xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision b34e08d5)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82 
83 /*
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  */
87 #define THIN_MAX_CONCURRENT_LOCKS 5
88 
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
91 
92 /*
93  * Little endian on-disk superblock and device details.
94  */
95 struct thin_disk_superblock {
96 	__le32 csum;	/* Checksum of superblock except for this field. */
97 	__le32 flags;
98 	__le64 blocknr;	/* This block number, dm_block_t. */
99 
100 	__u8 uuid[16];
101 	__le64 magic;
102 	__le32 version;
103 	__le32 time;
104 
105 	__le64 trans_id;
106 
107 	/*
108 	 * Root held by userspace transactions.
109 	 */
110 	__le64 held_root;
111 
112 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
114 
115 	/*
116 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
117 	 */
118 	__le64 data_mapping_root;
119 
120 	/*
121 	 * Device detail root mapping dev_id -> device_details
122 	 */
123 	__le64 device_details_root;
124 
125 	__le32 data_block_size;		/* In 512-byte sectors. */
126 
127 	__le32 metadata_block_size;	/* In 512-byte sectors. */
128 	__le64 metadata_nr_blocks;
129 
130 	__le32 compat_flags;
131 	__le32 compat_ro_flags;
132 	__le32 incompat_flags;
133 } __packed;
134 
135 struct disk_device_details {
136 	__le64 mapped_blocks;
137 	__le64 transaction_id;		/* When created. */
138 	__le32 creation_time;
139 	__le32 snapshotted_time;
140 } __packed;
141 
142 struct dm_pool_metadata {
143 	struct hlist_node hash;
144 
145 	struct block_device *bdev;
146 	struct dm_block_manager *bm;
147 	struct dm_space_map *metadata_sm;
148 	struct dm_space_map *data_sm;
149 	struct dm_transaction_manager *tm;
150 	struct dm_transaction_manager *nb_tm;
151 
152 	/*
153 	 * Two-level btree.
154 	 * First level holds thin_dev_t.
155 	 * Second level holds mappings.
156 	 */
157 	struct dm_btree_info info;
158 
159 	/*
160 	 * Non-blocking version of the above.
161 	 */
162 	struct dm_btree_info nb_info;
163 
164 	/*
165 	 * Just the top level for deleting whole devices.
166 	 */
167 	struct dm_btree_info tl_info;
168 
169 	/*
170 	 * Just the bottom level for creating new devices.
171 	 */
172 	struct dm_btree_info bl_info;
173 
174 	/*
175 	 * Describes the device details btree.
176 	 */
177 	struct dm_btree_info details_info;
178 
179 	struct rw_semaphore root_lock;
180 	uint32_t time;
181 	dm_block_t root;
182 	dm_block_t details_root;
183 	struct list_head thin_devices;
184 	uint64_t trans_id;
185 	unsigned long flags;
186 	sector_t data_block_size;
187 	bool read_only:1;
188 
189 	/*
190 	 * Set if a transaction has to be aborted but the attempt to roll back
191 	 * to the previous (good) transaction failed.  The only pool metadata
192 	 * operation possible in this state is the closing of the device.
193 	 */
194 	bool fail_io:1;
195 
196 	/*
197 	 * Reading the space map roots can fail, so we read it into these
198 	 * buffers before the superblock is locked and updated.
199 	 */
200 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
201 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
202 };
203 
204 struct dm_thin_device {
205 	struct list_head list;
206 	struct dm_pool_metadata *pmd;
207 	dm_thin_id id;
208 
209 	int open_count;
210 	bool changed:1;
211 	bool aborted_with_changes:1;
212 	uint64_t mapped_blocks;
213 	uint64_t transaction_id;
214 	uint32_t creation_time;
215 	uint32_t snapshotted_time;
216 };
217 
218 /*----------------------------------------------------------------
219  * superblock validator
220  *--------------------------------------------------------------*/
221 
222 #define SUPERBLOCK_CSUM_XOR 160774
223 
224 static void sb_prepare_for_write(struct dm_block_validator *v,
225 				 struct dm_block *b,
226 				 size_t block_size)
227 {
228 	struct thin_disk_superblock *disk_super = dm_block_data(b);
229 
230 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
231 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
232 						      block_size - sizeof(__le32),
233 						      SUPERBLOCK_CSUM_XOR));
234 }
235 
236 static int sb_check(struct dm_block_validator *v,
237 		    struct dm_block *b,
238 		    size_t block_size)
239 {
240 	struct thin_disk_superblock *disk_super = dm_block_data(b);
241 	__le32 csum_le;
242 
243 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
244 		DMERR("sb_check failed: blocknr %llu: "
245 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
246 		      (unsigned long long)dm_block_location(b));
247 		return -ENOTBLK;
248 	}
249 
250 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
251 		DMERR("sb_check failed: magic %llu: "
252 		      "wanted %llu", le64_to_cpu(disk_super->magic),
253 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
254 		return -EILSEQ;
255 	}
256 
257 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
258 					     block_size - sizeof(__le32),
259 					     SUPERBLOCK_CSUM_XOR));
260 	if (csum_le != disk_super->csum) {
261 		DMERR("sb_check failed: csum %u: wanted %u",
262 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
263 		return -EILSEQ;
264 	}
265 
266 	return 0;
267 }
268 
269 static struct dm_block_validator sb_validator = {
270 	.name = "superblock",
271 	.prepare_for_write = sb_prepare_for_write,
272 	.check = sb_check
273 };
274 
275 /*----------------------------------------------------------------
276  * Methods for the btree value types
277  *--------------------------------------------------------------*/
278 
279 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
280 {
281 	return (b << 24) | t;
282 }
283 
284 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
285 {
286 	*b = v >> 24;
287 	*t = v & ((1 << 24) - 1);
288 }
