1 /* 2 * Copyright (C) 2011-2012 Red Hat, Inc. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "persistent-data/dm-btree.h" 9 #include "persistent-data/dm-space-map.h" 10 #include "persistent-data/dm-space-map-disk.h" 11 #include "persistent-data/dm-transaction-manager.h" 12 13 #include <linux/list.h> 14 #include <linux/device-mapper.h> 15 #include <linux/workqueue.h> 16 17 /*-------------------------------------------------------------------------- 18 * As far as the metadata goes, there is: 19 * 20 * - A superblock in block zero, taking up fewer than 512 bytes for 21 * atomic writes. 22 * 23 * - A space map managing the metadata blocks. 24 * 25 * - A space map managing the data blocks. 26 * 27 * - A btree mapping our internal thin dev ids onto struct disk_device_details. 28 * 29 * - A hierarchical btree, with 2 levels which effectively maps (thin 30 * dev id, virtual block) -> block_time. Block time is a 64-bit 31 * field holding the time in the low 24 bits, and block in the top 40 32 * bits. 33 * 34 * BTrees consist solely of btree_nodes, that fill a block. Some are 35 * internal nodes, as such their values are a __le64 pointing to other 36 * nodes. Leaf nodes can store data of any reasonable size (ie. much 37 * smaller than the block size). The nodes consist of the header, 38 * followed by an array of keys, followed by an array of values. We have 39 * to binary search on the keys so they're all held together to help the 40 * cpu cache. 41 * 42 * Space maps have 2 btrees: 43 * 44 * - One maps a uint64_t onto a struct index_entry. Which points to a 45 * bitmap block, and has some details about how many free entries there 46 * are etc. 47 * 48 * - The bitmap blocks have a header (for the checksum). Then the rest 49 * of the block is pairs of bits. With the meaning being: 50 * 51 * 0 - ref count is 0 52 * 1 - ref count is 1 53 * 2 - ref count is 2 54 * 3 - ref count is higher than 2 55 * 56 * - If the count is higher than 2 then the ref count is entered in a 57 * second btree that directly maps the block_address to a uint32_t ref 58 * count. 59 * 60 * The space map metadata variant doesn't have a bitmaps btree. Instead 61 * it has one single blocks worth of index_entries. This avoids 62 * recursive issues with the bitmap btree needing to allocate space in 63 * order to insert. With a small data block size such as 64k the 64 * metadata support data devices that are hundreds of terrabytes. 65 * 66 * The space maps allocate space linearly from front to back. Space that 67 * is freed in a transaction is never recycled within that transaction. 68 * To try and avoid fragmenting _free_ space the allocator always goes 69 * back and fills in gaps. 70 * 71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks 72 * from the block manager. 73 *--------------------------------------------------------------------------*/ 74 75 #define DM_MSG_PREFIX "thin metadata" 76 77 #define THIN_SUPERBLOCK_MAGIC 27022010 78 #define THIN_SUPERBLOCK_LOCATION 0 79 #define THIN_VERSION 2 80 #define SECTOR_TO_BLOCK_SHIFT 3 81 82 /* 83 * For btree insert: 84 * 3 for btree insert + 85 * 2 for btree lookup used within space map 86 * For btree remove: 87 * 2 for shadow spine + 88 * 4 for rebalance 3 child node 89 */ 90 #define THIN_MAX_CONCURRENT_LOCKS 6 91 92 /* This should be plenty */ 93 #define SPACE_MAP_ROOT_SIZE 128 94 95 /* 96 * Little endian on-disk superblock and device details. 97 */ 98 struct thin_disk_superblock { 99 __le32 csum; /* Checksum of superblock except for this field. */ 100 __le32 flags; 101 __le64 blocknr; /* This block number, dm_block_t. */ 102 103 __u8 uuid[16]; 104 __le64 magic; 105 __le32 version; 106 __le32 time; 107 108 __le64 trans_id; 109 110 /* 111 * Root held by userspace transactions. 112 */ 113 __le64 held_root; 114 115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 117 118 /* 119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block 120 */ 121 __le64 data_mapping_root; 122 123 /* 124 * Device detail root mapping dev_id -> device_details 125 */ 126 __le64 device_details_root; 127 128 __le32 data_block_size; /* In 512-byte sectors. */ 129 130 __le32 metadata_block_size; /* In 512-byte sectors. */ 131 __le64 metadata_nr_blocks; 132 133 __le32 compat_flags; 134 __le32 compat_ro_flags; 135 __le32 incompat_flags; 136 } __packed; 137 138 struct disk_device_details { 139 __le64 mapped_blocks; 140 __le64 transaction_id; /* When created. */ 141 __le32 creation_time; 142 __le32 snapshotted_time; 143 } __packed; 144 145 struct dm_pool_metadata { 146 struct hlist_node hash; 147 148 struct block_device *bdev; 149 struct dm_block_manager *bm; 150 struct dm_space_map *metadata_sm; 151 struct dm_space_map *data_sm; 152 struct dm_transaction_manager *tm; 153 struct dm_transaction_manager *nb_tm; 154 155 /* 156 * Two-level btree. 157 * First level holds thin_dev_t. 158 * Second level holds mappings. 159 */ 160 struct dm_btree_info info; 161 162 /* 163 * Non-blocking version of the above. 164 */ 165 struct dm_btree_info nb_info; 166 167 /* 168 * Just the top level for deleting whole devices. 169 */ 170 struct dm_btree_info tl_info; 171 172 /* 173 * Just the bottom level for creating new devices. 174 */ 175 struct dm_btree_info bl_info; 176 177 /* 178 * Describes the device details btree. 179 */ 180 struct dm_btree_info details_info; 181 182 struct rw_semaphore root_lock; 183 uint32_t time; 184 dm_block_t root; 185 dm_block_t details_root; 186 struct list_head thin_devices; 187 uint64_t trans_id; 188 unsigned long flags; 189 sector_t data_block_size; 190 191 /* 192 * Pre-commit callback. 193 * 194 * This allows the thin provisioning target to run a callback before 195 * the metadata are committed. 196 */ 197 dm_pool_pre_commit_fn pre_commit_fn; 198 void *pre_commit_context; 199 200 /* 201 * We reserve a section of the metadata for commit overhead. 202 * All reported space does *not* include this. 203 */ 204 dm_block_t metadata_reserve; 205 206 /* 207 * Set if a transaction has to be aborted but the attempt to roll back 208 * to the previous (good) transaction failed. The only pool metadata 209 * operation possible in this state is the closing of the device. 210 */ 211 bool fail_io:1; 212 213 /* 214 * Set once a thin-pool has been accessed through one of the interfaces 215 * that imply the pool is in-service (e.g. thin devices created/deleted, 216 * thin-pool message, metadata snapshots, etc). 217 */ 218 bool in_service:1; 219 220 /* 221 * Reading the space map roots can fail, so we read it into these 222 * buffers before the superblock is locked and updated. 