1 /* 2 * Copyright (C) 2011-2012 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "persistent-data/dm-btree.h" 9 #include "persistent-data/dm-space-map.h" 10 #include "persistent-data/dm-space-map-disk.h" 11 #include "persistent-data/dm-transaction-manager.h" 12 13 #include <linux/list.h> 14 #include <linux/device-mapper.h> 15 #include <linux/workqueue.h> 16 17 /*-------------------------------------------------------------------------- 18 * As far as the metadata goes, there is: 19 * 20 * - A superblock in block zero, taking up fewer than 512 bytes for 21 * atomic writes. 22 * 23 * - A space map managing the metadata blocks. 24 * 25 * - A space map managing the data blocks. 26 * 27 * - A btree mapping our internal thin dev ids onto struct disk_device_details. 28 * 29 * - A hierarchical btree, with 2 levels which effectively maps (thin 30 * dev id, virtual block) -> block_time. Block time is a 64-bit 31 * field holding the time in the low 24 bits, and block in the top 40 32 * bits. 33 * 34 * BTrees consist solely of btree_nodes, that fill a block. Some are 35 * internal nodes, as such their values are a __le64 pointing to other 36 * nodes. Leaf nodes can store data of any reasonable size (ie. much 37 * smaller than the block size). The nodes consist of the header, 38 * followed by an array of keys, followed by an array of values. We have 39 * to binary search on the keys so they're all held together to help the 40 * cpu cache. 41 * 42 * Space maps have 2 btrees: 43 * 44 * - One maps a uint64_t onto a struct index_entry. Which points to a 45 * bitmap block, and has some details about how many free entries there 46 * are etc. 47 * 48 * - The bitmap blocks have a header (for the checksum). Then the rest 49 * of the block is pairs of bits. With the meaning being: 50 * 51 * 0 - ref count is 0 52 * 1 - ref count is 1 53 * 2 - ref count is 2 54 * 3 - ref count is higher than 2 55 * 56 * - If the count is higher than 2 then the ref count is entered in a 57 * second btree that directly maps the block_address to a uint32_t ref 58 * count. 59 * 60 * The space map metadata variant doesn't have a bitmaps btree. Instead 61 * it has one single blocks worth of index_entries. This avoids 62 * recursive issues with the bitmap btree needing to allocate space in 63 * order to insert. With a small data block size such as 64k the 64 * metadata support data devices that are hundreds of terrabytes. 65 * 66 * The space maps allocate space linearly from front to back. Space that 67 * is freed in a transaction is never recycled within that transaction. 68 * To try and avoid fragmenting _free_ space the allocator always goes 69 * back and fills in gaps. 70 * 71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks 72 * from the block manager. 73 *--------------------------------------------------------------------------*/ 74 75 #define DM_MSG_PREFIX "thin metadata" 76 77 #define THIN_SUPERBLOCK_MAGIC 27022010 78 #define THIN_SUPERBLOCK_LOCATION 0 79 #define THIN_VERSION 2 80 #define SECTOR_TO_BLOCK_SHIFT 3 81 82 /* 83 * For btree insert: 84 * 3 for btree insert + 85 * 2 for btree lookup used within space map 86 * For btree remove: 87 * 2 for shadow spine + 88 * 4 for rebalance 3 child node 89 */ 90 #define THIN_MAX_CONCURRENT_LOCKS 6 91 92 /* This should be plenty */ 93 #define SPACE_MAP_ROOT_SIZE 128 94 95 /* 96 * Little endian on-disk superblock and device details. 97 */ 98 struct thin_disk_superblock { 99 __le32 csum; /* Checksum of superblock except for this field. */ 100 __le32 flags; 101 __le64 blocknr; /* This block number, dm_block_t. */ 102 103 __u8 uuid[16]; 104 __le64 magic; 105 __le32 version; 106 __le32 time; 107 108 __le64 trans_id; 109 110 /* 111 * Root held by userspace transactions. 112 */ 113 __le64 held_root; 114 115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 117 118 /* 119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block 120 */ 121 __le64 data_mapping_root; 122 123 /* 124 * Device detail root mapping dev_id -> device_details 125 */ 126 __le64 device_details_root; 127 128 __le32 data_block_size; /* In 512-byte sectors. */ 129 130 __le32 metadata_block_size; /* In 512-byte sectors. */ 131 __le64 metadata_nr_blocks; 132 133 __le32 compat_flags; 134 __le32 compat_ro_flags; 135 __le32 incompat_flags; 136 } __packed; 137 138 struct disk_device_details { 139 __le64 mapped_blocks; 140 __le64 transaction_id; /* When created. */ 141 __le32 creation_time; 142 __le32 snapshotted_time; 143 } __packed; 144 145 struct dm_pool_metadata { 146 struct hlist_node hash; 147 148 struct block_device *bdev; 149 struct dm_block_manager *bm; 150 struct dm_space_map *metadata_sm; 151 struct dm_space_map *data_sm; 152 struct dm_transaction_manager *tm; 153 struct dm_transaction_manager *nb_tm; 154 155 /* 156 * Two-level btree. 157 * First level holds thin_dev_t. 158 * Second level holds mappings. 159 */ 160 struct dm_btree_info info; 161 162 /* 163 * Non-blocking version of the above. 164 */ 165 struct dm_btree_info nb_info; 166 167 /* 168 * Just the top level for deleting whole devices. 169 */ 170 struct dm_btree_info tl_info; 171 172 /* 173 * Just the bottom level for creating new devices. 174 */ 175 struct dm_btree_info bl_info; 176 177 /* 178 * Describes the device details btree. 179 */ 180 struct dm_btree_info details_info; 181 182 struct rw_semaphore root_lock; 183 uint32_t time; 184 dm_block_t root; 185 dm_block_t details_root; 186 struct list_head thin_devices; 187 uint64_t trans_id; 188 unsigned long flags; 189 sector_t data_block_size; 190 191 /* 192 * Pre-commit callback. 193 * 194 * This allows the thin provisioning target to run a callback before 195 * the metadata are committed. 196 */ 197 dm_pool_pre_commit_fn pre_commit_fn; 198 void *pre_commit_context; 199 200 /* 201 * We reserve a section of the metadata for commit overhead. 202 * All reported space does *not* include this. 203 */ 204 dm_block_t metadata_reserve; 205 206 /* 207 * Set if a transaction has to be aborted but the attempt to roll back 208 * to the previous (good) transaction failed. The only pool metadata 209 * operation possible in this state is the closing of the device. 210 */ 211 bool fail_io:1; 212 213 /* 214 * Set once a thin-pool has been accessed through one of the interfaces 215 * that imply the pool is in-service (e.g. thin devices created/deleted, 216 * thin-pool message, metadata snapshots, etc). 217 */ 218 bool in_service:1; 219 220 /* 221 * Reading the space map roots can fail, so we read it into these 222 * buffers before the superblock is locked and updated. 