xref: /openbmc/linux/drivers/md/dm-table.c (revision fd589a8f)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <asm/atomic.h>
20 
21 #define DM_MSG_PREFIX "table"
22 
23 #define MAX_DEPTH 16
24 #define NODE_SIZE L1_CACHE_BYTES
25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
27 
28 /*
29  * The table has always exactly one reference from either mapped_device->map
30  * or hash_cell->new_map. This reference is not counted in table->holders.
31  * A pair of dm_create_table/dm_destroy_table functions is used for table
32  * creation/destruction.
33  *
34  * Temporary references from the other code increase table->holders. A pair
35  * of dm_table_get/dm_table_put functions is used to manipulate it.
36  *
37  * When the table is about to be destroyed, we wait for table->holders to
38  * drop to zero.
39  */
40 
41 struct dm_table {
42 	struct mapped_device *md;
43 	atomic_t holders;
44 	unsigned type;
45 
46 	/* btree table */
47 	unsigned int depth;
48 	unsigned int counts[MAX_DEPTH];	/* in nodes */
49 	sector_t *index[MAX_DEPTH];
50 
51 	unsigned int num_targets;
52 	unsigned int num_allocated;
53 	sector_t *highs;
54 	struct dm_target *targets;
55 
56 	/*
57 	 * Indicates the rw permissions for the new logical
58 	 * device.  This should be a combination of FMODE_READ
59 	 * and FMODE_WRITE.
60 	 */
61 	fmode_t mode;
62 
63 	/* a list of devices used by this table */
64 	struct list_head devices;
65 
66 	/* events get handed up using this callback */
67 	void (*event_fn)(void *);
68 	void *event_context;
69 
70 	struct dm_md_mempools *mempools;
71 };
72 
73 /*
74  * Similar to ceiling(log_size(n))
75  */
76 static unsigned int int_log(unsigned int n, unsigned int base)
77 {
78 	int result = 0;
79 
80 	while (n > 1) {
81 		n = dm_div_up(n, base);
82 		result++;
83 	}
84 
85 	return result;
86 }
87 
88 /*
89  * Calculate the index of the child node of the n'th node k'th key.
90  */
91 static inline unsigned int get_child(unsigned int n, unsigned int k)
92 {
93 	return (n * CHILDREN_PER_NODE) + k;
94 }
95 
96 /*
97  * Return the n'th node of level l from table t.
98  */
99 static inline sector_t *get_node(struct dm_table *t,
100 				 unsigned int l, unsigned int n)
101 {
102 	return t->index[l] + (n * KEYS_PER_NODE);
103 }
104 
105 /*
106  * Return the highest key that you could lookup from the n'th
107  * node on level l of the btree.
108  */
109 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
110 {
111 	for (; l < t->depth - 1; l++)
112 		n = get_child(n, CHILDREN_PER_NODE - 1);
113 
114 	if (n >= t->counts[l])
115 		return (sector_t) - 1;
116 
117 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
118 }
119 
120 /*
121  * Fills in a level of the btree based on the highs of the level
122  * below it.
123  */
124 static int setup_btree_index(unsigned int l, struct dm_table *t)
125 {
126 	unsigned int n, k;
127 	sector_t *node;
128 
129 	for (n = 0U; n < t->counts[l]; n++) {
130 		node = get_node(t, l, n);
131 
132 		for (k = 0U; k < KEYS_PER_NODE; k++)
133 			node[k] = high(t, l + 1, get_child(n, k));
134 	}
135 
136 	return 0;
137 }
138 
139 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
140 {
141 	unsigned long size;
142 	void *addr;
143 
144 	/*
145 	 * Check that we're not going to overflow.
146 	 */
147 	if (nmemb > (ULONG_MAX / elem_size))
148 		return NULL;
149 
150 	size = nmemb * elem_size;
151 	addr = vmalloc(size);
152 	if (addr)
153 		memset(addr, 0, size);
154 
155 	return addr;
156 }
157 
158 /*
159  * highs, and targets are managed as dynamic arrays during a
160  * table load.
161  */
162 static int alloc_targets(struct dm_table *t, unsigned int num)
163 {
164 	sector_t *n_highs;
165 	struct dm_target *n_targets;
166 	int n = t->num_targets;
167 
168 	/*
169 	 * Allocate both the target array and offset array at once.
170 	 * Append an empty entry to catch sectors beyond the end of
171 	 * the device.
