xref: /openbmc/linux/drivers/md/dm-thin-metadata.c (revision 1830dad34c070161fda2ff1db77b39ffa78aa380)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81 
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91 
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94 
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99 	__le32 csum;	/* Checksum of superblock except for this field. */
100 	__le32 flags;
101 	__le64 blocknr;	/* This block number, dm_block_t. */
102 
103 	__u8 uuid[16];
104 	__le64 magic;
105 	__le32 version;
106 	__le32 time;
107 
108 	__le64 trans_id;
109 
110 	/*
111 	 * Root held by userspace transactions.
112 	 */
113 	__le64 held_root;
114 
115 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117 
118 	/*
119 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 	 */
121 	__le64 data_mapping_root;
122 
123 	/*
124 	 * Device detail root mapping dev_id -> device_details
125 	 */
126 	__le64 device_details_root;
127 
128 	__le32 data_block_size;		/* In 512-byte sectors. */
129 
130 	__le32 metadata_block_size;	/* In 512-byte sectors. */
131 	__le64 metadata_nr_blocks;
132 
133 	__le32 compat_flags;
134 	__le32 compat_ro_flags;
135 	__le32 incompat_flags;
136 } __packed;
137 
138 struct disk_device_details {
139 	__le64 mapped_blocks;
140 	__le64 transaction_id;		/* When created. */
141 	__le32 creation_time;
142 	__le32 snapshotted_time;
143 } __packed;
144 
145 struct dm_pool_metadata {
146 	struct hlist_node hash;
147 
148 	struct block_device *bdev;
149 	struct dm_block_manager *bm;
150 	struct dm_space_map *metadata_sm;
151 	struct dm_space_map *data_sm;
152 	struct dm_transaction_manager *tm;
153 	struct dm_transaction_manager *nb_tm;
154 
155 	/*
156 	 * Two-level btree.
157 	 * First level holds thin_dev_t.
158 	 * Second level holds mappings.
159 	 */
160 	struct dm_btree_info info;
161 
162 	/*
163 	 * Non-blocking version of the above.
164 	 */
165 	struct dm_btree_info nb_info;
166 
167 	/*
168 	 * Just the top level for deleting whole devices.
169 	 */
170 	struct dm_btree_info tl_info;
171 
172 	/*
173 	 * Just the bottom level for creating new devices.
174 	 */
175 	struct dm_btree_info bl_info;
176 
177 	/*
178 	 * Describes the device details btree.
179 	 */
180 	struct dm_btree_info details_info;
181 
182 	struct rw_semaphore root_lock;
183 	uint32_t time;
184 	dm_block_t root;
185 	dm_block_t details_root;
186 	struct list_head thin_devices;
187 	uint64_t trans_id;
188 	unsigned long flags;
189 	sector_t data_block_size;
190 
191 	/*
192 	 * We reserve a section of the metadata for commit overhead.
193 	 * All reported space does *not* include this.
194 	 */
195 	dm_block_t metadata_reserve;
196 
197 	/*
198 	 * Set if a transaction has to be aborted but the attempt to roll back
199 	 * to the previous (good) transaction failed.  The only pool metadata
200 	 * operation possible in this state is the closing of the device.
201 	 */
202 	bool fail_io:1;
203 
204 	/*
205 	 * Reading the space map roots can fail, so we read it into these
206 	 * buffers before the superblock is locked and updated.
207 	 */
208 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
209 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
210 };
211 
212 struct dm_thin_device {
213 	struct list_head list;
214 	struct dm_pool_metadata *pmd;
215 	dm_thin_id id;
216 
217 	int open_count;
218 	bool changed:1;
219 	bool aborted_with_changes:1;
220 	uint64_t mapped_blocks;
221 	uint64_t transaction_id;
222 	uint32_t creation_time;
223 	uint32_t snapshotted_time;
224 };
225 
226 /*----------------------------------------------------------------
227  * superblock validator
228  *--------------------------------------------------------------*/
229 
230 #define SUPERBLOCK_CSUM_XOR 160774
231 
232 static void sb_prepare_for_write(struct dm_block_validator *v,
233 				 struct dm_block *b,
234 				 size_t block_size)
235 {
236 	struct thin_disk_superblock *disk_super = dm_block_data(b);
237 
238 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
239 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
240 						      block_size - sizeof(__le32),
241 						      SUPERBLOCK_CSUM_XOR));
242 }
243 
244 static int sb_check(struct dm_block_validator *v,
245 		    struct dm_block *b,
246 		    size_t block_size)
247 {
248 	struct thin_disk_superblock *disk_super = dm_block_data(b);
249 	__le32 csum_le;
250 
251 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
252 		DMERR("sb_check failed: blocknr %llu: "
253 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
254 		      (unsigned long long)dm_block_location(b));
255 		return -ENOTBLK;
256 	}
257 
258 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
259 		DMERR("sb_check failed: magic %llu: "
260 		      "wanted %llu", le64_to_cpu(disk_super->magic),
261 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
262 		return -EILSEQ;
263 	}
264 
265 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
266 					     block_size - sizeof(__le32),
267 					     SUPERBLOCK_CSUM_XOR));
268 	if (csum_le != disk_super->csum) {
269 		DMERR("sb_check failed: csum %u: wanted %u",
270 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
271 		return -EILSEQ;
272 	}
273 
274 	return 0;
275 }
276 
277 static struct dm_block_validator sb_validator = {
278 	.name = "superblock",
279 	.prepare_for_write = sb_prepare_for_write,
280 	.check = sb_check
281 };
282 
283 /*----------------------------------------------------------------
284  * Methods for the btree value types
285  *--------------------------------------------------------------*/
286 
287 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
288 {
289 	return (b << 24) | t;
290 }
291 
292 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
293 {
294 	*b = v >> 24;
295 	*t = v & ((1 << 24) - 1);
296 }
297 
298 static void data_block_inc(void *context, const void *value_le)
299 {
300 	struct dm_space_map *sm = context;
301 	__le64 v_le;
302 	uint64_t b;
303 	uint32_t t;
304 
305 	memcpy(&v_le, value_le, sizeof(v_le));
306 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
307 	dm_sm_inc_block(sm, b);
308 }
309 
310 static void data_block_dec(void *context, const void *value_le)
311 {
312 	struct dm_space_map *sm = context;
313 	__le64 v_le;
314 	uint64_t b;
315 	uint32_t t;
316 
317 	memcpy(&v_le, value_le, sizeof(v_le));
318 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
319 	dm_sm_dec_block(sm, b);
320 }
321 
322 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
323 {
324 	__le64 v1_le, v2_le;
325 	uint64_t b1, b2;
326 	uint32_t t;
327 
328 	memcpy(&v1_le, value1_le, sizeof(v1_le));
329 	memcpy(&v2_le, value2_le, sizeof(v2_le));
330 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
331 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
332 
333 	return b1 == b2;
334 }
335 
336 static void subtree_inc(void *context, const void *value)
337 {
338 	struct dm_btree_info *info = context;
339 	__le64 root_le;
340 	uint64_t root;
341 
342 	memcpy(&root_le, value, sizeof(root_le));
343 	root = le64_to_cpu(root_le);
344 	dm_tm_inc(info->tm, root);
345 }
346 
347 static void subtree_dec(void *context, const void *value)
348 {
349 	struct dm_btree_info *info = context;
350 	__le64 root_le;
351 	uint64_t root;
352 
353 	memcpy(&root_le, value, sizeof(root_le));
354 	root = le64_to_cpu(root_le);
355 	if (dm_btree_del(info, root))
356 		DMERR("btree delete failed");
357 }
358 
359 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
360 {
361 	__le64 v1_le, v2_le;
362 	memcpy(&v1_le, value1_le, sizeof(v1_le));
363 	memcpy(&v2_le, value2_le, sizeof(v2_le));
364 
365 	return v1_le == v2_le;
366 }
367 
368 /*----------------------------------------------------------------*/
369 
370 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
371 				struct dm_block **sblock)
372 {
373 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
374 				     &sb_validator, sblock);
375 }
376 
377 static int superblock_lock(struct dm_pool_metadata *pmd,
378 			   struct dm_block **sblock)
379 {
380 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
381 				&sb_validator, sblock);
382 }
383 
384 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
385 {
386 	int r;
387 	unsigned i;
388 	struct dm_block *b;
389 	__le64 *data_le, zero = cpu_to_le64(0);
390 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
391 
392 	/*
393 	 * We can't use a validator here - it may be all zeroes.
