1 /* 2 * Copyright (C) 2011-2012 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "persistent-data/dm-btree.h" 9 #include "persistent-data/dm-space-map.h" 10 #include "persistent-data/dm-space-map-disk.h" 11 #include "persistent-data/dm-transaction-manager.h" 12 13 #include <linux/list.h> 14 #include <linux/device-mapper.h> 15 #include <linux/workqueue.h> 16 17 /*-------------------------------------------------------------------------- 18 * As far as the metadata goes, there is: 19 * 20 * - A superblock in block zero, taking up fewer than 512 bytes for 21 * atomic writes. 22 * 23 * - A space map managing the metadata blocks. 24 * 25 * - A space map managing the data blocks. 26 * 27 * - A btree mapping our internal thin dev ids onto struct disk_device_details. 28 * 29 * - A hierarchical btree, with 2 levels which effectively maps (thin 30 * dev id, virtual block) -> block_time. Block time is a 64-bit 31 * field holding the time in the low 24 bits, and block in the top 48 32 * bits. 33 * 34 * BTrees consist solely of btree_nodes, that fill a block. Some are 35 * internal nodes, as such their values are a __le64 pointing to other 36 * nodes. Leaf nodes can store data of any reasonable size (ie. much 37 * smaller than the block size). The nodes consist of the header, 38 * followed by an array of keys, followed by an array of values. We have 39 * to binary search on the keys so they're all held together to help the 40 * cpu cache. 41 * 42 * Space maps have 2 btrees: 43 * 44 * - One maps a uint64_t onto a struct index_entry. Which points to a 45 * bitmap block, and has some details about how many free entries there 46 * are etc. 47 * 48 * - The bitmap blocks have a header (for the checksum). Then the rest 49 * of the block is pairs of bits. With the meaning being: 50 * 51 * 0 - ref count is 0 52 * 1 - ref count is 1 53 * 2 - ref count is 2 54 * 3 - ref count is higher than 2 55 * 56 * - If the count is higher than 2 then the ref count is entered in a 57 * second btree that directly maps the block_address to a uint32_t ref 58 * count. 59 * 60 * The space map metadata variant doesn't have a bitmaps btree. Instead 61 * it has one single blocks worth of index_entries. This avoids 62 * recursive issues with the bitmap btree needing to allocate space in 63 * order to insert. With a small data block size such as 64k the 64 * metadata support data devices that are hundreds of terrabytes. 65 * 66 * The space maps allocate space linearly from front to back. Space that 67 * is freed in a transaction is never recycled within that transaction. 68 * To try and avoid fragmenting _free_ space the allocator always goes 69 * back and fills in gaps. 70 * 71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks 72 * from the block manager. 73 *--------------------------------------------------------------------------*/ 74 75 #define DM_MSG_PREFIX "thin metadata" 76 77 #define THIN_SUPERBLOCK_MAGIC 27022010 78 #define THIN_SUPERBLOCK_LOCATION 0 79 #define THIN_VERSION 2 80 #define SECTOR_TO_BLOCK_SHIFT 3 81 82 /* 83 * For btree insert: 84 * 3 for btree insert + 85 * 2 for btree lookup used within space map 86 * For btree remove: 87 * 2 for shadow spine + 88 * 4 for rebalance 3 child node 89 */ 90 #define THIN_MAX_CONCURRENT_LOCKS 6 91 92 /* This should be plenty */ 93 #define SPACE_MAP_ROOT_SIZE 128 94 95 /* 96 * Little endian on-disk superblock and device details. 97 */ 98 struct thin_disk_superblock { 99 __le32 csum; /* Checksum of superblock except for this field. */ 100 __le32 flags; 101 __le64 blocknr; /* This block number, dm_block_t. */ 102 103 __u8 uuid[16]; 104 __le64 magic; 105 __le32 version; 106 __le32 time; 107 108 __le64 trans_id; 109 110 /* 111 * Root held by userspace transactions. 112 */ 113 __le64 held_root; 114 115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 117 118 /* 119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block 120 */ 121 __le64 data_mapping_root; 122 123 /* 124 * Device detail root mapping dev_id -> device_details 125 */ 126 __le64 device_details_root; 127 128 __le32 data_block_size; /* In 512-byte sectors. */ 129 130 __le32 metadata_block_size; /* In 512-byte sectors. */ 131 __le64 metadata_nr_blocks; 132 133 __le32 compat_flags; 134 __le32 compat_ro_flags; 135 __le32 incompat_flags; 136 } __packed; 137 138 struct disk_device_details { 139 __le64 mapped_blocks; 140 __le64 transaction_id; /* When created. */ 141 __le32 creation_time; 142 __le32 snapshotted_time; 143 } __packed; 144 145 struct dm_pool_metadata { 146 struct hlist_node hash; 147 148 struct block_device *bdev; 149 struct dm_block_manager *bm; 150 struct dm_space_map *metadata_sm; 151 struct dm_space_map *data_sm; 152 struct dm_transaction_manager *tm; 153 struct dm_transaction_manager *nb_tm; 154 155 /* 156 * Two-level btree. 157 * First level holds thin_dev_t. 158 * Second level holds mappings. 159 */ 160 struct dm_btree_info info; 161 162 /* 163 * Non-blocking version of the above. 164 */ 165 struct dm_btree_info nb_info; 166 167 /* 168 * Just the top level for deleting whole devices. 169 */ 170 struct dm_btree_info tl_info; 171 172 /* 173 * Just the bottom level for creating new devices. 174 */ 175 struct dm_btree_info bl_info; 176 177 /* 178 * Describes the device details btree. 179 */ 180 struct dm_btree_info details_info; 181 182 struct rw_semaphore root_lock; 183 uint32_t time; 184 dm_block_t root; 185 dm_block_t details_root; 186 struct list_head thin_devices; 187 uint64_t trans_id; 188 unsigned long flags; 189 sector_t data_block_size; 190 191 /* 192 * We reserve a section of the metadata for commit overhead. 193 * All reported space does *not* include this. 194 */ 195 dm_block_t metadata_reserve; 196 197 /* 198 * Set if a transaction has to be aborted but the attempt to roll back 199 * to the previous (good) transaction failed. The only pool metadata 200 * operation possible in this state is the closing of the device. 201 */ 202 bool fail_io:1; 203 204 /* 205 * Set once a thin-pool has been accessed through one of the interfaces 206 * that imply the pool is in-service (e.g. thin devices created/deleted, 207 * thin-pool message, metadata snapshots, etc). 208 */ 209 bool in_service:1; 210 211 /* 212 * Reading the space map roots can fail, so we read it into these 213 * buffers before the superblock is locked and updated. 