xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision 3ce311af)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81 
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91 
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94 
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99 	__le32 csum;	/* Checksum of superblock except for this field. */
100 	__le32 flags;
101 	__le64 blocknr;	/* This block number, dm_block_t. */
102 
103 	__u8 uuid[16];
104 	__le64 magic;
105 	__le32 version;
106 	__le32 time;
107 
108 	__le64 trans_id;
109 
110 	/*
111 	 * Root held by userspace transactions.
112 	 */
113 	__le64 held_root;
114 
115 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117 
118 	/*
119 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 	 */
121 	__le64 data_mapping_root;
122 
123 	/*
124 	 * Device detail root mapping dev_id -> device_details
125 	 */
126 	__le64 device_details_root;
127 
128 	__le32 data_block_size;		/* In 512-byte sectors. */
129 
130 	__le32 metadata_block_size;	/* In 512-byte sectors. */
131 	__le64 metadata_nr_blocks;
132 
133 	__le32 compat_flags;
134 	__le32 compat_ro_flags;
135 	__le32 incompat_flags;
136 } __packed;
137 
138 struct disk_device_details {
139 	__le64 mapped_blocks;
140 	__le64 transaction_id;		/* When created. */
141 	__le32 creation_time;
142 	__le32 snapshotted_time;
143 } __packed;
144 
145 struct dm_pool_metadata {
146 	struct hlist_node hash;
147 
148 	struct block_device *bdev;
149 	struct dm_block_manager *bm;
150 	struct dm_space_map *metadata_sm;
151 	struct dm_space_map *data_sm;
152 	struct dm_transaction_manager *tm;
153 	struct dm_transaction_manager *nb_tm;
154 
155 	/*
156 	 * Two-level btree.
157 	 * First level holds thin_dev_t.
158 	 * Second level holds mappings.
159 	 */
160 	struct dm_btree_info info;
161 
162 	/*
163 	 * Non-blocking version of the above.
164 	 */
165 	struct dm_btree_info nb_info;
166 
167 	/*
168 	 * Just the top level for deleting whole devices.
169 	 */
170 	struct dm_btree_info tl_info;
171 
172 	/*
173 	 * Just the bottom level for creating new devices.
174 	 */
175 	struct dm_btree_info bl_info;
176 
177 	/*
178 	 * Describes the device details btree.
179 	 */
180 	struct dm_btree_info details_info;
181 
182 	struct rw_semaphore root_lock;
183 	uint32_t time;
184 	dm_block_t root;
185 	dm_block_t details_root;
186 	struct list_head thin_devices;
187 	uint64_t trans_id;
188 	unsigned long flags;
189 	sector_t data_block_size;
190 
191 	/*
192 	 * Pre-commit callback.
193 	 *
194 	 * This allows the thin provisioning target to run a callback before
195 	 * the metadata are committed.
196 	 */
197 	dm_pool_pre_commit_fn pre_commit_fn;
198 	void *pre_commit_context;
199 
200 	/*
201 	 * We reserve a section of the metadata for commit overhead.
202 	 * All reported space does *not* include this.
203 	 */
204 	dm_block_t metadata_reserve;
205 
206 	/*
207 	 * Set if a transaction has to be aborted but the attempt to roll back
208 	 * to the previous (good) transaction failed.  The only pool metadata
209 	 * operation possible in this state is the closing of the device.
210 	 */
211 	bool fail_io:1;
212 
213 	/*
214 	 * Set once a thin-pool has been accessed through one of the interfaces
215 	 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 	 * thin-pool message, metadata snapshots, etc).
217 	 */
218 	bool in_service:1;
219 
220 	/*
221 	 * Reading the space map roots can fail, so we read it into these
222 	 * buffers before the superblock is locked and updated.
223 	 */
224 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227 
228 struct dm_thin_device {
229 	struct list_head list;
230 	struct dm_pool_metadata *pmd;
231 	dm_thin_id id;
232 
233 	int open_count;
234 	bool changed:1;
235 	bool aborted_with_changes:1;
236 	uint64_t mapped_blocks;
237 	uint64_t transaction_id;
238 	uint32_t creation_time;
239 	uint32_t snapshotted_time;
240 };
241 
242 /*----------------------------------------------------------------
243  * superblock validator
244  *--------------------------------------------------------------*/
245 
246 #define SUPERBLOCK_CSUM_XOR 160774
247 
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249 				 struct dm_block *b,
250 				 size_t block_size)
251 {
252 	struct thin_disk_superblock *disk_super = dm_block_data(b);
253 
254 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 						      block_size - sizeof(__le32),
257 						      SUPERBLOCK_CSUM_XOR));
258 }
259 
260 static int sb_check(struct dm_block_validator *v,
261 		    struct dm_block *b,
262 		    size_t block_size)
263 {
264 	struct thin_disk_superblock *disk_super = dm_block_data(b);
265 	__le32 csum_le;
266 
267 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 		DMERR("sb_check failed: blocknr %llu: "
269 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 		      (unsigned long long)dm_block_location(b));
271 		return -ENOTBLK;
272 	}
273 
274 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 		DMERR("sb_check failed: magic %llu: "
276 		      "wanted %llu", le64_to_cpu(disk_super->magic),
277 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 		return -EILSEQ;
279 	}
280 
281 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 					     block_size - sizeof(__le32),
283 					     SUPERBLOCK_CSUM_XOR));
284 	if (csum_le != disk_super->csum) {
285 		DMERR("sb_check failed: csum %u: wanted %u",
286 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 		return -EILSEQ;
288 	}
289 
290 	return 0;
291 }
292 
293 static struct dm_block_validator sb_validator = {
294 	.name = "superblock",
295 	.prepare_for_write = sb_prepare_for_write,
296 	.check = sb_check
297 };
298 
299 /*----------------------------------------------------------------
300  * Methods for the btree value types
301  *--------------------------------------------------------------*/
302 
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305 	return (b << 24) | t;
306 }
307 
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310 	*b = v >> 24;
311 	*t = v & ((1 << 24) - 1);
312 }
313 
314 static void data_block_inc(void *context, const void *value_le)
315 {
316 	struct dm_space_map *sm = context;
317 	__le64 v_le;
318 	uint64_t b;
319 	uint32_t t;
320 
321 	memcpy(&v_le, value_le, sizeof(v_le));
322 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
323 	dm_sm_inc_block(sm, b);
324 }
325 
326 static void data_block_dec(void *context, const void *value_le)
327 {
328 	struct dm_space_map *sm = context;
329 	__le64 v_le;
330 	uint64_t b;
331 	uint32_t t;
332 
333 	memcpy(&v_le, value_le, sizeof(v_le));
334 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
335 	dm_sm_dec_block(sm, b);
336 }
337 
338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
339 {
340 	__le64 v1_le, v2_le;
341 	uint64_t b1, b2;
342 	uint32_t t;
343 
344 	memcpy(&v1_le, value1_le, sizeof(v1_le));
345 	memcpy(&v2_le, value2_le, sizeof(v2_le));
346 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
347 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
348 
349 	return b1 == b2;
350 }
351 
352 static void subtree_inc(void *context, const void *value)
353 {
354 	struct dm_btree_info *info = context;
355 	__le64 root_le;
356 	uint64_t root;
357 
358 	memcpy(&root_le, value, sizeof(root_le));
359 	root = le64_to_cpu(root_le);
360 	dm_tm_inc(info->tm, root);
361 }
362 
363 static void subtree_dec(void *context, const void *value)
364 {
365 	struct dm_btree_info *info = context;
366 	__le64 root_le;
367 	uint64_t root;
368 
369 	memcpy(&root_le, value, sizeof(root_le));
370 	root = le64_to_cpu(root_le);
371 	if (dm_btree_del(info, root))
372 		DMERR("btree delete failed");
373 }
374 
375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
376 {
377 	__le64 v1_le, v2_le;
378 	memcpy(&v1_le, value1_le, sizeof(v1_le));
379 	memcpy(&v2_le, value2_le, sizeof(v2_le));
380 
381 	return v1_le == v2_le;
382 }
383 
384 /*----------------------------------------------------------------*/
385 
386 /*
387  * Variant that is used for in-core only changes or code that
388  * shouldn't put the pool in service on its own (e.g. commit).
