xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision 9cdb81c7)
1 /*
2  * Copyright (C) 2011 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82 
83 /* This should be plenty */
84 #define SPACE_MAP_ROOT_SIZE 128
85 
86 /*
87  * Little endian on-disk superblock and device details.
88  */
89 struct thin_disk_superblock {
90 	__le32 csum;	/* Checksum of superblock except for this field. */
91 	__le32 flags;
92 	__le64 blocknr;	/* This block number, dm_block_t. */
93 
94 	__u8 uuid[16];
95 	__le64 magic;
96 	__le32 version;
97 	__le32 time;
98 
99 	__le64 trans_id;
100 
101 	/*
102 	 * Root held by userspace transactions.
103 	 */
104 	__le64 held_root;
105 
106 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
107 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
108 
109 	/*
110 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
111 	 */
112 	__le64 data_mapping_root;
113 
114 	/*
115 	 * Device detail root mapping dev_id -> device_details
116 	 */
117 	__le64 device_details_root;
118 
119 	__le32 data_block_size;		/* In 512-byte sectors. */
120 
121 	__le32 metadata_block_size;	/* In 512-byte sectors. */
122 	__le64 metadata_nr_blocks;
123 
124 	__le32 compat_flags;
125 	__le32 compat_ro_flags;
126 	__le32 incompat_flags;
127 } __packed;
128 
129 struct disk_device_details {
130 	__le64 mapped_blocks;
131 	__le64 transaction_id;		/* When created. */
132 	__le32 creation_time;
133 	__le32 snapshotted_time;
134 } __packed;
135 
136 struct dm_pool_metadata {
137 	struct hlist_node hash;
138 
139 	struct block_device *bdev;
140 	struct dm_block_manager *bm;
141 	struct dm_space_map *metadata_sm;
142 	struct dm_space_map *data_sm;
143 	struct dm_transaction_manager *tm;
144 	struct dm_transaction_manager *nb_tm;
145 
146 	/*
147 	 * Two-level btree.
148 	 * First level holds thin_dev_t.
149 	 * Second level holds mappings.
150 	 */
151 	struct dm_btree_info info;
152 
153 	/*
154 	 * Non-blocking version of the above.
155 	 */
156 	struct dm_btree_info nb_info;
157 
158 	/*
159 	 * Just the top level for deleting whole devices.
160 	 */
161 	struct dm_btree_info tl_info;
162 
163 	/*
164 	 * Just the bottom level for creating new devices.
165 	 */
166 	struct dm_btree_info bl_info;
167 
168 	/*
169 	 * Describes the device details btree.
170 	 */
171 	struct dm_btree_info details_info;
172 
173 	struct rw_semaphore root_lock;
174 	uint32_t time;
175 	int need_commit;
176 	dm_block_t root;
177 	dm_block_t details_root;
178 	struct list_head thin_devices;
179 	uint64_t trans_id;
180 	unsigned long flags;
181 	sector_t data_block_size;
182 };
183 
184 struct dm_thin_device {
185 	struct list_head list;
186 	struct dm_pool_metadata *pmd;
187 	dm_thin_id id;
188 
189 	int open_count;
190 	int changed;
191 	uint64_t mapped_blocks;
192 	uint64_t transaction_id;
193 	uint32_t creation_time;
194 	uint32_t snapshotted_time;
195 };
196 
197 /*----------------------------------------------------------------
198  * superblock validator
199  *--------------------------------------------------------------*/
200 
201 #define SUPERBLOCK_CSUM_XOR 160774
202 
203 static void sb_prepare_for_write(struct dm_block_validator *v,
204 				 struct dm_block *b,
205 				 size_t block_size)
206 {
207 	struct thin_disk_superblock *disk_super = dm_block_data(b);
208 
209 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
210 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
211 						      block_size - sizeof(__le32),
212 						      SUPERBLOCK_CSUM_XOR));
213 }
214 
215 static int sb_check(struct dm_block_validator *v,
216 		    struct dm_block *b,
217 		    size_t block_size)
218 {
219 	struct thin_disk_superblock *disk_super = dm_block_data(b);
