xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision a44e4f3a)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81 
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91 
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94 
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99 	__le32 csum;	/* Checksum of superblock except for this field. */
100 	__le32 flags;
101 	__le64 blocknr;	/* This block number, dm_block_t. */
102 
103 	__u8 uuid[16];
104 	__le64 magic;
105 	__le32 version;
106 	__le32 time;
107 
108 	__le64 trans_id;
109 
110 	/*
111 	 * Root held by userspace transactions.
112 	 */
113 	__le64 held_root;
114 
115 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117 
118 	/*
119 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 	 */
121 	__le64 data_mapping_root;
122 
123 	/*
124 	 * Device detail root mapping dev_id -> device_details
125 	 */
126 	__le64 device_details_root;
127 
128 	__le32 data_block_size;		/* In 512-byte sectors. */
129 
130 	__le32 metadata_block_size;	/* In 512-byte sectors. */
131 	__le64 metadata_nr_blocks;
132 
133 	__le32 compat_flags;
134 	__le32 compat_ro_flags;
135 	__le32 incompat_flags;
136 } __packed;
137 
138 struct disk_device_details {
139 	__le64 mapped_blocks;
140 	__le64 transaction_id;		/* When created. */
141 	__le32 creation_time;
142 	__le32 snapshotted_time;
143 } __packed;
144 
145 struct dm_pool_metadata {
146 	struct hlist_node hash;
147 
148 	struct block_device *bdev;
149 	struct dm_block_manager *bm;
150 	struct dm_space_map *metadata_sm;
151 	struct dm_space_map *data_sm;
152 	struct dm_transaction_manager *tm;
153 	struct dm_transaction_manager *nb_tm;
154 
155 	/*
156 	 * Two-level btree.
157 	 * First level holds thin_dev_t.
158 	 * Second level holds mappings.
159 	 */
160 	struct dm_btree_info info;
161 
162 	/*
163 	 * Non-blocking version of the above.
164 	 */
165 	struct dm_btree_info nb_info;
166 
167 	/*
168 	 * Just the top level for deleting whole devices.
169 	 */
170 	struct dm_btree_info tl_info;
171 
172 	/*
173 	 * Just the bottom level for creating new devices.
174 	 */
175 	struct dm_btree_info bl_info;
176 
177 	/*
178 	 * Describes the device details btree.
179 	 */
180 	struct dm_btree_info details_info;
181 
182 	struct rw_semaphore root_lock;
183 	uint32_t time;
184 	dm_block_t root;
185 	dm_block_t details_root;
186 	struct list_head thin_devices;
187 	uint64_t trans_id;
188 	unsigned long flags;
189 	sector_t data_block_size;
190 
191 	/*
192 	 * We reserve a section of the metadata for commit overhead.
193 	 * All reported space does *not* include this.
194 	 */
195 	dm_block_t metadata_reserve;
196 
197 	/*
198 	 * Set if a transaction has to be aborted but the attempt to roll back
199 	 * to the previous (good) transaction failed.  The only pool metadata
200 	 * operation possible in this state is the closing of the device.
201 	 */
202 	bool fail_io:1;
203 
204 	/*
205 	 * Set once a thin-pool has been accessed through one of the interfaces
206 	 * that imply the pool is in-service (e.g. thin devices created/deleted,
207 	 * thin-pool message, metadata snapshots, etc).
208 	 */
209 	bool in_service:1;
210 
211 	/*
212 	 * Reading the space map roots can fail, so we read it into these
213 	 * buffers before the superblock is locked and updated.
214 	 */
215 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
216 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
217 };
218 
219 struct dm_thin_device {
220 	struct list_head list;
221 	struct dm_pool_metadata *pmd;
222 	dm_thin_id id;
223 
224 	int open_count;
225 	bool changed:1;
226 	bool aborted_with_changes:1;
227 	uint64_t mapped_blocks;
228 	uint64_t transaction_id;
229 	uint32_t creation_time;
230 	uint32_t snapshotted_time;
231 };
232 
233 /*----------------------------------------------------------------
234  * superblock validator
235  *--------------------------------------------------------------*/
236 
237 #define SUPERBLOCK_CSUM_XOR 160774
238 
239 static void sb_prepare_for_write(struct dm_block_validator *v,
240 				 struct dm_block *b,
241 				 size_t block_size)
242 {
243 	struct thin_disk_superblock *disk_super = dm_block_data(b);
244 
245 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
246 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
247 						      block_size - sizeof(__le32),
248 						      SUPERBLOCK_CSUM_XOR));
249 }
250 
251 static int sb_check(struct dm_block_validator *v,
252 		    struct dm_block *b,
253 		    size_t block_size)
254 {
255 	struct thin_disk_superblock *disk_super = dm_block_data(b);
256 	__le32 csum_le;
257 
258 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
259 		DMERR("sb_check failed: blocknr %llu: "
260 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
261 		      (unsigned long long)dm_block_location(b));
262 		return -ENOTBLK;
263 	}
264 
265 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
266 		DMERR("sb_check failed: magic %llu: "
267 		      "wanted %llu", le64_to_cpu(disk_super->magic),
268 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
269 		return -EILSEQ;
270 	}
271 
272 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
273 					     block_size - sizeof(__le32),
274 					     SUPERBLOCK_CSUM_XOR));
275 	if (csum_le != disk_super->csum) {
276 		DMERR("sb_check failed: csum %u: wanted %u",
277 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
278 		return -EILSEQ;
279 	}
280 
281 	return 0;
282 }
283 
284 static struct dm_block_validator sb_validator = {
285 	.name = "superblock",
286 	.prepare_for_write = sb_prepare_for_write,
287 	.check = sb_check
288 };
289 
290 /*----------------------------------------------------------------
291  * Methods for the btree value types
292  *--------------------------------------------------------------*/
293 
294 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
295 {
296 	return (b << 24) | t;
297 }
298 
299 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
300 {
301 	*b = v >> 24;
302 	*t = v & ((1 << 24) - 1);
303 }
304 
305 static void data_block_inc(void *context, const void *value_le)
306 {
307 	struct dm_space_map *sm = context;
308 	__le64 v_le;
309 	uint64_t b;
310 	uint32_t t;
311 
312 	memcpy(&v_le, value_le, sizeof(v_le));
313 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
314 	dm_sm_inc_block(sm, b);
315 }
316 
317 static void data_block_dec(void *context, const void *value_le)
318 {
319 	struct dm_space_map *sm = context;
320 	__le64 v_le;
321 	uint64_t b;
322 	uint32_t t;
323 
324 	memcpy(&v_le, value_le, sizeof(v_le));
325 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
326 	dm_sm_dec_block(sm, b);
327 }
328 
329 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
330 {
331 	__le64 v1_le, v2_le;
332 	uint64_t b1, b2;
333 	uint32_t t;
334 
335 	memcpy(&v1_le, value1_le, sizeof(v1_le));
336 	memcpy(&v2_le, value2_le, sizeof(v2_le));
337 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
338 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
339 
340 	return b1 == b2;
341 }
342 
343 static void subtree_inc(void *context, const void *value)
344 {
345 	struct dm_btree_info *info = context;
346 	__le64 root_le;
347 	uint64_t root;
348 
349 	memcpy(&root_le, value, sizeof(root_le));
350 	root = le64_to_cpu(root_le);
351 	dm_tm_inc(info->tm, root);
352 }
353 
354 static void subtree_dec(void *context, const void *value)
355 {
356 	struct dm_btree_info *info = context;
357 	__le64 root_le;
358 	uint64_t root;
359 
360 	memcpy(&root_le, value, sizeof(root_le));
361 	root = le64_to_cpu(root_le);
362 	if (dm_btree_del(info, root))
363 		DMERR("btree delete failed");
364 }
365 
366 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
367 {
368 	__le64 v1_le, v2_le;
369 	memcpy(&v1_le, value1_le, sizeof(v1_le));
370 	memcpy(&v2_le, value2_le, sizeof(v2_le));
371 
372 	return v1_le == v2_le;
373 }
374 
375 /*----------------------------------------------------------------*/
376 
377 /*
378  * Variant that is used for in-core only changes or code that
379  * shouldn't put the pool in service on its own (e.g. commit).
