xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision 2a954832)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat, Inc.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-thin-metadata.h"
9 #include "persistent-data/dm-btree.h"
10 #include "persistent-data/dm-space-map.h"
11 #include "persistent-data/dm-space-map-disk.h"
12 #include "persistent-data/dm-transaction-manager.h"
13 
14 #include <linux/list.h>
15 #include <linux/device-mapper.h>
16 #include <linux/workqueue.h>
17 
18 /*
19  *--------------------------------------------------------------------------
20  * As far as the metadata goes, there is:
21  *
22  * - A superblock in block zero, taking up fewer than 512 bytes for
23  *   atomic writes.
24  *
25  * - A space map managing the metadata blocks.
26  *
27  * - A space map managing the data blocks.
28  *
29  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
30  *
31  * - A hierarchical btree, with 2 levels which effectively maps (thin
32  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
33  *   field holding the time in the low 24 bits, and block in the top 40
34  *   bits.
35  *
36  * BTrees consist solely of btree_nodes, that fill a block.  Some are
37  * internal nodes, as such their values are a __le64 pointing to other
38  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
39  * smaller than the block size).  The nodes consist of the header,
40  * followed by an array of keys, followed by an array of values.  We have
41  * to binary search on the keys so they're all held together to help the
42  * cpu cache.
43  *
44  * Space maps have 2 btrees:
45  *
46  * - One maps a uint64_t onto a struct index_entry.  Which points to a
47  *   bitmap block, and has some details about how many free entries there
48  *   are etc.
49  *
50  * - The bitmap blocks have a header (for the checksum).  Then the rest
51  *   of the block is pairs of bits.  With the meaning being:
52  *
53  *   0 - ref count is 0
54  *   1 - ref count is 1
55  *   2 - ref count is 2
56  *   3 - ref count is higher than 2
57  *
58  * - If the count is higher than 2 then the ref count is entered in a
59  *   second btree that directly maps the block_address to a uint32_t ref
60  *   count.
61  *
62  * The space map metadata variant doesn't have a bitmaps btree.  Instead
63  * it has one single blocks worth of index_entries.  This avoids
64  * recursive issues with the bitmap btree needing to allocate space in
65  * order to insert.  With a small data block size such as 64k the
66  * metadata support data devices that are hundreds of terrabytes.
67  *
68  * The space maps allocate space linearly from front to back.  Space that
69  * is freed in a transaction is never recycled within that transaction.
70  * To try and avoid fragmenting _free_ space the allocator always goes
71  * back and fills in gaps.
72  *
73  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
74  * from the block manager.
75  *--------------------------------------------------------------------------
76  */
77 
78 #define DM_MSG_PREFIX   "thin metadata"
79 
80 #define THIN_SUPERBLOCK_MAGIC 27022010
81 #define THIN_SUPERBLOCK_LOCATION 0
82 #define THIN_VERSION 2
83 #define SECTOR_TO_BLOCK_SHIFT 3
84 
85 /*
86  * For btree insert:
87  *  3 for btree insert +
88  *  2 for btree lookup used within space map
89  * For btree remove:
90  *  2 for shadow spine +
91  *  4 for rebalance 3 child node
92  */
93 #define THIN_MAX_CONCURRENT_LOCKS 6
94 
95 /* This should be plenty */
96 #define SPACE_MAP_ROOT_SIZE 128
97 
98 /*
99  * Little endian on-disk superblock and device details.
100  */
101 struct thin_disk_superblock {
102 	__le32 csum;	/* Checksum of superblock except for this field. */
103 	__le32 flags;
104 	__le64 blocknr;	/* This block number, dm_block_t. */
105 
106 	__u8 uuid[16];
107 	__le64 magic;
108 	__le32 version;
109 	__le32 time;
110 
111 	__le64 trans_id;
112 
113 	/*
114 	 * Root held by userspace transactions.
115 	 */
116 	__le64 held_root;
117 
118 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
119 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
120 
121 	/*
122 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
123 	 */
124 	__le64 data_mapping_root;
125 
126 	/*
127 	 * Device detail root mapping dev_id -> device_details
128 	 */
129 	__le64 device_details_root;
130 
131 	__le32 data_block_size;		/* In 512-byte sectors. */
132 
133 	__le32 metadata_block_size;	/* In 512-byte sectors. */
134 	__le64 metadata_nr_blocks;
135 
136 	__le32 compat_flags;
137 	__le32 compat_ro_flags;
138 	__le32 incompat_flags;
139 } __packed;
140 
141 struct disk_device_details {
142 	__le64 mapped_blocks;
143 	__le64 transaction_id;		/* When created. */
144 	__le32 creation_time;
145 	__le32 snapshotted_time;
146 } __packed;
147 
148 struct dm_pool_metadata {
149 	struct hlist_node hash;
150 
151 	struct block_device *bdev;
152 	struct dm_block_manager *bm;
153 	struct dm_space_map *metadata_sm;
154 	struct dm_space_map *data_sm;
155 	struct dm_transaction_manager *tm;
156 	struct dm_transaction_manager *nb_tm;
157 
158 	/*
159 	 * Two-level btree.
160 	 * First level holds thin_dev_t.
161 	 * Second level holds mappings.
162 	 */
163 	struct dm_btree_info info;
164 
165 	/*
166 	 * Non-blocking version of the above.
167 	 */
168 	struct dm_btree_info nb_info;
169 
170 	/*
171 	 * Just the top level for deleting whole devices.
172 	 */
173 	struct dm_btree_info tl_info;
174 
175 	/*
176 	 * Just the bottom level for creating new devices.
177 	 */
178 	struct dm_btree_info bl_info;
179 
180 	/*
181 	 * Describes the device details btree.
182 	 */
183 	struct dm_btree_info details_info;
184 
185 	struct rw_semaphore root_lock;
186 	uint32_t time;
187 	dm_block_t root;
188 	dm_block_t details_root;
189 	struct list_head thin_devices;
190 	uint64_t trans_id;
191 	unsigned long flags;
192 	sector_t data_block_size;
193 
194 	/*
195 	 * Pre-commit callback.
196 	 *
197 	 * This allows the thin provisioning target to run a callback before
198 	 * the metadata are committed.
199 	 */
200 	dm_pool_pre_commit_fn pre_commit_fn;
201 	void *pre_commit_context;
202 
203 	/*
204 	 * We reserve a section of the metadata for commit overhead.
205 	 * All reported space does *not* include this.
206 	 */
207 	dm_block_t metadata_reserve;
208 
209 	/*
210 	 * Set if a transaction has to be aborted but the attempt to roll back
211 	 * to the previous (good) transaction failed.  The only pool metadata
212 	 * operation possible in this state is the closing of the device.
213 	 */
214 	bool fail_io:1;
215 
216 	/*
217 	 * Set once a thin-pool has been accessed through one of the interfaces
218 	 * that imply the pool is in-service (e.g. thin devices created/deleted,
219 	 * thin-pool message, metadata snapshots, etc).
220 	 */
221 	bool in_service:1;
222 
223 	/*
224 	 * Reading the space map roots can fail, so we read it into these
225 	 * buffers before the superblock is locked and updated.