223 */ 224 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 225 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 226 }; 227 228 struct dm_thin_device { 229 struct list_head list; 230 struct dm_pool_metadata *pmd; 231 dm_thin_id id; 232 233 int open_count; 234 bool changed:1; 235 bool aborted_with_changes:1; 236 uint64_t mapped_blocks; 237 uint64_t transaction_id; 238 uint32_t creation_time; 239 uint32_t snapshotted_time; 240 }; 241 242 /*---------------------------------------------------------------- 243 * superblock validator 244 *--------------------------------------------------------------*/ 245 246 #define SUPERBLOCK_CSUM_XOR 160774 247 248 static void sb_prepare_for_write(struct dm_block_validator *v, 249 struct dm_block *b, 250 size_t block_size) 251 { 252 struct thin_disk_superblock *disk_super = dm_block_data(b); 253 254 disk_super->blocknr = cpu_to_le64(dm_block_location(b)); 255 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 256 block_size - sizeof(__le32), 257 SUPERBLOCK_CSUM_XOR)); 258 } 259 260 static int sb_check(struct dm_block_validator *v, 261 struct dm_block *b, 262 size_t block_size) 263 { 264 struct thin_disk_superblock *disk_super = dm_block_data(b); 265 __le32 csum_le; 266 267 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { 268 DMERR("sb_check failed: blocknr %llu: " 269 "wanted %llu", le64_to_cpu(disk_super->blocknr), 270 (unsigned long long)dm_block_location(b)); 271 return -ENOTBLK; 272 } 273 274 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) { 275 DMERR("sb_check failed: magic %llu: " 276 "wanted %llu", le64_to_cpu(disk_super->magic), 277 (unsigned long long)THIN_SUPERBLOCK_MAGIC); 278 return -EILSEQ; 279 } 280 281 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 282 block_size - sizeof(__le32), 283 SUPERBLOCK_CSUM_XOR)); 284 if (csum_le != disk_super->csum) { 285 DMERR("sb_check failed: csum %u: wanted %u", 286 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); 287 return -EILSEQ; 288 } 289 290 return 0; 291 } 292 293 static struct dm_block_validator sb_validator = { 294 .name = "superblock", 295 .prepare_for_write = sb_prepare_for_write, 296 .check = sb_check 297 }; 298 299 /*---------------------------------------------------------------- 300 * Methods for the btree value types 301 *--------------------------------------------------------------*/ 302 303 static uint64_t pack_block_time(dm_block_t b, uint32_t t) 304 { 305 return (b << 24) | t; 306 } 307 308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) 309 { 310 *b = v >> 24; 311 *t = v & ((1 << 24) - 1); 312 } 313 314 static void data_block_inc(void *context, const void *value_le) 315 { 316 struct dm_space_map *sm = context; 317 __le64 v_le; 318 uint64_t b; 319 uint32_t t; 320 321 memcpy(&v_le, value_le, sizeof(v_le)); 322 unpack_block_time(le64_to_cpu(v_le), &b, &t); 323 dm_sm_inc_block(sm, b); 324 } 325 326 static void data_block_dec(void *context, const void *value_le) 327 { 328 struct dm_space_map *sm = context; 329 __le64 v_le; 330 uint64_t b; 331 uint32_t t; 332 333 memcpy(&v_le, value_le, sizeof(v_le)); 334 unpack_block_time(le64_to_cpu(v_le), &b, &t); 335 dm_sm_dec_block(sm, b); 336 } 337 338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le) 339 { 340 __le64 v1_le, v2_le; 341 uint64_t b1, b2; 342 uint32_t t; 343 344 memcpy(&v1_le, value1_le, sizeof(v1_le)); 345 memcpy(&v2_le, value2_le, sizeof(v2_le)); 346 unpack_block_time(le64_to_cpu(v1_le), &b1, &t); 347 unpack_block_time(le64_to_cpu(v2_le), &b2, &t); 348 349 return b1 == b2; 350 } 351 352 static void subtree_inc(void *context, const void *value) 353 { 354 struct dm_btree_info *info = context; 355 __le64 root_le; 356 uint64_t root; 357 358 memcpy(&root_le, value, sizeof(root_le)); 359 root = le64_to_cpu(root_le); 360 dm_tm_inc(info->tm, root); 361 } 362 363 static void subtree_dec(void *context, const void *value) 364 { 365 struct dm_btree_info *info = context; 366 __le64 root_le; 367 uint64_t root; 368 369 memcpy(&root_le, value, sizeof(root_le)); 370 root = le64_to_cpu(root_le); 371 if (dm_btree_del(info, root)) 372 DMERR("btree delete failed"); 373 } 374 375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le) 376 { 377 __le64 v1_le, v2_le; 378 memcpy(&v1_le, value1_le, sizeof(v1_le)); 379 memcpy(&v2_le, value2_le, sizeof(v2_le)); 380 381 return v1_le == v2_le; 382 } 383 384 /*----------------------------------------------------------------*/ 385 386 /* 387 * Variant that is used for in-core only changes or code that 388 * shouldn't put the pool in service on its own (e.g. commit). 389 */ 390 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd) 391 __acquires(pmd->root_lock) 392 { 393 down_write(&pmd->root_lock); 394 } 395 396 static inline void pmd_write_lock(struct dm_pool_metadata *pmd) 397 { 398 pmd_write_lock_in_core(pmd); 399 if (unlikely(!pmd->in_service)) 400 pmd->in_service = true; 401 } 402 403 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd) 404 __releases(pmd->root_lock) 405 { 406 up_write(&pmd->root_lock); 407 } 408 409 /*----------------------------------------------------------------*/ 410 411 static int superblock_lock_zero(struct dm_pool_metadata *pmd, 412 struct dm_block **sblock) 413 { 414 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION, 415 &sb_validator, sblock); 416 } 417 418 static int superblock_lock(struct dm_pool_metadata *pmd, 419 struct dm_block **sblock) 420 { 421 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 422 &sb_validator, sblock); 423 } 424 425 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) 426 { 427 int r; 428 unsigned i; 429 struct dm_block *b; 430 __le64 *data_le, zero = cpu_to_le64(0); 431 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); 432 433 /* 434 * We can't use a validator here - it may be all zeroes. 