172 	 */
173 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
174 					  sizeof(sector_t));
175 	if (!n_highs)
176 		return -ENOMEM;
177 
178 	n_targets = (struct dm_target *) (n_highs + num);
179 
180 	if (n) {
181 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
182 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
183 	}
184 
185 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
186 	vfree(t->highs);
187 
188 	t->num_allocated = num;
189 	t->highs = n_highs;
190 	t->targets = n_targets;
191 
192 	return 0;
193 }
194 
195 int dm_table_create(struct dm_table **result, fmode_t mode,
196 		    unsigned num_targets, struct mapped_device *md)
197 {
198 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
199 
200 	if (!t)
201 		return -ENOMEM;
202 
203 	INIT_LIST_HEAD(&t->devices);
204 	atomic_set(&t->holders, 0);
205 
206 	if (!num_targets)
207 		num_targets = KEYS_PER_NODE;
208 
209 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
210 
211 	if (alloc_targets(t, num_targets)) {
212 		kfree(t);
213 		t = NULL;
214 		return -ENOMEM;
215 	}
216 
217 	t->mode = mode;
218 	t->md = md;
219 	*result = t;
220 	return 0;
221 }
222 
223 static void free_devices(struct list_head *devices)
224 {
225 	struct list_head *tmp, *next;
226 
227 	list_for_each_safe(tmp, next, devices) {
228 		struct dm_dev_internal *dd =
229 		    list_entry(tmp, struct dm_dev_internal, list);
230 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
231 		       dd->dm_dev.name);
232 		kfree(dd);
233 	}
234 }
235 
236 void dm_table_destroy(struct dm_table *t)
237 {
238 	unsigned int i;
239 
240 	while (atomic_read(&t->holders))
241 		msleep(1);
242 	smp_mb();
243 
244 	/* free the indexes (see dm_table_complete) */
245 	if (t->depth >= 2)
246 		vfree(t->index[t->depth - 2]);
247 
248 	/* free the targets */
249 	for (i = 0; i < t->num_targets; i++) {
250 		struct dm_target *tgt = t->targets + i;
251 
252 		if (tgt->type->dtr)
253 			tgt->type->dtr(tgt);
254 
255 		dm_put_target_type(tgt->type);
256 	}
257 
258 	vfree(t->highs);
259 
260 	/* free the device list */
261 	if (t->devices.next != &t->devices)
262 		free_devices(&t->devices);
263 
264 	dm_free_md_mempools(t->mempools);
265 
266 	kfree(t);
267 }
268 
269 void dm_table_get(struct dm_table *t)
270 {
271 	atomic_inc(&t->holders);
272 }
273 
274 void dm_table_put(struct dm_table *t)
275 {
276 	if (!t)
277 		return;
278 
279 	smp_mb__before_atomic_dec();
280 	atomic_dec(&t->holders);
281 }
282 
283 /*
284  * Checks to see if we need to extend highs or targets.
285  */
286 static inline int check_space(struct dm_table *t)
287 {
288 	if (t->num_targets >= t->num_allocated)
289 		return alloc_targets(t, t->num_allocated * 2);
290 
291 	return 0;
292 }
293 
294 /*
295  * See if we've already got a device in the list.
296  */
297 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
298 {
299 	struct dm_dev_internal *dd;
300 
301 	list_for_each_entry (dd, l, list)
302 		if (dd->dm_dev.bdev->bd_dev == dev)
303 			return dd;
304 
305 	return NULL;
306 }
307 
308 /*
309  * Open a device so we can use it as a map destination.
310  */
311 static int open_dev(struct dm_dev_internal *d, dev_t dev,
312 		    struct mapped_device *md)
313 {
314 	static char *_claim_ptr = "I belong to device-mapper";
315 	struct block_device *bdev;
316 
317 	int r;
318 
319 	BUG_ON(d->dm_dev.bdev);
320 
321 	bdev = open_by_devnum(dev, d->dm_dev.mode);
322 	if (IS_ERR(bdev))
323 		return PTR_ERR(bdev);
324 	r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
325 	if (r)
326 		blkdev_put(bdev, d->dm_dev.mode);
327 	else
328 		d->dm_dev.bdev = bdev;
329 	return r;
330 }
331 
332 /*
333  * Close a device that we've been using.
334  */
335 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
336 {
337 	if (!d->dm_dev.bdev)
338 		return;
339 
340 	bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
341 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
342 	d->dm_dev.bdev = NULL;
343 }
344 
345 /*
346  * If possible, this checks an area of a destination device is invalid.