226 	 */
227 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
228 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
229 };
230 
231 struct dm_thin_device {
232 	struct list_head list;
233 	struct dm_pool_metadata *pmd;
234 	dm_thin_id id;
235 
236 	int open_count;
237 	bool changed:1;
238 	bool aborted_with_changes:1;
239 	uint64_t mapped_blocks;
240 	uint64_t transaction_id;
241 	uint32_t creation_time;
242 	uint32_t snapshotted_time;
243 };
244 
245 /*
246  *--------------------------------------------------------------
247  * superblock validator
248  *--------------------------------------------------------------
249  */
250 #define SUPERBLOCK_CSUM_XOR 160774
251 
252 static void sb_prepare_for_write(struct dm_block_validator *v,
253 				 struct dm_block *b,
254 				 size_t block_size)
255 {
256 	struct thin_disk_superblock *disk_super = dm_block_data(b);
257 
258 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
259 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
260 						      block_size - sizeof(__le32),
261 						      SUPERBLOCK_CSUM_XOR));
262 }
263 
264 static int sb_check(struct dm_block_validator *v,
265 		    struct dm_block *b,
266 		    size_t block_size)
267 {
268 	struct thin_disk_superblock *disk_super = dm_block_data(b);
269 	__le32 csum_le;
270 
271 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
272 		DMERR("%s failed: blocknr %llu: wanted %llu",
273 		      __func__, le64_to_cpu(disk_super->blocknr),
274 		      (unsigned long long)dm_block_location(b));
275 		return -ENOTBLK;
276 	}
277 
278 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
279 		DMERR("%s failed: magic %llu: wanted %llu",
280 		      __func__, le64_to_cpu(disk_super->magic),
281 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
282 		return -EILSEQ;
283 	}
284 
285 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
286 					     block_size - sizeof(__le32),
287 					     SUPERBLOCK_CSUM_XOR));
288 	if (csum_le != disk_super->csum) {
289 		DMERR("%s failed: csum %u: wanted %u",
290 		      __func__, le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
291 		return -EILSEQ;
292 	}
293 
294 	return 0;
295 }
296 
297 static struct dm_block_validator sb_validator = {
298 	.name = "superblock",
299 	.prepare_for_write = sb_prepare_for_write,
300 	.check = sb_check
301 };
302 
303 /*
304  *--------------------------------------------------------------
305  * Methods for the btree value types
306  *--------------------------------------------------------------
307  */
308 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
309 {
310 	return (b << 24) | t;
311 }
312 
313 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
314 {
315 	*b = v >> 24;
316 	*t = v & ((1 << 24) - 1);
317 }
318 
319 /*
320  * It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
321  * possible.  'with_runs' reads contiguous runs of blocks, and calls the
322  * given sm function.
323  */
324 typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
325 
326 static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned int count, run_fn fn)
327 {
328 	uint64_t b, begin, end;
329 	uint32_t t;
330 	bool in_run = false;
331 	unsigned int i;
332 
333 	for (i = 0; i < count; i++, value_le++) {
334 		/* We know value_le is 8 byte aligned */
335 		unpack_block_time(le64_to_cpu(*value_le), &b, &t);
336 
337 		if (in_run) {
338 			if (b == end) {
339 				end++;
340 			} else {
341 				fn(sm, begin, end);
342 				begin = b;
343 				end = b + 1;
344 			}
345 		} else {
346 			in_run = true;
347 			begin = b;
348 			end = b + 1;
349 		}
350 	}
351 
352 	if (in_run)
353 		fn(sm, begin, end);
354 }
355 
356 static void data_block_inc(void *context, const void *value_le, unsigned int count)
357 {
358 	with_runs((struct dm_space_map *) context,
359 		  (const __le64 *) value_le, count, dm_sm_inc_blocks);
360 }
361 
362 static void data_block_dec(void *context, const void *value_le, unsigned int count)
363 {
364 	with_runs((struct dm_space_map *) context,
365 		  (const __le64 *) value_le, count, dm_sm_dec_blocks);
366 }
367 
368 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
369 {
370 	__le64 v1_le, v2_le;
371 	uint64_t b1, b2;
372 	uint32_t t;
373 
374 	memcpy(&v1_le, value1_le, sizeof(v1_le));
375 	memcpy(&v2_le, value2_le, sizeof(v2_le));
376 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
377 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
378 
379 	return b1 == b2;
380 }
381 
382 static void subtree_inc(void *context, const void *value, unsigned int count)
383 {
384 	struct dm_btree_info *info = context;
385 	const __le64 *root_le = value;
386 	unsigned int i;
387 
388 	for (i = 0; i < count; i++, root_le++)
389 		dm_tm_inc(info->tm, le64_to_cpu(*root_le));
390 }
391 
392 static void subtree_dec(void *context, const void *value, unsigned int count)
393 {
394 	struct dm_btree_info *info = context;
395 	const __le64 *root_le = value;
396 	unsigned int i;
397 
398 	for (i = 0; i < count; i++, root_le++)
399 		if (dm_btree_del(info, le64_to_cpu(*root_le)))
400 			DMERR("btree delete failed");
401 }
402 
403 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
404 {
405 	__le64 v1_le, v2_le;
406 
407 	memcpy(&v1_le, value1_le, sizeof(v1_le));
408 	memcpy(&v2_le, value2_le, sizeof(v2_le));
409 
410 	return v1_le == v2_le;
411 }
412 
413 /*----------------------------------------------------------------*/
414 
415 /*
416  * Variant that is used for in-core only changes or code that
417  * shouldn't put the pool in service on its own (e.g. commit).
418  */
419 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
420 	__acquires(pmd->root_lock)
421 {
422 	down_write(&pmd->root_lock);
423 }
424 
425 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
426 {
427 	pmd_write_lock_in_core(pmd);
428 	if (unlikely(!pmd->in_service))
429 		pmd->in_service = true;
430 }
431 
432 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
433 	__releases(pmd->root_lock)
434 {
435 	up_write(&pmd->root_lock);
436 }
437 
438 /*----------------------------------------------------------------*/
439 
440 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
441 				struct dm_block **sblock)
442 {
443 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
444 				     &sb_validator, sblock);
445 }
446 
447 static int superblock_lock(struct dm_pool_metadata *pmd,
448 			   struct dm_block **sblock)
449 {
450 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
451 				&sb_validator, sblock);
452 }
453 
454 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
455 {
456 	int r;
457 	unsigned int i;
458 	struct dm_block *b;
459 	__le64 *data_le, zero = cpu_to_le64(0);
460 	unsigned int block_size = dm_bm_block_size(bm) / sizeof(__le64);
461 
462 	/*
463 	 * We can't use a validator here - it may be all zeroes.
