1 /* 2 * Copyright (C) 2011-2012 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "persistent-data/dm-btree.h" 9 #include "persistent-data/dm-space-map.h" 10 #include "persistent-data/dm-space-map-disk.h" 11 #include "persistent-data/dm-transaction-manager.h" 12 13 #include <linux/list.h> 14 #include <linux/device-mapper.h> 15 #include <linux/workqueue.h> 16 17 /*-------------------------------------------------------------------------- 18 * As far as the metadata goes, there is: 19 * 20 * - A superblock in block zero, taking up fewer than 512 bytes for 21 * atomic writes. 22 * 23 * - A space map managing the metadata blocks. 24 * 25 * - A space map managing the data blocks. 26 * 27 * - A btree mapping our internal thin dev ids onto struct disk_device_details. 28 * 29 * - A hierarchical btree, with 2 levels which effectively maps (thin 30 * dev id, virtual block) -> block_time. Block time is a 64-bit 31 * field holding the time in the low 24 bits, and block in the top 48 32 * bits. 33 * 34 * BTrees consist solely of btree_nodes, that fill a block. Some are 35 * internal nodes, as such their values are a __le64 pointing to other 36 * nodes. Leaf nodes can store data of any reasonable size (ie. much 37 * smaller than the block size). The nodes consist of the header, 38 * followed by an array of keys, followed by an array of values. We have 39 * to binary search on the keys so they're all held together to help the 40 * cpu cache. 41 * 42 * Space maps have 2 btrees: 43 * 44 * - One maps a uint64_t onto a struct index_entry. Which points to a 45 * bitmap block, and has some details about how many free entries there 46 * are etc. 47 * 48 * - The bitmap blocks have a header (for the checksum). Then the rest 49 * of the block is pairs of bits. With the meaning being: 50 * 51 * 0 - ref count is 0 52 * 1 - ref count is 1 53 * 2 - ref count is 2 54 * 3 - ref count is higher than 2 55 * 56 * - If the count is higher than 2 then the ref count is entered in a 57 * second btree that directly maps the block_address to a uint32_t ref 58 * count. 59 * 60 * The space map metadata variant doesn't have a bitmaps btree. Instead 61 * it has one single blocks worth of index_entries. This avoids 62 * recursive issues with the bitmap btree needing to allocate space in 63 * order to insert. With a small data block size such as 64k the 64 * metadata support data devices that are hundreds of terrabytes. 65 * 66 * The space maps allocate space linearly from front to back. Space that 67 * is freed in a transaction is never recycled within that transaction. 68 * To try and avoid fragmenting _free_ space the allocator always goes 69 * back and fills in gaps. 70 * 71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks 72 * from the block manager. 73 *--------------------------------------------------------------------------*/ 74 75 #define DM_MSG_PREFIX "thin metadata" 76 77 #define THIN_SUPERBLOCK_MAGIC 27022010 78 #define THIN_SUPERBLOCK_LOCATION 0 79 #define THIN_VERSION 2 80 #define THIN_METADATA_CACHE_SIZE 64 81 #define SECTOR_TO_BLOCK_SHIFT 3 82 83 /* 84 * 3 for btree insert + 85 * 2 for btree lookup used within space map 86 */ 87 #define THIN_MAX_CONCURRENT_LOCKS 5 88 89 /* This should be plenty */ 90 #define SPACE_MAP_ROOT_SIZE 128 91 92 /* 93 * Little endian on-disk superblock and device details. 94 */ 95 struct thin_disk_superblock { 96 __le32 csum; /* Checksum of superblock except for this field. */ 97 __le32 flags; 98 __le64 blocknr; /* This block number, dm_block_t. */ 99 100 __u8 uuid[16]; 101 __le64 magic; 102 __le32 version; 103 __le32 time; 104 105 __le64 trans_id; 106 107 /* 108 * Root held by userspace transactions. 109 */ 110 __le64 held_root; 111 112 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 113 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 114 115 /* 116 * 2-level btree mapping (dev_id, (dev block, time)) -> data block 117 */ 118 __le64 data_mapping_root; 119 120 /* 121 * Device detail root mapping dev_id -> device_details 122 */ 123 __le64 device_details_root; 124 125 __le32 data_block_size; /* In 512-byte sectors. */ 126 127 __le32 metadata_block_size; /* In 512-byte sectors. */ 128 __le64 metadata_nr_blocks; 129 130 __le32 compat_flags; 131 __le32 compat_ro_flags; 132 __le32 incompat_flags; 133 } __packed; 134 135 struct disk_device_details { 136 __le64 mapped_blocks; 137 __le64 transaction_id; /* When created. */ 138 __le32 creation_time; 139 __le32 snapshotted_time; 140 } __packed; 141 142 struct dm_pool_metadata { 143 struct hlist_node hash; 144 145 struct block_device *bdev; 146 struct dm_block_manager *bm; 147 struct dm_space_map *metadata_sm; 148 struct dm_space_map *data_sm; 149 struct dm_transaction_manager *tm; 150 struct dm_transaction_manager *nb_tm; 151 152 /* 153 * Two-level btree. 154 * First level holds thin_dev_t. 155 * Second level holds mappings. 156 */ 157 struct dm_btree_info info; 158 159 /* 160 * Non-blocking version of the above. 161 */ 162 struct dm_btree_info nb_info; 163 164 /* 165 * Just the top level for deleting whole devices. 166 */ 167 struct dm_btree_info tl_info; 168 169 /* 170 * Just the bottom level for creating new devices. 171 */ 172 struct dm_btree_info bl_info; 173 174 /* 175 * Describes the device details btree. 176 */ 177 struct dm_btree_info details_info; 178 179 struct rw_semaphore root_lock; 180 uint32_t time; 181 dm_block_t root; 182 dm_block_t details_root; 183 struct list_head thin_devices; 184 uint64_t trans_id; 185 unsigned long flags; 186 sector_t data_block_size; 187 bool read_only:1; 188 189 /* 190 * Set if a transaction has to be aborted but the attempt to roll back 191 * to the previous (good) transaction failed. The only pool metadata 192 * operation possible in this state is the closing of the device. 