xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision a9d85efb)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 40
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81 
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91 
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94 
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99 	__le32 csum;	/* Checksum of superblock except for this field. */
100 	__le32 flags;
101 	__le64 blocknr;	/* This block number, dm_block_t. */
102 
103 	__u8 uuid[16];
104 	__le64 magic;
105 	__le32 version;
106 	__le32 time;
107 
108 	__le64 trans_id;
109 
110 	/*
111 	 * Root held by userspace transactions.
112 	 */
113 	__le64 held_root;
114 
115 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117 
118 	/*
119 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 	 */
121 	__le64 data_mapping_root;
122 
123 	/*
124 	 * Device detail root mapping dev_id -> device_details
125 	 */
126 	__le64 device_details_root;
127 
128 	__le32 data_block_size;		/* In 512-byte sectors. */
129 
130 	__le32 metadata_block_size;	/* In 512-byte sectors. */
131 	__le64 metadata_nr_blocks;
132 
133 	__le32 compat_flags;
134 	__le32 compat_ro_flags;
135 	__le32 incompat_flags;
136 } __packed;
137 
138 struct disk_device_details {
139 	__le64 mapped_blocks;
140 	__le64 transaction_id;		/* When created. */
141 	__le32 creation_time;
142 	__le32 snapshotted_time;
143 } __packed;
144 
145 struct dm_pool_metadata {
146 	struct hlist_node hash;
147 
148 	struct block_device *bdev;
149 	struct dm_block_manager *bm;
150 	struct dm_space_map *metadata_sm;
151 	struct dm_space_map *data_sm;
152 	struct dm_transaction_manager *tm;
153 	struct dm_transaction_manager *nb_tm;
154 
155 	/*
156 	 * Two-level btree.
157 	 * First level holds thin_dev_t.
158 	 * Second level holds mappings.
159 	 */
160 	struct dm_btree_info info;
161 
162 	/*
163 	 * Non-blocking version of the above.
164 	 */
165 	struct dm_btree_info nb_info;
166 
167 	/*
168 	 * Just the top level for deleting whole devices.
169 	 */
170 	struct dm_btree_info tl_info;
171 
172 	/*
173 	 * Just the bottom level for creating new devices.
174 	 */
175 	struct dm_btree_info bl_info;
176 
177 	/*
178 	 * Describes the device details btree.
179 	 */
180 	struct dm_btree_info details_info;
181 
182 	struct rw_semaphore root_lock;
183 	uint32_t time;
184 	dm_block_t root;
185 	dm_block_t details_root;
186 	struct list_head thin_devices;
187 	uint64_t trans_id;
188 	unsigned long flags;
189 	sector_t data_block_size;
190 
191 	/*
192 	 * Pre-commit callback.
193 	 *
194 	 * This allows the thin provisioning target to run a callback before
195 	 * the metadata are committed.
196 	 */
197 	dm_pool_pre_commit_fn pre_commit_fn;
198 	void *pre_commit_context;
199 
200 	/*
201 	 * We reserve a section of the metadata for commit overhead.
202 	 * All reported space does *not* include this.
203 	 */
204 	dm_block_t metadata_reserve;
205 
206 	/*
207 	 * Set if a transaction has to be aborted but the attempt to roll back
208 	 * to the previous (good) transaction failed.  The only pool metadata
209 	 * operation possible in this state is the closing of the device.
210 	 */
211 	bool fail_io:1;
212 
213 	/*
214 	 * Set once a thin-pool has been accessed through one of the interfaces
215 	 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 	 * thin-pool message, metadata snapshots, etc).
217 	 */
218 	bool in_service:1;
219 
220 	/*
221 	 * Reading the space map roots can fail, so we read it into these
222 	 * buffers before the superblock is locked and updated.
223 	 */
224 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227 
228 struct dm_thin_device {
229 	struct list_head list;
230 	struct dm_pool_metadata *pmd;
231 	dm_thin_id id;
232 
233 	int open_count;
234 	bool changed:1;
235 	bool aborted_with_changes:1;
236 	uint64_t mapped_blocks;
237 	uint64_t transaction_id;
238 	uint32_t creation_time;
239 	uint32_t snapshotted_time;
240 };
241 
242 /*----------------------------------------------------------------
243  * superblock validator
244  *--------------------------------------------------------------*/
245 
246 #define SUPERBLOCK_CSUM_XOR 160774
247 
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249 				 struct dm_block *b,
250 				 size_t block_size)
251 {
252 	struct thin_disk_superblock *disk_super = dm_block_data(b);
253 
254 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 						      block_size - sizeof(__le32),
257 						      SUPERBLOCK_CSUM_XOR));
258 }
259 
260 static int sb_check(struct dm_block_validator *v,
261 		    struct dm_block *b,
262 		    size_t block_size)
263 {
264 	struct thin_disk_superblock *disk_super = dm_block_data(b);
265 	__le32 csum_le;
266 
267 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 		DMERR("sb_check failed: blocknr %llu: "
269 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 		      (unsigned long long)dm_block_location(b));
271 		return -ENOTBLK;
272 	}
273 
274 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 		DMERR("sb_check failed: magic %llu: "
276 		      "wanted %llu", le64_to_cpu(disk_super->magic),
277 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 		return -EILSEQ;
279 	}
280 
281 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 					     block_size - sizeof(__le32),
283 					     SUPERBLOCK_CSUM_XOR));
284 	if (csum_le != disk_super->csum) {
285 		DMERR("sb_check failed: csum %u: wanted %u",
286 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 		return -EILSEQ;
288 	}
289 
290 	return 0;
291 }
292 
293 static struct dm_block_validator sb_validator = {
294 	.name = "superblock",
295 	.prepare_for_write = sb_prepare_for_write,
296 	.check = sb_check
297 };
298 
299 /*----------------------------------------------------------------
300  * Methods for the btree value types
301  *--------------------------------------------------------------*/
302 
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305 	return (b << 24) | t;
306 }
307 
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310 	*b = v >> 24;
311 	*t = v & ((1 << 24) - 1);
312 }
313 
314 /*
315  * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
316  * possible.  'with_runs' reads contiguous runs of blocks, and calls the
317  * given sm function.