220 	__le32 csum_le;
221 
222 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
223 		DMERR("sb_check failed: blocknr %llu: "
224 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
225 		      (unsigned long long)dm_block_location(b));
226 		return -ENOTBLK;
227 	}
228 
229 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
230 		DMERR("sb_check failed: magic %llu: "
231 		      "wanted %llu", le64_to_cpu(disk_super->magic),
232 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
233 		return -EILSEQ;
234 	}
235 
236 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
237 					     block_size - sizeof(__le32),
238 					     SUPERBLOCK_CSUM_XOR));
239 	if (csum_le != disk_super->csum) {
240 		DMERR("sb_check failed: csum %u: wanted %u",
241 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
242 		return -EILSEQ;
243 	}
244 
245 	return 0;
246 }
247 
248 static struct dm_block_validator sb_validator = {
249 	.name = "superblock",
250 	.prepare_for_write = sb_prepare_for_write,
251 	.check = sb_check
252 };
253 
254 /*----------------------------------------------------------------
255  * Methods for the btree value types
256  *--------------------------------------------------------------*/
257 
258 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
259 {
260 	return (b << 24) | t;
261 }
262 
263 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
264 {
265 	*b = v >> 24;
266 	*t = v & ((1 << 24) - 1);
267 }
268 
269 static void data_block_inc(void *context, void *value_le)
270 {
271 	struct dm_space_map *sm = context;
272 	__le64 v_le;
273 	uint64_t b;
274 	uint32_t t;
275 
276 	memcpy(&v_le, value_le, sizeof(v_le));
277 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
278 	dm_sm_inc_block(sm, b);
279 }
280 
281 static void data_block_dec(void *context, void *value_le)
282 {
283 	struct dm_space_map *sm = context;
284 	__le64 v_le;
285 	uint64_t b;
286 	uint32_t t;
287 
288 	memcpy(&v_le, value_le, sizeof(v_le));
289 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
290 	dm_sm_dec_block(sm, b);
291 }
292 
293 static int data_block_equal(void *context, void *value1_le, void *value2_le)
294 {
295 	__le64 v1_le, v2_le;
296 	uint64_t b1, b2;
297 	uint32_t t;
298 
299 	memcpy(&v1_le, value1_le, sizeof(v1_le));
300 	memcpy(&v2_le, value2_le, sizeof(v2_le));
301 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
302 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
303 
304 	return b1 == b2;
305 }
306 
307 static void subtree_inc(void *context, void *value)
308 {
309 	struct dm_btree_info *info = context;
310 	__le64 root_le;
311 	uint64_t root;
312 
313 	memcpy(&root_le, value, sizeof(root_le));
314 	root = le64_to_cpu(root_le);
315 	dm_tm_inc(info->tm, root);
316 }
317 
318 static void subtree_dec(void *context, void *value)
319 {
320 	struct dm_btree_info *info = context;
321 	__le64 root_le;
322 	uint64_t root;
323 
324 	memcpy(&root_le, value, sizeof(root_le));
325 	root = le64_to_cpu(root_le);
326 	if (dm_btree_del(info, root))
327 		DMERR("btree delete failed\n");
328 }
329 
330 static int subtree_equal(void *context, void *value1_le, void *value2_le)
331 {
332 	__le64 v1_le, v2_le;
333 	memcpy(&v1_le, value1_le, sizeof(v1_le));
334 	memcpy(&v2_le, value2_le, sizeof(v2_le));
335 
336 	return v1_le == v2_le;
337 }
338 
339 /*----------------------------------------------------------------*/
340 
341 static int superblock_all_zeroes(struct dm_block_manager *bm, int *result)
342 {
343 	int r;
344 	unsigned i;
345 	struct dm_block *b;
346 	__le64 *data_le, zero = cpu_to_le64(0);
347 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
348 
349 	/*
350 	 * We can't use a validator here - it may be all zeroes.