380  */
381 static inline void __pmd_write_lock(struct dm_pool_metadata *pmd)
382 	__acquires(pmd->root_lock)
383 {
384 	down_write(&pmd->root_lock);
385 }
386 #define pmd_write_lock_in_core(pmd) __pmd_write_lock((pmd))
387 
388 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
389 {
390 	__pmd_write_lock(pmd);
391 	if (unlikely(!pmd->in_service))
392 		pmd->in_service = true;
393 }
394 
395 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
396 	__releases(pmd->root_lock)
397 {
398 	up_write(&pmd->root_lock);
399 }
400 
401 /*----------------------------------------------------------------*/
402 
403 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
404 				struct dm_block **sblock)
405 {
406 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
407 				     &sb_validator, sblock);
408 }
409 
410 static int superblock_lock(struct dm_pool_metadata *pmd,
411 			   struct dm_block **sblock)
412 {
413 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
414 				&sb_validator, sblock);
415 }
416 
417 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
418 {
419 	int r;
420 	unsigned i;
421 	struct dm_block *b;
422 	__le64 *data_le, zero = cpu_to_le64(0);
423 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
424 
425 	/*
426 	 * We can't use a validator here - it may be all zeroes.
427 	 */
428 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
429 	if (r)
430 		return r;
431 
432 	data_le = dm_block_data(b);
433 	*result = 1;
434 	for (i = 0; i < block_size; i++) {
435 		if (data_le[i] != zero) {
436 			*result = 0;
437 			break;
438 		}
439 	}
440 
441 	dm_bm_unlock(b);
442 
443 	return 0;
444 }
445 
446 static void __setup_btree_details(struct dm_pool_metadata *pmd)
447 {
448 	pmd->info.tm = pmd->tm;
449 	pmd->info.levels = 2;
450 	pmd->info.value_type.context = pmd->data_sm;
451 	pmd->info.value_type.size = sizeof(__le64);
452 	pmd->info.value_type.inc = data_block_inc;
453 	pmd->info.value_type.dec = data_block_dec;
454 	pmd->info.value_type.equal = data_block_equal;
455 
456 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
457 	pmd->nb_info.tm = pmd->nb_tm;
458 
459 	pmd->tl_info.tm = pmd->tm;
460 	pmd->tl_info.levels = 1;
461 	pmd->tl_info.value_type.context = &pmd->bl_info;
462 	pmd->tl_info.value_type.size = sizeof(__le64);
463 	pmd->tl_info.value_type.inc = subtree_inc;
464 	pmd->tl_info.value_type.dec = subtree_dec;
465 	pmd->tl_info.value_type.equal = subtree_equal;
466 
467 	pmd->bl_info.tm = pmd->tm;
468 	pmd->bl_info.levels = 1;
469 	pmd->bl_info.value_type.context = pmd->data_sm;
470 	pmd->bl_info.value_type.size = sizeof(__le64);
471 	pmd->bl_info.value_type.inc = data_block_inc;
472 	pmd->bl_info.value_type.dec = data_block_dec;
473 	pmd->bl_info.value_type.equal = data_block_equal;
474 
475 	pmd->details_info.tm = pmd->tm;
476 	pmd->details_info.levels = 1;
477 	pmd->details_info.value_type.context = NULL;
478 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
479 	pmd->details_info.value_type.inc = NULL;
480 	pmd->details_info.value_type.dec = NULL;
481 	pmd->details_info.value_type.equal = NULL;
482 }
483 
484 static int save_sm_roots(struct dm_pool_metadata *pmd)
485 {
486 	int r;
487 	size_t len;
488 
489 	r = dm_sm_root_size(pmd->metadata_sm, &len);
490 	if (r < 0)
491 		return r;
492 
493 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
494 	if (r < 0)
495 		return r;
496 
497 	r = dm_sm_root_size(pmd->data_sm, &len);
498 	if (r < 0)
499 		return r;
500 
501 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
502 }
503 
504 static void copy_sm_roots(struct dm_pool_metadata *pmd,
505 			  struct thin_disk_superblock *disk)
506 {
507 	memcpy(&disk->metadata_space_map_root,
508 	       &pmd->metadata_space_map_root,
509 	       sizeof(pmd->metadata_space_map_root));
510 
511 	memcpy(&disk->data_space_map_root,
512 	       &pmd->data_space_map_root,
513 	       sizeof(pmd->data_space_map_root));
514 }
515 
516 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
517 {
518 	int r;
519 	struct dm_block *sblock;
520 	struct thin_disk_superblock *disk_super;
521 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
522 
523 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
524 		bdev_size = THIN_METADATA_MAX_SECTORS;
525 
526 	r = dm_sm_commit(pmd->data_sm);
527 	if (r < 0)
528 		return r;
529 
530 	r = dm_tm_pre_commit(pmd->tm);
531 	if (r < 0)
532 		return r;
533 
534 	r = save_sm_roots(pmd);
535 	if (r < 0)
536 		return r;
537 
538 	r = superblock_lock_zero(pmd, &sblock);
539 	if (r)
540 		return r;
541 
542 	disk_super = dm_block_data(sblock);
543 	disk_super->flags = 0;
544 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
545 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
546 	disk_super->version = cpu_to_le32(THIN_VERSION);
547 	disk_super->time = 0;
548 	disk_super->trans_id = 0;
549 	disk_super->held_root = 0;
550 
551 	copy_sm_roots(pmd, disk_super);
552 
553 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
554 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
555 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
556 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
557 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
558 
559 	return dm_tm_commit(pmd->tm, sblock);
560 }
561 
562 static int __format_metadata(struct dm_pool_metadata *pmd)
563 {
564 	int r;
565 
566 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
567 				 &pmd->tm, &pmd->metadata_sm);
568 	if (r < 0) {
569 		DMERR("tm_create_with_sm failed");
570 		return r;
571 	}
572 
573 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
574 	if (IS_ERR(pmd->data_sm)) {
575 		DMERR("sm_disk_create failed");
576 		r = PTR_ERR(pmd->data_sm);
577 		goto bad_cleanup_tm;
578 	}
579 
580 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
581 	if (!pmd->nb_tm) {
582 		DMERR("could not create non-blocking clone tm");
583 		r = -ENOMEM;
584 		goto bad_cleanup_data_sm;
585 	}
586 
587 	__setup_btree_details(pmd);
588 
589 	r = dm_btree_empty(&pmd->info, &pmd->root);
590 	if (r < 0)
591 		goto bad_cleanup_nb_tm;
592 
593 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
594 	if (r < 0) {
595 		DMERR("couldn't create devices root");
596 		goto bad_cleanup_nb_tm;
597 	}
598 
599 	r = __write_initial_superblock(pmd);
600 	if (r)
601 		goto bad_cleanup_nb_tm;
602 
603 	return 0;
604 
605 bad_cleanup_nb_tm:
606 	dm_tm_destroy(pmd->nb_tm);
607 bad_cleanup_data_sm:
608 	dm_sm_destroy(pmd->data_sm);
609 bad_cleanup_tm:
610 	dm_tm_destroy(pmd->tm);
611 	dm_sm_destroy(pmd->metadata_sm);
612 
613 	return r;
614 }
615 
616 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
617 				     struct dm_pool_metadata *pmd)
618 {
619 	uint32_t features;
620 
621 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
622 	if (features) {
623 		DMERR("could not access metadata due to unsupported optional features (%lx).",
624 		      (unsigned long)features);
625 		return -EINVAL;
626 	}
627 
628 	/*
629 	 * Check for read-only metadata to skip the following RDWR checks.