464 	 */
465 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
466 	if (r)
467 		return r;
468 
469 	data_le = dm_block_data(b);
470 	*result = 1;
471 	for (i = 0; i < block_size; i++) {
472 		if (data_le[i] != zero) {
473 			*result = 0;
474 			break;
475 		}
476 	}
477 
478 	dm_bm_unlock(b);
479 
480 	return 0;
481 }
482 
483 static void __setup_btree_details(struct dm_pool_metadata *pmd)
484 {
485 	pmd->info.tm = pmd->tm;
486 	pmd->info.levels = 2;
487 	pmd->info.value_type.context = pmd->data_sm;
488 	pmd->info.value_type.size = sizeof(__le64);
489 	pmd->info.value_type.inc = data_block_inc;
490 	pmd->info.value_type.dec = data_block_dec;
491 	pmd->info.value_type.equal = data_block_equal;
492 
493 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
494 	pmd->nb_info.tm = pmd->nb_tm;
495 
496 	pmd->tl_info.tm = pmd->tm;
497 	pmd->tl_info.levels = 1;
498 	pmd->tl_info.value_type.context = &pmd->bl_info;
499 	pmd->tl_info.value_type.size = sizeof(__le64);
500 	pmd->tl_info.value_type.inc = subtree_inc;
501 	pmd->tl_info.value_type.dec = subtree_dec;
502 	pmd->tl_info.value_type.equal = subtree_equal;
503 
504 	pmd->bl_info.tm = pmd->tm;
505 	pmd->bl_info.levels = 1;
506 	pmd->bl_info.value_type.context = pmd->data_sm;
507 	pmd->bl_info.value_type.size = sizeof(__le64);
508 	pmd->bl_info.value_type.inc = data_block_inc;
509 	pmd->bl_info.value_type.dec = data_block_dec;
510 	pmd->bl_info.value_type.equal = data_block_equal;
511 
512 	pmd->details_info.tm = pmd->tm;
513 	pmd->details_info.levels = 1;
514 	pmd->details_info.value_type.context = NULL;
515 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
516 	pmd->details_info.value_type.inc = NULL;
517 	pmd->details_info.value_type.dec = NULL;
518 	pmd->details_info.value_type.equal = NULL;
519 }
520 
521 static int save_sm_roots(struct dm_pool_metadata *pmd)
522 {
523 	int r;
524 	size_t len;
525 
526 	r = dm_sm_root_size(pmd->metadata_sm, &len);
527 	if (r < 0)
528 		return r;
529 
530 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
531 	if (r < 0)
532 		return r;
533 
534 	r = dm_sm_root_size(pmd->data_sm, &len);
535 	if (r < 0)
536 		return r;
537 
538 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
539 }
540 
541 static void copy_sm_roots(struct dm_pool_metadata *pmd,
542 			  struct thin_disk_superblock *disk)
543 {
544 	memcpy(&disk->metadata_space_map_root,
545 	       &pmd->metadata_space_map_root,
546 	       sizeof(pmd->metadata_space_map_root));
547 
548 	memcpy(&disk->data_space_map_root,
549 	       &pmd->data_space_map_root,
550 	       sizeof(pmd->data_space_map_root));
551 }
552 
553 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
554 {
555 	int r;
556 	struct dm_block *sblock;
557 	struct thin_disk_superblock *disk_super;
558 	sector_t bdev_size = bdev_nr_sectors(pmd->bdev);
559 
560 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
561 		bdev_size = THIN_METADATA_MAX_SECTORS;
562 
563 	r = dm_sm_commit(pmd->data_sm);
564 	if (r < 0)
565 		return r;
566 
567 	r = dm_tm_pre_commit(pmd->tm);
568 	if (r < 0)
569 		return r;
570 
571 	r = save_sm_roots(pmd);
572 	if (r < 0)
573 		return r;
574 
575 	r = superblock_lock_zero(pmd, &sblock);
576 	if (r)
577 		return r;
578 
579 	disk_super = dm_block_data(sblock);
580 	disk_super->flags = 0;
581 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
582 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
583 	disk_super->version = cpu_to_le32(THIN_VERSION);
584 	disk_super->time = 0;
585 	disk_super->trans_id = 0;
586 	disk_super->held_root = 0;
587 
588 	copy_sm_roots(pmd, disk_super);
589 
590 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
591 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
592 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
593 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
594 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
595 
596 	return dm_tm_commit(pmd->tm, sblock);
597 }
598 
599 static int __format_metadata(struct dm_pool_metadata *pmd)
600 {
601 	int r;
602 
603 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
604 				 &pmd->tm, &pmd->metadata_sm);
605 	if (r < 0) {
606 		DMERR("tm_create_with_sm failed");
607 		return r;
608 	}
609 
610 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
611 	if (IS_ERR(pmd->data_sm)) {
612 		DMERR("sm_disk_create failed");
613 		r = PTR_ERR(pmd->data_sm);
614 		goto bad_cleanup_tm;
615 	}
616 
617 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
618 	if (!pmd->nb_tm) {
619 		DMERR("could not create non-blocking clone tm");
620 		r = -ENOMEM;
621 		goto bad_cleanup_data_sm;
622 	}
623 
624 	__setup_btree_details(pmd);
625 
626 	r = dm_btree_empty(&pmd->info, &pmd->root);
627 	if (r < 0)
628 		goto bad_cleanup_nb_tm;
629 
630 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
631 	if (r < 0) {
632 		DMERR("couldn't create devices root");
633 		goto bad_cleanup_nb_tm;
634 	}
635 
636 	r = __write_initial_superblock(pmd);
637 	if (r)
638 		goto bad_cleanup_nb_tm;
639 
640 	return 0;
641 
642 bad_cleanup_nb_tm:
643 	dm_tm_destroy(pmd->nb_tm);
644 bad_cleanup_data_sm:
645 	dm_sm_destroy(pmd->data_sm);
646 bad_cleanup_tm:
647 	dm_tm_destroy(pmd->tm);
648 	dm_sm_destroy(pmd->metadata_sm);
649 
650 	return r;
651 }
652 
653 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
654 				     struct dm_pool_metadata *pmd)
655 {
656 	uint32_t features;
657 
658 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
659 	if (features) {
660 		DMERR("could not access metadata due to unsupported optional features (%lx).",
661 		      (unsigned long)features);
662 		return -EINVAL;
663 	}
664 
665 	/*
666 	 * Check for read-only metadata to skip the following RDWR checks.
667 	 */
668 	if (bdev_read_only(pmd->bdev))
669 		return 0;
670 
671 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
672 	if (features) {
673 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
674 		      (unsigned long)features);
675 		return -EINVAL;
676 	}
677 
678 	return 0;
679 }
680 
681 static int __open_metadata(struct dm_pool_metadata *pmd)
682 {
683 	int r;
684 	struct dm_block *sblock;
685 	struct thin_disk_superblock *disk_super;
686 
687 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
688 			    &sb_validator, &sblock);
689 	if (r < 0) {
690 		DMERR("couldn't read superblock");
691 		return r;
692 	}
693 
694 	disk_super = dm_block_data(sblock);
695 
696 	/* Verify the data block size hasn't changed */
697 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
698 		DMERR("changing the data block size (from %u to %llu) is not supported",
699 		      le32_to_cpu(disk_super->data_block_size),
700 		      (unsigned long long)pmd->data_block_size);
701 		r = -EINVAL;
702 		goto bad_unlock_sblock;
703 	}
704 
705 	r = __check_incompat_features(disk_super, pmd);
706 	if (r < 0)
707 		goto bad_unlock_sblock;
708 
709 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
710 			       disk_super->metadata_space_map_root,
711 			       sizeof(disk_super->metadata_space_map_root),
712 			       &pmd->tm, &pmd->metadata_sm);
713 	if (r < 0) {
714 		DMERR("tm_open_with_sm failed");
715 		goto bad_unlock_sblock;
716 	}
717 
718 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
719 				       sizeof(disk_super->data_space_map_root));
720 	if (IS_ERR(pmd->data_sm)) {
721 		DMERR("sm_disk_open failed");
722 		r = PTR_ERR(pmd->data_sm);
723 		goto bad_cleanup_tm;
724 	}
725 
726 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
727 	if (!pmd->nb_tm) {
728 		DMERR("could not create non-blocking clone tm");
729 		r = -ENOMEM;
730 		goto bad_cleanup_data_sm;
731 	}
732 
733 	/*
734 	 * For pool metadata opening process, root setting is redundant
735 	 * because it will be set again in __begin_transaction(). But dm
736 	 * pool aborting process really needs to get last transaction's
737 	 * root to avoid accessing broken btree.
