xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision 9f380456)
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82 
83 /* This should be plenty */
84 #define SPACE_MAP_ROOT_SIZE 128
85 
86 /*
87  * Little endian on-disk superblock and device details.
88  */
89 struct thin_disk_superblock {
90 	__le32 csum;	/* Checksum of superblock except for this field. */
91 	__le32 flags;
92 	__le64 blocknr;	/* This block number, dm_block_t. */
93 
94 	__u8 uuid[16];
95 	__le64 magic;
96 	__le32 version;
97 	__le32 time;
98 
99 	__le64 trans_id;
100 
101 	/*
102 	 * Root held by userspace transactions.
103 	 */
104 	__le64 held_root;
105 
106 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
107 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
108 
109 	/*
110 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
111 	 */
112 	__le64 data_mapping_root;
113 
114 	/*
115 	 * Device detail root mapping dev_id -> device_details
116 	 */
117 	__le64 device_details_root;
118 
119 	__le32 data_block_size;		/* In 512-byte sectors. */
120 
121 	__le32 metadata_block_size;	/* In 512-byte sectors. */
122 	__le64 metadata_nr_blocks;
123 
124 	__le32 compat_flags;
125 	__le32 compat_ro_flags;
126 	__le32 incompat_flags;
127 } __packed;
128 
129 struct disk_device_details {
130 	__le64 mapped_blocks;
131 	__le64 transaction_id;		/* When created. */
132 	__le32 creation_time;
133 	__le32 snapshotted_time;
134 } __packed;
135 
136 struct dm_pool_metadata {
137 	struct hlist_node hash;
138 
139 	struct block_device *bdev;
140 	struct dm_block_manager *bm;
141 	struct dm_space_map *metadata_sm;
142 	struct dm_space_map *data_sm;
143 	struct dm_transaction_manager *tm;
144 	struct dm_transaction_manager *nb_tm;
145 
146 	/*
147 	 * Two-level btree.
148 	 * First level holds thin_dev_t.
149 	 * Second level holds mappings.
150 	 */
151 	struct dm_btree_info info;
152 
153 	/*
154 	 * Non-blocking version of the above.
155 	 */
156 	struct dm_btree_info nb_info;
157 
158 	/*
159 	 * Just the top level for deleting whole devices.
160 	 */
161 	struct dm_btree_info tl_info;
162 
163 	/*
164 	 * Just the bottom level for creating new devices.
165 	 */
166 	struct dm_btree_info bl_info;
167 
168 	/*
169 	 * Describes the device details btree.
170 	 */
171 	struct dm_btree_info details_info;
172 
173 	struct rw_semaphore root_lock;
174 	uint32_t time;
175 	int need_commit;
176 	dm_block_t root;
177 	dm_block_t details_root;
178 	struct list_head thin_devices;
179 	uint64_t trans_id;
180 	unsigned long flags;
181 	sector_t data_block_size;
182 };
183 
184 struct dm_thin_device {
185 	struct list_head list;
186 	struct dm_pool_metadata *pmd;
187 	dm_thin_id id;
188 
189 	int open_count;
190 	int changed;
191 	uint64_t mapped_blocks;
192 	uint64_t transaction_id;
193 	uint32_t creation_time;
194 	uint32_t snapshotted_time;
195 };
196 
197 /*----------------------------------------------------------------
198  * superblock validator
199  *--------------------------------------------------------------*/
200 
201 #define SUPERBLOCK_CSUM_XOR 160774
202 
203 static void sb_prepare_for_write(struct dm_block_validator *v,
204 				 struct dm_block *b,
205 				 size_t block_size)
206 {
207 	struct thin_disk_superblock *disk_super = dm_block_data(b);
208 
209 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
210 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
211 						      block_size - sizeof(__le32),
212 						      SUPERBLOCK_CSUM_XOR));
213 }
214 
215 static int sb_check(struct dm_block_validator *v,
216 		    struct dm_block *b,
217 		    size_t block_size)
218 {
219 	struct thin_disk_superblock *disk_super = dm_block_data(b);
220 	__le32 csum_le;