630 	 */
631 	if (get_disk_ro(pmd->bdev->bd_disk))
632 		return 0;
633 
634 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
635 	if (features) {
636 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
637 		      (unsigned long)features);
638 		return -EINVAL;
639 	}
640 
641 	return 0;
642 }
643 
644 static int __open_metadata(struct dm_pool_metadata *pmd)
645 {
646 	int r;
647 	struct dm_block *sblock;
648 	struct thin_disk_superblock *disk_super;
649 
650 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
651 			    &sb_validator, &sblock);
652 	if (r < 0) {
653 		DMERR("couldn't read superblock");
654 		return r;
655 	}
656 
657 	disk_super = dm_block_data(sblock);
658 
659 	/* Verify the data block size hasn't changed */
660 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
661 		DMERR("changing the data block size (from %u to %llu) is not supported",
662 		      le32_to_cpu(disk_super->data_block_size),
663 		      (unsigned long long)pmd->data_block_size);
664 		r = -EINVAL;
665 		goto bad_unlock_sblock;
666 	}
667 
668 	r = __check_incompat_features(disk_super, pmd);
669 	if (r < 0)
670 		goto bad_unlock_sblock;
671 
672 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
673 			       disk_super->metadata_space_map_root,
674 			       sizeof(disk_super->metadata_space_map_root),
675 			       &pmd->tm, &pmd->metadata_sm);
676 	if (r < 0) {
677 		DMERR("tm_open_with_sm failed");
678 		goto bad_unlock_sblock;
679 	}
680 
681 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
682 				       sizeof(disk_super->data_space_map_root));
683 	if (IS_ERR(pmd->data_sm)) {
684 		DMERR("sm_disk_open failed");
685 		r = PTR_ERR(pmd->data_sm);
686 		goto bad_cleanup_tm;
687 	}
688 
689 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
690 	if (!pmd->nb_tm) {
691 		DMERR("could not create non-blocking clone tm");
692 		r = -ENOMEM;
693 		goto bad_cleanup_data_sm;
694 	}
695 
696 	__setup_btree_details(pmd);
697 	dm_bm_unlock(sblock);
698 
699 	return 0;
700 
701 bad_cleanup_data_sm:
702 	dm_sm_destroy(pmd->data_sm);
703 bad_cleanup_tm:
704 	dm_tm_destroy(pmd->tm);
705 	dm_sm_destroy(pmd->metadata_sm);
706 bad_unlock_sblock:
707 	dm_bm_unlock(sblock);
708 
709 	return r;
710 }
711 
712 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
713 {
714 	int r, unformatted;
715 
716 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
717 	if (r)
718 		return r;
719 
720 	if (unformatted)
721 		return format_device ? __format_metadata(pmd) : -EPERM;
722 
723 	return __open_metadata(pmd);
724 }
725 
726 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
727 {
728 	int r;
729 
730 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
731 					  THIN_MAX_CONCURRENT_LOCKS);
732 	if (IS_ERR(pmd->bm)) {
733 		DMERR("could not create block manager");
734 		return PTR_ERR(pmd->bm);
735 	}
736 
737 	r = __open_or_format_metadata(pmd, format_device);
738 	if (r)
739 		dm_block_manager_destroy(pmd->bm);
740 
741 	return r;
742 }
743 
744 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
745 {
746 	dm_sm_destroy(pmd->data_sm);
747 	dm_sm_destroy(pmd->metadata_sm);
748 	dm_tm_destroy(pmd->nb_tm);
749 	dm_tm_destroy(pmd->tm);
750 	dm_block_manager_destroy(pmd->bm);
751 }
752 
753 static int __begin_transaction(struct dm_pool_metadata *pmd)
754 {
755 	int r;
756 	struct thin_disk_superblock *disk_super;
757 	struct dm_block *sblock;
758 
759 	/*
760 	 * We re-read the superblock every time.  Shouldn't need to do this
761 	 * really.