318  */
319 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
320 
321 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn)
322 {
323 	uint64_t b, begin, end;
324 	uint32_t t;
325 	bool in_run = false;
326 	unsigned i;
327 
328 	for (i = 0; i < count; i++, value_le++) {
329 		/* We know value_le is 8 byte aligned */
330 		unpack_block_time(le64_to_cpu(*value_le), &b, &t);
331 
332 		if (in_run) {
333 			if (b == end) {
334 				end++;
335 			} else {
336 				fn(sm, begin, end);
337 				begin = b;
338 				end = b + 1;
339 			}
340 		} else {
341 			in_run = true;
342 			begin = b;
343 			end = b + 1;
344 		}
345 	}
346 
347 	if (in_run)
348 		fn(sm, begin, end);
349 }
350 
351 static void data_block_inc(void *context, const void *value_le, unsigned count)
352 {
353 	with_runs((struct dm_space_map *) context,
354 		  (const __le64 *) value_le, count, dm_sm_inc_blocks);
355 }
356 
357 static void data_block_dec(void *context, const void *value_le, unsigned count)
358 {
359 	with_runs((struct dm_space_map *) context,
360 		  (const __le64 *) value_le, count, dm_sm_dec_blocks);
361 }
362 
363 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
364 {
365 	__le64 v1_le, v2_le;
366 	uint64_t b1, b2;
367 	uint32_t t;
368 
369 	memcpy(&v1_le, value1_le, sizeof(v1_le));
370 	memcpy(&v2_le, value2_le, sizeof(v2_le));
371 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
372 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
373 
374 	return b1 == b2;
375 }
376 
377 static void subtree_inc(void *context, const void *value, unsigned count)
378 {
379 	struct dm_btree_info *info = context;
380 	const __le64 *root_le = value;
381 	unsigned i;
382 
383 	for (i = 0; i < count; i++, root_le++)
384 		dm_tm_inc(info->tm, le64_to_cpu(*root_le));
385 }
386 
387 static void subtree_dec(void *context, const void *value, unsigned count)
388 {
389 	struct dm_btree_info *info = context;
390 	const __le64 *root_le = value;
391 	unsigned i;
392 
393 	for (i = 0; i < count; i++, root_le++)
394 		if (dm_btree_del(info, le64_to_cpu(*root_le)))
395 			DMERR("btree delete failed");
396 }
397 
398 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
399 {
400 	__le64 v1_le, v2_le;
401 	memcpy(&v1_le, value1_le, sizeof(v1_le));
402 	memcpy(&v2_le, value2_le, sizeof(v2_le));
403 
404 	return v1_le == v2_le;
405 }
406 
407 /*----------------------------------------------------------------*/
408 
409 /*
410  * Variant that is used for in-core only changes or code that
411  * shouldn't put the pool in service on its own (e.g. commit).
412  */
413 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
414 	__acquires(pmd->root_lock)
415 {
416 	down_write(&pmd->root_lock);
417 }
418 
419 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
420 {
421 	pmd_write_lock_in_core(pmd);
422 	if (unlikely(!pmd->in_service))
423 		pmd->in_service = true;
424 }
425 
426 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
427 	__releases(pmd->root_lock)
428 {
429 	up_write(&pmd->root_lock);
430 }
431 
432 /*----------------------------------------------------------------*/
433 
434 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
435 				struct dm_block **sblock)
436 {
437 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
438 				     &sb_validator, sblock);
439 }
440 
441 static int superblock_lock(struct dm_pool_metadata *pmd,
442 			   struct dm_block **sblock)
443 {
444 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
445 				&sb_validator, sblock);
446 }
447 
448 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
449 {
450 	int r;
451 	unsigned i;
452 	struct dm_block *b;
453 	__le64 *data_le, zero = cpu_to_le64(0);
454 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
455 
456 	/*
457 	 * We can't use a validator here - it may be all zeroes.
458 	 */
459 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
460 	if (r)
461 		return r;
462 
463 	data_le = dm_block_data(b);
464 	*result = 1;
465 	for (i = 0; i < block_size; i++) {
466 		if (data_le[i] != zero) {
467 			*result = 0;
468 			break;
469 		}
470 	}
471 
472 	dm_bm_unlock(b);
473 
474 	return 0;
475 }
476 
477 static void __setup_btree_details(struct dm_pool_metadata *pmd)
478 {
479 	pmd->info.tm = pmd->tm;
480 	pmd->info.levels = 2;
481 	pmd->info.value_type.context = pmd->data_sm;
482 	pmd->info.value_type.size = sizeof(__le64);
483 	pmd->info.value_type.inc = data_block_inc;
484 	pmd->info.value_type.dec = data_block_dec;
485 	pmd->info.value_type.equal = data_block_equal;
486 
487 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
488 	pmd->nb_info.tm = pmd->nb_tm;
489 
490 	pmd->tl_info.tm = pmd->tm;
491 	pmd->tl_info.levels = 1;
492 	pmd->tl_info.value_type.context = &pmd->bl_info;
493 	pmd->tl_info.value_type.size = sizeof(__le64);
494 	pmd->tl_info.value_type.inc = subtree_inc;
495 	pmd->tl_info.value_type.dec = subtree_dec;
496 	pmd->tl_info.value_type.equal = subtree_equal;
497 
498 	pmd->bl_info.tm = pmd->tm;
499 	pmd->bl_info.levels = 1;
500 	pmd->bl_info.value_type.context = pmd->data_sm;
501 	pmd->bl_info.value_type.size = sizeof(__le64);
502 	pmd->bl_info.value_type.inc = data_block_inc;
503 	pmd->bl_info.value_type.dec = data_block_dec;
504 	pmd->bl_info.value_type.equal = data_block_equal;
505 
506 	pmd->details_info.tm = pmd->tm;
507 	pmd->details_info.levels = 1;
508 	pmd->details_info.value_type.context = NULL;
509 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
510 	pmd->details_info.value_type.inc = NULL;
511 	pmd->details_info.value_type.dec = NULL;
512 	pmd->details_info.value_type.equal = NULL;
513 }
514 
515 static int save_sm_roots(struct dm_pool_metadata *pmd)
516 {
517 	int r;
518 	size_t len;
519 
520 	r = dm_sm_root_size(pmd->metadata_sm, &len);
521 	if (r < 0)
522 		return r;
523 
524 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
525 	if (r < 0)
526 		return r;
527 
528 	r = dm_sm_root_size(pmd->data_sm, &len);
529 	if (r < 0)
530 		return r;
531 
532 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
533 }
534 
535 static void copy_sm_roots(struct dm_pool_metadata *pmd,
536 			  struct thin_disk_superblock *disk)
537 {
538 	memcpy(&disk->metadata_space_map_root,
539 	       &pmd->metadata_space_map_root,
540 	       sizeof(pmd->metadata_space_map_root));
541 
542 	memcpy(&disk->data_space_map_root,
543 	       &pmd->data_space_map_root,
544 	       sizeof(pmd->data_space_map_root));
545 }
546 
547 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
548 {
549 	int r;
550 	struct dm_block *sblock;