351 	 */
352 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
353 	if (r)
354 		return r;
355 
356 	data_le = dm_block_data(b);
357 	*result = 1;
358 	for (i = 0; i < block_size; i++) {
359 		if (data_le[i] != zero) {
360 			*result = 0;
361 			break;
362 		}
363 	}
364 
365 	return dm_bm_unlock(b);
366 }
367 
368 static int init_pmd(struct dm_pool_metadata *pmd,
369 		    struct dm_block_manager *bm,
370 		    dm_block_t nr_blocks, int create)
371 {
372 	int r;
373 	struct dm_space_map *sm, *data_sm;
374 	struct dm_transaction_manager *tm;
375 	struct dm_block *sblock;
376 
377 	if (create) {
378 		r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
379 					 &sb_validator, &tm, &sm, &sblock);
380 		if (r < 0) {
381 			DMERR("tm_create_with_sm failed");
382 			return r;
383 		}
384 
385 		data_sm = dm_sm_disk_create(tm, nr_blocks);
386 		if (IS_ERR(data_sm)) {
387 			DMERR("sm_disk_create failed");
388 			dm_tm_unlock(tm, sblock);
389 			r = PTR_ERR(data_sm);
390 			goto bad;
391 		}
392 	} else {
393 		struct thin_disk_superblock *disk_super = NULL;
394 		size_t space_map_root_offset =
395 			offsetof(struct thin_disk_superblock, metadata_space_map_root);
396 
397 		r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
398 				       &sb_validator, space_map_root_offset,
399 				       SPACE_MAP_ROOT_SIZE, &tm, &sm, &sblock);
400 		if (r < 0) {
401 			DMERR("tm_open_with_sm failed");
402 			return r;
403 		}
404 
405 		disk_super = dm_block_data(sblock);
406 		data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
407 					  sizeof(disk_super->data_space_map_root));
408 		if (IS_ERR(data_sm)) {
409 			DMERR("sm_disk_open failed");
410 			r = PTR_ERR(data_sm);
411 			goto bad;
412 		}
413 	}
414 
415 
416 	r = dm_tm_unlock(tm, sblock);
417 	if (r < 0) {
418 		DMERR("couldn't unlock superblock");
419 		goto bad_data_sm;
420 	}
421 
422 	pmd->bm = bm;
423 	pmd->metadata_sm = sm;
424 	pmd->data_sm = data_sm;
425 	pmd->tm = tm;
426 	pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
427 	if (!pmd->nb_tm) {
428 		DMERR("could not create clone tm");
429 		r = -ENOMEM;
430 		goto bad_data_sm;
431 	}
432 
433 	pmd->info.tm = tm;
434 	pmd->info.levels = 2;
435 	pmd->info.value_type.context = pmd->data_sm;
436 	pmd->info.value_type.size = sizeof(__le64);
437 	pmd->info.value_type.inc = data_block_inc;
438 	pmd->info.value_type.dec = data_block_dec;
439 	pmd->info.value_type.equal = data_block_equal;
440 
441 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
442 	pmd->nb_info.tm = pmd->nb_tm;
443 
444 	pmd->tl_info.tm = tm;
445 	pmd->tl_info.levels = 1;
446 	pmd->tl_info.value_type.context = &pmd->info;
447 	pmd->tl_info.value_type.size = sizeof(__le64);
448 	pmd->tl_info.value_type.inc = subtree_inc;
449 	pmd->tl_info.value_type.dec = subtree_dec;
450 	pmd->tl_info.value_type.equal = subtree_equal;
451 
452 	pmd->bl_info.tm = tm;
453 	pmd->bl_info.levels = 1;
454 	pmd->bl_info.value_type.context = pmd->data_sm;
455 	pmd->bl_info.value_type.size = sizeof(__le64);
456 	pmd->bl_info.value_type.inc = data_block_inc;
457 	pmd->bl_info.value_type.dec = data_block_dec;
458 	pmd->bl_info.value_type.equal = data_block_equal;
459 
460 	pmd->details_info.tm = tm;
461 	pmd->details_info.levels = 1;
462 	pmd->details_info.value_type.context = NULL;
463 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
464 	pmd->details_info.value_type.inc = NULL;
465 	pmd->details_info.value_type.dec = NULL;
466 	pmd->details_info.value_type.equal = NULL;
467 
468 	pmd->root = 0;
469 
470 	init_rwsem(&pmd->root_lock);
471 	pmd->time = 0;
472 	pmd->need_commit = 0;
473 	pmd->details_root = 0;
474 	pmd->trans_id = 0;
475 	pmd->flags = 0;
476 	INIT_LIST_HEAD(&pmd->thin_devices);
477 
478 	return 0;
479 
480 bad_data_sm:
481 	dm_sm_destroy(data_sm);
482 bad:
483 	dm_tm_destroy(tm);
484 	dm_sm_destroy(sm);
485 
486 	return r;
487 }
488 
489 static int __begin_transaction(struct dm_pool_metadata *pmd)
490 {
491 	int r;
492 	u32 features;
493 	struct thin_disk_superblock *disk_super;
494 	struct dm_block *sblock;
495 
496 	/*
497 	 * __maybe_commit_transaction() resets these
498 	 */
499 	WARN_ON(pmd->need_commit);
500 
501 	/*
502 	 * We re-read the superblock every time.  Shouldn't need to do this
503 	 * really.
504 	 */
505 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
506 			    &sb_validator, &sblock);
507 	if (r)
508 		return r;
509 
510 	disk_super = dm_block_data(sblock);
511 	pmd->time = le32_to_cpu(disk_super->time);
512 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
513 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
514 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
515 	pmd->flags = le32_to_cpu(disk_super->flags);
516 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
517 
518 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
519 	if (features) {
520 		DMERR("could not access metadata due to "
521 		      "unsupported optional features (%lx).",
522 		      (unsigned long)features);
523 		r = -EINVAL;
524 		goto out;
525 	}
526 
527 	/*
528 	 * Check for read-only metadata to skip the following RDWR checks.