221 
222 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
223 		DMERR("sb_check failed: blocknr %llu: "
224 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
225 		      (unsigned long long)dm_block_location(b));
226 		return -ENOTBLK;
227 	}
228 
229 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
230 		DMERR("sb_check failed: magic %llu: "
231 		      "wanted %llu", le64_to_cpu(disk_super->magic),
232 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
233 		return -EILSEQ;
234 	}
235 
236 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
237 					     block_size - sizeof(__le32),
238 					     SUPERBLOCK_CSUM_XOR));
239 	if (csum_le != disk_super->csum) {
240 		DMERR("sb_check failed: csum %u: wanted %u",
241 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
242 		return -EILSEQ;
243 	}
244 
245 	return 0;
246 }
247 
248 static struct dm_block_validator sb_validator = {
249 	.name = "superblock",
250 	.prepare_for_write = sb_prepare_for_write,
251 	.check = sb_check
252 };
253 
254 /*----------------------------------------------------------------
255  * Methods for the btree value types
256  *--------------------------------------------------------------*/
257 
258 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
259 {
260 	return (b << 24) | t;
261 }
262 
263 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
264 {
265 	*b = v >> 24;
266 	*t = v & ((1 << 24) - 1);
267 }
268 
269 static void data_block_inc(void *context, void *value_le)
270 {
271 	struct dm_space_map *sm = context;
272 	__le64 v_le;
273 	uint64_t b;
274 	uint32_t t;
275 
276 	memcpy(&v_le, value_le, sizeof(v_le));
277 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
278 	dm_sm_inc_block(sm, b);
279 }
280 
281 static void data_block_dec(void *context, void *value_le)
282 {
283 	struct dm_space_map *sm = context;
284 	__le64 v_le;
285 	uint64_t b;
286 	uint32_t t;
287 
288 	memcpy(&v_le, value_le, sizeof(v_le));
289 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
290 	dm_sm_dec_block(sm, b);
291 }
292 
293 static int data_block_equal(void *context, void *value1_le, void *value2_le)
294 {
295 	__le64 v1_le, v2_le;
296 	uint64_t b1, b2;
297 	uint32_t t;
298 
299 	memcpy(&v1_le, value1_le, sizeof(v1_le));
300 	memcpy(&v2_le, value2_le, sizeof(v2_le));
301 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
302 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
303 
304 	return b1 == b2;
305 }
306 
307 static void subtree_inc(void *context, void *value)
308 {
309 	struct dm_btree_info *info = context;
310 	__le64 root_le;
311 	uint64_t root;
312 
313 	memcpy(&root_le, value, sizeof(root_le));
314 	root = le64_to_cpu(root_le);
315 	dm_tm_inc(info->tm, root);
316 }
317 
318 static void subtree_dec(void *context, void *value)
319 {
320 	struct dm_btree_info *info = context;
321 	__le64 root_le;
322 	uint64_t root;
323 
324 	memcpy(&root_le, value, sizeof(root_le));
325 	root = le64_to_cpu(root_le);
326 	if (dm_btree_del(info, root))
327 		DMERR("btree delete failed\n");
328 }
329 
330 static int subtree_equal(void *context, void *value1_le, void *value2_le)
331 {
332 	__le64 v1_le, v2_le;
333 	memcpy(&v1_le, value1_le, sizeof(v1_le));
334 	memcpy(&v2_le, value2_le, sizeof(v2_le));
335 
336 	return v1_le == v2_le;
337 }
338 
339 /*----------------------------------------------------------------*/
340 
341 static int superblock_all_zeroes(struct dm_block_manager *bm, int *result)
342 {
343 	int r;
344 	unsigned i;
345 	struct dm_block *b;
346 	__le64 *data_le, zero = cpu_to_le64(0);
347 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
348 
349 	/*
350 	 * We can't use a validator here - it may be all zeroes.