394 	 */
395 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
396 	if (r)
397 		return r;
398 
399 	data_le = dm_block_data(b);
400 	*result = 1;
401 	for (i = 0; i < block_size; i++) {
402 		if (data_le[i] != zero) {
403 			*result = 0;
404 			break;
405 		}
406 	}
407 
408 	dm_bm_unlock(b);
409 
410 	return 0;
411 }
412 
413 static void __setup_btree_details(struct dm_pool_metadata *pmd)
414 {
415 	pmd->info.tm = pmd->tm;
416 	pmd->info.levels = 2;
417 	pmd->info.value_type.context = pmd->data_sm;
418 	pmd->info.value_type.size = sizeof(__le64);
419 	pmd->info.value_type.inc = data_block_inc;
420 	pmd->info.value_type.dec = data_block_dec;
421 	pmd->info.value_type.equal = data_block_equal;
422 
423 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
424 	pmd->nb_info.tm = pmd->nb_tm;
425 
426 	pmd->tl_info.tm = pmd->tm;
427 	pmd->tl_info.levels = 1;
428 	pmd->tl_info.value_type.context = &pmd->bl_info;
429 	pmd->tl_info.value_type.size = sizeof(__le64);
430 	pmd->tl_info.value_type.inc = subtree_inc;
431 	pmd->tl_info.value_type.dec = subtree_dec;
432 	pmd->tl_info.value_type.equal = subtree_equal;
433 
434 	pmd->bl_info.tm = pmd->tm;
435 	pmd->bl_info.levels = 1;
436 	pmd->bl_info.value_type.context = pmd->data_sm;
437 	pmd->bl_info.value_type.size = sizeof(__le64);
438 	pmd->bl_info.value_type.inc = data_block_inc;
439 	pmd->bl_info.value_type.dec = data_block_dec;
440 	pmd->bl_info.value_type.equal = data_block_equal;
441 
442 	pmd->details_info.tm = pmd->tm;
443 	pmd->details_info.levels = 1;
444 	pmd->details_info.value_type.context = NULL;
445 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
446 	pmd->details_info.value_type.inc = NULL;
447 	pmd->details_info.value_type.dec = NULL;
448 	pmd->details_info.value_type.equal = NULL;
449 }
450 
451 static int save_sm_roots(struct dm_pool_metadata *pmd)
452 {
453 	int r;
454 	size_t len;
455 
456 	r = dm_sm_root_size(pmd->metadata_sm, &len);
457 	if (r < 0)
458 		return r;
459 
460 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
461 	if (r < 0)
462 		return r;
463 
464 	r = dm_sm_root_size(pmd->data_sm, &len);
465 	if (r < 0)
466 		return r;
467 
468 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
469 }
470 
471 static void copy_sm_roots(struct dm_pool_metadata *pmd,
472 			  struct thin_disk_superblock *disk)
473 {
474 	memcpy(&disk->metadata_space_map_root,
475 	       &pmd->metadata_space_map_root,
476 	       sizeof(pmd->metadata_space_map_root));
477 
478 	memcpy(&disk->data_space_map_root,
479 	       &pmd->data_space_map_root,
480 	       sizeof(pmd->data_space_map_root));
481 }
482 
483 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
484 {
485 	int r;
486 	struct dm_block *sblock;
487 	struct thin_disk_superblock *disk_super;
488 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
489 
490 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
491 		bdev_size = THIN_METADATA_MAX_SECTORS;
492 
493 	r = dm_sm_commit(pmd->data_sm);
494 	if (r < 0)
495 		return r;
496 
497 	r = dm_tm_pre_commit(pmd->tm);
498 	if (r < 0)
499 		return r;
500 
501 	r = save_sm_roots(pmd);
502 	if (r < 0)
503 		return r;
504 
505 	r = superblock_lock_zero(pmd, &sblock);
506 	if (r)
507 		return r;
508 
509 	disk_super = dm_block_data(sblock);
510 	disk_super->flags = 0;
511 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
512 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
513 	disk_super->version = cpu_to_le32(THIN_VERSION);
514 	disk_super->time = 0;
515 	disk_super->trans_id = 0;
516 	disk_super->held_root = 0;
517 
518 	copy_sm_roots(pmd, disk_super);
519 
520 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
521 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
522 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
523 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
524 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
525 
526 	return dm_tm_commit(pmd->tm, sblock);
527 }
528 
529 static int __format_metadata(struct dm_pool_metadata *pmd)
530 {
531 	int r;
532 
533 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
534 				 &pmd->tm, &pmd->metadata_sm);
535 	if (r < 0) {
536 		DMERR("tm_create_with_sm failed");
537 		return r;
538 	}
539 
540 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
541 	if (IS_ERR(pmd->data_sm)) {
542 		DMERR("sm_disk_create failed");
543 		r = PTR_ERR(pmd->data_sm);
544 		goto bad_cleanup_tm;
545 	}
546 
547 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
548 	if (!pmd->nb_tm) {
549 		DMERR("could not create non-blocking clone tm");
550 		r = -ENOMEM;
551 		goto bad_cleanup_data_sm;
552 	}
553 
554 	__setup_btree_details(pmd);
555 
556 	r = dm_btree_empty(&pmd->info, &pmd->root);
557 	if (r < 0)
558 		goto bad_cleanup_nb_tm;
559 
560 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
561 	if (r < 0) {
562 		DMERR("couldn't create devices root");
563 		goto bad_cleanup_nb_tm;
564 	}
565 
566 	r = __write_initial_superblock(pmd);
567 	if (r)
568 		goto bad_cleanup_nb_tm;
569 
570 	return 0;
571 
572 bad_cleanup_nb_tm:
573 	dm_tm_destroy(pmd->nb_tm);
574 bad_cleanup_data_sm:
575 	dm_sm_destroy(pmd->data_sm);
576 bad_cleanup_tm:
577 	dm_tm_destroy(pmd->tm);
578 	dm_sm_destroy(pmd->metadata_sm);
579 
580 	return r;
581 }
582 
583 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
584 				     struct dm_pool_metadata *pmd)
585 {
586 	uint32_t features;
587 
588 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
589 	if (features) {
590 		DMERR("could not access metadata due to unsupported optional features (%lx).",
591 		      (unsigned long)features);
592 		return -EINVAL;
593 	}
594 
595 	/*
596 	 * Check for read-only metadata to skip the following RDWR checks.