762 	 */
763 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
764 			    &sb_validator, &sblock);
765 	if (r)
766 		return r;
767 
768 	disk_super = dm_block_data(sblock);
769 	pmd->time = le32_to_cpu(disk_super->time);
770 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
771 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
772 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
773 	pmd->flags = le32_to_cpu(disk_super->flags);
774 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
775 
776 	dm_bm_unlock(sblock);
777 	return 0;
778 }
779 
780 static int __write_changed_details(struct dm_pool_metadata *pmd)
781 {
782 	int r;
783 	struct dm_thin_device *td, *tmp;
784 	struct disk_device_details details;
785 	uint64_t key;
786 
787 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
788 		if (!td->changed)
789 			continue;
790 
791 		key = td->id;
792 
793 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
794 		details.transaction_id = cpu_to_le64(td->transaction_id);
795 		details.creation_time = cpu_to_le32(td->creation_time);
796 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
797 		__dm_bless_for_disk(&details);
798 
799 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
800 				    &key, &details, &pmd->details_root);
801 		if (r)
802 			return r;
803 
804 		if (td->open_count)
805 			td->changed = 0;
806 		else {
807 			list_del(&td->list);
808 			kfree(td);
809 		}
810 	}
811 
812 	return 0;
813 }
814 
815 static int __commit_transaction(struct dm_pool_metadata *pmd)
816 {
817 	int r;
818 	struct thin_disk_superblock *disk_super;
819 	struct dm_block *sblock;
820 
821 	/*
822 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
823 	 */
824 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
825 
826 	if (unlikely(!pmd->in_service))
827 		return 0;
828 
829 	r = __write_changed_details(pmd);
830 	if (r < 0)
831 		return r;
832 
833 	r = dm_sm_commit(pmd->data_sm);
834 	if (r < 0)
835 		return r;
836 
837 	r = dm_tm_pre_commit(pmd->tm);
838 	if (r < 0)
839 		return r;
840 
841 	r = save_sm_roots(pmd);
842 	if (r < 0)
843 		return r;
844 
845 	r = superblock_lock(pmd, &sblock);
846 	if (r)
847 		return r;
848 
849 	disk_super = dm_block_data(sblock);
850 	disk_super->time = cpu_to_le32(pmd->time);
851 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
852 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
853 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
854 	disk_super->flags = cpu_to_le32(pmd->flags);
855 
856 	copy_sm_roots(pmd, disk_super);
857 
858 	return dm_tm_commit(pmd->tm, sblock);
859 }
860 
861 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
862 {
863 	int r;
864 	dm_block_t total;
865 	dm_block_t max_blocks = 4096; /* 16M */
866 
867 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
868 	if (r) {
869 		DMERR("could not get size of metadata device");
870 		pmd->metadata_reserve = max_blocks;
871 	} else
872 		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
873 }
874 
875 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
876 					       sector_t data_block_size,
877 					       bool format_device)
878 {
879 	int r;
880 	struct dm_pool_metadata *pmd;
881 
882 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
883 	if (!pmd) {
884 		DMERR("could not allocate metadata struct");
885 		return ERR_PTR(-ENOMEM);
886 	}
887 
888 	init_rwsem(&pmd->root_lock);
889 	pmd->time = 0;
890 	INIT_LIST_HEAD(&pmd->thin_devices);
891 	pmd->fail_io = false;
892 	pmd->in_service = false;
893 	pmd->bdev = bdev;
894 	pmd->data_block_size = data_block_size;
895 
896 	r = __create_persistent_data_objects(pmd, format_device);
897 	if (r) {
898 		kfree(pmd);
899 		return ERR_PTR(r);
900 	}
901 
902 	r = __begin_transaction(pmd);
903 	if (r < 0) {
904 		if (dm_pool_metadata_close(pmd) < 0)
905 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
906 		return ERR_PTR(r);
907 	}
908 
909 	__set_metadata_reserve(pmd);
910 
911 	return pmd;
912 }
913 
914 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
915 {
916 	int r;
917 	unsigned open_devices = 0;
918 	struct dm_thin_device *td, *tmp;
919 
920 	down_read(&pmd->root_lock);
921 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
922 		if (td->open_count)
923 			open_devices++;
924 		else {
925 			list_del(&td->list);
926 			kfree(td);
927 		}
928 	}
929 	up_read(&pmd->root_lock);
930 
931 	if (open_devices) {
932 		DMERR("attempt to close pmd when %u device(s) are still open",
933 		       open_devices);
934 		return -EBUSY;
935 	}
936 
937 	if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
938 		r = __commit_transaction(pmd);
939 		if (r < 0)
940 			DMWARN("%s: __commit_transaction() failed, error = %d",
941 			       __func__, r);
942 	}
943 	if (!pmd->fail_io)
944 		__destroy_persistent_data_objects(pmd);
945 
946 	kfree(pmd);
947 	return 0;
948 }
949 
950 /*
951  * __open_device: Returns @td corresponding to device with id @dev,
952  * creating it if @create is set and incrementing @td->open_count.
953  * On failure, @td is undefined.
954  */
955 static int __open_device(struct dm_pool_metadata *pmd,
956 			 dm_thin_id dev, int create,
957 			 struct dm_thin_device **td)
958 {
959 	int r, changed = 0;
960 	struct dm_thin_device *td2;
961 	uint64_t key = dev;
962 	struct disk_device_details details_le;
963 
964 	/*
965 	 * If the device is already open, return it.
966 	 */
967 	list_for_each_entry(td2, &pmd->thin_devices, list)
968 		if (td2->id == dev) {
969 			/*
970 			 * May not create an already-open device.
971 			 */
972 			if (create)
973 				return -EEXIST;
974 
975 			td2->open_count++;
976 			*td = td2;
977 			return 0;
978 		}
979 
980 	/*
981 	 * Check the device exists.
982 	 */
983 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
984 			    &key, &details_le);
985 	if (r) {
986 		if (r != -ENODATA || !create)
987 			return r;
988 
989 		/*
990 		 * Create new device.
991 		 */
992 		changed = 1;
993 		details_le.mapped_blocks = 0;
994 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
995 		details_le.creation_time = cpu_to_le32(pmd->time);
996 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
997 	}
998 
999 	*td = kmalloc(sizeof(**td), GFP_NOIO);
1000 	if (!*td)
1001 		return -ENOMEM;
1002 
1003 	(*td)->pmd = pmd;
1004 	(*td)->id = dev;
1005 	(*td)->open_count = 1;
1006 	(*td)->changed = changed;
1007 	(*td)->aborted_with_changes = false;
1008 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1009 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1010 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1011 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1012 
1013 	list_add(&(*td)->list, &pmd->thin_devices);
1014 
1015 	return 0;
1016 }
1017 
1018 static void __close_device(struct dm_thin_device *td)
1019 {
1020 	--td->open_count;
1021 }
1022 
1023 static int __create_thin(struct dm_pool_metadata *pmd,
1024 			 dm_thin_id dev)
1025 {
1026 	int r;
1027 	dm_block_t dev_root;
1028 	uint64_t key = dev;
1029 	struct disk_device_details details_le;
1030 	struct dm_thin_device *td;
1031 	__le64 value;
1032 
1033 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1034 			    &key, &details_le);
1035 	if (!r)
1036 		return -EEXIST;
1037 
1038 	/*
1039 	 * Create an empty btree for the mappings.
1040 	 */
1041 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1042 	if (r)
1043 		return r;
1044 
1045 	/*
1046 	 * Insert it into the main mapping tree.