289 
290 static void data_block_inc(void *context, const void *value_le)
291 {
292 	struct dm_space_map *sm = context;
293 	__le64 v_le;
294 	uint64_t b;
295 	uint32_t t;
296 
297 	memcpy(&v_le, value_le, sizeof(v_le));
298 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
299 	dm_sm_inc_block(sm, b);
300 }
301 
302 static void data_block_dec(void *context, const void *value_le)
303 {
304 	struct dm_space_map *sm = context;
305 	__le64 v_le;
306 	uint64_t b;
307 	uint32_t t;
308 
309 	memcpy(&v_le, value_le, sizeof(v_le));
310 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
311 	dm_sm_dec_block(sm, b);
312 }
313 
314 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
315 {
316 	__le64 v1_le, v2_le;
317 	uint64_t b1, b2;
318 	uint32_t t;
319 
320 	memcpy(&v1_le, value1_le, sizeof(v1_le));
321 	memcpy(&v2_le, value2_le, sizeof(v2_le));
322 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
323 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
324 
325 	return b1 == b2;
326 }
327 
328 static void subtree_inc(void *context, const void *value)
329 {
330 	struct dm_btree_info *info = context;
331 	__le64 root_le;
332 	uint64_t root;
333 
334 	memcpy(&root_le, value, sizeof(root_le));
335 	root = le64_to_cpu(root_le);
336 	dm_tm_inc(info->tm, root);
337 }
338 
339 static void subtree_dec(void *context, const void *value)
340 {
341 	struct dm_btree_info *info = context;
342 	__le64 root_le;
343 	uint64_t root;
344 
345 	memcpy(&root_le, value, sizeof(root_le));
346 	root = le64_to_cpu(root_le);
347 	if (dm_btree_del(info, root))
348 		DMERR("btree delete failed\n");
349 }
350 
351 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
352 {
353 	__le64 v1_le, v2_le;
354 	memcpy(&v1_le, value1_le, sizeof(v1_le));
355 	memcpy(&v2_le, value2_le, sizeof(v2_le));
356 
357 	return v1_le == v2_le;
358 }
359 
360 /*----------------------------------------------------------------*/
361 
362 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
363 				struct dm_block **sblock)
364 {
365 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
366 				     &sb_validator, sblock);
367 }
368 
369 static int superblock_lock(struct dm_pool_metadata *pmd,
370 			   struct dm_block **sblock)
371 {
372 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
373 				&sb_validator, sblock);
374 }
375 
376 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
377 {
378 	int r;
379 	unsigned i;
380 	struct dm_block *b;
381 	__le64 *data_le, zero = cpu_to_le64(0);
382 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
383 
384 	/*
385 	 * We can't use a validator here - it may be all zeroes.
386 	 */
387 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
388 	if (r)
389 		return r;
390 
391 	data_le = dm_block_data(b);
392 	*result = 1;
393 	for (i = 0; i < block_size; i++) {
394 		if (data_le[i] != zero) {
395 			*result = 0;
396 			break;
397 		}
398 	}
399 
400 	return dm_bm_unlock(b);
401 }
402 
403 static void __setup_btree_details(struct dm_pool_metadata *pmd)
404 {
405 	pmd->info.tm = pmd->tm;
406 	pmd->info.levels = 2;
407 	pmd->info.value_type.context = pmd->data_sm;
408 	pmd->info.value_type.size = sizeof(__le64);
409 	pmd->info.value_type.inc = data_block_inc;
410 	pmd->info.value_type.dec = data_block_dec;
411 	pmd->info.value_type.equal = data_block_equal;
412 
413 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
414 	pmd->nb_info.tm = pmd->nb_tm;
415 
416 	pmd->tl_info.tm = pmd->tm;
417 	pmd->tl_info.levels = 1;
418 	pmd->tl_info.value_type.context = &pmd->bl_info;
419 	pmd->tl_info.value_type.size = sizeof(__le64);
420 	pmd->tl_info.value_type.inc = subtree_inc;
421 	pmd->tl_info.value_type.dec = subtree_dec;
422 	pmd->tl_info.value_type.equal = subtree_equal;
423 
424 	pmd->bl_info.tm = pmd->tm;
425 	pmd->bl_info.levels = 1;
426 	pmd->bl_info.value_type.context = pmd->data_sm;
427 	pmd->bl_info.value_type.size = sizeof(__le64);
428 	pmd->bl_info.value_type.inc = data_block_inc;
429 	pmd->bl_info.value_type.dec = data_block_dec;
430 	pmd->bl_info.value_type.equal = data_block_equal;
431 
432 	pmd->details_info.tm = pmd->tm;
433 	pmd->details_info.levels = 1;
434 	pmd->details_info.value_type.context = NULL;
435 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
436 	pmd->details_info.value_type.inc = NULL;
437 	pmd->details_info.value_type.dec = NULL;
438 	pmd->details_info.value_type.equal = NULL;
439 }
440 
441 static int save_sm_roots(struct dm_pool_metadata *pmd)
442 {
443 	int r;
444 	size_t len;
445 
446 	r = dm_sm_root_size(pmd->metadata_sm, &len);
447 	if (r < 0)
448 		return r;
449 
450 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
451 	if (r < 0)
452 		return r;
453 
454 	r = dm_sm_root_size(pmd->data_sm, &len);
455 	if (r < 0)
456 		return r;
457 
458 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
459 }
460 
461 static void copy_sm_roots(struct dm_pool_metadata *pmd,
462 			  struct thin_disk_superblock *disk)
463 {
464 	memcpy(&disk->metadata_space_map_root,
465 	       &pmd->metadata_space_map_root,
466 	       sizeof(pmd->metadata_space_map_root));
467 
468 	memcpy(&disk->data_space_map_root,
469 	       &pmd->data_space_map_root,
470 	       sizeof(pmd->data_space_map_root));
471 }
472 
473 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
474 {
475 	int r;
476 	struct dm_block *sblock;
477 	struct thin_disk_superblock *disk_super;
478 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
479 
480 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
481 		bdev_size = THIN_METADATA_MAX_SECTORS;
482 
483 	r = dm_sm_commit(pmd->data_sm);
484 	if (r < 0)
485 		return r;
486 
487 	r = save_sm_roots(pmd);
488 	if (r < 0)
489 		return r;
490 
491 	r = dm_tm_pre_commit(pmd->tm);
492 	if (r < 0)