389  */
390 static inline void __pmd_write_lock(struct dm_pool_metadata *pmd)
391 	__acquires(pmd->root_lock)
392 {
393 	down_write(&pmd->root_lock);
394 }
395 #define pmd_write_lock_in_core(pmd) __pmd_write_lock((pmd))
396 
397 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
398 {
399 	__pmd_write_lock(pmd);
400 	if (unlikely(!pmd->in_service))
401 		pmd->in_service = true;
402 }
403 
404 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
405 	__releases(pmd->root_lock)
406 {
407 	up_write(&pmd->root_lock);
408 }
409 
410 /*----------------------------------------------------------------*/
411 
412 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
413 				struct dm_block **sblock)
414 {
415 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
416 				     &sb_validator, sblock);
417 }
418 
419 static int superblock_lock(struct dm_pool_metadata *pmd,
420 			   struct dm_block **sblock)
421 {
422 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
423 				&sb_validator, sblock);
424 }
425 
426 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
427 {
428 	int r;
429 	unsigned i;
430 	struct dm_block *b;
431 	__le64 *data_le, zero = cpu_to_le64(0);
432 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
433 
434 	/*
435 	 * We can't use a validator here - it may be all zeroes.
436 	 */
437 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
438 	if (r)
439 		return r;
440 
441 	data_le = dm_block_data(b);
442 	*result = 1;
443 	for (i = 0; i < block_size; i++) {
444 		if (data_le[i] != zero) {
445 			*result = 0;
446 			break;
447 		}
448 	}
449 
450 	dm_bm_unlock(b);
451 
452 	return 0;
453 }
454 
455 static void __setup_btree_details(struct dm_pool_metadata *pmd)
456 {
457 	pmd->info.tm = pmd->tm;
458 	pmd->info.levels = 2;
459 	pmd->info.value_type.context = pmd->data_sm;
460 	pmd->info.value_type.size = sizeof(__le64);
461 	pmd->info.value_type.inc = data_block_inc;
462 	pmd->info.value_type.dec = data_block_dec;
463 	pmd->info.value_type.equal = data_block_equal;
464 
465 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
466 	pmd->nb_info.tm = pmd->nb_tm;
467 
468 	pmd->tl_info.tm = pmd->tm;
469 	pmd->tl_info.levels = 1;
470 	pmd->tl_info.value_type.context = &pmd->bl_info;
471 	pmd->tl_info.value_type.size = sizeof(__le64);
472 	pmd->tl_info.value_type.inc = subtree_inc;
473 	pmd->tl_info.value_type.dec = subtree_dec;
474 	pmd->tl_info.value_type.equal = subtree_equal;
475 
476 	pmd->bl_info.tm = pmd->tm;
477 	pmd->bl_info.levels = 1;
478 	pmd->bl_info.value_type.context = pmd->data_sm;
479 	pmd->bl_info.value_type.size = sizeof(__le64);
480 	pmd->bl_info.value_type.inc = data_block_inc;
481 	pmd->bl_info.value_type.dec = data_block_dec;
482 	pmd->bl_info.value_type.equal = data_block_equal;
483 
484 	pmd->details_info.tm = pmd->tm;
485 	pmd->details_info.levels = 1;
486 	pmd->details_info.value_type.context = NULL;
487 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
488 	pmd->details_info.value_type.inc = NULL;
489 	pmd->details_info.value_type.dec = NULL;
490 	pmd->details_info.value_type.equal = NULL;
491 }
492 
493 static int save_sm_roots(struct dm_pool_metadata *pmd)
494 {
495 	int r;
496 	size_t len;
497 
498 	r = dm_sm_root_size(pmd->metadata_sm, &len);
499 	if (r < 0)
500 		return r;
501 
502 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
503 	if (r < 0)
504 		return r;
505 
506 	r = dm_sm_root_size(pmd->data_sm, &len);
507 	if (r < 0)
508 		return r;
509 
510 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
511 }
512 
513 static void copy_sm_roots(struct dm_pool_metadata *pmd,
514 			  struct thin_disk_superblock *disk)
515 {
516 	memcpy(&disk->metadata_space_map_root,
517 	       &pmd->metadata_space_map_root,
518 	       sizeof(pmd->metadata_space_map_root));
519 
520 	memcpy(&disk->data_space_map_root,
521 	       &pmd->data_space_map_root,
522 	       sizeof(pmd->data_space_map_root));
523 }
524 
525 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
526 {
527 	int r;
528 	struct dm_block *sblock;
529 	struct thin_disk_superblock *disk_super;
530 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
531 
532 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
533 		bdev_size = THIN_METADATA_MAX_SECTORS;
534 
535 	r = dm_sm_commit(pmd->data_sm);
536 	if (r < 0)
537 		return r;
538 
539 	r = dm_tm_pre_commit(pmd->tm);
540 	if (r < 0)
541 		return r;
542 
543 	r = save_sm_roots(pmd);
544 	if (r < 0)
545 		return r;
546 
547 	r = superblock_lock_zero(pmd, &sblock);
548 	if (r)
549 		return r;
550 
551 	disk_super = dm_block_data(sblock);
552 	disk_super->flags = 0;
553 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
554 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
555 	disk_super->version = cpu_to_le32(THIN_VERSION);
556 	disk_super->time = 0;
557 	disk_super->trans_id = 0;
558 	disk_super->held_root = 0;
559 
560 	copy_sm_roots(pmd, disk_super);
561 
562 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
563 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
564 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
565 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
566 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
567 
568 	return dm_tm_commit(pmd->tm, sblock);
569 }
570 
571 static int __format_metadata(struct dm_pool_metadata *pmd)
572 {
573 	int r;
574 
575 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
576 				 &pmd->tm, &pmd->metadata_sm);
577 	if (r < 0) {
578 		DMERR("tm_create_with_sm failed");
579 		return r;
580 	}
581 
582 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
583 	if (IS_ERR(pmd->data_sm)) {
584 		DMERR("sm_disk_create failed");
585 		r = PTR_ERR(pmd->data_sm);
586 		goto bad_cleanup_tm;
587 	}
588 
589 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
590 	if (!pmd->nb_tm) {
591 		DMERR("could not create non-blocking clone tm");
592 		r = -ENOMEM;
593 		goto bad_cleanup_data_sm;
594 	}
595 
596 	__setup_btree_details(pmd);
597 
598 	r = dm_btree_empty(&pmd->info, &pmd->root);
599 	if (r < 0)
600 		goto bad_cleanup_nb_tm;
601 
602 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
603 	if (r < 0) {
604 		DMERR("couldn't create devices root");
605 		goto bad_cleanup_nb_tm;
606 	}
607 
608 	r = __write_initial_superblock(pmd);
609 	if (r)
610 		goto bad_cleanup_nb_tm;
611 
612 	return 0;
613 
614 bad_cleanup_nb_tm:
615 	dm_tm_destroy(pmd->nb_tm);
616 bad_cleanup_data_sm:
617 	dm_sm_destroy(pmd->data_sm);
618 bad_cleanup_tm:
619 	dm_tm_destroy(pmd->tm);
620 	dm_sm_destroy(pmd->metadata_sm);
621 
622 	return r;
623 }
624 
625 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
626 				     struct dm_pool_metadata *pmd)
627 {
628 	uint32_t features;
629 
630 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
631 	if (features) {
632 		DMERR("could not access metadata due to unsupported optional features (%lx).",
633 		      (unsigned long)features);
634 		return -EINVAL;
635 	}
636 
637 	/*
638 	 * Check for read-only metadata to skip the following RDWR checks.