1047 	 */
1048 	value = cpu_to_le64(dev_root);
1049 	__dm_bless_for_disk(&value);
1050 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1051 	if (r) {
1052 		dm_btree_del(&pmd->bl_info, dev_root);
1053 		return r;
1054 	}
1055 
1056 	r = __open_device(pmd, dev, 1, &td);
1057 	if (r) {
1058 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1059 		dm_btree_del(&pmd->bl_info, dev_root);
1060 		return r;
1061 	}
1062 	__close_device(td);
1063 
1064 	return r;
1065 }
1066 
1067 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1068 {
1069 	int r = -EINVAL;
1070 
1071 	pmd_write_lock(pmd);
1072 	if (!pmd->fail_io)
1073 		r = __create_thin(pmd, dev);
1074 	pmd_write_unlock(pmd);
1075 
1076 	return r;
1077 }
1078 
1079 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1080 				  struct dm_thin_device *snap,
1081 				  dm_thin_id origin, uint32_t time)
1082 {
1083 	int r;
1084 	struct dm_thin_device *td;
1085 
1086 	r = __open_device(pmd, origin, 0, &td);
1087 	if (r)
1088 		return r;
1089 
1090 	td->changed = 1;
1091 	td->snapshotted_time = time;
1092 
1093 	snap->mapped_blocks = td->mapped_blocks;
1094 	snap->snapshotted_time = time;
1095 	__close_device(td);
1096 
1097 	return 0;
1098 }
1099 
1100 static int __create_snap(struct dm_pool_metadata *pmd,
1101 			 dm_thin_id dev, dm_thin_id origin)
1102 {
1103 	int r;
1104 	dm_block_t origin_root;
1105 	uint64_t key = origin, dev_key = dev;
1106 	struct dm_thin_device *td;
1107 	struct disk_device_details details_le;
1108 	__le64 value;
1109 
1110 	/* check this device is unused */
1111 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1112 			    &dev_key, &details_le);
1113 	if (!r)
1114 		return -EEXIST;
1115 
1116 	/* find the mapping tree for the origin */
1117 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1118 	if (r)
1119 		return r;
1120 	origin_root = le64_to_cpu(value);
1121 
1122 	/* clone the origin, an inc will do */
1123 	dm_tm_inc(pmd->tm, origin_root);
1124 
1125 	/* insert into the main mapping tree */
1126 	value = cpu_to_le64(origin_root);
1127 	__dm_bless_for_disk(&value);
1128 	key = dev;
1129 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1130 	if (r) {
1131 		dm_tm_dec(pmd->tm, origin_root);
1132 		return r;
1133 	}
1134 
1135 	pmd->time++;
1136 
1137 	r = __open_device(pmd, dev, 1, &td);
1138 	if (r)
1139 		goto bad;
1140 
1141 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1142 	__close_device(td);
1143 
1144 	if (r)
1145 		goto bad;
1146 
1147 	return 0;
1148 
1149 bad:
1150 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1151 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1152 			&key, &pmd->details_root);
1153 	return r;
1154 }
1155 
1156 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1157 				 dm_thin_id dev,
1158 				 dm_thin_id origin)
1159 {
1160 	int r = -EINVAL;
1161 
1162 	pmd_write_lock(pmd);
1163 	if (!pmd->fail_io)
1164 		r = __create_snap(pmd, dev, origin);
1165 	pmd_write_unlock(pmd);
1166 
1167 	return r;
1168 }
1169 
1170 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1171 {
1172 	int r;
1173 	uint64_t key = dev;
1174 	struct dm_thin_device *td;
1175 
1176 	/* TODO: failure should mark the transaction invalid */
1177 	r = __open_device(pmd, dev, 0, &td);
1178 	if (r)
1179 		return r;
1180 
1181 	if (td->open_count > 1) {
1182 		__close_device(td);
1183 		return -EBUSY;
1184 	}
1185 
1186 	list_del(&td->list);
1187 	kfree(td);
1188 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1189 			    &key, &pmd->details_root);
1190 	if (r)
1191 		return r;
1192 
1193 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1194 	if (r)
1195 		return r;
1196 
1197 	return 0;
1198 }
1199 
1200 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1201 			       dm_thin_id dev)
1202 {
1203 	int r = -EINVAL;
1204 
1205 	pmd_write_lock(pmd);
1206 	if (!pmd->fail_io)
1207 		r = __delete_device(pmd, dev);
1208 	pmd_write_unlock(pmd);
1209 
1210 	return r;
1211 }
1212 
1213 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1214 					uint64_t current_id,
1215 					uint64_t new_id)
1216 {
1217 	int r = -EINVAL;
1218 
1219 	pmd_write_lock(pmd);
1220 
1221 	if (pmd->fail_io)
1222 		goto out;
1223 
1224 	if (pmd->trans_id != current_id) {
1225 		DMERR("mismatched transaction id");
1226 		goto out;
1227 	}
1228 
1229 	pmd->trans_id = new_id;
1230 	r = 0;
1231 
1232 out:
1233 	pmd_write_unlock(pmd);
1234 
1235 	return r;
1236 }
1237 
1238 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1239 					uint64_t *result)
1240 {
1241 	int r = -EINVAL;
1242 
1243 	down_read(&pmd->root_lock);
1244 	if (!pmd->fail_io) {
1245 		*result = pmd->trans_id;
1246 		r = 0;
1247 	}
1248 	up_read(&pmd->root_lock);
1249 
1250 	return r;
1251 }
1252 
1253 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1254 {
1255 	int r, inc;
1256 	struct thin_disk_superblock *disk_super;
1257 	struct dm_block *copy, *sblock;
1258 	dm_block_t held_root;
1259 
1260 	/*
1261 	 * We commit to ensure the btree roots which we increment in a
1262 	 * moment are up to date.
1263 	 */
1264 	r = __commit_transaction(pmd);
1265 	if (r < 0) {
1266 		DMWARN("%s: __commit_transaction() failed, error = %d",
1267 		       __func__, r);
1268 		return r;
1269 	}
1270 
1271 	/*
1272 	 * Copy the superblock.
1273 	 */
1274 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1275 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1276 			       &sb_validator, &copy, &inc);
1277 	if (r)
1278 		return r;
1279 
1280 	BUG_ON(!inc);
1281 
1282 	held_root = dm_block_location(copy);
1283 	disk_super = dm_block_data(copy);
1284 
1285 	if (le64_to_cpu(disk_super->held_root)) {
1286 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1287 
1288 		dm_tm_dec(pmd->tm, held_root);
1289 		dm_tm_unlock(pmd->tm, copy);
1290 		return -EBUSY;
1291 	}
1292 
1293 	/*
1294 	 * Wipe the spacemap since we're not publishing this.
1295 	 */
1296 	memset(&disk_super->data_space_map_root, 0,
1297 	       sizeof(disk_super->data_space_map_root));
1298 	memset(&disk_super->metadata_space_map_root, 0,
1299 	       sizeof(disk_super->metadata_space_map_root));
1300 
1301 	/*
1302 	 * Increment the data structures that need to be preserved.
1303 	 */
1304 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1305 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1306 	dm_tm_unlock(pmd->tm, copy);
1307 
1308 	/*
1309 	 * Write the held root into the superblock.