597 	 */
598 	if (get_disk_ro(pmd->bdev->bd_disk))
599 		return 0;
600 
601 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
602 	if (features) {
603 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
604 		      (unsigned long)features);
605 		return -EINVAL;
606 	}
607 
608 	return 0;
609 }
610 
611 static int __open_metadata(struct dm_pool_metadata *pmd)
612 {
613 	int r;
614 	struct dm_block *sblock;
615 	struct thin_disk_superblock *disk_super;
616 
617 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
618 			    &sb_validator, &sblock);
619 	if (r < 0) {
620 		DMERR("couldn't read superblock");
621 		return r;
622 	}
623 
624 	disk_super = dm_block_data(sblock);
625 
626 	/* Verify the data block size hasn't changed */
627 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
628 		DMERR("changing the data block size (from %u to %llu) is not supported",
629 		      le32_to_cpu(disk_super->data_block_size),
630 		      (unsigned long long)pmd->data_block_size);
631 		r = -EINVAL;
632 		goto bad_unlock_sblock;
633 	}
634 
635 	r = __check_incompat_features(disk_super, pmd);
636 	if (r < 0)
637 		goto bad_unlock_sblock;
638 
639 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
640 			       disk_super->metadata_space_map_root,
641 			       sizeof(disk_super->metadata_space_map_root),
642 			       &pmd->tm, &pmd->metadata_sm);
643 	if (r < 0) {
644 		DMERR("tm_open_with_sm failed");
645 		goto bad_unlock_sblock;
646 	}
647 
648 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
649 				       sizeof(disk_super->data_space_map_root));
650 	if (IS_ERR(pmd->data_sm)) {
651 		DMERR("sm_disk_open failed");
652 		r = PTR_ERR(pmd->data_sm);
653 		goto bad_cleanup_tm;
654 	}
655 
656 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
657 	if (!pmd->nb_tm) {
658 		DMERR("could not create non-blocking clone tm");
659 		r = -ENOMEM;
660 		goto bad_cleanup_data_sm;
661 	}
662 
663 	__setup_btree_details(pmd);
664 	dm_bm_unlock(sblock);
665 
666 	return 0;
667 
668 bad_cleanup_data_sm:
669 	dm_sm_destroy(pmd->data_sm);
670 bad_cleanup_tm:
671 	dm_tm_destroy(pmd->tm);
672 	dm_sm_destroy(pmd->metadata_sm);
673 bad_unlock_sblock:
674 	dm_bm_unlock(sblock);
675 
676 	return r;
677 }
678 
679 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
680 {
681 	int r, unformatted;
682 
683 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
684 	if (r)
685 		return r;
686 
687 	if (unformatted)
688 		return format_device ? __format_metadata(pmd) : -EPERM;
689 
690 	return __open_metadata(pmd);
691 }
692 
693 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
694 {
695 	int r;
696 
697 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
698 					  THIN_MAX_CONCURRENT_LOCKS);
699 	if (IS_ERR(pmd->bm)) {
700 		DMERR("could not create block manager");
701 		return PTR_ERR(pmd->bm);
702 	}
703 
704 	r = __open_or_format_metadata(pmd, format_device);
705 	if (r)
706 		dm_block_manager_destroy(pmd->bm);
707 
708 	return r;
709 }
710 
711 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
712 {
713 	dm_sm_destroy(pmd->data_sm);
714 	dm_sm_destroy(pmd->metadata_sm);
715 	dm_tm_destroy(pmd->nb_tm);
716 	dm_tm_destroy(pmd->tm);
717 	dm_block_manager_destroy(pmd->bm);
718 }
719 
720 static int __begin_transaction(struct dm_pool_metadata *pmd)
721 {
722 	int r;
723 	struct thin_disk_superblock *disk_super;
724 	struct dm_block *sblock;
725 
726 	/*
727 	 * We re-read the superblock every time.  Shouldn't need to do this
728 	 * really.