223 */ 224 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE]; 225 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE]; 226 }; 227 228 struct dm_thin_device { 229 struct list_head list; 230 struct dm_pool_metadata *pmd; 231 dm_thin_id id; 232 233 int open_count; 234 bool changed:1; 235 bool aborted_with_changes:1; 236 uint64_t mapped_blocks; 237 uint64_t transaction_id; 238 uint32_t creation_time; 239 uint32_t snapshotted_time; 240 }; 241 242 /*---------------------------------------------------------------- 243 * superblock validator 244 *--------------------------------------------------------------*/ 245 246 #define SUPERBLOCK_CSUM_XOR 160774 247 248 static void sb_prepare_for_write(struct dm_block_validator *v, 249 struct dm_block *b, 250 size_t block_size) 251 { 252 struct thin_disk_superblock *disk_super = dm_block_data(b); 253 254 disk_super->blocknr = cpu_to_le64(dm_block_location(b)); 255 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 256 block_size - sizeof(__le32), 257 SUPERBLOCK_CSUM_XOR)); 258 } 259 260 static int sb_check(struct dm_block_validator *v, 261 struct dm_block *b, 262 size_t block_size) 263 { 264 struct thin_disk_superblock *disk_super = dm_block_data(b); 265 __le32 csum_le; 266 267 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) { 268 DMERR("sb_check failed: blocknr %llu: " 269 "wanted %llu", le64_to_cpu(disk_super->blocknr), 270 (unsigned long long)dm_block_location(b)); 271 return -ENOTBLK; 272 } 273 274 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) { 275 DMERR("sb_check failed: magic %llu: " 276 "wanted %llu", le64_to_cpu(disk_super->magic), 277 (unsigned long long)THIN_SUPERBLOCK_MAGIC); 278 return -EILSEQ; 279 } 280 281 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags, 282 block_size - sizeof(__le32), 283 SUPERBLOCK_CSUM_XOR)); 284 if (csum_le != disk_super->csum) { 285 DMERR("sb_check failed: csum %u: wanted %u", 286 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum)); 287 return -EILSEQ; 288 } 289 290 return 0; 291 } 292 293 static struct dm_block_validator sb_validator = { 294 .name = "superblock", 295 .prepare_for_write = sb_prepare_for_write, 296 .check = sb_check 297 }; 298 299 /*---------------------------------------------------------------- 300 * Methods for the btree value types 301 *--------------------------------------------------------------*/ 302 303 static uint64_t pack_block_time(dm_block_t b, uint32_t t) 304 { 305 return (b << 24) | t; 306 } 307 308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t) 309 { 310 *b = v >> 24; 311 *t = v & ((1 << 24) - 1); 312 } 313 314 static void data_block_inc(void *context, const void *value_le) 315 { 316 struct dm_space_map *sm = context; 317 __le64 v_le; 318 uint64_t b; 319 uint32_t t; 320 321 memcpy(&v_le, value_le, sizeof(v_le)); 322 unpack_block_time(le64_to_cpu(v_le), &b, &t); 323 dm_sm_inc_block(sm, b); 324 } 325 326 static void data_block_dec(void *context, const void *value_le) 327 { 328 struct dm_space_map *sm = context; 329 __le64 v_le; 330 uint64_t b; 331 uint32_t t; 332 333 memcpy(&v_le, value_le, sizeof(v_le)); 334 unpack_block_time(le64_to_cpu(v_le), &b, &t); 335 dm_sm_dec_block(sm, b); 336 } 337 338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le) 339 { 340 __le64 v1_le, v2_le; 341 uint64_t b1, b2; 342 uint32_t t; 343 344 memcpy(&v1_le, value1_le, sizeof(v1_le)); 345 memcpy(&v2_le, value2_le, sizeof(v2_le)); 346 unpack_block_time(le64_to_cpu(v1_le), &b1, &t); 347 unpack_block_time(le64_to_cpu(v2_le), &b2, &t); 348 349 return b1 == b2; 350 } 351 352 static void subtree_inc(void *context, const void *value) 353 { 354 struct dm_btree_info *info = context; 355 __le64 root_le; 356 uint64_t root; 357 358 memcpy(&root_le, value, sizeof(root_le)); 359 root = le64_to_cpu(root_le); 360 dm_tm_inc(info->tm, root); 361 } 362 363 static void subtree_dec(void *context, const void *value) 364 { 365 struct dm_btree_info *info = context; 366 __le64 root_le; 367 uint64_t root; 368 369 memcpy(&root_le, value, sizeof(root_le)); 370 root = le64_to_cpu(root_le); 371 if (dm_btree_del(info, root)) 372 DMERR("btree delete failed"); 373 } 374 375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le) 376 { 377 __le64 v1_le, v2_le; 378 memcpy(&v1_le, value1_le, sizeof(v1_le)); 379 memcpy(&v2_le, value2_le, sizeof(v2_le)); 380 381 return v1_le == v2_le; 382 } 383 384 /*----------------------------------------------------------------*/ 385 386 /* 387 * Variant that is used for in-core only changes or code that 388 * shouldn't put the pool in service on its own (e.g. commit). 389 */ 390 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd) 391 __acquires(pmd->root_lock) 392 { 393 down_write(&pmd->root_lock); 394 } 395 396 static inline void pmd_write_lock(struct dm_pool_metadata *pmd) 397 { 398 pmd_write_lock_in_core(pmd); 399 if (unlikely(!pmd->in_service)) 400 pmd->in_service = true; 401 } 402 403 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd) 404 __releases(pmd->root_lock) 405 { 406 up_write(&pmd->root_lock); 407 } 408 409 /*----------------------------------------------------------------*/ 410 411 static int superblock_lock_zero(struct dm_pool_metadata *pmd, 412 struct dm_block **sblock) 413 { 414 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION, 415 &sb_validator, sblock); 416 } 417 418 static int superblock_lock(struct dm_pool_metadata *pmd, 419 struct dm_block **sblock) 420 { 421 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 422 &sb_validator, sblock); 423 } 424 425 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result) 426 { 427 int r; 428 unsigned i; 429 struct dm_block *b; 430 __le64 *data_le, zero = cpu_to_le64(0); 431 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64); 432 433 /* 434 * We can't use a validator here - it may be all zeroes. 