pre_commit_fn(pmd->pre_commit_context); 878 if (r < 0) { 879 DMERR("pre-commit callback failed"); 880 return r; 881 } 882 } 883 884 r = __write_changed_details(pmd); 885 if (r < 0) 886 return r; 887 888 r = dm_sm_commit(pmd->data_sm); 889 if (r < 0) 890 return r; 891 892 r = dm_tm_pre_commit(pmd->tm); 893 if (r < 0) 894 return r; 895 896 r = save_sm_roots(pmd); 897 if (r < 0) 898 return r; 899 900 r = superblock_lock(pmd, &sblock); 901 if (r) 902 return r; 903 904 disk_super = dm_block_data(sblock); 905 disk_super->time = cpu_to_le32(pmd->time); 906 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 907 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 908 disk_super->trans_id = cpu_to_le64(pmd->trans_id); 909 disk_super->flags = cpu_to_le32(pmd->flags); 910 911 copy_sm_roots(pmd, disk_super); 912 913 return dm_tm_commit(pmd->tm, sblock); 914 } 915 916 static void __set_metadata_reserve(struct dm_pool_metadata *pmd) 917 { 918 int r; 919 dm_block_t total; 920 dm_block_t max_blocks = 4096; /* 16M */ 921 922 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total); 923 if (r) { 924 DMERR("could not get size of metadata device"); 925 pmd->metadata_reserve = max_blocks; 926 } else 927 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10)); 928 } 929 930 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, 931 sector_t data_block_size, 932 bool format_device) 933 { 934 int r; 935 struct dm_pool_metadata *pmd; 936 937 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL); 938 if (!pmd) { 939 DMERR("could not allocate metadata struct"); 940 return ERR_PTR(-ENOMEM); 941 } 942 943 init_rwsem(&pmd->root_lock); 944 pmd->time = 0; 945 INIT_LIST_HEAD(&pmd->thin_devices); 946 pmd->fail_io = false; 947 pmd->in_service = false; 948 pmd->bdev = bdev; 949 pmd->data_block_size = data_block_size; 950 pmd->pre_commit_fn = NULL; 951 pmd->pre_commit_context = NULL; 952 953 r = __create_persistent_data_objects(pmd, format_device); 954 if (r) { 955 kfree(pmd); 956 return ERR_PTR(r); 957 } 958 959 r = __begin_transaction(pmd); 960 if (r < 0) { 961 if (dm_pool_metadata_close(pmd) < 0) 962 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 963 return ERR_PTR(r); 964 } 965 966 __set_metadata_reserve(pmd); 967 968 return pmd; 969 } 970 971 int dm_pool_metadata_close(struct dm_pool_metadata *pmd) 972 { 973 int r; 974 unsigned open_devices = 0; 975 struct dm_thin_device *td, *tmp; 976 977 down_read(&pmd->root_lock); 978 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 979 if (td->open_count) 980 open_devices++; 981 else { 982 list_del(&td->list); 983 kfree(td); 984 } 985 } 986 up_read(&pmd->root_lock); 987 988 if (open_devices) { 989 DMERR("attempt to close pmd when %u device(s) are still open", 990 open_devices); 991 return -EBUSY; 992 } 993 994 pmd_write_lock_in_core(pmd); 995 if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) { 996 r = __commit_transaction(pmd); 997 if (r < 0) 998 DMWARN("%s: __commit_transaction() failed, error = %d", 999 __func__, r); 1000 } 1001 pmd_write_unlock(pmd); 1002 if (!pmd->fail_io) 1003 __destroy_persistent_data_objects(pmd, true); 1004 1005 kfree(pmd); 1006 return 0; 1007 } 1008 1009 /* 1010 * __open_device: Returns @td corresponding to device with id @dev, 1011 * creating it if @create is set and incrementing @td->open_count. 1012 * On failure, @td is undefined. 1013 */ 1014 static int __open_device(struct dm_pool_metadata *pmd, 1015 dm_thin_id dev, int create, 1016 struct dm_thin_device **td) 1017 { 1018 int r, changed = 0; 1019 struct dm_thin_device *td2; 1020 uint64_t key = dev; 1021 struct disk_device_details details_le; 1022 1023 /* 1024 * If the device is already open, return it. 1025 */ 1026 list_for_each_entry(td2, &pmd->thin_devices, list) 1027 if (td2->id == dev) { 1028 /* 1029 * May not create an already-open device. 