639 	 */
640 	if (get_disk_ro(pmd->bdev->bd_disk))
641 		return 0;
642 
643 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
644 	if (features) {
645 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
646 		      (unsigned long)features);
647 		return -EINVAL;
648 	}
649 
650 	return 0;
651 }
652 
653 static int __open_metadata(struct dm_pool_metadata *pmd)
654 {
655 	int r;
656 	struct dm_block *sblock;
657 	struct thin_disk_superblock *disk_super;
658 
659 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
660 			    &sb_validator, &sblock);
661 	if (r < 0) {
662 		DMERR("couldn't read superblock");
663 		return r;
664 	}
665 
666 	disk_super = dm_block_data(sblock);
667 
668 	/* Verify the data block size hasn't changed */
669 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
670 		DMERR("changing the data block size (from %u to %llu) is not supported",
671 		      le32_to_cpu(disk_super->data_block_size),
672 		      (unsigned long long)pmd->data_block_size);
673 		r = -EINVAL;
674 		goto bad_unlock_sblock;
675 	}
676 
677 	r = __check_incompat_features(disk_super, pmd);
678 	if (r < 0)
679 		goto bad_unlock_sblock;
680 
681 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
682 			       disk_super->metadata_space_map_root,
683 			       sizeof(disk_super->metadata_space_map_root),
684 			       &pmd->tm, &pmd->metadata_sm);
685 	if (r < 0) {
686 		DMERR("tm_open_with_sm failed");
687 		goto bad_unlock_sblock;
688 	}
689 
690 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
691 				       sizeof(disk_super->data_space_map_root));
692 	if (IS_ERR(pmd->data_sm)) {
693 		DMERR("sm_disk_open failed");
694 		r = PTR_ERR(pmd->data_sm);
695 		goto bad_cleanup_tm;
696 	}
697 
698 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
699 	if (!pmd->nb_tm) {
700 		DMERR("could not create non-blocking clone tm");
701 		r = -ENOMEM;
702 		goto bad_cleanup_data_sm;
703 	}
704 
705 	__setup_btree_details(pmd);
706 	dm_bm_unlock(sblock);
707 
708 	return 0;
709 
710 bad_cleanup_data_sm:
711 	dm_sm_destroy(pmd->data_sm);
712 bad_cleanup_tm:
713 	dm_tm_destroy(pmd->tm);
714 	dm_sm_destroy(pmd->metadata_sm);
715 bad_unlock_sblock:
716 	dm_bm_unlock(sblock);
717 
718 	return r;
719 }
720 
721 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
722 {
723 	int r, unformatted;
724 
725 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
726 	if (r)
727 		return r;
728 
729 	if (unformatted)
730 		return format_device ? __format_metadata(pmd) : -EPERM;
731 
732 	return __open_metadata(pmd);
733 }
734 
735 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
736 {
737 	int r;
738 
739 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
740 					  THIN_MAX_CONCURRENT_LOCKS);
741 	if (IS_ERR(pmd->bm)) {
742 		DMERR("could not create block manager");
743 		return PTR_ERR(pmd->bm);
744 	}
745 
746 	r = __open_or_format_metadata(pmd, format_device);
747 	if (r)
748 		dm_block_manager_destroy(pmd->bm);
749 
750 	return r;
751 }
752 
753 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
754 {
755 	dm_sm_destroy(pmd->data_sm);
756 	dm_sm_destroy(pmd->metadata_sm);
757 	dm_tm_destroy(pmd->nb_tm);
758 	dm_tm_destroy(pmd->tm);
759 	dm_block_manager_destroy(pmd->bm);
760 }
761 
762 static int __begin_transaction(struct dm_pool_metadata *pmd)
763 {
764 	int r;
765 	struct thin_disk_superblock *disk_super;
766 	struct dm_block *sblock;
767 
768 	/*
769 	 * We re-read the superblock every time.  Shouldn't need to do this
770 	 * really.