214 */ 215 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 216 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 217 }; 218 219 struct dm_thin_device { 220 struct list_head list; 221 struct dm_pool_metadata *pmd; 222 dm_thin_id id; 223 224 int open_count; 225 bool changed:1; 226 bool aborted_with_changes:1; 227 uint64_t mapped_blocks; 228 uint64_t transaction_id; 229 uint32_t creation_time; 230 uint32_t snapshotted_time; 231 }; 232 233 /*---------------------------------------------------------------- 234 * superblock validator 235 *--------------------------------------------------------------*/ 236 237 #define SUPERBLOCK_CSUM_XOR 160774 238 239 static void sb_prepare_for_write(struct dm_block_validator *v, 240 struct dm_block *b, 241 size_t block_size) 242 { 243 struct thin_disk_superblock *disk_super = dm_block_data(b); 244 245 disk_super->blocknr = cpu_to_le64(dm_block_location(b)); 246 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 247 block_size - sizeof(__le32), 248 SUPERBLOCK_CSUM_XOR)); 249 } 250 251 static int sb_check(struct dm_block_validator *v, 252 struct dm_block *b, 253 size_t block_size) 254 { 255 struct thin_disk_superblock *disk_super = dm_block_data(b); 256 __le32 csum_le; 257 258 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { 259 DMERR("sb_check failed: blocknr %llu: " 260 "wanted %llu", le64_to_cpu(disk_super->blocknr), 261 (unsigned long long)dm_block_location(b)); 262 return -ENOTBLK; 263 } 264 265 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) { 266 DMERR("sb_check failed: magic %llu: " 267 "wanted %llu", le64_to_cpu(disk_super->magic), 268 (unsigned long long)THIN_SUPERBLOCK_MAGIC); 269 return -EILSEQ; 270 } 271 272 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 273 block_size - sizeof(__le32), 274 SUPERBLOCK_CSUM_XOR)); 275 if (csum_le != disk_super->csum) { 276 DMERR("sb_check failed: csum %u: wanted %u", 277 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); 278 return -EILSEQ; 279 } 280 281 return 0; 282 } 283 284 static struct dm_block_validator sb_validator = { 285 .name = "superblock", 286 .prepare_for_write = sb_prepare_for_write, 287 .check = sb_check 288 }; 289 290 /*---------------------------------------------------------------- 291 * Methods for the btree value types 292 *--------------------------------------------------------------*/ 293 294 static uint64_t pack_block_time(dm_block_t b, uint32_t t) 295 { 296 return (b << 24) | t; 297 } 298 299 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) 300 { 301 *b = v >> 24; 302 *t = v & ((1 << 24) - 1); 303 } 304 305 static void data_block_inc(void *context, const void *value_le) 306 { 307 struct dm_space_map *sm = context; 308 __le64 v_le; 309 uint64_t b; 310 uint32_t t; 311 312 memcpy(&v_le, value_le, sizeof(v_le)); 313 unpack_block_time(le64_to_cpu(v_le), &b, &t); 314 dm_sm_inc_block(sm, b); 315 } 316 317 static void data_block_dec(void *context, const void *value_le) 318 { 319 struct dm_space_map *sm = context; 320 __le64 v_le; 321 uint64_t b; 322 uint32_t t; 323 324 memcpy(&v_le, value_le, sizeof(v_le)); 325 unpack_block_time(le64_to_cpu(v_le), &b, &t); 326 dm_sm_dec_block(sm, b); 327 } 328 329 static int data_block_equal(void *context, const void *value1_le, const void *value2_le) 330 { 331 __le64 v1_le, v2_le; 332 uint64_t b1, b2; 333 uint32_t t; 334 335 memcpy(&v1_le, value1_le, sizeof(v1_le)); 336 memcpy(&v2_le, value2_le, sizeof(v2_le)); 337 unpack_block_time(le64_to_cpu(v1_le), &b1, &t); 338 unpack_block_time(le64_to_cpu(v2_le), &b2, &t); 339 340 return b1 == b2; 341 } 342 343 static void subtree_inc(void *context, const void *value) 344 { 345 struct dm_btree_info *info = context; 346 __le64 root_le; 347 uint64_t root; 348 349 memcpy(&root_le, value, sizeof(root_le)); 350 root = le64_to_cpu(root_le); 351 dm_tm_inc(info->tm, root); 352 } 353 354 static void subtree_dec(void *context, const void *value) 355 { 356 struct dm_btree_info *info = context; 357 __le64 root_le; 358 uint64_t root; 359 360 memcpy(&root_le, value, sizeof(root_le)); 361 root = le64_to_cpu(root_le); 362 if (dm_btree_del(info, root)) 363 DMERR("btree delete failed"); 364 } 365 366 static int subtree_equal(void *context, const void *value1_le, const void *value2_le) 367 { 368 __le64 v1_le, v2_le; 369 memcpy(&v1_le, value1_le, sizeof(v1_le)); 370 memcpy(&v2_le, value2_le, sizeof(v2_le)); 371 372 return v1_le == v2_le; 373 } 374 375 /*----------------------------------------------------------------*/ 376 377 /* 378 * Variant that is used for in-core only changes or code that 379 * shouldn't put the pool in service on its own (e.g. commit). 380 */ 381 static inline void __pmd_write_lock(struct dm_pool_metadata *pmd) 382 __acquires(pmd->root_lock) 383 { 384 down_write(&pmd->root_lock); 385 } 386 #define pmd_write_lock_in_core(pmd) __pmd_write_lock((pmd)) 387 388 static inline void pmd_write_lock(struct dm_pool_metadata *pmd) 389 { 390 __pmd_write_lock(pmd); 391 if (unlikely(!pmd->in_service)) 392 pmd->in_service = true; 393 } 394 395 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd) 396 __releases(pmd->root_lock) 397 { 398 up_write(&pmd->root_lock); 399 } 400 401 /*----------------------------------------------------------------*/ 402 403 static int superblock_lock_zero(struct dm_pool_metadata *pmd, 404 struct dm_block **sblock) 405 { 406 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION, 407 &sb_validator, sblock); 408 } 409 410 static int superblock_lock(struct dm_pool_metadata *pmd, 411 struct dm_block **sblock) 412 { 413 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 414 &sb_validator, sblock); 415 } 416 417 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) 418 { 419 int r; 420 unsigned i; 421 struct dm_block *b; 422 __le64 *data_le, zero = cpu_to_le64(0); 423 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); 424 425 /* 426 * We can't use a validator here - it may be all zeroes. 