551 	struct thin_disk_superblock *disk_super;
552 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
553 
554 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
555 		bdev_size = THIN_METADATA_MAX_SECTORS;
556 
557 	r = dm_sm_commit(pmd->data_sm);
558 	if (r < 0)
559 		return r;
560 
561 	r = dm_tm_pre_commit(pmd->tm);
562 	if (r < 0)
563 		return r;
564 
565 	r = save_sm_roots(pmd);
566 	if (r < 0)
567 		return r;
568 
569 	r = superblock_lock_zero(pmd, &sblock);
570 	if (r)
571 		return r;
572 
573 	disk_super = dm_block_data(sblock);
574 	disk_super->flags = 0;
575 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
576 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
577 	disk_super->version = cpu_to_le32(THIN_VERSION);
578 	disk_super->time = 0;
579 	disk_super->trans_id = 0;
580 	disk_super->held_root = 0;
581 
582 	copy_sm_roots(pmd, disk_super);
583 
584 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
585 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
586 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
587 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
588 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
589 
590 	return dm_tm_commit(pmd->tm, sblock);
591 }
592 
593 static int __format_metadata(struct dm_pool_metadata *pmd)
594 {
595 	int r;
596 
597 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
598 				 &pmd->tm, &pmd->metadata_sm);
599 	if (r < 0) {
600 		DMERR("tm_create_with_sm failed");
601 		return r;
602 	}
603 
604 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
605 	if (IS_ERR(pmd->data_sm)) {
606 		DMERR("sm_disk_create failed");
607 		r = PTR_ERR(pmd->data_sm);
608 		goto bad_cleanup_tm;
609 	}
610 
611 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
612 	if (!pmd->nb_tm) {
613 		DMERR("could not create non-blocking clone tm");
614 		r = -ENOMEM;
615 		goto bad_cleanup_data_sm;
616 	}
617 
618 	__setup_btree_details(pmd);
619 
620 	r = dm_btree_empty(&pmd->info, &pmd->root);
621 	if (r < 0)
622 		goto bad_cleanup_nb_tm;
623 
624 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
625 	if (r < 0) {
626 		DMERR("couldn't create devices root");
627 		goto bad_cleanup_nb_tm;
628 	}
629 
630 	r = __write_initial_superblock(pmd);
631 	if (r)
632 		goto bad_cleanup_nb_tm;
633 
634 	return 0;
635 
636 bad_cleanup_nb_tm:
637 	dm_tm_destroy(pmd->nb_tm);
638 bad_cleanup_data_sm:
639 	dm_sm_destroy(pmd->data_sm);
640 bad_cleanup_tm:
641 	dm_tm_destroy(pmd->tm);
642 	dm_sm_destroy(pmd->metadata_sm);
643 
644 	return r;
645 }
646 
647 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
648 				     struct dm_pool_metadata *pmd)
649 {
650 	uint32_t features;
651 
652 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
653 	if (features) {
654 		DMERR("could not access metadata due to unsupported optional features (%lx).",
655 		      (unsigned long)features);
656 		return -EINVAL;
657 	}
658 
659 	/*
660 	 * Check for read-only metadata to skip the following RDWR checks.
661 	 */
662 	if (bdev_read_only(pmd->bdev))
663 		return 0;
664 
665 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
666 	if (features) {
667 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
668 		      (unsigned long)features);
669 		return -EINVAL;
670 	}
671 
672 	return 0;
673 }
674 
675 static int __open_metadata(struct dm_pool_metadata *pmd)
676 {
677 	int r;
678 	struct dm_block *sblock;
679 	struct thin_disk_superblock *disk_super;
680 
681 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
682 			    &sb_validator, &sblock);
683 	if (r < 0) {
684 		DMERR("couldn't read superblock");
685 		return r;
686 	}
687 
688 	disk_super = dm_block_data(sblock);
689 
690 	/* Verify the data block size hasn't changed */
691 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
692 		DMERR("changing the data block size (from %u to %llu) is not supported",
693 		      le32_to_cpu(disk_super->data_block_size),
694 		      (unsigned long long)pmd->data_block_size);
695 		r = -EINVAL;
696 		goto bad_unlock_sblock;
697 	}
698 
699 	r = __check_incompat_features(disk_super, pmd);
700 	if (r < 0)
701 		goto bad_unlock_sblock;
702 
703 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
704 			       disk_super->metadata_space_map_root,
705 			       sizeof(disk_super->metadata_space_map_root),
706 			       &pmd->tm, &pmd->metadata_sm);
707 	if (r < 0) {
708 		DMERR("tm_open_with_sm failed");
709 		goto bad_unlock_sblock;
710 	}
711 
712 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
713 				       sizeof(disk_super->data_space_map_root));
714 	if (IS_ERR(pmd->data_sm)) {
715 		DMERR("sm_disk_open failed");
716 		r = PTR_ERR(pmd->data_sm);
717 		goto bad_cleanup_tm;
718 	}
719 
720 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
721 	if (!pmd->nb_tm) {
722 		DMERR("could not create non-blocking clone tm");
723 		r = -ENOMEM;
724 		goto bad_cleanup_data_sm;
725 	}
726 
727 	__setup_btree_details(pmd);
728 	dm_bm_unlock(sblock);
729 
730 	return 0;
731 
732 bad_cleanup_data_sm:
733 	dm_sm_destroy(pmd->data_sm);
734 bad_cleanup_tm:
735 	dm_tm_destroy(pmd->tm);
736 	dm_sm_destroy(pmd->metadata_sm);
737 bad_unlock_sblock:
738 	dm_bm_unlock(sblock);
739 
740 	return r;
741 }
742 
743 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
744 {
745 	int r, unformatted;
746 
747 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
748 	if (r)
749 		return r;
750 
751 	if (unformatted)
752 		return format_device ? __format_metadata(pmd) : -EPERM;
753 
754 	return __open_metadata(pmd);
755 }
756 
757 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
758 {
759 	int r;
760 
761 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
762 					  THIN_MAX_CONCURRENT_LOCKS);
763 	if (IS_ERR(pmd->bm)) {
764 		DMERR("could not create block manager");
765 		r = PTR_ERR(pmd->bm);
766 		pmd->bm = NULL;
767 		return r;
768 	}
769 
770 	r = __open_or_format_metadata(pmd, format_device);
771 	if (r) {
772 		dm_block_manager_destroy(pmd->bm);
773 		pmd->bm = NULL;
774 	}
775 
776 	return r;
777 }
778 
779 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
780 {
781 	dm_sm_destroy(pmd->data_sm);
782 	dm_sm_destroy(pmd->metadata_sm);
783 	dm_tm_destroy(pmd->nb_tm);
784 	dm_tm_destroy(pmd->tm);
785 	dm_block_manager_destroy(pmd->bm);
786 }
787 
788 static int __begin_transaction(struct dm_pool_metadata *pmd)
789 {
790 	int r;
791 	struct thin_disk_superblock *disk_super;
792 	struct dm_block *sblock;
793 
794 	/*
795 	 * We re-read the superblock every time.  Shouldn't need to do this
796 	 * really.