435 */ 436 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b); 437 if (r) 438 return r; 439 440 data_le = dm_block_data(b); 441 *result = 1; 442 for (i = 0; i < block_size; i++) { 443 if (data_le[i] != zero) { 444 *result = 0; 445 break; 446 } 447 } 448 449 dm_bm_unlock(b); 450 451 return 0; 452 } 453 454 static void __setup_btree_details(struct dm_pool_metadata *pmd) 455 { 456 pmd->info.tm = pmd->tm; 457 pmd->info.levels = 2; 458 pmd->info.value_type.context = pmd->data_sm; 459 pmd->info.value_type.size = sizeof(__le64); 460 pmd->info.value_type.inc = data_block_inc; 461 pmd->info.value_type.dec = data_block_dec; 462 pmd->info.value_type.equal = data_block_equal; 463 464 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info)); 465 pmd->nb_info.tm = pmd->nb_tm; 466 467 pmd->tl_info.tm = pmd->tm; 468 pmd->tl_info.levels = 1; 469 pmd->tl_info.value_type.context = &pmd->bl_info; 470 pmd->tl_info.value_type.size = sizeof(__le64); 471 pmd->tl_info.value_type.inc = subtree_inc; 472 pmd->tl_info.value_type.dec = subtree_dec; 473 pmd->tl_info.value_type.equal = subtree_equal; 474 475 pmd->bl_info.tm = pmd->tm; 476 pmd->bl_info.levels = 1; 477 pmd->bl_info.value_type.context = pmd->data_sm; 478 pmd->bl_info.value_type.size = sizeof(__le64); 479 pmd->bl_info.value_type.inc = data_block_inc; 480 pmd->bl_info.value_type.dec = data_block_dec; 481 pmd->bl_info.value_type.equal = data_block_equal; 482 483 pmd->details_info.tm = pmd->tm; 484 pmd->details_info.levels = 1; 485 pmd->details_info.value_type.context = NULL; 486 pmd->details_info.value_type.size = sizeof(struct disk_device_details); 487 pmd->details_info.value_type.inc = NULL; 488 pmd->details_info.value_type.dec = NULL; 489 pmd->details_info.value_type.equal = NULL; 490 } 491 492 static int save_sm_roots(struct dm_pool_metadata *pmd) 493 { 494 int r; 495 size_t len; 496 497 r = dm_sm_root_size(pmd->metadata_sm, &len); 498 if (r < 0) 499 return r; 500 501 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len); 502 if (r < 0) 503 return r; 504 505 r = dm_sm_root_size(pmd->data_sm, &len); 506 if (r < 0) 507 return r; 508 509 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len); 510 } 511 512 static void copy_sm_roots(struct dm_pool_metadata *pmd, 513 struct thin_disk_superblock *disk) 514 { 515 memcpy(&disk->metadata_space_map_root, 516 &pmd->metadata_space_map_root, 517 sizeof(pmd->metadata_space_map_root)); 518 519 memcpy(&disk->data_space_map_root, 520 &pmd->data_space_map_root, 521 sizeof(pmd->data_space_map_root)); 522 } 523 524 static int __write_initial_superblock(struct dm_pool_metadata *pmd) 525 { 526 int r; 527 struct dm_block *sblock; 528 struct thin_disk_superblock *disk_super; 529 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT; 530 531 if (bdev_size > THIN_METADATA_MAX_SECTORS) 532 bdev_size = THIN_METADATA_MAX_SECTORS; 533 534 r = dm_sm_commit(pmd->data_sm); 535 if (r < 0) 536 return r; 537 538 r = dm_tm_pre_commit(pmd->tm); 539 if (r < 0) 540 return r; 541 542 r = save_sm_roots(pmd); 543 if (r < 0) 544 return r; 545 546 r = superblock_lock_zero(pmd, &sblock); 547 if (r) 548 return r; 549 550 disk_super = dm_block_data(sblock); 551 disk_super->flags = 0; 552 memset(disk_super->uuid, 0, sizeof(disk_super->uuid)); 553 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC); 554 disk_super->version = cpu_to_le32(THIN_VERSION); 555 disk_super->time = 0; 556 disk_super->trans_id = 0; 557 disk_super->held_root = 0; 558 559 copy_sm_roots(pmd, disk_super); 560 561 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 562 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 563 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE); 564 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT); 565 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size); 566 567 return dm_tm_commit(pmd->tm, sblock); 568 } 569 570 static int __format_metadata(struct dm_pool_metadata *pmd) 571 { 572 int r; 573 574 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 575 &pmd->tm, &pmd->metadata_sm); 576 if (r < 0) { 577 DMERR("tm_create_with_sm failed"); 578 return r; 579 } 580 581 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0); 582 if (IS_ERR(pmd->data_sm)) { 583 DMERR("sm_disk_create failed"); 584 r = PTR_ERR(pmd->data_sm); 585 goto bad_cleanup_tm; 586 } 587 588 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 589 if (!pmd->nb_tm) { 590 DMERR("could not create non-blocking clone tm"); 591 r = -ENOMEM; 592 goto bad_cleanup_data_sm; 593 } 594 595 __setup_btree_details(pmd); 596 597 r = dm_btree_empty(&pmd->info, &pmd->root); 598 if (r < 0) 599 goto bad_cleanup_nb_tm; 600 601 r = dm_btree_empty(&pmd->details_info, &pmd->details_root); 602 if (r < 0) { 603 DMERR("couldn't create devices root"); 604 goto bad_cleanup_nb_tm; 605 } 606 607 r = __write_initial_superblock(pmd); 608 if (r) 609 goto bad_cleanup_nb_tm; 610 611 return 0; 612 613 bad_cleanup_nb_tm: 614 dm_tm_destroy(pmd->nb_tm); 615 bad_cleanup_data_sm: 616 dm_sm_destroy(pmd->data_sm); 617 bad_cleanup_tm: 618 dm_tm_destroy(pmd->tm); 619 dm_sm_destroy(pmd->metadata_sm); 620 621 return r; 622 } 623 624 static int __check_incompat_features(struct thin_disk_superblock *disk_super, 625 struct dm_pool_metadata *pmd) 626 { 627 uint32_t features; 628 629 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP; 630 if (features) { 631 DMERR("could not access metadata due to unsupported optional features (%lx).", 632 (unsigned long)features); 633 return -EINVAL; 634 } 635 636 /* 637 * Check for read-only metadata to skip the following RDWR checks. 638 */ 639 if (get_disk_ro(pmd->bdev->bd_disk)) 640 return 0; 641 642 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP; 643 if (features) { 644 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).", 645 (unsigned long)features); 646 return -EINVAL; 647 } 648 649 return 0; 650 } 651 652 static int __open_metadata(struct dm_pool_metadata *pmd) 653 { 654 int r; 655 struct dm_block *sblock; 656 struct thin_disk_superblock *disk_super; 657 658 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 659 &sb_validator, &sblock); 660 if (r < 0) { 661 DMERR("couldn't read superblock"); 662 return r; 663 } 664 665 disk_super = dm_block_data(sblock); 666 667 /* Verify the data block size hasn't changed */ 668 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) { 669 DMERR("changing the data block size (from %u to %llu) is not supported", 670 le32_to_cpu(disk_super->data_block_size), 671 (unsigned long long)pmd->data_block_size); 672 r = -EINVAL; 673 goto bad_unlock_sblock; 674 } 675 676 r = __check_incompat_features(disk_super, pmd); 677 if (r < 0) 678 goto bad_unlock_sblock; 679 680 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION, 681 disk_super->metadata_space_map_root, 682 sizeof(disk_super->metadata_space_map_root), 683 &pmd->tm, &pmd->metadata_sm); 684 if (r < 0) { 685 DMERR("tm_open_with_sm failed"); 686 goto bad_unlock_sblock; 687 } 688 689 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root, 690 sizeof(disk_super->data_space_map_root)); 691 if (IS_ERR(pmd->data_sm)) { 692 DMERR("sm_disk_open failed"); 693 r = PTR_ERR(pmd->data_sm); 694 goto bad_cleanup_tm; 695 } 696 697 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm); 698 if (!pmd->nb_tm) { 699 DMERR("could not create non-blocking clone tm"); 700 r = -ENOMEM; 701 goto bad_cleanup_data_sm; 702 } 703 704 __setup_btree_details(pmd); 705 dm_bm_unlock(sblock); 706 707 return 0; 708 709 bad_cleanup_data_sm: 710 dm_sm_destroy(pmd->data_sm); 711 bad_cleanup_tm: 712 dm_tm_destroy(pmd->tm); 713 dm_sm_destroy(pmd->metadata_sm); 714 bad_unlock_sblock: 715 dm_bm_unlock(sblock); 716 717 return r; 