435 */ 436 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b); 437 if (r) 438 return r; 439 440 data_le = dm_block_data(b); 441 *result = 1; 442 for (i = 0; i < block_size; i++) { 443 if (data_le[i] != zero) { 444 *result = 0; 445 break; 446 } 447 } 448 449 dm_bm_unlock(b); 450 451 return 0; 452 } 453 454 static void __setup_btree_details(struct dm_pool_metadata *pmd) 455 { 456 pmd->info.tm = pmd->tm; 457 pmd->info.levels = 2; 458 pmd->info.value_type.context = pmd->data_sm; 459 pmd->info.value_type.size = sizeof(__le64); 460 pmd->info.value_type.inc = data_block_inc; 461 pmd->info.value_type.dec = data_block_dec; 462 pmd->info.value_type.equal = data_block_equal; 463 464 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info)); 465 pmd->nb_info.tm = pmd->nb_tm; 466 467 pmd->tl_info.tm = pmd->tm; 468 pmd->tl_info.levels = 1; 469 pmd->tl_info.value_type.context = &pmd->bl_info; 470 pmd->tl_info.value_type.size = sizeof(__le64); 471 pmd->tl_info.value_type.inc = subtree_inc; 472 pmd->tl_info.value_type.dec = subtree_dec; 473 pmd->tl_info.value_type.equal = subtree_equal; 474 475 pmd->bl_info.tm = pmd->tm; 476 pmd->bl_info.levels = 1; 477 pmd->bl_info.value_type.context = pmd->data_sm; 478 pmd->bl_info.value_type.size = sizeof(__le64); 479 pmd->bl_info.value_type.inc = data_block_inc; 480 pmd->bl_info.value_type.dec = data_block_dec; 481 pmd->bl_info.value_type.equal = data_block_equal; 482 483 pmd->details_info.tm = pmd->tm; 484 pmd->details_info.levels = 1; 485 pmd->details_info.value_type.context = NULL; 486 pmd->details_info.value_type.size = sizeof(struct disk_device_details); 487 pmd->details_info.value_type.inc = NULL; 488 pmd->details_info.value_type.dec = NULL; 489 pmd->details_info.value_type.equal = NULL; 490 } 491 492 static int save_sm_roots(struct dm_pool_metadata *pmd) 493 { 494 int r; 495 size_t len; 496 497 r = dm_sm_root_size(pmd->metadata_sm, &len); 498 if (r < 0) 499 return r; 500 501 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); 502 if (r < 0) 503 return r; 504 505 r = dm_sm_root_size(pmd->data_sm, &len); 506 if (r < 0) 507 return r; 508 509 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); 510 } 511 512 static void copy_sm_roots(struct dm_pool_metadata *pmd, 513 struct thin_disk_superblock *disk) 514 { 515 memcpy(&disk->metadata_space_map_root, 516 &pmd->metadata_space_map_root, 517 sizeof(pmd->metadata_space_map_root)); 518 519 memcpy(&disk->data_space_map_root, 520 &pmd->data_space_map_root, 521 sizeof(pmd->data_space_map_root)); 522 } 523 524 static int __write_initial_superblock(struct dm_pool_metadata *pmd) 525 { 526 int r; 527 struct dm_block *sblock; 528 struct thin_disk_superblock *disk_super; 529 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT; 530 531 if (bdev_size > THIN_METADATA_MAX_SECTORS) 532 bdev_size = THIN_METADATA_MAX_SECTORS; 533 534 r = dm_sm_commit(pmd->data_sm); 535 if (r < 0) 536 return r; 537 538 r = dm_tm_pre_commit(pmd->tm); 539 if (r < 0) 540 return r; 541 542 r = save_sm_roots(pmd); 543 if (r < 0) 544 return r; 545 546 r = superblock_lock_zero(pmd, &sblock); 547 if (r) 548 return r; 549 550 disk_super = dm_block_data(sblock); 551 disk_super->flags = 0; 552 memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); 553 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC); 554 disk_super->version = cpu_to_le32(THIN_VERSION); 555 disk_super->time = 0; 556 disk_super->trans_id = 0; 557 disk_super->held_root = 0; 558 559 copy_sm_roots(pmd, disk_super); 560 561 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 562 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 563 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); 564 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); 565 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); 566 567 return dm_tm_commit(pmd->tm, sblock); 568 } 569 570 static int __format_metadata(struct dm_pool_metadata *pmd) 571 { 572 int r; 573 574 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 575 &pmd->tm, &pmd->metadata_sm); 576 if (r < 0) { 577 DMERR("tm_create_with_sm failed"); 578 return r; 579 } 580 581 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0); 582 if (IS_ERR(pmd->data_sm)) { 583 DMERR("sm_disk_create failed"); 584 r = PTR_ERR(pmd->data_sm); 585 goto bad_cleanup_tm; 586 } 587 588 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 589 if (!pmd->nb_tm) { 590 DMERR("could not create non-blocking clone tm"); 591 r = -ENOMEM; 592 goto bad_cleanup_data_sm; 593 } 594 595 __setup_btree_details(pmd); 596 597 r = dm_btree_empty(&pmd->info, &pmd->root); 598 if (r < 0) 599 goto bad_cleanup_nb_tm; 600 601 r = dm_btree_empty(&pmd->details_info, &pmd->details_root); 602 if (r < 0) { 603 DMERR("couldn't create devices root"); 604 goto bad_cleanup_nb_tm; 605 } 606 607 r = __write_initial_superblock(pmd); 608 if (r) 609 goto bad_cleanup_nb_tm; 610 611 return 0; 612 613 bad_cleanup_nb_tm: 614 dm_tm_destroy(pmd->nb_tm); 615 bad_cleanup_data_sm: 616 dm_sm_destroy(pmd->data_sm); 617 bad_cleanup_tm: 618 dm_tm_destroy(pmd->tm); 619 dm_sm_destroy(pmd->metadata_sm); 620 621 return r; 622 } 623 624 static int __check_incompat_features(struct thin_disk_superblock *disk_super, 625 struct dm_pool_metadata *pmd) 626 { 627 uint32_t features; 628 629 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP; 630 if (features) { 631 DMERR("could not access metadata due to unsupported optional features (%lx).", 632 (unsigned long)features); 633 return -EINVAL; 634 } 635 636 /* 637 * Check for read-only metadata to skip the following RDWR checks. 638 */ 639 if (bdev_read_only(pmd->bdev)) 640 return 0; 641 642 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP; 643 if (features) { 644 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", 645 (unsigned long)features); 646 return -EINVAL; 647 } 648 649 return 0; 650 } 651 652 static int __open_metadata(struct dm_pool_metadata *pmd) 653 { 654 int r; 655 struct dm_block *sblock; 656 struct thin_disk_superblock *disk_super; 657 658 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 659 &sb_validator, &sblock); 660 if (r < 0) { 661 DMERR("couldn't read superblock"); 662 return r; 663 } 664 665 disk_super = dm_block_data(sblock); 666 667 /* Verify the data block size hasn't changed */ 668 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) { 669 DMERR("changing the data block size (from %u to %llu) is not supported", 670 le32_to_cpu(disk_super->data_block_size), 671 (unsigned long long)pmd->data_block_size); 672 r = -EINVAL; 673 goto bad_unlock_sblock; 674 } 675 676 r = __check_incompat_features(disk_super, pmd); 677 if (r < 0) 678 goto bad_unlock_sblock; 679 680 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 681 disk_super->metadata_space_map_root, 682 sizeof(disk_super->metadata_space_map_root), 683 &pmd->tm, &pmd->metadata_sm); 684 if (r < 0) { 685 DMERR("tm_open_with_sm failed"); 686 goto bad_unlock_sblock; 687 } 688 689 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root, 690 sizeof(disk_super->data_space_map_root)); 691 if (IS_ERR(pmd->data_sm)) { 692 DMERR("sm_disk_open failed"); 693 r = PTR_ERR(pmd->data_sm); 694 goto bad_cleanup_tm; 695 } 696 697 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 698 if (!pmd->nb_tm) { 699 DMERR("could not create non-blocking clone tm"); 700 r = -ENOMEM; 701 goto bad_cleanup_data_sm; 702 } 703 704 __setup_btree_details(pmd); 705 dm_bm_unlock(sblock); 706 707 return 0; 708 709 bad_cleanup_data_sm: 710 dm_sm_destroy(pmd->data_sm); 711 bad_cleanup_tm: 712 dm_tm_destroy(pmd->tm); 713 dm_sm_destroy(pmd->metadata_sm); 714 bad_unlock_sblock: 715 dm_bm_unlock(sblock); 716 