427 */ 428 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b); 429 if (r) 430 return r; 431 432 data_le = dm_block_data(b); 433 *result = 1; 434 for (i = 0; i < block_size; i++) { 435 if (data_le[i] != zero) { 436 *result = 0; 437 break; 438 } 439 } 440 441 dm_bm_unlock(b); 442 443 return 0; 444 } 445 446 static void __setup_btree_details(struct dm_pool_metadata *pmd) 447 { 448 pmd->info.tm = pmd->tm; 449 pmd->info.levels = 2; 450 pmd->info.value_type.context = pmd->data_sm; 451 pmd->info.value_type.size = sizeof(__le64); 452 pmd->info.value_type.inc = data_block_inc; 453 pmd->info.value_type.dec = data_block_dec; 454 pmd->info.value_type.equal = data_block_equal; 455 456 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info)); 457 pmd->nb_info.tm = pmd->nb_tm; 458 459 pmd->tl_info.tm = pmd->tm; 460 pmd->tl_info.levels = 1; 461 pmd->tl_info.value_type.context = &pmd->bl_info; 462 pmd->tl_info.value_type.size = sizeof(__le64); 463 pmd->tl_info.value_type.inc = subtree_inc; 464 pmd->tl_info.value_type.dec = subtree_dec; 465 pmd->tl_info.value_type.equal = subtree_equal; 466 467 pmd->bl_info.tm = pmd->tm; 468 pmd->bl_info.levels = 1; 469 pmd->bl_info.value_type.context = pmd->data_sm; 470 pmd->bl_info.value_type.size = sizeof(__le64); 471 pmd->bl_info.value_type.inc = data_block_inc; 472 pmd->bl_info.value_type.dec = data_block_dec; 473 pmd->bl_info.value_type.equal = data_block_equal; 474 475 pmd->details_info.tm = pmd->tm; 476 pmd->details_info.levels = 1; 477 pmd->details_info.value_type.context = NULL; 478 pmd->details_info.value_type.size = sizeof(struct disk_device_details); 479 pmd->details_info.value_type.inc = NULL; 480 pmd->details_info.value_type.dec = NULL; 481 pmd->details_info.value_type.equal = NULL; 482 } 483 484 static int save_sm_roots(struct dm_pool_metadata *pmd) 485 { 486 int r; 487 size_t len; 488 489 r = dm_sm_root_size(pmd->metadata_sm, &len); 490 if (r < 0) 491 return r; 492 493 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); 494 if (r < 0) 495 return r; 496 497 r = dm_sm_root_size(pmd->data_sm, &len); 498 if (r < 0) 499 return r; 500 501 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); 502 } 503 504 static void copy_sm_roots(struct dm_pool_metadata *pmd, 505 struct thin_disk_superblock *disk) 506 { 507 memcpy(&disk->metadata_space_map_root, 508 &pmd->metadata_space_map_root, 509 sizeof(pmd->metadata_space_map_root)); 510 511 memcpy(&disk->data_space_map_root, 512 &pmd->data_space_map_root, 513 sizeof(pmd->data_space_map_root)); 514 } 515 516 static int __write_initial_superblock(struct dm_pool_metadata *pmd) 517 { 518 int r; 519 struct dm_block *sblock; 520 struct thin_disk_superblock *disk_super; 521 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT; 522 523 if (bdev_size > THIN_METADATA_MAX_SECTORS) 524 bdev_size = THIN_METADATA_MAX_SECTORS; 525 526 r = dm_sm_commit(pmd->data_sm); 527 if (r < 0) 528 return r; 529 530 r = dm_tm_pre_commit(pmd->tm); 531 if (r < 0) 532 return r; 533 534 r = save_sm_roots(pmd); 535 if (r < 0) 536 return r; 537 538 r = superblock_lock_zero(pmd, &sblock); 539 if (r) 540 return r; 541 542 disk_super = dm_block_data(sblock); 543 disk_super->flags = 0; 544 memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); 545 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC); 546 disk_super->version = cpu_to_le32(THIN_VERSION); 547 disk_super->time = 0; 548 disk_super->trans_id = 0; 549 disk_super->held_root = 0; 550 551 copy_sm_roots(pmd, disk_super); 552 553 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 554 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 555 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); 556 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); 557 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); 558 559 return dm_tm_commit(pmd->tm, sblock); 560 } 561 562 static int __format_metadata(struct dm_pool_metadata *pmd) 563 { 564 int r; 565 566 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 567 &pmd->tm, &pmd->metadata_sm); 568 if (r < 0) { 569 DMERR("tm_create_with_sm failed"); 570 return r; 571 } 572 573 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0); 574 if (IS_ERR(pmd->data_sm)) { 575 DMERR("sm_disk_create failed"); 576 r = PTR_ERR(pmd->data_sm); 577 goto bad_cleanup_tm; 578 } 579 580 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 581 if (!pmd->nb_tm) { 582 DMERR("could not create non-blocking clone tm"); 583 r = -ENOMEM; 584 goto bad_cleanup_data_sm; 585 } 586 587 __setup_btree_details(pmd); 588 589 r = dm_btree_empty(&pmd->info, &pmd->root); 590 if (r < 0) 591 goto bad_cleanup_nb_tm; 592 593 r = dm_btree_empty(&pmd->details_info, &pmd->details_root); 594 if (r < 0) { 595 DMERR("couldn't create devices root"); 596 goto bad_cleanup_nb_tm; 597 } 598 599 r = __write_initial_superblock(pmd); 600 if (r) 601 goto bad_cleanup_nb_tm; 602 603 return 0; 604 605 bad_cleanup_nb_tm: 606 dm_tm_destroy(pmd->nb_tm); 607 bad_cleanup_data_sm: 608 dm_sm_destroy(pmd->data_sm); 609 bad_cleanup_tm: 610 dm_tm_destroy(pmd->tm); 611 dm_sm_destroy(pmd->metadata_sm); 612 613 return r; 614 } 615 616 static int __check_incompat_features(struct thin_disk_superblock *disk_super, 617 struct dm_pool_metadata *pmd) 618 { 619 uint32_t features; 620 621 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP; 622 if (features) { 623 DMERR("could not access metadata due to unsupported optional features (%lx).", 624 (unsigned long)features); 625 return -EINVAL; 626 } 627 628 /* 629 * Check for read-only metadata to skip the following RDWR checks. 630 */ 631 if (get_disk_ro(pmd->bdev->bd_disk)) 632 return 0; 633 634 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP; 635 if (features) { 636 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", 637 (unsigned long)features); 638 return -EINVAL; 639 } 640 641 return 0; 642 } 643 644 static int __open_metadata(struct dm_pool_metadata *pmd) 645 { 646 int r; 647 struct dm_block *sblock; 648 struct thin_disk_superblock *disk_super; 649 650 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 651 &sb_validator, &sblock); 652 if (r < 0) { 653 DMERR("couldn't read superblock"); 654 return r; 655 } 656 657 disk_super = dm_block_data(sblock); 658 659 /* Verify the data block size hasn't changed */ 660 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) { 661 DMERR("changing the data block size (from %u to %llu) is not supported", 662 le32_to_cpu(disk_super->data_block_size), 663 (unsigned long long)pmd->data_block_size); 664 r = -EINVAL; 665 goto bad_unlock_sblock; 666 } 667 668 r = __check_incompat_features(disk_super, pmd); 669 if (r < 0) 670 goto bad_unlock_sblock; 671 672 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 673 disk_super->metadata_space_map_root, 674 sizeof(disk_super->metadata_space_map_root), 675 &pmd->tm, &pmd->metadata_sm); 676 if (r < 0) { 677 DMERR("tm_open_with_sm failed"); 678 goto bad_unlock_sblock; 679 } 680 681 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root, 682 sizeof(disk_super->data_space_map_root)); 683 if (IS_ERR(pmd->data_sm)) { 684 DMERR("sm_disk_open failed"); 685 r = PTR_ERR(pmd->data_sm); 686 goto bad_cleanup_tm; 687 } 688 689 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 690 if (!pmd->nb_tm) { 691 DMERR("could not create non-blocking clone tm"); 692 r = -ENOMEM; 693 goto bad_cleanup_data_sm; 694 } 695 696 __setup_btree_details(pmd); 697 dm_bm_unlock(sblock); 698 699 return 0; 700 701 bad_cleanup_data_sm: 