347  */
348 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
349 				  sector_t start, sector_t len, void *data)
350 {
351 	struct queue_limits *limits = data;
352 	struct block_device *bdev = dev->bdev;
353 	sector_t dev_size =
354 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
355 	unsigned short logical_block_size_sectors =
356 		limits->logical_block_size >> SECTOR_SHIFT;
357 	char b[BDEVNAME_SIZE];
358 
359 	if (!dev_size)
360 		return 0;
361 
362 	if ((start >= dev_size) || (start + len > dev_size)) {
363 		DMWARN("%s: %s too small for target: "
364 		       "start=%llu, len=%llu, dev_size=%llu",
365 		       dm_device_name(ti->table->md), bdevname(bdev, b),
366 		       (unsigned long long)start,
367 		       (unsigned long long)len,
368 		       (unsigned long long)dev_size);
369 		return 1;
370 	}
371 
372 	if (logical_block_size_sectors <= 1)
373 		return 0;
374 
375 	if (start & (logical_block_size_sectors - 1)) {
376 		DMWARN("%s: start=%llu not aligned to h/w "
377 		       "logical block size %u of %s",
378 		       dm_device_name(ti->table->md),
379 		       (unsigned long long)start,
380 		       limits->logical_block_size, bdevname(bdev, b));
381 		return 1;
382 	}
383 
384 	if (len & (logical_block_size_sectors - 1)) {
385 		DMWARN("%s: len=%llu not aligned to h/w "
386 		       "logical block size %u of %s",
387 		       dm_device_name(ti->table->md),
388 		       (unsigned long long)len,
389 		       limits->logical_block_size, bdevname(bdev, b));
390 		return 1;
391 	}
392 
393 	return 0;
394 }
395 
396 /*
397  * This upgrades the mode on an already open dm_dev, being
398  * careful to leave things as they were if we fail to reopen the
399  * device and not to touch the existing bdev field in case
400  * it is accessed concurrently inside dm_table_any_congested().
401  */
402 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
403 			struct mapped_device *md)
404 {
405 	int r;
406 	struct dm_dev_internal dd_new, dd_old;
407 
408 	dd_new = dd_old = *dd;
409 
410 	dd_new.dm_dev.mode |= new_mode;
411 	dd_new.dm_dev.bdev = NULL;
412 
413 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
414 	if (r)
415 		return r;
416 
417 	dd->dm_dev.mode |= new_mode;
418 	close_dev(&dd_old, md);
419 
420 	return 0;
421 }
422 
423 /*
424  * Add a device to the list, or just increment the usage count if
425  * it's already present.
426  */
427 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
428 			      const char *path, sector_t start, sector_t len,
429 			      fmode_t mode, struct dm_dev **result)
430 {
431 	int r;
432 	dev_t uninitialized_var(dev);
433 	struct dm_dev_internal *dd;
434 	unsigned int major, minor;
435 
436 	BUG_ON(!t);
437 
438 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
439 		/* Extract the major/minor numbers */
440 		dev = MKDEV(major, minor);
441 		if (MAJOR(dev) != major || MINOR(dev) != minor)
442 			return -EOVERFLOW;
443 	} else {
444 		/* convert the path to a device */
445 		struct block_device *bdev = lookup_bdev(path);
446 
447 		if (IS_ERR(bdev))
448 			return PTR_ERR(bdev);
449 		dev = bdev->bd_dev;
450 		bdput(bdev);
451 	}
452 
453 	dd = find_device(&t->devices, dev);
454 	if (!dd) {
455 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
456 		if (!dd)
457 			return -ENOMEM;
458 
459 		dd->dm_dev.mode = mode;
460 		dd->dm_dev.bdev = NULL;
461 
462 		if ((r = open_dev(dd, dev, t->md))) {
463 			kfree(dd);
464 			return r;
465 		}
466 
467 		format_dev_t(dd->dm_dev.name, dev);
468 
469 		atomic_set(&dd->count, 0);
470 		list_add(&dd->list, &t->devices);
471 
472 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
473 		r = upgrade_mode(dd, mode, t->md);
474 		if (r)
475 			return r;
476 	}
477 	atomic_inc(&dd->count);
478 
479 	*result = &dd->dm_dev;
480 	return 0;
481 }
482 
483 /*
484  * Returns the minimum that is _not_ zero, unless both are zero.