493 		return r;
494 
495 	r = superblock_lock_zero(pmd, &sblock);
496 	if (r)
497 		return r;
498 
499 	disk_super = dm_block_data(sblock);
500 	disk_super->flags = 0;
501 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
502 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
503 	disk_super->version = cpu_to_le32(THIN_VERSION);
504 	disk_super->time = 0;
505 	disk_super->trans_id = 0;
506 	disk_super->held_root = 0;
507 
508 	copy_sm_roots(pmd, disk_super);
509 
510 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
511 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
512 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
513 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
514 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
515 
516 	return dm_tm_commit(pmd->tm, sblock);
517 }
518 
519 static int __format_metadata(struct dm_pool_metadata *pmd)
520 {
521 	int r;
522 
523 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
524 				 &pmd->tm, &pmd->metadata_sm);
525 	if (r < 0) {
526 		DMERR("tm_create_with_sm failed");
527 		return r;
528 	}
529 
530 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
531 	if (IS_ERR(pmd->data_sm)) {
532 		DMERR("sm_disk_create failed");
533 		r = PTR_ERR(pmd->data_sm);
534 		goto bad_cleanup_tm;
535 	}
536 
537 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
538 	if (!pmd->nb_tm) {
539 		DMERR("could not create non-blocking clone tm");
540 		r = -ENOMEM;
541 		goto bad_cleanup_data_sm;
542 	}
543 
544 	__setup_btree_details(pmd);
545 
546 	r = dm_btree_empty(&pmd->info, &pmd->root);
547 	if (r < 0)
548 		goto bad_cleanup_nb_tm;
549 
550 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
551 	if (r < 0) {
552 		DMERR("couldn't create devices root");
553 		goto bad_cleanup_nb_tm;
554 	}
555 
556 	r = __write_initial_superblock(pmd);
557 	if (r)
558 		goto bad_cleanup_nb_tm;
559 
560 	return 0;
561 
562 bad_cleanup_nb_tm:
563 	dm_tm_destroy(pmd->nb_tm);
564 bad_cleanup_data_sm:
565 	dm_sm_destroy(pmd->data_sm);
566 bad_cleanup_tm:
567 	dm_tm_destroy(pmd->tm);
568 	dm_sm_destroy(pmd->metadata_sm);
569 
570 	return r;
571 }
572 
573 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
574 				     struct dm_pool_metadata *pmd)
575 {
576 	uint32_t features;
577 
578 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
579 	if (features) {
580 		DMERR("could not access metadata due to unsupported optional features (%lx).",
581 		      (unsigned long)features);
582 		return -EINVAL;
583 	}
584 
585 	/*
586 	 * Check for read-only metadata to skip the following RDWR checks.
587 	 */
588 	if (get_disk_ro(pmd->bdev->bd_disk))
589 		return 0;
590 
591 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
592 	if (features) {
593 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
594 		      (unsigned long)features);
595 		return -EINVAL;
596 	}
597 
598 	return 0;
599 }
600 
601 static int __open_metadata(struct dm_pool_metadata *pmd)
602 {
603 	int r;
604 	struct dm_block *sblock;
605 	struct thin_disk_superblock *disk_super;
606 
607 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
608 			    &sb_validator, &sblock);
609 	if (r < 0) {
610 		DMERR("couldn't read superblock");
611 		return r;
612 	}
613 
614 	disk_super = dm_block_data(sblock);
615 
616 	r = __check_incompat_features(disk_super, pmd);
617 	if (r < 0)
618 		goto bad_unlock_sblock;
619 
620 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
621 			       disk_super->metadata_space_map_root,
622 			       sizeof(disk_super->metadata_space_map_root),
623 			       &pmd->tm, &pmd->metadata_sm);
624 	if (r < 0) {
625 		DMERR("tm_open_with_sm failed");
626 		goto bad_unlock_sblock;
627 	}
628 
629 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
630 				       sizeof(disk_super->data_space_map_root));
631 	if (IS_ERR(pmd->data_sm)) {
632 		DMERR("sm_disk_open failed");
633 		r = PTR_ERR(pmd->data_sm);
634 		goto bad_cleanup_tm;
635 	}
636 
637 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
638 	if (!pmd->nb_tm) {
639 		DMERR("could not create non-blocking clone tm");
640 		r = -ENOMEM;
641 		goto bad_cleanup_data_sm;
642 	}
643 
644 	__setup_btree_details(pmd);
645 	return dm_bm_unlock(sblock);
646 
647 bad_cleanup_data_sm:
648 	dm_sm_destroy(pmd->data_sm);
649 bad_cleanup_tm:
650 	dm_tm_destroy(pmd->tm);
651 	dm_sm_destroy(pmd->metadata_sm);
652 bad_unlock_sblock:
653 	dm_bm_unlock(sblock);
654 
655 	return r;
656 }
657 
658 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
659 {
660 	int r, unformatted;
661 
662 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
663 	if (r)
664 		return r;
665 
666 	if (unformatted)
667 		return format_device ? __format_metadata(pmd) : -EPERM;
668 
669 	return __open_metadata(pmd);
670 }
671 
672 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
673 {
674 	int r;
675 
676 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
677 					  THIN_METADATA_CACHE_SIZE,
678 					  THIN_MAX_CONCURRENT_LOCKS);
679 	if (IS_ERR(pmd->bm)) {
680 		DMERR("could not create block manager");
681 		return PTR_ERR(pmd->bm);
682 	}
683 
684 	r = __open_or_format_metadata(pmd, format_device);
685 	if (r)
686 		dm_block_manager_destroy(pmd->bm);
687 
688 	return r;
689 }
690 
691 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
692 {
693 	dm_sm_destroy(pmd->data_sm);
694 	dm_sm_destroy(pmd->metadata_sm);
695 	dm_tm_destroy(pmd->nb_tm);
696 	dm_tm_destroy(pmd->tm);
697 	dm_block_manager_destroy(pmd->bm);
698 }
699 
700 static int __begin_transaction(struct dm_pool_metadata *pmd)
701 {
702 	int r;
703 	struct thin_disk_superblock *disk_super;
704 	struct dm_block *sblock;
705 
706 	/*
707 	 * We re-read the superblock every time.  Shouldn't need to do this
708 	 * really.