351 	 */
352 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
353 	if (r)
354 		return r;
355 
356 	data_le = dm_block_data(b);
357 	*result = 1;
358 	for (i = 0; i < block_size; i++) {
359 		if (data_le[i] != zero) {
360 			*result = 0;
361 			break;
362 		}
363 	}
364 
365 	return dm_bm_unlock(b);
366 }
367 
368 static int init_pmd(struct dm_pool_metadata *pmd,
369 		    struct dm_block_manager *bm,
370 		    dm_block_t nr_blocks, int create)
371 {
372 	int r;
373 	struct dm_space_map *sm, *data_sm;
374 	struct dm_transaction_manager *tm;
375 	struct dm_block *sblock;
376 
377 	if (create) {
378 		r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
379 					 &sb_validator, &tm, &sm, &sblock);
380 		if (r < 0) {
381 			DMERR("tm_create_with_sm failed");
382 			return r;
383 		}
384 
385 		data_sm = dm_sm_disk_create(tm, nr_blocks);
386 		if (IS_ERR(data_sm)) {
387 			DMERR("sm_disk_create failed");
388 			dm_tm_unlock(tm, sblock);
389 			r = PTR_ERR(data_sm);
390 			goto bad;
391 		}
392 	} else {
393 		struct thin_disk_superblock *disk_super = NULL;
394 		size_t space_map_root_offset =
395 			offsetof(struct thin_disk_superblock, metadata_space_map_root);
396 
397 		r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
398 				       &sb_validator, space_map_root_offset,
399 				       SPACE_MAP_ROOT_SIZE, &tm, &sm, &sblock);
400 		if (r < 0) {
401 			DMERR("tm_open_with_sm failed");
402 			return r;
403 		}
404 
405 		disk_super = dm_block_data(sblock);
406 		data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
407 					  sizeof(disk_super->data_space_map_root));
408 		if (IS_ERR(data_sm)) {
409 			DMERR("sm_disk_open failed");
410 			r = PTR_ERR(data_sm);
411 			goto bad;
412 		}
413 	}
414 
415 
416 	r = dm_tm_unlock(tm, sblock);
417 	if (r < 0) {
418 		DMERR("couldn't unlock superblock");
419 		goto bad_data_sm;
420 	}
421 
422 	pmd->bm = bm;
423 	pmd->metadata_sm = sm;
424 	pmd->data_sm = data_sm;
425 	pmd->tm = tm;
426 	pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
427 	if (!pmd->nb_tm) {
428 		DMERR("could not create clone tm");
429 		r = -ENOMEM;
430 		goto bad_data_sm;
431 	}
432 
433 	pmd->info.tm = tm;
434 	pmd->info.levels = 2;
435 	pmd->info.value_type.context = pmd->data_sm;
436 	pmd->info.value_type.size = sizeof(__le64);
437 	pmd->info.value_type.inc = data_block_inc;
438 	pmd->info.value_type.dec = data_block_dec;
439 	pmd->info.value_type.equal = data_block_equal;
440 
441 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
442 	pmd->nb_info.tm = pmd->nb_tm;
443 
444 	pmd->tl_info.tm = tm;
445 	pmd->tl_info.levels = 1;
446 	pmd->tl_info.value_type.context = &pmd->info;
447 	pmd->tl_info.value_type.size = sizeof(__le64);
448 	pmd->tl_info.value_type.inc = subtree_inc;
449 	pmd->tl_info.value_type.dec = subtree_dec;
450 	pmd->tl_info.value_type.equal = subtree_equal;
451 
452 	pmd->bl_info.tm = tm;
453 	pmd->bl_info.levels = 1;
454 	pmd->bl_info.value_type.context = pmd->data_sm;
455 	pmd->bl_info.value_type.size = sizeof(__le64);
456 	pmd->bl_info.value_type.inc = data_block_inc;
457 	pmd->bl_info.value_type.dec = data_block_dec;
458 	pmd->bl_info.value_type.equal = data_block_equal;
459 
460 	pmd->details_info.tm = tm;
461 	pmd->details_info.levels = 1;
462 	pmd->details_info.value_type.context = NULL;
463 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
464 	pmd->details_info.value_type.inc = NULL;
465 	pmd->details_info.value_type.dec = NULL;
466 	pmd->details_info.value_type.equal = NULL;
467 
468 	pmd->root = 0;
469 
470 	init_rwsem(&pmd->root_lock);
471 	pmd->time = 0;
472 	pmd->need_commit = 0;
473 	pmd->details_root = 0;
474 	pmd->trans_id = 0;
475 	pmd->flags = 0;
476 	INIT_LIST_HEAD(&pmd->thin_devices);
477 
478 	return 0;
479 
480 bad_data_sm:
481 	dm_sm_destroy(data_sm);
482 bad:
483 	dm_tm_destroy(tm);
484 	dm_sm_destroy(sm);
485 
486 	return r;
487 }
488 
489 static int __begin_transaction(struct dm_pool_metadata *pmd)
490 {
491 	int r;
492 	u32 features;
493 	struct thin_disk_superblock *disk_super;
494 	struct dm_block *sblock;
495 
496 	/*
497 	 * __maybe_commit_transaction() resets these
498 	 */
499 	WARN_ON(pmd->need_commit);
500 
501 	/*
502 	 * We re-read the superblock every time.  Shouldn't need to do this
503 	 * really.
504 	 */
505 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
506 			    &sb_validator, &sblock);
507 	if (r)
508 		return r;
509 
510 	disk_super = dm_block_data(sblock);
511 	pmd->time = le32_to_cpu(disk_super->time);
512 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
513 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
514 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
515 	pmd->flags = le32_to_cpu(disk_super->flags);
516 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
517 
518 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
519 	if (features) {
520 		DMERR("could not access metadata due to "
521 		      "unsupported optional features (%lx).",
522 		      (unsigned long)features);
523 		r = -EINVAL;
524 		goto out;
525 	}
526 
527 	/*
528 	 * Check for read-only metadata to skip the following RDWR checks.