1310 	 */
1311 	r = superblock_lock(pmd, &sblock);
1312 	if (r) {
1313 		dm_tm_dec(pmd->tm, held_root);
1314 		return r;
1315 	}
1316 
1317 	disk_super = dm_block_data(sblock);
1318 	disk_super->held_root = cpu_to_le64(held_root);
1319 	dm_bm_unlock(sblock);
1320 	return 0;
1321 }
1322 
1323 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1324 {
1325 	int r = -EINVAL;
1326 
1327 	pmd_write_lock(pmd);
1328 	if (!pmd->fail_io)
1329 		r = __reserve_metadata_snap(pmd);
1330 	pmd_write_unlock(pmd);
1331 
1332 	return r;
1333 }
1334 
1335 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1336 {
1337 	int r;
1338 	struct thin_disk_superblock *disk_super;
1339 	struct dm_block *sblock, *copy;
1340 	dm_block_t held_root;
1341 
1342 	r = superblock_lock(pmd, &sblock);
1343 	if (r)
1344 		return r;
1345 
1346 	disk_super = dm_block_data(sblock);
1347 	held_root = le64_to_cpu(disk_super->held_root);
1348 	disk_super->held_root = cpu_to_le64(0);
1349 
1350 	dm_bm_unlock(sblock);
1351 
1352 	if (!held_root) {
1353 		DMWARN("No pool metadata snapshot found: nothing to release.");
1354 		return -EINVAL;
1355 	}
1356 
1357 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1358 	if (r)
1359 		return r;
1360 
1361 	disk_super = dm_block_data(copy);
1362 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1363 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1364 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1365 
1366 	dm_tm_unlock(pmd->tm, copy);
1367 
1368 	return 0;
1369 }
1370 
1371 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1372 {
1373 	int r = -EINVAL;
1374 
1375 	pmd_write_lock(pmd);
1376 	if (!pmd->fail_io)
1377 		r = __release_metadata_snap(pmd);
1378 	pmd_write_unlock(pmd);
1379 
1380 	return r;
1381 }
1382 
1383 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1384 			       dm_block_t *result)
1385 {
1386 	int r;
1387 	struct thin_disk_superblock *disk_super;
1388 	struct dm_block *sblock;
1389 
1390 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1391 			    &sb_validator, &sblock);
1392 	if (r)
1393 		return r;
1394 
1395 	disk_super = dm_block_data(sblock);
1396 	*result = le64_to_cpu(disk_super->held_root);
1397 
1398 	dm_bm_unlock(sblock);
1399 
1400 	return 0;
1401 }
1402 
1403 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1404 			      dm_block_t *result)
1405 {
1406 	int r = -EINVAL;
1407 
1408 	down_read(&pmd->root_lock);
1409 	if (!pmd->fail_io)
1410 		r = __get_metadata_snap(pmd, result);
1411 	up_read(&pmd->root_lock);
1412 
1413 	return r;
1414 }
1415 
1416 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1417 			     struct dm_thin_device **td)
1418 {
1419 	int r = -EINVAL;
1420 
1421 	pmd_write_lock_in_core(pmd);
1422 	if (!pmd->fail_io)
1423 		r = __open_device(pmd, dev, 0, td);
1424 	pmd_write_unlock(pmd);
1425 
1426 	return r;
1427 }
1428 
1429 int dm_pool_close_thin_device(struct dm_thin_device *td)
1430 {
1431 	pmd_write_lock_in_core(td->pmd);
1432 	__close_device(td);
1433 	pmd_write_unlock(td->pmd);
1434 
1435 	return 0;
1436 }
1437 
1438 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1439 {
1440 	return td->id;
1441 }
1442 
1443 /*
1444  * Check whether @time (of block creation) is older than @td's last snapshot.
1445  * If so then the associated block is shared with the last snapshot device.
1446  * Any block on a device created *after* the device last got snapshotted is
1447  * necessarily not shared.
1448  */
1449 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1450 {
1451 	return td->snapshotted_time > time;
1452 }
1453 
1454 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1455 				 struct dm_thin_lookup_result *result)
1456 {
1457 	uint64_t block_time = 0;
1458 	dm_block_t exception_block;
1459 	uint32_t exception_time;
1460 
1461 	block_time = le64_to_cpu(value);
1462 	unpack_block_time(block_time, &exception_block, &exception_time);
1463 	result->block = exception_block;
1464 	result->shared = __snapshotted_since(td, exception_time);
1465 }
1466 
1467 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1468 			int can_issue_io, struct dm_thin_lookup_result *result)
1469 {
1470 	int r;
1471 	__le64 value;
1472 	struct dm_pool_metadata *pmd = td->pmd;
1473 	dm_block_t keys[2] = { td->id, block };
1474 	struct dm_btree_info *info;
1475 
1476 	if (can_issue_io) {
1477 		info = &pmd->info;
1478 	} else
1479 		info = &pmd->nb_info;
1480 
1481 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1482 	if (!r)
1483 		unpack_lookup_result(td, value, result);
1484 
1485 	return r;
1486 }
1487 
1488 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1489 		       int can_issue_io, struct dm_thin_lookup_result *result)
1490 {
1491 	int r;
1492 	struct dm_pool_metadata *pmd = td->pmd;
1493 
1494 	down_read(&pmd->root_lock);
1495 	if (pmd->fail_io) {
1496 		up_read(&pmd->root_lock);
1497 		return -EINVAL;
1498 	}
1499 
1500 	r = __find_block(td, block, can_issue_io, result);
1501 
1502 	up_read(&pmd->root_lock);
1503 	return r;
1504 }
1505 
1506 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1507 					  dm_block_t *vblock,
1508 					  struct dm_thin_lookup_result *result)
1509 {
1510 	int r;
1511 	__le64 value;
1512 	struct dm_pool_metadata *pmd = td->pmd;
1513 	dm_block_t keys[2] = { td->id, block };
1514 
1515 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1516 	if (!r)
1517 		unpack_lookup_result(td, value, result);
1518 
1519 	return r;
1520 }
1521 
1522 static int __find_mapped_range(struct dm_thin_device *td,
1523 			       dm_block_t begin, dm_block_t end,
1524 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1525 			       dm_block_t *pool_begin, bool *maybe_shared)
1526 {
1527 	int r;
1528 	dm_block_t pool_end;
1529 	struct dm_thin_lookup_result lookup;
1530 
1531 	if (end < begin)
1532 		return -ENODATA;
1533 
1534 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1535 	if (r)
1536 		return r;
1537 
1538 	if (begin >= end)
1539 		return -ENODATA;
1540 
1541 	*thin_begin = begin;
1542 	*pool_begin = lookup.block;
1543 	*maybe_shared = lookup.shared;
1544 
1545 	begin++;
1546 	pool_end = *pool_begin + 1;
1547 	while (begin != end) {
1548 		r = __find_block(td, begin, true, &lookup);
1549 		if (r) {
1550 			if (r == -ENODATA)
1551 				break;