193 */ 194 bool fail_io:1; 195 196 /* 197 * Reading the space map roots can fail, so we read it into these 198 * buffers before the superblock is locked and updated. 199 */ 200 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 201 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 202 }; 203 204 struct dm_thin_device { 205 struct list_head list; 206 struct dm_pool_metadata *pmd; 207 dm_thin_id id; 208 209 int open_count; 210 bool changed:1; 211 bool aborted_with_changes:1; 212 uint64_t mapped_blocks; 213 uint64_t transaction_id; 214 uint32_t creation_time; 215 uint32_t snapshotted_time; 216 }; 217 218 /*---------------------------------------------------------------- 219 * superblock validator 220 *--------------------------------------------------------------*/ 221 222 #define SUPERBLOCK_CSUM_XOR 160774 223 224 static void sb_prepare_for_write(struct dm_block_validator *v, 225 struct dm_block *b, 226 size_t block_size) 227 { 228 struct thin_disk_superblock *disk_super = dm_block_data(b); 229 230 disk_super->blocknr = cpu_to_le64(dm_block_location(b)); 231 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 232 block_size - sizeof(__le32), 233 SUPERBLOCK_CSUM_XOR)); 234 } 235 236 static int sb_check(struct dm_block_validator *v, 237 struct dm_block *b, 238 size_t block_size) 239 { 240 struct thin_disk_superblock *disk_super = dm_block_data(b); 241 __le32 csum_le; 242 243 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { 244 DMERR("sb_check failed: blocknr %llu: " 245 "wanted %llu", le64_to_cpu(disk_super->blocknr), 246 (unsigned long long)dm_block_location(b)); 247 return -ENOTBLK; 248 } 249 250 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) { 251 DMERR("sb_check failed: magic %llu: " 252 "wanted %llu", le64_to_cpu(disk_super->magic), 253 (unsigned long long)THIN_SUPERBLOCK_MAGIC); 254 return -EILSEQ; 255 } 256 257 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 258 block_size - sizeof(__le32), 259 SUPERBLOCK_CSUM_XOR)); 260 if (csum_le != disk_super->csum) { 261 DMERR("sb_check failed: csum %u: wanted %u", 262 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); 263 return -EILSEQ; 264 } 265 266 return 0; 267 } 268 269 static struct dm_block_validator sb_validator = { 270 .name = "superblock", 271 .prepare_for_write = sb_prepare_for_write, 272 .check = sb_check 273 }; 274 275 /*---------------------------------------------------------------- 276 * Methods for the btree value types 277 *--------------------------------------------------------------*/ 278 279 static uint64_t pack_block_time(dm_block_t b, uint32_t t) 280 { 281 return (b << 24) | t; 282 } 283 284 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) 285 { 286 *b = v >> 24; 287 *t = v & ((1 << 24) - 1); 288 } 289 290 static void data_block_inc(void *context, const void *value_le) 291 { 292 struct dm_space_map *sm = context; 293 __le64 v_le; 294 uint64_t b; 295 uint32_t t; 296 297 memcpy(&v_le, value_le, sizeof(v_le)); 298 unpack_block_time(le64_to_cpu(v_le), &b, &t); 299 dm_sm_inc_block(sm, b); 300 } 301 302 static void data_block_dec(void *context, const void *value_le) 303 { 304 struct dm_space_map *sm = context; 305 __le64 v_le; 306 uint64_t b; 307 uint32_t t; 308 309 memcpy(&v_le, value_le, sizeof(v_le)); 310 unpack_block_time(le64_to_cpu(v_le), &b, &t); 311 dm_sm_dec_block(sm, b); 312 } 313 314 static int data_block_equal(void *context, const void *value1_le, const void *value2_le) 315 { 316 __le64 v1_le, v2_le; 317 uint64_t b1, b2; 318 uint32_t t; 319 320 memcpy(&v1_le, value1_le, sizeof(v1_le)); 321 memcpy(&v2_le, value2_le, sizeof(v2_le)); 322 unpack_block_time(le64_to_cpu(v1_le), &b1, &t); 323 unpack_block_time(le64_to_cpu(v2_le), &b2, &t); 324 325 return b1 == b2; 326 } 327 328 static void subtree_inc(void *context, const void *value) 329 { 330 struct dm_btree_info *info = context; 331 __le64 root_le; 332 uint64_t root; 333 334 memcpy(&root_le, value, sizeof(root_le)); 335 root = le64_to_cpu(root_le); 336 dm_tm_inc(info->tm, root); 337 } 338 339 static void subtree_dec(void *context, const void *value) 340 { 341 struct dm_btree_info *info = context; 342 __le64 root_le; 343 uint64_t root; 344 345 memcpy(&root_le, value, sizeof(root_le)); 346 root = le64_to_cpu(root_le); 347 if (dm_btree_del(info, root)) 348 DMERR("btree delete failed\n"); 349 } 350 351 static int subtree_equal(void *context, const void *value1_le, const void *value2_le) 352 { 353 __le64 v1_le, v2_le; 354 memcpy(&v1_le, value1_le, sizeof(v1_le)); 355 memcpy(&v2_le, value2_le, sizeof(v2_le)); 356 357 return v1_le == v2_le; 358 } 359 360 /*----------------------------------------------------------------*/ 361 362 static int superblock_lock_zero(struct dm_pool_metadata *pmd, 363 struct dm_block **sblock) 364 { 365 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION, 366 &sb_validator, sblock); 367 } 368 369 static int superblock_lock(struct dm_pool_metadata *pmd, 370 struct dm_block **sblock) 371 { 372 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 373 &sb_validator, sblock); 374 } 375 376 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) 377 { 378 int r; 379 unsigned i; 380 struct dm_block *b; 381 __le64 *data_le, zero = cpu_to_le64(0); 382 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); 383 384 /* 385 * We can't use a validator here - it may be all zeroes. 