738 	 */
739 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
740 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
741 
742 	__setup_btree_details(pmd);
743 	dm_bm_unlock(sblock);
744 
745 	return 0;
746 
747 bad_cleanup_data_sm:
748 	dm_sm_destroy(pmd->data_sm);
749 bad_cleanup_tm:
750 	dm_tm_destroy(pmd->tm);
751 	dm_sm_destroy(pmd->metadata_sm);
752 bad_unlock_sblock:
753 	dm_bm_unlock(sblock);
754 
755 	return r;
756 }
757 
758 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
759 {
760 	int r, unformatted;
761 
762 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
763 	if (r)
764 		return r;
765 
766 	if (unformatted)
767 		return format_device ? __format_metadata(pmd) : -EPERM;
768 
769 	return __open_metadata(pmd);
770 }
771 
772 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
773 {
774 	int r;
775 
776 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
777 					  THIN_MAX_CONCURRENT_LOCKS);
778 	if (IS_ERR(pmd->bm)) {
779 		DMERR("could not create block manager");
780 		r = PTR_ERR(pmd->bm);
781 		pmd->bm = NULL;
782 		return r;
783 	}
784 
785 	r = __open_or_format_metadata(pmd, format_device);
786 	if (r) {
787 		dm_block_manager_destroy(pmd->bm);
788 		pmd->bm = NULL;
789 	}
790 
791 	return r;
792 }
793 
794 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
795 					      bool destroy_bm)
796 {
797 	dm_sm_destroy(pmd->data_sm);
798 	dm_sm_destroy(pmd->metadata_sm);
799 	dm_tm_destroy(pmd->nb_tm);
800 	dm_tm_destroy(pmd->tm);
801 	if (destroy_bm)
802 		dm_block_manager_destroy(pmd->bm);
803 }
804 
805 static int __begin_transaction(struct dm_pool_metadata *pmd)
806 {
807 	int r;
808 	struct thin_disk_superblock *disk_super;
809 	struct dm_block *sblock;
810 
811 	/*
812 	 * We re-read the superblock every time.  Shouldn't need to do this
813 	 * really.
814 	 */
815 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
816 			    &sb_validator, &sblock);
817 	if (r)
818 		return r;
819 
820 	disk_super = dm_block_data(sblock);
821 	pmd->time = le32_to_cpu(disk_super->time);
822 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
823 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
824 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
825 	pmd->flags = le32_to_cpu(disk_super->flags);
826 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
827 
828 	dm_bm_unlock(sblock);
829 	return 0;
830 }
831 
832 static int __write_changed_details(struct dm_pool_metadata *pmd)
833 {
834 	int r;
835 	struct dm_thin_device *td, *tmp;
836 	struct disk_device_details details;
837 	uint64_t key;
838 
839 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
840 		if (!td->changed)
841 			continue;
842 
843 		key = td->id;
844 
845 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
846 		details.transaction_id = cpu_to_le64(td->transaction_id);
847 		details.creation_time = cpu_to_le32(td->creation_time);
848 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
849 		__dm_bless_for_disk(&details);
850 
851 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
852 				    &key, &details, &pmd->details_root);
853 		if (r)
854 			return r;
855 
856 		if (td->open_count)
857 			td->changed = false;
858 		else {
859 			list_del(&td->list);
860 			kfree(td);
861 		}
862 	}
863 
864 	return 0;
865 }
866 
867 static int __commit_transaction(struct dm_pool_metadata *pmd)
868 {
869 	int r;
870 	struct thin_disk_superblock *disk_super;
871 	struct dm_block *sblock;
872 
873 	/*
874 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
875 	 */
876 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
877 	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
878 
879 	if (unlikely(!pmd->in_service))
880 		return 0;
881 
882 	if (pmd->pre_commit_fn) {
883 		r = pmd->pre_commit_fn(pmd->pre_commit_context);
884 		if (r < 0) {
885 			DMERR("pre-commit callback failed");
886 			return r;
887 		}
888 	}
889 
890 	r = __write_changed_details(pmd);
891 	if (r < 0)
892 		return r;
893 
894 	r = dm_sm_commit(pmd->data_sm);
895 	if (r < 0)
896 		return r;
897 
898 	r = dm_tm_pre_commit(pmd->tm);
899 	if (r < 0)
900 		return r;
901 
902 	r = save_sm_roots(pmd);
903 	if (r < 0)
904 		return r;
905 
906 	r = superblock_lock(pmd, &sblock);
907 	if (r)
908 		return r;
909 
910 	disk_super = dm_block_data(sblock);
911 	disk_super->time = cpu_to_le32(pmd->time);
912 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
913 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
914 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
915 	disk_super->flags = cpu_to_le32(pmd->flags);
916 
917 	copy_sm_roots(pmd, disk_super);
918 
919 	return dm_tm_commit(pmd->tm, sblock);
920 }
921 
922 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
923 {
924 	int r;
925 	dm_block_t total;
926 	dm_block_t max_blocks = 4096; /* 16M */
927 
928 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
929 	if (r) {
930 		DMERR("could not get size of metadata device");
931 		pmd->metadata_reserve = max_blocks;
932 	} else
933 		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
934 }
935 
936 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
937 					       sector_t data_block_size,
938 					       bool format_device)
939 {
940 	int r;
941 	struct dm_pool_metadata *pmd;
942 
943 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
944 	if (!pmd) {
945 		DMERR("could not allocate metadata struct");
946 		return ERR_PTR(-ENOMEM);
947 	}
948 
949 	init_rwsem(&pmd->root_lock);
950 	pmd->time = 0;
951 	INIT_LIST_HEAD(&pmd->thin_devices);
952 	pmd->fail_io = false;
953 	pmd->in_service = false;
954 	pmd->bdev = bdev;
955 	pmd->data_block_size = data_block_size;
956 	pmd->pre_commit_fn = NULL;
957 	pmd->pre_commit_context = NULL;
958 
959 	r = __create_persistent_data_objects(pmd, format_device);
960 	if (r) {
961 		kfree(pmd);
962 		return ERR_PTR(r);
963 	}
964 
965 	r = __begin_transaction(pmd);
966 	if (r < 0) {
967 		if (dm_pool_metadata_close(pmd) < 0)
968 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
969 		return ERR_PTR(r);
970 	}
971 
972 	__set_metadata_reserve(pmd);
973 
974 	return pmd;
975 }
976 
977 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
978 {
979 	int r;
980 	unsigned int open_devices = 0;
981 	struct dm_thin_device *td, *tmp;
982 
983 	down_read(&pmd->root_lock);
984 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
985 		if (td->open_count)
986 			open_devices++;
987 		else {
988 			list_del(&td->list);
989 			kfree(td);
990 		}
991 	}
992 	up_read(&pmd->root_lock);
993 
994 	if (open_devices) {
995 		DMERR("attempt to close pmd when %u device(s) are still open",
996 		       open_devices);
997 		return -EBUSY;
998 	}
999 
1000 	pmd_write_lock_in_core(pmd);
1001 	if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
1002 		r = __commit_transaction(pmd);
1003 		if (r < 0)
1004 			DMWARN("%s: __commit_transaction() failed, error = %d",
1005 			       __func__, r);
1006 	}
1007 	pmd_write_unlock(pmd);
1008 	if (!pmd->fail_io)
1009 		__destroy_persistent_data_objects(pmd, true);
1010 
1011 	kfree(pmd);
1012 	return 0;
1013 }
1014 
1015 /*
1016  * __open_device: Returns @td corresponding to device with id @dev,
1017  * creating it if @create is set and incrementing @td->open_count.
1018  * On failure, @td is undefined.
1019  */
1020 static int __open_device(struct dm_pool_metadata *pmd,
1021 			 dm_thin_id dev, int create,
1022 			 struct dm_thin_device **td)
1023 {
1024 	int r, changed = 0;
1025 	struct dm_thin_device *td2;
1026 	uint64_t key = dev;
1027 	struct disk_device_details details_le;
1028 
1029 	/*
1030 	 * If the device is already open, return it.
1031 	 */
1032 	list_for_each_entry(td2, &pmd->thin_devices, list)
1033 		if (td2->id == dev) {
1034 			/*
1035 			 * May not create an already-open device.
1036 			 */
1037 			if (create)
1038 				return -EEXIST;
1039 
1040 			td2->open_count++;
1041 			*td = td2;
1042 			return 0;
1043 		}
1044 
1045 	/*
1046 	 * Check the device exists.