709 	 */
710 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
711 			    &sb_validator, &sblock);
712 	if (r)
713 		return r;
714 
715 	disk_super = dm_block_data(sblock);
716 	pmd->time = le32_to_cpu(disk_super->time);
717 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
718 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
719 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
720 	pmd->flags = le32_to_cpu(disk_super->flags);
721 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
722 
723 	dm_bm_unlock(sblock);
724 	return 0;
725 }
726 
727 static int __write_changed_details(struct dm_pool_metadata *pmd)
728 {
729 	int r;
730 	struct dm_thin_device *td, *tmp;
731 	struct disk_device_details details;
732 	uint64_t key;
733 
734 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
735 		if (!td->changed)
736 			continue;
737 
738 		key = td->id;
739 
740 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
741 		details.transaction_id = cpu_to_le64(td->transaction_id);
742 		details.creation_time = cpu_to_le32(td->creation_time);
743 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
744 		__dm_bless_for_disk(&details);
745 
746 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
747 				    &key, &details, &pmd->details_root);
748 		if (r)
749 			return r;
750 
751 		if (td->open_count)
752 			td->changed = 0;
753 		else {
754 			list_del(&td->list);
755 			kfree(td);
756 		}
757 	}
758 
759 	return 0;
760 }
761 
762 static int __commit_transaction(struct dm_pool_metadata *pmd)
763 {
764 	int r;
765 	size_t metadata_len, data_len;
766 	struct thin_disk_superblock *disk_super;
767 	struct dm_block *sblock;
768 
769 	/*
770 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
771 	 */
772 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
773 
774 	r = __write_changed_details(pmd);
775 	if (r < 0)
776 		return r;
777 
778 	r = dm_sm_commit(pmd->data_sm);
779 	if (r < 0)
780 		return r;
781 
782 	r = dm_tm_pre_commit(pmd->tm);
783 	if (r < 0)
784 		return r;
785 
786 	r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
787 	if (r < 0)
788 		return r;
789 
790 	r = dm_sm_root_size(pmd->data_sm, &data_len);
791 	if (r < 0)
792 		return r;
793 
794 	r = save_sm_roots(pmd);
795 	if (r < 0)
796 		return r;
797 
798 	r = superblock_lock(pmd, &sblock);
799 	if (r)
800 		return r;
801 
802 	disk_super = dm_block_data(sblock);
803 	disk_super->time = cpu_to_le32(pmd->time);
804 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
805 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
806 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
807 	disk_super->flags = cpu_to_le32(pmd->flags);
808 
809 	copy_sm_roots(pmd, disk_super);
810 
811 	return dm_tm_commit(pmd->tm, sblock);
812 }
813 
814 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
815 					       sector_t data_block_size,
816 					       bool format_device)
817 {
818 	int r;
819 	struct dm_pool_metadata *pmd;
820 
821 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
822 	if (!pmd) {
823 		DMERR("could not allocate metadata struct");
824 		return ERR_PTR(-ENOMEM);
825 	}
826 
827 	init_rwsem(&pmd->root_lock);
828 	pmd->time = 0;
829 	INIT_LIST_HEAD(&pmd->thin_devices);
830 	pmd->read_only = false;
831 	pmd->fail_io = false;
832 	pmd->bdev = bdev;
833 	pmd->data_block_size = data_block_size;
834 
835 	r = __create_persistent_data_objects(pmd, format_device);
836 	if (r) {
837 		kfree(pmd);
838 		return ERR_PTR(r);
839 	}
840 
841 	r = __begin_transaction(pmd);
842 	if (r < 0) {
843 		if (dm_pool_metadata_close(pmd) < 0)
844 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
845 		return ERR_PTR(r);
846 	}
847 
848 	return pmd;
849 }
850 
851 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
852 {
853 	int r;
854 	unsigned open_devices = 0;
855 	struct dm_thin_device *td, *tmp;
856 
857 	down_read(&pmd->root_lock);
858 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
859 		if (td->open_count)
860 			open_devices++;
861 		else {
862 			list_del(&td->list);
863 			kfree(td);
864 		}
865 	}
866 	up_read(&pmd->root_lock);
867 
868 	if (open_devices) {
869 		DMERR("attempt to close pmd when %u device(s) are still open",
870 		       open_devices);
871 		return -EBUSY;
872 	}
873 
874 	if (!pmd->read_only && !pmd->fail_io) {
875 		r = __commit_transaction(pmd);
876 		if (r < 0)
877 			DMWARN("%s: __commit_transaction() failed, error = %d",
878 			       __func__, r);
879 	}
880 
881 	if (!pmd->fail_io)
882 		__destroy_persistent_data_objects(pmd);
883 
884 	kfree(pmd);
885 	return 0;
886 }
887 
888 /*
889  * __open_device: Returns @td corresponding to device with id @dev,
890  * creating it if @create is set and incrementing @td->open_count.
891  * On failure, @td is undefined.
892  */
893 static int __open_device(struct dm_pool_metadata *pmd,
894 			 dm_thin_id dev, int create,
895 			 struct dm_thin_device **td)
896 {
897 	int r, changed = 0;
898 	struct dm_thin_device *td2;
899 	uint64_t key = dev;
900 	struct disk_device_details details_le;
901 
902 	/*
903 	 * If the device is already open, return it.
904 	 */
905 	list_for_each_entry(td2, &pmd->thin_devices, list)
906 		if (td2->id == dev) {
907 			/*
908 			 * May not create an already-open device.