797 	 */
798 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
799 			    &sb_validator, &sblock);
800 	if (r)
801 		return r;
802 
803 	disk_super = dm_block_data(sblock);
804 	pmd->time = le32_to_cpu(disk_super->time);
805 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
806 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
807 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
808 	pmd->flags = le32_to_cpu(disk_super->flags);
809 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
810 
811 	dm_bm_unlock(sblock);
812 	return 0;
813 }
814 
815 static int __write_changed_details(struct dm_pool_metadata *pmd)
816 {
817 	int r;
818 	struct dm_thin_device *td, *tmp;
819 	struct disk_device_details details;
820 	uint64_t key;
821 
822 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
823 		if (!td->changed)
824 			continue;
825 
826 		key = td->id;
827 
828 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
829 		details.transaction_id = cpu_to_le64(td->transaction_id);
830 		details.creation_time = cpu_to_le32(td->creation_time);
831 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
832 		__dm_bless_for_disk(&details);
833 
834 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
835 				    &key, &details, &pmd->details_root);
836 		if (r)
837 			return r;
838 
839 		if (td->open_count)
840 			td->changed = false;
841 		else {
842 			list_del(&td->list);
843 			kfree(td);
844 		}
845 	}
846 
847 	return 0;
848 }
849 
850 static int __commit_transaction(struct dm_pool_metadata *pmd)
851 {
852 	int r;
853 	struct thin_disk_superblock *disk_super;
854 	struct dm_block *sblock;
855 
856 	/*
857 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
858 	 */
859 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
860 	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
861 
862 	if (unlikely(!pmd->in_service))
863 		return 0;
864 
865 	if (pmd->pre_commit_fn) {
866 		r = pmd->pre_commit_fn(pmd->pre_commit_context);
867 		if (r < 0) {
868 			DMERR("pre-commit callback failed");
869 			return r;
870 		}
871 	}
872 
873 	r = __write_changed_details(pmd);
874 	if (r < 0)
875 		return r;
876 
877 	r = dm_sm_commit(pmd->data_sm);
878 	if (r < 0)
879 		return r;
880 
881 	r = dm_tm_pre_commit(pmd->tm);
882 	if (r < 0)
883 		return r;
884 
885 	r = save_sm_roots(pmd);
886 	if (r < 0)
887 		return r;
888 
889 	r = superblock_lock(pmd, &sblock);
890 	if (r)
891 		return r;
892 
893 	disk_super = dm_block_data(sblock);
894 	disk_super->time = cpu_to_le32(pmd->time);
895 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
896 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
897 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
898 	disk_super->flags = cpu_to_le32(pmd->flags);
899 
900 	copy_sm_roots(pmd, disk_super);
901 
902 	return dm_tm_commit(pmd->tm, sblock);
903 }
904 
905 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
906 {
907 	int r;
908 	dm_block_t total;
909 	dm_block_t max_blocks = 4096; /* 16M */
910 
911 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
912 	if (r) {
913 		DMERR("could not get size of metadata device");
914 		pmd->metadata_reserve = max_blocks;
915 	} else
916 		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
917 }
918 
919 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
920 					       sector_t data_block_size,
921 					       bool format_device)
922 {
923 	int r;
924 	struct dm_pool_metadata *pmd;
925 
926 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
927 	if (!pmd) {
928 		DMERR("could not allocate metadata struct");
929 		return ERR_PTR(-ENOMEM);
930 	}
931 
932 	init_rwsem(&pmd->root_lock);
933 	pmd->time = 0;
934 	INIT_LIST_HEAD(&pmd->thin_devices);
935 	pmd->fail_io = false;
936 	pmd->in_service = false;
937 	pmd->bdev = bdev;
938 	pmd->data_block_size = data_block_size;
939 	pmd->pre_commit_fn = NULL;
940 	pmd->pre_commit_context = NULL;
941 
942 	r = __create_persistent_data_objects(pmd, format_device);
943 	if (r) {
944 		kfree(pmd);
945 		return ERR_PTR(r);
946 	}
947 
948 	r = __begin_transaction(pmd);
949 	if (r < 0) {
950 		if (dm_pool_metadata_close(pmd) < 0)
951 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
952 		return ERR_PTR(r);
953 	}
954 
955 	__set_metadata_reserve(pmd);
956 
957 	return pmd;
958 }
959 
960 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
961 {
962 	int r;
963 	unsigned open_devices = 0;
964 	struct dm_thin_device *td, *tmp;
965 
966 	down_read(&pmd->root_lock);
967 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
968 		if (td->open_count)
969 			open_devices++;
970 		else {
971 			list_del(&td->list);
972 			kfree(td);
973 		}
974 	}
975 	up_read(&pmd->root_lock);
976 
977 	if (open_devices) {
978 		DMERR("attempt to close pmd when %u device(s) are still open",
979 		       open_devices);
980 		return -EBUSY;
981 	}
982 
983 	pmd_write_lock_in_core(pmd);
984 	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
985 		r = __commit_transaction(pmd);
986 		if (r < 0)
987 			DMWARN("%s: __commit_transaction() failed, error = %d",
988 			       __func__, r);
989 	}
990 	pmd_write_unlock(pmd);
991 	if (!pmd->fail_io)
992 		__destroy_persistent_data_objects(pmd);
993 
994 	kfree(pmd);
995 	return 0;
996 }
997 
998 /*
999  * __open_device: Returns @td corresponding to device with id @dev,
1000  * creating it if @create is set and incrementing @td->open_count.
1001  * On failure, @td is undefined.
1002  */
1003 static int __open_device(struct dm_pool_metadata *pmd,
1004 			 dm_thin_id dev, int create,
1005 			 struct dm_thin_device **td)
1006 {
1007 	int r, changed = 0;
1008 	struct dm_thin_device *td2;
1009 	uint64_t key = dev;
1010 	struct disk_device_details details_le;
1011 
1012 	/*
1013 	 * If the device is already open, return it.
1014 	 */
1015 	list_for_each_entry(td2, &pmd->thin_devices, list)
1016 		if (td2->id == dev) {
1017 			/*
1018 			 * May not create an already-open device.
1019 			 */
1020 			if (create)
1021 				return -EEXIST;
1022 
1023 			td2->open_count++;
1024 			*td = td2;
1025 			return 0;
1026 		}
1027 
1028 	/*
1029 	 * Check the device exists.
1030 	 */
1031 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1032 			    &key, &details_le);
1033 	if (r) {
1034 		if (r != -ENODATA || !create)
1035 			return r;
1036 
1037 		/*
1038 		 * Create new device.
1039 		 */
1040 		changed = 1;
1041 		details_le.mapped_blocks = 0;
1042 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1043 		details_le.creation_time = cpu_to_le32(pmd->time);
1044 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1045 	}
1046 
1047 	*td = kmalloc(sizeof(**td), GFP_NOIO);
1048 	if (!*td)
1049 		return -ENOMEM;
1050 
1051 	(*td)->pmd = pmd;
1052 	(*td)->id = dev;
1053 	(*td)->open_count = 1;
1054 	(*td)->changed = changed;
1055 	(*td)->aborted_with_changes = false;
1056 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1057 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1058 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1059 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1060 
1061 	list_add(&(*td)->list, &pmd->thin_devices);
1062 
1063 	return 0;
1064 }
1065 
1066 static void __close_device(struct dm_thin_device *td)
1067 {
1068 	--td->open_count;
1069 }
1070 
1071 static int __create_thin(struct dm_pool_metadata *pmd,
1072 			 dm_thin_id dev)
1073 {
1074 	int r;
1075 	dm_block_t dev_root;
1076 	uint64_t key = dev;
1077 	struct dm_thin_device *td;
1078 	__le64 value;
1079 
1080 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1081 			    &key, NULL);
1082 	if (!r)
1083 		return -EEXIST;
1084 
1085 	/*
1086 	 * Create an empty btree for the mappings.
1087 	 */
1088 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1089 	if (r)
1090 		return r;
1091 
1092 	/*
1093 	 * Insert it into the main mapping tree.