702 dm_sm_destroy(pmd->data_sm); 703 bad_cleanup_tm: 704 dm_tm_destroy(pmd->tm); 705 dm_sm_destroy(pmd->metadata_sm); 706 bad_unlock_sblock: 707 dm_bm_unlock(sblock); 708 709 return r; 710 } 711 712 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device) 713 { 714 int r, unformatted; 715 716 r = __superblock_all_zeroes(pmd->bm, &unformatted); 717 if (r) 718 return r; 719 720 if (unformatted) 721 return format_device ? __format_metadata(pmd) : -EPERM; 722 723 return __open_metadata(pmd); 724 } 725 726 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device) 727 { 728 int r; 729 730 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, 731 THIN_MAX_CONCURRENT_LOCKS); 732 if (IS_ERR(pmd->bm)) { 733 DMERR("could not create block manager"); 734 return PTR_ERR(pmd->bm); 735 } 736 737 r = __open_or_format_metadata(pmd, format_device); 738 if (r) 739 dm_block_manager_destroy(pmd->bm); 740 741 return r; 742 } 743 744 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd) 745 { 746 dm_sm_destroy(pmd->data_sm); 747 dm_sm_destroy(pmd->metadata_sm); 748 dm_tm_destroy(pmd->nb_tm); 749 dm_tm_destroy(pmd->tm); 750 dm_block_manager_destroy(pmd->bm); 751 } 752 753 static int __begin_transaction(struct dm_pool_metadata *pmd) 754 { 755 int r; 756 struct thin_disk_superblock *disk_super; 757 struct dm_block *sblock; 758 759 /* 760 * We re-read the superblock every time. Shouldn't need to do this 761 * really. 762 */ 763 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 764 &sb_validator, &sblock); 765 if (r) 766 return r; 767 768 disk_super = dm_block_data(sblock); 769 pmd->time = le32_to_cpu(disk_super->time); 770 pmd->root = le64_to_cpu(disk_super->data_mapping_root); 771 pmd->details_root = le64_to_cpu(disk_super->device_details_root); 772 pmd->trans_id = le64_to_cpu(disk_super->trans_id); 773 pmd->flags = le32_to_cpu(disk_super->flags); 774 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size); 775 776 dm_bm_unlock(sblock); 777 return 0; 778 } 779 780 static int __write_changed_details(struct dm_pool_metadata *pmd) 781 { 782 int r; 783 struct dm_thin_device *td, *tmp; 784 struct disk_device_details details; 785 uint64_t key; 786 787 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 788 if (!td->changed) 789 continue; 790 791 key = td->id; 792 793 details.mapped_blocks = cpu_to_le64(td->mapped_blocks); 794 details.transaction_id = cpu_to_le64(td->transaction_id); 795 details.creation_time = cpu_to_le32(td->creation_time); 796 details.snapshotted_time = cpu_to_le32(td->snapshotted_time); 797 __dm_bless_for_disk(&details); 798 799 r = dm_btree_insert(&pmd->details_info, pmd->details_root, 800 &key, &details, &pmd->details_root); 801 if (r) 802 return r; 803 804 if (td->open_count) 805 td->changed = 0; 806 else { 807 list_del(&td->list); 808 kfree(td); 809 } 810 } 811 812 return 0; 813 } 814 815 static int __commit_transaction(struct dm_pool_metadata *pmd) 816 { 817 int r; 818 struct thin_disk_superblock *disk_super; 819 struct dm_block *sblock; 820 821 /* 822 * We need to know if the thin_disk_superblock exceeds a 512-byte sector. 823 */ 824 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512); 825 826 if (unlikely(!pmd->in_service)) 827 return 0; 828 829 r = __write_changed_details(pmd); 830 if (r < 0) 831 return r; 832 833 r = dm_sm_commit(pmd->data_sm); 834 if (r < 0) 835 return r; 836 837 r = dm_tm_pre_commit(pmd->tm); 838 if (r < 0) 839 return r; 840 841 r = save_sm_roots(pmd); 842 if (r < 0) 843 return r; 844 845 r = superblock_lock(pmd, &sblock); 846 if (r) 847 return r; 848 849 disk_super = dm_block_data(sblock); 850 disk_super->time = cpu_to_le32(pmd->time); 851 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 852 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 853 disk_super->trans_id = cpu_to_le64(pmd->trans_id); 854 disk_super->flags = cpu_to_le32(pmd->flags); 855 856 copy_sm_roots(pmd, disk_super); 857 858 return dm_tm_commit(pmd->tm, sblock); 859 } 860 861 static void __set_metadata_reserve(struct dm_pool_metadata *pmd) 862 { 863 int r; 864 dm_block_t total; 865 dm_block_t max_blocks = 4096; /* 16M */ 866 867 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total); 868 if (r) { 869 DMERR("could not get size of metadata device"); 870 pmd->metadata_reserve = max_blocks; 871 } else 872 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10)); 873 } 874 875 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, 876 sector_t data_block_size, 877 bool format_device) 878 { 879 int r; 880 struct dm_pool_metadata *pmd; 881 882 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL); 883 if (!pmd) { 884 DMERR("could not allocate metadata struct"); 885 return ERR_PTR(-ENOMEM); 886 } 887 888 init_rwsem(&pmd->root_lock); 889 pmd->time = 0; 890 INIT_LIST_HEAD(&pmd->thin_devices); 891 pmd->fail_io = false; 892 pmd->in_service = false; 893 pmd->bdev = bdev; 894 pmd->data_block_size = data_block_size; 895 896 r = __create_persistent_data_objects(pmd, format_device); 897 if (r) { 898 kfree(pmd); 899 return ERR_PTR(r); 900 } 901 902 r = __begin_transaction(pmd); 903 if (r < 0) { 904 if (dm_pool_metadata_close(pmd) < 0) 905 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 906 return ERR_PTR(r); 907 } 908 909 __set_metadata_reserve(pmd); 910 911 return pmd; 912 } 913 914 int dm_pool_metadata_close(struct dm_pool_metadata *pmd) 915 { 916 int r; 917 unsigned open_devices = 0; 918 struct dm_thin_device *td, *tmp; 919 920 down_read(&pmd->root_lock); 921 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 922 if (td->open_count) 923 open_devices++; 924 else { 925 list_del(&td->list); 926 kfree(td); 927 } 928 } 929 up_read(&pmd->root_lock); 930 931 if (open_devices) { 932 DMERR("attempt to close pmd when %u device(s) are still open", 933 open_devices); 934 return -EBUSY; 935 } 936 937 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) { 938 r = __commit_transaction(pmd); 939 if (r < 0) 940 DMWARN("%s: __commit_transaction() failed, error = %d", 941 __func__, r); 942 } 943 if (!pmd->fail_io) 944 __destroy_persistent_data_objects(pmd); 945 946 kfree(pmd); 947 return 0; 948 } 949 950 /* 951 * __open_device: Returns @td corresponding to device with id @dev, 952 * creating it if @create is set and incrementing @td->open_count. 953 * On failure, @td is undefined. 954 */ 955 static int __open_device(struct dm_pool_metadata *pmd, 956 dm_thin_id dev, int create, 957 struct dm_thin_device **td) 958 { 959 int r, changed = 0; 960 struct dm_thin_device *td2; 961 uint64_t key = dev; 962 struct disk_device_details details_le; 963 964 /* 965 * If the device is already open, return it. 966 */ 967 list_for_each_entry(td2, &pmd->thin_devices, list) 968 if (td2->id == dev) { 969 /* 970 * May not create an already-open device. 