717 return r; 718 } 719 720 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device) 721 { 722 int r, unformatted; 723 724 r = __superblock_all_zeroes(pmd->bm, &unformatted); 725 if (r) 726 return r; 727 728 if (unformatted) 729 return format_device ? __format_metadata(pmd) : -EPERM; 730 731 return __open_metadata(pmd); 732 } 733 734 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device) 735 { 736 int r; 737 738 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, 739 THIN_MAX_CONCURRENT_LOCKS); 740 if (IS_ERR(pmd->bm)) { 741 DMERR("could not create block manager"); 742 r = PTR_ERR(pmd->bm); 743 pmd->bm = NULL; 744 return r; 745 } 746 747 r = __open_or_format_metadata(pmd, format_device); 748 if (r) { 749 dm_block_manager_destroy(pmd->bm); 750 pmd->bm = NULL; 751 } 752 753 return r; 754 } 755 756 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd) 757 { 758 dm_sm_destroy(pmd->data_sm); 759 dm_sm_destroy(pmd->metadata_sm); 760 dm_tm_destroy(pmd->nb_tm); 761 dm_tm_destroy(pmd->tm); 762 dm_block_manager_destroy(pmd->bm); 763 } 764 765 static int __begin_transaction(struct dm_pool_metadata *pmd) 766 { 767 int r; 768 struct thin_disk_superblock *disk_super; 769 struct dm_block *sblock; 770 771 /* 772 * We re-read the superblock every time. Shouldn't need to do this 773 * really. 774 */ 775 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 776 &sb_validator, &sblock); 777 if (r) 778 return r; 779 780 disk_super = dm_block_data(sblock); 781 pmd->time = le32_to_cpu(disk_super->time); 782 pmd->root = le64_to_cpu(disk_super->data_mapping_root); 783 pmd->details_root = le64_to_cpu(disk_super->device_details_root); 784 pmd->trans_id = le64_to_cpu(disk_super->trans_id); 785 pmd->flags = le32_to_cpu(disk_super->flags); 786 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size); 787 788 dm_bm_unlock(sblock); 789 return 0; 790 } 791 792 static int __write_changed_details(struct dm_pool_metadata *pmd) 793 { 794 int r; 795 struct dm_thin_device *td, *tmp; 796 struct disk_device_details details; 797 uint64_t key; 798 799 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 800 if (!td->changed) 801 continue; 802 803 key = td->id; 804 805 details.mapped_blocks = cpu_to_le64(td->mapped_blocks); 806 details.transaction_id = cpu_to_le64(td->transaction_id); 807 details.creation_time = cpu_to_le32(td->creation_time); 808 details.snapshotted_time = cpu_to_le32(td->snapshotted_time); 809 __dm_bless_for_disk(&details); 810 811 r = dm_btree_insert(&pmd->details_info, pmd->details_root, 812 &key, &details, &pmd->details_root); 813 if (r) 814 return r; 815 816 if (td->open_count) 817 td->changed = false; 818 else { 819 list_del(&td->list); 820 kfree(td); 821 } 822 } 823 824 return 0; 825 } 826 827 static int __commit_transaction(struct dm_pool_metadata *pmd) 828 { 829 int r; 830 struct thin_disk_superblock *disk_super; 831 struct dm_block *sblock; 832 833 /* 834 * We need to know if the thin_disk_superblock exceeds a 512-byte sector. 835 */ 836 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512); 837 BUG_ON(!rwsem_is_locked(&pmd->root_lock)); 838 839 if (unlikely(!pmd->in_service)) 840 return 0; 841 842 if (pmd->pre_commit_fn) { 843 r = pmd->pre_commit_fn(pmd->pre_commit_context); 844 if (r < 0) { 845 DMERR("pre-commit callback failed"); 846 return r; 847 } 848 } 849 850 r = __write_changed_details(pmd); 851 if (r < 0) 852 return r; 853 854 r = dm_sm_commit(pmd->data_sm); 855 if (r < 0) 856 return r; 857 858 r = dm_tm_pre_commit(pmd->tm); 859 if (r < 0) 860 return r; 861 862 r = save_sm_roots(pmd); 863 if (r < 0) 864 return r; 865 866 r = superblock_lock(pmd, &sblock); 867 if (r) 868 return r; 869 870 disk_super = dm_block_data(sblock); 871 disk_super->time = cpu_to_le32(pmd->time); 872 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 873 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 874 disk_super->trans_id = cpu_to_le64(pmd->trans_id); 875 disk_super->flags = cpu_to_le32(pmd->flags); 876 877 copy_sm_roots(pmd, disk_super); 878 879 return dm_tm_commit(pmd->tm, sblock); 880 } 881 882 static void __set_metadata_reserve(struct dm_pool_metadata *pmd) 883 { 884 int r; 885 dm_block_t total; 886 dm_block_t max_blocks = 4096; /* 16M */ 887 888 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total); 889 if (r) { 890 DMERR("could not get size of metadata device"); 891 pmd->metadata_reserve = max_blocks; 892 } else 893 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10)); 894 } 895 896 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, 897 sector_t data_block_size, 898 bool format_device) 899 { 900 int r; 901 struct dm_pool_metadata *pmd; 902 903 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL); 904 if (!pmd) { 905 DMERR("could not allocate metadata struct"); 906 return ERR_PTR(-ENOMEM); 907 } 908 909 init_rwsem(&pmd->root_lock); 910 pmd->time = 0; 911 INIT_LIST_HEAD(&pmd->thin_devices); 912 pmd->fail_io = false; 913 pmd->in_service = false; 914 pmd->bdev = bdev; 915 pmd->data_block_size = data_block_size; 916 pmd->pre_commit_fn = NULL; 917 pmd->pre_commit_context = NULL; 918 919 r = __create_persistent_data_objects(pmd, format_device); 920 if (r) { 921 kfree(pmd); 922 return ERR_PTR(r); 923 } 924 925 r = __begin_transaction(pmd); 926 if (r < 0) { 927 if (dm_pool_metadata_close(pmd) < 0) 928 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 929 return ERR_PTR(r); 930 } 931 932 __set_metadata_reserve(pmd); 933 934 return pmd; 935 } 936 937 int dm_pool_metadata_close(struct dm_pool_metadata *pmd) 938 { 939 int r; 940 unsigned open_devices = 0; 941 struct dm_thin_device *td, *tmp; 942 943 down_read(&pmd->root_lock); 944 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 945 if (td->open_count) 946 open_devices++; 947 else { 948 list_del(&td->list); 949 kfree(td); 950 } 951 } 952 up_read(&pmd->root_lock); 953 954 if (open_devices) { 955 DMERR("attempt to close pmd when %u device(s) are still open", 956 open_devices); 957 return -EBUSY; 958 } 959 960 pmd_write_lock_in_core(pmd); 961 if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) { 962 r = __commit_transaction(pmd); 963 if (r < 0) 964 DMWARN("%s: __commit_transaction() failed, error = %d", 965 __func__, r); 966 } 967 pmd_write_unlock(pmd); 968 if (!pmd->fail_io) 969 __destroy_persistent_data_objects(pmd); 970 971 kfree(pmd); 972 return 0; 973 } 974 975 /* 976 * __open_device: Returns @td corresponding to device with id @dev, 977 * creating it if @create is set and incrementing @td->open_count. 978 * On failure, @td is undefined. 