1552 			else
1553 				return r;
1554 		}
1555 
1556 		if ((lookup.block != pool_end) ||
1557 		    (lookup.shared != *maybe_shared))
1558 			break;
1559 
1560 		pool_end++;
1561 		begin++;
1562 	}
1563 
1564 	*thin_end = begin;
1565 	return 0;
1566 }
1567 
1568 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1569 			      dm_block_t begin, dm_block_t end,
1570 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1571 			      dm_block_t *pool_begin, bool *maybe_shared)
1572 {
1573 	int r = -EINVAL;
1574 	struct dm_pool_metadata *pmd = td->pmd;
1575 
1576 	down_read(&pmd->root_lock);
1577 	if (!pmd->fail_io) {
1578 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1579 					pool_begin, maybe_shared);
1580 	}
1581 	up_read(&pmd->root_lock);
1582 
1583 	return r;
1584 }
1585 
1586 static int __insert(struct dm_thin_device *td, dm_block_t block,
1587 		    dm_block_t data_block)
1588 {
1589 	int r, inserted;
1590 	__le64 value;
1591 	struct dm_pool_metadata *pmd = td->pmd;
1592 	dm_block_t keys[2] = { td->id, block };
1593 
1594 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1595 	__dm_bless_for_disk(&value);
1596 
1597 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1598 				   &pmd->root, &inserted);
1599 	if (r)
1600 		return r;
1601 
1602 	td->changed = 1;
1603 	if (inserted)
1604 		td->mapped_blocks++;
1605 
1606 	return 0;
1607 }
1608 
1609 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1610 			 dm_block_t data_block)
1611 {
1612 	int r = -EINVAL;
1613 
1614 	pmd_write_lock(td->pmd);
1615 	if (!td->pmd->fail_io)
1616 		r = __insert(td, block, data_block);
1617 	pmd_write_unlock(td->pmd);
1618 
1619 	return r;
1620 }
1621 
1622 static int __remove(struct dm_thin_device *td, dm_block_t block)
1623 {
1624 	int r;
1625 	struct dm_pool_metadata *pmd = td->pmd;
1626 	dm_block_t keys[2] = { td->id, block };
1627 
1628 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1629 	if (r)
1630 		return r;
1631 
1632 	td->mapped_blocks--;
1633 	td->changed = 1;
1634 
1635 	return 0;
1636 }
1637 
1638 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1639 {
1640 	int r;
1641 	unsigned count, total_count = 0;
1642 	struct dm_pool_metadata *pmd = td->pmd;
1643 	dm_block_t keys[1] = { td->id };
1644 	__le64 value;
1645 	dm_block_t mapping_root;
1646 
1647 	/*
1648 	 * Find the mapping tree
1649 	 */
1650 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1651 	if (r)
1652 		return r;
1653 
1654 	/*
1655 	 * Remove from the mapping tree, taking care to inc the
1656 	 * ref count so it doesn't get deleted.
1657 	 */
1658 	mapping_root = le64_to_cpu(value);
1659 	dm_tm_inc(pmd->tm, mapping_root);
1660 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1661 	if (r)
1662 		return r;
1663 
1664 	/*
1665 	 * Remove leaves stops at the first unmapped entry, so we have to
1666 	 * loop round finding mapped ranges.
1667 	 */
1668 	while (begin < end) {
1669 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1670 		if (r == -ENODATA)
1671 			break;
1672 
1673 		if (r)
1674 			return r;
1675 
1676 		if (begin >= end)
1677 			break;
1678 
1679 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1680 		if (r)
1681 			return r;
1682 
1683 		total_count += count;
1684 	}
1685 
1686 	td->mapped_blocks -= total_count;
1687 	td->changed = 1;
1688 
1689 	/*
1690 	 * Reinsert the mapping tree.
1691 	 */
1692 	value = cpu_to_le64(mapping_root);
1693 	__dm_bless_for_disk(&value);
1694 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1695 }
1696 
1697 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1698 {
1699 	int r = -EINVAL;
1700 
1701 	pmd_write_lock(td->pmd);
1702 	if (!td->pmd->fail_io)
1703 		r = __remove(td, block);
1704 	pmd_write_unlock(td->pmd);
1705 
1706 	return r;
1707 }
1708 
1709 int dm_thin_remove_range(struct dm_thin_device *td,
1710 			 dm_block_t begin, dm_block_t end)
1711 {
1712 	int r = -EINVAL;
1713 
1714 	pmd_write_lock(td->pmd);
1715 	if (!td->pmd->fail_io)
1716 		r = __remove_range(td, begin, end);
1717 	pmd_write_unlock(td->pmd);
1718 
1719 	return r;
1720 }
1721 
1722 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1723 {
1724 	int r;
1725 	uint32_t ref_count;
1726 
1727 	down_read(&pmd->root_lock);
1728 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1729 	if (!r)
1730 		*result = (ref_count > 1);
1731 	up_read(&pmd->root_lock);
1732 
1733 	return r;
1734 }
1735 
1736 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1737 {
1738 	int r = 0;
1739 
1740 	pmd_write_lock(pmd);
1741 	for (; b != e; b++) {
1742 		r = dm_sm_inc_block(pmd->data_sm, b);
1743 		if (r)
1744 			break;
1745 	}
1746 	pmd_write_unlock(pmd);
1747 
1748 	return r;
1749 }
1750 
1751 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1752 {
1753 	int r = 0;
1754 
1755 	pmd_write_lock(pmd);
1756 	for (; b != e; b++) {
1757 		r = dm_sm_dec_block(pmd->data_sm, b);
1758 		if (r)
1759 			break;
1760 	}
1761 	pmd_write_unlock(pmd);
1762 
1763 	return r;
1764 }
1765 
1766 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1767 {
1768 	int r;
1769 
1770 	down_read(&td->pmd->root_lock);
1771 	r = td->changed;
1772 	up_read(&td->pmd->root_lock);
1773 
1774 	return r;
1775 }
1776 
1777 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1778 {
1779 	bool r = false;
1780 	struct dm_thin_device *td, *tmp;
1781 
1782 	down_read(&pmd->root_lock);
1783 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1784 		if (td->changed) {
1785 			r = td->changed;
1786 			break;
1787 		}
1788 	}
1789 	up_read(&pmd->root_lock);
1790 
1791 	return r;
1792 }
1793 
1794 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1795 {
1796 	bool r;
1797 
1798 	down_read(&td->pmd->root_lock);
1799 	r = td->aborted_with_changes;
1800 	up_read(&td->pmd->root_lock);
1801 
1802 	return r;
1803 }
1804 
1805 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1806 {
1807 	int r = -EINVAL;
1808 
1809 	pmd_write_lock(pmd);
1810 	if (!pmd->fail_io)
1811 		r = dm_sm_new_block(pmd->data_sm, result);
1812 	pmd_write_unlock(pmd);
1813 
1814 	return r;
1815 }
1816 
1817 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1818 {
1819 	int r = -EINVAL;
1820 
1821 	/*
1822 	 * Care is taken to not have commit be what
1823 	 * triggers putting the thin-pool in-service.