971 */ 972 if (create) 973 return -EEXIST; 974 975 td2->open_count++; 976 *td = td2; 977 return 0; 978 } 979 980 /* 981 * Check the device exists. 982 */ 983 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 984 &key, &details_le); 985 if (r) { 986 if (r != -ENODATA || !create) 987 return r; 988 989 /* 990 * Create new device. 991 */ 992 changed = 1; 993 details_le.mapped_blocks = 0; 994 details_le.transaction_id = cpu_to_le64(pmd->trans_id); 995 details_le.creation_time = cpu_to_le32(pmd->time); 996 details_le.snapshotted_time = cpu_to_le32(pmd->time); 997 } 998 999 *td = kmalloc(sizeof(**td), GFP_NOIO); 1000 if (!*td) 1001 return -ENOMEM; 1002 1003 (*td)->pmd = pmd; 1004 (*td)->id = dev; 1005 (*td)->open_count = 1; 1006 (*td)->changed = changed; 1007 (*td)->aborted_with_changes = false; 1008 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks); 1009 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id); 1010 (*td)->creation_time = le32_to_cpu(details_le.creation_time); 1011 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time); 1012 1013 list_add(&(*td)->list, &pmd->thin_devices); 1014 1015 return 0; 1016 } 1017 1018 static void __close_device(struct dm_thin_device *td) 1019 { 1020 --td->open_count; 1021 } 1022 1023 static int __create_thin(struct dm_pool_metadata *pmd, 1024 dm_thin_id dev) 1025 { 1026 int r; 1027 dm_block_t dev_root; 1028 uint64_t key = dev; 1029 struct disk_device_details details_le; 1030 struct dm_thin_device *td; 1031 __le64 value; 1032 1033 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1034 &key, &details_le); 1035 if (!r) 1036 return -EEXIST; 1037 1038 /* 1039 * Create an empty btree for the mappings. 1040 */ 1041 r = dm_btree_empty(&pmd->bl_info, &dev_root); 1042 if (r) 1043 return r; 1044 1045 /* 1046 * Insert it into the main mapping tree. 1047 */ 1048 value = cpu_to_le64(dev_root); 1049 __dm_bless_for_disk(&value); 1050 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1051 if (r) { 1052 dm_btree_del(&pmd->bl_info, dev_root); 1053 return r; 1054 } 1055 1056 r = __open_device(pmd, dev, 1, &td); 1057 if (r) { 1058 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1059 dm_btree_del(&pmd->bl_info, dev_root); 1060 return r; 1061 } 1062 __close_device(td); 1063 1064 return r; 1065 } 1066 1067 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) 1068 { 1069 int r = -EINVAL; 1070 1071 pmd_write_lock(pmd); 1072 if (!pmd->fail_io) 1073 r = __create_thin(pmd, dev); 1074 pmd_write_unlock(pmd); 1075 1076 return r; 1077 } 1078 1079 static int __set_snapshot_details(struct dm_pool_metadata *pmd, 1080 struct dm_thin_device *snap, 1081 dm_thin_id origin, uint32_t time) 1082 { 1083 int r; 1084 struct dm_thin_device *td; 1085 1086 r = __open_device(pmd, origin, 0, &td); 1087 if (r) 1088 return r; 1089 1090 td->changed = 1; 1091 td->snapshotted_time = time; 1092 1093 snap->mapped_blocks = td->mapped_blocks; 1094 snap->snapshotted_time = time; 1095 __close_device(td); 1096 1097 return 0; 1098 } 1099 1100 static int __create_snap(struct dm_pool_metadata *pmd, 1101 dm_thin_id dev, dm_thin_id origin) 1102 { 1103 int r; 1104 dm_block_t origin_root; 1105 uint64_t key = origin, dev_key = dev; 1106 struct dm_thin_device *td; 1107 struct disk_device_details details_le; 1108 __le64 value; 1109 1110 /* check this device is unused */ 1111 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1112 &dev_key, &details_le); 1113 if (!r) 1114 return -EEXIST; 1115 1116 /* find the mapping tree for the origin */ 1117 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value); 1118 if (r) 1119 return r; 1120 origin_root = le64_to_cpu(value); 1121 1122 /* clone the origin, an inc will do */ 1123 dm_tm_inc(pmd->tm, origin_root); 1124 1125 /* insert into the main mapping tree */ 1126 value = cpu_to_le64(origin_root); 1127 __dm_bless_for_disk(&value); 1128 key = dev; 1129 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1130 if (r) { 1131 dm_tm_dec(pmd->tm, origin_root); 1132 return r; 1133 } 1134 1135 pmd->time++; 1136 1137 r = __open_device(pmd, dev, 1, &td); 1138 if (r) 1139 goto bad; 1140 1141 r = __set_snapshot_details(pmd, td, origin, pmd->time); 1142 __close_device(td); 1143 1144 if (r) 1145 goto bad; 1146 1147 return 0; 1148 1149 bad: 1150 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1151 dm_btree_remove(&pmd->details_info, pmd->details_root, 1152 &key, &pmd->details_root); 1153 return r; 1154 } 1155 1156 int dm_pool_create_snap(struct dm_pool_metadata *pmd, 1157 dm_thin_id dev, 1158 dm_thin_id origin) 1159 { 1160 int r = -EINVAL; 1161 1162 pmd_write_lock(pmd); 1163 if (!pmd->fail_io) 1164 r = __create_snap(pmd, dev, origin); 1165 pmd_write_unlock(pmd); 1166 1167 return r; 1168 } 1169 1170 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev) 1171 { 1172 int r; 1173 uint64_t key = dev; 1174 struct dm_thin_device *td; 1175 1176 /* TODO: failure should mark the transaction invalid */ 1177 r = __open_device(pmd, dev, 0, &td); 1178 if (r) 1179 return r; 1180 1181 if (td->open_count > 1) { 1182 __close_device(td); 1183 return -EBUSY; 1184 } 1185 1186 list_del(&td->list); 1187 kfree(td); 1188 r = dm_btree_remove(&pmd->details_info, pmd->details_root, 1189 &key, &pmd->details_root); 1190 if (r) 1191 return r; 1192 1193 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1194 if (r) 1195 return r; 1196 1197 return 0; 1198 } 1199 1200 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd, 1201 dm_thin_id dev) 1202 { 1203 int r = -EINVAL; 1204 1205 pmd_write_lock(pmd); 1206 if (!pmd->fail_io) 1207 r = __delete_device(pmd, dev); 1208 pmd_write_unlock(pmd); 1209 1210 return r; 1211 } 1212 1213 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd, 1214 uint64_t current_id, 1215 uint64_t new_id) 1216 { 1217 int r = -EINVAL; 1218 1219 pmd_write_lock(pmd); 1220 1221 if (pmd->fail_io) 1222 goto out; 1223 1224 if (pmd->trans_id != current_id) { 1225 DMERR("mismatched transaction id"); 1226 goto out; 1227 } 1228 1229 pmd->trans_id = new_id; 1230 r = 0; 1231 1232 out: 1233 pmd_write_unlock(pmd); 1234 1235 return r; 1236 } 1237 1238 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd, 1239 uint64_t *result) 1240 { 1241 int r = -EINVAL; 1242 1243 down_read(&pmd->root_lock); 1244 if (!pmd->fail_io) { 1245 *result = pmd->trans_id; 1246 r = 0; 1247 } 1248 up_read(&pmd->root_lock); 1249 1250 return r; 1251 } 1252 1253 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd) 1254 { 1255 int r, inc; 1256 struct thin_disk_superblock *disk_super; 1257 struct dm_block *copy, *sblock; 1258 dm_block_t held_root; 1259 1260 /* 1261 * We commit to ensure the btree roots which we increment in a 1262 * moment are up to date. 1263 */ 1264 r = __commit_transaction(pmd); 1265 if (r < 0) { 1266 DMWARN("%s: __commit_transaction() failed, error = %d", 1267 __func__, r); 1268 return r; 1269 } 1270 1271 /* 1272 * Copy the superblock. 