1030 */ 1031 if (create) 1032 return -EEXIST; 1033 1034 td2->open_count++; 1035 *td = td2; 1036 return 0; 1037 } 1038 1039 /* 1040 * Check the device exists. 1041 */ 1042 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1043 &key, &details_le); 1044 if (r) { 1045 if (r != -ENODATA || !create) 1046 return r; 1047 1048 /* 1049 * Create new device. 1050 */ 1051 changed = 1; 1052 details_le.mapped_blocks = 0; 1053 details_le.transaction_id = cpu_to_le64(pmd->trans_id); 1054 details_le.creation_time = cpu_to_le32(pmd->time); 1055 details_le.snapshotted_time = cpu_to_le32(pmd->time); 1056 } 1057 1058 *td = kmalloc(sizeof(**td), GFP_NOIO); 1059 if (!*td) 1060 return -ENOMEM; 1061 1062 (*td)->pmd = pmd; 1063 (*td)->id = dev; 1064 (*td)->open_count = 1; 1065 (*td)->changed = changed; 1066 (*td)->aborted_with_changes = false; 1067 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks); 1068 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id); 1069 (*td)->creation_time = le32_to_cpu(details_le.creation_time); 1070 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time); 1071 1072 list_add(&(*td)->list, &pmd->thin_devices); 1073 1074 return 0; 1075 } 1076 1077 static void __close_device(struct dm_thin_device *td) 1078 { 1079 --td->open_count; 1080 } 1081 1082 static int __create_thin(struct dm_pool_metadata *pmd, 1083 dm_thin_id dev) 1084 { 1085 int r; 1086 dm_block_t dev_root; 1087 uint64_t key = dev; 1088 struct dm_thin_device *td; 1089 __le64 value; 1090 1091 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1092 &key, NULL); 1093 if (!r) 1094 return -EEXIST; 1095 1096 /* 1097 * Create an empty btree for the mappings. 1098 */ 1099 r = dm_btree_empty(&pmd->bl_info, &dev_root); 1100 if (r) 1101 return r; 1102 1103 /* 1104 * Insert it into the main mapping tree. 1105 */ 1106 value = cpu_to_le64(dev_root); 1107 __dm_bless_for_disk(&value); 1108 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1109 if (r) { 1110 dm_btree_del(&pmd->bl_info, dev_root); 1111 return r; 1112 } 1113 1114 r = __open_device(pmd, dev, 1, &td); 1115 if (r) { 1116 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1117 dm_btree_del(&pmd->bl_info, dev_root); 1118 return r; 1119 } 1120 __close_device(td); 1121 1122 return r; 1123 } 1124 1125 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) 1126 { 1127 int r = -EINVAL; 1128 1129 pmd_write_lock(pmd); 1130 if (!pmd->fail_io) 1131 r = __create_thin(pmd, dev); 1132 pmd_write_unlock(pmd); 1133 1134 return r; 1135 } 1136 1137 static int __set_snapshot_details(struct dm_pool_metadata *pmd, 1138 struct dm_thin_device *snap, 1139 dm_thin_id origin, uint32_t time) 1140 { 1141 int r; 1142 struct dm_thin_device *td; 1143 1144 r = __open_device(pmd, origin, 0, &td); 1145 if (r) 1146 return r; 1147 1148 td->changed = true; 1149 td->snapshotted_time = time; 1150 1151 snap->mapped_blocks = td->mapped_blocks; 1152 snap->snapshotted_time = time; 1153 __close_device(td); 1154 1155 return 0; 1156 } 1157 1158 static int __create_snap(struct dm_pool_metadata *pmd, 1159 dm_thin_id dev, dm_thin_id origin) 1160 { 1161 int r; 1162 dm_block_t origin_root; 1163 uint64_t key = origin, dev_key = dev; 1164 struct dm_thin_device *td; 1165 __le64 value; 1166 1167 /* check this device is unused */ 1168 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1169 &dev_key, NULL); 1170 if (!r) 1171 return -EEXIST; 1172 1173 /* find the mapping tree for the origin */ 1174 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value); 1175 if (r) 1176 return r; 1177 origin_root = le64_to_cpu(value); 1178 1179 /* clone the origin, an inc will do */ 1180 dm_tm_inc(pmd->tm, origin_root); 1181 1182 /* insert into the main mapping tree */ 1183 value = cpu_to_le64(origin_root); 1184 __dm_bless_for_disk(&value); 1185 key = dev; 1186 