529 	 */
530 	if (get_disk_ro(pmd->bdev->bd_disk))
531 		goto out;
532 
533 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
534 	if (features) {
535 		DMERR("could not access metadata RDWR due to "
536 		      "unsupported optional features (%lx).",
537 		      (unsigned long)features);
538 		r = -EINVAL;
539 	}
540 
541 out:
542 	dm_bm_unlock(sblock);
543 	return r;
544 }
545 
546 static int __write_changed_details(struct dm_pool_metadata *pmd)
547 {
548 	int r;
549 	struct dm_thin_device *td, *tmp;
550 	struct disk_device_details details;
551 	uint64_t key;
552 
553 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
554 		if (!td->changed)
555 			continue;
556 
557 		key = td->id;
558 
559 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
560 		details.transaction_id = cpu_to_le64(td->transaction_id);
561 		details.creation_time = cpu_to_le32(td->creation_time);
562 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
563 		__dm_bless_for_disk(&details);
564 
565 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
566 				    &key, &details, &pmd->details_root);
567 		if (r)
568 			return r;
569 
570 		if (td->open_count)
571 			td->changed = 0;
572 		else {
573 			list_del(&td->list);
574 			kfree(td);
575 		}
576 
577 		pmd->need_commit = 1;
578 	}
579 
580 	return 0;
581 }
582 
583 static int __commit_transaction(struct dm_pool_metadata *pmd)
584 {
585 	/*
586 	 * FIXME: Associated pool should be made read-only on failure.
587 	 */
588 	int r;
589 	size_t metadata_len, data_len;
590 	struct thin_disk_superblock *disk_super;
591 	struct dm_block *sblock;
592 
593 	/*
594 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
595 	 */
596 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
597 
598 	r = __write_changed_details(pmd);
599 	if (r < 0)
600 		goto out;
601 
602 	if (!pmd->need_commit)
603 		goto out;
604 
605 	r = dm_sm_commit(pmd->data_sm);
606 	if (r < 0)
607 		goto out;
608 
609 	r = dm_tm_pre_commit(pmd->tm);
610 	if (r < 0)
611 		goto out;
612 
613 	r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
614 	if (r < 0)
615 		goto out;
616 
617 	r = dm_sm_root_size(pmd->metadata_sm, &data_len);
618 	if (r < 0)
619 		goto out;
620 
621 	r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
622 			     &sb_validator, &sblock);
623 	if (r)
624 		goto out;
625 
626 	disk_super = dm_block_data(sblock);
627 	disk_super->time = cpu_to_le32(pmd->time);
628 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
629 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
630 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
631 	disk_super->flags = cpu_to_le32(pmd->flags);
632 
633 	r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
634 			    metadata_len);
635 	if (r < 0)
636 		goto out_locked;
637 
638 	r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
639 			    data_len);
640 	if (r < 0)
641 		goto out_locked;
642 
643 	r = dm_tm_commit(pmd->tm, sblock);
644 	if (!r)
645 		pmd->need_commit = 0;
646 
647 out:
648 	return r;
649 
650 out_locked:
651 	dm_bm_unlock(sblock);
652 	return r;
653 }
654 
655 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
656 					       sector_t data_block_size)
657 {
658 	int r;
659 	struct thin_disk_superblock *disk_super;
660 	struct dm_pool_metadata *pmd;
661 	sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
662 	struct dm_block_manager *bm;
663 	int create;
664 	struct dm_block *sblock;
665 
666 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
667 	if (!pmd) {
668 		DMERR("could not allocate metadata struct");
669 		return ERR_PTR(-ENOMEM);
670 	}
671 
672 	/*
673 	 * Max hex locks:
674 	 *  3 for btree insert +
675 	 *  2 for btree lookup used within space map
676 	 */
677 	bm = dm_block_manager_create(bdev, THIN_METADATA_BLOCK_SIZE,
678 				     THIN_METADATA_CACHE_SIZE, 5);
679 	if (!bm) {
680 		DMERR("could not create block manager");
681 		kfree(pmd);
682 		return ERR_PTR(-ENOMEM);
683 	}
684 
685 	r = superblock_all_zeroes(bm, &create);
686 	if (r) {
687 		dm_block_manager_destroy(bm);
688 		kfree(pmd);
689 		return ERR_PTR(r);
690 	}
691 
692 
693 	r = init_pmd(pmd, bm, 0, create);
694 	if (r) {
695 		dm_block_manager_destroy(bm);
696 		kfree(pmd);
697 		return ERR_PTR(r);
698 	}
699 	pmd->bdev = bdev;
700 
701 	if (!create) {
702 		r = __begin_transaction(pmd);
703 		if (r < 0)
704 			goto bad;
705 		return pmd;
706 	}
707 
708 	/*
709 	 * Create.