1273 */ 1274 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION); 1275 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION, 1276 &sb_validator, ©, &inc); 1277 if (r) 1278 return r; 1279 1280 BUG_ON(!inc); 1281 1282 held_root = dm_block_location(copy); 1283 disk_super = dm_block_data(copy); 1284 1285 if (le64_to_cpu(disk_super->held_root)) { 1286 DMWARN("Pool metadata snapshot already exists: release this before taking another."); 1287 1288 dm_tm_dec(pmd->tm, held_root); 1289 dm_tm_unlock(pmd->tm, copy); 1290 return -EBUSY; 1291 } 1292 1293 /* 1294 * Wipe the spacemap since we're not publishing this. 1295 */ 1296 memset(&disk_super->data_space_map_root, 0, 1297 sizeof(disk_super->data_space_map_root)); 1298 memset(&disk_super->metadata_space_map_root, 0, 1299 sizeof(disk_super->metadata_space_map_root)); 1300 1301 /* 1302 * Increment the data structures that need to be preserved. 1303 */ 1304 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root)); 1305 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root)); 1306 dm_tm_unlock(pmd->tm, copy); 1307 1308 /* 1309 * Write the held root into the superblock. 1310 */ 1311 r = superblock_lock(pmd, &sblock); 1312 if (r) { 1313 dm_tm_dec(pmd->tm, held_root); 1314 return r; 1315 } 1316 1317 disk_super = dm_block_data(sblock); 1318 disk_super->held_root = cpu_to_le64(held_root); 1319 dm_bm_unlock(sblock); 1320 return 0; 1321 } 1322 1323 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd) 1324 { 1325 int r = -EINVAL; 1326 1327 pmd_write_lock(pmd); 1328 if (!pmd->fail_io) 1329 r = __reserve_metadata_snap(pmd); 1330 pmd_write_unlock(pmd); 1331 1332 return r; 1333 } 1334 1335 static int __release_metadata_snap(struct dm_pool_metadata *pmd) 1336 { 1337 int r; 1338 struct thin_disk_superblock *disk_super; 1339 struct dm_block *sblock, *copy; 1340 dm_block_t held_root; 1341 1342 r = superblock_lock(pmd, &sblock); 1343 if (r) 1344 return r; 1345 1346 disk_super = dm_block_data(sblock); 1347 held_root = le64_to_cpu(disk_super->held_root); 1348 disk_super->held_root = cpu_to_le64(0); 1349 1350 dm_bm_unlock(sblock); 1351 1352 if (!held_root) { 1353 DMWARN("No pool metadata snapshot found: nothing to release."); 1354 return -EINVAL; 1355 } 1356 1357 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©); 1358 if (r) 1359 return r; 1360 1361 disk_super = dm_block_data(copy); 1362 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root)); 1363 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root)); 1364 dm_sm_dec_block(pmd->metadata_sm, held_root); 1365 1366 dm_tm_unlock(pmd->tm, copy); 1367 1368 return 0; 1369 } 1370 1371 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd) 1372 { 1373 int r = -EINVAL; 1374 1375 pmd_write_lock(pmd); 1376 if (!pmd->fail_io) 1377 r = __release_metadata_snap(pmd); 1378 pmd_write_unlock(pmd); 1379 1380 return r; 1381 } 1382 1383 static int __get_metadata_snap(struct dm_pool_metadata *pmd, 1384 dm_block_t *result) 1385 { 1386 int r; 1387 struct thin_disk_superblock *disk_super; 1388 struct dm_block *sblock; 1389 1390 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 1391 &sb_validator, &sblock); 1392 if (r) 1393 return r; 1394 1395 disk_super = dm_block_data(sblock); 1396 *result = le64_to_cpu(disk_super->held_root); 1397 1398 dm_bm_unlock(sblock); 1399 1400 return 0; 1401 } 1402 1403 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd, 1404 dm_block_t *result) 1405 { 1406 int r = -EINVAL; 1407 1408 down_read(&pmd->root_lock); 1409 if (!pmd->fail_io) 1410 r = __get_metadata_snap(pmd, result); 1411 up_read(&pmd->root_lock); 1412 1413 return r; 1414 } 1415 1416 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev, 1417 struct dm_thin_device **td) 1418 { 1419 int r = -EINVAL; 1420 1421 pmd_write_lock_in_core(pmd); 1422 if (!pmd->fail_io) 1423 r = __open_device(pmd, dev, 0, td); 1424 pmd_write_unlock(pmd); 1425 1426 return r; 1427 } 1428 1429 int dm_pool_close_thin_device(struct dm_thin_device *td) 1430 { 1431 pmd_write_lock_in_core(td->pmd); 1432 __close_device(td); 1433 pmd_write_unlock(td->pmd); 1434 1435 return 0; 1436 } 1437 1438 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) 1439 { 1440 return td->id; 1441 } 1442 1443 /* 1444 * Check whether @time (of block creation) is older than @td's last snapshot. 1445 * If so then the associated block is shared with the last snapshot device. 1446 * Any block on a device created *after* the device last got snapshotted is 1447 * necessarily not shared. 1448 */ 1449 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) 1450 { 1451 return td->snapshotted_time > time; 1452 } 1453 1454 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value, 1455 struct dm_thin_lookup_result *result) 1456 { 1457 uint64_t block_time = 0; 1458 dm_block_t exception_block; 1459 uint32_t exception_time; 1460 1461 block_time = le64_to_cpu(value); 1462 unpack_block_time(block_time, &exception_block, &exception_time); 1463 result->block = exception_block; 1464 result->shared = __snapshotted_since(td, exception_time); 1465 } 1466 1467 static int __find_block(struct dm_thin_device *td, dm_block_t block, 1468 int can_issue_io, struct dm_thin_lookup_result *result) 1469 { 1470 int r; 1471 __le64 value; 1472 struct dm_pool_metadata *pmd = td->pmd; 1473 dm_block_t keys[2] = { td->id, block }; 1474 struct dm_btree_info *info; 1475 1476 if (can_issue_io) { 1477 info = &pmd->info; 1478 } else 1479 info = &pmd->nb_info; 1480 1481 r = dm_btree_lookup(info, pmd->root, keys, &value); 1482 if (!r) 1483 unpack_lookup_result(td, value, result); 1484 1485 return r; 1486 } 1487 1488 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block, 1489 int can_issue_io, struct dm_thin_lookup_result *result) 1490 { 1491 int r; 1492 struct dm_pool_metadata *pmd = td->pmd; 1493 1494 down_read(&pmd->root_lock); 1495 if (pmd->fail_io) { 1496 up_read(&pmd->root_lock); 1497 return -EINVAL; 1498 } 1499 1500 r = __find_block(td, block, can_issue_io, result); 1501 1502 up_read(&pmd->root_lock); 1503 return r; 1504 } 1505 1506 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block, 1507 dm_block_t *vblock, 1508 struct dm_thin_lookup_result *result) 1509 { 1510 int r; 1511 __le64 value; 1512 struct dm_pool_metadata *pmd = td->pmd; 1513 dm_block_t keys[2] = { td->id, block }; 1514 1515 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value); 1516 if (!r) 1517 unpack_lookup_result(td, value, result); 1518 1519 return r; 1520 } 1521 1522 static int __find_mapped_range(struct dm_thin_device *td, 1523 dm_block_t begin, dm_block_t end, 1524 dm_block_t *thin_begin, dm_block_t *thin_end, 1525 dm_block_t *pool_begin, bool *maybe_shared) 1526 { 1527 int r; 1528 dm_block_t pool_end; 1529 struct dm_thin_lookup_result lookup; 1530 1531 if (end < begin) 1532 return -ENODATA; 1533 1534 r = __find_next_mapped_block(td, begin, &begin, &lookup); 1535 if (r) 1536 return r; 1537 1538 if (begin >= end) 1539 return -ENODATA; 1540 1541 *thin_begin = begin; 1542 *pool_begin = lookup.block; 1543 *maybe_shared = lookup.shared; 1544 1545 begin++; 1546 pool_end = *pool_begin + 1; 1547 while (begin != end) { 1548 r = __find_block(td, begin, true, &lookup); 1549 if (r) { 1550 if (r == -ENODATA) 1551 break; 1552 else 1553 return r; 1554 } 1555 1556 if ((lookup.block != pool_end) || 1557 (lookup.shared != *maybe_shared)) 1558 break; 1559 1560 pool_end++; 1561 begin++; 1562 } 1563 1564 *thin_end = begin; 1565 return 0; 1566 } 1567 1568 int dm_thin_find_mapped_range(struct dm_thin_device *td, 1569 dm_block_t begin, dm_block_t end, 1570 dm_block_t *thin_begin, dm_block_t *thin_end, 1571 dm_block_t *pool_begin, bool *maybe_shared) 1572 { 1573 int r = -EINVAL; 1574 struct dm_pool_metadata *pmd = td->pmd; 1575 1576 down_read(&pmd->root_lock); 1577 if (!pmd->fail_io) { 1578 r = __find_mapped_range(td, begin, end, thin_begin, thin_end, 1579 pool_begin, maybe_shared); 1580 } 1581 up_read(&pmd->root_lock); 1582 1583 return r; 1584 } 1585 1586 static int __insert(struct dm_thin_device *td, dm_block_t block, 1587 dm_block_t data_block) 1588 { 1589 int r, inserted; 1590 __le64 value; 1591 struct dm_pool_metadata *pmd = td->pmd; 1592 dm_block_t keys[2] = { td->id, block }; 1593 1594 value = cpu_to_le64(pack_block_time(data_block, pmd->time)); 1595 __dm_bless_for_disk(&value); 1596 1597 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value, 1598 &pmd->root, &inserted); 1599 if (r) 1600 return r; 1601 1602 td->changed = 1; 1603 if (inserted) 1604 td->mapped_blocks++; 1605 1606 return 0; 1607 } 1608 1609 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block, 1610 dm_block_t data_block) 1611 { 1612 int r = -EINVAL; 1613 1614 pmd_write_lock(td->pmd); 1615 if (!td->pmd->fail_io) 1616 r = __insert(td, block, data_block); 1617 pmd_write_unlock(td->pmd); 1618 1619 return r; 1620 } 1621 1622 static int __remove(struct dm_thin_device *td, dm_block_t block) 1623 { 1624 int r; 1625 struct dm_pool_metadata *pmd = td->pmd; 1626 dm_block_t keys[2] = { td->id, block }; 1627 1628 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root); 1629 if (r) 1630 return r; 1631 1632 td->mapped_blocks--; 1633 td->changed = 1; 1634 1635 return 0; 1636 } 1637 1638 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end) 1639 { 1640 int r; 1641 unsigned count, total_count = 0; 1642 struct dm_pool_metadata *pmd = td->pmd; 1643 dm_block_t keys[1] = { td->id }; 1644 __le64 value; 1645 dm_block_t mapping_root; 1646 1647 /* 1648 * Find the mapping tree 1649 */ 1650 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value); 1651 if (r) 1652 return r; 1653 1654 /* 1655 * Remove from the mapping tree, taking care to inc the 1656 * ref count so it doesn't get deleted. 1657 */ 1658 mapping_root = le64_to_cpu(value); 1659 dm_tm_inc(pmd->tm, mapping_root); 1660 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root); 1661 if (r) 1662 return r; 1663 1664 /* 1665 * Remove leaves stops at the first unmapped entry, so we have to 1666 * loop round finding mapped ranges. 1667 */ 1668 while (begin < end) { 1669 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value); 1670 if (r == -ENODATA) 1671 break; 1672 1673 if (r) 1674 return r; 1675 1676 if (begin >= end) 1677 break; 1678 1679 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count); 1680 if (r) 1681 return r; 1682 1683 total_count += count; 1684 } 1685 1686 td->mapped_blocks -= total_count; 1687 td->changed = 1; 1688 1689 /* 1690 * Reinsert the mapping tree. 1691 */ 1692 value = cpu_to_le64(mapping_root); 1693 __dm_bless_for_disk(&value); 1694 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root); 1695 } 1696 1697 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block) 1698 { 1699 int r = -EINVAL; 1700 1701 pmd_write_lock(td->pmd); 1702 if (!td->pmd->fail_io) 1703 r = __remove(td, block); 1704 pmd_write_unlock(td->pmd); 1705 1706 return r; 1707 } 1708 1709 int dm_thin_remove_range(struct dm_thin_device *td, 1710 dm_block_t begin, dm_block_t end) 1711 { 1712 int r = -EINVAL; 1713 1714 pmd_write_lock(td->pmd); 1715 if (!td->pmd->fail_io) 1716 r = __remove_range(td, begin, end); 1717 pmd_write_unlock(td->pmd); 1718 1719 return r; 1720 } 1721 1722 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) 1723 { 1724 int r; 1725 uint32_t ref_count; 1726 1727 down_read(&pmd->root_lock); 1728 r = dm_sm_get_count(pmd->data_sm, b, &ref_count); 1729 if (!r) 1730 *result = (ref_count > 1); 1731 up_read(&pmd->root_lock); 1732 1733 return r; 1734 } 1735 1736 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1737 { 1738 int r = 0; 1739 1740 pmd_write_lock(pmd); 1741 for (; b != e; b++) { 1742 r = dm_sm_inc_block(pmd->data_sm, b); 1743 if (r) 1744 break; 1745 } 1746 pmd_write_unlock(pmd); 1747 1748 return r; 1749 } 1750 1751 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1752 { 1753 int r = 0; 1754 1755 pmd_write_lock(pmd); 1756 for (; b != e; b++) { 1757 r = dm_sm_dec_block(pmd->data_sm, b); 1758 if (r) 1759 break; 1760 } 1761 pmd_write_unlock(pmd); 1762 1763 return r; 1764 } 1765 1766 bool dm_thin_changed_this_transaction(struct dm_thin_device *td) 1767 { 1768 int r; 1769 1770 down_read(&td->pmd->root_lock); 1771 r = td->changed; 1772 up_read(&td->pmd->root_lock); 1773 1774 return r; 1775 } 1776 1777 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) 1778 { 1779 bool r = false; 1780 struct dm_thin_device *td, *tmp; 1781 1782 down_read(&pmd->root_lock); 1783 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 1784 if (td->changed) { 1785 r = td->changed; 1786 break; 1787 } 1788 } 1789 up_read(&pmd->root_lock); 1790 1791 return r; 1792 } 1793 1794 bool dm_thin_aborted_changes(struct dm_thin_device *td) 1795 { 1796 bool r; 1797 1798 down_read(&td->pmd->root_lock); 1799 r = td->aborted_with_changes; 1800 up_read(&td->pmd->root_lock); 1801 1802 return r; 1803 } 1804 1805 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result) 1806 { 1807 int r = -EINVAL; 1808 1809 pmd_write_lock(pmd); 1810 if (!pmd->fail_io) 1811 r = dm_sm_new_block(pmd->data_sm, result); 1812 pmd_write_unlock(pmd); 1813 1814 return r; 1815 } 1816 1817 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd) 1818 { 1819 int r = -EINVAL; 1820 1821 /* 1822 * Care is taken to not have commit be what 1823 * triggers putting the thin-pool in-service. 