1047 	 */
1048 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1049 			    &key, &details_le);
1050 	if (r) {
1051 		if (r != -ENODATA || !create)
1052 			return r;
1053 
1054 		/*
1055 		 * Create new device.
1056 		 */
1057 		changed = 1;
1058 		details_le.mapped_blocks = 0;
1059 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1060 		details_le.creation_time = cpu_to_le32(pmd->time);
1061 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1062 	}
1063 
1064 	*td = kmalloc(sizeof(**td), GFP_NOIO);
1065 	if (!*td)
1066 		return -ENOMEM;
1067 
1068 	(*td)->pmd = pmd;
1069 	(*td)->id = dev;
1070 	(*td)->open_count = 1;
1071 	(*td)->changed = changed;
1072 	(*td)->aborted_with_changes = false;
1073 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1074 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1075 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1076 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1077 
1078 	list_add(&(*td)->list, &pmd->thin_devices);
1079 
1080 	return 0;
1081 }
1082 
1083 static void __close_device(struct dm_thin_device *td)
1084 {
1085 	--td->open_count;
1086 }
1087 
1088 static int __create_thin(struct dm_pool_metadata *pmd,
1089 			 dm_thin_id dev)
1090 {
1091 	int r;
1092 	dm_block_t dev_root;
1093 	uint64_t key = dev;
1094 	struct dm_thin_device *td;
1095 	__le64 value;
1096 
1097 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1098 			    &key, NULL);
1099 	if (!r)
1100 		return -EEXIST;
1101 
1102 	/*
1103 	 * Create an empty btree for the mappings.
1104 	 */
1105 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1106 	if (r)
1107 		return r;
1108 
1109 	/*
1110 	 * Insert it into the main mapping tree.
1111 	 */
1112 	value = cpu_to_le64(dev_root);
1113 	__dm_bless_for_disk(&value);
1114 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1115 	if (r) {
1116 		dm_btree_del(&pmd->bl_info, dev_root);
1117 		return r;
1118 	}
1119 
1120 	r = __open_device(pmd, dev, 1, &td);
1121 	if (r) {
1122 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1123 		dm_btree_del(&pmd->bl_info, dev_root);
1124 		return r;
1125 	}
1126 	__close_device(td);
1127 
1128 	return r;
1129 }
1130 
1131 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1132 {
1133 	int r = -EINVAL;
1134 
1135 	pmd_write_lock(pmd);
1136 	if (!pmd->fail_io)
1137 		r = __create_thin(pmd, dev);
1138 	pmd_write_unlock(pmd);
1139 
1140 	return r;
1141 }
1142 
1143 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1144 				  struct dm_thin_device *snap,
1145 				  dm_thin_id origin, uint32_t time)
1146 {
1147 	int r;
1148 	struct dm_thin_device *td;
1149 
1150 	r = __open_device(pmd, origin, 0, &td);
1151 	if (r)
1152 		return r;
1153 
1154 	td->changed = true;
1155 	td->snapshotted_time = time;
1156 
1157 	snap->mapped_blocks = td->mapped_blocks;
1158 	snap->snapshotted_time = time;
1159 	__close_device(td);
1160 
1161 	return 0;
1162 }
1163 
1164 static int __create_snap(struct dm_pool_metadata *pmd,
1165 			 dm_thin_id dev, dm_thin_id origin)
1166 {
1167 	int r;
1168 	dm_block_t origin_root;
1169 	uint64_t key = origin, dev_key = dev;
1170 	struct dm_thin_device *td;
1171 	__le64 value;
1172 
1173 	/* check this device is unused */
1174 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1175 			    &dev_key, NULL);
1176 	if (!r)
1177 		return -EEXIST;
1178 
1179 	/* find the mapping tree for the origin */
1180 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1181 	if (r)
1182 		return r;
1183 	origin_root = le64_to_cpu(value);
1184 
1185 	/* clone the origin, an inc will do */
1186 	dm_tm_inc(pmd->tm, origin_root);
1187 
1188 	/* insert into the main mapping tree */
1189 	value = cpu_to_le64(origin_root);
1190 	__dm_bless_for_disk(&value);
1191 	key = dev;
1192 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1193 	if (r) {
1194 		dm_tm_dec(pmd->tm, origin_root);
1195 		return r;
1196 	}
1197 
1198 	pmd->time++;
1199 
1200 	r = __open_device(pmd, dev, 1, &td);
1201 	if (r)
1202 		goto bad;
1203 
1204 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1205 	__close_device(td);
1206 
1207 	if (r)
1208 		goto bad;
1209 
1210 	return 0;
1211 
1212 bad:
1213 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1214 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1215 			&key, &pmd->details_root);
1216 	return r;
1217 }
1218 
1219 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1220 				 dm_thin_id dev,
1221 				 dm_thin_id origin)
1222 {
1223 	int r = -EINVAL;
1224 
1225 	pmd_write_lock(pmd);
1226 	if (!pmd->fail_io)
1227 		r = __create_snap(pmd, dev, origin);
1228 	pmd_write_unlock(pmd);
1229 
1230 	return r;
1231 }
1232 
1233 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1234 {
1235 	int r;
1236 	uint64_t key = dev;
1237 	struct dm_thin_device *td;
1238 
1239 	/* TODO: failure should mark the transaction invalid */
1240 	r = __open_device(pmd, dev, 0, &td);
1241 	if (r)
1242 		return r;
1243 
1244 	if (td->open_count > 1) {
1245 		__close_device(td);
1246 		return -EBUSY;
1247 	}
1248 
1249 	list_del(&td->list);
1250 	kfree(td);
1251 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1252 			    &key, &pmd->details_root);
1253 	if (r)
1254 		return r;
1255 
1256 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1257 	if (r)
1258 		return r;
1259 
1260 	return 0;
1261 }
1262 
1263 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1264 			       dm_thin_id dev)
1265 {
1266 	int r = -EINVAL;
1267 
1268 	pmd_write_lock(pmd);
1269 	if (!pmd->fail_io)
1270 		r = __delete_device(pmd, dev);
1271 	pmd_write_unlock(pmd);
1272 
1273 	return r;
1274 }
1275 
1276 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1277 					uint64_t current_id,
1278 					uint64_t new_id)
1279 {
1280 	int r = -EINVAL;
1281 
1282 	pmd_write_lock(pmd);
1283 
1284 	if (pmd->fail_io)
1285 		goto out;
1286 
1287 	if (pmd->trans_id != current_id) {
1288 		DMERR("mismatched transaction id");
1289 		goto out;
1290 	}
1291 
1292 	pmd->trans_id = new_id;
1293 	r = 0;
1294 
1295 out:
1296 	pmd_write_unlock(pmd);
1297 
1298 	return r;
1299 }
1300 
1301 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1302 					uint64_t *result)
1303 {
1304 	int r = -EINVAL;
1305 
1306 	down_read(&pmd->root_lock);
1307 	if (!pmd->fail_io) {
1308 		*result = pmd->trans_id;
1309 		r = 0;
1310 	}
1311 	up_read(&pmd->root_lock);
1312 
1313 	return r;
1314 }
1315 
1316 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1317 {
1318 	int r, inc;
1319 	struct thin_disk_superblock *disk_super;
1320 	struct dm_block *copy, *sblock;
1321 	dm_block_t held_root;
1322 
1323 	/*
1324 	 * We commit to ensure the btree roots which we increment in a
1325 	 * moment are up to date.
1326 	 */
1327 	r = __commit_transaction(pmd);
1328 	if (r < 0) {
1329 		DMWARN("%s: __commit_transaction() failed, error = %d",
1330 		       __func__, r);
1331 		return r;
1332 	}
1333 
1334 	/*
1335 	 * Copy the superblock.