386 */ 387 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b); 388 if (r) 389 return r; 390 391 data_le = dm_block_data(b); 392 *result = 1; 393 for (i = 0; i < block_size; i++) { 394 if (data_le[i] != zero) { 395 *result = 0; 396 break; 397 } 398 } 399 400 return dm_bm_unlock(b); 401 } 402 403 static void __setup_btree_details(struct dm_pool_metadata *pmd) 404 { 405 pmd->info.tm = pmd->tm; 406 pmd->info.levels = 2; 407 pmd->info.value_type.context = pmd->data_sm; 408 pmd->info.value_type.size = sizeof(__le64); 409 pmd->info.value_type.inc = data_block_inc; 410 pmd->info.value_type.dec = data_block_dec; 411 pmd->info.value_type.equal = data_block_equal; 412 413 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info)); 414 pmd->nb_info.tm = pmd->nb_tm; 415 416 pmd->tl_info.tm = pmd->tm; 417 pmd->tl_info.levels = 1; 418 pmd->tl_info.value_type.context = &pmd->bl_info; 419 pmd->tl_info.value_type.size = sizeof(__le64); 420 pmd->tl_info.value_type.inc = subtree_inc; 421 pmd->tl_info.value_type.dec = subtree_dec; 422 pmd->tl_info.value_type.equal = subtree_equal; 423 424 pmd->bl_info.tm = pmd->tm; 425 pmd->bl_info.levels = 1; 426 pmd->bl_info.value_type.context = pmd->data_sm; 427 pmd->bl_info.value_type.size = sizeof(__le64); 428 pmd->bl_info.value_type.inc = data_block_inc; 429 pmd->bl_info.value_type.dec = data_block_dec; 430 pmd->bl_info.value_type.equal = data_block_equal; 431 432 pmd->details_info.tm = pmd->tm; 433 pmd->details_info.levels = 1; 434 pmd->details_info.value_type.context = NULL; 435 pmd->details_info.value_type.size = sizeof(struct disk_device_details); 436 pmd->details_info.value_type.inc = NULL; 437 pmd->details_info.value_type.dec = NULL; 438 pmd->details_info.value_type.equal = NULL; 439 } 440 441 static int save_sm_roots(struct dm_pool_metadata *pmd) 442 { 443 int r; 444 size_t len; 445 446 r = dm_sm_root_size(pmd->metadata_sm, &len); 447 if (r < 0) 448 return r; 449 450 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); 451 if (r < 0) 452 return r; 453 454 r = dm_sm_root_size(pmd->data_sm, &len); 455 if (r < 0) 456 return r; 457 458 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); 459 } 460 461 static void copy_sm_roots(struct dm_pool_metadata *pmd, 462 struct thin_disk_superblock *disk) 463 { 464 memcpy(&disk->metadata_space_map_root, 465 &pmd->metadata_space_map_root, 466 sizeof(pmd->metadata_space_map_root)); 467 468 memcpy(&disk->data_space_map_root, 469 &pmd->data_space_map_root, 470 sizeof(pmd->data_space_map_root)); 471 } 472 473 static int __write_initial_superblock(struct dm_pool_metadata *pmd) 474 { 475 int r; 476 struct dm_block *sblock; 477 struct thin_disk_superblock *disk_super; 478 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT; 479 480 if (bdev_size > THIN_METADATA_MAX_SECTORS) 481 bdev_size = THIN_METADATA_MAX_SECTORS; 482 483 r = dm_sm_commit(pmd->data_sm); 484 if (r < 0) 485 return r; 486 487 r = save_sm_roots(pmd); 488 if (r < 0) 489 return r; 490 491 r = dm_tm_pre_commit(pmd->tm); 492 if (r < 0) 493 return r; 494 495 r = superblock_lock_zero(pmd, &sblock); 496 if (r) 497 return r; 498 499 disk_super = dm_block_data(sblock); 500 disk_super->flags = 0; 501 memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); 502 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC); 503 disk_super->version = cpu_to_le32(THIN_VERSION); 504 disk_super->time = 0; 505 disk_super->trans_id = 0; 506 disk_super->held_root = 0; 507 508 copy_sm_roots(pmd, disk_super); 509 510 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 511 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 512 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); 513 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); 514 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); 515 516 return dm_tm_commit(pmd->tm, sblock); 517 } 518 519 static int __format_metadata(struct dm_pool_metadata *pmd) 520 { 521 int r; 522 523 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 524 &pmd->tm, &pmd->metadata_sm); 525 if (r < 0) { 526 DMERR("tm_create_with_sm failed"); 527 return r; 528 } 529 530 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0); 531 if (IS_ERR(pmd->data_sm)) { 532 DMERR("sm_disk_create failed"); 533 r = PTR_ERR(pmd->data_sm); 534 goto bad_cleanup_tm; 535 } 536 537 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 538 if (!pmd->nb_tm) { 539 DMERR("could not create non-blocking clone tm"); 540 r = -ENOMEM; 541 goto bad_cleanup_data_sm; 542 } 543 544 __setup_btree_details(pmd); 545 546 r = dm_btree_empty(&pmd->info, &pmd->root); 547 if (r < 0) 548 goto bad_cleanup_nb_tm; 549 550 r = dm_btree_empty(&pmd->details_info, &pmd->details_root); 551 if (r < 0) { 552 DMERR("couldn't create devices root"); 553 goto bad_cleanup_nb_tm; 554 } 555 556 r = __write_initial_superblock(pmd); 557 if (r) 558 goto bad_cleanup_nb_tm; 559 560 return 0; 561 562 bad_cleanup_nb_tm: 563 dm_tm_destroy(pmd->nb_tm); 564 bad_cleanup_data_sm: 565 dm_sm_destroy(pmd->data_sm); 566 bad_cleanup_tm: 567 dm_tm_destroy(pmd->tm); 568 dm_sm_destroy(pmd->metadata_sm); 569 570 return r; 571 } 572 573 static int __check_incompat_features(struct thin_disk_superblock *disk_super, 574 struct dm_pool_metadata *pmd) 575 { 576 uint32_t features; 577 578 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP; 579 if (features) { 580 DMERR("could not access metadata due to unsupported optional features (%lx).", 581 (unsigned long)features); 582 return -EINVAL; 583 } 584 585 /* 586 * Check for read-only metadata to skip the following RDWR checks. 