710 	 */
711 	r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
712 			     &sb_validator, &sblock);
713 	if (r)
714 		goto bad;
715 
716 	disk_super = dm_block_data(sblock);
717 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
718 	disk_super->version = cpu_to_le32(THIN_VERSION);
719 	disk_super->time = 0;
720 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
721 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
722 	disk_super->data_block_size = cpu_to_le32(data_block_size);
723 
724 	r = dm_bm_unlock(sblock);
725 	if (r < 0)
726 		goto bad;
727 
728 	r = dm_btree_empty(&pmd->info, &pmd->root);
729 	if (r < 0)
730 		goto bad;
731 
732 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
733 	if (r < 0) {
734 		DMERR("couldn't create devices root");
735 		goto bad;
736 	}
737 
738 	pmd->flags = 0;
739 	pmd->need_commit = 1;
740 	r = dm_pool_commit_metadata(pmd);
741 	if (r < 0) {
742 		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
743 		      __func__, r);
744 		goto bad;
745 	}
746 
747 	return pmd;
748 
749 bad:
750 	if (dm_pool_metadata_close(pmd) < 0)
751 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
752 	return ERR_PTR(r);
753 }
754 
755 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
756 {
757 	int r;
758 	unsigned open_devices = 0;
759 	struct dm_thin_device *td, *tmp;
760 
761 	down_read(&pmd->root_lock);
762 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
763 		if (td->open_count)
764 			open_devices++;
765 		else {
766 			list_del(&td->list);
767 			kfree(td);
768 		}
769 	}
770 	up_read(&pmd->root_lock);
771 
772 	if (open_devices) {
773 		DMERR("attempt to close pmd when %u device(s) are still open",
774 		       open_devices);
775 		return -EBUSY;
776 	}
777 
778 	r = __commit_transaction(pmd);
779 	if (r < 0)
780 		DMWARN("%s: __commit_transaction() failed, error = %d",
781 		       __func__, r);
782 
783 	dm_tm_destroy(pmd->tm);
784 	dm_tm_destroy(pmd->nb_tm);
785 	dm_block_manager_destroy(pmd->bm);
786 	dm_sm_destroy(pmd->metadata_sm);
787 	dm_sm_destroy(pmd->data_sm);
788 	kfree(pmd);
789 
790 	return 0;
791 }
792 
793 /*
794  * __open_device: Returns @td corresponding to device with id @dev,
795  * creating it if @create is set and incrementing @td->open_count.
796  * On failure, @td is undefined.
797  */
798 static int __open_device(struct dm_pool_metadata *pmd,
799 			 dm_thin_id dev, int create,
800 			 struct dm_thin_device **td)
801 {
802 	int r, changed = 0;
803 	struct dm_thin_device *td2;
804 	uint64_t key = dev;
805 	struct disk_device_details details_le;
806 
807 	/*
808 	 * If the device is already open, return it.
809 	 */
810 	list_for_each_entry(td2, &pmd->thin_devices, list)
811 		if (td2->id == dev) {
812 			/*
813 			 * May not create an already-open device.
814 			 */
815 			if (create)
816 				return -EEXIST;
817 
818 			td2->open_count++;
819 			*td = td2;
820 			return 0;
821 		}
822 
823 	/*
824 	 * Check the device exists.
825 	 */
826 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
827 			    &key, &details_le);
828 	if (r) {
829 		if (r != -ENODATA || !create)
830 			return r;
831 
832 		/*
833 		 * Create new device.
834 		 */
835 		changed = 1;
836 		details_le.mapped_blocks = 0;
837 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
838 		details_le.creation_time = cpu_to_le32(pmd->time);
839 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
840 	}
841 
842 	*td = kmalloc(sizeof(**td), GFP_NOIO);
843 	if (!*td)
844 		return -ENOMEM;
845 
846 	(*td)->pmd = pmd;
847 	(*td)->id = dev;
848 	(*td)->open_count = 1;
849 	(*td)->changed = changed;
850 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
851 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
852 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
853 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
854 
855 	list_add(&(*td)->list, &pmd->thin_devices);
856 
857 	return 0;
858 }
859 
860 static void __close_device(struct dm_thin_device *td)
861 {
862 	--td->open_count;
863 }
864 
865 static int __create_thin(struct dm_pool_metadata *pmd,
866 			 dm_thin_id dev)
867 {
868 	int r;
869 	dm_block_t dev_root;
870 	uint64_t key = dev;
871 	struct disk_device_details details_le;
872 	struct dm_thin_device *td;
873 	__le64 value;
874 
875 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
876 			    &key, &details_le);
877 	if (!r)
878 		return -EEXIST;
879 
880 	/*
881 	 * Create an empty btree for the mappings.