1824 	 */
1825 	__pmd_write_lock(pmd);
1826 	if (pmd->fail_io)
1827 		goto out;
1828 
1829 	r = __commit_transaction(pmd);
1830 	if (r < 0)
1831 		goto out;
1832 
1833 	/*
1834 	 * Open the next transaction.
1835 	 */
1836 	r = __begin_transaction(pmd);
1837 out:
1838 	pmd_write_unlock(pmd);
1839 	return r;
1840 }
1841 
1842 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1843 {
1844 	struct dm_thin_device *td;
1845 
1846 	list_for_each_entry(td, &pmd->thin_devices, list)
1847 		td->aborted_with_changes = td->changed;
1848 }
1849 
1850 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1851 {
1852 	int r = -EINVAL;
1853 
1854 	pmd_write_lock(pmd);
1855 	if (pmd->fail_io)
1856 		goto out;
1857 
1858 	__set_abort_with_changes_flags(pmd);
1859 	__destroy_persistent_data_objects(pmd);
1860 	r = __create_persistent_data_objects(pmd, false);
1861 	if (r)
1862 		pmd->fail_io = true;
1863 
1864 out:
1865 	pmd_write_unlock(pmd);
1866 
1867 	return r;
1868 }
1869 
1870 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1871 {
1872 	int r = -EINVAL;
1873 
1874 	down_read(&pmd->root_lock);
1875 	if (!pmd->fail_io)
1876 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1877 	up_read(&pmd->root_lock);
1878 
1879 	return r;
1880 }
1881 
1882 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1883 					  dm_block_t *result)
1884 {
1885 	int r = -EINVAL;
1886 
1887 	down_read(&pmd->root_lock);
1888 	if (!pmd->fail_io)
1889 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1890 
1891 	if (!r) {
1892 		if (*result < pmd->metadata_reserve)
1893 			*result = 0;
1894 		else
1895 			*result -= pmd->metadata_reserve;
1896 	}
1897 	up_read(&pmd->root_lock);
1898 
1899 	return r;
1900 }
1901 
1902 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1903 				  dm_block_t *result)
1904 {
1905 	int r = -EINVAL;
1906 
1907 	down_read(&pmd->root_lock);
1908 	if (!pmd->fail_io)
1909 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1910 	up_read(&pmd->root_lock);
1911 
1912 	return r;
1913 }
1914 
1915 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1916 {
1917 	int r = -EINVAL;
1918 
1919 	down_read(&pmd->root_lock);
1920 	if (!pmd->fail_io)
1921 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1922 	up_read(&pmd->root_lock);
1923 
1924 	return r;
1925 }
1926 
1927 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1928 {
1929 	int r = -EINVAL;
1930 	struct dm_pool_metadata *pmd = td->pmd;
1931 
1932 	down_read(&pmd->root_lock);
1933 	if (!pmd->fail_io) {
1934 		*result = td->mapped_blocks;
1935 		r = 0;
1936 	}
1937 	up_read(&pmd->root_lock);
1938 
1939 	return r;
1940 }
1941 
1942 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1943 {
1944 	int r;
1945 	__le64 value_le;
1946 	dm_block_t thin_root;
1947 	struct dm_pool_metadata *pmd = td->pmd;
1948 
1949 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1950 	if (r)
1951 		return r;
1952 
1953 	thin_root = le64_to_cpu(value_le);
1954 
1955 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1956 }
1957 
1958 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1959 				     dm_block_t *result)
1960 {
1961 	int r = -EINVAL;
1962 	struct dm_pool_metadata *pmd = td->pmd;
1963 
1964 	down_read(&pmd->root_lock);
1965 	if (!pmd->fail_io)
1966 		r = __highest_block(td, result);
1967 	up_read(&pmd->root_lock);
1968 
1969 	return r;
1970 }
1971 
1972 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1973 {
1974 	int r;
1975 	dm_block_t old_count;
1976 
1977 	r = dm_sm_get_nr_blocks(sm, &old_count);
1978 	if (r)
1979 		return r;
1980 
1981 	if (new_count == old_count)
1982 		return 0;
1983 
1984 	if (new_count < old_count) {
1985 		DMERR("cannot reduce size of space map");
1986 		return -EINVAL;
1987 	}
1988 
1989 	return dm_sm_extend(sm, new_count - old_count);
1990 }
1991 
1992 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1993 {
1994 	int r = -EINVAL;
1995 
1996 	pmd_write_lock(pmd);
1997 	if (!pmd->fail_io)
1998 		r = __resize_space_map(pmd->data_sm, new_count);
1999 	pmd_write_unlock(pmd);
2000 
2001 	return r;
2002 }
2003 
2004 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2005 {
2006 	int r = -EINVAL;
2007 
2008 	pmd_write_lock(pmd);
2009 	if (!pmd->fail_io) {
2010 		r = __resize_space_map(pmd->metadata_sm, new_count);
2011 		if (!r)
2012 			__set_metadata_reserve(pmd);
2013 	}
2014 	pmd_write_unlock(pmd);
2015 
2016 	return r;
2017 }
2018 
2019 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2020 {
2021 	pmd_write_lock_in_core(pmd);
2022 	dm_bm_set_read_only(pmd->bm);
2023 	pmd_write_unlock(pmd);
2024 }
2025 
2026 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2027 {
2028 	pmd_write_lock_in_core(pmd);
2029 	dm_bm_set_read_write(pmd->bm);
2030 	pmd_write_unlock(pmd);
2031 }
2032 
2033 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2034 					dm_block_t threshold,
2035 					dm_sm_threshold_fn fn,
2036 					void *context)
2037 {
2038 	int r;
2039 
2040 	pmd_write_lock_in_core(pmd);
2041 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2042 	pmd_write_unlock(pmd);
2043 
2044 	return r;
2045 }
2046 
2047 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2048 {
2049 	int r = -EINVAL;
2050 	struct dm_block *sblock;
2051 	struct thin_disk_superblock *disk_super;
2052 
2053 	pmd_write_lock(pmd);
2054 	if (pmd->fail_io)
2055 		goto out;
2056 
2057 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2058 
2059 	r = superblock_lock(pmd, &sblock);
2060 	if (r) {
2061 		DMERR("couldn't lock superblock");
2062 		goto out;
2063 	}
2064 
2065 	disk_super = dm_block_data(sblock);
2066 	disk_super->flags = cpu_to_le32(pmd->flags);
2067 
2068 	dm_bm_unlock(sblock);
2069 out:
2070 	pmd_write_unlock(pmd);
2071 	return r;
2072 }
2073 
2074 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2075 {
2076 	bool needs_check;
2077 
2078 	down_read(&pmd->root_lock);
2079 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2080 	up_read(&pmd->root_lock);
2081 
2082 	return needs_check;
2083 }
2084 
2085 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2086 {
2087 	down_read(&pmd->root_lock);
2088 	if (!pmd->fail_io)
2089 		dm_tm_issue_prefetches(pmd->tm);
2090 	up_read(&pmd->root_lock);
2091 }
2092