529 	 */
530 	if (get_disk_ro(pmd->bdev->bd_disk))
531 		goto out;
532 
533 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
534 	if (features) {
535 		DMERR("could not access metadata RDWR due to "
536 		      "unsupported optional features (%lx).",
537 		      (unsigned long)features);
538 		r = -EINVAL;
539 	}
540 
541 out:
542 	dm_bm_unlock(sblock);
543 	return r;
544 }
545 
546 static int __write_changed_details(struct dm_pool_metadata *pmd)
547 {
548 	int r;
549 	struct dm_thin_device *td, *tmp;
550 	struct disk_device_details details;
551 	uint64_t key;
552 
553 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
554 		if (!td->changed)
555 			continue;
556 
557 		key = td->id;
558 
559 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
560 		details.transaction_id = cpu_to_le64(td->transaction_id);
561 		details.creation_time = cpu_to_le32(td->creation_time);
562 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
563 		__dm_bless_for_disk(&details);
564 
565 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
566 				    &key, &details, &pmd->details_root);
567 		if (r)
568 			return r;
569 
570 		if (td->open_count)
571 			td->changed = 0;
572 		else {
573 			list_del(&td->list);
574 			kfree(td);
575 		}
576 
577 		pmd->need_commit = 1;
578 	}
579 
580 	return 0;
581 }
582 
583 static int __commit_transaction(struct dm_pool_metadata *pmd)
584 {
585 	/*
586 	 * FIXME: Associated pool should be made read-only on failure.
587 	 */
588 	int r;
589 	size_t metadata_len, data_len;
590 	struct thin_disk_superblock *disk_super;
591 	struct dm_block *sblock;
592 
593 	/*
594 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
595 	 */
596 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
597 
598 	r = __write_changed_details(pmd);
599 	if (r < 0)
600 		goto out;
601 
602 	if (!pmd->need_commit)
603 		goto out;
604 
605 	r = dm_sm_commit(pmd->data_sm);
606 	if (r < 0)
607 		goto out;
608 
609 	r = dm_tm_pre_commit(pmd->tm);
610 	if (r < 0)
611 		goto out;
612 
613 	r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
614 	if (r < 0)
615 		goto out;
616 
617 	r = dm_sm_root_size(pmd->data_sm, &data_len);
618 	if (r < 0)
619 		goto out;
620 
621 	r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
622 			     &sb_validator, &sblock);
623 	if (r)
624 		goto out;
625 
626 	disk_super = dm_block_data(sblock);
627 	disk_super->time = cpu_to_le32(pmd->time);
628 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
629 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
630 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
631 	disk_super->flags = cpu_to_le32(pmd->flags);
632 
633 	r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
634 			    metadata_len);
635 	if (r < 0)
636 		goto out_locked;
637 
638 	r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
639 			    data_len);
640 	if (r < 0)
641 		goto out_locked;
642 
643 	r = dm_tm_commit(pmd->tm, sblock);
644 	if (!r)
645 		pmd->need_commit = 0;
646 
647 out:
648 	return r;
649 
650 out_locked:
651 	dm_bm_unlock(sblock);
652 	return r;
653 }
654 
655 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
656 					       sector_t data_block_size)
657 {
658 	int r;
659 	struct thin_disk_superblock *disk_super;
660 	struct dm_pool_metadata *pmd;
661 	sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
662 	struct dm_block_manager *bm;
663 	int create;
664 	struct dm_block *sblock;
665 
666 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
667 	if (!pmd) {
668 		DMERR("could not allocate metadata struct");
669 		return ERR_PTR(-ENOMEM);
670 	}
671 
672 	/*
673 	 * Max hex locks:
674 	 *  3 for btree insert +
675 	 *  2 for btree lookup used within space map
676 	 */
677 	bm = dm_block_manager_create(bdev, THIN_METADATA_BLOCK_SIZE,
678 				     THIN_METADATA_CACHE_SIZE, 5);
679 	if (!bm) {
680 		DMERR("could not create block manager");
681 		kfree(pmd);
682 		return ERR_PTR(-ENOMEM);
683 	}
684 
685 	r = superblock_all_zeroes(bm, &create);
686 	if (r) {
687 		dm_block_manager_destroy(bm);
688 		kfree(pmd);
689 		return ERR_PTR(r);
690 	}
691 
692 
693 	r = init_pmd(pmd, bm, 0, create);
694 	if (r) {
695 		dm_block_manager_destroy(bm);
696 		kfree(pmd);
697 		return ERR_PTR(r);
698 	}
699 	pmd->bdev = bdev;
700 
701 	if (!create) {
702 		r = __begin_transaction(pmd);
703 		if (r < 0)
704 			goto bad;
705 		return pmd;
706 	}
707 
708 	/*
709 	 * Create.