909 			 */
910 			if (create)
911 				return -EEXIST;
912 
913 			td2->open_count++;
914 			*td = td2;
915 			return 0;
916 		}
917 
918 	/*
919 	 * Check the device exists.
920 	 */
921 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
922 			    &key, &details_le);
923 	if (r) {
924 		if (r != -ENODATA || !create)
925 			return r;
926 
927 		/*
928 		 * Create new device.
929 		 */
930 		changed = 1;
931 		details_le.mapped_blocks = 0;
932 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
933 		details_le.creation_time = cpu_to_le32(pmd->time);
934 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
935 	}
936 
937 	*td = kmalloc(sizeof(**td), GFP_NOIO);
938 	if (!*td)
939 		return -ENOMEM;
940 
941 	(*td)->pmd = pmd;
942 	(*td)->id = dev;
943 	(*td)->open_count = 1;
944 	(*td)->changed = changed;
945 	(*td)->aborted_with_changes = false;
946 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
947 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
948 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
949 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
950 
951 	list_add(&(*td)->list, &pmd->thin_devices);
952 
953 	return 0;
954 }
955 
956 static void __close_device(struct dm_thin_device *td)
957 {
958 	--td->open_count;
959 }
960 
961 static int __create_thin(struct dm_pool_metadata *pmd,
962 			 dm_thin_id dev)
963 {
964 	int r;
965 	dm_block_t dev_root;
966 	uint64_t key = dev;
967 	struct disk_device_details details_le;
968 	struct dm_thin_device *td;
969 	__le64 value;
970 
971 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
972 			    &key, &details_le);
973 	if (!r)
974 		return -EEXIST;
975 
976 	/*
977 	 * Create an empty btree for the mappings.
978 	 */
979 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
980 	if (r)
981 		return r;
982 
983 	/*
984 	 * Insert it into the main mapping tree.
985 	 */
986 	value = cpu_to_le64(dev_root);
987 	__dm_bless_for_disk(&value);
988 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
989 	if (r) {
990 		dm_btree_del(&pmd->bl_info, dev_root);
991 		return r;
992 	}
993 
994 	r = __open_device(pmd, dev, 1, &td);
995 	if (r) {
996 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
997 		dm_btree_del(&pmd->bl_info, dev_root);
998 		return r;
999 	}
1000 	__close_device(td);
1001 
1002 	return r;
1003 }
1004 
1005 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1006 {
1007 	int r = -EINVAL;
1008 
1009 	down_write(&pmd->root_lock);
1010 	if (!pmd->fail_io)
1011 		r = __create_thin(pmd, dev);
1012 	up_write(&pmd->root_lock);
1013 
1014 	return r;
1015 }
1016 
1017 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1018 				  struct dm_thin_device *snap,
1019 				  dm_thin_id origin, uint32_t time)
1020 {
1021 	int r;
1022 	struct dm_thin_device *td;
1023 
1024 	r = __open_device(pmd, origin, 0, &td);
1025 	if (r)
1026 		return r;
1027 
1028 	td->changed = 1;
1029 	td->snapshotted_time = time;
1030 
1031 	snap->mapped_blocks = td->mapped_blocks;
1032 	snap->snapshotted_time = time;
1033 	__close_device(td);
1034 
1035 	return 0;
1036 }
1037 
1038 static int __create_snap(struct dm_pool_metadata *pmd,
1039 			 dm_thin_id dev, dm_thin_id origin)
1040 {
1041 	int r;
1042 	dm_block_t origin_root;
1043 	uint64_t key = origin, dev_key = dev;
1044 	struct dm_thin_device *td;
1045 	struct disk_device_details details_le;
1046 	__le64 value;
1047 
1048 	/* check this device is unused */
1049 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1050 			    &dev_key, &details_le);
1051 	if (!r)
1052 		return -EEXIST;
1053 
1054 	/* find the mapping tree for the origin */
1055 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1056 	if (r)
1057 		return r;
1058 	origin_root = le64_to_cpu(value);
1059 
1060 	/* clone the origin, an inc will do */
1061 	dm_tm_inc(pmd->tm, origin_root);
1062 
1063 	/* insert into the main mapping tree */
1064 	value = cpu_to_le64(origin_root);
1065 	__dm_bless_for_disk(&value);
1066 	key = dev;
1067 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1068 	if (r) {
1069 		dm_tm_dec(pmd->tm, origin_root);
1070 		return r;
1071 	}
1072 
1073 	pmd->time++;
1074 
1075 	r = __open_device(pmd, dev, 1, &td);
1076 	if (r)
1077 		goto bad;
1078 
1079 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1080 	__close_device(td);
1081 
1082 	if (r)
1083 		goto bad;
1084 
1085 	return 0;
1086 
1087 bad:
1088 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1089 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1090 			&key, &pmd->details_root);
1091 	return r;
1092 }
1093 
1094 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1095 				 dm_thin_id dev,
1096 				 dm_thin_id origin)
1097 {
1098 	int r = -EINVAL;
1099 
1100 	down_write(&pmd->root_lock);
1101 	if (!pmd->fail_io)
1102 		r = __create_snap(pmd, dev, origin);
1103 	up_write(&pmd->root_lock);
1104 
1105 	return r;
1106 }
1107 
1108 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1109 {
1110 	int r;
1111 	uint64_t key = dev;
1112 	struct dm_thin_device *td;
1113 
1114 	/* TODO: failure should mark the transaction invalid */
1115 	r = __open_device(pmd, dev, 0, &td);
1116 	if (r)
1117 		return r;
1118 
1119 	if (td->open_count > 1) {
1120 		__close_device(td);
1121 		return -EBUSY;
1122 	}
1123 
1124 	list_del(&td->list);
1125 	kfree(td);
1126 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1127 			    &key, &pmd->details_root);
1128 	if (r)
1129 		return r;
1130 
1131 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1132 	if (r)
1133 		return r;
1134 
1135 	return 0;
1136 }
1137 
1138 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1139 			       dm_thin_id dev)
1140 {
1141 	int r = -EINVAL;
1142 
1143 	down_write(&pmd->root_lock);
1144 	if (!pmd->fail_io)
1145 		r = __delete_device(pmd, dev);
1146 	up_write(&pmd->root_lock);
1147 
1148 	return r;
1149 }
1150 
1151 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1152 					uint64_t current_id,
1153 					uint64_t new_id)
1154 {
1155 	int r = -EINVAL;
1156 
1157 	down_write(&pmd->root_lock);
1158 
1159 	if (pmd->fail_io)
1160 		goto out;
1161 
1162 	if (pmd->trans_id != current_id) {
1163 		DMERR("mismatched transaction id");
1164 		goto out;
1165 	}
1166 
1167 	pmd->trans_id = new_id;
1168 	r = 0;
1169 
1170 out:
1171 	up_write(&pmd->root_lock);
1172 
1173 	return r;
1174 }
1175 
1176 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1177 					uint64_t *result)
1178 {
1179 	int r = -EINVAL;
1180 
1181 	down_read(&pmd->root_lock);
1182 	if (!pmd->fail_io) {
1183 		*result = pmd->trans_id;
1184 		r = 0;
1185 	}
1186 	up_read(&pmd->root_lock);
1187 
1188 	return r;
1189 }
1190 
1191 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1192 {
1193 	int r, inc;
1194 	struct thin_disk_superblock *disk_super;
1195 	struct dm_block *copy, *sblock;
1196 	dm_block_t held_root;
1197 
1198 	/*
1199 	 * Copy the superblock.