1336 	 */
1337 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1338 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1339 			       &sb_validator, &copy, &inc);
1340 	if (r)
1341 		return r;
1342 
1343 	BUG_ON(!inc);
1344 
1345 	held_root = dm_block_location(copy);
1346 	disk_super = dm_block_data(copy);
1347 
1348 	if (le64_to_cpu(disk_super->held_root)) {
1349 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1350 
1351 		dm_tm_dec(pmd->tm, held_root);
1352 		dm_tm_unlock(pmd->tm, copy);
1353 		return -EBUSY;
1354 	}
1355 
1356 	/*
1357 	 * Wipe the spacemap since we're not publishing this.
1358 	 */
1359 	memset(&disk_super->data_space_map_root, 0,
1360 	       sizeof(disk_super->data_space_map_root));
1361 	memset(&disk_super->metadata_space_map_root, 0,
1362 	       sizeof(disk_super->metadata_space_map_root));
1363 
1364 	/*
1365 	 * Increment the data structures that need to be preserved.
1366 	 */
1367 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1368 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1369 	dm_tm_unlock(pmd->tm, copy);
1370 
1371 	/*
1372 	 * Write the held root into the superblock.
1373 	 */
1374 	r = superblock_lock(pmd, &sblock);
1375 	if (r) {
1376 		dm_tm_dec(pmd->tm, held_root);
1377 		return r;
1378 	}
1379 
1380 	disk_super = dm_block_data(sblock);
1381 	disk_super->held_root = cpu_to_le64(held_root);
1382 	dm_bm_unlock(sblock);
1383 	return 0;
1384 }
1385 
1386 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1387 {
1388 	int r = -EINVAL;
1389 
1390 	pmd_write_lock(pmd);
1391 	if (!pmd->fail_io)
1392 		r = __reserve_metadata_snap(pmd);
1393 	pmd_write_unlock(pmd);
1394 
1395 	return r;
1396 }
1397 
1398 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1399 {
1400 	int r;
1401 	struct thin_disk_superblock *disk_super;
1402 	struct dm_block *sblock, *copy;
1403 	dm_block_t held_root;
1404 
1405 	r = superblock_lock(pmd, &sblock);
1406 	if (r)
1407 		return r;
1408 
1409 	disk_super = dm_block_data(sblock);
1410 	held_root = le64_to_cpu(disk_super->held_root);
1411 	disk_super->held_root = cpu_to_le64(0);
1412 
1413 	dm_bm_unlock(sblock);
1414 
1415 	if (!held_root) {
1416 		DMWARN("No pool metadata snapshot found: nothing to release.");
1417 		return -EINVAL;
1418 	}
1419 
1420 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1421 	if (r)
1422 		return r;
1423 
1424 	disk_super = dm_block_data(copy);
1425 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1426 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1427 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1428 
1429 	dm_tm_unlock(pmd->tm, copy);
1430 
1431 	return 0;
1432 }
1433 
1434 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1435 {
1436 	int r = -EINVAL;
1437 
1438 	pmd_write_lock(pmd);
1439 	if (!pmd->fail_io)
1440 		r = __release_metadata_snap(pmd);
1441 	pmd_write_unlock(pmd);
1442 
1443 	return r;
1444 }
1445 
1446 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1447 			       dm_block_t *result)
1448 {
1449 	int r;
1450 	struct thin_disk_superblock *disk_super;
1451 	struct dm_block *sblock;
1452 
1453 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1454 			    &sb_validator, &sblock);
1455 	if (r)
1456 		return r;
1457 
1458 	disk_super = dm_block_data(sblock);
1459 	*result = le64_to_cpu(disk_super->held_root);
1460 
1461 	dm_bm_unlock(sblock);
1462 
1463 	return 0;
1464 }
1465 
1466 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1467 			      dm_block_t *result)
1468 {
1469 	int r = -EINVAL;
1470 
1471 	down_read(&pmd->root_lock);
1472 	if (!pmd->fail_io)
1473 		r = __get_metadata_snap(pmd, result);
1474 	up_read(&pmd->root_lock);
1475 
1476 	return r;
1477 }
1478 
1479 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1480 			     struct dm_thin_device **td)
1481 {
1482 	int r = -EINVAL;
1483 
1484 	pmd_write_lock_in_core(pmd);
1485 	if (!pmd->fail_io)
1486 		r = __open_device(pmd, dev, 0, td);
1487 	pmd_write_unlock(pmd);
1488 
1489 	return r;
1490 }
1491 
1492 int dm_pool_close_thin_device(struct dm_thin_device *td)
1493 {
1494 	pmd_write_lock_in_core(td->pmd);
1495 	__close_device(td);
1496 	pmd_write_unlock(td->pmd);
1497 
1498 	return 0;
1499 }
1500 
1501 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1502 {
1503 	return td->id;
1504 }
1505 
1506 /*
1507  * Check whether @time (of block creation) is older than @td's last snapshot.
1508  * If so then the associated block is shared with the last snapshot device.
1509  * Any block on a device created *after* the device last got snapshotted is
1510  * necessarily not shared.
1511  */
1512 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1513 {
1514 	return td->snapshotted_time > time;
1515 }
1516 
1517 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1518 				 struct dm_thin_lookup_result *result)
1519 {
1520 	uint64_t block_time = 0;
1521 	dm_block_t exception_block;
1522 	uint32_t exception_time;
1523 
1524 	block_time = le64_to_cpu(value);
1525 	unpack_block_time(block_time, &exception_block, &exception_time);
1526 	result->block = exception_block;
1527 	result->shared = __snapshotted_since(td, exception_time);
1528 }
1529 
1530 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1531 			int can_issue_io, struct dm_thin_lookup_result *result)
1532 {
1533 	int r;
1534 	__le64 value;
1535 	struct dm_pool_metadata *pmd = td->pmd;
1536 	dm_block_t keys[2] = { td->id, block };
1537 	struct dm_btree_info *info;
1538 
1539 	if (can_issue_io)
1540 		info = &pmd->info;
1541 	else
1542 		info = &pmd->nb_info;
1543 
1544 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1545 	if (!r)
1546 		unpack_lookup_result(td, value, result);
1547 
1548 	return r;
1549 }
1550 
1551 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1552 		       int can_issue_io, struct dm_thin_lookup_result *result)
1553 {
1554 	int r;
1555 	struct dm_pool_metadata *pmd = td->pmd;
1556 
1557 	down_read(&pmd->root_lock);
1558 	if (pmd->fail_io) {
1559 		up_read(&pmd->root_lock);
1560 		return -EINVAL;
1561 	}
1562 
1563 	r = __find_block(td, block, can_issue_io, result);
1564 
1565 	up_read(&pmd->root_lock);
1566 	return r;
1567 }
1568 
1569 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1570 					  dm_block_t *vblock,
1571 					  struct dm_thin_lookup_result *result)
1572 {
1573 	int r;
1574 	__le64 value;
1575 	struct dm_pool_metadata *pmd = td->pmd;
1576 	dm_block_t keys[2] = { td->id, block };
1577 
1578 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1579 	if (!r)
1580 		unpack_lookup_result(td, value, result);
1581 
1582 	return r;
1583 }
1584 
1585 static int __find_mapped_range(struct dm_thin_device *td,
1586 			       dm_block_t begin, dm_block_t end,
1587 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1588 			       dm_block_t *pool_begin, bool *maybe_shared)
1589 {
1590 	int r;
1591 	dm_block_t pool_end;
1592 	struct dm_thin_lookup_result lookup;
1593 
1594 	if (end < begin)
1595 		return -ENODATA;
1596 
1597 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1598 	if (r)