1094 	 */
1095 	value = cpu_to_le64(dev_root);
1096 	__dm_bless_for_disk(&value);
1097 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1098 	if (r) {
1099 		dm_btree_del(&pmd->bl_info, dev_root);
1100 		return r;
1101 	}
1102 
1103 	r = __open_device(pmd, dev, 1, &td);
1104 	if (r) {
1105 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1106 		dm_btree_del(&pmd->bl_info, dev_root);
1107 		return r;
1108 	}
1109 	__close_device(td);
1110 
1111 	return r;
1112 }
1113 
1114 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1115 {
1116 	int r = -EINVAL;
1117 
1118 	pmd_write_lock(pmd);
1119 	if (!pmd->fail_io)
1120 		r = __create_thin(pmd, dev);
1121 	pmd_write_unlock(pmd);
1122 
1123 	return r;
1124 }
1125 
1126 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1127 				  struct dm_thin_device *snap,
1128 				  dm_thin_id origin, uint32_t time)
1129 {
1130 	int r;
1131 	struct dm_thin_device *td;
1132 
1133 	r = __open_device(pmd, origin, 0, &td);
1134 	if (r)
1135 		return r;
1136 
1137 	td->changed = true;
1138 	td->snapshotted_time = time;
1139 
1140 	snap->mapped_blocks = td->mapped_blocks;
1141 	snap->snapshotted_time = time;
1142 	__close_device(td);
1143 
1144 	return 0;
1145 }
1146 
1147 static int __create_snap(struct dm_pool_metadata *pmd,
1148 			 dm_thin_id dev, dm_thin_id origin)
1149 {
1150 	int r;
1151 	dm_block_t origin_root;
1152 	uint64_t key = origin, dev_key = dev;
1153 	struct dm_thin_device *td;
1154 	__le64 value;
1155 
1156 	/* check this device is unused */
1157 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1158 			    &dev_key, NULL);
1159 	if (!r)
1160 		return -EEXIST;
1161 
1162 	/* find the mapping tree for the origin */
1163 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1164 	if (r)
1165 		return r;
1166 	origin_root = le64_to_cpu(value);
1167 
1168 	/* clone the origin, an inc will do */
1169 	dm_tm_inc(pmd->tm, origin_root);
1170 
1171 	/* insert into the main mapping tree */
1172 	value = cpu_to_le64(origin_root);
1173 	__dm_bless_for_disk(&value);
1174 	key = dev;
1175 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1176 	if (r) {
1177 		dm_tm_dec(pmd->tm, origin_root);
1178 		return r;
1179 	}
1180 
1181 	pmd->time++;
1182 
1183 	r = __open_device(pmd, dev, 1, &td);
1184 	if (r)
1185 		goto bad;
1186 
1187 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1188 	__close_device(td);
1189 
1190 	if (r)
1191 		goto bad;
1192 
1193 	return 0;
1194 
1195 bad:
1196 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1197 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1198 			&key, &pmd->details_root);
1199 	return r;
1200 }
1201 
1202 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1203 				 dm_thin_id dev,
1204 				 dm_thin_id origin)
1205 {
1206 	int r = -EINVAL;
1207 
1208 	pmd_write_lock(pmd);
1209 	if (!pmd->fail_io)
1210 		r = __create_snap(pmd, dev, origin);
1211 	pmd_write_unlock(pmd);
1212 
1213 	return r;
1214 }
1215 
1216 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1217 {
1218 	int r;
1219 	uint64_t key = dev;
1220 	struct dm_thin_device *td;
1221 
1222 	/* TODO: failure should mark the transaction invalid */
1223 	r = __open_device(pmd, dev, 0, &td);
1224 	if (r)
1225 		return r;
1226 
1227 	if (td->open_count > 1) {
1228 		__close_device(td);
1229 		return -EBUSY;
1230 	}
1231 
1232 	list_del(&td->list);
1233 	kfree(td);
1234 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1235 			    &key, &pmd->details_root);
1236 	if (r)
1237 		return r;
1238 
1239 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1240 	if (r)
1241 		return r;
1242 
1243 	return 0;
1244 }
1245 
1246 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1247 			       dm_thin_id dev)
1248 {
1249 	int r = -EINVAL;
1250 
1251 	pmd_write_lock(pmd);
1252 	if (!pmd->fail_io)
1253 		r = __delete_device(pmd, dev);
1254 	pmd_write_unlock(pmd);
1255 
1256 	return r;
1257 }
1258 
1259 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1260 					uint64_t current_id,
1261 					uint64_t new_id)
1262 {
1263 	int r = -EINVAL;
1264 
1265 	pmd_write_lock(pmd);
1266 
1267 	if (pmd->fail_io)
1268 		goto out;
1269 
1270 	if (pmd->trans_id != current_id) {
1271 		DMERR("mismatched transaction id");
1272 		goto out;
1273 	}
1274 
1275 	pmd->trans_id = new_id;
1276 	r = 0;
1277 
1278 out:
1279 	pmd_write_unlock(pmd);
1280 
1281 	return r;
1282 }
1283 
1284 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1285 					uint64_t *result)
1286 {
1287 	int r = -EINVAL;
1288 
1289 	down_read(&pmd->root_lock);
1290 	if (!pmd->fail_io) {
1291 		*result = pmd->trans_id;
1292 		r = 0;
1293 	}
1294 	up_read(&pmd->root_lock);
1295 
1296 	return r;
1297 }
1298 
1299 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1300 {
1301 	int r, inc;
1302 	struct thin_disk_superblock *disk_super;
1303 	struct dm_block *copy, *sblock;
1304 	dm_block_t held_root;
1305 
1306 	/*
1307 	 * We commit to ensure the btree roots which we increment in a
1308 	 * moment are up to date.
1309 	 */
1310 	r = __commit_transaction(pmd);
1311 	if (r < 0) {
1312 		DMWARN("%s: __commit_transaction() failed, error = %d",
1313 		       __func__, r);
1314 		return r;
1315 	}
1316 
1317 	/*
1318 	 * Copy the superblock.
1319 	 */
1320 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1321 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1322 			       &sb_validator, &copy, &inc);
1323 	if (r)
1324 		return r;
1325 
1326 	BUG_ON(!inc);
1327 
1328 	held_root = dm_block_location(copy);
1329 	disk_super = dm_block_data(copy);
1330 
1331 	if (le64_to_cpu(disk_super->held_root)) {
1332 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1333 
1334 		dm_tm_dec(pmd->tm, held_root);
1335 		dm_tm_unlock(pmd->tm, copy);
1336 		return -EBUSY;
1337 	}
1338 
1339 	/*
1340 	 * Wipe the spacemap since we're not publishing this.
1341 	 */
1342 	memset(&disk_super->data_space_map_root, 0,
1343 	       sizeof(disk_super->data_space_map_root));
1344 	memset(&disk_super->metadata_space_map_root, 0,
1345 	       sizeof(disk_super->metadata_space_map_root));
1346 
1347 	/*
1348 	 * Increment the data structures that need to be preserved.