979 */ 980 static int __open_device(struct dm_pool_metadata *pmd, 981 dm_thin_id dev, int create, 982 struct dm_thin_device **td) 983 { 984 int r, changed = 0; 985 struct dm_thin_device *td2; 986 uint64_t key = dev; 987 struct disk_device_details details_le; 988 989 /* 990 * If the device is already open, return it. 991 */ 992 list_for_each_entry(td2, &pmd->thin_devices, list) 993 if (td2->id == dev) { 994 /* 995 * May not create an already-open device. 996 */ 997 if (create) 998 return -EEXIST; 999 1000 td2->open_count++; 1001 *td = td2; 1002 return 0; 1003 } 1004 1005 /* 1006 * Check the device exists. 1007 */ 1008 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1009 &key, &details_le); 1010 if (r) { 1011 if (r != -ENODATA || !create) 1012 return r; 1013 1014 /* 1015 * Create new device. 1016 */ 1017 changed = 1; 1018 details_le.mapped_blocks = 0; 1019 details_le.transaction_id = cpu_to_le64(pmd->trans_id); 1020 details_le.creation_time = cpu_to_le32(pmd->time); 1021 details_le.snapshotted_time = cpu_to_le32(pmd->time); 1022 } 1023 1024 *td = kmalloc(sizeof(**td), GFP_NOIO); 1025 if (!*td) 1026 return -ENOMEM; 1027 1028 (*td)->pmd = pmd; 1029 (*td)->id = dev; 1030 (*td)->open_count = 1; 1031 (*td)->changed = changed; 1032 (*td)->aborted_with_changes = false; 1033 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks); 1034 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id); 1035 (*td)->creation_time = le32_to_cpu(details_le.creation_time); 1036 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time); 1037 1038 list_add(&(*td)->list, &pmd->thin_devices); 1039 1040 return 0; 1041 } 1042 1043 static void __close_device(struct dm_thin_device *td) 1044 { 1045 --td->open_count; 1046 } 1047 1048 static int __create_thin(struct dm_pool_metadata *pmd, 1049 dm_thin_id dev) 1050 { 1051 int r; 1052 dm_block_t dev_root; 1053 uint64_t key = dev; 1054 struct dm_thin_device *td; 1055 __le64 value; 1056 1057 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1058 &key, NULL); 1059 if (!r) 1060 return -EEXIST; 1061 1062 /* 1063 * Create an empty btree for the mappings. 1064 */ 1065 r = dm_btree_empty(&pmd->bl_info, &dev_root); 1066 if (r) 1067 return r; 1068 1069 /* 1070 * Insert it into the main mapping tree. 1071 */ 1072 value = cpu_to_le64(dev_root); 1073 __dm_bless_for_disk(&value); 1074 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1075 if (r) { 1076 dm_btree_del(&pmd->bl_info, dev_root); 1077 return r; 1078 } 1079 1080 r = __open_device(pmd, dev, 1, &td); 1081 if (r) { 1082 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1083 dm_btree_del(&pmd->bl_info, dev_root); 1084 return r; 1085 } 1086 __close_device(td); 1087 1088 return r; 1089 } 1090 1091 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) 1092 { 1093 int r = -EINVAL; 1094 1095 pmd_write_lock(pmd); 1096 if (!pmd->fail_io) 1097 r = __create_thin(pmd, dev); 1098 pmd_write_unlock(pmd); 1099 1100 return r; 1101 } 1102 1103 static int __set_snapshot_details(struct dm_pool_metadata *pmd, 1104 struct dm_thin_device *snap, 1105 dm_thin_id origin, uint32_t time) 1106 { 1107 int r; 1108 struct dm_thin_device *td; 1109 1110 r = __open_device(pmd, origin, 0, &td); 1111 if (r) 1112 return r; 1113 1114 td->changed = true; 1115 td->snapshotted_time = time; 1116 1117 snap->mapped_blocks = td->mapped_blocks; 1118 snap->snapshotted_time = time; 1119 __close_device(td); 1120 1121 return 0; 1122 } 1123 1124 static int __create_snap(struct dm_pool_metadata *pmd, 1125 dm_thin_id dev, dm_thin_id origin) 1126 { 1127 int r; 1128 dm_block_t origin_root; 1129 uint64_t key = origin, dev_key = dev; 1130 struct dm_thin_device *td; 1131 __le64 value; 1132 1133 /* check this device is unused */ 1134 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1135 &dev_key, NULL); 1136 if (!r) 1137 return -EEXIST; 1138 1139 /* find the mapping tree for the origin */ 1140 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value); 1141 if (r) 1142 return r; 1143 origin_root = le64_to_cpu(value); 1144 1145 /* clone the origin, an inc will do */ 1146 dm_tm_inc(pmd->tm, origin_root); 1147 1148 /* insert into the main mapping tree */ 1149 value = cpu_to_le64(origin_root); 1150 __dm_bless_for_disk(&value); 1151 key = dev; 1152 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1153 if (r) { 1154 dm_tm_dec(pmd->tm, origin_root); 1155 return r; 1156 } 1157 1158 pmd->time++; 1159 1160 r = __open_device(pmd, dev, 1, &td); 1161 if (r) 1162 goto bad; 1163 1164 r = __set_snapshot_details(pmd, td, origin, pmd->time); 1165 __close_device(td); 1166 1167 if (r) 1168 goto bad; 1169 1170 return 0; 1171 1172 bad: 1173 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1174 dm_btree_remove(&pmd->details_info, pmd->details_root, 1175 &key, &pmd->details_root); 1176 return r; 1177 } 1178 1179 int dm_pool_create_snap(struct dm_pool_metadata *pmd, 1180 dm_thin_id dev, 1181 dm_thin_id origin) 1182 { 1183 int r = -EINVAL; 1184 1185 pmd_write_lock(pmd); 1186 if (!pmd->fail_io) 1187 r = __create_snap(pmd, dev, origin); 1188 pmd_write_unlock(pmd); 1189 1190 return r; 1191 } 1192 1193 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev) 1194 { 1195 int r; 1196 uint64_t key = dev; 1197 struct dm_thin_device *td; 1198 1199 /* TODO: failure should mark the transaction invalid */ 1200 r = __open_device(pmd, dev, 0, &td); 1201 if (r) 1202 return r; 1203 1204 if (td->open_count > 1) { 1205 __close_device(td); 1206 return -EBUSY; 1207 } 1208 1209 list_del(&td->list); 1210 kfree(td); 1211 r = dm_btree_remove(&pmd->details_info, pmd->details_root, 1212 &key, &pmd->details_root); 1213 if (r) 1214 return r; 1215 1216 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1217 if (r) 1218 return r; 1219 1220 return 0; 1221 } 1222 1223 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd, 1224 dm_thin_id dev) 1225 { 1226 int r = -EINVAL; 1227 1228 pmd_write_lock(pmd); 1229 if (!pmd->fail_io) 1230 r = __delete_device(pmd, dev); 1231 pmd_write_unlock(pmd); 1232 1233 return r; 1234 } 1235 1236 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd, 1237 uint64_t current_id, 1238 uint64_t new_id) 1239 { 1240 int r = -EINVAL; 1241 1242 pmd_write_lock(pmd); 1243 1244 if (pmd->fail_io) 1245 goto out; 1246 1247 if (pmd->trans_id != current_id) { 1248 DMERR("mismatched transaction id"); 1249 goto out; 1250 } 1251 1252 pmd->trans_id = new_id; 1253 r = 0; 1254 1255 out: 1256 pmd_write_unlock(pmd); 1257 1258 return r; 1259 } 1260 1261 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd, 1262 uint64_t *result) 1263 { 1264 int r = -EINVAL; 1265 1266 down_read(&pmd->root_lock); 1267 if (!pmd->fail_io) { 1268 *result = pmd->trans_id; 1269 r = 0; 1270 } 1271 up_read(&pmd->root_lock); 1272 1273 return r; 1274 } 1275 1276 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd) 1277 { 1278 int r, inc; 1279 struct thin_disk_superblock *disk_super; 1280 struct dm_block *copy, *sblock; 1281 dm_block_t held_root; 1282 1283 /* 1284 * We commit to ensure the btree roots which we increment in a 1285 * moment are up to date. 1286 */ 1287 r = __commit_transaction(pmd); 1288 if (r < 0) { 1289 DMWARN("%s: __commit_transaction() failed, error = %d", 1290 __func__, r); 1291 return r; 1292 } 1293 1294 /* 1295 * Copy the superblock. 