718 } 719 720 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device) 721 { 722 int r, unformatted; 723 724 r = __superblock_all_zeroes(pmd->bm, &unformatted); 725 if (r) 726 return r; 727 728 if (unformatted) 729 return format_device ? __format_metadata(pmd) : -EPERM; 730 731 return __open_metadata(pmd); 732 } 733 734 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device) 735 { 736 int r; 737 738 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT, 739 THIN_MAX_CONCURRENT_LOCKS); 740 if (IS_ERR(pmd->bm)) { 741 DMERR("could not create block manager"); 742 return PTR_ERR(pmd->bm); 743 } 744 745 r = __open_or_format_metadata(pmd, format_device); 746 if (r) 747 dm_block_manager_destroy(pmd->bm); 748 749 return r; 750 } 751 752 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd) 753 { 754 dm_sm_destroy(pmd->data_sm); 755 dm_sm_destroy(pmd->metadata_sm); 756 dm_tm_destroy(pmd->nb_tm); 757 dm_tm_destroy(pmd->tm); 758 dm_block_manager_destroy(pmd->bm); 759 } 760 761 static int __begin_transaction(struct dm_pool_metadata *pmd) 762 { 763 int r; 764 struct thin_disk_superblock *disk_super; 765 struct dm_block *sblock; 766 767 /* 768 * We re-read the superblock every time. Shouldn't need to do this 769 * really. 770 */ 771 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 772 &sb_validator, &sblock); 773 if (r) 774 return r; 775 776 disk_super = dm_block_data(sblock); 777 pmd->time = le32_to_cpu(disk_super->time); 778 pmd->root = le64_to_cpu(disk_super->data_mapping_root); 779 pmd->details_root = le64_to_cpu(disk_super->device_details_root); 780 pmd->trans_id = le64_to_cpu(disk_super->trans_id); 781 pmd->flags = le32_to_cpu(disk_super->flags); 782 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size); 783 784 dm_bm_unlock(sblock); 785 return 0; 786 } 787 788 static int __write_changed_details(struct dm_pool_metadata *pmd) 789 { 790 int r; 791 struct dm_thin_device *td, *tmp; 792 struct disk_device_details details; 793 uint64_t key; 794 795 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 796 if (!td->changed) 797 continue; 798 799 key = td->id; 800 801 details.mapped_blocks = cpu_to_le64(td->mapped_blocks); 802 details.transaction_id = cpu_to_le64(td->transaction_id); 803 details.creation_time = cpu_to_le32(td->creation_time); 804 details.snapshotted_time = cpu_to_le32(td->snapshotted_time); 805 __dm_bless_for_disk(&details); 806 807 r = dm_btree_insert(&pmd->details_info, pmd->details_root, 808 &key, &details, &pmd->details_root); 809 if (r) 810 return r; 811 812 if (td->open_count) 813 td->changed = false; 814 else { 815 list_del(&td->list); 816 kfree(td); 817 } 818 } 819 820 return 0; 821 } 822 823 static int __commit_transaction(struct dm_pool_metadata *pmd) 824 { 825 int r; 826 struct thin_disk_superblock *disk_super; 827 struct dm_block *sblock; 828 829 /* 830 * We need to know if the thin_disk_superblock exceeds a 512-byte sector. 831 */ 832 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512); 833 BUG_ON(!rwsem_is_locked(&pmd->root_lock)); 834 835 if (unlikely(!pmd->in_service)) 836 return 0; 837 838 if (pmd->pre_commit_fn) { 839 r = pmd->pre_commit_fn(pmd->pre_commit_context); 840 if (r < 0) { 841 DMERR("pre-commit callback failed"); 842 return r; 843 } 844 } 845 846 r = __write_changed_details(pmd); 847 if (r < 0) 848 return r; 849 850 r = dm_sm_commit(pmd->data_sm); 851 if (r < 0) 852 return r; 853 854 r = dm_tm_pre_commit(pmd->tm); 855 if (r < 0) 856 return r; 857 858 r = save_sm_roots(pmd); 859 if (r < 0) 860 return r; 861 862 r = superblock_lock(pmd, &sblock); 863 if (r) 864 return r; 865 866 disk_super = dm_block_data(sblock); 867 disk_super->time = cpu_to_le32(pmd->time); 868 disk_super->data_mapping_root = cpu_to_le64(pmd->root); 869 disk_super->device_details_root = cpu_to_le64(pmd->details_root); 870 disk_super->trans_id = cpu_to_le64(pmd->trans_id); 871 disk_super->flags = cpu_to_le32(pmd->flags); 872 873 copy_sm_roots(pmd, disk_super); 874 875 return dm_tm_commit(pmd->tm, sblock); 876 } 877 878 static void __set_metadata_reserve(struct dm_pool_metadata *pmd) 879 { 880 int r; 881 dm_block_t total; 882 dm_block_t max_blocks = 4096; /* 16M */ 883 884 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total); 885 if (r) { 886 DMERR("could not get size of metadata device"); 887 pmd->metadata_reserve = max_blocks; 888 } else 889 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10)); 890 } 891 892 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev, 893 sector_t data_block_size, 894 bool format_device) 895 { 896 int r; 897 struct dm_pool_metadata *pmd; 898 899 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL); 900 if (!pmd) { 901 DMERR("could not allocate metadata struct"); 902 return ERR_PTR(-ENOMEM); 903 } 904 905 init_rwsem(&pmd->root_lock); 906 pmd->time = 0; 907 INIT_LIST_HEAD(&pmd->thin_devices); 908 pmd->fail_io = false; 909 pmd->in_service = false; 910 pmd->bdev = bdev; 911 pmd->data_block_size = data_block_size; 912 pmd->pre_commit_fn = NULL; 913 pmd->pre_commit_context = NULL; 914 915 r = __create_persistent_data_objects(pmd, format_device); 916 if (r) { 917 kfree(pmd); 918 return ERR_PTR(r); 919 } 920 921 r = __begin_transaction(pmd); 922 if (r < 0) { 923 if (dm_pool_metadata_close(pmd) < 0) 924 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 925 return ERR_PTR(r); 926 } 927 928 __set_metadata_reserve(pmd); 929 930 return pmd; 931 } 932 933 int dm_pool_metadata_close(struct dm_pool_metadata *pmd) 934 { 935 int r; 936 unsigned open_devices = 0; 937 struct dm_thin_device *td, *tmp; 938 939 down_read(&pmd->root_lock); 940 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 941 if (td->open_count) 942 open_devices++; 943 else { 944 list_del(&td->list); 945 kfree(td); 946 } 947 } 948 up_read(&pmd->root_lock); 949 950 if (open_devices) { 951 DMERR("attempt to close pmd when %u device(s) are still open", 952 open_devices); 953 return -EBUSY; 954 } 955 956 pmd_write_lock_in_core(pmd); 957 if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) { 958 r = __commit_transaction(pmd); 959 if (r < 0) 960 DMWARN("%s: __commit_transaction() failed, error = %d", 961 __func__, r); 962 } 963 if (!pmd->fail_io) 964 __destroy_persistent_data_objects(pmd); 965 pmd_write_unlock(pmd); 966 967 kfree(pmd); 968 return 0; 969 } 970 971 /* 972 * __open_device: Returns @td corresponding to device with id @dev, 973 * creating it if @create is set and incrementing @td->open_count. 974 * On failure, @td is undefined. 