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1187 if (r) { 1188 dm_tm_dec(pmd->tm, origin_root); 1189 return r; 1190 } 1191 1192 pmd->time++; 1193 1194 r = __open_device(pmd, dev, 1, &td); 1195 if (r) 1196 goto bad; 1197 1198 r = __set_snapshot_details(pmd, td, origin, pmd->time); 1199 __close_device(td); 1200 1201 if (r) 1202 goto bad; 1203 1204 return 0; 1205 1206 bad: 1207 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1208 dm_btree_remove(&pmd->details_info, pmd->details_root, 1209 &key, &pmd->details_root); 1210 return r; 1211 } 1212 1213 int dm_pool_create_snap(struct dm_pool_metadata *pmd, 1214 dm_thin_id dev, 1215 dm_thin_id origin) 1216 { 1217 int r = -EINVAL; 1218 1219 pmd_write_lock(pmd); 1220 if (!pmd->fail_io) 1221 r = __create_snap(pmd, dev, origin); 1222 pmd_write_unlock(pmd); 1223 1224 return r; 1225 } 1226 1227 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev) 1228 { 1229 int r; 1230 uint64_t key = dev; 1231 struct dm_thin_device *td; 1232 1233 /* TODO: failure should mark the transaction invalid */ 1234 r = __open_device(pmd, dev, 0, &td); 1235 if (r) 1236 return r; 1237 1238 if (td->open_count > 1) { 1239 __close_device(td); 1240 return -EBUSY; 1241 } 1242 1243 list_del(&td->list); 1244 kfree(td); 1245 r = dm_btree_remove(&pmd->details_info, pmd->details_root, 1246 &key, &pmd->details_root); 1247 if (r) 1248 return r; 1249 1250 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1251 if (r) 1252 return r; 1253 1254 return 0; 1255 } 1256 1257 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd, 1258 dm_thin_id dev) 1259 { 1260 int r = -EINVAL; 1261 1262 pmd_write_lock(pmd); 1263 if (!pmd->fail_io) 1264 r = __delete_device(pmd, dev); 1265 pmd_write_unlock(pmd); 1266 1267 return r; 1268 } 1269 1270 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd, 1271 uint64_t current_id, 1272 uint64_t new_id) 1273 { 1274 int r = -EINVAL; 1275 1276 pmd_write_lock(pmd); 1277 1278 if (pmd->fail_io) 1279 goto out; 1280 1281 if (pmd->trans_id != current_id) { 1282 DMERR("mismatched transaction id"); 1283 goto out; 1284 } 1285 1286 pmd->trans_id = new_id; 1287 r = 0; 1288 1289 out: 1290 pmd_write_unlock(pmd); 1291 1292 return r; 1293 } 1294 1295 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd, 1296 uint64_t *result) 1297 { 1298 int r = -EINVAL; 1299 1300 down_read(&pmd->root_lock); 1301 if (!pmd->fail_io) { 1302 *result = pmd->trans_id; 1303 r = 0; 1304 } 1305 up_read(&pmd->root_lock); 1306 1307 return r; 1308 } 1309 1310 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd) 1311 { 1312 int r, inc; 1313 struct thin_disk_superblock *disk_super; 1314 struct dm_block *copy, *sblock; 1315 dm_block_t held_root; 1316 1317 /* 1318 * We commit to ensure the btree roots which we increment in a 1319 * moment are up to date. 1320 */ 1321 r = __commit_transaction(pmd); 1322 if (r < 0) { 1323 DMWARN("%s: __commit_transaction() failed, error = %d", 1324 __func__, r); 1325 return r; 1326 } 1327 1328 /* 1329 * Copy the superblock. 1330 */ 1331 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION); 1332 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION, 1333 &sb_validator, ©, &inc); 1334 if (r) 1335 return r; 1336 1337 BUG_ON(!inc); 1338 1339 held_root = dm_block_location(copy); 1340 disk_super = dm_block_data(copy); 1341 1342 if (le64_to_cpu(disk_super->held_root)) { 1343 DMWARN("Pool metadata snapshot already exists: release this before taking another."); 1344 1345 dm_tm_dec(pmd->tm, held_root); 1346 dm_tm_unlock(pmd->tm, copy); 1347 return -EBUSY; 1348 } 1349 1350 /* 1351 * Wipe the spacemap since we're not publishing this. 1352 */ 1353 memset(&disk_super->data_space_map_root, 0, 1354 sizeof(disk_super->data_space_map_root)); 1355 memset(&disk_super->metadata_space_map_root, 0, 1356 sizeof(disk_super->metadata_space_map_root)); 1357 1358 /* 1359 * Increment the data structures that need to be preserved. 