1296 */ 1297 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION); 1298 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION, 1299 &sb_validator, ©, &inc); 1300 if (r) 1301 return r; 1302 1303 BUG_ON(!inc); 1304 1305 held_root = dm_block_location(copy); 1306 disk_super = dm_block_data(copy); 1307 1308 if (le64_to_cpu(disk_super->held_root)) { 1309 DMWARN("Pool metadata snapshot already exists: release this before taking another."); 1310 1311 dm_tm_dec(pmd->tm, held_root); 1312 dm_tm_unlock(pmd->tm, copy); 1313 return -EBUSY; 1314 } 1315 1316 /* 1317 * Wipe the spacemap since we're not publishing this. 1318 */ 1319 memset(&disk_super->data_space_map_root, 0, 1320 sizeof(disk_super->data_space_map_root)); 1321 memset(&disk_super->metadata_space_map_root, 0, 1322 sizeof(disk_super->metadata_space_map_root)); 1323 1324 /* 1325 * Increment the data structures that need to be preserved. 1326 */ 1327 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root)); 1328 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root)); 1329 dm_tm_unlock(pmd->tm, copy); 1330 1331 /* 1332 * Write the held root into the superblock. 1333 */ 1334 r = superblock_lock(pmd, &sblock); 1335 if (r) { 1336 dm_tm_dec(pmd->tm, held_root); 1337 return r; 1338 } 1339 1340 disk_super = dm_block_data(sblock); 1341 disk_super->held_root = cpu_to_le64(held_root); 1342 dm_bm_unlock(sblock); 1343 return 0; 1344 } 1345 1346 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd) 1347 { 1348 int r = -EINVAL; 1349 1350 pmd_write_lock(pmd); 1351 if (!pmd->fail_io) 1352 r = __reserve_metadata_snap(pmd); 1353 pmd_write_unlock(pmd); 1354 1355 return r; 1356 } 1357 1358 static int __release_metadata_snap(struct dm_pool_metadata *pmd) 1359 { 1360 int r; 1361 struct thin_disk_superblock *disk_super; 1362 struct dm_block *sblock, *copy; 1363 dm_block_t held_root; 1364 1365 r = superblock_lock(pmd, &sblock); 1366 if (r) 1367 return r; 1368 1369 disk_super = dm_block_data(sblock); 1370 held_root = le64_to_cpu(disk_super->held_root); 1371 disk_super->held_root = cpu_to_le64(0); 1372 1373 dm_bm_unlock(sblock); 1374 1375 if (!held_root) { 1376 DMWARN("No pool metadata snapshot found: nothing to release."); 1377 return -EINVAL; 1378 } 1379 1380 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©); 1381 if (r) 1382 return r; 1383 1384 disk_super = dm_block_data(copy); 1385 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root)); 1386 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root)); 1387 dm_sm_dec_block(pmd->metadata_sm, held_root); 1388 1389 dm_tm_unlock(pmd->tm, copy); 1390 1391 return 0; 1392 } 1393 1394 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd) 1395 { 1396 int r = -EINVAL; 1397 1398 pmd_write_lock(pmd); 1399 if (!pmd->fail_io) 1400 r = __release_metadata_snap(pmd); 1401 pmd_write_unlock(pmd); 1402 1403 return r; 1404 } 1405 1406 static int __get_metadata_snap(struct dm_pool_metadata *pmd, 1407 dm_block_t *result) 1408 { 1409 int r; 1410 struct thin_disk_superblock *disk_super; 1411 struct dm_block *sblock; 1412 1413 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 1414 &sb_validator, &sblock); 1415 if (r) 1416 return r; 1417 1418 disk_super = dm_block_data(sblock); 1419 *result = le64_to_cpu(disk_super->held_root); 1420 1421 dm_bm_unlock(sblock); 1422 1423 return 0; 1424 } 1425 1426 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd, 1427 dm_block_t *result) 1428 { 1429 int r = -EINVAL; 1430 1431 down_read(&pmd->root_lock); 1432 if (!pmd->fail_io) 1433 r = __get_metadata_snap(pmd, result); 1434 up_read(&pmd->root_lock); 1435 1436 return r; 1437 } 1438 1439 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev, 1440 struct dm_thin_device **td) 1441 { 1442 int r = -EINVAL; 1443 1444 pmd_write_lock_in_core(pmd); 1445 if (!pmd->fail_io) 1446 r = __open_device(pmd, dev, 0, td); 1447 pmd_write_unlock(pmd); 1448 1449 return r; 1450 } 1451 1452 int dm_pool_close_thin_device(struct dm_thin_device *td) 1453 { 1454 pmd_write_lock_in_core(td->pmd); 1455 __close_device(td); 1456 pmd_write_unlock(td->pmd); 1457 1458 return 0; 1459 } 1460 1461 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) 1462 { 1463 return td->id; 1464 } 1465 1466 /* 1467 * Check whether @time (of block creation) is older than @td's last snapshot. 1468 * If so then the associated block is shared with the last snapshot device. 1469 * Any block on a device created *after* the device last got snapshotted is 1470 * necessarily not shared. 1471 */ 1472 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) 1473 { 1474 return td->snapshotted_time > time; 1475 } 1476 1477 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value, 1478 struct dm_thin_lookup_result *result) 1479 { 1480 uint64_t block_time = 0; 1481 dm_block_t exception_block; 1482 uint32_t exception_time; 1483 1484 block_time = le64_to_cpu(value); 1485 unpack_block_time(block_time, &exception_block, &exception_time); 1486 result->block = exception_block; 1487 result->shared = __snapshotted_since(td, exception_time); 1488 } 1489 1490 static int __find_block(struct dm_thin_device *td, dm_block_t block, 1491 int can_issue_io, struct dm_thin_lookup_result *result) 1492 { 1493 int r; 1494 __le64 value; 1495 struct dm_pool_metadata *pmd = td->pmd; 1496 dm_block_t keys[2] = { td->id, block }; 1497 struct dm_btree_info *info; 1498 1499 if (can_issue_io) { 1500 info = &pmd->info; 1501 } else 1502 info = &pmd->nb_info; 1503 1504 r = dm_btree_lookup(info, pmd->root, keys, &value); 1505 if (!r) 1506 unpack_lookup_result(td, value, result); 1507 1508 return r; 1509 } 1510 1511 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block, 1512 int can_issue_io, struct dm_thin_lookup_result *result) 1513 { 1514 int r; 1515 struct dm_pool_metadata *pmd = td->pmd; 1516 1517 down_read(&pmd->root_lock); 1518 if (pmd->fail_io) { 1519 up_read(&pmd->root_lock); 1520 return -EINVAL; 1521 } 1522 1523 r = __find_block(td, block, can_issue_io, result); 1524 1525 up_read(&pmd->root_lock); 1526 return r; 1527 } 1528 1529 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block, 1530 dm_block_t *vblock, 1531 struct dm_thin_lookup_result *result) 1532 { 1533 int r; 1534 __le64 value; 1535 struct