587 */ 588 if (get_disk_ro(pmd->bdev->bd_disk)) 589 return 0; 590 591 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP; 592 if (features) { 593 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", 594 (unsigned long)features); 595 return -EINVAL; 596 } 597 598 return 0; 599 } 600 601 static int __open_metadata(struct dm_pool_metadata *pmd) 602 { 603 int r; 604 struct dm_block *sblock; 605 struct thin_disk_superblock *disk_super; 606 607 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 608 &sb_validator, &sblock); 609 if (r < 0) { 610 DMERR("couldn't read superblock"); 611 return r; 612 } 613 614 disk_super = dm_block_data(sblock); 615 616 r = __check_incompat_features(disk_super, pmd); 617 if (r < 0) 618 goto bad_unlock_sblock; 619 620 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 621 disk_super->metadata_space_map_root, 622 sizeof(disk_super->metadata_space_map_root), 623 &pmd->tm, &pmd->metadata_sm); 624 if (r < 0) { 625 DMERR("tm_open_with_sm failed"); 626 goto bad_unlock_sblock; 627 } 628 629 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root, 630 sizeof(disk_super->data_space_map_root)); 631 if (IS_ERR(pmd->data_sm)) { 632 DMERR("sm_disk_open failed"); 633 r = PTR_ERR(pmd->data_sm); 634 goto bad_cleanup_tm; 635 } 636 637 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 638 if (!pmd->nb_tm) { 639 DMERR("could not create non-blocking clone tm"); 640 r = -ENOMEM; 641 goto bad_cleanup_data_sm; 642 } 643 644 __setup_btree_details(pmd); 645 return dm_bm_unlock(sblock); 646 647 bad_cleanup_data_sm: 648 dm_sm_destroy(pmd->data_sm); 649 bad_cleanup_tm: 650 dm_tm_destroy(pmd->tm); 651 dm_sm_destroy(pmd->metadata_sm); 652 bad_unlock_sblock: 653 dm_bm_unlock(sblock); 654 655 return r; 656 } 657 658 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device) 659 { 660 int r, unformatted; 661 662 r = __superblock_all_zeroes(pmd->bm, &unformatted); 663 if (r) 664 return r; 665 666 if (unformatted) 667 return format_device ? __format_metadata(pmd) : -EPERM; 668 669 return __open_metadata(pmd); 670 } 671 672 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device) 673 { 674 int r; 675 676 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, 677 THIN_METADATA_CACHE_SIZE, 678 THIN_MAX_CONCURRENT_LOCKS); 679 if (IS_ERR(pmd->bm)) { 680 DMERR("could not create block manager"); 681 return PTR_ERR(pmd->bm); 682 } 683 684 r = __open_or_format_metadata(pmd, format_device); 685 if (r) 686 dm_block_manager_destroy(pmd->bm); 687 688 return r; 689 } 690 691 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd) 692 { 693 dm_sm_destroy(pmd->data_sm); 694 dm_sm_destroy(pmd->metadata_sm); 695 dm_tm_destroy(pmd->nb_tm); 696 dm_tm_destroy(pmd->tm); 697 dm_block_manager_destroy(pmd->bm); 698 } 699 700 static int __begin_transaction(struct dm_pool_metadata *pmd) 701 { 702 int r; 703 struct thin_disk_superblock *disk_super; 704 struct dm_block *sblock; 705 706 /* 707 * We re-read the superblock every time. Shouldn't need to do this 708 * really. 709 */ 710 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 711 &sb_validator, &sblock); 712 if (r) 713 return r; 714 715 disk_super = dm_block_data(sblock); 716 pmd->time = le32_to_cpu(disk_super->time); 717 pmd->root = le64_to_cpu(disk_super->data_mapping_root); 718 pmd->details_root = le64_to_cpu(disk_super->device_details_root); 719 pmd->trans_id = le64_to_cpu(disk_super->trans_id); 720 pmd->flags = le32_to_cpu(disk_super->flags); 721 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size); 722 723 dm_bm_unlock(sblock); 724 return 0; 725 } 726 727 static int __write_changed_details(struct dm_pool_metadata *pmd) 728 { 729 int r; 730 struct dm_thin_device *td, *tmp; 731 struct disk_device_details details; 732 uint64_t key; 733 734 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 735 if (!td->changed) 736 continue; 737 738 key = td->id; 739 740 details.mapped_blocks = cpu_to_le64(td->mapped_blocks); 741 details.transaction_id = cpu_to_le64(td->transaction_id); 742 details.creation_time = cpu_to_le32(td->creation_time); 743 details.snapshotted_time = cpu_to_le32(td->snapshotted_time); 744 __dm_bless_for_disk(&details); 745 746 r = dm_btree_insert(&pmd->details_info, pmd->details_root, 747 &key, &details, &pmd->details_root); 748 if (r) 749 return r; 750 751 if (td->open_count) 752 td->changed = 0; 753 else { 754 list_del(&td->list); 755 kfree(td); 756 } 757 } 758 759 return 0; 760 } 761 762 static int __commit_transaction(struct dm_pool_metadata *pmd) 763 { 764 int r; 765 size_t metadata_len, data_len; 766 struct thin_disk_superblock *disk_super; 767 struct dm_block *sblock; 768 769 /* 770 * We need to know if the thin_disk_superblock exceeds a 512-byte sector. 771 */ 772 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512); 773 774 r = __write_changed_details(pmd); 775 if (r < 0) 776 return r; 777 778 r = dm_sm_commit(pmd->data_sm); 779 if (r < 0) 780 return r; 781 782 r = dm_tm_pre_commit(pmd->tm); 783 if (r < 0) 784 return r; 785 786 r = dm_sm_root_size(pmd->metadata_sm, &metadata_len); 787 if (r < 0) 788 return r; 789 790 r = dm_sm_root_size(pmd->data_sm, &data_len); 791 if (r < 0) 792 return r; 793 794 r = save_sm_roots(pmd); 795 if (r < 0) 796 return r; 797 798 r = superblock_lock(pmd, &sblock); 799 if (r) 800 return r; 801 802 disk_super = dm_block_data(sblock); 803 disk_super->time = cpu_to_le32(pmd->time); 804 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 805 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 806 disk_super->trans_id = cpu_to_le64(pmd->trans_id); 807 disk_super->flags = cpu_to_le32(pmd->flags); 808 809 copy_sm_roots(pmd, disk_super); 810 811 return dm_tm_commit(pmd->tm, sblock); 812 } 813 814 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, 815 sector_t data_block_size, 816 bool format_device) 817 { 818 int r; 819 struct dm_pool_metadata *pmd; 820 821 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL); 822 if (!pmd) { 823 DMERR("could not allocate metadata struct"); 824 return ERR_PTR(-ENOMEM); 825 } 826 827 init_rwsem(&pmd->root_lock); 828 pmd->time = 0; 829 INIT_LIST_HEAD(&pmd->thin_devices); 830 pmd->read_only = false; 831 pmd->fail_io = false; 832 pmd->bdev = bdev; 833 