710 	 */
711 	r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
712 			     &sb_validator, &sblock);
713 	if (r)
714 		goto bad;
715 
716 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
717 		bdev_size = THIN_METADATA_MAX_SECTORS;
718 
719 	disk_super = dm_block_data(sblock);
720 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
721 	disk_super->version = cpu_to_le32(THIN_VERSION);
722 	disk_super->time = 0;
723 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
724 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
725 	disk_super->data_block_size = cpu_to_le32(data_block_size);
726 
727 	r = dm_bm_unlock(sblock);
728 	if (r < 0)
729 		goto bad;
730 
731 	r = dm_btree_empty(&pmd->info, &pmd->root);
732 	if (r < 0)
733 		goto bad;
734 
735 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
736 	if (r < 0) {
737 		DMERR("couldn't create devices root");
738 		goto bad;
739 	}
740 
741 	pmd->flags = 0;
742 	pmd->need_commit = 1;
743 	r = dm_pool_commit_metadata(pmd);
744 	if (r < 0) {
745 		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
746 		      __func__, r);
747 		goto bad;
748 	}
749 
750 	return pmd;
751 
752 bad:
753 	if (dm_pool_metadata_close(pmd) < 0)
754 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
755 	return ERR_PTR(r);
756 }
757 
758 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
759 {
760 	int r;
761 	unsigned open_devices = 0;
762 	struct dm_thin_device *td, *tmp;
763 
764 	down_read(&pmd->root_lock);
765 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
766 		if (td->open_count)
767 			open_devices++;
768 		else {
769 			list_del(&td->list);
770 			kfree(td);
771 		}
772 	}
773 	up_read(&pmd->root_lock);
774 
775 	if (open_devices) {
776 		DMERR("attempt to close pmd when %u device(s) are still open",
777 		       open_devices);
778 		return -EBUSY;
779 	}
780 
781 	r = __commit_transaction(pmd);
782 	if (r < 0)
783 		DMWARN("%s: __commit_transaction() failed, error = %d",
784 		       __func__, r);
785 
786 	dm_tm_destroy(pmd->tm);
787 	dm_tm_destroy(pmd->nb_tm);
788 	dm_block_manager_destroy(pmd->bm);
789 	dm_sm_destroy(pmd->metadata_sm);
790 	dm_sm_destroy(pmd->data_sm);
791 	kfree(pmd);
792 
793 	return 0;
794 }
795 
796 /*
797  * __open_device: Returns @td corresponding to device with id @dev,
798  * creating it if @create is set and incrementing @td->open_count.
799  * On failure, @td is undefined.
800  */
801 static int __open_device(struct dm_pool_metadata *pmd,
802 			 dm_thin_id dev, int create,
803 			 struct dm_thin_device **td)
804 {
805 	int r, changed = 0;
806 	struct dm_thin_device *td2;
807 	uint64_t key = dev;
808 	struct disk_device_details details_le;
809 
810 	/*
811 	 * If the device is already open, return it.
812 	 */
813 	list_for_each_entry(td2, &pmd->thin_devices, list)
814 		if (td2->id == dev) {
815 			/*
816 			 * May not create an already-open device.
817 			 */
818 			if (create)
819 				return -EEXIST;
820 
821 			td2->open_count++;
822 			*td = td2;
823 			return 0;
824 		}
825 
826 	/*
827 	 * Check the device exists.
828 	 */
829 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
830 			    &key, &details_le);
831 	if (r) {
832 		if (r != -ENODATA || !create)
833 			return r;
834 
835 		/*
836 		 * Create new device.
837 		 */
838 		changed = 1;
839 		details_le.mapped_blocks = 0;
840 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
841 		details_le.creation_time = cpu_to_le32(pmd->time);
842 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
843 	}
844 
845 	*td = kmalloc(sizeof(**td), GFP_NOIO);
846 	if (!*td)
847 		return -ENOMEM;
848 
849 	(*td)->pmd = pmd;
850 	(*td)->id = dev;
851 	(*td)->open_count = 1;
852 	(*td)->changed = changed;
853 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
854 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
855 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
856 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
857 
858 	list_add(&(*td)->list, &pmd->thin_devices);
859 
860 	return 0;
861 }
862 
863 static void __close_device(struct dm_thin_device *td)
864 {
865 	--td->open_count;
866 }
867 
868 static int __create_thin(struct dm_pool_metadata *pmd,
869 			 dm_thin_id dev)
870 {
871 	int r;
872 	dm_block_t dev_root;
873 	uint64_t key = dev;
874 	struct disk_device_details details_le;
875 	struct dm_thin_device *td;
876 	__le64 value;
877 
878 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
879 			    &key, &details_le);
880 	if (!r)
881 		return -EEXIST;
882 
883 	/*
884 	 * Create an empty btree for the mappings.