1599 		return r;
1600 
1601 	if (begin >= end)
1602 		return -ENODATA;
1603 
1604 	*thin_begin = begin;
1605 	*pool_begin = lookup.block;
1606 	*maybe_shared = lookup.shared;
1607 
1608 	begin++;
1609 	pool_end = *pool_begin + 1;
1610 	while (begin != end) {
1611 		r = __find_block(td, begin, true, &lookup);
1612 		if (r) {
1613 			if (r == -ENODATA)
1614 				break;
1615 
1616 			return r;
1617 		}
1618 
1619 		if ((lookup.block != pool_end) ||
1620 		    (lookup.shared != *maybe_shared))
1621 			break;
1622 
1623 		pool_end++;
1624 		begin++;
1625 	}
1626 
1627 	*thin_end = begin;
1628 	return 0;
1629 }
1630 
1631 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1632 			      dm_block_t begin, dm_block_t end,
1633 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1634 			      dm_block_t *pool_begin, bool *maybe_shared)
1635 {
1636 	int r = -EINVAL;
1637 	struct dm_pool_metadata *pmd = td->pmd;
1638 
1639 	down_read(&pmd->root_lock);
1640 	if (!pmd->fail_io) {
1641 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1642 					pool_begin, maybe_shared);
1643 	}
1644 	up_read(&pmd->root_lock);
1645 
1646 	return r;
1647 }
1648 
1649 static int __insert(struct dm_thin_device *td, dm_block_t block,
1650 		    dm_block_t data_block)
1651 {
1652 	int r, inserted;
1653 	__le64 value;
1654 	struct dm_pool_metadata *pmd = td->pmd;
1655 	dm_block_t keys[2] = { td->id, block };
1656 
1657 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1658 	__dm_bless_for_disk(&value);
1659 
1660 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1661 				   &pmd->root, &inserted);
1662 	if (r)
1663 		return r;
1664 
1665 	td->changed = true;
1666 	if (inserted)
1667 		td->mapped_blocks++;
1668 
1669 	return 0;
1670 }
1671 
1672 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1673 			 dm_block_t data_block)
1674 {
1675 	int r = -EINVAL;
1676 
1677 	pmd_write_lock(td->pmd);
1678 	if (!td->pmd->fail_io)
1679 		r = __insert(td, block, data_block);
1680 	pmd_write_unlock(td->pmd);
1681 
1682 	return r;
1683 }
1684 
1685 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1686 {
1687 	int r;
1688 	unsigned int count, total_count = 0;
1689 	struct dm_pool_metadata *pmd = td->pmd;
1690 	dm_block_t keys[1] = { td->id };
1691 	__le64 value;
1692 	dm_block_t mapping_root;
1693 
1694 	/*
1695 	 * Find the mapping tree
1696 	 */
1697 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1698 	if (r)
1699 		return r;
1700 
1701 	/*
1702 	 * Remove from the mapping tree, taking care to inc the
1703 	 * ref count so it doesn't get deleted.
1704 	 */
1705 	mapping_root = le64_to_cpu(value);
1706 	dm_tm_inc(pmd->tm, mapping_root);
1707 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1708 	if (r)
1709 		return r;
1710 
1711 	/*
1712 	 * Remove leaves stops at the first unmapped entry, so we have to
1713 	 * loop round finding mapped ranges.
1714 	 */
1715 	while (begin < end) {
1716 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1717 		if (r == -ENODATA)
1718 			break;
1719 
1720 		if (r)
1721 			return r;
1722 
1723 		if (begin >= end)
1724 			break;
1725 
1726 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1727 		if (r)
1728 			return r;
1729 
1730 		total_count += count;
1731 	}
1732 
1733 	td->mapped_blocks -= total_count;
1734 	td->changed = true;
1735 
1736 	/*
1737 	 * Reinsert the mapping tree.
1738 	 */
1739 	value = cpu_to_le64(mapping_root);
1740 	__dm_bless_for_disk(&value);
1741 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1742 }
1743 
1744 int dm_thin_remove_range(struct dm_thin_device *td,
1745 			 dm_block_t begin, dm_block_t end)
1746 {
1747 	int r = -EINVAL;
1748 
1749 	pmd_write_lock(td->pmd);
1750 	if (!td->pmd->fail_io)
1751 		r = __remove_range(td, begin, end);
1752 	pmd_write_unlock(td->pmd);
1753 
1754 	return r;
1755 }
1756 
1757 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1758 {
1759 	int r;
1760 	uint32_t ref_count;
1761 
1762 	down_read(&pmd->root_lock);
1763 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1764 	if (!r)
1765 		*result = (ref_count > 1);
1766 	up_read(&pmd->root_lock);
1767 
1768 	return r;
1769 }
1770 
1771 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1772 {
1773 	int r = 0;
1774 
1775 	pmd_write_lock(pmd);
1776 	r = dm_sm_inc_blocks(pmd->data_sm, b, e);
1777 	pmd_write_unlock(pmd);
1778 
1779 	return r;
1780 }
1781 
1782 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1783 {
1784 	int r = 0;
1785 
1786 	pmd_write_lock(pmd);
1787 	r = dm_sm_dec_blocks(pmd->data_sm, b, e);
1788 	pmd_write_unlock(pmd);
1789 
1790 	return r;
1791 }
1792 
1793 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1794 {
1795 	int r;
1796 
1797 	down_read(&td->pmd->root_lock);
1798 	r = td->changed;
1799 	up_read(&td->pmd->root_lock);
1800 
1801 	return r;
1802 }
1803 
1804 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1805 {
1806 	bool r = false;
1807 	struct dm_thin_device *td, *tmp;
1808 
1809 	down_read(&pmd->root_lock);
1810 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1811 		if (td->changed) {
1812 			r = td->changed;
1813 			break;
1814 		}
1815 	}
1816 	up_read(&pmd->root_lock);
1817 
1818 	return r;
1819 }
1820 
1821 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1822 {
1823 	bool r;
1824 
1825 	down_read(&td->pmd->root_lock);
1826 	r = td->aborted_with_changes;
1827 	up_read(&td->pmd->root_lock);
1828 
1829 	return r;
1830 }
1831 
1832 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1833 {
1834 	int r = -EINVAL;
1835 
1836 	pmd_write_lock(pmd);
1837 	if (!pmd->fail_io)
1838 		r = dm_sm_new_block(pmd->data_sm, result);
1839 	pmd_write_unlock(pmd);
1840 
1841 	return r;
1842 }
1843 
1844 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1845 {
1846 	int r = -EINVAL;
1847 
1848 	/*
1849 	 * Care is taken to not have commit be what
1850 	 * triggers putting the thin-pool in-service.
1851 	 */
1852 	pmd_write_lock_in_core(pmd);
1853 	if (pmd->fail_io)
1854 		goto out;
1855 
1856 	r = __commit_transaction(pmd);
1857 	if (r < 0)
1858 		goto out;
1859 
1860 	/*
1861 	 * Open the next transaction.
1862 	 */
1863 	r = __begin_transaction(pmd);
1864 out:
1865 	pmd_write_unlock(pmd);
1866 	return r;
1867 }
1868 
1869 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1870 {
1871 	struct dm_thin_device *td;
1872 
1873 	list_for_each_entry(td, &pmd->thin_devices, list)
1874 		td->aborted_with_changes = td->changed;
1875 }
1876 
1877 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1878 {
1879 	int r = -EINVAL;
1880 	struct dm_block_manager *old_bm = NULL, *new_bm = NULL;
1881 
1882 	/* fail_io is double-checked with pmd->root_lock held below */
1883 	if (unlikely(pmd->fail_io))
1884 		return r;
1885 
1886 	/*
1887 	 * Replacement block manager (new_bm) is created and old_bm destroyed outside of
1888 	 * pmd root_lock to avoid ABBA deadlock that would result (due to life-cycle of
1889 	 * shrinker associated with the block manager's bufio client vs pmd root_lock).