729 	 */
730 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
731 			    &sb_validator, &sblock);
732 	if (r)
733 		return r;
734 
735 	disk_super = dm_block_data(sblock);
736 	pmd->time = le32_to_cpu(disk_super->time);
737 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
738 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
739 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
740 	pmd->flags = le32_to_cpu(disk_super->flags);
741 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
742 
743 	dm_bm_unlock(sblock);
744 	return 0;
745 }
746 
747 static int __write_changed_details(struct dm_pool_metadata *pmd)
748 {
749 	int r;
750 	struct dm_thin_device *td, *tmp;
751 	struct disk_device_details details;
752 	uint64_t key;
753 
754 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
755 		if (!td->changed)
756 			continue;
757 
758 		key = td->id;
759 
760 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
761 		details.transaction_id = cpu_to_le64(td->transaction_id);
762 		details.creation_time = cpu_to_le32(td->creation_time);
763 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
764 		__dm_bless_for_disk(&details);
765 
766 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
767 				    &key, &details, &pmd->details_root);
768 		if (r)
769 			return r;
770 
771 		if (td->open_count)
772 			td->changed = 0;
773 		else {
774 			list_del(&td->list);
775 			kfree(td);
776 		}
777 	}
778 
779 	return 0;
780 }
781 
782 static int __commit_transaction(struct dm_pool_metadata *pmd)
783 {
784 	int r;
785 	struct thin_disk_superblock *disk_super;
786 	struct dm_block *sblock;
787 
788 	/*
789 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
790 	 */
791 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
792 
793 	r = __write_changed_details(pmd);
794 	if (r < 0)
795 		return r;
796 
797 	r = dm_sm_commit(pmd->data_sm);
798 	if (r < 0)
799 		return r;
800 
801 	r = dm_tm_pre_commit(pmd->tm);
802 	if (r < 0)
803 		return r;
804 
805 	r = save_sm_roots(pmd);
806 	if (r < 0)
807 		return r;
808 
809 	r = superblock_lock(pmd, &sblock);
810 	if (r)
811 		return r;
812 
813 	disk_super = dm_block_data(sblock);
814 	disk_super->time = cpu_to_le32(pmd->time);
815 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
816 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
817 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
818 	disk_super->flags = cpu_to_le32(pmd->flags);
819 
820 	copy_sm_roots(pmd, disk_super);
821 
822 	return dm_tm_commit(pmd->tm, sblock);
823 }
824 
825 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
826 {
827 	int r;
828 	dm_block_t total;
829 	dm_block_t max_blocks = 4096; /* 16M */
830 
831 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
832 	if (r) {
833 		DMERR("could not get size of metadata device");
834 		pmd->metadata_reserve = max_blocks;
835 	} else {
836 		sector_div(total, 10);
837 		pmd->metadata_reserve = min(max_blocks, total);
838 	}
839 }
840 
841 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
842 					       sector_t data_block_size,
843 					       bool format_device)
844 {
845 	int r;
846 	struct dm_pool_metadata *pmd;
847 
848 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
849 	if (!pmd) {
850 		DMERR("could not allocate metadata struct");
851 		return ERR_PTR(-ENOMEM);
852 	}
853 
854 	init_rwsem(&pmd->root_lock);
855 	pmd->time = 0;
856 	INIT_LIST_HEAD(&pmd->thin_devices);
857 	pmd->fail_io = false;
858 	pmd->bdev = bdev;
859 	pmd->data_block_size = data_block_size;
860 
861 	r = __create_persistent_data_objects(pmd, format_device);
862 	if (r) {
863 		kfree(pmd);
864 		return ERR_PTR(r);
865 	}
866 
867 	r = __begin_transaction(pmd);
868 	if (r < 0) {
869 		if (dm_pool_metadata_close(pmd) < 0)
870 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
871 		return ERR_PTR(r);
872 	}
873 
874 	__set_metadata_reserve(pmd);
875 
876 	return pmd;
877 }
878 
879 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
880 {
881 	int r;
882 	unsigned open_devices = 0;
883 	struct dm_thin_device *td, *tmp;
884 
885 	down_read(&pmd->root_lock);
886 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
887 		if (td->open_count)
888 			open_devices++;
889 		else {
890 			list_del(&td->list);
891 			kfree(td);
892 		}
893 	}
894 	up_read(&pmd->root_lock);
895 
896 	if (open_devices) {
897 		DMERR("attempt to close pmd when %u device(s) are still open",
898 		       open_devices);
899 		return -EBUSY;
900 	}
901 
902 	if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
903 		r = __commit_transaction(pmd);
904 		if (r < 0)
905 			DMWARN("%s: __commit_transaction() failed, error = %d",
906 			       __func__, r);
907 	}
908 
909 	if (!pmd->fail_io)
910 		__destroy_persistent_data_objects(pmd);
911 
912 	kfree(pmd);
913 	return 0;
914 }
915 
916 /*
917  * __open_device: Returns @td corresponding to device with id @dev,
918  * creating it if @create is set and incrementing @td->open_count.
919  * On failure, @td is undefined.
920  */
921 static int __open_device(struct dm_pool_metadata *pmd,
922 			 dm_thin_id dev, int create,
923 			 struct dm_thin_device **td)
924 {
925 	int r, changed = 0;
926 	struct dm_thin_device *td2;
927 	uint64_t key = dev;
928 	struct disk_device_details details_le;
929 
930 	/*
931 	 * If the device is already open, return it.
932 	 */
933 	list_for_each_entry(td2, &pmd->thin_devices, list)
934 		if (td2->id == dev) {
935 			/*
936 			 * May not create an already-open device.
937 			 */
938 			if (create)
939 				return -EEXIST;
940 
941 			td2->open_count++;
942 			*td = td2;
943 			return 0;
944 		}
945 
946 	/*
947 	 * Check the device exists.
948 	 */
949 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
950 			    &key, &details_le);
951 	if (r) {
952 		if (r != -ENODATA || !create)
953 			return r;
954 
955 		/*
956 		 * Create new device.
957 		 */
958 		changed = 1;
959 		details_le.mapped_blocks = 0;
960 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
961 		details_le.creation_time = cpu_to_le32(pmd->time);
962 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
963 	}
964 
965 	*td = kmalloc(sizeof(**td), GFP_NOIO);
966 	if (!*td)
967 		return -ENOMEM;
968 
969 	(*td)->pmd = pmd;
970 	(*td)->id = dev;
971 	(*td)->open_count = 1;
972 	(*td)->changed = changed;
973 	(*td)->aborted_with_changes = false;
974 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
975 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
976 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
977 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
978 
979 	list_add(&(*td)->list, &pmd->thin_devices);
980 
981 	return 0;
982 }
983 
984 static void __close_device(struct dm_thin_device *td)
985 {
986 	--td->open_count;
987 }
988 
989 static int __create_thin(struct dm_pool_metadata *pmd,
990 			 dm_thin_id dev)
991 {
992 	int r;
993 	dm_block_t dev_root;
994 	uint64_t key = dev;
995 	struct disk_device_details details_le;
996 	struct dm_thin_device *td;
997 	__le64 value;
998 
999 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1000 			    &key, &details_le);
1001 	if (!r)
1002 		return -EEXIST;
1003 
1004 	/*
1005 	 * Create an empty btree for the mappings.
1006 	 */
1007 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1008 	if (r)
1009 		return r;
1010 
1011 	/*
1012 	 * Insert it into the main mapping tree.