1200 	 */
1201 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1202 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1203 			       &sb_validator, &copy, &inc);
1204 	if (r)
1205 		return r;
1206 
1207 	BUG_ON(!inc);
1208 
1209 	held_root = dm_block_location(copy);
1210 	disk_super = dm_block_data(copy);
1211 
1212 	if (le64_to_cpu(disk_super->held_root)) {
1213 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1214 
1215 		dm_tm_dec(pmd->tm, held_root);
1216 		dm_tm_unlock(pmd->tm, copy);
1217 		return -EBUSY;
1218 	}
1219 
1220 	/*
1221 	 * Wipe the spacemap since we're not publishing this.
1222 	 */
1223 	memset(&disk_super->data_space_map_root, 0,
1224 	       sizeof(disk_super->data_space_map_root));
1225 	memset(&disk_super->metadata_space_map_root, 0,
1226 	       sizeof(disk_super->metadata_space_map_root));
1227 
1228 	/*
1229 	 * Increment the data structures that need to be preserved.
1230 	 */
1231 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1232 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1233 	dm_tm_unlock(pmd->tm, copy);
1234 
1235 	/*
1236 	 * Write the held root into the superblock.
1237 	 */
1238 	r = superblock_lock(pmd, &sblock);
1239 	if (r) {
1240 		dm_tm_dec(pmd->tm, held_root);
1241 		return r;
1242 	}
1243 
1244 	disk_super = dm_block_data(sblock);
1245 	disk_super->held_root = cpu_to_le64(held_root);
1246 	dm_bm_unlock(sblock);
1247 	return 0;
1248 }
1249 
1250 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1251 {
1252 	int r = -EINVAL;
1253 
1254 	down_write(&pmd->root_lock);
1255 	if (!pmd->fail_io)
1256 		r = __reserve_metadata_snap(pmd);
1257 	up_write(&pmd->root_lock);
1258 
1259 	return r;
1260 }
1261 
1262 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1263 {
1264 	int r;
1265 	struct thin_disk_superblock *disk_super;
1266 	struct dm_block *sblock, *copy;
1267 	dm_block_t held_root;
1268 
1269 	r = superblock_lock(pmd, &sblock);
1270 	if (r)
1271 		return r;
1272 
1273 	disk_super = dm_block_data(sblock);
1274 	held_root = le64_to_cpu(disk_super->held_root);
1275 	disk_super->held_root = cpu_to_le64(0);
1276 
1277 	dm_bm_unlock(sblock);
1278 
1279 	if (!held_root) {
1280 		DMWARN("No pool metadata snapshot found: nothing to release.");
1281 		return -EINVAL;
1282 	}
1283 
1284 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1285 	if (r)
1286 		return r;
1287 
1288 	disk_super = dm_block_data(copy);
1289 	dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1290 	dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1291 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1292 
1293 	return dm_tm_unlock(pmd->tm, copy);
1294 }
1295 
1296 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1297 {
1298 	int r = -EINVAL;
1299 
1300 	down_write(&pmd->root_lock);
1301 	if (!pmd->fail_io)
1302 		r = __release_metadata_snap(pmd);
1303 	up_write(&pmd->root_lock);
1304 
1305 	return r;
1306 }
1307 
1308 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1309 			       dm_block_t *result)
1310 {
1311 	int r;
1312 	struct thin_disk_superblock *disk_super;
1313 	struct dm_block *sblock;
1314 
1315 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1316 			    &sb_validator, &sblock);
1317 	if (r)
1318 		return r;
1319 
1320 	disk_super = dm_block_data(sblock);
1321 	*result = le64_to_cpu(disk_super->held_root);
1322 
1323 	return dm_bm_unlock(sblock);
1324 }
1325 
1326 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1327 			      dm_block_t *result)
1328 {
1329 	int r = -EINVAL;
1330 
1331 	down_read(&pmd->root_lock);
1332 	if (!pmd->fail_io)
1333 		r = __get_metadata_snap(pmd, result);
1334 	up_read(&pmd->root_lock);
1335 
1336 	return r;
1337 }
1338 
1339 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1340 			     struct dm_thin_device **td)
1341 {
1342 	int r = -EINVAL;
1343 
1344 	down_write(&pmd->root_lock);
1345 	if (!pmd->fail_io)
1346 		r = __open_device(pmd, dev, 0, td);
1347 	up_write(&pmd->root_lock);
1348 
1349 	return r;
1350 }
1351 
1352 int dm_pool_close_thin_device(struct dm_thin_device *td)
1353 {
1354 	down_write(&td->pmd->root_lock);
1355 	__close_device(td);
1356 	up_write(&td->pmd->root_lock);
1357 
1358 	return 0;
1359 }
1360 
1361 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1362 {
1363 	return td->id;
1364 }
1365 
1366 /*
1367  * Check whether @time (of block creation) is older than @td's last snapshot.