1360 */ 1361 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root)); 1362 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root)); 1363 dm_tm_unlock(pmd->tm, copy); 1364 1365 /* 1366 * Write the held root into the superblock. 1367 */ 1368 r = superblock_lock(pmd, &sblock); 1369 if (r) { 1370 dm_tm_dec(pmd->tm, held_root); 1371 return r; 1372 } 1373 1374 disk_super = dm_block_data(sblock); 1375 disk_super->held_root = cpu_to_le64(held_root); 1376 dm_bm_unlock(sblock); 1377 return 0; 1378 } 1379 1380 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd) 1381 { 1382 int r = -EINVAL; 1383 1384 pmd_write_lock(pmd); 1385 if (!pmd->fail_io) 1386 r = __reserve_metadata_snap(pmd); 1387 pmd_write_unlock(pmd); 1388 1389 return r; 1390 } 1391 1392 static int __release_metadata_snap(struct dm_pool_metadata *pmd) 1393 { 1394 int r; 1395 struct thin_disk_superblock *disk_super; 1396 struct dm_block *sblock, *copy; 1397 dm_block_t held_root; 1398 1399 r = superblock_lock(pmd, &sblock); 1400 if (r) 1401 return r; 1402 1403 disk_super = dm_block_data(sblock); 1404 held_root = le64_to_cpu(disk_super->held_root); 1405 disk_super->held_root = cpu_to_le64(0); 1406 1407 dm_bm_unlock(sblock); 1408 1409 if (!held_root) { 1410 DMWARN("No pool metadata snapshot found: nothing to release."); 1411 return -EINVAL; 1412 } 1413 1414 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©); 1415 if (r) 1416 return r; 1417 1418 disk_super = dm_block_data(copy); 1419 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root)); 1420 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root)); 1421 dm_sm_dec_block(pmd->metadata_sm, held_root); 1422 1423 dm_tm_unlock(pmd->tm, copy); 1424 1425 return 0; 1426 } 1427 1428 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd) 1429 { 1430 int r = -EINVAL; 1431 1432 pmd_write_lock(pmd); 1433 if (!pmd->fail_io) 1434 r = __release_metadata_snap(pmd); 1435 pmd_write_unlock(pmd); 1436 1437 return r; 1438 } 1439 1440 static int __get_metadata_snap(struct dm_pool_metadata *pmd, 1441 dm_block_t *result) 1442 { 1443 int r; 1444 struct thin_disk_superblock *disk_super; 1445 struct dm_block *sblock; 1446 1447 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 1448 &sb_validator, &sblock); 1449 if (r) 1450 return r; 1451 1452 disk_super = dm_block_data(sblock); 1453 *result = le64_to_cpu(disk_super->held_root); 1454 1455 dm_bm_unlock(sblock); 1456 1457 return 0; 1458 } 1459 1460 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd, 1461 dm_block_t *result) 1462 { 1463 int r = -EINVAL; 1464 1465 down_read(&pmd->root_lock); 1466 if (!pmd->fail_io) 1467 r = __get_metadata_snap(pmd, result); 1468 up_read(&pmd->root_lock); 1469 1470 return r; 1471 } 1472 1473 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev, 1474 struct dm_thin_device **td) 1475 { 1476 int r = -EINVAL; 1477 1478 pmd_write_lock_in_core(pmd); 1479 if (!pmd->fail_io) 1480 r = __open_device(pmd, dev, 0, td); 1481 pmd_write_unlock(pmd); 1482 1483 return r; 1484 } 1485 1486 int dm_pool_close_thin_device(struct dm_thin_device *td) 1487 { 1488 pmd_write_lock_in_core(td->pmd); 1489 __close_device(td); 1490 pmd_write_unlock(td->pmd); 1491 1492 return 0; 1493 } 1494 1495 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) 1496 { 1497 return td->id; 1498 } 1499 1500 /* 1501 * Check whether @time (of block creation) is older than @td's last snapshot. 1502 * If so then the associated block is shared with the last snapshot device. 1503 * Any block on a device created *after* the device last got snapshotted is 1504 * necessarily not shared. 