1349 	 */
1350 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1351 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1352 	dm_tm_unlock(pmd->tm, copy);
1353 
1354 	/*
1355 	 * Write the held root into the superblock.
1356 	 */
1357 	r = superblock_lock(pmd, &sblock);
1358 	if (r) {
1359 		dm_tm_dec(pmd->tm, held_root);
1360 		return r;
1361 	}
1362 
1363 	disk_super = dm_block_data(sblock);
1364 	disk_super->held_root = cpu_to_le64(held_root);
1365 	dm_bm_unlock(sblock);
1366 	return 0;
1367 }
1368 
1369 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1370 {
1371 	int r = -EINVAL;
1372 
1373 	pmd_write_lock(pmd);
1374 	if (!pmd->fail_io)
1375 		r = __reserve_metadata_snap(pmd);
1376 	pmd_write_unlock(pmd);
1377 
1378 	return r;
1379 }
1380 
1381 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1382 {
1383 	int r;
1384 	struct thin_disk_superblock *disk_super;
1385 	struct dm_block *sblock, *copy;
1386 	dm_block_t held_root;
1387 
1388 	r = superblock_lock(pmd, &sblock);
1389 	if (r)
1390 		return r;
1391 
1392 	disk_super = dm_block_data(sblock);
1393 	held_root = le64_to_cpu(disk_super->held_root);
1394 	disk_super->held_root = cpu_to_le64(0);
1395 
1396 	dm_bm_unlock(sblock);
1397 
1398 	if (!held_root) {
1399 		DMWARN("No pool metadata snapshot found: nothing to release.");
1400 		return -EINVAL;
1401 	}
1402 
1403 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1404 	if (r)
1405 		return r;
1406 
1407 	disk_super = dm_block_data(copy);
1408 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1409 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1410 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1411 
1412 	dm_tm_unlock(pmd->tm, copy);
1413 
1414 	return 0;
1415 }
1416 
1417 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1418 {
1419 	int r = -EINVAL;
1420 
1421 	pmd_write_lock(pmd);
1422 	if (!pmd->fail_io)
1423 		r = __release_metadata_snap(pmd);
1424 	pmd_write_unlock(pmd);
1425 
1426 	return r;
1427 }
1428 
1429 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1430 			       dm_block_t *result)
1431 {
1432 	int r;
1433 	struct thin_disk_superblock *disk_super;
1434 	struct dm_block *sblock;
1435 
1436 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1437 			    &sb_validator, &sblock);
1438 	if (r)
1439 		return r;
1440 
1441 	disk_super = dm_block_data(sblock);
1442 	*result = le64_to_cpu(disk_super->held_root);
1443 
1444 	dm_bm_unlock(sblock);
1445 
1446 	return 0;
1447 }
1448 
1449 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1450 			      dm_block_t *result)
1451 {
1452 	int r = -EINVAL;
1453 
1454 	down_read(&pmd->root_lock);
1455 	if (!pmd->fail_io)
1456 		r = __get_metadata_snap(pmd, result);
1457 	up_read(&pmd->root_lock);
1458 
1459 	return r;
1460 }
1461 
1462 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1463 			     struct dm_thin_device **td)
1464 {
1465 	int r = -EINVAL;
1466 
1467 	pmd_write_lock_in_core(pmd);
1468 	if (!pmd->fail_io)
1469 		r = __open_device(pmd, dev, 0, td);
1470 	pmd_write_unlock(pmd);
1471 
1472 	return r;
1473 }
1474 
1475 int dm_pool_close_thin_device(struct dm_thin_device *td)
1476 {
1477 	pmd_write_lock_in_core(td->pmd);
1478 	__close_device(td);
1479 	pmd_write_unlock(td->pmd);
1480 
1481 	return 0;
1482 }
1483 
1484 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1485 {
1486 	return td->id;
1487 }
1488 
1489 /*
1490  * Check whether @time (of block creation) is older than @td's last snapshot.
1491  * If so then the associated block is shared with the last snapshot device.
1492  * Any block on a device created *after* the device last got snapshotted is
1493  * necessarily not shared.
1494  */
1495 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1496 {
1497 	return td->snapshotted_time > time;
1498 }
1499 
1500 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1501 				 struct dm_thin_lookup_result *result)
1502 {
1503 	uint64_t block_time = 0;
1504 	dm_block_t exception_block;
1505 	uint32_t exception_time;
1506 
1507 	block_time = le64_to_cpu(value);
1508 	unpack_block_time(block_time, &exception_block, &exception_time);
1509 	result->block = exception_block;
1510 	result->shared = __snapshotted_since(td, exception_time);
1511 }
1512 
1513 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1514 			int can_issue_io, struct dm_thin_lookup_result *result)
1515 {
1516 	int r;
1517 	__le64 value;
1518 	struct dm_pool_metadata *pmd = td->pmd;
1519 	dm_block_t keys[2] = { td->id, block };
1520 	struct dm_btree_info *info;
1521 
1522 	if (can_issue_io) {
1523 		info = &pmd->info;
1524 	} else
1525 		info = &pmd->nb_info;
1526 
1527 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1528 	if (!r)
1529 		unpack_lookup_result(td, value, result);
1530 
1531 	return r;
1532 }
1533 
1534 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1535 		       int can_issue_io, struct dm_thin_lookup_result *result)
1536 {
1537 	int r;
1538 	struct dm_pool_metadata *pmd = td->pmd;
1539 
1540 	down_read(&pmd->root_lock);
1541 	if (pmd->fail_io) {
1542 		up_read(&pmd->root_lock);
1543 		return -EINVAL;
1544 	}
1545 
1546 	r = __find_block(td, block, can_issue_io, result);
1547 
1548 	up_read(&pmd->root_lock);
1549 	return r;
1550 }
1551 
1552 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1553 					  dm_block_t *vblock,
1554 					  struct dm_thin_lookup_result *result)
1555 {
1556 	int r;
1557 	__le64 value;
1558 	struct dm_pool_metadata *pmd = td->pmd;
1559 	dm_block_t keys[2] = { td->id, block };
1560 
1561 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1562 	if (!r)
1563 		unpack_lookup_result(td, value, result);
1564 
1565 	return r;
1566 }
1567 
1568 static int __find_mapped_range(struct dm_thin_device *td,
1569 			       dm_block_t begin, dm_block_t end,
1570 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1571 			       dm_block_t *pool_begin, bool *maybe_shared)
1572 {
1573 	int r;
1574 	dm_block_t pool_end;
1575 	struct dm_thin_lookup_result lookup;
1576 
1577 	if (end < begin)
1578 		return -ENODATA;
1579 
1580 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1581 	if (r)
1582 		return r;
1583 
1584 	if (begin >= end)
1585 		return -ENODATA;
1586 
1587 	*thin_begin = begin;
1588 	*pool_begin = lookup.block;
1589 	*maybe_shared = lookup.shared;
1590 
1591 	begin++;
1592 	pool_end = *pool_begin + 1;
1593 	while (begin != end) {
1594 		r = __find_block(td, begin, true, &lookup);