771 	 */
772 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
773 			    &sb_validator, &sblock);
774 	if (r)
775 		return r;
776 
777 	disk_super = dm_block_data(sblock);
778 	pmd->time = le32_to_cpu(disk_super->time);
779 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
780 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
781 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
782 	pmd->flags = le32_to_cpu(disk_super->flags);
783 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
784 
785 	dm_bm_unlock(sblock);
786 	return 0;
787 }
788 
789 static int __write_changed_details(struct dm_pool_metadata *pmd)
790 {
791 	int r;
792 	struct dm_thin_device *td, *tmp;
793 	struct disk_device_details details;
794 	uint64_t key;
795 
796 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
797 		if (!td->changed)
798 			continue;
799 
800 		key = td->id;
801 
802 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
803 		details.transaction_id = cpu_to_le64(td->transaction_id);
804 		details.creation_time = cpu_to_le32(td->creation_time);
805 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
806 		__dm_bless_for_disk(&details);
807 
808 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
809 				    &key, &details, &pmd->details_root);
810 		if (r)
811 			return r;
812 
813 		if (td->open_count)
814 			td->changed = 0;
815 		else {
816 			list_del(&td->list);
817 			kfree(td);
818 		}
819 	}
820 
821 	return 0;
822 }
823 
824 static int __commit_transaction(struct dm_pool_metadata *pmd)
825 {
826 	int r;
827 	struct thin_disk_superblock *disk_super;
828 	struct dm_block *sblock;
829 
830 	/*
831 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
832 	 */
833 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
834 
835 	if (unlikely(!pmd->in_service))
836 		return 0;
837 
838 	if (pmd->pre_commit_fn) {
839 		r = pmd->pre_commit_fn(pmd->pre_commit_context);
840 		if (r < 0) {
841 			DMERR("pre-commit callback failed");
842 			return r;
843 		}
844 	}
845 
846 	r = __write_changed_details(pmd);
847 	if (r < 0)
848 		return r;
849 
850 	r = dm_sm_commit(pmd->data_sm);
851 	if (r < 0)
852 		return r;
853 
854 	r = dm_tm_pre_commit(pmd->tm);
855 	if (r < 0)
856 		return r;
857 
858 	r = save_sm_roots(pmd);
859 	if (r < 0)
860 		return r;
861 
862 	r = superblock_lock(pmd, &sblock);
863 	if (r)
864 		return r;
865 
866 	disk_super = dm_block_data(sblock);
867 	disk_super->time = cpu_to_le32(pmd->time);
868 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
869 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
870 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
871 	disk_super->flags = cpu_to_le32(pmd->flags);
872 
873 	copy_sm_roots(pmd, disk_super);
874 
875 	return dm_tm_commit(pmd->tm, sblock);
876 }
877 
878 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
879 {
880 	int r;
881 	dm_block_t total;
882 	dm_block_t max_blocks = 4096; /* 16M */
883 
884 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
885 	if (r) {
886 		DMERR("could not get size of metadata device");
887 		pmd->metadata_reserve = max_blocks;
888 	} else
889 		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
890 }
891 
892 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
893 					       sector_t data_block_size,
894 					       bool format_device)
895 {
896 	int r;
897 	struct dm_pool_metadata *pmd;
898 
899 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
900 	if (!pmd) {
901 		DMERR("could not allocate metadata struct");
902 		return ERR_PTR(-ENOMEM);
903 	}
904 
905 	init_rwsem(&pmd->root_lock);
906 	pmd->time = 0;
907 	INIT_LIST_HEAD(&pmd->thin_devices);
908 	pmd->fail_io = false;
909 	pmd->in_service = false;
910 	pmd->bdev = bdev;
911 	pmd->data_block_size = data_block_size;
912 	pmd->pre_commit_fn = NULL;
913 	pmd->pre_commit_context = NULL;
914 
915 	r = __create_persistent_data_objects(pmd, format_device);
916 	if (r) {
917 		kfree(pmd);
918 		return ERR_PTR(r);
919 	}
920 
921 	r = __begin_transaction(pmd);
922 	if (r < 0) {
923 		if (dm_pool_metadata_close(pmd) < 0)
924 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
925 		return ERR_PTR(r);
926 	}
927 
928 	__set_metadata_reserve(pmd);
929 
930 	return pmd;
931 }
932 
933 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
934 {
935 	int r;
936 	unsigned open_devices = 0;
937 	struct dm_thin_device *td, *tmp;
938 
939 	down_read(&pmd->root_lock);
940 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
941 		if (td->open_count)
942 			open_devices++;
943 		else {
944 			list_del(&td->list);
945 			kfree(td);
946 		}
947 	}
948 	up_read(&pmd->root_lock);
949 
950 	if (open_devices) {
951 		DMERR("attempt to close pmd when %u device(s) are still open",
952 		       open_devices);
953 		return -EBUSY;
954 	}
955 
956 	if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
957 		r = __commit_transaction(pmd);
958 		if (r < 0)
959 			DMWARN("%s: __commit_transaction() failed, error = %d",
960 			       __func__, r);
961 	}
962 	if (!pmd->fail_io)
963 		__destroy_persistent_data_objects(pmd);
964 
965 	kfree(pmd);
966 	return 0;
967 }
968 
969 /*
970  * __open_device: Returns @td corresponding to device with id @dev,
971  * creating it if @create is set and incrementing @td->open_count.
972  * On failure, @td is undefined.
973  */
974 static int __open_device(struct dm_pool_metadata *pmd,
975 			 dm_thin_id dev, int create,
976 			 struct dm_thin_device **td)
977 {
978 	int r, changed = 0;
979 	struct dm_thin_device *td2;
980 	uint64_t key = dev;
981 	struct disk_device_details details_le;
982 
983 	/*
984 	 * If the device is already open, return it.
985 	 */
986 	list_for_each_entry(td2, &pmd->thin_devices, list)
987 		if (td2->id == dev) {
988 			/*
989 			 * May not create an already-open device.
990 			 */
991 			if (create)
992 				return -EEXIST;
993 
994 			td2->open_count++;
995 			*td = td2;
996 			return 0;
997 		}
998 
999 	/*
1000 	 * Check the device exists.
1001 	 */
1002 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1003 			    &key, &details_le);
1004 	if (r) {
1005 		if (r != -ENODATA || !create)
1006 			return r;
1007 
1008 		/*
1009 		 * Create new device.
1010 		 */
1011 		changed = 1;
1012 		details_le.mapped_blocks = 0;
1013 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1014 		details_le.creation_time = cpu_to_le32(pmd->time);
1015 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1016 	}
1017 
1018 	*td = kmalloc(sizeof(**td), GFP_NOIO);
1019 	if (!*td)
1020 		return -ENOMEM;
1021 
1022 	(*td)->pmd = pmd;
1023 	(*td)->id = dev;
1024 	(*td)->open_count = 1;
1025 	(*td)->changed = changed;
1026 	(*td)->aborted_with_changes = false;
1027 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1028 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1029 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1030 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1031 
1032 	list_add(&(*td)->list, &pmd->thin_devices);
1033 
1034 	return 0;
1035 }
1036 
1037 static void __close_device(struct dm_thin_device *td)
1038 {
1039 	--td->open_count;
1040 }
1041 
1042 static int __create_thin(struct dm_pool_metadata *pmd,
1043 			 dm_thin_id dev)
1044 {
1045 	int r;
1046 	dm_block_t dev_root;
1047 	uint64_t key = dev;
1048 	struct disk_device_details details_le;
1049 	struct dm_thin_device *td;
1050 	__le64 value;
1051 
1052 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1053 			    &key, &details_le);
1054 	if (!r)
1055 		return -EEXIST;
1056 
1057 	/*
1058 	 * Create an empty btree for the mappings.
1059 	 */
1060 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1061 	if (r)
1062 		return r;
1063 
1064 	/*
1065 	 * Insert it into the main mapping tree.