885 	 */
886 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
887 	if (r)
888 		return r;
889 
890 	/*
891 	 * Insert it into the main mapping tree.
892 	 */
893 	value = cpu_to_le64(dev_root);
894 	__dm_bless_for_disk(&value);
895 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
896 	if (r) {
897 		dm_btree_del(&pmd->bl_info, dev_root);
898 		return r;
899 	}
900 
901 	r = __open_device(pmd, dev, 1, &td);
902 	if (r) {
903 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
904 		dm_btree_del(&pmd->bl_info, dev_root);
905 		return r;
906 	}
907 	__close_device(td);
908 
909 	return r;
910 }
911 
912 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
913 {
914 	int r;
915 
916 	down_write(&pmd->root_lock);
917 	r = __create_thin(pmd, dev);
918 	up_write(&pmd->root_lock);
919 
920 	return r;
921 }
922 
923 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
924 				  struct dm_thin_device *snap,
925 				  dm_thin_id origin, uint32_t time)
926 {
927 	int r;
928 	struct dm_thin_device *td;
929 
930 	r = __open_device(pmd, origin, 0, &td);
931 	if (r)
932 		return r;
933 
934 	td->changed = 1;
935 	td->snapshotted_time = time;
936 
937 	snap->mapped_blocks = td->mapped_blocks;
938 	snap->snapshotted_time = time;
939 	__close_device(td);
940 
941 	return 0;
942 }
943 
944 static int __create_snap(struct dm_pool_metadata *pmd,
945 			 dm_thin_id dev, dm_thin_id origin)
946 {
947 	int r;
948 	dm_block_t origin_root;
949 	uint64_t key = origin, dev_key = dev;
950 	struct dm_thin_device *td;
951 	struct disk_device_details details_le;
952 	__le64 value;
953 
954 	/* check this device is unused */
955 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
956 			    &dev_key, &details_le);
957 	if (!r)
958 		return -EEXIST;
959 
960 	/* find the mapping tree for the origin */
961 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
962 	if (r)
963 		return r;
964 	origin_root = le64_to_cpu(value);
965 
966 	/* clone the origin, an inc will do */
967 	dm_tm_inc(pmd->tm, origin_root);
968 
969 	/* insert into the main mapping tree */
970 	value = cpu_to_le64(origin_root);
971 	__dm_bless_for_disk(&value);
972 	key = dev;
973 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
974 	if (r) {
975 		dm_tm_dec(pmd->tm, origin_root);
976 		return r;
977 	}
978 
979 	pmd->time++;
980 
981 	r = __open_device(pmd, dev, 1, &td);
982 	if (r)
983 		goto bad;
984 
985 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
986 	__close_device(td);
987 
988 	if (r)
989 		goto bad;
990 
991 	return 0;
992 
993 bad:
994 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
995 	dm_btree_remove(&pmd->details_info, pmd->details_root,
996 			&key, &pmd->details_root);
997 	return r;
998 }
999 
1000 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1001 				 dm_thin_id dev,
1002 				 dm_thin_id origin)
1003 {
1004 	int r;
1005 
1006 	down_write(&pmd->root_lock);
1007 	r = __create_snap(pmd, dev, origin);
1008 	up_write(&pmd->root_lock);
1009 
1010 	return r;
1011 }
1012 
1013 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1014 {
1015 	int r;
1016 	uint64_t key = dev;
1017 	struct dm_thin_device *td;
1018 
1019 	/* TODO: failure should mark the transaction invalid */
1020 	r = __open_device(pmd, dev, 0, &td);
1021 	if (r)
1022 		return r;
1023 
1024 	if (td->open_count > 1) {
1025 		__close_device(td);
1026 		return -EBUSY;
1027 	}
1028 
1029 	list_del(&td->list);
1030 	kfree(td);
1031 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1032 			    &key, &pmd->details_root);
1033 	if (r)
1034 		return r;
1035 
1036 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1037 	if (r)
1038 		return r;
1039 
1040 	pmd->need_commit = 1;
1041 
1042 	return 0;
1043 }
1044 
1045 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1046 			       dm_thin_id dev)
1047 {
1048 	int r;
1049 
1050 	down_write(&pmd->root_lock);
1051 	r = __delete_device(pmd, dev);
1052 	up_write(&pmd->root_lock);
1053 
1054 	return r;
1055 }
1056 
1057 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1058 					uint64_t current_id,
1059 					uint64_t new_id)