1505 */ 1506 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) 1507 { 1508 return td->snapshotted_time > time; 1509 } 1510 1511 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value, 1512 struct dm_thin_lookup_result *result) 1513 { 1514 uint64_t block_time = 0; 1515 dm_block_t exception_block; 1516 uint32_t exception_time; 1517 1518 block_time = le64_to_cpu(value); 1519 unpack_block_time(block_time, &exception_block, &exception_time); 1520 result->block = exception_block; 1521 result->shared = __snapshotted_since(td, exception_time); 1522 } 1523 1524 static int __find_block(struct dm_thin_device *td, dm_block_t block, 1525 int can_issue_io, struct dm_thin_lookup_result *result) 1526 { 1527 int r; 1528 __le64 value; 1529 struct dm_pool_metadata *pmd = td->pmd; 1530 dm_block_t keys[2] = { td->id, block }; 1531 struct dm_btree_info *info; 1532 1533 if (can_issue_io) { 1534 info = &pmd->info; 1535 } else 1536 info = &pmd->nb_info; 1537 1538 r = dm_btree_lookup(info, pmd->root, keys, &value); 1539 if (!r) 1540 unpack_lookup_result(td, value, result); 1541 1542 return r; 1543 } 1544 1545 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block, 1546 int can_issue_io, struct dm_thin_lookup_result *result) 1547 { 1548 int r; 1549 struct dm_pool_metadata *pmd = td->pmd; 1550 1551 down_read(&pmd->root_lock); 1552 if (pmd->fail_io) { 1553 up_read(&pmd->root_lock); 1554 return -EINVAL; 1555 } 1556 1557 r = __find_block(td, block, can_issue_io, result); 1558 1559 up_read(&pmd->root_lock); 1560 return r; 1561 } 1562 1563 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block, 1564 dm_block_t *vblock, 1565 struct dm_thin_lookup_result *result) 1566 { 1567 int r; 1568 __le64 value; 1569 struct dm_pool_metadata *pmd = td->pmd; 1570 dm_block_t keys[2] = { td->id, block }; 1571 1572 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value); 1573 if (!r) 1574 unpack_lookup_result(td, value, result); 1575 1576 return r; 1577 } 1578 1579 static int __find_mapped_range(struct dm_thin_device *td, 1580 dm_block_t begin, dm_block_t end, 1581 dm_block_t *thin_begin, dm_block_t *thin_end, 1582 dm_block_t *pool_begin, bool *maybe_shared) 1583 { 1584 int r; 1585 dm_block_t pool_end; 1586 struct dm_thin_lookup_result lookup; 1587 1588 if (end < begin) 1589 return -ENODATA; 1590 1591 r = __find_next_mapped_block(td, begin, &begin, &lookup); 1592 if (r) 1593 return r; 1594 1595 if (begin >= end) 1596 return -ENODATA; 1597 1598 *thin_begin = begin; 1599 *pool_begin = lookup.block; 1600 *maybe_shared = lookup.shared; 1601 1602 begin++; 1603 pool_end = *pool_begin + 1; 1604 while (begin != end) { 1605 r = __find_block(td, begin, true, &lookup); 1606 if (r) { 1607 if (r == -ENODATA) 1608 break; 1609 else 1610 return r; 1611 } 1612 1613 if ((lookup.block != pool_end) || 1614 (lookup.shared != *maybe_shared)) 1615 break; 1616 1617 pool_end++; 1618 begin++; 1619 } 1620 1621 *thin_end = begin; 1622 return 0; 1623 } 1624 1625 int dm_thin_find_mapped_range(struct dm_thin_device *td, 1626 dm_block_t begin, dm_block_t end, 1627 dm_block_t *thin_begin, dm_block_t *thin_end, 1628 dm_block_t *pool_begin, bool *maybe_shared) 1629 { 1630 int r = -EINVAL; 1631 struct dm_pool_metadata *pmd = td->pmd; 1632 1633 down_read(&pmd->root_lock); 1634 if (!pmd->fail_io) { 1635 r = __find_mapped_range(td, begin, end, thin_begin, thin_end, 1636 pool_begin, maybe_shared); 1637 } 1638 up_read(&pmd->root_lock); 1639 1640 return r; 1641 } 1642 1643 static int __insert(struct dm_thin_device *td, dm_block_t block, 1644 dm_block_t data_block) 1645 { 1646 int r, inserted; 1647 __le64 value; 1648 struct dm_pool_metadata *pmd = td->pmd; 1649 dm_block_t keys[2] = { td->id, block }; 1650 1651 value = cpu_to_le64(pack_block_time(data_block, pmd->time)); 1652 __dm_bless_for_disk(&value); 1653 1654 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value, 1655 &pmd->root, &inserted); 1656 if (r) 1657 return r; 1658 1659 td->changed = true; 1660 if (inserted) 1661 td->mapped_blocks++; 1662 1663 