1066 	 */
1067 	value = cpu_to_le64(dev_root);
1068 	__dm_bless_for_disk(&value);
1069 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1070 	if (r) {
1071 		dm_btree_del(&pmd->bl_info, dev_root);
1072 		return r;
1073 	}
1074 
1075 	r = __open_device(pmd, dev, 1, &td);
1076 	if (r) {
1077 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1078 		dm_btree_del(&pmd->bl_info, dev_root);
1079 		return r;
1080 	}
1081 	__close_device(td);
1082 
1083 	return r;
1084 }
1085 
1086 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1087 {
1088 	int r = -EINVAL;
1089 
1090 	pmd_write_lock(pmd);
1091 	if (!pmd->fail_io)
1092 		r = __create_thin(pmd, dev);
1093 	pmd_write_unlock(pmd);
1094 
1095 	return r;
1096 }
1097 
1098 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1099 				  struct dm_thin_device *snap,
1100 				  dm_thin_id origin, uint32_t time)
1101 {
1102 	int r;
1103 	struct dm_thin_device *td;
1104 
1105 	r = __open_device(pmd, origin, 0, &td);
1106 	if (r)
1107 		return r;
1108 
1109 	td->changed = 1;
1110 	td->snapshotted_time = time;
1111 
1112 	snap->mapped_blocks = td->mapped_blocks;
1113 	snap->snapshotted_time = time;
1114 	__close_device(td);
1115 
1116 	return 0;
1117 }
1118 
1119 static int __create_snap(struct dm_pool_metadata *pmd,
1120 			 dm_thin_id dev, dm_thin_id origin)
1121 {
1122 	int r;
1123 	dm_block_t origin_root;
1124 	uint64_t key = origin, dev_key = dev;
1125 	struct dm_thin_device *td;
1126 	struct disk_device_details details_le;
1127 	__le64 value;
1128 
1129 	/* check this device is unused */
1130 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1131 			    &dev_key, &details_le);
1132 	if (!r)
1133 		return -EEXIST;
1134 
1135 	/* find the mapping tree for the origin */
1136 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1137 	if (r)
1138 		return r;
1139 	origin_root = le64_to_cpu(value);
1140 
1141 	/* clone the origin, an inc will do */
1142 	dm_tm_inc(pmd->tm, origin_root);
1143 
1144 	/* insert into the main mapping tree */
1145 	value = cpu_to_le64(origin_root);
1146 	__dm_bless_for_disk(&value);
1147 	key = dev;
1148 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1149 	if (r) {
1150 		dm_tm_dec(pmd->tm, origin_root);
1151 		return r;
1152 	}
1153 
1154 	pmd->time++;
1155 
1156 	r = __open_device(pmd, dev, 1, &td);
1157 	if (r)
1158 		goto bad;
1159 
1160 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1161 	__close_device(td);
1162 
1163 	if (r)
1164 		goto bad;
1165 
1166 	return 0;
1167 
1168 bad:
1169 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1170 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1171 			&key, &pmd->details_root);
1172 	return r;
1173 }
1174 
1175 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1176 				 dm_thin_id dev,
1177 				 dm_thin_id origin)
1178 {
1179 	int r = -EINVAL;
1180 
1181 	pmd_write_lock(pmd);
1182 	if (!pmd->fail_io)
1183 		r = __create_snap(pmd, dev, origin);
1184 	pmd_write_unlock(pmd);
1185 
1186 	return r;
1187 }
1188 
1189 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1190 {
1191 	int r;
1192 	uint64_t key = dev;
1193 	struct dm_thin_device *td;
1194 
1195 	/* TODO: failure should mark the transaction invalid */
1196 	r = __open_device(pmd, dev, 0, &td);
1197 	if (r)
1198 		return r;
1199 
1200 	if (td->open_count > 1) {
1201 		__close_device(td);
1202 		return -EBUSY;
1203 	}
1204 
1205 	list_del(&td->list);
1206 	kfree(td);
1207 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1208 			    &key, &pmd->details_root);
1209 	if (r)
1210 		return r;
1211 
1212 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1213 	if (r)
1214 		return r;
1215 
1216 	return 0;
1217 }
1218 
1219 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1220 			       dm_thin_id dev)
1221 {
1222 	int r = -EINVAL;
1223 
1224 	pmd_write_lock(pmd);
1225 	if (!pmd->fail_io)
1226 		r = __delete_device(pmd, dev);
1227 	pmd_write_unlock(pmd);
1228 
1229 	return r;
1230 }
1231 
1232 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1233 					uint64_t current_id,
1234 					uint64_t new_id)
1235 {
1236 	int r = -EINVAL;
1237 
1238 	pmd_write_lock(pmd);
1239 
1240 	if (pmd->fail_io)
1241 		goto out;
1242 
1243 	if (pmd->trans_id != current_id) {
1244 		DMERR("mismatched transaction id");
1245 		goto out;
1246 	}
1247 
1248 	pmd->trans_id = new_id;
1249 	r = 0;
1250 
1251 out:
1252 	pmd_write_unlock(pmd);
1253 
1254 	return r;
1255 }
1256 
1257 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1258 					uint64_t *result)
1259 {
1260 	int r = -EINVAL;
1261 
1262 	down_read(&pmd->root_lock);
1263 	if (!pmd->fail_io) {
1264 		*result = pmd->trans_id;
1265 		r = 0;
1266 	}
1267 	up_read(&pmd->root_lock);
1268 
1269 	return r;
1270 }
1271 
1272 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1273 {
1274 	int r, inc;
1275 	struct thin_disk_superblock *disk_super;
1276 	struct dm_block *copy, *sblock;
1277 	dm_block_t held_root;
1278 
1279 	/*
1280 	 * We commit to ensure the btree roots which we increment in a
1281 	 * moment are up to date.
1282 	 */
1283 	r = __commit_transaction(pmd);
1284 	if (r < 0) {
1285 		DMWARN("%s: __commit_transaction() failed, error = %d",
1286 		       __func__, r);
1287 		return r;
1288 	}
1289 
1290 	/*
1291 	 * Copy the superblock.
1292 	 */
1293 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1294 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1295 			       &sb_validator, &copy, &inc);
1296 	if (r)
1297 		return r;
1298 
1299 	BUG_ON(!inc);
1300 
1301 	held_root = dm_block_location(copy);
1302 	disk_super = dm_block_data(copy);
1303 
1304 	if (le64_to_cpu(disk_super->held_root)) {
1305 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1306 
1307 		dm_tm_dec(pmd->tm, held_root);
1308 		dm_tm_unlock(pmd->tm, copy);
1309 		return -EBUSY;
1310 	}
1311 
1312 	/*
1313 	 * Wipe the spacemap since we're not publishing this.
1314 	 */
1315 	memset(&disk_super->data_space_map_root, 0,
1316 	       sizeof(disk_super->data_space_map_root));
1317 	memset(&disk_super->metadata_space_map_root, 0,
1318 	       sizeof(disk_super->metadata_space_map_root));
1319 
1320 	/*
1321 	 * Increment the data structures that need to be preserved.
1322 	 */
1323 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1324 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1325 	dm_tm_unlock(pmd->tm, copy);
1326 
1327 	/*
1328 	 * Write the held root into the superblock.