1060 {
1061 	down_write(&pmd->root_lock);
1062 	if (pmd->trans_id != current_id) {
1063 		up_write(&pmd->root_lock);
1064 		DMERR("mismatched transaction id");
1065 		return -EINVAL;
1066 	}
1067 
1068 	pmd->trans_id = new_id;
1069 	pmd->need_commit = 1;
1070 	up_write(&pmd->root_lock);
1071 
1072 	return 0;
1073 }
1074 
1075 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1076 					uint64_t *result)
1077 {
1078 	down_read(&pmd->root_lock);
1079 	*result = pmd->trans_id;
1080 	up_read(&pmd->root_lock);
1081 
1082 	return 0;
1083 }
1084 
1085 static int __get_held_metadata_root(struct dm_pool_metadata *pmd,
1086 				    dm_block_t *result)
1087 {
1088 	int r;
1089 	struct thin_disk_superblock *disk_super;
1090 	struct dm_block *sblock;
1091 
1092 	r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1093 			     &sb_validator, &sblock);
1094 	if (r)
1095 		return r;
1096 
1097 	disk_super = dm_block_data(sblock);
1098 	*result = le64_to_cpu(disk_super->held_root);
1099 
1100 	return dm_bm_unlock(sblock);
1101 }
1102 
1103 int dm_pool_get_held_metadata_root(struct dm_pool_metadata *pmd,
1104 				   dm_block_t *result)
1105 {
1106 	int r;
1107 
1108 	down_read(&pmd->root_lock);
1109 	r = __get_held_metadata_root(pmd, result);
1110 	up_read(&pmd->root_lock);
1111 
1112 	return r;
1113 }
1114 
1115 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1116 			     struct dm_thin_device **td)
1117 {
1118 	int r;
1119 
1120 	down_write(&pmd->root_lock);
1121 	r = __open_device(pmd, dev, 0, td);
1122 	up_write(&pmd->root_lock);
1123 
1124 	return r;
1125 }
1126 
1127 int dm_pool_close_thin_device(struct dm_thin_device *td)
1128 {
1129 	down_write(&td->pmd->root_lock);
1130 	__close_device(td);
1131 	up_write(&td->pmd->root_lock);
1132 
1133 	return 0;
1134 }
1135 
1136 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1137 {
1138 	return td->id;
1139 }
1140 
1141 static int __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1142 {
1143 	return td->snapshotted_time > time;
1144 }
1145 
1146 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1147 		       int can_block, struct dm_thin_lookup_result *result)
1148 {
1149 	int r;
1150 	uint64_t block_time = 0;
1151 	__le64 value;
1152 	struct dm_pool_metadata *pmd = td->pmd;
1153 	dm_block_t keys[2] = { td->id, block };
1154 
1155 	if (can_block) {
1156 		down_read(&pmd->root_lock);
1157 		r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
1158 		if (!r)
1159 			block_time = le64_to_cpu(value);
1160 		up_read(&pmd->root_lock);
1161 
1162 	} else if (down_read_trylock(&pmd->root_lock)) {
1163 		r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
1164 		if (!r)
1165 			block_time = le64_to_cpu(value);
1166 		up_read(&pmd->root_lock);
1167 
1168 	} else
1169 		return -EWOULDBLOCK;
1170 
1171 	if (!r) {
1172 		dm_block_t exception_block;
1173 		uint32_t exception_time;
1174 		unpack_block_time(block_time, &exception_block,
1175 				  &exception_time);
1176 		result->block = exception_block;
1177 		result->shared = __snapshotted_since(td, exception_time);
1178 	}
1179 
1180 	return r;
1181 }
1182 
1183 static int __insert(struct dm_thin_device *td, dm_block_t block,
1184 		    dm_block_t data_block)
1185 {
1186 	int r, inserted;
1187 	__le64 value;
1188 	struct dm_pool_metadata *pmd = td->pmd;
1189 	dm_block_t keys[2] = { td->id, block };
1190 
1191 	pmd->need_commit = 1;
1192 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1193 	__dm_bless_for_disk(&value);
1194 
1195 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1196 				   &pmd->root, &inserted);
1197 	if (r)
1198 		return r;
1199 
1200 	if (inserted) {
1201 		td->mapped_blocks++;
1202 		td->changed = 1;
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1209 			 dm_block_t data_block)
1210 {
1211 	int r;
1212 
1213 	down_write(&td->pmd->root_lock);
1214 	r = __insert(td, block, data_block);
1215 	up_write(&td->pmd->root_lock);
1216 
1217 	return r;
1218 }
1219 
1220 static int __remove(struct dm_thin_device *td, dm_block_t block)
1221 {
1222 	int r;
1223 	struct dm_pool_metadata *pmd = td->pmd;