pmd->data_block_size = data_block_size; 834 835 r = __create_persistent_data_objects(pmd, format_device); 836 if (r) { 837 kfree(pmd); 838 return ERR_PTR(r); 839 } 840 841 r = __begin_transaction(pmd); 842 if (r < 0) { 843 if (dm_pool_metadata_close(pmd) < 0) 844 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 845 return ERR_PTR(r); 846 } 847 848 return pmd; 849 } 850 851 int dm_pool_metadata_close(struct dm_pool_metadata *pmd) 852 { 853 int r; 854 unsigned open_devices = 0; 855 struct dm_thin_device *td, *tmp; 856 857 down_read(&pmd->root_lock); 858 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 859 if (td->open_count) 860 open_devices++; 861 else { 862 list_del(&td->list); 863 kfree(td); 864 } 865 } 866 up_read(&pmd->root_lock); 867 868 if (open_devices) { 869 DMERR("attempt to close pmd when %u device(s) are still open", 870 open_devices); 871 return -EBUSY; 872 } 873 874 if (!pmd->read_only && !pmd->fail_io) { 875 r = __commit_transaction(pmd); 876 if (r < 0) 877 DMWARN("%s: __commit_transaction() failed, error = %d", 878 __func__, r); 879 } 880 881 if (!pmd->fail_io) 882 __destroy_persistent_data_objects(pmd); 883 884 kfree(pmd); 885 return 0; 886 } 887 888 /* 889 * __open_device: Returns @td corresponding to device with id @dev, 890 * creating it if @create is set and incrementing @td->open_count. 891 * On failure, @td is undefined. 892 */ 893 static int __open_device(struct dm_pool_metadata *pmd, 894 dm_thin_id dev, int create, 895 struct dm_thin_device **td) 896 { 897 int r, changed = 0; 898 struct dm_thin_device *td2; 899 uint64_t key = dev; 900 struct disk_device_details details_le; 901 902 /* 903 * If the device is already open, return it. 904 */ 905 list_for_each_entry(td2, &pmd->thin_devices, list) 906 if (td2->id == dev) { 907 /* 908 * May not create an already-open device. 909 */ 910 if (create) 911 return -EEXIST; 912 913 td2->open_count++; 914 *td = td2; 915 return 0; 916 } 917 918 /* 919 * Check the device exists. 920 */ 921 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 922 &key, &details_le); 923 if (r) { 924 if (r != -ENODATA || !create) 925 return r; 926 927 /* 928 * Create new device. 929 */ 930 changed = 1; 931 details_le.mapped_blocks = 0; 932 details_le.transaction_id = cpu_to_le64(pmd->trans_id); 933 details_le.creation_time = cpu_to_le32(pmd->time); 934 details_le.snapshotted_time = cpu_to_le32(pmd->time); 935 } 936 937 *td = kmalloc(sizeof(**td), GFP_NOIO); 938 if (!*td) 939 return -ENOMEM; 940 941 (*td)->pmd = pmd; 942 (*td)->id = dev; 943 (*td)->open_count = 1; 944 (*td)->changed = changed; 945 (*td)->aborted_with_changes = false; 946 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks); 947 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id); 948 (*td)->creation_time = le32_to_cpu(details_le.creation_time); 949 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time); 950 951 list_add(&(*td)->list, &pmd->thin_devices); 952 953 return 0; 954 } 955 956 static void __close_device(struct dm_thin_device *td) 957 { 958 --td->open_count; 959 } 960 961 static int __create_thin(struct dm_pool_metadata *pmd, 962 dm_thin_id dev) 963 { 964 int r; 965 dm_block_t dev_root; 966 uint64_t key = dev; 967 struct disk_device_details details_le; 968 struct dm_thin_device *td; 969 __le64 value; 970 971 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 972 &key, &details_le); 973 if (!r) 974 return -EEXIST; 975 976 /* 977 * Create an empty btree for the mappings. 978 */ 979 r = dm_btree_empty(&pmd->bl_info, &dev_root); 980 if (r) 981 return r; 982 983 /* 984 * Insert it into the main mapping tree. 985 */ 986 value = cpu_to_le64(dev_root); 987 __dm_bless_for_disk(&value); 988 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 989 if (r) { 990 dm_btree_del(&pmd->bl_info, dev_root); 991 return r; 992 } 993 994 r = __open_device(pmd, dev, 1, &td); 995 if (r) { 996 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 997 dm_btree_del(&pmd->bl_info, dev_root); 998 return r; 999 } 1000 __close_device(td); 1001 1002 return r; 1003 } 1004 1005 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) 1006 { 1007 int r = -EINVAL; 1008 1009 down_write(&pmd->root_lock); 1010 if (!pmd->fail_io) 1011 r = __create_thin(pmd, dev); 1012 up_write(&pmd->root_lock); 1013 1014 return r; 1015 } 1016 1017 static int __set_snapshot_details(struct dm_pool_metadata *pmd, 1018 struct dm_thin_device *snap, 1019 dm_thin_id origin, uint32_t time) 1020 { 1021 int r; 1022 struct dm_thin_device *td; 1023 1024 r = __open_device(pmd, origin, 0, &td); 1025 if (r) 1026 return r; 1027 1028 td->changed = 1; 1029 td->snapshotted_time = time; 1030 1031 snap->mapped_blocks = td->mapped_blocks; 1032 snap->snapshotted_time = time; 1033 __close_device(td); 1034 1035 return 0; 1036 } 1037 1038 static int __create_snap(struct dm_pool_metadata *pmd, 1039 dm_thin_id dev, dm_thin_id origin) 1040 { 1041 int r; 1042 dm_block_t origin_root; 1043 uint64_t key = origin, dev_key = dev; 1044 struct dm_thin_device *td; 1045 struct disk_device_details details_le; 1046 __le64 value; 1047 1048 /* check this device is unused */ 1049 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1050 &dev_key, &details_le); 1051 if (!r) 1052 return -EEXIST; 1053 1054 /* find the mapping tree for the origin */ 1055 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value); 1056 if (r) 1057 return r; 1058 origin_root = le64_to_cpu(value); 1059 1060 /* clone the origin, an inc will do */ 1061 dm_tm_inc(pmd->tm, origin_root); 1062 1063 /* insert into the main mapping tree */ 1064 value = cpu_to_le64(origin_root); 1065 __dm_bless_for_disk(&value); 1066 key = dev; 1067 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1068 if (r) { 1069 