1368  * If so then the associated block is shared with the last snapshot device.
1369  * Any block on a device created *after* the device last got snapshotted is
1370  * necessarily not shared.
1371  */
1372 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1373 {
1374 	return td->snapshotted_time > time;
1375 }
1376 
1377 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1378 		       int can_block, struct dm_thin_lookup_result *result)
1379 {
1380 	int r = -EINVAL;
1381 	uint64_t block_time = 0;
1382 	__le64 value;
1383 	struct dm_pool_metadata *pmd = td->pmd;
1384 	dm_block_t keys[2] = { td->id, block };
1385 	struct dm_btree_info *info;
1386 
1387 	if (can_block) {
1388 		down_read(&pmd->root_lock);
1389 		info = &pmd->info;
1390 	} else if (down_read_trylock(&pmd->root_lock))
1391 		info = &pmd->nb_info;
1392 	else
1393 		return -EWOULDBLOCK;
1394 
1395 	if (pmd->fail_io)
1396 		goto out;
1397 
1398 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1399 	if (!r)
1400 		block_time = le64_to_cpu(value);
1401 
1402 out:
1403 	up_read(&pmd->root_lock);
1404 
1405 	if (!r) {
1406 		dm_block_t exception_block;
1407 		uint32_t exception_time;
1408 		unpack_block_time(block_time, &exception_block,
1409 				  &exception_time);
1410 		result->block = exception_block;
1411 		result->shared = __snapshotted_since(td, exception_time);
1412 	}
1413 
1414 	return r;
1415 }
1416 
1417 static int __insert(struct dm_thin_device *td, dm_block_t block,
1418 		    dm_block_t data_block)
1419 {
1420 	int r, inserted;
1421 	__le64 value;
1422 	struct dm_pool_metadata *pmd = td->pmd;
1423 	dm_block_t keys[2] = { td->id, block };
1424 
1425 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1426 	__dm_bless_for_disk(&value);
1427 
1428 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1429 				   &pmd->root, &inserted);
1430 	if (r)
1431 		return r;
1432 
1433 	td->changed = 1;
1434 	if (inserted)
1435 		td->mapped_blocks++;
1436 
1437 	return 0;
1438 }
1439 
1440 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1441 			 dm_block_t data_block)
1442 {
1443 	int r = -EINVAL;
1444 
1445 	down_write(&td->pmd->root_lock);
1446 	if (!td->pmd->fail_io)
1447 		r = __insert(td, block, data_block);
1448 	up_write(&td->pmd->root_lock);
1449 
1450 	return r;
1451 }
1452 
1453 static int __remove(struct dm_thin_device *td, dm_block_t block)
1454 {
1455 	int r;
1456 	struct dm_pool_metadata *pmd = td->pmd;
1457 	dm_block_t keys[2] = { td->id, block };
1458 
1459 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1460 	if (r)
1461 		return r;
1462 
1463 	td->mapped_blocks--;
1464 	td->changed = 1;
1465 
1466 	return 0;
1467 }
1468 
1469 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1470 {
1471 	int r = -EINVAL;
1472 
1473 	down_write(&td->pmd->root_lock);
1474 	if (!td->pmd->fail_io)
1475 		r = __remove(td, block);
1476 	up_write(&td->pmd->root_lock);
1477 
1478 	return r;
1479 }
1480 
1481 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1482 {
1483 	int r;
1484 	uint32_t ref_count;
1485 
1486 	down_read(&pmd->root_lock);
1487 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1488 	if (!r)
1489 		*result = (ref_count != 0);
1490 	up_read(&pmd->root_lock);
1491 
1492 	return r;
1493 }
1494 
1495 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1496 {
1497 	int r;
1498 
1499 	down_read(&td->pmd->root_lock);
1500 	r = td->changed;
1501 	up_read(&td->pmd->root_lock);
1502 
1503 	return r;
1504 }
1505 
1506 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1507 {
1508 	bool r = false;
1509 	struct dm_thin_device *td, *tmp;
1510 
1511 	down_read(&pmd->root_lock);
1512 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1513 		if (td->changed) {
1514 			r = td->changed;
1515 			break;
1516 		}
1517 	}
1518 	up_read(&pmd->root_lock);
1519 
1520 	return r;
1521 }
1522 
1523 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1524 {
1525 	bool r;
1526 
1527 	down_read(&td->pmd->root_lock);
1528 	r = td->aborted_with_changes;
1529 	up_read(&td->pmd->root_lock);
1530 
1531 	return r;
1532 }
1533 
1534 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1535 {
1536 	int r = -EINVAL;
1537 
1538 	down_write(&pmd->root_lock);
1539 	if (!pmd->fail_io)
1540 		r = dm_sm_new_block(pmd->data_sm, result);
1541 	up_write(&pmd->root_lock);
1542 
1543 	return r;
1544 }
1545 
1546 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1547 {
1548 	int r = -EINVAL;
1549 
1550 	down_write(&pmd->root_lock);
1551 	if (pmd->fail_io)
1552 		goto out;
1553 
1554 	r = __commit_transaction(pmd);
1555 	if (r <= 0)
1556 		goto out;
1557 
1558 	/*
1559 	 * Open the next transaction.