485  */
486 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
487 
488 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
489 			 sector_t start, sector_t len, void *data)
490 {
491 	struct queue_limits *limits = data;
492 	struct block_device *bdev = dev->bdev;
493 	struct request_queue *q = bdev_get_queue(bdev);
494 	char b[BDEVNAME_SIZE];
495 
496 	if (unlikely(!q)) {
497 		DMWARN("%s: Cannot set limits for nonexistent device %s",
498 		       dm_device_name(ti->table->md), bdevname(bdev, b));
499 		return 0;
500 	}
501 
502 	if (blk_stack_limits(limits, &q->limits, start << 9) < 0)
503 		DMWARN("%s: target device %s is misaligned: "
504 		       "physical_block_size=%u, logical_block_size=%u, "
505 		       "alignment_offset=%u, start=%llu",
506 		       dm_device_name(ti->table->md), bdevname(bdev, b),
507 		       q->limits.physical_block_size,
508 		       q->limits.logical_block_size,
509 		       q->limits.alignment_offset,
510 		       (unsigned long long) start << 9);
511 
512 
513 	/*
514 	 * Check if merge fn is supported.
515 	 * If not we'll force DM to use PAGE_SIZE or
516 	 * smaller I/O, just to be safe.
517 	 */
518 
519 	if (q->merge_bvec_fn && !ti->type->merge)
520 		limits->max_sectors =
521 			min_not_zero(limits->max_sectors,
522 				     (unsigned int) (PAGE_SIZE >> 9));
523 	return 0;
524 }
525 EXPORT_SYMBOL_GPL(dm_set_device_limits);
526 
527 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
528 		  sector_t len, fmode_t mode, struct dm_dev **result)
529 {
530 	return __table_get_device(ti->table, ti, path,
531 				  start, len, mode, result);
532 }
533 
534 
535 /*
536  * Decrement a devices use count and remove it if necessary.
537  */
538 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
539 {
540 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
541 						  dm_dev);
542 
543 	if (atomic_dec_and_test(&dd->count)) {
544 		close_dev(dd, ti->table->md);
545 		list_del(&dd->list);
546 		kfree(dd);
547 	}
548 }
549 
550 /*
551  * Checks to see if the target joins onto the end of the table.
552  */
553 static int adjoin(struct dm_table *table, struct dm_target *ti)
554 {
555 	struct dm_target *prev;
556 
557 	if (!table->num_targets)
558 		return !ti->begin;
559 
560 	prev = &table->targets[table->num_targets - 1];
561 	return (ti->begin == (prev->begin + prev->len));
562 }
563 
564 /*
565  * Used to dynamically allocate the arg array.
566  */
567 static char **realloc_argv(unsigned *array_size, char **old_argv)
568 {
569 	char **argv;
570 	unsigned new_size;
571 
572 	new_size = *array_size ? *array_size * 2 : 64;
573 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
574 	if (argv) {
575 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
576 		*array_size = new_size;
577 	}
578 
579 	kfree(old_argv);
580 	return argv;
581 }
582 
583 /*
584  * Destructively splits up the argument list to pass to ctr.
585  */
586 int dm_split_args(int *argc, char ***argvp, char *input)
587 {
588 	char *start, *end = input, *out, **argv = NULL;
589 	unsigned array_size = 0;
590 
591 	*argc = 0;
592 
593 	if (!input) {
594 		*argvp = NULL;
595 		return 0;
596 	}
597 
598 	argv = realloc_argv(&array_size, argv);
599 	if (!argv)
600 		return -ENOMEM;
601 
602 	while (1) {
603 		start = end;
604 
605 		/* Skip whitespace */
606 		while (*start && isspace(*start))
607 			start++;
608 
609 		if (!*start)
610 			break;	/* success, we hit the end */
611 
612 		/* 'out' is used to remove any back-quotes */
613 		end = out = start;
614 		while (*end) {
615 			/* Everything apart from '\0' can be quoted */
616 			if (*end == '\\' && *(end + 1)) {
617 				*out++ = *(end + 1);
618 				end += 2;
619 				continue;
620 			}
621 
622 			if (isspace(*end))
623 				break;	/* end of token */
624 
625 			*out++ = *end++;
626 		}
627 
628 		/* have we already filled the array ? */
629 		if ((*argc + 1) > array_size) {
630 			argv = realloc_argv(&array_size, argv);
631 			if (!argv)
632 				return -ENOMEM;
633 		}
634 
635 		/* we know this is whitespace */
636 		if (*end)
637 			end++;
638 
639 		/* terminate the string and put it in the array */
640 		*out = '\0';
641 		argv[*argc] = start;
642 		(*argc)++;
643 	}
644 
645 	*argvp = argv;
646 	return 0;
647 }
648 
649 /*
650  * Impose necessary and sufficient conditions on a devices's table such
651  * that any incoming bio which respects its logical_block_size can be
652  * processed successfully.  If it falls across the boundary between
653  * two or more targets, the size of each piece it gets split into must
654  * be compatible with the logical_block_size of the target processing it.