dm_tm_dec(pmd->tm, origin_root); 1070 return r; 1071 } 1072 1073 pmd->time++; 1074 1075 r = __open_device(pmd, dev, 1, &td); 1076 if (r) 1077 goto bad; 1078 1079 r = __set_snapshot_details(pmd, td, origin, pmd->time); 1080 __close_device(td); 1081 1082 if (r) 1083 goto bad; 1084 1085 return 0; 1086 1087 bad: 1088 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1089 dm_btree_remove(&pmd->details_info, pmd->details_root, 1090 &key, &pmd->details_root); 1091 return r; 1092 } 1093 1094 int dm_pool_create_snap(struct dm_pool_metadata *pmd, 1095 dm_thin_id dev, 1096 dm_thin_id origin) 1097 { 1098 int r = -EINVAL; 1099 1100 down_write(&pmd->root_lock); 1101 if (!pmd->fail_io) 1102 r = __create_snap(pmd, dev, origin); 1103 up_write(&pmd->root_lock); 1104 1105 return r; 1106 } 1107 1108 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev) 1109 { 1110 int r; 1111 uint64_t key = dev; 1112 struct dm_thin_device *td; 1113 1114 /* TODO: failure should mark the transaction invalid */ 1115 r = __open_device(pmd, dev, 0, &td); 1116 if (r) 1117 return r; 1118 1119 if (td->open_count > 1) { 1120 __close_device(td); 1121 return -EBUSY; 1122 } 1123 1124 list_del(&td->list); 1125 kfree(td); 1126 r = dm_btree_remove(&pmd->details_info, pmd->details_root, 1127 &key, &pmd->details_root); 1128 if (r) 1129 return r; 1130 1131 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1132 if (r) 1133 return r; 1134 1135 return 0; 1136 } 1137 1138 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd, 1139 dm_thin_id dev) 1140 { 1141 int r = -EINVAL; 1142 1143 down_write(&pmd->root_lock); 1144 if (!pmd->fail_io) 1145 r = __delete_device(pmd, dev); 1146 up_write(&pmd->root_lock); 1147 1148 return r; 1149 } 1150 1151 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd, 1152 uint64_t current_id, 1153 uint64_t new_id) 1154 { 1155 int r = -EINVAL; 1156 1157 down_write(&pmd->root_lock); 1158 1159 if (pmd->fail_io) 1160 goto out; 1161 1162 if (pmd->trans_id != current_id) { 1163 DMERR("mismatched transaction id"); 1164 goto out; 1165 } 1166 1167 pmd->trans_id = new_id; 1168 r = 0; 1169 1170 out: 1171 up_write(&pmd->root_lock); 1172 1173 return r; 1174 } 1175 1176 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd, 1177 uint64_t *result) 1178 { 1179 int r = -EINVAL; 1180 1181 down_read(&pmd->root_lock); 1182 if (!pmd->fail_io) { 1183 *result = pmd->trans_id; 1184 r = 0; 1185 } 1186 up_read(&pmd->root_lock); 1187 1188 return r; 1189 } 1190 1191 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd) 1192 { 1193 int r, inc; 1194 struct thin_disk_superblock *disk_super; 1195 struct dm_block *copy, *sblock; 1196 dm_block_t held_root; 1197 1198 /* 1199 * Copy the superblock. 1200 */ 1201 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION); 1202 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION, 1203 &sb_validator, ©, &inc); 1204 if (r) 1205 return r; 1206 1207 BUG_ON(!inc); 1208 1209 held_root = dm_block_location(copy); 1210 disk_super = dm_block_data(copy); 1211 1212 if (le64_to_cpu(disk_super->held_root)) { 1213 DMWARN("Pool metadata snapshot already exists: release this before taking another."); 1214 1215 dm_tm_dec(pmd->tm, held_root); 1216 dm_tm_unlock(pmd->tm, copy); 1217 return -EBUSY; 1218 } 1219 1220 /* 1221 * Wipe the spacemap since we're not publishing this. 1222 */ 1223 memset(&disk_super->data_space_map_root, 0, 1224 sizeof(disk_super->data_space_map_root)); 1225 memset(&disk_super->metadata_space_map_root, 0, 1226 sizeof(disk_super->metadata_space_map_root)); 1227 1228 /* 1229 * Increment the data structures that need to be preserved. 1230 */ 1231 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root)); 1232 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root)); 1233 dm_tm_unlock(pmd->tm, copy); 1234 1235 /* 1236 * Write the held root into the superblock. 1237 */ 1238 r = superblock_lock(pmd, &sblock); 1239 if (r) { 1240 dm_tm_dec(pmd->tm, held_root); 1241 return r; 1242 } 1243 1244 disk_super = dm_block_data(sblock); 1245 disk_super->held_root = cpu_to_le64(held_root); 1246 dm_bm_unlock(sblock); 1247 return 0; 1248 } 1249 1250 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd) 1251 { 1252 int r = -EINVAL; 1253 1254 down_write(&pmd->root_lock); 1255 if (!pmd->fail_io) 1256 r = __reserve_metadata_snap(pmd); 1257 up_write(&pmd->root_lock); 1258 1259 return r; 1260 } 1261 1262 static int __release_metadata_snap(struct dm_pool_metadata *pmd) 1263 { 1264 int r; 1265 struct thin_disk_superblock *disk_super; 1266 struct dm_block *sblock, *copy; 1267 dm_block_t held_root; 1268 1269 r = superblock_lock(pmd, &sblock); 1270 if (r) 1271 return r; 1272 1273 disk_super = dm_block_data(sblock); 1274 held_root = le64_to_cpu(disk_super->held_root); 1275 disk_super->held_root = cpu_to_le64(0); 1276 1277 dm_bm_unlock(sblock); 1278 1279 if (!held_root) { 1280 DMWARN("No pool metadata snapshot found: nothing to release."); 1281 return -EINVAL; 1282 } 1283 1284 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©); 1285 if (r) 1286 return r; 1287 1288 disk_super = dm_block_data(copy); 1289 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root)); 1290 dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root)); 1291 dm_sm_dec_block(pmd->metadata_sm, held_root); 1292 1293 return dm_tm_unlock(pmd->tm, copy); 1294 } 1295 1296 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd) 1297 { 1298 int r = -EINVAL; 1299 1300 down_write(&pmd->root_lock); 1301 if (!pmd->fail_io) 1302 r = __release_metadata_snap(pmd); 1303 up_write(&pmd->root_lock); 1304 1305 return r; 1306 } 1307 1308 static int __get_metadata_snap(struct dm_pool_metadata *pmd, 1309 dm_block_t *result) 1310 { 1311 int r; 1312 struct thin_disk_superblock *disk_super; 1313 struct