1013 	 */
1014 	value = cpu_to_le64(dev_root);
1015 	__dm_bless_for_disk(&value);
1016 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1017 	if (r) {
1018 		dm_btree_del(&pmd->bl_info, dev_root);
1019 		return r;
1020 	}
1021 
1022 	r = __open_device(pmd, dev, 1, &td);
1023 	if (r) {
1024 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1025 		dm_btree_del(&pmd->bl_info, dev_root);
1026 		return r;
1027 	}
1028 	__close_device(td);
1029 
1030 	return r;
1031 }
1032 
1033 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1034 {
1035 	int r = -EINVAL;
1036 
1037 	down_write(&pmd->root_lock);
1038 	if (!pmd->fail_io)
1039 		r = __create_thin(pmd, dev);
1040 	up_write(&pmd->root_lock);
1041 
1042 	return r;
1043 }
1044 
1045 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1046 				  struct dm_thin_device *snap,
1047 				  dm_thin_id origin, uint32_t time)
1048 {
1049 	int r;
1050 	struct dm_thin_device *td;
1051 
1052 	r = __open_device(pmd, origin, 0, &td);
1053 	if (r)
1054 		return r;
1055 
1056 	td->changed = 1;
1057 	td->snapshotted_time = time;
1058 
1059 	snap->mapped_blocks = td->mapped_blocks;
1060 	snap->snapshotted_time = time;
1061 	__close_device(td);
1062 
1063 	return 0;
1064 }
1065 
1066 static int __create_snap(struct dm_pool_metadata *pmd,
1067 			 dm_thin_id dev, dm_thin_id origin)
1068 {
1069 	int r;
1070 	dm_block_t origin_root;
1071 	uint64_t key = origin, dev_key = dev;
1072 	struct dm_thin_device *td;
1073 	struct disk_device_details details_le;
1074 	__le64 value;
1075 
1076 	/* check this device is unused */
1077 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1078 			    &dev_key, &details_le);
1079 	if (!r)
1080 		return -EEXIST;
1081 
1082 	/* find the mapping tree for the origin */
1083 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1084 	if (r)
1085 		return r;
1086 	origin_root = le64_to_cpu(value);
1087 
1088 	/* clone the origin, an inc will do */
1089 	dm_tm_inc(pmd->tm, origin_root);
1090 
1091 	/* insert into the main mapping tree */
1092 	value = cpu_to_le64(origin_root);
1093 	__dm_bless_for_disk(&value);
1094 	key = dev;
1095 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1096 	if (r) {
1097 		dm_tm_dec(pmd->tm, origin_root);
1098 		return r;
1099 	}
1100 
1101 	pmd->time++;
1102 
1103 	r = __open_device(pmd, dev, 1, &td);
1104 	if (r)
1105 		goto bad;
1106 
1107 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1108 	__close_device(td);
1109 
1110 	if (r)
1111 		goto bad;
1112 
1113 	return 0;
1114 
1115 bad:
1116 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1117 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1118 			&key, &pmd->details_root);
1119 	return r;
1120 }
1121 
1122 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1123 				 dm_thin_id dev,
1124 				 dm_thin_id origin)
1125 {
1126 	int r = -EINVAL;
1127 
1128 	down_write(&pmd->root_lock);
1129 	if (!pmd->fail_io)
1130 		r = __create_snap(pmd, dev, origin);
1131 	up_write(&pmd->root_lock);
1132 
1133 	return r;
1134 }
1135 
1136 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1137 {
1138 	int r;
1139 	uint64_t key = dev;
1140 	struct dm_thin_device *td;
1141 
1142 	/* TODO: failure should mark the transaction invalid */
1143 	r = __open_device(pmd, dev, 0, &td);
1144 	if (r)
1145 		return r;
1146 
1147 	if (td->open_count > 1) {
1148 		__close_device(td);
1149 		return -EBUSY;
1150 	}
1151 
1152 	list_del(&td->list);
1153 	kfree(td);
1154 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1155 			    &key, &pmd->details_root);
1156 	if (r)
1157 		return r;
1158 
1159 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1160 	if (r)
1161 		return r;
1162 
1163 	return 0;
1164 }
1165 
1166 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1167 			       dm_thin_id dev)
1168 {
1169 	int r = -EINVAL;
1170 
1171 	down_write(&pmd->root_lock);
1172 	if (!pmd->fail_io)
1173 		r = __delete_device(pmd, dev);
1174 	up_write(&pmd->root_lock);
1175 
1176 	return r;
1177 }
1178 
1179 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1180 					uint64_t current_id,
1181 					uint64_t new_id)
1182 {
1183 	int r = -EINVAL;
1184 
1185 	down_write(&pmd->root_lock);
1186 
1187 	if (pmd->fail_io)
1188 		goto out;
1189 
1190 	if (pmd->trans_id != current_id) {
1191 		DMERR("mismatched transaction id");
1192 		goto out;
1193 	}
1194 
1195 	pmd->trans_id = new_id;
1196 	r = 0;
1197 
1198 out:
1199 	up_write(&pmd->root_lock);
1200 
1201 	return r;
1202 }
1203 
1204 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1205 					uint64_t *result)
1206 {
1207 	int r = -EINVAL;
1208 
1209 	down_read(&pmd->root_lock);
1210 	if (!pmd->fail_io) {
1211 		*result = pmd->trans_id;
1212 		r = 0;
1213 	}
1214 	up_read(&pmd->root_lock);
1215 
1216 	return r;
1217 }
1218 
1219 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1220 {
1221 	int r, inc;
1222 	struct thin_disk_superblock *disk_super;
1223 	struct dm_block *copy, *sblock;
1224 	dm_block_t held_root;
1225 
1226 	/*
1227 	 * We commit to ensure the btree roots which we increment in a
1228 	 * moment are up to date.
1229 	 */
1230 	__commit_transaction(pmd);
1231 
1232 	/*
1233 	 * Copy the superblock.
1234 	 */
1235 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1236 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1237 			       &sb_validator, &copy, &inc);
1238 	if (r)
1239 		return r;
1240 
1241 	BUG_ON(!inc);
1242 
1243 	held_root = dm_block_location(copy);
1244 	disk_super = dm_block_data(copy);
1245 
1246 	if (le64_to_cpu(disk_super->held_root)) {
1247 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1248 
1249 		dm_tm_dec(pmd->tm, held_root);
1250 		dm_tm_unlock(pmd->tm, copy);
1251 		return -EBUSY;
1252 	}
1253 
1254 	/*
1255 	 * Wipe the spacemap since we're not publishing this.
1256 	 */
1257 	memset(&disk_super->data_space_map_root, 0,
1258 	       sizeof(disk_super->data_space_map_root));
1259 	memset(&disk_super->metadata_space_map_root, 0,
1260 	       sizeof(disk_super->metadata_space_map_root));
1261 
1262 	/*
1263 	 * Increment the data structures that need to be preserved.
1264 	 */
1265 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1266 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1267 	dm_tm_unlock(pmd->tm, copy);
1268 
1269 	/*
1270 	 * Write the held root into the superblock.