655  */
656 static int validate_hardware_logical_block_alignment(struct dm_table *table,
657 						 struct queue_limits *limits)
658 {
659 	/*
660 	 * This function uses arithmetic modulo the logical_block_size
661 	 * (in units of 512-byte sectors).
662 	 */
663 	unsigned short device_logical_block_size_sects =
664 		limits->logical_block_size >> SECTOR_SHIFT;
665 
666 	/*
667 	 * Offset of the start of the next table entry, mod logical_block_size.
668 	 */
669 	unsigned short next_target_start = 0;
670 
671 	/*
672 	 * Given an aligned bio that extends beyond the end of a
673 	 * target, how many sectors must the next target handle?
674 	 */
675 	unsigned short remaining = 0;
676 
677 	struct dm_target *uninitialized_var(ti);
678 	struct queue_limits ti_limits;
679 	unsigned i = 0;
680 
681 	/*
682 	 * Check each entry in the table in turn.
683 	 */
684 	while (i < dm_table_get_num_targets(table)) {
685 		ti = dm_table_get_target(table, i++);
686 
687 		blk_set_default_limits(&ti_limits);
688 
689 		/* combine all target devices' limits */
690 		if (ti->type->iterate_devices)
691 			ti->type->iterate_devices(ti, dm_set_device_limits,
692 						  &ti_limits);
693 
694 		/*
695 		 * If the remaining sectors fall entirely within this
696 		 * table entry are they compatible with its logical_block_size?
697 		 */
698 		if (remaining < ti->len &&
699 		    remaining & ((ti_limits.logical_block_size >>
700 				  SECTOR_SHIFT) - 1))
701 			break;	/* Error */
702 
703 		next_target_start =
704 		    (unsigned short) ((next_target_start + ti->len) &
705 				      (device_logical_block_size_sects - 1));
706 		remaining = next_target_start ?
707 		    device_logical_block_size_sects - next_target_start : 0;
708 	}
709 
710 	if (remaining) {
711 		DMWARN("%s: table line %u (start sect %llu len %llu) "
712 		       "not aligned to h/w logical block size %u",
713 		       dm_device_name(table->md), i,
714 		       (unsigned long long) ti->begin,
715 		       (unsigned long long) ti->len,
716 		       limits->logical_block_size);
717 		return -EINVAL;
718 	}
719 
720 	return 0;
721 }
722 
723 int dm_table_add_target(struct dm_table *t, const char *type,
724 			sector_t start, sector_t len, char *params)
725 {
726 	int r = -EINVAL, argc;
727 	char **argv;
728 	struct dm_target *tgt;
729 
730 	if ((r = check_space(t)))
731 		return r;
732 
733 	tgt = t->targets + t->num_targets;
734 	memset(tgt, 0, sizeof(*tgt));
735 
736 	if (!len) {
737 		DMERR("%s: zero-length target", dm_device_name(t->md));
738 		return -EINVAL;
739 	}
740 
741 	tgt->type = dm_get_target_type(type);
742 	if (!tgt->type) {
743 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
744 		      type);
745 		return -EINVAL;
746 	}
747 
748 	tgt->table = t;
749 	tgt->begin = start;
750 	tgt->len = len;
751 	tgt->error = "Unknown error";
752 
753 	/*
754 	 * Does this target adjoin the previous one ?
755 	 */
756 	if (!adjoin(t, tgt)) {
757 		tgt->error = "Gap in table";
758 		r = -EINVAL;
759 		goto bad;
760 	}
761 
762 	r = dm_split_args(&argc, &argv, params);
763 	if (r) {
764 		tgt->error = "couldn't split parameters (insufficient memory)";
765 		goto bad;
766 	}
767 
768 	r = tgt->type->ctr(tgt, argc, argv);
769 	kfree(argv);
770 	if (r)
771 		goto bad;
772 
773 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
774 
775 	return 0;
776 
777  bad:
778 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
779 	dm_put_target_type(tgt->type);
780 	return r;
781 }
782 
783 int dm_table_set_type(struct dm_table *t)
784 {
785 	unsigned i;
786 	unsigned bio_based = 0, request_based = 0;
787 	struct dm_target *tgt;
788 	struct dm_dev_internal *dd;
789 	struct list_head *devices;
790 
791 	for (i = 0; i < t->num_targets; i++) {
792 		tgt = t->targets + i;
793 		if (dm_target_request_based(tgt))
794 			request_based = 1;
795 		else
796 			bio_based = 1;
797 
798 		if (bio_based && request_based) {
799 			DMWARN("Inconsistent table: different target types"
800 			       " can't be mixed up");
801 			return -EINVAL;
802 		}
803 	}
804 
805 	if (bio_based) {
806 		/* We must use this table as bio-based */
807 		t->type = DM_TYPE_BIO_BASED;
808 		return 0;
809 	}
810 
811 	BUG_ON(!request_based); /* No targets in this table */
812 
813 	/* Non-request-stackable devices can't be used for request-based dm */
814 	devices = dm_table_get_devices(t);
815 	list_for_each_entry(dd, devices, list) {
816 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
817 			DMWARN("table load rejected: including"
818 			       " non-request-stackable devices");
819 			return -EINVAL;
820 		}
821 	}
822 
823 	/*
824 	 * Request-based dm supports only tables that have a single target now.