1890 	 * - must take shrinker_mutex without holding pmd->root_lock
1891 	 */
1892 	new_bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
1893 					 THIN_MAX_CONCURRENT_LOCKS);
1894 
1895 	pmd_write_lock(pmd);
1896 	if (pmd->fail_io) {
1897 		pmd_write_unlock(pmd);
1898 		goto out;
1899 	}
1900 
1901 	__set_abort_with_changes_flags(pmd);
1902 	__destroy_persistent_data_objects(pmd, false);
1903 	old_bm = pmd->bm;
1904 	if (IS_ERR(new_bm)) {
1905 		DMERR("could not create block manager during abort");
1906 		pmd->bm = NULL;
1907 		r = PTR_ERR(new_bm);
1908 		goto out_unlock;
1909 	}
1910 
1911 	pmd->bm = new_bm;
1912 	r = __open_or_format_metadata(pmd, false);
1913 	if (r) {
1914 		pmd->bm = NULL;
1915 		goto out_unlock;
1916 	}
1917 	new_bm = NULL;
1918 out_unlock:
1919 	if (r)
1920 		pmd->fail_io = true;
1921 	pmd_write_unlock(pmd);
1922 	dm_block_manager_destroy(old_bm);
1923 out:
1924 	if (new_bm && !IS_ERR(new_bm))
1925 		dm_block_manager_destroy(new_bm);
1926 
1927 	return r;
1928 }
1929 
1930 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1931 {
1932 	int r = -EINVAL;
1933 
1934 	down_read(&pmd->root_lock);
1935 	if (!pmd->fail_io)
1936 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1937 	up_read(&pmd->root_lock);
1938 
1939 	return r;
1940 }
1941 
1942 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1943 					  dm_block_t *result)
1944 {
1945 	int r = -EINVAL;
1946 
1947 	down_read(&pmd->root_lock);
1948 	if (!pmd->fail_io)
1949 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1950 
1951 	if (!r) {
1952 		if (*result < pmd->metadata_reserve)
1953 			*result = 0;
1954 		else
1955 			*result -= pmd->metadata_reserve;
1956 	}
1957 	up_read(&pmd->root_lock);
1958 
1959 	return r;
1960 }
1961 
1962 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1963 				  dm_block_t *result)
1964 {
1965 	int r = -EINVAL;
1966 
1967 	down_read(&pmd->root_lock);
1968 	if (!pmd->fail_io)
1969 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1970 	up_read(&pmd->root_lock);
1971 
1972 	return r;
1973 }
1974 
1975 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1976 {
1977 	int r = -EINVAL;
1978 
1979 	down_read(&pmd->root_lock);
1980 	if (!pmd->fail_io)
1981 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1982 	up_read(&pmd->root_lock);
1983 
1984 	return r;
1985 }
1986 
1987 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1988 {
1989 	int r = -EINVAL;
1990 	struct dm_pool_metadata *pmd = td->pmd;
1991 
1992 	down_read(&pmd->root_lock);
1993 	if (!pmd->fail_io) {
1994 		*result = td->mapped_blocks;
1995 		r = 0;
1996 	}
1997 	up_read(&pmd->root_lock);
1998 
1999 	return r;
2000 }
2001 
2002 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
2003 {
2004 	int r;
2005 	__le64 value_le;
2006 	dm_block_t thin_root;
2007 	struct dm_pool_metadata *pmd = td->pmd;
2008 
2009 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
2010 	if (r)
2011 		return r;
2012 
2013 	thin_root = le64_to_cpu(value_le);
2014 
2015 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
2016 }
2017 
2018 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
2019 				     dm_block_t *result)
2020 {
2021 	int r = -EINVAL;
2022 	struct dm_pool_metadata *pmd = td->pmd;
2023 
2024 	down_read(&pmd->root_lock);
2025 	if (!pmd->fail_io)
2026 		r = __highest_block(td, result);
2027 	up_read(&pmd->root_lock);
2028 
2029 	return r;
2030 }
2031 
2032 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2033 {
2034 	int r;
2035 	dm_block_t old_count;
2036 
2037 	r = dm_sm_get_nr_blocks(sm, &old_count);
2038 	if (r)
2039 		return r;
2040 
2041 	if (new_count == old_count)
2042 		return 0;
2043 
2044 	if (new_count < old_count) {
2045 		DMERR("cannot reduce size of space map");
2046 		return -EINVAL;
2047 	}
2048 
2049 	return dm_sm_extend(sm, new_count - old_count);
2050 }
2051 
2052 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2053 {
2054 	int r = -EINVAL;
2055 
2056 	pmd_write_lock(pmd);
2057 	if (!pmd->fail_io)
2058 		r = __resize_space_map(pmd->data_sm, new_count);
2059 	pmd_write_unlock(pmd);
2060 
2061 	return r;
2062 }
2063 
2064 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2065 {
2066 	int r = -EINVAL;
2067 
2068 	pmd_write_lock(pmd);
2069 	if (!pmd->fail_io) {
2070 		r = __resize_space_map(pmd->metadata_sm, new_count);
2071 		if (!r)
2072 			__set_metadata_reserve(pmd);
2073 	}
2074 	pmd_write_unlock(pmd);
2075 
2076 	return r;
2077 }
2078 
2079 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2080 {
2081 	pmd_write_lock_in_core(pmd);
2082 	dm_bm_set_read_only(pmd->bm);
2083 	pmd_write_unlock(pmd);
2084 }
2085 
2086 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2087 {
2088 	pmd_write_lock_in_core(pmd);
2089 	dm_bm_set_read_write(pmd->bm);
2090 	pmd_write_unlock(pmd);
2091 }
2092 
2093 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2094 					dm_block_t threshold,
2095 					dm_sm_threshold_fn fn,
2096 					void *context)
2097 {
2098 	int r = -EINVAL;
2099 
2100 	pmd_write_lock_in_core(pmd);
2101 	if (!pmd->fail_io) {
2102 		r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2103 						      threshold, fn, context);
2104 	}
2105 	pmd_write_unlock(pmd);
2106 
2107 	return r;
2108 }
2109 
2110 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2111 					  dm_pool_pre_commit_fn fn,
2112 					  void *context)
2113 {
2114 	pmd_write_lock_in_core(pmd);
2115 	pmd->pre_commit_fn = fn;
2116 	pmd->pre_commit_context = context;
2117 	pmd_write_unlock(pmd);
2118 }
2119 
2120 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2121 {
2122 	int r = -EINVAL;
2123 	struct dm_block *sblock;
2124 	struct thin_disk_superblock *disk_super;
2125 
2126 	pmd_write_lock(pmd);
2127 	if (pmd->fail_io)
2128 		goto out;
2129 
2130 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2131 
2132 	r = superblock_lock(pmd, &sblock);
2133 	if (r) {
2134 		DMERR("couldn't lock superblock");
2135 		goto out;
2136 	}
2137 
2138 	disk_super = dm_block_data(sblock);
2139 	disk_super->flags = cpu_to_le32(pmd->flags);
2140 
2141 	dm_bm_unlock(sblock);
2142 out:
2143 	pmd_write_unlock(pmd);
2144 	return r;
2145 }
2146 
2147 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2148 {
2149 	bool needs_check;
2150 
2151 	down_read(&pmd->root_lock);
2152 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2153 	up_read(&pmd->root_lock);
2154 
2155 	return needs_check;
2156 }
2157 
2158 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2159 {
2160 	down_read(&pmd->root_lock);
2161 	if (!pmd->fail_io)
2162 		dm_tm_issue_prefetches(pmd->tm);
2163 	up_read(&pmd->root_lock);
2164 }
2165