dm_pool_metadata *pmd = td->pmd; 1536 dm_block_t keys[2] = { td->id, block }; 1537 1538 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value); 1539 if (!r) 1540 unpack_lookup_result(td, value, result); 1541 1542 return r; 1543 } 1544 1545 static int __find_mapped_range(struct dm_thin_device *td, 1546 dm_block_t begin, dm_block_t end, 1547 dm_block_t *thin_begin, dm_block_t *thin_end, 1548 dm_block_t *pool_begin, bool *maybe_shared) 1549 { 1550 int r; 1551 dm_block_t pool_end; 1552 struct dm_thin_lookup_result lookup; 1553 1554 if (end < begin) 1555 return -ENODATA; 1556 1557 r = __find_next_mapped_block(td, begin, &begin, &lookup); 1558 if (r) 1559 return r; 1560 1561 if (begin >= end) 1562 return -ENODATA; 1563 1564 *thin_begin = begin; 1565 *pool_begin = lookup.block; 1566 *maybe_shared = lookup.shared; 1567 1568 begin++; 1569 pool_end = *pool_begin + 1; 1570 while (begin != end) { 1571 r = __find_block(td, begin, true, &lookup); 1572 if (r) { 1573 if (r == -ENODATA) 1574 break; 1575 else 1576 return r; 1577 } 1578 1579 if ((lookup.block != pool_end) || 1580 (lookup.shared != *maybe_shared)) 1581 break; 1582 1583 pool_end++; 1584 begin++; 1585 } 1586 1587 *thin_end = begin; 1588 return 0; 1589 } 1590 1591 int dm_thin_find_mapped_range(struct dm_thin_device *td, 1592 dm_block_t begin, dm_block_t end, 1593 dm_block_t *thin_begin, dm_block_t *thin_end, 1594 dm_block_t *pool_begin, bool *maybe_shared) 1595 { 1596 int r = -EINVAL; 1597 struct dm_pool_metadata *pmd = td->pmd; 1598 1599 down_read(&pmd->root_lock); 1600 if (!pmd->fail_io) { 1601 r = __find_mapped_range(td, begin, end, thin_begin, thin_end, 1602 pool_begin, maybe_shared); 1603 } 1604 up_read(&pmd->root_lock); 1605 1606 return r; 1607 } 1608 1609 static int __insert(struct dm_thin_device *td, dm_block_t block, 1610 dm_block_t data_block) 1611 { 1612 int r, inserted; 1613 __le64 value; 1614 struct dm_pool_metadata *pmd = td->pmd; 1615 dm_block_t keys[2] = { td->id, block }; 1616 1617 value = cpu_to_le64(pack_block_time(data_block, pmd->time)); 1618 __dm_bless_for_disk(&value); 1619 1620 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value, 1621 &pmd->root, &inserted); 1622 if (r) 1623 return r; 1624 1625 td->changed = true; 1626 if (inserted) 1627 td->mapped_blocks++; 1628 1629 return 0; 1630 } 1631 1632 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block, 1633 dm_block_t data_block) 1634 { 1635 int r = -EINVAL; 1636 1637 pmd_write_lock(td->pmd); 1638 if (!td->pmd->fail_io) 1639 r = __insert(td, block, data_block); 1640 pmd_write_unlock(td->pmd); 1641 1642 return r; 1643 } 1644 1645 static int __remove(struct dm_thin_device *td, dm_block_t block) 1646 { 1647 int r; 1648 struct dm_pool_metadata *pmd = td->pmd; 1649 dm_block_t keys[2] = { td->id, block }; 1650 1651 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root); 1652 if (r) 1653 return r; 1654 1655 td->mapped_blocks--; 1656 td->changed = true; 1657 1658 return 0; 1659 } 1660 1661 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end) 1662 { 1663 int r; 1664 unsigned count, total_count = 0; 1665 struct dm_pool_metadata *pmd = td->pmd; 1666 dm_block_t keys[1] = { td->id }; 1667 __le64 value; 1668 dm_block_t mapping_root; 1669 1670 /* 1671 * Find the mapping tree 1672 */ 1673 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value); 1674 if (r) 1675 return r; 1676 1677 /* 1678 * Remove from the mapping tree, taking care to inc the 1679 * ref count so it doesn't get deleted. 1680 */ 1681 mapping_root = le64_to_cpu(value); 1682 dm_tm_inc(pmd->tm, mapping_root); 1683 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root); 1684 if (r) 1685 return r; 1686 1687 /* 1688 * Remove leaves stops at the first unmapped entry, so we have to 1689 * loop round finding mapped ranges. 1690 */ 1691 while (begin < end) { 1692 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value); 1693 if (r == -ENODATA) 1694 break; 1695 1696 if (r) 1697 return r; 1698 1699 if (begin >= end) 1700 break; 1701 1702 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count); 1703 if (r) 1704 return r; 1705 1706 total_count += count; 1707 } 1708 1709 td->mapped_blocks -= total_count; 1710 td->changed = true; 1711 1712 /* 1713 * Reinsert the mapping tree. 1714 */ 1715 value = cpu_to_le64(mapping_root); 1716 __dm_bless_for_disk(&value); 1717 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root); 1718 } 1719 1720 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block) 1721 { 1722 int r = -EINVAL; 1723 1724 pmd_write_lock(td->pmd); 1725 if (!td->pmd->fail_io) 1726 r = __remove(td, block); 1727 pmd_write_unlock(td->pmd); 1728 1729 return r; 1730 } 1731 1732 int dm_thin_remove_range(struct dm_thin_device *td, 1733 dm_block_t begin, dm_block_t end) 1734 { 1735 int r = -EINVAL; 1736 1737 pmd_write_lock(td->pmd); 1738 if (!td->pmd->fail_io) 1739 r = __remove_range(td, begin, end); 1740 pmd_write_unlock(td->pmd); 1741 1742 return r; 1743 } 1744 1745 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) 1746 { 1747 int r; 1748 uint32_t ref_count; 1749 1750 down_read(&pmd->root_lock); 1751 r = dm_sm_get_count(pmd->data_sm, b, &ref_count); 1752 if (!r) 1753 *result = (ref_count > 1); 1754 up_read(&pmd->root_lock); 1755 1756 return r; 1757 } 1758 1759 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1760 { 1761 int r = 0; 1762 1763 pmd_write_lock(pmd); 1764 for (; b != e; b++) { 1765 r = dm_sm_inc_block(pmd->data_sm, b); 1766 if (r) 1767 break; 1768 } 1769 pmd_write_unlock(pmd); 1770 1771 return r; 1772 } 1773 1774 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1775 { 1776 int r = 0; 1777 1778 pmd_write_lock(pmd); 1779 for (; b != e; b++) { 1780 r = dm_sm_dec_block(pmd->data_sm, b); 1781 if (r) 1782 break; 1783 } 1784 pmd_write_unlock(pmd); 1785 1786 return r; 1787 } 1788 1789 bool dm_thin_changed_this_transaction(struct dm_thin_device *td) 1790 { 1791 int r; 1792 1793 down_read(&td->pmd->root_lock); 1794 r = td->changed; 1795 up_read(&td->pmd->root_lock); 1796 1797 return r; 1798 } 1799 1800 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) 1801 { 1802 bool r = false; 1803 struct dm_thin_device *td, *tmp; 1804 1805 down_read(&pmd->root_lock); 1806 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 1807 if (td->changed) { 1808 r = td->changed; 1809 break; 1810 } 1811 } 1812 up_read(&pmd->root_lock); 1813 1814 return r; 1815 } 1816 1817 bool dm_thin_aborted_changes(struct dm_thin_device *td) 1818 { 1819 bool r; 1820 1821 down_read(&td->pmd->root_lock); 1822 r = td->aborted_with_changes; 1823 up_read(&td->pmd->root_lock); 1824 1825 return r; 1826 } 1827 1828 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result) 1829 { 1830 int r = -EINVAL; 1831 1832 pmd_write_lock(pmd); 1833 if (!pmd->fail_io) 1834 r = dm_sm_new_block(pmd->data_sm, result); 1835 pmd_write_unlock(pmd); 1836 1837 return r; 1838 } 1839 1840 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd) 1841 { 1842 int r = -EINVAL; 1843 1844 /* 1845 * Care is taken to not have commit be what 1846 * triggers putting the thin-pool in-service. 