1595 		if (r) {
1596 			if (r == -ENODATA)
1597 				break;
1598 			else
1599 				return r;
1600 		}
1601 
1602 		if ((lookup.block != pool_end) ||
1603 		    (lookup.shared != *maybe_shared))
1604 			break;
1605 
1606 		pool_end++;
1607 		begin++;
1608 	}
1609 
1610 	*thin_end = begin;
1611 	return 0;
1612 }
1613 
1614 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1615 			      dm_block_t begin, dm_block_t end,
1616 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1617 			      dm_block_t *pool_begin, bool *maybe_shared)
1618 {
1619 	int r = -EINVAL;
1620 	struct dm_pool_metadata *pmd = td->pmd;
1621 
1622 	down_read(&pmd->root_lock);
1623 	if (!pmd->fail_io) {
1624 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1625 					pool_begin, maybe_shared);
1626 	}
1627 	up_read(&pmd->root_lock);
1628 
1629 	return r;
1630 }
1631 
1632 static int __insert(struct dm_thin_device *td, dm_block_t block,
1633 		    dm_block_t data_block)
1634 {
1635 	int r, inserted;
1636 	__le64 value;
1637 	struct dm_pool_metadata *pmd = td->pmd;
1638 	dm_block_t keys[2] = { td->id, block };
1639 
1640 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1641 	__dm_bless_for_disk(&value);
1642 
1643 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1644 				   &pmd->root, &inserted);
1645 	if (r)
1646 		return r;
1647 
1648 	td->changed = true;
1649 	if (inserted)
1650 		td->mapped_blocks++;
1651 
1652 	return 0;
1653 }
1654 
1655 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1656 			 dm_block_t data_block)
1657 {
1658 	int r = -EINVAL;
1659 
1660 	pmd_write_lock(td->pmd);
1661 	if (!td->pmd->fail_io)
1662 		r = __insert(td, block, data_block);
1663 	pmd_write_unlock(td->pmd);
1664 
1665 	return r;
1666 }
1667 
1668 static int __remove(struct dm_thin_device *td, dm_block_t block)
1669 {
1670 	int r;
1671 	struct dm_pool_metadata *pmd = td->pmd;
1672 	dm_block_t keys[2] = { td->id, block };
1673 
1674 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1675 	if (r)
1676 		return r;
1677 
1678 	td->mapped_blocks--;
1679 	td->changed = true;
1680 
1681 	return 0;
1682 }
1683 
1684 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1685 {
1686 	int r;
1687 	unsigned count, total_count = 0;
1688 	struct dm_pool_metadata *pmd = td->pmd;
1689 	dm_block_t keys[1] = { td->id };
1690 	__le64 value;
1691 	dm_block_t mapping_root;
1692 
1693 	/*
1694 	 * Find the mapping tree
1695 	 */
1696 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1697 	if (r)
1698 		return r;
1699 
1700 	/*
1701 	 * Remove from the mapping tree, taking care to inc the
1702 	 * ref count so it doesn't get deleted.
1703 	 */
1704 	mapping_root = le64_to_cpu(value);
1705 	dm_tm_inc(pmd->tm, mapping_root);
1706 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1707 	if (r)
1708 		return r;
1709 
1710 	/*
1711 	 * Remove leaves stops at the first unmapped entry, so we have to
1712 	 * loop round finding mapped ranges.
1713 	 */
1714 	while (begin < end) {
1715 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1716 		if (r == -ENODATA)
1717 			break;
1718 
1719 		if (r)
1720 			return r;
1721 
1722 		if (begin >= end)
1723 			break;
1724 
1725 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1726 		if (r)
1727 			return r;
1728 
1729 		total_count += count;
1730 	}
1731 
1732 	td->mapped_blocks -= total_count;
1733 	td->changed = true;
1734 
1735 	/*
1736 	 * Reinsert the mapping tree.
1737 	 */
1738 	value = cpu_to_le64(mapping_root);
1739 	__dm_bless_for_disk(&value);
1740 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1741 }
1742 
1743 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1744 {
1745 	int r = -EINVAL;
1746 
1747 	pmd_write_lock(td->pmd);
1748 	if (!td->pmd->fail_io)
1749 		r = __remove(td, block);
1750 	pmd_write_unlock(td->pmd);
1751 
1752 	return r;
1753 }
1754 
1755 int dm_thin_remove_range(struct dm_thin_device *td,
1756 			 dm_block_t begin, dm_block_t end)
1757 {
1758 	int r = -EINVAL;
1759 
1760 	pmd_write_lock(td->pmd);
1761 	if (!td->pmd->fail_io)
1762 		r = __remove_range(td, begin, end);
1763 	pmd_write_unlock(td->pmd);
1764 
1765 	return r;
1766 }
1767 
1768 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1769 {
1770 	int r;
1771 	uint32_t ref_count;
1772 
1773 	down_read(&pmd->root_lock);
1774 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1775 	if (!r)
1776 		*result = (ref_count > 1);
1777 	up_read(&pmd->root_lock);
1778 
1779 	return r;
1780 }
1781 
1782 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1783 {
1784 	int r = 0;
1785 
1786 	pmd_write_lock(pmd);
1787 	r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1788 	pmd_write_unlock(pmd);
1789 
1790 	return r;
1791 }
1792 
1793 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1794 {
1795 	int r = 0;
1796 
1797 	pmd_write_lock(pmd);
1798 	r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1799 	pmd_write_unlock(pmd);
1800 
1801 	return r;
1802 }
1803 
1804 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1805 {
1806 	int r;
1807 
1808 	down_read(&td->pmd->root_lock);
1809 	r = td->changed;
1810 	up_read(&td->pmd->root_lock);
1811 
1812 	return r;
1813 }
1814 
1815 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1816 {
1817 	bool r = false;
1818 	struct dm_thin_device *td, *tmp;
1819 
1820 	down_read(&pmd->root_lock);
1821 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1822 		if (td->changed) {
1823 			r = td->changed;
1824 			break;
1825 		}
1826 	}
1827 	up_read(&pmd->root_lock);
1828 
1829 	return r;
1830 }
1831 
1832 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1833 {
1834 	bool r;
1835 
1836 	down_read(&td->pmd->root_lock);
1837 	r = td->aborted_with_changes;
1838 	up_read(&td->pmd->root_lock);
1839 
1840 	return r;
1841 }
1842 
1843 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1844 {
1845 	int r = -EINVAL;
1846 
1847 	pmd_write_lock(pmd);
1848 	if (!pmd->fail_io)
1849 		r = dm_sm_new_block(pmd->data_sm, result);
1850 	pmd_write_unlock(pmd);
1851 
1852 	return r;
1853 }
1854 
1855 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1856 {
1857 	int r = -EINVAL;
1858 
1859 	/*
1860 	 * Care is taken to not have commit be what
1861 	 * triggers putting the thin-pool in-service.
1862 	 */
1863 	pmd_write_lock_in_core(pmd);
1864 	if (pmd->fail_io)
1865 		goto out;
1866 
1867 	r = __commit_transaction(pmd);
1868 	if (r < 0)
1869 		goto out;
1870 
1871 	/*
1872 	 * Open the next transaction.