825 	 * To support multiple targets, request splitting support is needed,
826 	 * and that needs lots of changes in the block-layer.
827 	 * (e.g. request completion process for partial completion.)
828 	 */
829 	if (t->num_targets > 1) {
830 		DMWARN("Request-based dm doesn't support multiple targets yet");
831 		return -EINVAL;
832 	}
833 
834 	t->type = DM_TYPE_REQUEST_BASED;
835 
836 	return 0;
837 }
838 
839 unsigned dm_table_get_type(struct dm_table *t)
840 {
841 	return t->type;
842 }
843 
844 bool dm_table_request_based(struct dm_table *t)
845 {
846 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
847 }
848 
849 int dm_table_alloc_md_mempools(struct dm_table *t)
850 {
851 	unsigned type = dm_table_get_type(t);
852 
853 	if (unlikely(type == DM_TYPE_NONE)) {
854 		DMWARN("no table type is set, can't allocate mempools");
855 		return -EINVAL;
856 	}
857 
858 	t->mempools = dm_alloc_md_mempools(type);
859 	if (!t->mempools)
860 		return -ENOMEM;
861 
862 	return 0;
863 }
864 
865 void dm_table_free_md_mempools(struct dm_table *t)
866 {
867 	dm_free_md_mempools(t->mempools);
868 	t->mempools = NULL;
869 }
870 
871 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
872 {
873 	return t->mempools;
874 }
875 
876 static int setup_indexes(struct dm_table *t)
877 {
878 	int i;
879 	unsigned int total = 0;
880 	sector_t *indexes;
881 
882 	/* allocate the space for *all* the indexes */
883 	for (i = t->depth - 2; i >= 0; i--) {
884 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
885 		total += t->counts[i];
886 	}
887 
888 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
889 	if (!indexes)
890 		return -ENOMEM;
891 
892 	/* set up internal nodes, bottom-up */
893 	for (i = t->depth - 2; i >= 0; i--) {
894 		t->index[i] = indexes;
895 		indexes += (KEYS_PER_NODE * t->counts[i]);
896 		setup_btree_index(i, t);
897 	}
898 
899 	return 0;
900 }
901 
902 /*
903  * Builds the btree to index the map.
904  */
905 int dm_table_complete(struct dm_table *t)
906 {
907 	int r = 0;
908 	unsigned int leaf_nodes;
909 
910 	/* how many indexes will the btree have ? */
911 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
912 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
913 
914 	/* leaf layer has already been set up */
915 	t->counts[t->depth - 1] = leaf_nodes;
916 	t->index[t->depth - 1] = t->highs;
917 
918 	if (t->depth >= 2)
919 		r = setup_indexes(t);
920 
921 	return r;
922 }
923 
924 static DEFINE_MUTEX(_event_lock);
925 void dm_table_event_callback(struct dm_table *t,
926 			     void (*fn)(void *), void *context)
927 {
928 	mutex_lock(&_event_lock);
929 	t->event_fn = fn;
930 	t->event_context = context;
931 	mutex_unlock(&_event_lock);
932 }
933 
934 void dm_table_event(struct dm_table *t)
935 {
936 	/*
937 	 * You can no longer call dm_table_event() from interrupt
938 	 * context, use a bottom half instead.
939 	 */
940 	BUG_ON(in_interrupt());
941 
942 	mutex_lock(&_event_lock);
943 	if (t->event_fn)
944 		t->event_fn(t->event_context);
945 	mutex_unlock(&_event_lock);
946 }
947 
948 sector_t dm_table_get_size(struct dm_table *t)
949 {
950 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
951 }
952 
953 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
954 {
955 	if (index >= t->num_targets)
956 		return NULL;
957 
958 	return t->targets + index;
959 }
960 
961 /*
962  * Search the btree for the correct target.