return 0; 1664 } 1665 1666 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block, 1667 dm_block_t data_block) 1668 { 1669 int r = -EINVAL; 1670 1671 pmd_write_lock(td->pmd); 1672 if (!td->pmd->fail_io) 1673 r = __insert(td, block, data_block); 1674 pmd_write_unlock(td->pmd); 1675 1676 return r; 1677 } 1678 1679 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end) 1680 { 1681 int r; 1682 unsigned count, total_count = 0; 1683 struct dm_pool_metadata *pmd = td->pmd; 1684 dm_block_t keys[1] = { td->id }; 1685 __le64 value; 1686 dm_block_t mapping_root; 1687 1688 /* 1689 * Find the mapping tree 1690 */ 1691 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value); 1692 if (r) 1693 return r; 1694 1695 /* 1696 * Remove from the mapping tree, taking care to inc the 1697 * ref count so it doesn't get deleted. 1698 */ 1699 mapping_root = le64_to_cpu(value); 1700 dm_tm_inc(pmd->tm, mapping_root); 1701 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root); 1702 if (r) 1703 return r; 1704 1705 /* 1706 * Remove leaves stops at the first unmapped entry, so we have to 1707 * loop round finding mapped ranges. 1708 */ 1709 while (begin < end) { 1710 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value); 1711 if (r == -ENODATA) 1712 break; 1713 1714 if (r) 1715 return r; 1716 1717 if (begin >= end) 1718 break; 1719 1720 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count); 1721 if (r) 1722 return r; 1723 1724 total_count += count; 1725 } 1726 1727 td->mapped_blocks -= total_count; 1728 td->changed = true; 1729 1730 /* 1731 * Reinsert the mapping tree. 1732 */ 1733 value = cpu_to_le64(mapping_root); 1734 __dm_bless_for_disk(&value); 1735 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root); 1736 } 1737 1738 int dm_thin_remove_range(struct dm_thin_device *td, 1739 dm_block_t begin, dm_block_t end) 1740 { 1741 int r = -EINVAL; 1742 1743 pmd_write_lock(td->pmd); 1744 if (!td->pmd->fail_io) 1745 r = __remove_range(td, begin, end); 1746 pmd_write_unlock(td->pmd); 1747 1748 return r; 1749 } 1750 1751 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) 1752 { 1753 int r; 1754 uint32_t ref_count; 1755 1756 down_read(&pmd->root_lock); 1757 r = dm_sm_get_count(pmd->data_sm, b, &ref_count); 1758 if (!r) 1759 *result = (ref_count > 1); 1760 up_read(&pmd->root_lock); 1761 1762 return r; 1763 } 1764 1765 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1766 { 1767 int r = 0; 1768 1769 pmd_write_lock(pmd); 1770 r = dm_sm_inc_blocks(pmd->data_sm, b, e); 1771 pmd_write_unlock(pmd); 1772 1773 return r; 1774 } 1775 1776 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1777 { 1778 int r = 0; 1779 1780 pmd_write_lock(pmd); 1781 r = dm_sm_dec_blocks(pmd->data_sm, b, e); 1782 pmd_write_unlock(pmd); 1783 1784 return r; 1785 } 1786 1787 bool dm_thin_changed_this_transaction(struct dm_thin_device *td) 1788 { 1789 int r; 1790 1791 down_read(&td->pmd->root_lock); 1792 r = td->changed; 1793 up_read(&td->pmd->root_lock); 1794 1795 return r; 1796 } 1797 1798 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) 1799 { 1800 bool r = false; 1801 struct dm_thin_device *td, *tmp; 1802 1803 down_read(&pmd->root_lock); 1804 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 1805 if (td->changed) { 1806 r = td->changed; 1807 break; 1808 } 1809 } 1810 up_read(&pmd->root_lock); 1811 1812 return r; 1813 } 1814 1815 bool dm_thin_aborted_changes(struct dm_thin_device *td) 1816 { 1817 bool r; 1818 1819 down_read(&td->pmd->root_lock); 1820 r = td->aborted_with_changes; 1821 up_read(&td->pmd->root_lock); 1822 1823 return r; 1824 } 1825 1826 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result) 1827 { 1828 int r = -EINVAL; 1829 1830 pmd_write_lock(pmd); 1831 if (!pmd->fail_io) 1832 r = dm_sm_new_block(pmd->data_sm, result); 1833 pmd_write_unlock(pmd); 1834 1835 return r; 1836 } 1837 1838 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd) 1839 { 1840 int r = -EINVAL; 1841 1842 /* 1843 * Care is taken to not have commit be what 1844 * triggers putting the thin-pool in-service. 