1329 	 */
1330 	r = superblock_lock(pmd, &sblock);
1331 	if (r) {
1332 		dm_tm_dec(pmd->tm, held_root);
1333 		return r;
1334 	}
1335 
1336 	disk_super = dm_block_data(sblock);
1337 	disk_super->held_root = cpu_to_le64(held_root);
1338 	dm_bm_unlock(sblock);
1339 	return 0;
1340 }
1341 
1342 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1343 {
1344 	int r = -EINVAL;
1345 
1346 	pmd_write_lock(pmd);
1347 	if (!pmd->fail_io)
1348 		r = __reserve_metadata_snap(pmd);
1349 	pmd_write_unlock(pmd);
1350 
1351 	return r;
1352 }
1353 
1354 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1355 {
1356 	int r;
1357 	struct thin_disk_superblock *disk_super;
1358 	struct dm_block *sblock, *copy;
1359 	dm_block_t held_root;
1360 
1361 	r = superblock_lock(pmd, &sblock);
1362 	if (r)
1363 		return r;
1364 
1365 	disk_super = dm_block_data(sblock);
1366 	held_root = le64_to_cpu(disk_super->held_root);
1367 	disk_super->held_root = cpu_to_le64(0);
1368 
1369 	dm_bm_unlock(sblock);
1370 
1371 	if (!held_root) {
1372 		DMWARN("No pool metadata snapshot found: nothing to release.");
1373 		return -EINVAL;
1374 	}
1375 
1376 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1377 	if (r)
1378 		return r;
1379 
1380 	disk_super = dm_block_data(copy);
1381 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1382 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1383 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1384 
1385 	dm_tm_unlock(pmd->tm, copy);
1386 
1387 	return 0;
1388 }
1389 
1390 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1391 {
1392 	int r = -EINVAL;
1393 
1394 	pmd_write_lock(pmd);
1395 	if (!pmd->fail_io)
1396 		r = __release_metadata_snap(pmd);
1397 	pmd_write_unlock(pmd);
1398 
1399 	return r;
1400 }
1401 
1402 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1403 			       dm_block_t *result)
1404 {
1405 	int r;
1406 	struct thin_disk_superblock *disk_super;
1407 	struct dm_block *sblock;
1408 
1409 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1410 			    &sb_validator, &sblock);
1411 	if (r)
1412 		return r;
1413 
1414 	disk_super = dm_block_data(sblock);
1415 	*result = le64_to_cpu(disk_super->held_root);
1416 
1417 	dm_bm_unlock(sblock);
1418 
1419 	return 0;
1420 }
1421 
1422 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1423 			      dm_block_t *result)
1424 {
1425 	int r = -EINVAL;
1426 
1427 	down_read(&pmd->root_lock);
1428 	if (!pmd->fail_io)
1429 		r = __get_metadata_snap(pmd, result);
1430 	up_read(&pmd->root_lock);
1431 
1432 	return r;
1433 }
1434 
1435 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1436 			     struct dm_thin_device **td)
1437 {
1438 	int r = -EINVAL;
1439 
1440 	pmd_write_lock_in_core(pmd);
1441 	if (!pmd->fail_io)
1442 		r = __open_device(pmd, dev, 0, td);
1443 	pmd_write_unlock(pmd);
1444 
1445 	return r;
1446 }
1447 
1448 int dm_pool_close_thin_device(struct dm_thin_device *td)
1449 {
1450 	pmd_write_lock_in_core(td->pmd);
1451 	__close_device(td);
1452 	pmd_write_unlock(td->pmd);
1453 
1454 	return 0;
1455 }
1456 
1457 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1458 {
1459 	return td->id;
1460 }
1461 
1462 /*
1463  * Check whether @time (of block creation) is older than @td's last snapshot.
1464  * If so then the associated block is shared with the last snapshot device.
1465  * Any block on a device created *after* the device last got snapshotted is
1466  * necessarily not shared.
1467  */
1468 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1469 {
1470 	return td->snapshotted_time > time;
1471 }
1472 
1473 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1474 				 struct dm_thin_lookup_result *result)
1475 {
1476 	uint64_t block_time = 0;
1477 	dm_block_t exception_block;
1478 	uint32_t exception_time;
1479 
1480 	block_time = le64_to_cpu(value);
1481 	unpack_block_time(block_time, &exception_block, &exception_time);
1482 	result->block = exception_block;
1483 	result->shared = __snapshotted_since(td, exception_time);
1484 }
1485 
1486 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1487 			int can_issue_io, struct dm_thin_lookup_result *result)
1488 {
1489 	int r;
1490 	__le64 value;
1491 	struct dm_pool_metadata *pmd = td->pmd;
1492 	dm_block_t keys[2] = { td->id, block };
1493 	struct dm_btree_info *info;
1494 
1495 	if (can_issue_io) {
1496 		info = &pmd->info;
1497 	} else
1498 		info = &pmd->nb_info;
1499 
1500 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1501 	if (!r)
1502 		unpack_lookup_result(td, value, result);
1503 
1504 	return r;
1505 }
1506 
1507 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1508 		       int can_issue_io, struct dm_thin_lookup_result *result)
1509 {
1510 	int r;
1511 	struct dm_pool_metadata *pmd = td->pmd;
1512 
1513 	down_read(&pmd->root_lock);
1514 	if (pmd->fail_io) {
1515 		up_read(&pmd->root_lock);
1516 		return -EINVAL;
1517 	}
1518 
1519 	r = __find_block(td, block, can_issue_io, result);
1520 
1521 	up_read(&pmd->root_lock);
1522 	return r;
1523 }
1524 
1525 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1526 					  dm_block_t *vblock,
1527 					  struct dm_thin_lookup_result *result)
1528 {
1529 	int r;
1530 	__le64 value;
1531 	struct dm_pool_metadata *pmd = td->pmd;
1532 	dm_block_t keys[2] = { td->id, block };
1533 
1534 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1535 	if (!r)
1536 		unpack_lookup_result(td, value, result);
1537 
1538 	return r;
1539 }
1540 
1541 static int __find_mapped_range(struct dm_thin_device *td,
1542 			       dm_block_t begin, dm_block_t end,
1543 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1544 			       dm_block_t *pool_begin, bool *maybe_shared)
1545 {
1546 	int r;
1547 	dm_block_t pool_end;
1548 	struct dm_thin_lookup_result lookup;
1549 
1550 	if (end < begin)
1551 		return -ENODATA;
1552 
1553 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1554 	if (r)
1555 		return r;
1556 
1557 	if (begin >= end)
1558 		return -ENODATA;
1559 
1560 	*thin_begin = begin;
1561 	*pool_begin = lookup.block;
1562 	*maybe_shared = lookup.shared;
1563 
1564 	begin++;
1565 	pool_end = *pool_begin + 1;
1566 	while (begin != end) {
1567 		r = __find_block(td, begin, true, &lookup);
1568 		if (r) {
1569 			if (r == -ENODATA)
1570 				break;
1571 			else
1572 				return r;
1573 		}
1574 
1575 		if ((lookup.block != pool_end) ||