882 	 */
883 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
884 	if (r)
885 		return r;
886 
887 	/*
888 	 * Insert it into the main mapping tree.
889 	 */
890 	value = cpu_to_le64(dev_root);
891 	__dm_bless_for_disk(&value);
892 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
893 	if (r) {
894 		dm_btree_del(&pmd->bl_info, dev_root);
895 		return r;
896 	}
897 
898 	r = __open_device(pmd, dev, 1, &td);
899 	if (r) {
900 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
901 		dm_btree_del(&pmd->bl_info, dev_root);
902 		return r;
903 	}
904 	__close_device(td);
905 
906 	return r;
907 }
908 
909 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
910 {
911 	int r;
912 
913 	down_write(&pmd->root_lock);
914 	r = __create_thin(pmd, dev);
915 	up_write(&pmd->root_lock);
916 
917 	return r;
918 }
919 
920 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
921 				  struct dm_thin_device *snap,
922 				  dm_thin_id origin, uint32_t time)
923 {
924 	int r;
925 	struct dm_thin_device *td;
926 
927 	r = __open_device(pmd, origin, 0, &td);
928 	if (r)
929 		return r;
930 
931 	td->changed = 1;
932 	td->snapshotted_time = time;
933 
934 	snap->mapped_blocks = td->mapped_blocks;
935 	snap->snapshotted_time = time;
936 	__close_device(td);
937 
938 	return 0;
939 }
940 
941 static int __create_snap(struct dm_pool_metadata *pmd,
942 			 dm_thin_id dev, dm_thin_id origin)
943 {
944 	int r;
945 	dm_block_t origin_root;
946 	uint64_t key = origin, dev_key = dev;
947 	struct dm_thin_device *td;
948 	struct disk_device_details details_le;
949 	__le64 value;
950 
951 	/* check this device is unused */
952 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
953 			    &dev_key, &details_le);
954 	if (!r)
955 		return -EEXIST;
956 
957 	/* find the mapping tree for the origin */
958 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
959 	if (r)
960 		return r;
961 	origin_root = le64_to_cpu(value);
962 
963 	/* clone the origin, an inc will do */
964 	dm_tm_inc(pmd->tm, origin_root);
965 
966 	/* insert into the main mapping tree */
967 	value = cpu_to_le64(origin_root);
968 	__dm_bless_for_disk(&value);
969 	key = dev;
970 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
971 	if (r) {
972 		dm_tm_dec(pmd->tm, origin_root);
973 		return r;
974 	}
975 
976 	pmd->time++;
977 
978 	r = __open_device(pmd, dev, 1, &td);
979 	if (r)
980 		goto bad;
981 
982 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
983 	__close_device(td);
984 
985 	if (r)
986 		goto bad;
987 
988 	return 0;
989 
990 bad:
991 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
992 	dm_btree_remove(&pmd->details_info, pmd->details_root,
993 			&key, &pmd->details_root);
994 	return r;
995 }
996 
997 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
998 				 dm_thin_id dev,
999 				 dm_thin_id origin)
1000 {
1001 	int r;
1002 
1003 	down_write(&pmd->root_lock);
1004 	r = __create_snap(pmd, dev, origin);
1005 	up_write(&pmd->root_lock);
1006 
1007 	return r;
1008 }
1009 
1010 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1011 {
1012 	int r;
1013 	uint64_t key = dev;
1014 	struct dm_thin_device *td;
1015 
1016 	/* TODO: failure should mark the transaction invalid */
1017 	r = __open_device(pmd, dev, 0, &td);
1018 	if (r)
1019 		return r;
1020 
1021 	if (td->open_count > 1) {
1022 		__close_device(td);
1023 		return -EBUSY;
1024 	}
1025 
1026 	list_del(&td->list);
1027 	kfree(td);
1028 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1029 			    &key, &pmd->details_root);
1030 	if (r)
1031 		return r;
1032 
1033 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1034 	if (r)
1035 		return r;
1036 
1037 	pmd->need_commit = 1;
1038 
1039 	return 0;
1040 }
1041 
1042 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1043 			       dm_thin_id dev)
1044 {
1045 	int r;
1046 
1047 	down_write(&pmd->root_lock);
1048 	r = __delete_device(pmd, dev);
1049 	up_write(&pmd->root_lock);
1050 
1051 	return r;
1052 }
1053 
1054 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1055 					uint64_t current_id,
1056 					uint64_t new_id)