963  *
964  * Caller should check returned pointer with dm_target_is_valid()
965  * to trap I/O beyond end of device.
966  */
967 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
968 {
969 	unsigned int l, n = 0, k = 0;
970 	sector_t *node;
971 
972 	for (l = 0; l < t->depth; l++) {
973 		n = get_child(n, k);
974 		node = get_node(t, l, n);
975 
976 		for (k = 0; k < KEYS_PER_NODE; k++)
977 			if (node[k] >= sector)
978 				break;
979 	}
980 
981 	return &t->targets[(KEYS_PER_NODE * n) + k];
982 }
983 
984 /*
985  * Establish the new table's queue_limits and validate them.
986  */
987 int dm_calculate_queue_limits(struct dm_table *table,
988 			      struct queue_limits *limits)
989 {
990 	struct dm_target *uninitialized_var(ti);
991 	struct queue_limits ti_limits;
992 	unsigned i = 0;
993 
994 	blk_set_default_limits(limits);
995 
996 	while (i < dm_table_get_num_targets(table)) {
997 		blk_set_default_limits(&ti_limits);
998 
999 		ti = dm_table_get_target(table, i++);
1000 
1001 		if (!ti->type->iterate_devices)
1002 			goto combine_limits;
1003 
1004 		/*
1005 		 * Combine queue limits of all the devices this target uses.
1006 		 */
1007 		ti->type->iterate_devices(ti, dm_set_device_limits,
1008 					  &ti_limits);
1009 
1010 		/* Set I/O hints portion of queue limits */
1011 		if (ti->type->io_hints)
1012 			ti->type->io_hints(ti, &ti_limits);
1013 
1014 		/*
1015 		 * Check each device area is consistent with the target's
1016 		 * overall queue limits.
1017 		 */
1018 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1019 					      &ti_limits))
1020 			return -EINVAL;
1021 
1022 combine_limits:
1023 		/*
1024 		 * Merge this target's queue limits into the overall limits
1025 		 * for the table.
1026 		 */
1027 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1028 			DMWARN("%s: target device "
1029 			       "(start sect %llu len %llu) "
1030 			       "is misaligned",
1031 			       dm_device_name(table->md),
1032 			       (unsigned long long) ti->begin,
1033 			       (unsigned long long) ti->len);
1034 	}
1035 
1036 	return validate_hardware_logical_block_alignment(table, limits);
1037 }
1038 
1039 /*
1040  * Set the integrity profile for this device if all devices used have
1041  * matching profiles.
1042  */
1043 static void dm_table_set_integrity(struct dm_table *t)
1044 {
1045 	struct list_head *devices = dm_table_get_devices(t);
1046 	struct dm_dev_internal *prev = NULL, *dd = NULL;
1047 
1048 	if (!blk_get_integrity(dm_disk(t->md)))
1049 		return;
1050 
1051 	list_for_each_entry(dd, devices, list) {
1052 		if (prev &&
1053 		    blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
1054 					  dd->dm_dev.bdev->bd_disk) < 0) {
1055 			DMWARN("%s: integrity not set: %s and %s mismatch",
1056 			       dm_device_name(t->md),
1057 			       prev->dm_dev.bdev->bd_disk->disk_name,
1058 			       dd->dm_dev.bdev->bd_disk->disk_name);
1059 			goto no_integrity;
1060 		}
1061 		prev = dd;
1062 	}
1063 
1064 	if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
1065 		goto no_integrity;
1066 
1067 	blk_integrity_register(dm_disk(t->md),
1068 			       bdev_get_integrity(prev->dm_dev.bdev));
1069 
1070 	return;
1071 
1072 no_integrity:
1073 	blk_integrity_register(dm_disk(t->md), NULL);
1074 
1075 	return;
1076 }
1077 
1078 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1079 			       struct queue_limits *limits)
1080 {
1081 	/*
1082 	 * Each target device in the table has a data area that should normally
1083 	 * be aligned such that the DM device's alignment_offset is 0.
1084 	 * FIXME: Propagate alignment_offsets up the stack and warn of
1085 	 *	  sub-optimal or inconsistent settings.
1086 	 */
1087 	limits->alignment_offset = 0;
1088 	limits->misaligned = 0;
1089 
1090 	/*
1091 	 * Copy table's limits to the DM device's request_queue
1092 	 */
1093 	q->limits = *limits;
1094 
1095 	if (limits->no_cluster)
1096 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1097 	else
1098 		queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
1099 
1100 	dm_table_set_integrity(t);
1101 
1102 	/*
1103 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1104 	 * visible to other CPUs because, once the flag is set, incoming bios
1105 	 * are processed by request-based dm, which refers to the queue
1106 	 * settings.