975 */ 976 static int __open_device(struct dm_pool_metadata *pmd, 977 dm_thin_id dev, int create, 978 struct dm_thin_device **td) 979 { 980 int r, changed = 0; 981 struct dm_thin_device *td2; 982 uint64_t key = dev; 983 struct disk_device_details details_le; 984 985 /* 986 * If the device is already open, return it. 987 */ 988 list_for_each_entry(td2, &pmd->thin_devices, list) 989 if (td2->id == dev) { 990 /* 991 * May not create an already-open device. 992 */ 993 if (create) 994 return -EEXIST; 995 996 td2->open_count++; 997 *td = td2; 998 return 0; 999 } 1000 1001 /* 1002 * Check the device exists. 1003 */ 1004 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1005 &key, &details_le); 1006 if (r) { 1007 if (r != -ENODATA || !create) 1008 return r; 1009 1010 /* 1011 * Create new device. 1012 */ 1013 changed = 1; 1014 details_le.mapped_blocks = 0; 1015 details_le.transaction_id = cpu_to_le64(pmd->trans_id); 1016 details_le.creation_time = cpu_to_le32(pmd->time); 1017 details_le.snapshotted_time = cpu_to_le32(pmd->time); 1018 } 1019 1020 *td = kmalloc(sizeof(**td), GFP_NOIO); 1021 if (!*td) 1022 return -ENOMEM; 1023 1024 (*td)->pmd = pmd; 1025 (*td)->id = dev; 1026 (*td)->open_count = 1; 1027 (*td)->changed = changed; 1028 (*td)->aborted_with_changes = false; 1029 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks); 1030 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id); 1031 (*td)->creation_time = le32_to_cpu(details_le.creation_time); 1032 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time); 1033 1034 list_add(&(*td)->list, &pmd->thin_devices); 1035 1036 return 0; 1037 } 1038 1039 static void __close_device(struct dm_thin_device *td) 1040 { 1041 --td->open_count; 1042 } 1043 1044 static int __create_thin(struct dm_pool_metadata *pmd, 1045 dm_thin_id dev) 1046 { 1047 int r; 1048 dm_block_t dev_root; 1049 uint64_t key = dev; 1050 struct disk_device_details details_le; 1051 struct dm_thin_device *td; 1052 __le64 value; 1053 1054 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1055 &key, &details_le); 1056 if (!r) 1057 return -EEXIST; 1058 1059 /* 1060 * Create an empty btree for the mappings. 1061 */ 1062 r = dm_btree_empty(&pmd->bl_info, &dev_root); 1063 if (r) 1064 return r; 1065 1066 /* 1067 * Insert it into the main mapping tree. 1068 */ 1069 value = cpu_to_le64(dev_root); 1070 __dm_bless_for_disk(&value); 1071 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1072 if (r) { 1073 dm_btree_del(&pmd->bl_info, dev_root); 1074 return r; 1075 } 1076 1077 r = __open_device(pmd, dev, 1, &td); 1078 if (r) { 1079 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1080 dm_btree_del(&pmd->bl_info, dev_root); 1081 return r; 1082 } 1083 __close_device(td); 1084 1085 return r; 1086 } 1087 1088 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev) 1089 { 1090 int r = -EINVAL; 1091 1092 pmd_write_lock(pmd); 1093 if (!pmd->fail_io) 1094 r = __create_thin(pmd, dev); 1095 pmd_write_unlock(pmd); 1096 1097 return r; 1098 } 1099 1100 static int __set_snapshot_details(struct dm_pool_metadata *pmd, 1101 struct dm_thin_device *snap, 1102 dm_thin_id origin, uint32_t time) 1103 { 1104 int r; 1105 struct dm_thin_device *td; 1106 1107 r = __open_device(pmd, origin, 0, &td); 1108 if (r) 1109 return r; 1110 1111 td->changed = true; 1112 td->snapshotted_time = time; 1113 1114 snap->mapped_blocks = td->mapped_blocks; 1115 snap->snapshotted_time = time; 1116 __close_device(td); 1117 1118 return 0; 1119 } 1120 1121 static int __create_snap(struct dm_pool_metadata *pmd, 1122 dm_thin_id dev, dm_thin_id origin) 1123 { 1124 int r; 1125 dm_block_t origin_root; 1126 uint64_t key = origin, dev_key = dev; 1127 struct dm_thin_device *td; 1128 struct disk_device_details details_le; 1129 __le64 value; 1130 1131 /* check this device is unused */ 1132 r = dm_btree_lookup(&pmd->details_info, pmd->details_root, 1133 &dev_key, &details_le); 1134 if (!r) 1135 return -EEXIST; 1136 1137 /* find the mapping tree for the origin */ 1138 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value); 1139 if (r) 1140 return r; 1141 origin_root = le64_to_cpu(value); 1142 1143 /* clone the origin, an inc will do */ 1144 dm_tm_inc(pmd->tm, origin_root); 1145 1146 /* insert into the main mapping tree */ 1147 value = cpu_to_le64(origin_root); 1148 __dm_bless_for_disk(&value); 1149 key = dev; 1150 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root); 1151 if (r) { 1152 dm_tm_dec(pmd->tm, origin_root); 1153 return r; 1154 } 1155 1156 pmd->time++; 1157 1158 r = __open_device(pmd, dev, 1, &td); 1159 if (r) 1160 goto bad; 1161 1162 r = __set_snapshot_details(pmd, td, origin, pmd->time); 1163 __close_device(td); 1164 1165 if (r) 1166 goto bad; 1167 1168 return 0; 1169 1170 bad: 1171 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1172 dm_btree_remove(&pmd->details_info, pmd->details_root, 1173 &key, &pmd->details_root); 1174 return r; 1175 } 1176 1177 int dm_pool_create_snap(struct dm_pool_metadata *pmd, 1178 dm_thin_id dev, 1179 dm_thin_id origin) 1180 { 1181 int r = -EINVAL; 1182 1183 pmd_write_lock(pmd); 1184 if (!pmd->fail_io) 1185 r = __create_snap(pmd, dev, origin); 1186 pmd_write_unlock(pmd); 1187 1188 return r; 1189 } 1190 1191 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev) 1192 { 1193 int r; 1194 uint64_t key = dev; 1195 struct dm_thin_device *td; 1196 1197 /* TODO: failure should mark the transaction invalid */ 1198 r = __open_device(pmd, dev, 0, &td); 1199 if (r) 1200 return r; 1201 1202 if (td->open_count > 1) { 1203 __close_device(td); 1204 return -EBUSY; 1205 } 1206 1207 list_del(&td->list); 1208 kfree(td); 1209 r = dm_btree_remove(&pmd->details_info, pmd->details_root, 1210 &key, &pmd->details_root); 1211 if (r) 1212 return r; 1213 1214 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root); 1215 if (r) 1216 return r; 1217 1218 return 0; 1219 } 1220 1221 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd, 1222 dm_thin_id dev) 1223 { 1224 int r = -EINVAL; 1225 1226 pmd_write_lock(pmd); 1227 if (!pmd->fail_io) 1228 r = __delete_device(pmd, dev); 1229 pmd_write_unlock(pmd); 1230 1231 return r; 1232 } 1233 1234 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd, 1235 uint64_t current_id, 1236 uint64_t new_id) 1237 { 1238 int r = -EINVAL; 1239 1240 pmd_write_lock(pmd); 1241 1242 if (pmd->fail_io) 1243 goto out; 1244 1245 if (pmd->trans_id != current_id) { 1246 DMERR("mismatched transaction id"); 1247 goto out; 1248 } 1249 1250 pmd->trans_id = new_id; 1251 r = 0; 1252 1253 out: 1254 pmd_write_unlock(pmd); 1255 1256 return r; 1257 } 1258 1259 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd, 1260 uint64_t *result) 1261 { 1262 int r = -EINVAL; 1263 1264 down_read(&pmd->root_lock); 1265 if (!pmd->fail_io) { 1266 *result = pmd->trans_id; 1267 r = 0; 1268 } 1269 up_read(&pmd->root_lock); 1270 1271 return r; 1272 } 1273 1274 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd) 1275 { 1276 int r, inc; 1277 struct thin_disk_superblock *disk_super; 1278 struct dm_block *copy, *sblock; 1279 dm_block_t held_root; 1280 1281 /* 1282 * We commit to ensure the btree roots which we increment in a 1283 * moment are up to date. 1284 */ 1285 r = __commit_transaction(pmd); 1286 if (r < 0) { 1287 DMWARN("%s: __commit_transaction() failed, error = %d", 1288 __func__, r); 1289 return r; 1290 } 1291 1292 /* 1293 * Copy the superblock. 