1873 	 */
1874 	r = __begin_transaction(pmd);
1875 out:
1876 	pmd_write_unlock(pmd);
1877 	return r;
1878 }
1879 
1880 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1881 {
1882 	struct dm_thin_device *td;
1883 
1884 	list_for_each_entry(td, &pmd->thin_devices, list)
1885 		td->aborted_with_changes = td->changed;
1886 }
1887 
1888 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1889 {
1890 	int r = -EINVAL;
1891 
1892 	pmd_write_lock(pmd);
1893 	if (pmd->fail_io)
1894 		goto out;
1895 
1896 	__set_abort_with_changes_flags(pmd);
1897 	__destroy_persistent_data_objects(pmd);
1898 	r = __create_persistent_data_objects(pmd, false);
1899 	if (r)
1900 		pmd->fail_io = true;
1901 
1902 out:
1903 	pmd_write_unlock(pmd);
1904 
1905 	return r;
1906 }
1907 
1908 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1909 {
1910 	int r = -EINVAL;
1911 
1912 	down_read(&pmd->root_lock);
1913 	if (!pmd->fail_io)
1914 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1915 	up_read(&pmd->root_lock);
1916 
1917 	return r;
1918 }
1919 
1920 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1921 					  dm_block_t *result)
1922 {
1923 	int r = -EINVAL;
1924 
1925 	down_read(&pmd->root_lock);
1926 	if (!pmd->fail_io)
1927 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1928 
1929 	if (!r) {
1930 		if (*result < pmd->metadata_reserve)
1931 			*result = 0;
1932 		else
1933 			*result -= pmd->metadata_reserve;
1934 	}
1935 	up_read(&pmd->root_lock);
1936 
1937 	return r;
1938 }
1939 
1940 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1941 				  dm_block_t *result)
1942 {
1943 	int r = -EINVAL;
1944 
1945 	down_read(&pmd->root_lock);
1946 	if (!pmd->fail_io)
1947 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1948 	up_read(&pmd->root_lock);
1949 
1950 	return r;
1951 }
1952 
1953 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1954 {
1955 	int r = -EINVAL;
1956 
1957 	down_read(&pmd->root_lock);
1958 	if (!pmd->fail_io)
1959 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1960 	up_read(&pmd->root_lock);
1961 
1962 	return r;
1963 }
1964 
1965 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1966 {
1967 	int r = -EINVAL;
1968 	struct dm_pool_metadata *pmd = td->pmd;
1969 
1970 	down_read(&pmd->root_lock);
1971 	if (!pmd->fail_io) {
1972 		*result = td->mapped_blocks;
1973 		r = 0;
1974 	}
1975 	up_read(&pmd->root_lock);
1976 
1977 	return r;
1978 }
1979 
1980 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1981 {
1982 	int r;
1983 	__le64 value_le;
1984 	dm_block_t thin_root;
1985 	struct dm_pool_metadata *pmd = td->pmd;
1986 
1987 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1988 	if (r)
1989 		return r;
1990 
1991 	thin_root = le64_to_cpu(value_le);
1992 
1993 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1994 }
1995 
1996 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1997 				     dm_block_t *result)
1998 {
1999 	int r = -EINVAL;
2000 	struct dm_pool_metadata *pmd = td->pmd;
2001 
2002 	down_read(&pmd->root_lock);
2003 	if (!pmd->fail_io)
2004 		r = __highest_block(td, result);
2005 	up_read(&pmd->root_lock);
2006 
2007 	return r;
2008 }
2009 
2010 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2011 {
2012 	int r;
2013 	dm_block_t old_count;
2014 
2015 	r = dm_sm_get_nr_blocks(sm, &old_count);
2016 	if (r)
2017 		return r;
2018 
2019 	if (new_count == old_count)
2020 		return 0;
2021 
2022 	if (new_count < old_count) {
2023 		DMERR("cannot reduce size of space map");
2024 		return -EINVAL;
2025 	}
2026 
2027 	return dm_sm_extend(sm, new_count - old_count);
2028 }
2029 
2030 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2031 {
2032 	int r = -EINVAL;
2033 
2034 	pmd_write_lock(pmd);
2035 	if (!pmd->fail_io)
2036 		r = __resize_space_map(pmd->data_sm, new_count);
2037 	pmd_write_unlock(pmd);
2038 
2039 	return r;
2040 }
2041 
2042 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2043 {
2044 	int r = -EINVAL;
2045 
2046 	pmd_write_lock(pmd);
2047 	if (!pmd->fail_io) {
2048 		r = __resize_space_map(pmd->metadata_sm, new_count);
2049 		if (!r)
2050 			__set_metadata_reserve(pmd);
2051 	}
2052 	pmd_write_unlock(pmd);
2053 
2054 	return r;
2055 }
2056 
2057 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2058 {
2059 	pmd_write_lock_in_core(pmd);
2060 	dm_bm_set_read_only(pmd->bm);
2061 	pmd_write_unlock(pmd);
2062 }
2063 
2064 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2065 {
2066 	pmd_write_lock_in_core(pmd);
2067 	dm_bm_set_read_write(pmd->bm);
2068 	pmd_write_unlock(pmd);
2069 }
2070 
2071 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2072 					dm_block_t threshold,
2073 					dm_sm_threshold_fn fn,
2074 					void *context)
2075 {
2076 	int r;
2077 
2078 	pmd_write_lock_in_core(pmd);
2079 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2080 	pmd_write_unlock(pmd);
2081 
2082 	return r;
2083 }
2084 
2085 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2086 					  dm_pool_pre_commit_fn fn,
2087 					  void *context)
2088 {
2089 	pmd_write_lock_in_core(pmd);
2090 	pmd->pre_commit_fn = fn;
2091 	pmd->pre_commit_context = context;
2092 	pmd_write_unlock(pmd);
2093 }
2094 
2095 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2096 {
2097 	int r = -EINVAL;
2098 	struct dm_block *sblock;
2099 	struct thin_disk_superblock *disk_super;
2100 
2101 	pmd_write_lock(pmd);
2102 	if (pmd->fail_io)
2103 		goto out;
2104 
2105 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2106 
2107 	r = superblock_lock(pmd, &sblock);
2108 	if (r) {
2109 		DMERR("couldn't lock superblock");
2110 		goto out;
2111 	}
2112 
2113 	disk_super = dm_block_data(sblock);
2114 	disk_super->flags = cpu_to_le32(pmd->flags);
2115 
2116 	dm_bm_unlock(sblock);
2117 out:
2118 	pmd_write_unlock(pmd);
2119 	return r;
2120 }
2121 
2122 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2123 {
2124 	bool needs_check;
2125 
2126 	down_read(&pmd->root_lock);
2127 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2128 	up_read(&pmd->root_lock);
2129 
2130 	return needs_check;
2131 }
2132 
2133 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2134 {
2135 	down_read(&pmd->root_lock);
2136 	if (!pmd->fail_io)
2137 		dm_tm_issue_prefetches(pmd->tm);
2138 	up_read(&pmd->root_lock);
2139 }
2140