1271 	 */
1272 	r = superblock_lock(pmd, &sblock);
1273 	if (r) {
1274 		dm_tm_dec(pmd->tm, held_root);
1275 		return r;
1276 	}
1277 
1278 	disk_super = dm_block_data(sblock);
1279 	disk_super->held_root = cpu_to_le64(held_root);
1280 	dm_bm_unlock(sblock);
1281 	return 0;
1282 }
1283 
1284 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1285 {
1286 	int r = -EINVAL;
1287 
1288 	down_write(&pmd->root_lock);
1289 	if (!pmd->fail_io)
1290 		r = __reserve_metadata_snap(pmd);
1291 	up_write(&pmd->root_lock);
1292 
1293 	return r;
1294 }
1295 
1296 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1297 {
1298 	int r;
1299 	struct thin_disk_superblock *disk_super;
1300 	struct dm_block *sblock, *copy;
1301 	dm_block_t held_root;
1302 
1303 	r = superblock_lock(pmd, &sblock);
1304 	if (r)
1305 		return r;
1306 
1307 	disk_super = dm_block_data(sblock);
1308 	held_root = le64_to_cpu(disk_super->held_root);
1309 	disk_super->held_root = cpu_to_le64(0);
1310 
1311 	dm_bm_unlock(sblock);
1312 
1313 	if (!held_root) {
1314 		DMWARN("No pool metadata snapshot found: nothing to release.");
1315 		return -EINVAL;
1316 	}
1317 
1318 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1319 	if (r)
1320 		return r;
1321 
1322 	disk_super = dm_block_data(copy);
1323 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1324 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1325 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1326 
1327 	dm_tm_unlock(pmd->tm, copy);
1328 
1329 	return 0;
1330 }
1331 
1332 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1333 {
1334 	int r = -EINVAL;
1335 
1336 	down_write(&pmd->root_lock);
1337 	if (!pmd->fail_io)
1338 		r = __release_metadata_snap(pmd);
1339 	up_write(&pmd->root_lock);
1340 
1341 	return r;
1342 }
1343 
1344 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1345 			       dm_block_t *result)
1346 {
1347 	int r;
1348 	struct thin_disk_superblock *disk_super;
1349 	struct dm_block *sblock;
1350 
1351 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1352 			    &sb_validator, &sblock);
1353 	if (r)
1354 		return r;
1355 
1356 	disk_super = dm_block_data(sblock);
1357 	*result = le64_to_cpu(disk_super->held_root);
1358 
1359 	dm_bm_unlock(sblock);
1360 
1361 	return 0;
1362 }
1363 
1364 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1365 			      dm_block_t *result)
1366 {
1367 	int r = -EINVAL;
1368 
1369 	down_read(&pmd->root_lock);
1370 	if (!pmd->fail_io)
1371 		r = __get_metadata_snap(pmd, result);
1372 	up_read(&pmd->root_lock);
1373 
1374 	return r;
1375 }
1376 
1377 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1378 			     struct dm_thin_device **td)
1379 {
1380 	int r = -EINVAL;
1381 
1382 	down_write(&pmd->root_lock);
1383 	if (!pmd->fail_io)
1384 		r = __open_device(pmd, dev, 0, td);
1385 	up_write(&pmd->root_lock);
1386 
1387 	return r;
1388 }
1389 
1390 int dm_pool_close_thin_device(struct dm_thin_device *td)
1391 {
1392 	down_write(&td->pmd->root_lock);
1393 	__close_device(td);
1394 	up_write(&td->pmd->root_lock);
1395 
1396 	return 0;
1397 }
1398 
1399 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1400 {
1401 	return td->id;
1402 }
1403 
1404 /*
1405  * Check whether @time (of block creation) is older than @td's last snapshot.
1406  * If so then the associated block is shared with the last snapshot device.
1407  * Any block on a device created *after* the device last got snapshotted is
1408  * necessarily not shared.
1409  */
1410 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1411 {
1412 	return td->snapshotted_time > time;
1413 }
1414 
1415 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1416 				 struct dm_thin_lookup_result *result)
1417 {
1418 	uint64_t block_time = 0;
1419 	dm_block_t exception_block;
1420 	uint32_t exception_time;
1421 
1422 	block_time = le64_to_cpu(value);
1423 	unpack_block_time(block_time, &exception_block, &exception_time);
1424 	result->block = exception_block;
1425 	result->shared = __snapshotted_since(td, exception_time);
1426 }
1427 
1428 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1429 			int can_issue_io, struct dm_thin_lookup_result *result)
1430 {
1431 	int r;
1432 	__le64 value;
1433 	struct dm_pool_metadata *pmd = td->pmd;
1434 	dm_block_t keys[2] = { td->id, block };
1435 	struct dm_btree_info *info;
1436 
1437 	if (can_issue_io) {
1438 		info = &pmd->info;
1439 	} else
1440 		info = &pmd->nb_info;
1441 
1442 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1443 	if (!r)
1444 		unpack_lookup_result(td, value, result);
1445 
1446 	return r;
1447 }
1448 
1449 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1450 		       int can_issue_io, struct dm_thin_lookup_result *result)
1451 {
1452 	int r;
1453 	struct dm_pool_metadata *pmd = td->pmd;
1454 
1455 	down_read(&pmd->root_lock);
1456 	if (pmd->fail_io) {
1457 		up_read(&pmd->root_lock);
1458 		return -EINVAL;
1459 	}
1460 
1461 	r = __find_block(td, block, can_issue_io, result);
1462 
1463 	up_read(&pmd->root_lock);
1464 	return r;
1465 }
1466 
1467 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1468 					  dm_block_t *vblock,
1469 					  struct dm_thin_lookup_result *result)
1470 {
1471 	int r;
1472 	__le64 value;
1473 	struct dm_pool_metadata *pmd = td->pmd;
1474 	dm_block_t keys[2] = { td->id, block };
1475 
1476 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1477 	if (!r)
1478 		unpack_lookup_result(td, value, result);
1479 
1480 	return r;
1481 }
1482 
1483 static int __find_mapped_range(struct dm_thin_device *td,
1484 			       dm_block_t begin, dm_block_t end,
1485 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1486 			       dm_block_t *pool_begin, bool *maybe_shared)
1487 {
1488 	int r;
1489 	dm_block_t pool_end;
1490 	struct dm_thin_lookup_result lookup;
1491 
1492 	if (end < begin)
1493 		return -ENODATA;
1494 
1495 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1496 	if (r)
1497 		return r;
1498 
1499 	if (begin >= end)
1500 		return -ENODATA;
1501 
1502 	*thin_begin = begin;
1503 	*pool_begin = lookup.block;
1504 	*maybe_shared = lookup.shared;
1505 
1506 	begin++;
1507 	pool_end = *pool_begin + 1;
1508 	while (begin != end) {
1509 		r = __find_block(td, begin, true, &lookup);
1510 		if (r) {
1511 			if (r == -ENODATA)
1512 				break;
1513 			else
1514 				return r;
1515 		}
1516 
1517 		if ((lookup.block != pool_end) ||