1824 */ 1825 __pmd_write_lock(pmd); 1826 if (pmd->fail_io) 1827 goto out; 1828 1829 r = __commit_transaction(pmd); 1830 if (r < 0) 1831 goto out; 1832 1833 /* 1834 * Open the next transaction. 1835 */ 1836 r = __begin_transaction(pmd); 1837 out: 1838 pmd_write_unlock(pmd); 1839 return r; 1840 } 1841 1842 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd) 1843 { 1844 struct dm_thin_device *td; 1845 1846 list_for_each_entry(td, &pmd->thin_devices, list) 1847 td->aborted_with_changes = td->changed; 1848 } 1849 1850 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd) 1851 { 1852 int r = -EINVAL; 1853 1854 pmd_write_lock(pmd); 1855 if (pmd->fail_io) 1856 goto out; 1857 1858 __set_abort_with_changes_flags(pmd); 1859 __destroy_persistent_data_objects(pmd); 1860 r = __create_persistent_data_objects(pmd, false); 1861 if (r) 1862 pmd->fail_io = true; 1863 1864 out: 1865 pmd_write_unlock(pmd); 1866 1867 return r; 1868 } 1869 1870 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) 1871 { 1872 int r = -EINVAL; 1873 1874 down_read(&pmd->root_lock); 1875 if (!pmd->fail_io) 1876 r = dm_sm_get_nr_free(pmd->data_sm, result); 1877 up_read(&pmd->root_lock); 1878 1879 return r; 1880 } 1881 1882 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd, 1883 dm_block_t *result) 1884 { 1885 int r = -EINVAL; 1886 1887 down_read(&pmd->root_lock); 1888 if (!pmd->fail_io) 1889 r = dm_sm_get_nr_free(pmd->metadata_sm, result); 1890 1891 if (!r) { 1892 if (*result < pmd->metadata_reserve) 1893 *result = 0; 1894 else 1895 *result -= pmd->metadata_reserve; 1896 } 1897 up_read(&pmd->root_lock); 1898 1899 return r; 1900 } 1901 1902 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd, 1903 dm_block_t *result) 1904 { 1905 int r = -EINVAL; 1906 1907 down_read(&pmd->root_lock); 1908 if (!pmd->fail_io) 1909 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); 1910 up_read(&pmd->root_lock); 1911 1912 return r; 1913 } 1914 1915 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) 1916 { 1917 int r = -EINVAL; 1918 1919 down_read(&pmd->root_lock); 1920 if (!pmd->fail_io) 1921 r = dm_sm_get_nr_blocks(pmd->data_sm, result); 1922 up_read(&pmd->root_lock); 1923 1924 return r; 1925 } 1926 1927 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result) 1928 { 1929 int r = -EINVAL; 1930 struct dm_pool_metadata *pmd = td->pmd; 1931 1932 down_read(&pmd->root_lock); 1933 if (!pmd->fail_io) { 1934 *result = td->mapped_blocks; 1935 r = 0; 1936 } 1937 up_read(&pmd->root_lock); 1938 1939 return r; 1940 } 1941 1942 static int __highest_block(struct dm_thin_device *td, dm_block_t *result) 1943 { 1944 int r; 1945 __le64 value_le; 1946 dm_block_t thin_root; 1947 struct dm_pool_metadata *pmd = td->pmd; 1948 1949 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le); 1950 if (r) 1951 return r; 1952 1953 thin_root = le64_to_cpu(value_le); 1954 1955 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result); 1956 } 1957 1958 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, 1959 dm_block_t *result) 1960 { 1961 int r = -EINVAL; 1962 struct dm_pool_metadata *pmd = td->pmd; 1963 1964 down_read(&pmd->root_lock); 1965 if (!pmd->fail_io) 1966 r = __highest_block(td, result); 1967 up_read(&pmd->root_lock); 1968 1969 return r; 1970 } 1971 1972 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) 1973 { 1974 int r; 1975 dm_block_t old_count; 1976 1977 r = dm_sm_get_nr_blocks(sm, &old_count); 1978 if (r) 1979 return r; 1980 1981 if (new_count == old_count) 1982 return 0; 1983 1984 if (new_count < old_count) { 1985 DMERR("cannot reduce size of space map"); 1986 return -EINVAL; 1987 } 1988 1989 return dm_sm_extend(sm, new_count - old_count); 1990 } 1991 1992 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 1993 { 1994 int r = -EINVAL; 1995 1996 pmd_write_lock(pmd); 1997 if (!pmd->fail_io) 1998 r = __resize_space_map(pmd->data_sm, new_count); 1999 pmd_write_unlock(pmd); 2000 2001 return r; 2002 } 2003 2004 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 2005 { 2006 int r = -EINVAL; 2007 2008 pmd_write_lock(pmd); 2009 if (!pmd->fail_io) { 2010 r = __resize_space_map(pmd->metadata_sm, new_count); 2011 if (!r) 2012 __set_metadata_reserve(pmd); 2013 } 2014 pmd_write_unlock(pmd); 2015 2016 return r; 2017 } 2018 2019 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) 2020 { 2021 pmd_write_lock_in_core(pmd); 2022 dm_bm_set_read_only(pmd->bm); 2023 pmd_write_unlock(pmd); 2024 } 2025 2026 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) 2027 { 2028 pmd_write_lock_in_core(pmd); 2029 dm_bm_set_read_write(pmd->bm); 2030 pmd_write_unlock(pmd); 2031 } 2032 2033 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, 2034 dm_block_t threshold, 2035 dm_sm_threshold_fn fn, 2036 void *context) 2037 { 2038 int r; 2039 2040 pmd_write_lock_in_core(pmd); 2041 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context); 2042 pmd_write_unlock(pmd); 2043 2044 return r; 2045 } 2046 2047 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) 2048 { 2049 int r = -EINVAL; 2050 struct dm_block *sblock; 2051 struct thin_disk_superblock *disk_super; 2052 2053 pmd_write_lock(pmd); 2054 if (pmd->fail_io) 2055 goto out; 2056 2057 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; 2058 2059 r = superblock_lock(pmd, &sblock); 2060 if (r) { 2061 DMERR("couldn't lock superblock"); 2062 goto out; 2063 } 2064 2065 disk_super = dm_block_data(sblock); 2066 disk_super->flags = cpu_to_le32(pmd->flags); 2067 2068 dm_bm_unlock(sblock); 2069 out: 2070 pmd_write_unlock(pmd); 2071 return r; 2072 } 2073 2074 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) 2075 { 2076 bool needs_check; 2077 2078 down_read(&pmd->root_lock); 2079 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; 2080 up_read(&pmd->root_lock); 2081 2082 return needs_check; 2083 } 2084 2085 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd) 2086 { 2087 down_read(&pmd->root_lock); 2088 if (!pmd->fail_io) 2089 dm_tm_issue_prefetches(pmd->tm); 2090 up_read(&pmd->root_lock); 2091 } 2092