1576 		    (lookup.shared != *maybe_shared))
1577 			break;
1578 
1579 		pool_end++;
1580 		begin++;
1581 	}
1582 
1583 	*thin_end = begin;
1584 	return 0;
1585 }
1586 
1587 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1588 			      dm_block_t begin, dm_block_t end,
1589 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1590 			      dm_block_t *pool_begin, bool *maybe_shared)
1591 {
1592 	int r = -EINVAL;
1593 	struct dm_pool_metadata *pmd = td->pmd;
1594 
1595 	down_read(&pmd->root_lock);
1596 	if (!pmd->fail_io) {
1597 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1598 					pool_begin, maybe_shared);
1599 	}
1600 	up_read(&pmd->root_lock);
1601 
1602 	return r;
1603 }
1604 
1605 static int __insert(struct dm_thin_device *td, dm_block_t block,
1606 		    dm_block_t data_block)
1607 {
1608 	int r, inserted;
1609 	__le64 value;
1610 	struct dm_pool_metadata *pmd = td->pmd;
1611 	dm_block_t keys[2] = { td->id, block };
1612 
1613 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1614 	__dm_bless_for_disk(&value);
1615 
1616 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1617 				   &pmd->root, &inserted);
1618 	if (r)
1619 		return r;
1620 
1621 	td->changed = 1;
1622 	if (inserted)
1623 		td->mapped_blocks++;
1624 
1625 	return 0;
1626 }
1627 
1628 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1629 			 dm_block_t data_block)
1630 {
1631 	int r = -EINVAL;
1632 
1633 	pmd_write_lock(td->pmd);
1634 	if (!td->pmd->fail_io)
1635 		r = __insert(td, block, data_block);
1636 	pmd_write_unlock(td->pmd);
1637 
1638 	return r;
1639 }
1640 
1641 static int __remove(struct dm_thin_device *td, dm_block_t block)
1642 {
1643 	int r;
1644 	struct dm_pool_metadata *pmd = td->pmd;
1645 	dm_block_t keys[2] = { td->id, block };
1646 
1647 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1648 	if (r)
1649 		return r;
1650 
1651 	td->mapped_blocks--;
1652 	td->changed = 1;
1653 
1654 	return 0;
1655 }
1656 
1657 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1658 {
1659 	int r;
1660 	unsigned count, total_count = 0;
1661 	struct dm_pool_metadata *pmd = td->pmd;
1662 	dm_block_t keys[1] = { td->id };
1663 	__le64 value;
1664 	dm_block_t mapping_root;
1665 
1666 	/*
1667 	 * Find the mapping tree
1668 	 */
1669 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1670 	if (r)
1671 		return r;
1672 
1673 	/*
1674 	 * Remove from the mapping tree, taking care to inc the
1675 	 * ref count so it doesn't get deleted.
1676 	 */
1677 	mapping_root = le64_to_cpu(value);
1678 	dm_tm_inc(pmd->tm, mapping_root);
1679 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1680 	if (r)
1681 		return r;
1682 
1683 	/*
1684 	 * Remove leaves stops at the first unmapped entry, so we have to
1685 	 * loop round finding mapped ranges.
1686 	 */
1687 	while (begin < end) {
1688 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1689 		if (r == -ENODATA)
1690 			break;
1691 
1692 		if (r)
1693 			return r;
1694 
1695 		if (begin >= end)
1696 			break;
1697 
1698 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1699 		if (r)
1700 			return r;
1701 
1702 		total_count += count;
1703 	}
1704 
1705 	td->mapped_blocks -= total_count;
1706 	td->changed = 1;
1707 
1708 	/*
1709 	 * Reinsert the mapping tree.
1710 	 */
1711 	value = cpu_to_le64(mapping_root);
1712 	__dm_bless_for_disk(&value);
1713 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1714 }
1715 
1716 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1717 {
1718 	int r = -EINVAL;
1719 
1720 	pmd_write_lock(td->pmd);
1721 	if (!td->pmd->fail_io)
1722 		r = __remove(td, block);
1723 	pmd_write_unlock(td->pmd);
1724 
1725 	return r;
1726 }
1727 
1728 int dm_thin_remove_range(struct dm_thin_device *td,
1729 			 dm_block_t begin, dm_block_t end)
1730 {
1731 	int r = -EINVAL;
1732 
1733 	pmd_write_lock(td->pmd);
1734 	if (!td->pmd->fail_io)
1735 		r = __remove_range(td, begin, end);
1736 	pmd_write_unlock(td->pmd);
1737 
1738 	return r;
1739 }
1740 
1741 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1742 {
1743 	int r;
1744 	uint32_t ref_count;
1745 
1746 	down_read(&pmd->root_lock);
1747 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1748 	if (!r)
1749 		*result = (ref_count > 1);
1750 	up_read(&pmd->root_lock);
1751 
1752 	return r;
1753 }
1754 
1755 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1756 {
1757 	int r = 0;
1758 
1759 	pmd_write_lock(pmd);
1760 	for (; b != e; b++) {
1761 		r = dm_sm_inc_block(pmd->data_sm, b);
1762 		if (r)
1763 			break;
1764 	}
1765 	pmd_write_unlock(pmd);
1766 
1767 	return r;
1768 }
1769 
1770 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1771 {
1772 	int r = 0;
1773 
1774 	pmd_write_lock(pmd);
1775 	for (; b != e; b++) {
1776 		r = dm_sm_dec_block(pmd->data_sm, b);
1777 		if (r)
1778 			break;
1779 	}
1780 	pmd_write_unlock(pmd);
1781 
1782 	return r;
1783 }
1784 
1785 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1786 {
1787 	int r;
1788 
1789 	down_read(&td->pmd->root_lock);
1790 	r = td->changed;
1791 	up_read(&td->pmd->root_lock);
1792 
1793 	return r;
1794 }
1795 
1796 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1797 {
1798 	bool r = false;
1799 	struct dm_thin_device *td, *tmp;
1800 
1801 	down_read(&pmd->root_lock);
1802 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1803 		if (td->changed) {
1804 			r = td->changed;
1805 			break;
1806 		}
1807 	}
1808 	up_read(&pmd->root_lock);
1809 
1810 	return r;
1811 }
1812 
1813 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1814 {
1815 	bool r;
1816 
1817 	down_read(&td->pmd->root_lock);
1818 	r = td->aborted_with_changes;
1819 	up_read(&td->pmd->root_lock);
1820 
1821 	return r;
1822 }
1823 
1824 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1825 {
1826 	int r = -EINVAL;
1827 
1828 	pmd_write_lock(pmd);
1829 	if (!pmd->fail_io)
1830 		r = dm_sm_new_block(pmd->data_sm, result);
1831 	pmd_write_unlock(pmd);
1832 
1833 	return r;
1834 }
1835 
1836 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1837 {
1838 	int r = -EINVAL;
1839 
1840 	/*
1841 	 * Care is taken to not have commit be what
1842 	 * triggers putting the thin-pool in-service.
1843 	 */
1844 	__pmd_write_lock(pmd);
1845 	if (pmd->fail_io)
1846 		goto out;
1847 
1848 	r = __commit_transaction(pmd);
1849 	if (r < 0)
1850 		goto out;
1851 
1852 	/*
1853 	 * Open the next transaction.