1057 {
1058 	down_write(&pmd->root_lock);
1059 	if (pmd->trans_id != current_id) {
1060 		up_write(&pmd->root_lock);
1061 		DMERR("mismatched transaction id");
1062 		return -EINVAL;
1063 	}
1064 
1065 	pmd->trans_id = new_id;
1066 	pmd->need_commit = 1;
1067 	up_write(&pmd->root_lock);
1068 
1069 	return 0;
1070 }
1071 
1072 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1073 					uint64_t *result)
1074 {
1075 	down_read(&pmd->root_lock);
1076 	*result = pmd->trans_id;
1077 	up_read(&pmd->root_lock);
1078 
1079 	return 0;
1080 }
1081 
1082 static int __get_held_metadata_root(struct dm_pool_metadata *pmd,
1083 				    dm_block_t *result)
1084 {
1085 	int r;
1086 	struct thin_disk_superblock *disk_super;
1087 	struct dm_block *sblock;
1088 
1089 	r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1090 			     &sb_validator, &sblock);
1091 	if (r)
1092 		return r;
1093 
1094 	disk_super = dm_block_data(sblock);
1095 	*result = le64_to_cpu(disk_super->held_root);
1096 
1097 	return dm_bm_unlock(sblock);
1098 }
1099 
1100 int dm_pool_get_held_metadata_root(struct dm_pool_metadata *pmd,
1101 				   dm_block_t *result)
1102 {
1103 	int r;
1104 
1105 	down_read(&pmd->root_lock);
1106 	r = __get_held_metadata_root(pmd, result);
1107 	up_read(&pmd->root_lock);
1108 
1109 	return r;
1110 }
1111 
1112 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1113 			     struct dm_thin_device **td)
1114 {
1115 	int r;
1116 
1117 	down_write(&pmd->root_lock);
1118 	r = __open_device(pmd, dev, 0, td);
1119 	up_write(&pmd->root_lock);
1120 
1121 	return r;
1122 }
1123 
1124 int dm_pool_close_thin_device(struct dm_thin_device *td)
1125 {
1126 	down_write(&td->pmd->root_lock);
1127 	__close_device(td);
1128 	up_write(&td->pmd->root_lock);
1129 
1130 	return 0;
1131 }
1132 
1133 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1134 {
1135 	return td->id;
1136 }
1137 
1138 static int __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1139 {
1140 	return td->snapshotted_time > time;
1141 }
1142 
1143 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1144 		       int can_block, struct dm_thin_lookup_result *result)
1145 {
1146 	int r;
1147 	uint64_t block_time = 0;
1148 	__le64 value;
1149 	struct dm_pool_metadata *pmd = td->pmd;
1150 	dm_block_t keys[2] = { td->id, block };
1151 
1152 	if (can_block) {
1153 		down_read(&pmd->root_lock);
1154 		r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
1155 		if (!r)
1156 			block_time = le64_to_cpu(value);
1157 		up_read(&pmd->root_lock);
1158 
1159 	} else if (down_read_trylock(&pmd->root_lock)) {
1160 		r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
1161 		if (!r)
1162 			block_time = le64_to_cpu(value);
1163 		up_read(&pmd->root_lock);
1164 
1165 	} else
1166 		return -EWOULDBLOCK;
1167 
1168 	if (!r) {
1169 		dm_block_t exception_block;
1170 		uint32_t exception_time;
1171 		unpack_block_time(block_time, &exception_block,
1172 				  &exception_time);
1173 		result->block = exception_block;
1174 		result->shared = __snapshotted_since(td, exception_time);
1175 	}
1176 
1177 	return r;
1178 }
1179 
1180 static int __insert(struct dm_thin_device *td, dm_block_t block,
1181 		    dm_block_t data_block)
1182 {
1183 	int r, inserted;
1184 	__le64 value;
1185 	struct dm_pool_metadata *pmd = td->pmd;
1186 	dm_block_t keys[2] = { td->id, block };
1187 
1188 	pmd->need_commit = 1;
1189 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1190 	__dm_bless_for_disk(&value);
1191 
1192 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1193 				   &pmd->root, &inserted);
1194 	if (r)
1195 		return r;
1196 
1197 	if (inserted) {
1198 		td->mapped_blocks++;
1199 		td->changed = 1;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1206 			 dm_block_t data_block)
1207 {
1208 	int r;
1209 
1210 	down_write(&td->pmd->root_lock);
1211 	r = __insert(td, block, data_block);
1212 	up_write(&td->pmd->root_lock);
1213 
1214 	return r;
1215 }
1216 
1217 static int __remove(struct dm_thin_device *td, dm_block_t block)
1218 {
1219 	int r;
1220 	struct dm_pool_metadata *pmd = td->pmd;