1224 	dm_block_t keys[2] = { td->id, block };
1225 
1226 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1227 	if (r)
1228 		return r;
1229 
1230 	td->mapped_blocks--;
1231 	td->changed = 1;
1232 	pmd->need_commit = 1;
1233 
1234 	return 0;
1235 }
1236 
1237 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1238 {
1239 	int r;
1240 
1241 	down_write(&td->pmd->root_lock);
1242 	r = __remove(td, block);
1243 	up_write(&td->pmd->root_lock);
1244 
1245 	return r;
1246 }
1247 
1248 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1249 {
1250 	int r;
1251 
1252 	down_write(&pmd->root_lock);
1253 
1254 	r = dm_sm_new_block(pmd->data_sm, result);
1255 	pmd->need_commit = 1;
1256 
1257 	up_write(&pmd->root_lock);
1258 
1259 	return r;
1260 }
1261 
1262 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1263 {
1264 	int r;
1265 
1266 	down_write(&pmd->root_lock);
1267 
1268 	r = __commit_transaction(pmd);
1269 	if (r <= 0)
1270 		goto out;
1271 
1272 	/*
1273 	 * Open the next transaction.
1274 	 */
1275 	r = __begin_transaction(pmd);
1276 out:
1277 	up_write(&pmd->root_lock);
1278 	return r;
1279 }
1280 
1281 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1282 {
1283 	int r;
1284 
1285 	down_read(&pmd->root_lock);
1286 	r = dm_sm_get_nr_free(pmd->data_sm, result);
1287 	up_read(&pmd->root_lock);
1288 
1289 	return r;
1290 }
1291 
1292 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1293 					  dm_block_t *result)
1294 {
1295 	int r;
1296 
1297 	down_read(&pmd->root_lock);
1298 	r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1299 	up_read(&pmd->root_lock);
1300 
1301 	return r;
1302 }
1303 
1304 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1305 				  dm_block_t *result)
1306 {
1307 	int r;
1308 
1309 	down_read(&pmd->root_lock);
1310 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1311 	up_read(&pmd->root_lock);
1312 
1313 	return r;
1314 }
1315 
1316 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1317 {
1318 	down_read(&pmd->root_lock);
1319 	*result = pmd->data_block_size;
1320 	up_read(&pmd->root_lock);
1321 
1322 	return 0;
1323 }
1324 
1325 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1326 {
1327 	int r;
1328 
1329 	down_read(&pmd->root_lock);
1330 	r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1331 	up_read(&pmd->root_lock);
1332 
1333 	return r;
1334 }
1335 
1336 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1337 {
1338 	struct dm_pool_metadata *pmd = td->pmd;
1339 
1340 	down_read(&pmd->root_lock);
1341 	*result = td->mapped_blocks;
1342 	up_read(&pmd->root_lock);
1343 
1344 	return 0;
1345 }
1346 
1347 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1348 {
1349 	int r;
1350 	__le64 value_le;
1351 	dm_block_t thin_root;
1352 	struct dm_pool_metadata *pmd = td->pmd;
1353 
1354 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1355 	if (r)
1356 		return r;
1357 
1358 	thin_root = le64_to_cpu(value_le);
1359 
1360 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1361 }
1362 
1363 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1364 				     dm_block_t *result)
1365 {
1366 	int r;
1367 	struct dm_pool_metadata *pmd = td->pmd;
1368 
1369 	down_read(&pmd->root_lock);
1370 	r = __highest_block(td, result);
1371 	up_read(&pmd->root_lock);
1372 
1373 	return r;
1374 }
1375 
1376 static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1377 {
1378 	int r;
1379 	dm_block_t old_count;
1380 
1381 	r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
1382 	if (r)
1383 		return r;
1384 
1385 	if (new_count == old_count)
1386 		return 0;
1387 
1388 	if (new_count < old_count) {
1389 		DMERR("cannot reduce size of data device");
1390 		return -EINVAL;
1391 	}
1392 
1393 	r = dm_sm_extend(pmd->data_sm, new_count - old_count);
1394 	if (!r)
1395 		pmd->need_commit = 1;
1396 
1397 	return r;
1398 }
1399 
1400 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1401 {
1402 	int r;
1403 
1404 	down_write(&pmd->root_lock);
1405 	r = __resize_data_dev(pmd, new_count);
1406 	up_write(&pmd->root_lock);
1407 
1408 	return r;
1409 }
1410