1847 */ 1848 pmd_write_lock_in_core(pmd); 1849 if (pmd->fail_io) 1850 goto out; 1851 1852 r = __commit_transaction(pmd); 1853 if (r < 0) 1854 goto out; 1855 1856 /* 1857 * Open the next transaction. 1858 */ 1859 r = __begin_transaction(pmd); 1860 out: 1861 pmd_write_unlock(pmd); 1862 return r; 1863 } 1864 1865 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd) 1866 { 1867 struct dm_thin_device *td; 1868 1869 list_for_each_entry(td, &pmd->thin_devices, list) 1870 td->aborted_with_changes = td->changed; 1871 } 1872 1873 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd) 1874 { 1875 int r = -EINVAL; 1876 1877 pmd_write_lock(pmd); 1878 if (pmd->fail_io) 1879 goto out; 1880 1881 __set_abort_with_changes_flags(pmd); 1882 __destroy_persistent_data_objects(pmd); 1883 r = __create_persistent_data_objects(pmd, false); 1884 if (r) 1885 pmd->fail_io = true; 1886 1887 out: 1888 pmd_write_unlock(pmd); 1889 1890 return r; 1891 } 1892 1893 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) 1894 { 1895 int r = -EINVAL; 1896 1897 down_read(&pmd->root_lock); 1898 if (!pmd->fail_io) 1899 r = dm_sm_get_nr_free(pmd->data_sm, result); 1900 up_read(&pmd->root_lock); 1901 1902 return r; 1903 } 1904 1905 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd, 1906 dm_block_t *result) 1907 { 1908 int r = -EINVAL; 1909 1910 down_read(&pmd->root_lock); 1911 if (!pmd->fail_io) 1912 r = dm_sm_get_nr_free(pmd->metadata_sm, result); 1913 1914 if (!r) { 1915 if (*result < pmd->metadata_reserve) 1916 *result = 0; 1917 else 1918 *result -= pmd->metadata_reserve; 1919 } 1920 up_read(&pmd->root_lock); 1921 1922 return r; 1923 } 1924 1925 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd, 1926 dm_block_t *result) 1927 { 1928 int r = -EINVAL; 1929 1930 down_read(&pmd->root_lock); 1931 if (!pmd->fail_io) 1932 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); 1933 up_read(&pmd->root_lock); 1934 1935 return r; 1936 } 1937 1938 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) 1939 { 1940 int r = -EINVAL; 1941 1942 down_read(&pmd->root_lock); 1943 if (!pmd->fail_io) 1944 r = dm_sm_get_nr_blocks(pmd->data_sm, result); 1945 up_read(&pmd->root_lock); 1946 1947 return r; 1948 } 1949 1950 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result) 1951 { 1952 int r = -EINVAL; 1953 struct dm_pool_metadata *pmd = td->pmd; 1954 1955 down_read(&pmd->root_lock); 1956 if (!pmd->fail_io) { 1957 *result = td->mapped_blocks; 1958 r = 0; 1959 } 1960 up_read(&pmd->root_lock); 1961 1962 return r; 1963 } 1964 1965 static int __highest_block(struct dm_thin_device *td, dm_block_t *result) 1966 { 1967 int r; 1968 __le64 value_le; 1969 dm_block_t thin_root; 1970 struct dm_pool_metadata *pmd = td->pmd; 1971 1972 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le); 1973 if (r) 1974 return r; 1975 1976 thin_root = le64_to_cpu(value_le); 1977 1978 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result); 1979 } 1980 1981 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, 1982 dm_block_t *result) 1983 { 1984 int r = -EINVAL; 1985 struct dm_pool_metadata *pmd = td->pmd; 1986 1987 down_read(&pmd->root_lock); 1988 if (!pmd->fail_io) 1989 r = __highest_block(td, result); 1990 up_read(&pmd->root_lock); 1991 1992 return r; 1993 } 1994 1995 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) 1996 { 1997 int r; 1998 dm_block_t old_count; 1999 2000 r = dm_sm_get_nr_blocks(sm, &old_count); 2001 if (r) 2002 return r; 2003 2004 if (new_count == old_count) 2005 return 0; 2006 2007 if (new_count < old_count) { 2008 DMERR("cannot reduce size of space map"); 2009 return -EINVAL; 2010 } 2011 2012 return dm_sm_extend(sm, new_count - old_count); 2013 } 2014 2015 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 2016 { 2017 int r = -EINVAL; 2018 2019 pmd_write_lock(pmd); 2020 if (!pmd->fail_io) 2021 r = __resize_space_map(pmd->data_sm, new_count); 2022 pmd_write_unlock(pmd); 2023 2024 return r; 2025 } 2026 2027 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 2028 { 2029 int r = -EINVAL; 2030 2031 pmd_write_lock(pmd); 2032 if (!pmd->fail_io) { 2033 r = __resize_space_map(pmd->metadata_sm, new_count); 2034 if (!r) 2035 __set_metadata_reserve(pmd); 2036 } 2037 pmd_write_unlock(pmd); 2038 2039 return r; 2040 } 2041 2042 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) 2043 { 2044 pmd_write_lock_in_core(pmd); 2045 dm_bm_set_read_only(pmd->bm); 2046 pmd_write_unlock(pmd); 2047 } 2048 2049 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) 2050 { 2051 pmd_write_lock_in_core(pmd); 2052 dm_bm_set_read_write(pmd->bm); 2053 pmd_write_unlock(pmd); 2054 } 2055 2056 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, 2057 dm_block_t threshold, 2058 dm_sm_threshold_fn fn, 2059 void *context) 2060 { 2061 int r; 2062 2063 pmd_write_lock_in_core(pmd); 2064 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context); 2065 pmd_write_unlock(pmd); 2066 2067 return r; 2068 } 2069 2070 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd, 2071 dm_pool_pre_commit_fn fn, 2072 void *context) 2073 { 2074 pmd_write_lock_in_core(pmd); 2075 pmd->pre_commit_fn = fn; 2076 pmd->pre_commit_context = context; 2077 pmd_write_unlock(pmd); 2078 } 2079 2080 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) 2081 { 2082 int r = -EINVAL; 2083 struct dm_block *sblock; 2084 struct thin_disk_superblock *disk_super; 2085 2086 pmd_write_lock(pmd); 2087 if (pmd->fail_io) 2088 goto out; 2089 2090 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; 2091 2092 r = superblock_lock(pmd, &sblock); 2093 if (r) { 2094 DMERR("couldn't lock superblock"); 2095 goto out; 2096 } 2097 2098 disk_super = dm_block_data(sblock); 2099 disk_super->flags = cpu_to_le32(pmd->flags); 2100 2101 dm_bm_unlock(sblock); 2102 out: 2103 pmd_write_unlock(pmd); 2104 return r; 2105 } 2106 2107 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) 2108 { 2109 bool needs_check; 2110 2111 down_read(&pmd->root_lock); 2112 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; 2113 up_read(&pmd->root_lock); 2114 2115 return needs_check; 2116 } 2117 2118 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd) 2119 { 2120 down_read(&pmd->root_lock); 2121 if (!pmd->fail_io) 2122 dm_tm_issue_prefetches(pmd->tm); 2123 up_read(&pmd->root_lock); 2124 } 2125