1845 */ 1846 pmd_write_lock_in_core(pmd); 1847 if (pmd->fail_io) 1848 goto out; 1849 1850 r = __commit_transaction(pmd); 1851 if (r < 0) 1852 goto out; 1853 1854 /* 1855 * Open the next transaction. 1856 */ 1857 r = __begin_transaction(pmd); 1858 out: 1859 pmd_write_unlock(pmd); 1860 return r; 1861 } 1862 1863 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd) 1864 { 1865 struct dm_thin_device *td; 1866 1867 list_for_each_entry(td, &pmd->thin_devices, list) 1868 td->aborted_with_changes = td->changed; 1869 } 1870 1871 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd) 1872 { 1873 int r = -EINVAL; 1874 struct dm_block_manager *old_bm = NULL, *new_bm = NULL; 1875 1876 /* fail_io is double-checked with pmd->root_lock held below */ 1877 if (unlikely(pmd->fail_io)) 1878 return r; 1879 1880 /* 1881 * Replacement block manager (new_bm) is created and old_bm destroyed outside of 1882 * pmd root_lock to avoid ABBA deadlock that would result (due to life-cycle of 1883 * shrinker associated with the block manager's bufio client vs pmd root_lock). 1884 * - must take shrinker_rwsem without holding pmd->root_lock 1885 */ 1886 new_bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, 1887 THIN_MAX_CONCURRENT_LOCKS); 1888 1889 pmd_write_lock(pmd); 1890 if (pmd->fail_io) { 1891 pmd_write_unlock(pmd); 1892 goto out; 1893 } 1894 1895 __set_abort_with_changes_flags(pmd); 1896 __destroy_persistent_data_objects(pmd, false); 1897 old_bm = pmd->bm; 1898 if (IS_ERR(new_bm)) { 1899 DMERR("could not create block manager during abort"); 1900 pmd->bm = NULL; 1901 r = PTR_ERR(new_bm); 1902 goto out_unlock; 1903 } 1904 1905 pmd->bm = new_bm; 1906 r = __open_or_format_metadata(pmd, false); 1907 if (r) { 1908 pmd->bm = NULL; 1909 goto out_unlock; 1910 } 1911 new_bm = NULL; 1912 out_unlock: 1913 if (r) 1914 pmd->fail_io = true; 1915 pmd_write_unlock(pmd); 1916 dm_block_manager_destroy(old_bm); 1917 out: 1918 if (new_bm && !IS_ERR(new_bm)) 1919 dm_block_manager_destroy(new_bm); 1920 1921 return r; 1922 } 1923 1924 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) 1925 { 1926 int r = -EINVAL; 1927 1928 down_read(&pmd->root_lock); 1929 if (!pmd->fail_io) 1930 r = dm_sm_get_nr_free(pmd->data_sm, result); 1931 up_read(&pmd->root_lock); 1932 1933 return r; 1934 } 1935 1936 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd, 1937 dm_block_t *result) 1938 { 1939 int r = -EINVAL; 1940 1941 down_read(&pmd->root_lock); 1942 if (!pmd->fail_io) 1943 r = dm_sm_get_nr_free(pmd->metadata_sm, result); 1944 1945 if (!r) { 1946 if (*result < pmd->metadata_reserve) 1947 *result = 0; 1948 else 1949 *result -= pmd->metadata_reserve; 1950 } 1951 up_read(&pmd->root_lock); 1952 1953 return r; 1954 } 1955 1956 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd, 1957 dm_block_t *result) 1958 { 1959 int r = -EINVAL; 1960 1961 down_read(&pmd->root_lock); 1962 if (!pmd->fail_io) 1963 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); 1964 up_read(&pmd->root_lock); 1965 1966 return r; 1967 } 1968 1969 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) 1970 { 1971 int r = -EINVAL; 1972 1973 down_read(&pmd->root_lock); 1974 if (!pmd->fail_io) 1975 r = dm_sm_get_nr_blocks(pmd->data_sm, result); 1976 up_read(&pmd->root_lock); 1977 1978 return r; 1979 } 1980 1981 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result) 1982 { 1983 int r = -EINVAL; 1984 struct dm_pool_metadata *pmd = td->pmd; 1985 1986 down_read(&pmd->root_lock); 1987 if (!pmd->fail_io) { 1988 *result = td->mapped_blocks; 1989 r = 0; 1990 } 1991 up_read(&pmd->root_lock); 1992 1993 return r; 1994 } 1995 1996 static int __highest_block(struct dm_thin_device *td, dm_block_t *result) 1997 { 1998 int r; 1999 __le64 value_le; 2000 dm_block_t thin_root; 2001 struct dm_pool_metadata *pmd = td->pmd; 2002 2003 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le); 2004 if (r) 2005 return r; 2006 2007 thin_root = le64_to_cpu(value_le); 2008 2009 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result); 2010 } 2011 2012 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, 2013 dm_block_t *result) 2014 { 2015 int r = -EINVAL; 2016 struct dm_pool_metadata *pmd = td->pmd; 2017 2018 down_read(&pmd->root_lock); 2019 if (!pmd->fail_io) 2020 r = __highest_block(td, result); 2021 up_read(&pmd->root_lock); 2022 2023 return r; 2024 } 2025 2026 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) 2027 { 2028 int r; 2029 dm_block_t old_count; 2030 2031 r = dm_sm_get_nr_blocks(sm, &old_count); 2032 if (r) 2033 return r; 2034 2035 if (new_count == old_count) 2036 return 0; 2037 2038 if (new_count < old_count) { 2039 DMERR("cannot reduce size of space map"); 2040 return -EINVAL; 2041 } 2042 2043 return dm_sm_extend(sm, new_count - old_count); 2044 } 2045 2046 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 2047 { 2048 int r = -EINVAL; 2049 2050 pmd_write_lock(pmd); 2051 if (!pmd->fail_io) 2052 r = __resize_space_map(pmd->data_sm, new_count); 2053 pmd_write_unlock(pmd); 2054 2055 return r; 2056 } 2057 2058 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 2059 { 2060 int r = -EINVAL; 2061 2062 pmd_write_lock(pmd); 2063 if (!pmd->fail_io) { 2064 r = __resize_space_map(pmd->metadata_sm, new_count); 2065 if (!r) 2066 __set_metadata_reserve(pmd); 2067 } 2068 pmd_write_unlock(pmd); 2069 2070 return r; 2071 } 2072 2073 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) 2074 { 2075 pmd_write_lock_in_core(pmd); 2076 dm_bm_set_read_only(pmd->bm); 2077 pmd_write_unlock(pmd); 2078 } 2079 2080 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) 2081 { 2082 pmd_write_lock_in_core(pmd); 2083 dm_bm_set_read_write(pmd->bm); 2084 pmd_write_unlock(pmd); 2085 } 2086 2087 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, 2088 dm_block_t threshold, 2089 dm_sm_threshold_fn fn, 2090 void *context) 2091 { 2092 int r = -EINVAL; 2093 2094 pmd_write_lock_in_core(pmd); 2095 if (!pmd->fail_io) { 2096 r = dm_sm_register_threshold_callback(pmd->metadata_sm, 2097 threshold, fn, context); 2098 } 2099 pmd_write_unlock(pmd); 2100 2101 return r; 2102 } 2103 2104 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd, 2105 dm_pool_pre_commit_fn fn, 2106 void *context) 2107 { 2108 pmd_write_lock_in_core(pmd); 2109 pmd->pre_commit_fn = fn; 2110 pmd->pre_commit_context = context; 2111 pmd_write_unlock(pmd); 2112 } 2113 2114 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) 2115 { 2116 int r = -EINVAL; 2117 struct dm_block *sblock; 2118 struct thin_disk_superblock *disk_super; 2119 2120 pmd_write_lock(pmd); 2121 if (pmd->fail_io) 2122 goto out; 2123 2124 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; 2125 2126 r = superblock_lock(pmd, &sblock); 2127 if (r) { 2128 DMERR("couldn't lock superblock"); 2129 goto out; 2130 } 2131 2132 disk_super = dm_block_data(sblock); 2133 disk_super->flags = cpu_to_le32(pmd->flags); 2134 2135 dm_bm_unlock(sblock); 2136 out: 2137 pmd_write_unlock(pmd); 2138 return r; 2139 } 2140 2141 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) 2142 { 2143 bool needs_check; 2144 2145 down_read(&pmd->root_lock); 2146 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; 2147 up_read(&pmd->root_lock); 2148 2149 return needs_check; 2150 } 2151 2152 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd) 2153 { 2154 down_read(&pmd->root_lock); 2155 if (!pmd->fail_io) 2156 dm_tm_issue_prefetches(pmd->tm); 2157 up_read(&pmd->root_lock); 2158 } 2159