1560 	 */
1561 	r = __begin_transaction(pmd);
1562 out:
1563 	up_write(&pmd->root_lock);
1564 	return r;
1565 }
1566 
1567 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1568 {
1569 	struct dm_thin_device *td;
1570 
1571 	list_for_each_entry(td, &pmd->thin_devices, list)
1572 		td->aborted_with_changes = td->changed;
1573 }
1574 
1575 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1576 {
1577 	int r = -EINVAL;
1578 
1579 	down_write(&pmd->root_lock);
1580 	if (pmd->fail_io)
1581 		goto out;
1582 
1583 	__set_abort_with_changes_flags(pmd);
1584 	__destroy_persistent_data_objects(pmd);
1585 	r = __create_persistent_data_objects(pmd, false);
1586 	if (r)
1587 		pmd->fail_io = true;
1588 
1589 out:
1590 	up_write(&pmd->root_lock);
1591 
1592 	return r;
1593 }
1594 
1595 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1596 {
1597 	int r = -EINVAL;
1598 
1599 	down_read(&pmd->root_lock);
1600 	if (!pmd->fail_io)
1601 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1602 	up_read(&pmd->root_lock);
1603 
1604 	return r;
1605 }
1606 
1607 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1608 					  dm_block_t *result)
1609 {
1610 	int r = -EINVAL;
1611 
1612 	down_read(&pmd->root_lock);
1613 	if (!pmd->fail_io)
1614 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1615 	up_read(&pmd->root_lock);
1616 
1617 	return r;
1618 }
1619 
1620 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1621 				  dm_block_t *result)
1622 {
1623 	int r = -EINVAL;
1624 
1625 	down_read(&pmd->root_lock);
1626 	if (!pmd->fail_io)
1627 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1628 	up_read(&pmd->root_lock);
1629 
1630 	return r;
1631 }
1632 
1633 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1634 {
1635 	down_read(&pmd->root_lock);
1636 	*result = pmd->data_block_size;
1637 	up_read(&pmd->root_lock);
1638 
1639 	return 0;
1640 }
1641 
1642 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1643 {
1644 	int r = -EINVAL;
1645 
1646 	down_read(&pmd->root_lock);
1647 	if (!pmd->fail_io)
1648 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1649 	up_read(&pmd->root_lock);
1650 
1651 	return r;
1652 }
1653 
1654 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1655 {
1656 	int r = -EINVAL;
1657 	struct dm_pool_metadata *pmd = td->pmd;
1658 
1659 	down_read(&pmd->root_lock);
1660 	if (!pmd->fail_io) {
1661 		*result = td->mapped_blocks;
1662 		r = 0;
1663 	}
1664 	up_read(&pmd->root_lock);
1665 
1666 	return r;
1667 }
1668 
1669 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1670 {
1671 	int r;
1672 	__le64 value_le;
1673 	dm_block_t thin_root;
1674 	struct dm_pool_metadata *pmd = td->pmd;
1675 
1676 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1677 	if (r)
1678 		return r;
1679 
1680 	thin_root = le64_to_cpu(value_le);
1681 
1682 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1683 }
1684 
1685 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1686 				     dm_block_t *result)
1687 {
1688 	int r = -EINVAL;
1689 	struct dm_pool_metadata *pmd = td->pmd;
1690 
1691 	down_read(&pmd->root_lock);
1692 	if (!pmd->fail_io)
1693 		r = __highest_block(td, result);
1694 	up_read(&pmd->root_lock);
1695 
1696 	return r;
1697 }
1698 
1699 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1700 {
1701 	int r;
1702 	dm_block_t old_count;
1703 
1704 	r = dm_sm_get_nr_blocks(sm, &old_count);
1705 	if (r)
1706 		return r;
1707 
1708 	if (new_count == old_count)
1709 		return 0;
1710 
1711 	if (new_count < old_count) {
1712 		DMERR("cannot reduce size of space map");
1713 		return -EINVAL;
1714 	}
1715 
1716 	return dm_sm_extend(sm, new_count - old_count);
1717 }
1718 
1719 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1720 {
1721 	int r = -EINVAL;
1722 
1723 	down_write(&pmd->root_lock);
1724 	if (!pmd->fail_io)
1725 		r = __resize_space_map(pmd->data_sm, new_count);
1726 	up_write(&pmd->root_lock);
1727 
1728 	return r;
1729 }
1730 
1731 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1732 {
1733 	int r = -EINVAL;
1734 
1735 	down_write(&pmd->root_lock);
1736 	if (!pmd->fail_io)
1737 		r = __resize_space_map(pmd->metadata_sm, new_count);
1738 	up_write(&pmd->root_lock);
1739 
1740 	return r;
1741 }
1742 
1743 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1744 {
1745 	down_write(&pmd->root_lock);
1746 	pmd->read_only = true;
1747 	dm_bm_set_read_only(pmd->bm);
1748 	up_write(&pmd->root_lock);
1749 }
1750 
1751 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1752 {
1753 	down_write(&pmd->root_lock);
1754 	pmd->read_only = false;
1755 	dm_bm_set_read_write(pmd->bm);
1756 	up_write(&pmd->root_lock);
1757 }
1758 
1759 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1760 					dm_block_t threshold,
1761 					dm_sm_threshold_fn fn,
1762 					void *context)
1763 {
1764 	int r;
1765 
1766 	down_write(&pmd->root_lock);
1767 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1768 	up_write(&pmd->root_lock);
1769 
1770 	return r;
1771 }
1772 
1773 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
1774 {
1775 	int r;
1776 	struct dm_block *sblock;
1777 	struct thin_disk_superblock *disk_super;
1778 
1779 	down_write(&pmd->root_lock);
1780 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
1781 
1782 	r = superblock_lock(pmd, &sblock);
1783 	if (r) {
1784 		DMERR("couldn't read superblock");
1785 		goto out;
1786 	}
1787 
1788 	disk_super = dm_block_data(sblock);
1789 	disk_super->flags = cpu_to_le32(pmd->flags);
1790 
1791 	dm_bm_unlock(sblock);
1792 out:
1793 	up_write(&pmd->root_lock);
1794 	return r;
1795 }
1796 
1797 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
1798 {
1799 	bool needs_check;
1800 
1801 	down_read(&pmd->root_lock);
1802 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
1803 	up_read(&pmd->root_lock);
1804 
1805 	return needs_check;
1806 }
1807