1294 */ 1295 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION); 1296 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION, 1297 &sb_validator, ©, &inc); 1298 if (r) 1299 return r; 1300 1301 BUG_ON(!inc); 1302 1303 held_root = dm_block_location(copy); 1304 disk_super = dm_block_data(copy); 1305 1306 if (le64_to_cpu(disk_super->held_root)) { 1307 DMWARN("Pool metadata snapshot already exists: release this before taking another."); 1308 1309 dm_tm_dec(pmd->tm, held_root); 1310 dm_tm_unlock(pmd->tm, copy); 1311 return -EBUSY; 1312 } 1313 1314 /* 1315 * Wipe the spacemap since we're not publishing this. 1316 */ 1317 memset(&disk_super->data_space_map_root, 0, 1318 sizeof(disk_super->data_space_map_root)); 1319 memset(&disk_super->metadata_space_map_root, 0, 1320 sizeof(disk_super->metadata_space_map_root)); 1321 1322 /* 1323 * Increment the data structures that need to be preserved. 1324 */ 1325 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root)); 1326 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root)); 1327 dm_tm_unlock(pmd->tm, copy); 1328 1329 /* 1330 * Write the held root into the superblock. 1331 */ 1332 r = superblock_lock(pmd, &sblock); 1333 if (r) { 1334 dm_tm_dec(pmd->tm, held_root); 1335 return r; 1336 } 1337 1338 disk_super = dm_block_data(sblock); 1339 disk_super->held_root = cpu_to_le64(held_root); 1340 dm_bm_unlock(sblock); 1341 return 0; 1342 } 1343 1344 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd) 1345 { 1346 int r = -EINVAL; 1347 1348 pmd_write_lock(pmd); 1349 if (!pmd->fail_io) 1350 r = __reserve_metadata_snap(pmd); 1351 pmd_write_unlock(pmd); 1352 1353 return r; 1354 } 1355 1356 static int __release_metadata_snap(struct dm_pool_metadata *pmd) 1357 { 1358 int r; 1359 struct thin_disk_superblock *disk_super; 1360 struct dm_block *sblock, *copy; 1361 dm_block_t held_root; 1362 1363 r = superblock_lock(pmd, &sblock); 1364 if (r) 1365 return r; 1366 1367 disk_super = dm_block_data(sblock); 1368 held_root = le64_to_cpu(disk_super->held_root); 1369 disk_super->held_root = cpu_to_le64(0); 1370 1371 dm_bm_unlock(sblock); 1372 1373 if (!held_root) { 1374 DMWARN("No pool metadata snapshot found: nothing to release."); 1375 return -EINVAL; 1376 } 1377 1378 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, ©); 1379 if (r) 1380 return r; 1381 1382 disk_super = dm_block_data(copy); 1383 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root)); 1384 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root)); 1385 dm_sm_dec_block(pmd->metadata_sm, held_root); 1386 1387 dm_tm_unlock(pmd->tm, copy); 1388 1389 return 0; 1390 } 1391 1392 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd) 1393 { 1394 int r = -EINVAL; 1395 1396 pmd_write_lock(pmd); 1397 if (!pmd->fail_io) 1398 r = __release_metadata_snap(pmd); 1399 pmd_write_unlock(pmd); 1400 1401 return r; 1402 } 1403 1404 static int __get_metadata_snap(struct dm_pool_metadata *pmd, 1405 dm_block_t *result) 1406 { 1407 int r; 1408 struct thin_disk_superblock *disk_super; 1409 struct dm_block *sblock; 1410 1411 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION, 1412 &sb_validator, &sblock); 1413 if (r) 1414 return r; 1415 1416 disk_super = dm_block_data(sblock); 1417 *result = le64_to_cpu(disk_super->held_root); 1418 1419 dm_bm_unlock(sblock); 1420 1421 return 0; 1422 } 1423 1424 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd, 1425 dm_block_t *result) 1426 { 1427 int r = -EINVAL; 1428 1429 down_read(&pmd->root_lock); 1430 if (!pmd->fail_io) 1431 r = __get_metadata_snap(pmd, result); 1432 up_read(&pmd->root_lock); 1433 1434 return r; 1435 } 1436 1437 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev, 1438 struct dm_thin_device **td) 1439 { 1440 int r = -EINVAL; 1441 1442 pmd_write_lock_in_core(pmd); 1443 if (!pmd->fail_io) 1444 r = __open_device(pmd, dev, 0, td); 1445 pmd_write_unlock(pmd); 1446 1447 return r; 1448 } 1449 1450 int dm_pool_close_thin_device(struct dm_thin_device *td) 1451 { 1452 pmd_write_lock_in_core(td->pmd); 1453 __close_device(td); 1454 pmd_write_unlock(td->pmd); 1455 1456 return 0; 1457 } 1458 1459 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td) 1460 { 1461 return td->id; 1462 } 1463 1464 /* 1465 * Check whether @time (of block creation) is older than @td's last snapshot. 1466 * If so then the associated block is shared with the last snapshot device. 1467 * Any block on a device created *after* the device last got snapshotted is 1468 * necessarily not shared. 1469 */ 1470 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time) 1471 { 1472 return td->snapshotted_time > time; 1473 } 1474 1475 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value, 1476 struct dm_thin_lookup_result *result) 1477 { 1478 uint64_t block_time = 0; 1479 dm_block_t exception_block; 1480 uint32_t exception_time; 1481 1482 block_time = le64_to_cpu(value); 1483 unpack_block_time(block_time, &exception_block, &exception_time); 1484 result->block = exception_block; 1485 result->shared = __snapshotted_since(td, exception_time); 1486 } 1487 1488 static int __find_block(struct dm_thin_device *td, dm_block_t block, 1489 int can_issue_io, struct dm_thin_lookup_result *result) 1490 { 1491 int r; 1492 __le64 value; 1493 struct dm_pool_metadata *pmd = td->pmd; 1494 dm_block_t keys[2] = { td->id, block }; 1495 struct dm_btree_info *info; 1496 1497 if (can_issue_io) { 1498 info = &pmd->info; 1499 } else 1500 info = &pmd->nb_info; 1501 1502 r = dm_btree_lookup(info, pmd->root, keys, &value); 1503 if (!r) 1504 unpack_lookup_result(td, value, result); 1505 1506 return r; 1507 } 1508 1509 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block, 1510 int can_issue_io, struct dm_thin_lookup_result *result) 1511 { 1512 int r; 1513 struct dm_pool_metadata *pmd = td->pmd; 1514 1515 down_read(&pmd->root_lock); 1516 if (pmd->fail_io) { 1517 up_read(&pmd->root_lock); 1518 return -EINVAL; 1519 } 1520 1521 r = __find_block(td, block, can_issue_io, result); 1522 1523 up_read(&pmd->root_lock); 1524 return r; 1525 } 1526 1527 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block, 1528 dm_block_t *vblock, 1529 struct dm_thin_lookup_result *result) 1530 { 1531 int r; 1532 __le64 value; 1533 struct