dm_block *sblock; 1314 1315 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 1316 &sb_validator, &sblock); 1317 if (r) 1318 return r; 1319 1320 disk_super = dm_block_data(sblock); 1321 *result = le64_to_cpu(disk_super->held_root); 1322 1323 return dm_bm_unlock(sblock); 1324 } 1325 1326 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd, 1327 dm_block_t *result) 1328 { 1329 int r = -EINVAL; 1330 1331 down_read(&pmd->root_lock); 1332 if (!pmd->fail_io) 1333 r = __get_metadata_snap(pmd, result); 1334 up_read(&pmd->root_lock); 1335 1336 return r; 1337 } 1338 1339 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev, 1340 struct dm_thin_device **td) 1341 { 1342 int r = -EINVAL; 1343 1344 down_write(&pmd->root_lock); 1345 if (!pmd->fail_io) 1346 r = __open_device(pmd, dev, 0, td); 1347 up_write(&pmd->root_lock); 1348 1349 return r; 1350 } 1351 1352 int dm_pool_close_thin_device(struct dm_thin_device *td) 1353 { 1354 down_write(&td->pmd->root_lock); 1355 __close_device(td); 1356 up_write(&td->pmd->root_lock); 1357 1358 return 0; 1359 } 1360 1361 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) 1362 { 1363 return td->id; 1364 } 1365 1366 /* 1367 * Check whether @time (of block creation) is older than @td's last snapshot. 1368 * If so then the associated block is shared with the last snapshot device. 1369 * Any block on a device created *after* the device last got snapshotted is 1370 * necessarily not shared. 1371 */ 1372 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) 1373 { 1374 return td->snapshotted_time > time; 1375 } 1376 1377 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block, 1378 int can_block, struct dm_thin_lookup_result *result) 1379 { 1380 int r = -EINVAL; 1381 uint64_t block_time = 0; 1382 __le64 value; 1383 struct dm_pool_metadata *pmd = td->pmd; 1384 dm_block_t keys[2] = { td->id, block }; 1385 struct dm_btree_info *info; 1386 1387 if (can_block) { 1388 down_read(&pmd->root_lock); 1389 info = &pmd->info; 1390 } else if (down_read_trylock(&pmd->root_lock)) 1391 info = &pmd->nb_info; 1392 else 1393 return -EWOULDBLOCK; 1394 1395 if (pmd->fail_io) 1396 goto out; 1397 1398 r = dm_btree_lookup(info, pmd->root, keys, &value); 1399 if (!r) 1400 block_time = le64_to_cpu(value); 1401 1402 out: 1403 up_read(&pmd->root_lock); 1404 1405 if (!r) { 1406 dm_block_t exception_block; 1407 uint32_t exception_time; 1408 unpack_block_time(block_time, &exception_block, 1409 &exception_time); 1410 result->block = exception_block; 1411 result->shared = __snapshotted_since(td, exception_time); 1412 } 1413 1414 return r; 1415 } 1416 1417 static int __insert(struct dm_thin_device *td, dm_block_t block, 1418 dm_block_t data_block) 1419 { 1420 int r, inserted; 1421 __le64 value; 1422 struct dm_pool_metadata *pmd = td->pmd; 1423 dm_block_t keys[2] = { td->id, block }; 1424 1425 value = cpu_to_le64(pack_block_time(data_block, pmd->time)); 1426 __dm_bless_for_disk(&value); 1427 1428 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value, 1429 &pmd->root, &inserted); 1430 if (r) 1431 return r; 1432 1433 td->changed = 1; 1434 if (inserted) 1435 td->mapped_blocks++; 1436 1437 return 0; 1438 } 1439 1440 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block, 1441 dm_block_t data_block) 1442 { 1443 int r = -EINVAL; 1444 1445 down_write(&td->pmd->root_lock); 1446 if (!td->pmd->fail_io) 1447 r = __insert(td, block, data_block); 1448 up_write(&td->pmd->root_lock); 1449 1450 return r; 1451 } 1452 1453 static int __remove(struct dm_thin_device *td, dm_block_t block) 1454 { 1455 int r; 1456 struct dm_pool_metadata *pmd = td->pmd; 1457 dm_block_t keys[2] = { td->id, block }; 1458 1459 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root); 1460 if (r) 1461 return r; 1462 1463 td->mapped_blocks--; 1464 td->changed = 1; 1465 1466 return 0; 1467 } 1468 1469 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block) 1470 { 1471 int r = -EINVAL; 1472 1473 down_write(&td->pmd->root_lock); 1474 if (!td->pmd->fail_io) 1475 r = __remove(td, block); 1476 up_write(&td->pmd->root_lock); 1477 1478 return r; 1479 } 1480 1481 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) 1482 { 1483 int r; 1484 uint32_t ref_count; 1485 1486 down_read(&pmd->root_lock); 1487 r = dm_sm_get_count(pmd->data_sm, b, &ref_count); 1488 if (!r) 1489 *result = (ref_count != 0); 1490 up_read(&pmd->root_lock); 1491 1492 return r; 1493 } 1494 1495 bool dm_thin_changed_this_transaction(struct dm_thin_device *td) 1496 { 1497 int r; 1498 1499 down_read(&td->pmd->root_lock); 1500 r = td->changed; 1501 up_read(&td->pmd->root_lock); 1502 1503 return r; 1504 } 1505 1506 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) 1507 { 1508 bool r = false; 1509 struct dm_thin_device *td, *tmp; 1510 1511 down_read(&pmd->root_lock); 1512 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 1513 if (td->changed) { 1514 r = td->changed; 1515 break; 1516 } 1517 } 1518 up_read(&pmd->root_lock); 1519 1520 return r; 1521 } 1522 1523 bool dm_thin_aborted_changes(struct dm_thin_device *td) 1524 { 1525 bool r; 1526 1527 down_read(&td->pmd->root_lock); 1528 r = td->aborted_with_changes; 1529 up_read(&td->pmd->root_lock); 1530 1531 return r; 1532 } 1533 1534 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result) 1535 { 1536 int r = -EINVAL; 1537 1538 down_write(&pmd->root_lock); 1539 if (!pmd->fail_io) 1540 r = dm_sm_new_block(pmd->data_sm, result); 1541 up_write(&pmd->root_lock); 1542 1543 return r; 1544 } 1545 1546 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd) 1547 { 1548 int r = -EINVAL; 1549 1550 down_write(&pmd->root_lock); 1551 if (pmd->fail_io) 1552 goto out; 1553 1554 r = __commit_transaction(pmd); 1555 if (r <= 0) 1556 goto out; 1557 1558 /* 1559 * Open the next transaction. 