1221 	dm_block_t keys[2] = { td->id, block };
1222 
1223 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1224 	if (r)
1225 		return r;
1226 
1227 	td->mapped_blocks--;
1228 	td->changed = 1;
1229 	pmd->need_commit = 1;
1230 
1231 	return 0;
1232 }
1233 
1234 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1235 {
1236 	int r;
1237 
1238 	down_write(&td->pmd->root_lock);
1239 	r = __remove(td, block);
1240 	up_write(&td->pmd->root_lock);
1241 
1242 	return r;
1243 }
1244 
1245 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1246 {
1247 	int r;
1248 
1249 	down_write(&pmd->root_lock);
1250 
1251 	r = dm_sm_new_block(pmd->data_sm, result);
1252 	pmd->need_commit = 1;
1253 
1254 	up_write(&pmd->root_lock);
1255 
1256 	return r;
1257 }
1258 
1259 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1260 {
1261 	int r;
1262 
1263 	down_write(&pmd->root_lock);
1264 
1265 	r = __commit_transaction(pmd);
1266 	if (r <= 0)
1267 		goto out;
1268 
1269 	/*
1270 	 * Open the next transaction.
1271 	 */
1272 	r = __begin_transaction(pmd);
1273 out:
1274 	up_write(&pmd->root_lock);
1275 	return r;
1276 }
1277 
1278 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1279 {
1280 	int r;
1281 
1282 	down_read(&pmd->root_lock);
1283 	r = dm_sm_get_nr_free(pmd->data_sm, result);
1284 	up_read(&pmd->root_lock);
1285 
1286 	return r;
1287 }
1288 
1289 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1290 					  dm_block_t *result)
1291 {
1292 	int r;
1293 
1294 	down_read(&pmd->root_lock);
1295 	r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1296 	up_read(&pmd->root_lock);
1297 
1298 	return r;
1299 }
1300 
1301 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1302 				  dm_block_t *result)
1303 {
1304 	int r;
1305 
1306 	down_read(&pmd->root_lock);
1307 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1308 	up_read(&pmd->root_lock);
1309 
1310 	return r;
1311 }
1312 
1313 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1314 {
1315 	down_read(&pmd->root_lock);
1316 	*result = pmd->data_block_size;
1317 	up_read(&pmd->root_lock);
1318 
1319 	return 0;
1320 }
1321 
1322 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1323 {
1324 	int r;
1325 
1326 	down_read(&pmd->root_lock);
1327 	r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1328 	up_read(&pmd->root_lock);
1329 
1330 	return r;
1331 }
1332 
1333 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1334 {
1335 	struct dm_pool_metadata *pmd = td->pmd;
1336 
1337 	down_read(&pmd->root_lock);
1338 	*result = td->mapped_blocks;
1339 	up_read(&pmd->root_lock);
1340 
1341 	return 0;
1342 }
1343 
1344 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1345 {
1346 	int r;
1347 	__le64 value_le;
1348 	dm_block_t thin_root;
1349 	struct dm_pool_metadata *pmd = td->pmd;
1350 
1351 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1352 	if (r)
1353 		return r;
1354 
1355 	thin_root = le64_to_cpu(value_le);
1356 
1357 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1358 }
1359 
1360 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1361 				     dm_block_t *result)
1362 {
1363 	int r;
1364 	struct dm_pool_metadata *pmd = td->pmd;
1365 
1366 	down_read(&pmd->root_lock);
1367 	r = __highest_block(td, result);
1368 	up_read(&pmd->root_lock);
1369 
1370 	return r;
1371 }
1372 
1373 static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1374 {
1375 	int r;
1376 	dm_block_t old_count;
1377 
1378 	r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
1379 	if (r)
1380 		return r;
1381 
1382 	if (new_count == old_count)
1383 		return 0;
1384 
1385 	if (new_count < old_count) {
1386 		DMERR("cannot reduce size of data device");
1387 		return -EINVAL;
1388 	}
1389 
1390 	r = dm_sm_extend(pmd->data_sm, new_count - old_count);
1391 	if (!r)
1392 		pmd->need_commit = 1;
1393 
1394 	return r;
1395 }
1396 
1397 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1398 {
1399 	int r;
1400 
1401 	down_write(&pmd->root_lock);
1402 	r = __resize_data_dev(pmd, new_count);
1403 	up_write(&pmd->root_lock);
1404 
1405 	return r;
1406 }
1407