dm_pool_metadata *pmd = td->pmd; 1534 dm_block_t keys[2] = { td->id, block }; 1535 1536 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value); 1537 if (!r) 1538 unpack_lookup_result(td, value, result); 1539 1540 return r; 1541 } 1542 1543 static int __find_mapped_range(struct dm_thin_device *td, 1544 dm_block_t begin, dm_block_t end, 1545 dm_block_t *thin_begin, dm_block_t *thin_end, 1546 dm_block_t *pool_begin, bool *maybe_shared) 1547 { 1548 int r; 1549 dm_block_t pool_end; 1550 struct dm_thin_lookup_result lookup; 1551 1552 if (end < begin) 1553 return -ENODATA; 1554 1555 r = __find_next_mapped_block(td, begin, &begin, &lookup); 1556 if (r) 1557 return r; 1558 1559 if (begin >= end) 1560 return -ENODATA; 1561 1562 *thin_begin = begin; 1563 *pool_begin = lookup.block; 1564 *maybe_shared = lookup.shared; 1565 1566 begin++; 1567 pool_end = *pool_begin + 1; 1568 while (begin != end) { 1569 r = __find_block(td, begin, true, &lookup); 1570 if (r) { 1571 if (r == -ENODATA) 1572 break; 1573 else 1574 return r; 1575 } 1576 1577 if ((lookup.block != pool_end) || 1578 (lookup.shared != *maybe_shared)) 1579 break; 1580 1581 pool_end++; 1582 begin++; 1583 } 1584 1585 *thin_end = begin; 1586 return 0; 1587 } 1588 1589 int dm_thin_find_mapped_range(struct dm_thin_device *td, 1590 dm_block_t begin, dm_block_t end, 1591 dm_block_t *thin_begin, dm_block_t *thin_end, 1592 dm_block_t *pool_begin, bool *maybe_shared) 1593 { 1594 int r = -EINVAL; 1595 struct dm_pool_metadata *pmd = td->pmd; 1596 1597 down_read(&pmd->root_lock); 1598 if (!pmd->fail_io) { 1599 r = __find_mapped_range(td, begin, end, thin_begin, thin_end, 1600 pool_begin, maybe_shared); 1601 } 1602 up_read(&pmd->root_lock); 1603 1604 return r; 1605 } 1606 1607 static int __insert(struct dm_thin_device *td, dm_block_t block, 1608 dm_block_t data_block) 1609 { 1610 int r, inserted; 1611 __le64 value; 1612 struct dm_pool_metadata *pmd = td->pmd; 1613 dm_block_t keys[2] = { td->id, block }; 1614 1615 value = cpu_to_le64(pack_block_time(data_block, pmd->time)); 1616 __dm_bless_for_disk(&value); 1617 1618 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value, 1619 &pmd->root, &inserted); 1620 if (r) 1621 return r; 1622 1623 td->changed = true; 1624 if (inserted) 1625 td->mapped_blocks++; 1626 1627 return 0; 1628 } 1629 1630 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block, 1631 dm_block_t data_block) 1632 { 1633 int r = -EINVAL; 1634 1635 pmd_write_lock(td->pmd); 1636 if (!td->pmd->fail_io) 1637 r = __insert(td, block, data_block); 1638 pmd_write_unlock(td->pmd); 1639 1640 return r; 1641 } 1642 1643 static int __remove(struct dm_thin_device *td, dm_block_t block) 1644 { 1645 int r; 1646 struct dm_pool_metadata *pmd = td->pmd; 1647 dm_block_t keys[2] = { td->id, block }; 1648 1649 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root); 1650 if (r) 1651 return r; 1652 1653 td->mapped_blocks--; 1654 td->changed = true; 1655 1656 return 0; 1657 } 1658 1659 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end) 1660 { 1661 int r; 1662 unsigned count, total_count = 0; 1663 struct dm_pool_metadata *pmd = td->pmd; 1664 dm_block_t keys[1] = { td->id }; 1665 __le64 value; 1666 dm_block_t mapping_root; 1667 1668 /* 1669 * Find the mapping tree 1670 */ 1671 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value); 1672 if (r) 1673 return r; 1674 1675 /* 1676 * Remove from the mapping tree, taking care to inc the 1677 * ref count so it doesn't get deleted. 1678 */ 1679 mapping_root = le64_to_cpu(value); 1680 dm_tm_inc(pmd->tm, mapping_root); 1681 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root); 1682 if (r) 1683 return r; 1684 1685 /* 1686 * Remove leaves stops at the first unmapped entry, so we have to 1687 * loop round finding mapped ranges. 1688 */ 1689 while (begin < end) { 1690 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value); 1691 if (r == -ENODATA) 1692 break; 1693 1694 if (r) 1695 return r; 1696 1697 if (begin >= end) 1698 break; 1699 1700 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count); 1701 if (r) 1702 return r; 1703 1704 total_count += count; 1705 } 1706 1707 td->mapped_blocks -= total_count; 1708 td->changed = true; 1709 1710 /* 1711 * Reinsert the mapping tree. 1712 */ 1713 value = cpu_to_le64(mapping_root); 1714 __dm_bless_for_disk(&value); 1715 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root); 1716 } 1717 1718 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block) 1719 { 1720 int r = -EINVAL; 1721 1722 pmd_write_lock(td->pmd); 1723 if (!td->pmd->fail_io) 1724 r = __remove(td, block); 1725 pmd_write_unlock(td->pmd); 1726 1727 return r; 1728 } 1729 1730 int dm_thin_remove_range(struct dm_thin_device *td, 1731 dm_block_t begin, dm_block_t end) 1732 { 1733 int r = -EINVAL; 1734 1735 pmd_write_lock(td->pmd); 1736 if (!td->pmd->fail_io) 1737 r = __remove_range(td, begin, end); 1738 pmd_write_unlock(td->pmd); 1739 1740 return r; 1741 } 1742 1743 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result) 1744 { 1745 int r; 1746 uint32_t ref_count; 1747 1748 down_read(&pmd->root_lock); 1749 r = dm_sm_get_count(pmd->data_sm, b, &ref_count); 1750 if (!r) 1751 *result = (ref_count > 1); 1752 up_read(&pmd->root_lock); 1753 1754 return r; 1755 } 1756 1757 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1758 { 1759 int r = 0; 1760 1761 pmd_write_lock(pmd); 1762 for (; b != e; b++) { 1763 r = dm_sm_inc_block(pmd->data_sm, b); 1764 if (r) 1765 break; 1766 } 1767 pmd_write_unlock(pmd); 1768 1769 return r; 1770 } 1771 1772 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e) 1773 { 1774 int r = 0; 1775 1776 pmd_write_lock(pmd); 1777 for (; b != e; b++) { 1778 r = dm_sm_dec_block(pmd->data_sm, b); 1779 if (r) 1780 break; 1781 } 1782 pmd_write_unlock(pmd); 1783 1784 return r; 1785 } 1786 1787 bool dm_thin_changed_this_transaction(struct dm_thin_device *td) 1788 { 1789 int r; 1790 1791 down_read(&td->pmd->root_lock); 1792 r = td->changed; 1793 up_read(&td->pmd->root_lock); 1794 1795 return r; 1796 } 1797 1798 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd) 1799 { 1800 bool r = false; 1801 struct dm_thin_device *td, *tmp; 1802 1803 down_read(&pmd->root_lock); 1804 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) { 1805 if (td->changed) { 1806 r = td->changed; 1807 break; 1808 } 1809 } 1810 up_read(&pmd->root_lock); 1811 1812 return r; 1813 } 1814 1815 bool dm_thin_aborted_changes(struct dm_thin_device *td) 1816 { 1817 bool r; 1818 1819 down_read(&td->pmd->root_lock); 1820 r = td->aborted_with_changes; 1821 up_read(&td->pmd->root_lock); 1822 1823 return r; 1824 } 1825 1826 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result) 1827 { 1828 int r = -EINVAL; 1829 1830 pmd_write_lock(pmd); 1831 if (!pmd->fail_io) 1832 r = dm_sm_new_block(pmd->data_sm, result); 1833 pmd_write_unlock(pmd); 1834 1835 return r; 1836 } 1837 1838 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd) 1839 { 1840 int r = -EINVAL; 1841 1842 /* 1843 * Care is taken to not have commit be what 1844 * triggers putting the thin-pool in-service. 