1560 */ 1561 r = __begin_transaction(pmd); 1562 out: 1563 up_write(&pmd->root_lock); 1564 return r; 1565 } 1566 1567 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd) 1568 { 1569 struct dm_thin_device *td; 1570 1571 list_for_each_entry(td, &pmd->thin_devices, list) 1572 td->aborted_with_changes = td->changed; 1573 } 1574 1575 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd) 1576 { 1577 int r = -EINVAL; 1578 1579 down_write(&pmd->root_lock); 1580 if (pmd->fail_io) 1581 goto out; 1582 1583 __set_abort_with_changes_flags(pmd); 1584 __destroy_persistent_data_objects(pmd); 1585 r = __create_persistent_data_objects(pmd, false); 1586 if (r) 1587 pmd->fail_io = true; 1588 1589 out: 1590 up_write(&pmd->root_lock); 1591 1592 return r; 1593 } 1594 1595 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) 1596 { 1597 int r = -EINVAL; 1598 1599 down_read(&pmd->root_lock); 1600 if (!pmd->fail_io) 1601 r = dm_sm_get_nr_free(pmd->data_sm, result); 1602 up_read(&pmd->root_lock); 1603 1604 return r; 1605 } 1606 1607 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd, 1608 dm_block_t *result) 1609 { 1610 int r = -EINVAL; 1611 1612 down_read(&pmd->root_lock); 1613 if (!pmd->fail_io) 1614 r = dm_sm_get_nr_free(pmd->metadata_sm, result); 1615 up_read(&pmd->root_lock); 1616 1617 return r; 1618 } 1619 1620 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd, 1621 dm_block_t *result) 1622 { 1623 int r = -EINVAL; 1624 1625 down_read(&pmd->root_lock); 1626 if (!pmd->fail_io) 1627 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); 1628 up_read(&pmd->root_lock); 1629 1630 return r; 1631 } 1632 1633 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result) 1634 { 1635 down_read(&pmd->root_lock); 1636 *result = pmd->data_block_size; 1637 up_read(&pmd->root_lock); 1638 1639 return 0; 1640 } 1641 1642 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) 1643 { 1644 int r = -EINVAL; 1645 1646 down_read(&pmd->root_lock); 1647 if (!pmd->fail_io) 1648 r = dm_sm_get_nr_blocks(pmd->data_sm, result); 1649 up_read(&pmd->root_lock); 1650 1651 return r; 1652 } 1653 1654 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result) 1655 { 1656 int r = -EINVAL; 1657 struct dm_pool_metadata *pmd = td->pmd; 1658 1659 down_read(&pmd->root_lock); 1660 if (!pmd->fail_io) { 1661 *result = td->mapped_blocks; 1662 r = 0; 1663 } 1664 up_read(&pmd->root_lock); 1665 1666 return r; 1667 } 1668 1669 static int __highest_block(struct dm_thin_device *td, dm_block_t *result) 1670 { 1671 int r; 1672 __le64 value_le; 1673 dm_block_t thin_root; 1674 struct dm_pool_metadata *pmd = td->pmd; 1675 1676 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le); 1677 if (r) 1678 return r; 1679 1680 thin_root = le64_to_cpu(value_le); 1681 1682 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result); 1683 } 1684 1685 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, 1686 dm_block_t *result) 1687 { 1688 int r = -EINVAL; 1689 struct dm_pool_metadata *pmd = td->pmd; 1690 1691 down_read(&pmd->root_lock); 1692 if (!pmd->fail_io) 1693 r = __highest_block(td, result); 1694 up_read(&pmd->root_lock); 1695 1696 return r; 1697 } 1698 1699 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) 1700 { 1701 int r; 1702 dm_block_t old_count; 1703 1704 r = dm_sm_get_nr_blocks(sm, &old_count); 1705 if (r) 1706 return r; 1707 1708 if (new_count == old_count) 1709 return 0; 1710 1711 if (new_count < old_count) { 1712 DMERR("cannot reduce size of space map"); 1713 return -EINVAL; 1714 } 1715 1716 return dm_sm_extend(sm, new_count - old_count); 1717 } 1718 1719 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 1720 { 1721 int r = -EINVAL; 1722 1723 down_write(&pmd->root_lock); 1724 if (!pmd->fail_io) 1725 r = __resize_space_map(pmd->data_sm, new_count); 1726 up_write(&pmd->root_lock); 1727 1728 return r; 1729 } 1730 1731 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 1732 { 1733 int r = -EINVAL; 1734 1735 down_write(&pmd->root_lock); 1736 if (!pmd->fail_io) 1737 r = __resize_space_map(pmd->metadata_sm, new_count); 1738 up_write(&pmd->root_lock); 1739 1740 return r; 1741 } 1742 1743 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) 1744 { 1745 down_write(&pmd->root_lock); 1746 pmd->read_only = true; 1747 dm_bm_set_read_only(pmd->bm); 1748 up_write(&pmd->root_lock); 1749 } 1750 1751 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) 1752 { 1753 down_write(&pmd->root_lock); 1754 pmd->read_only = false; 1755 dm_bm_set_read_write(pmd->bm); 1756 up_write(&pmd->root_lock); 1757 } 1758 1759 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, 1760 dm_block_t threshold, 1761 dm_sm_threshold_fn fn, 1762 void *context) 1763 { 1764 int r; 1765 1766 down_write(&pmd->root_lock); 1767 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context); 1768 up_write(&pmd->root_lock); 1769 1770 return r; 1771 } 1772 1773 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) 1774 { 1775 int r; 1776 struct dm_block *sblock; 1777 struct thin_disk_superblock *disk_super; 1778 1779 down_write(&pmd->root_lock); 1780 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; 1781 1782 r = superblock_lock(pmd, &sblock); 1783 if (r) { 1784 DMERR("couldn't read superblock"); 1785 goto out; 1786 } 1787 1788 disk_super = dm_block_data(sblock); 1789 disk_super->flags = cpu_to_le32(pmd->flags); 1790 1791 dm_bm_unlock(sblock); 1792 out: 1793 up_write(&pmd->root_lock); 1794 return r; 1795 } 1796 1797 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) 1798 { 1799 bool needs_check; 1800 1801 down_read(&pmd->root_lock); 1802 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; 1803 up_read(&pmd->root_lock); 1804 1805 return needs_check; 1806 } 1807