1854 	 */
1855 	r = __begin_transaction(pmd);
1856 out:
1857 	pmd_write_unlock(pmd);
1858 	return r;
1859 }
1860 
1861 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1862 {
1863 	struct dm_thin_device *td;
1864 
1865 	list_for_each_entry(td, &pmd->thin_devices, list)
1866 		td->aborted_with_changes = td->changed;
1867 }
1868 
1869 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1870 {
1871 	int r = -EINVAL;
1872 
1873 	pmd_write_lock(pmd);
1874 	if (pmd->fail_io)
1875 		goto out;
1876 
1877 	__set_abort_with_changes_flags(pmd);
1878 	__destroy_persistent_data_objects(pmd);
1879 	r = __create_persistent_data_objects(pmd, false);
1880 	if (r)
1881 		pmd->fail_io = true;
1882 
1883 out:
1884 	pmd_write_unlock(pmd);
1885 
1886 	return r;
1887 }
1888 
1889 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1890 {
1891 	int r = -EINVAL;
1892 
1893 	down_read(&pmd->root_lock);
1894 	if (!pmd->fail_io)
1895 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1896 	up_read(&pmd->root_lock);
1897 
1898 	return r;
1899 }
1900 
1901 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1902 					  dm_block_t *result)
1903 {
1904 	int r = -EINVAL;
1905 
1906 	down_read(&pmd->root_lock);
1907 	if (!pmd->fail_io)
1908 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1909 
1910 	if (!r) {
1911 		if (*result < pmd->metadata_reserve)
1912 			*result = 0;
1913 		else
1914 			*result -= pmd->metadata_reserve;
1915 	}
1916 	up_read(&pmd->root_lock);
1917 
1918 	return r;
1919 }
1920 
1921 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1922 				  dm_block_t *result)
1923 {
1924 	int r = -EINVAL;
1925 
1926 	down_read(&pmd->root_lock);
1927 	if (!pmd->fail_io)
1928 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1929 	up_read(&pmd->root_lock);
1930 
1931 	return r;
1932 }
1933 
1934 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1935 {
1936 	int r = -EINVAL;
1937 
1938 	down_read(&pmd->root_lock);
1939 	if (!pmd->fail_io)
1940 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1941 	up_read(&pmd->root_lock);
1942 
1943 	return r;
1944 }
1945 
1946 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1947 {
1948 	int r = -EINVAL;
1949 	struct dm_pool_metadata *pmd = td->pmd;
1950 
1951 	down_read(&pmd->root_lock);
1952 	if (!pmd->fail_io) {
1953 		*result = td->mapped_blocks;
1954 		r = 0;
1955 	}
1956 	up_read(&pmd->root_lock);
1957 
1958 	return r;
1959 }
1960 
1961 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1962 {
1963 	int r;
1964 	__le64 value_le;
1965 	dm_block_t thin_root;
1966 	struct dm_pool_metadata *pmd = td->pmd;
1967 
1968 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1969 	if (r)
1970 		return r;
1971 
1972 	thin_root = le64_to_cpu(value_le);
1973 
1974 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1975 }
1976 
1977 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1978 				     dm_block_t *result)
1979 {
1980 	int r = -EINVAL;
1981 	struct dm_pool_metadata *pmd = td->pmd;
1982 
1983 	down_read(&pmd->root_lock);
1984 	if (!pmd->fail_io)
1985 		r = __highest_block(td, result);
1986 	up_read(&pmd->root_lock);
1987 
1988 	return r;
1989 }
1990 
1991 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1992 {
1993 	int r;
1994 	dm_block_t old_count;
1995 
1996 	r = dm_sm_get_nr_blocks(sm, &old_count);
1997 	if (r)
1998 		return r;
1999 
2000 	if (new_count == old_count)
2001 		return 0;
2002 
2003 	if (new_count < old_count) {
2004 		DMERR("cannot reduce size of space map");
2005 		return -EINVAL;
2006 	}
2007 
2008 	return dm_sm_extend(sm, new_count - old_count);
2009 }
2010 
2011 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2012 {
2013 	int r = -EINVAL;
2014 
2015 	pmd_write_lock(pmd);
2016 	if (!pmd->fail_io)
2017 		r = __resize_space_map(pmd->data_sm, new_count);
2018 	pmd_write_unlock(pmd);
2019 
2020 	return r;
2021 }
2022 
2023 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2024 {
2025 	int r = -EINVAL;
2026 
2027 	pmd_write_lock(pmd);
2028 	if (!pmd->fail_io) {
2029 		r = __resize_space_map(pmd->metadata_sm, new_count);
2030 		if (!r)
2031 			__set_metadata_reserve(pmd);
2032 	}
2033 	pmd_write_unlock(pmd);
2034 
2035 	return r;
2036 }
2037 
2038 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2039 {
2040 	pmd_write_lock_in_core(pmd);
2041 	dm_bm_set_read_only(pmd->bm);
2042 	pmd_write_unlock(pmd);
2043 }
2044 
2045 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2046 {
2047 	pmd_write_lock_in_core(pmd);
2048 	dm_bm_set_read_write(pmd->bm);
2049 	pmd_write_unlock(pmd);
2050 }
2051 
2052 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2053 					dm_block_t threshold,
2054 					dm_sm_threshold_fn fn,
2055 					void *context)
2056 {
2057 	int r;
2058 
2059 	pmd_write_lock_in_core(pmd);
2060 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2061 	pmd_write_unlock(pmd);
2062 
2063 	return r;
2064 }
2065 
2066 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2067 					  dm_pool_pre_commit_fn fn,
2068 					  void *context)
2069 {
2070 	pmd_write_lock_in_core(pmd);
2071 	pmd->pre_commit_fn = fn;
2072 	pmd->pre_commit_context = context;
2073 	pmd_write_unlock(pmd);
2074 }
2075 
2076 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2077 {
2078 	int r = -EINVAL;
2079 	struct dm_block *sblock;
2080 	struct thin_disk_superblock *disk_super;
2081 
2082 	pmd_write_lock(pmd);
2083 	if (pmd->fail_io)
2084 		goto out;
2085 
2086 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2087 
2088 	r = superblock_lock(pmd, &sblock);
2089 	if (r) {
2090 		DMERR("couldn't lock superblock");
2091 		goto out;
2092 	}
2093 
2094 	disk_super = dm_block_data(sblock);
2095 	disk_super->flags = cpu_to_le32(pmd->flags);
2096 
2097 	dm_bm_unlock(sblock);
2098 out:
2099 	pmd_write_unlock(pmd);
2100 	return r;
2101 }
2102 
2103 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2104 {
2105 	bool needs_check;
2106 
2107 	down_read(&pmd->root_lock);
2108 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2109 	up_read(&pmd->root_lock);
2110 
2111 	return needs_check;
2112 }
2113 
2114 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2115 {
2116 	down_read(&pmd->root_lock);
2117 	if (!pmd->fail_io)
2118 		dm_tm_issue_prefetches(pmd->tm);
2119 	up_read(&pmd->root_lock);
2120 }
2121