1107 	 * Until the flag set, bios are passed to bio-based dm and queued to
1108 	 * md->deferred where queue settings are not needed yet.
1109 	 * Those bios are passed to request-based dm at the resume time.
1110 	 */
1111 	smp_mb();
1112 	if (dm_table_request_based(t))
1113 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1114 }
1115 
1116 unsigned int dm_table_get_num_targets(struct dm_table *t)
1117 {
1118 	return t->num_targets;
1119 }
1120 
1121 struct list_head *dm_table_get_devices(struct dm_table *t)
1122 {
1123 	return &t->devices;
1124 }
1125 
1126 fmode_t dm_table_get_mode(struct dm_table *t)
1127 {
1128 	return t->mode;
1129 }
1130 
1131 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1132 {
1133 	int i = t->num_targets;
1134 	struct dm_target *ti = t->targets;
1135 
1136 	while (i--) {
1137 		if (postsuspend) {
1138 			if (ti->type->postsuspend)
1139 				ti->type->postsuspend(ti);
1140 		} else if (ti->type->presuspend)
1141 			ti->type->presuspend(ti);
1142 
1143 		ti++;
1144 	}
1145 }
1146 
1147 void dm_table_presuspend_targets(struct dm_table *t)
1148 {
1149 	if (!t)
1150 		return;
1151 
1152 	suspend_targets(t, 0);
1153 }
1154 
1155 void dm_table_postsuspend_targets(struct dm_table *t)
1156 {
1157 	if (!t)
1158 		return;
1159 
1160 	suspend_targets(t, 1);
1161 }
1162 
1163 int dm_table_resume_targets(struct dm_table *t)
1164 {
1165 	int i, r = 0;
1166 
1167 	for (i = 0; i < t->num_targets; i++) {
1168 		struct dm_target *ti = t->targets + i;
1169 
1170 		if (!ti->type->preresume)
1171 			continue;
1172 
1173 		r = ti->type->preresume(ti);
1174 		if (r)
1175 			return r;
1176 	}
1177 
1178 	for (i = 0; i < t->num_targets; i++) {
1179 		struct dm_target *ti = t->targets + i;
1180 
1181 		if (ti->type->resume)
1182 			ti->type->resume(ti);
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1189 {
1190 	struct dm_dev_internal *dd;
1191 	struct list_head *devices = dm_table_get_devices(t);
1192 	int r = 0;
1193 
1194 	list_for_each_entry(dd, devices, list) {
1195 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1196 		char b[BDEVNAME_SIZE];
1197 
1198 		if (likely(q))
1199 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1200 		else
1201 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1202 				     dm_device_name(t->md),
1203 				     bdevname(dd->dm_dev.bdev, b));
1204 	}
1205 
1206 	return r;
1207 }
1208 
1209 int dm_table_any_busy_target(struct dm_table *t)
1210 {
1211 	unsigned i;
1212 	struct dm_target *ti;
1213 
1214 	for (i = 0; i < t->num_targets; i++) {
1215 		ti = t->targets + i;
1216 		if (ti->type->busy && ti->type->busy(ti))
1217 			return 1;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 void dm_table_unplug_all(struct dm_table *t)
1224 {
1225 	struct dm_dev_internal *dd;
1226 	struct list_head *devices = dm_table_get_devices(t);
1227 
1228 	list_for_each_entry(dd, devices, list) {
1229 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1230 		char b[BDEVNAME_SIZE];
1231 
1232 		if (likely(q))
1233 			blk_unplug(q);
1234 		else
1235 			DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1236 				     dm_device_name(t->md),
1237 				     bdevname(dd->dm_dev.bdev, b));
1238 	}
1239 }
1240 
1241 struct mapped_device *dm_table_get_md(struct dm_table *t)
1242 {
1243 	dm_get(t->md);
1244 
1245 	return t->md;
1246 }
1247 
1248 EXPORT_SYMBOL(dm_vcalloc);
1249 EXPORT_SYMBOL(dm_get_device);
1250 EXPORT_SYMBOL(dm_put_device);
1251 EXPORT_SYMBOL(dm_table_event);
1252 EXPORT_SYMBOL(dm_table_get_size);
1253 EXPORT_SYMBOL(dm_table_get_mode);
1254 EXPORT_SYMBOL(dm_table_get_md);
1255 EXPORT_SYMBOL(dm_table_put);
1256 EXPORT_SYMBOL(dm_table_get);
1257 EXPORT_SYMBOL(dm_table_unplug_all);
1258