1845 */ 1846 pmd_write_lock_in_core(pmd); 1847 if (pmd->fail_io) 1848 goto out; 1849 1850 r = __commit_transaction(pmd); 1851 if (r < 0) 1852 goto out; 1853 1854 /* 1855 * Open the next transaction. 1856 */ 1857 r = __begin_transaction(pmd); 1858 out: 1859 pmd_write_unlock(pmd); 1860 return r; 1861 } 1862 1863 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd) 1864 { 1865 struct dm_thin_device *td; 1866 1867 list_for_each_entry(td, &pmd->thin_devices, list) 1868 td->aborted_with_changes = td->changed; 1869 } 1870 1871 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd) 1872 { 1873 int r = -EINVAL; 1874 1875 pmd_write_lock(pmd); 1876 if (pmd->fail_io) 1877 goto out; 1878 1879 __set_abort_with_changes_flags(pmd); 1880 __destroy_persistent_data_objects(pmd); 1881 r = __create_persistent_data_objects(pmd, false); 1882 if (r) 1883 pmd->fail_io = true; 1884 1885 out: 1886 pmd_write_unlock(pmd); 1887 1888 return r; 1889 } 1890 1891 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result) 1892 { 1893 int r = -EINVAL; 1894 1895 down_read(&pmd->root_lock); 1896 if (!pmd->fail_io) 1897 r = dm_sm_get_nr_free(pmd->data_sm, result); 1898 up_read(&pmd->root_lock); 1899 1900 return r; 1901 } 1902 1903 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd, 1904 dm_block_t *result) 1905 { 1906 int r = -EINVAL; 1907 1908 down_read(&pmd->root_lock); 1909 if (!pmd->fail_io) 1910 r = dm_sm_get_nr_free(pmd->metadata_sm, result); 1911 1912 if (!r) { 1913 if (*result < pmd->metadata_reserve) 1914 *result = 0; 1915 else 1916 *result -= pmd->metadata_reserve; 1917 } 1918 up_read(&pmd->root_lock); 1919 1920 return r; 1921 } 1922 1923 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd, 1924 dm_block_t *result) 1925 { 1926 int r = -EINVAL; 1927 1928 down_read(&pmd->root_lock); 1929 if (!pmd->fail_io) 1930 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result); 1931 up_read(&pmd->root_lock); 1932 1933 return r; 1934 } 1935 1936 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result) 1937 { 1938 int r = -EINVAL; 1939 1940 down_read(&pmd->root_lock); 1941 if (!pmd->fail_io) 1942 r = dm_sm_get_nr_blocks(pmd->data_sm, result); 1943 up_read(&pmd->root_lock); 1944 1945 return r; 1946 } 1947 1948 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result) 1949 { 1950 int r = -EINVAL; 1951 struct dm_pool_metadata *pmd = td->pmd; 1952 1953 down_read(&pmd->root_lock); 1954 if (!pmd->fail_io) { 1955 *result = td->mapped_blocks; 1956 r = 0; 1957 } 1958 up_read(&pmd->root_lock); 1959 1960 return r; 1961 } 1962 1963 static int __highest_block(struct dm_thin_device *td, dm_block_t *result) 1964 { 1965 int r; 1966 __le64 value_le; 1967 dm_block_t thin_root; 1968 struct dm_pool_metadata *pmd = td->pmd; 1969 1970 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le); 1971 if (r) 1972 return r; 1973 1974 thin_root = le64_to_cpu(value_le); 1975 1976 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result); 1977 } 1978 1979 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td, 1980 dm_block_t *result) 1981 { 1982 int r = -EINVAL; 1983 struct dm_pool_metadata *pmd = td->pmd; 1984 1985 down_read(&pmd->root_lock); 1986 if (!pmd->fail_io) 1987 r = __highest_block(td, result); 1988 up_read(&pmd->root_lock); 1989 1990 return r; 1991 } 1992 1993 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count) 1994 { 1995 int r; 1996 dm_block_t old_count; 1997 1998 r = dm_sm_get_nr_blocks(sm, &old_count); 1999 if (r) 2000 return r; 2001 2002 if (new_count == old_count) 2003 return 0; 2004 2005 if (new_count < old_count) { 2006 DMERR("cannot reduce size of space map"); 2007 return -EINVAL; 2008 } 2009 2010 return dm_sm_extend(sm, new_count - old_count); 2011 } 2012 2013 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 2014 { 2015 int r = -EINVAL; 2016 2017 pmd_write_lock(pmd); 2018 if (!pmd->fail_io) 2019 r = __resize_space_map(pmd->data_sm, new_count); 2020 pmd_write_unlock(pmd); 2021 2022 return r; 2023 } 2024 2025 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count) 2026 { 2027 int r = -EINVAL; 2028 2029 pmd_write_lock(pmd); 2030 if (!pmd->fail_io) { 2031 r = __resize_space_map(pmd->metadata_sm, new_count); 2032 if (!r) 2033 __set_metadata_reserve(pmd); 2034 } 2035 pmd_write_unlock(pmd); 2036 2037 return r; 2038 } 2039 2040 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd) 2041 { 2042 pmd_write_lock_in_core(pmd); 2043 dm_bm_set_read_only(pmd->bm); 2044 pmd_write_unlock(pmd); 2045 } 2046 2047 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd) 2048 { 2049 pmd_write_lock_in_core(pmd); 2050 dm_bm_set_read_write(pmd->bm); 2051 pmd_write_unlock(pmd); 2052 } 2053 2054 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd, 2055 dm_block_t threshold, 2056 dm_sm_threshold_fn fn, 2057 void *context) 2058 { 2059 int r; 2060 2061 pmd_write_lock_in_core(pmd); 2062 r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context); 2063 pmd_write_unlock(pmd); 2064 2065 return r; 2066 } 2067 2068 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd, 2069 dm_pool_pre_commit_fn fn, 2070 void *context) 2071 { 2072 pmd_write_lock_in_core(pmd); 2073 pmd->pre_commit_fn = fn; 2074 pmd->pre_commit_context = context; 2075 pmd_write_unlock(pmd); 2076 } 2077 2078 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd) 2079 { 2080 int r = -EINVAL; 2081 struct dm_block *sblock; 2082 struct thin_disk_superblock *disk_super; 2083 2084 pmd_write_lock(pmd); 2085 if (pmd->fail_io) 2086 goto out; 2087 2088 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG; 2089 2090 r = superblock_lock(pmd, &sblock); 2091 if (r) { 2092 DMERR("couldn't lock superblock"); 2093 goto out; 2094 } 2095 2096 disk_super = dm_block_data(sblock); 2097 disk_super->flags = cpu_to_le32(pmd->flags); 2098 2099 dm_bm_unlock(sblock); 2100 out: 2101 pmd_write_unlock(pmd); 2102 return r; 2103 } 2104 2105 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd) 2106 { 2107 bool needs_check; 2108 2109 down_read(&pmd->root_lock); 2110 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG; 2111 up_read(&pmd->root_lock); 2112 2113 return needs_check; 2114 } 2115 2116 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd) 2117 { 2118 down_read(&pmd->root_lock); 2119 if (!pmd->fail_io) 2120 dm_tm_issue_prefetches(pmd->tm); 2121 up_read(&pmd->root_lock); 2122 } 2123