1518 		    (lookup.shared != *maybe_shared))
1519 			break;
1520 
1521 		pool_end++;
1522 		begin++;
1523 	}
1524 
1525 	*thin_end = begin;
1526 	return 0;
1527 }
1528 
1529 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1530 			      dm_block_t begin, dm_block_t end,
1531 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1532 			      dm_block_t *pool_begin, bool *maybe_shared)
1533 {
1534 	int r = -EINVAL;
1535 	struct dm_pool_metadata *pmd = td->pmd;
1536 
1537 	down_read(&pmd->root_lock);
1538 	if (!pmd->fail_io) {
1539 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1540 					pool_begin, maybe_shared);
1541 	}
1542 	up_read(&pmd->root_lock);
1543 
1544 	return r;
1545 }
1546 
1547 static int __insert(struct dm_thin_device *td, dm_block_t block,
1548 		    dm_block_t data_block)
1549 {
1550 	int r, inserted;
1551 	__le64 value;
1552 	struct dm_pool_metadata *pmd = td->pmd;
1553 	dm_block_t keys[2] = { td->id, block };
1554 
1555 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1556 	__dm_bless_for_disk(&value);
1557 
1558 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1559 				   &pmd->root, &inserted);
1560 	if (r)
1561 		return r;
1562 
1563 	td->changed = 1;
1564 	if (inserted)
1565 		td->mapped_blocks++;
1566 
1567 	return 0;
1568 }
1569 
1570 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1571 			 dm_block_t data_block)
1572 {
1573 	int r = -EINVAL;
1574 
1575 	down_write(&td->pmd->root_lock);
1576 	if (!td->pmd->fail_io)
1577 		r = __insert(td, block, data_block);
1578 	up_write(&td->pmd->root_lock);
1579 
1580 	return r;
1581 }
1582 
1583 static int __remove(struct dm_thin_device *td, dm_block_t block)
1584 {
1585 	int r;
1586 	struct dm_pool_metadata *pmd = td->pmd;
1587 	dm_block_t keys[2] = { td->id, block };
1588 
1589 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1590 	if (r)
1591 		return r;
1592 
1593 	td->mapped_blocks--;
1594 	td->changed = 1;
1595 
1596 	return 0;
1597 }
1598 
1599 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1600 {
1601 	int r;
1602 	unsigned count, total_count = 0;
1603 	struct dm_pool_metadata *pmd = td->pmd;
1604 	dm_block_t keys[1] = { td->id };
1605 	__le64 value;
1606 	dm_block_t mapping_root;
1607 
1608 	/*
1609 	 * Find the mapping tree
1610 	 */
1611 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1612 	if (r)
1613 		return r;
1614 
1615 	/*
1616 	 * Remove from the mapping tree, taking care to inc the
1617 	 * ref count so it doesn't get deleted.
1618 	 */
1619 	mapping_root = le64_to_cpu(value);
1620 	dm_tm_inc(pmd->tm, mapping_root);
1621 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1622 	if (r)
1623 		return r;
1624 
1625 	/*
1626 	 * Remove leaves stops at the first unmapped entry, so we have to
1627 	 * loop round finding mapped ranges.
1628 	 */
1629 	while (begin < end) {
1630 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1631 		if (r == -ENODATA)
1632 			break;
1633 
1634 		if (r)
1635 			return r;
1636 
1637 		if (begin >= end)
1638 			break;
1639 
1640 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1641 		if (r)
1642 			return r;
1643 
1644 		total_count += count;
1645 	}
1646 
1647 	td->mapped_blocks -= total_count;
1648 	td->changed = 1;
1649 
1650 	/*
1651 	 * Reinsert the mapping tree.
1652 	 */
1653 	value = cpu_to_le64(mapping_root);
1654 	__dm_bless_for_disk(&value);
1655 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1656 }
1657 
1658 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1659 {
1660 	int r = -EINVAL;
1661 
1662 	down_write(&td->pmd->root_lock);
1663 	if (!td->pmd->fail_io)
1664 		r = __remove(td, block);
1665 	up_write(&td->pmd->root_lock);
1666 
1667 	return r;
1668 }
1669 
1670 int dm_thin_remove_range(struct dm_thin_device *td,
1671 			 dm_block_t begin, dm_block_t end)
1672 {
1673 	int r = -EINVAL;
1674 
1675 	down_write(&td->pmd->root_lock);
1676 	if (!td->pmd->fail_io)
1677 		r = __remove_range(td, begin, end);
1678 	up_write(&td->pmd->root_lock);
1679 
1680 	return r;
1681 }
1682 
1683 int dm_pool_block_is_used(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1684 {
1685 	int r;
1686 	uint32_t ref_count;
1687 
1688 	down_read(&pmd->root_lock);
1689 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1690 	if (!r)
1691 		*result = (ref_count != 0);
1692 	up_read(&pmd->root_lock);
1693 
1694 	return r;
1695 }
1696 
1697 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1698 {
1699 	int r = 0;
1700 
1701 	down_write(&pmd->root_lock);
1702 	for (; b != e; b++) {
1703 		r = dm_sm_inc_block(pmd->data_sm, b);
1704 		if (r)
1705 			break;
1706 	}
1707 	up_write(&pmd->root_lock);
1708 
1709 	return r;
1710 }
1711 
1712 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1713 {
1714 	int r = 0;
1715 
1716 	down_write(&pmd->root_lock);
1717 	for (; b != e; b++) {
1718 		r = dm_sm_dec_block(pmd->data_sm, b);
1719 		if (r)
1720 			break;
1721 	}
1722 	up_write(&pmd->root_lock);
1723 
1724 	return r;
1725 }
1726 
1727 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1728 {
1729 	int r;
1730 
1731 	down_read(&td->pmd->root_lock);
1732 	r = td->changed;
1733 	up_read(&td->pmd->root_lock);
1734 
1735 	return r;
1736 }
1737 
1738 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1739 {
1740 	bool r = false;
1741 	struct dm_thin_device *td, *tmp;
1742 
1743 	down_read(&pmd->root_lock);
1744 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1745 		if (td->changed) {
1746 			r = td->changed;
1747 			break;
1748 		}
1749 	}
1750 	up_read(&pmd->root_lock);
1751 
1752 	return r;
1753 }
1754 
1755 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1756 {
1757 	bool r;
1758 
1759 	down_read(&td->pmd->root_lock);
1760 	r = td->aborted_with_changes;
1761 	up_read(&td->pmd->root_lock);
1762 
1763 	return r;
1764 }
1765 
1766 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1767 {
1768 	int r = -EINVAL;
1769 
1770 	down_write(&pmd->root_lock);
1771 	if (!pmd->fail_io)
1772 		r = dm_sm_new_block(pmd->data_sm, result);
1773 	up_write(&pmd->root_lock);
1774 
1775 	return r;
1776 }
1777 
1778 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1779 {
1780 	int r = -EINVAL;
1781 
1782 	down_write(&pmd->root_lock);
1783 	if (pmd->fail_io)
1784 		goto out;
1785 
1786 	r = __commit_transaction(pmd);
1787 	if (r <= 0)
1788 		goto out;
1789 
1790 	/*
1791 	 * Open the next transaction.
1792 	 */
1793 	r = __begin_transaction(pmd);
1794 out:
1795 	up_write(&pmd->root_lock);
1796 	return r;
1797 }
1798 
1799 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1800 {
1801 	struct dm_thin_device *td;
1802 
1803 	list_for_each_entry(td, &pmd->thin_devices, list)
1804 		td->aborted_with_changes = td->changed;
1805 }
1806 
1807 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1808 {
1809 	int r = -EINVAL;
1810 
1811 	down_write(&pmd->root_lock);
1812 	if (pmd->fail_io)
1813 		goto out;
1814 
1815 	__set_abort_with_changes_flags(pmd);
1816 	__destroy_persistent_data_objects(pmd);
1817 	r = __create_persistent_data_objects(pmd, false);
1818 	if (r)
1819 		pmd->fail_io = true;
1820 
1821 out:
1822 	up_write(&pmd->root_lock);
1823 
1824 	return r;
1825 }
1826 
1827 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1828 {
1829 	int r = -EINVAL;
1830 
1831 	down_read(&pmd->root_lock);
1832 	if (!pmd->fail_io)
1833 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1834 	up_read(&pmd->root_lock);
1835 
1836 	return r;
1837 }
1838 
1839 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1840 					  dm_block_t *result)
1841 {
1842 	int r = -EINVAL;
1843 
1844 	down_read(&pmd->root_lock);
1845 	if (!pmd->fail_io)
1846 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1847 
1848 	if (!r) {
1849 		if (*result < pmd->metadata_reserve)
1850 			*result = 0;
1851 		else
1852 			*result -= pmd->metadata_reserve;
1853 	}
1854 	up_read(&pmd->root_lock);
1855 
1856 	return r;
1857 }
1858 
1859 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1860 				  dm_block_t *result)
1861 {
1862 	int r = -EINVAL;
1863 
1864 	down_read(&pmd->root_lock);
1865 	if (!pmd->fail_io)
1866 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1867 	up_read(&pmd->root_lock);
1868 
1869 	return r;
1870 }
1871 
1872 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1873 {
1874 	int r = -EINVAL;
1875 
1876 	down_read(&pmd->root_lock);
1877 	if (!pmd->fail_io)
1878 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1879 	up_read(&pmd->root_lock);
1880 
1881 	return r;
1882 }
1883 
1884 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1885 {
1886 	int r = -EINVAL;
1887 	struct dm_pool_metadata *pmd = td->pmd;
1888 
1889 	down_read(&pmd->root_lock);
1890 	if (!pmd->fail_io) {
1891 		*result = td->mapped_blocks;
1892 		r = 0;
1893 	}
1894 	up_read(&pmd->root_lock);
1895 
1896 	return r;
1897 }
1898 
1899 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1900 {
1901 	int r;
1902 	__le64 value_le;
1903 	dm_block_t thin_root;
1904 	struct dm_pool_metadata *pmd = td->pmd;
1905 
1906 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1907 	if (r)
1908 		return r;
1909 
1910 	thin_root = le64_to_cpu(value_le);
1911 
1912 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1913 }
1914 
1915 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1916 				     dm_block_t *result)
1917 {
1918 	int r = -EINVAL;
1919 	struct dm_pool_metadata *pmd = td->pmd;
1920 
1921 	down_read(&pmd->root_lock);
1922 	if (!pmd->fail_io)
1923 		r = __highest_block(td, result);
1924 	up_read(&pmd->root_lock);
1925 
1926 	return r;
1927 }
1928 
1929 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1930 {
1931 	int r;
1932 	dm_block_t old_count;
1933 
1934 	r = dm_sm_get_nr_blocks(sm, &old_count);
1935 	if (r)
1936 		return r;
1937 
1938 	if (new_count == old_count)
1939 		return 0;
1940 
1941 	if (new_count < old_count) {
1942 		DMERR("cannot reduce size of space map");
1943 		return -EINVAL;
1944 	}
1945 
1946 	return dm_sm_extend(sm, new_count - old_count);
1947 }
1948 
1949 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1950 {
1951 	int r = -EINVAL;
1952 
1953 	down_write(&pmd->root_lock);
1954 	if (!pmd->fail_io)
1955 		r = __resize_space_map(pmd->data_sm, new_count);
1956 	up_write(&pmd->root_lock);
1957 
1958 	return r;
1959 }
1960 
1961 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1962 {
1963 	int r = -EINVAL;
1964 
1965 	down_write(&pmd->root_lock);
1966 	if (!pmd->fail_io) {
1967 		r = __resize_space_map(pmd->metadata_sm, new_count);
1968 		if (!r)
1969 			__set_metadata_reserve(pmd);
1970 	}
1971 	up_write(&pmd->root_lock);
1972 
1973 	return r;
1974 }
1975 
1976 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1977 {
1978 	down_write(&pmd->root_lock);
1979 	dm_bm_set_read_only(pmd->bm);
1980 	up_write(&pmd->root_lock);
1981 }
1982 
1983 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1984 {
1985 	down_write(&pmd->root_lock);
1986 	dm_bm_set_read_write(pmd->bm);
1987 	up_write(&pmd->root_lock);
1988 }
1989 
1990 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1991 					dm_block_t threshold,
1992 					dm_sm_threshold_fn fn,
1993 					void *context)
1994 {
1995 	int r;
1996 
1997 	down_write(&pmd->root_lock);
1998 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1999 	up_write(&pmd->root_lock);
2000 
2001 	return r;
2002 }
2003 
2004 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2005 {
2006 	int r;
2007 	struct dm_block *sblock;
2008 	struct thin_disk_superblock *disk_super;
2009 
2010 	down_write(&pmd->root_lock);
2011 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2012 
2013 	r = superblock_lock(pmd, &sblock);
2014 	if (r) {
2015 		DMERR("couldn't read superblock");
2016 		goto out;
2017 	}
2018 
2019 	disk_super = dm_block_data(sblock);
2020 	disk_super->flags = cpu_to_le32(pmd->flags);
2021 
2022 	dm_bm_unlock(sblock);
2023 out:
2024 	up_write(&pmd->root_lock);
2025 	return r;
2026 }
2027 
2028 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2029 {
2030 	bool needs_check;
2031 
2032 	down_read(&pmd->root_lock);
2033 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2034 	up_read(&pmd->root_lock);
2035 
2036 	return needs_check;
2037 }
2038 
2039 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2040 {
2041 	down_read(&pmd->root_lock);
2042 	if (!pmd->fail_io)
2043 		dm_tm_issue_prefetches(pmd->tm);
2044 	up_read(&pmd->root_lock);
2045 }
2046