1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/mutex.h> 18 #include <linux/delay.h> 19 #include <asm/atomic.h> 20 21 #define DM_MSG_PREFIX "table" 22 23 #define MAX_DEPTH 16 24 #define NODE_SIZE L1_CACHE_BYTES 25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 27 28 /* 29 * The table has always exactly one reference from either mapped_device->map 30 * or hash_cell->new_map. This reference is not counted in table->holders. 31 * A pair of dm_create_table/dm_destroy_table functions is used for table 32 * creation/destruction. 33 * 34 * Temporary references from the other code increase table->holders. A pair 35 * of dm_table_get/dm_table_put functions is used to manipulate it. 36 * 37 * When the table is about to be destroyed, we wait for table->holders to 38 * drop to zero. 39 */ 40 41 struct dm_table { 42 struct mapped_device *md; 43 atomic_t holders; 44 unsigned type; 45 46 /* btree table */ 47 unsigned int depth; 48 unsigned int counts[MAX_DEPTH]; /* in nodes */ 49 sector_t *index[MAX_DEPTH]; 50 51 unsigned int num_targets; 52 unsigned int num_allocated; 53 sector_t *highs; 54 struct dm_target *targets; 55 56 /* 57 * Indicates the rw permissions for the new logical 58 * device. This should be a combination of FMODE_READ 59 * and FMODE_WRITE. 60 */ 61 fmode_t mode; 62 63 /* a list of devices used by this table */ 64 struct list_head devices; 65 66 /* events get handed up using this callback */ 67 void (*event_fn)(void *); 68 void *event_context; 69 70 struct dm_md_mempools *mempools; 71 }; 72 73 /* 74 * Similar to ceiling(log_size(n)) 75 */ 76 static unsigned int int_log(unsigned int n, unsigned int base) 77 { 78 int result = 0; 79 80 while (n > 1) { 81 n = dm_div_up(n, base); 82 result++; 83 } 84 85 return result; 86 } 87 88 /* 89 * Calculate the index of the child node of the n'th node k'th key. 90 */ 91 static inline unsigned int get_child(unsigned int n, unsigned int k) 92 { 93 return (n * CHILDREN_PER_NODE) + k; 94 } 95 96 /* 97 * Return the n'th node of level l from table t. 98 */ 99 static inline sector_t *get_node(struct dm_table *t, 100 unsigned int l, unsigned int n) 101 { 102 return t->index[l] + (n * KEYS_PER_NODE); 103 } 104 105 /* 106 * Return the highest key that you could lookup from the n'th 107 * node on level l of the btree. 108 */ 109 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 110 { 111 for (; l < t->depth - 1; l++) 112 n = get_child(n, CHILDREN_PER_NODE - 1); 113 114 if (n >= t->counts[l]) 115 return (sector_t) - 1; 116 117 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 118 } 119 120 /* 121 * Fills in a level of the btree based on the highs of the level 122 * below it. 123 */ 124 static int setup_btree_index(unsigned int l, struct dm_table *t) 125 { 126 unsigned int n, k; 127 sector_t *node; 128 129 for (n = 0U; n < t->counts[l]; n++) { 130 node = get_node(t, l, n); 131 132 for (k = 0U; k < KEYS_PER_NODE; k++) 133 node[k] = high(t, l + 1, get_child(n, k)); 134 } 135 136 return 0; 137 } 138 139 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 140 { 141 unsigned long size; 142 void *addr; 143 144 /* 145 * Check that we're not going to overflow. 146 */ 147 if (nmemb > (ULONG_MAX / elem_size)) 148 return NULL; 149 150 size = nmemb * elem_size; 151 addr = vmalloc(size); 152 if (addr) 153 memset(addr, 0, size); 154 155 return addr; 156 } 157 158 /* 159 * highs, and targets are managed as dynamic arrays during a 160 * table load. 161 */ 162 static int alloc_targets(struct dm_table *t, unsigned int num) 163 { 164 sector_t *n_highs; 165 struct dm_target *n_targets; 166 int n = t->num_targets; 167 168 /* 169 * Allocate both the target array and offset array at once. 170 * Append an empty entry to catch sectors beyond the end of 171 * the device. 172 */ 173 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 174 sizeof(sector_t)); 175 if (!n_highs) 176 return -ENOMEM; 177 178 n_targets = (struct dm_target *) (n_highs + num); 179 180 if (n) { 181 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 182 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 183 } 184 185 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 186 vfree(t->highs); 187 188 t->num_allocated = num; 189 t->highs = n_highs; 190 t->targets = n_targets; 191 192 return 0; 193 } 194 195 int dm_table_create(struct dm_table **result, fmode_t mode, 196 unsigned num_targets, struct mapped_device *md) 197 { 198 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 199 200 if (!t) 201 return -ENOMEM; 202 203 INIT_LIST_HEAD(&t->devices); 204 atomic_set(&t->holders, 0); 205 206 if (!num_targets) 207 num_targets = KEYS_PER_NODE; 208 209 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 210 211 if (alloc_targets(t, num_targets)) { 212 kfree(t); 213 t = NULL; 214 return -ENOMEM; 215 } 216 217 t->mode = mode; 218 t->md = md; 219 *result = t; 220 return 0; 221 } 222 223 static void free_devices(struct list_head *devices) 224 { 225 struct list_head *tmp, *next; 226 227 list_for_each_safe(tmp, next, devices) { 228 struct dm_dev_internal *dd = 229 list_entry(tmp, struct dm_dev_internal, list); 230 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 231 dd->dm_dev.name); 232 kfree(dd); 233 } 234 } 235 236 void dm_table_destroy(struct dm_table *t) 237 { 238 unsigned int i; 239 240 while (atomic_read(&t->holders)) 241 msleep(1); 242 smp_mb(); 243 244 /* free the indexes (see dm_table_complete) */ 245 if (t->depth >= 2) 246 vfree(t->index[t->depth - 2]); 247 248 /* free the targets */ 249 for (i = 0; i < t->num_targets; i++) { 250 struct dm_target *tgt = t->targets + i; 251 252 if (tgt->type->dtr) 253 tgt->type->dtr(tgt); 254 255 dm_put_target_type(tgt->type); 256 } 257 258 vfree(t->highs); 259 260 /* free the device list */ 261 if (t->devices.next != &t->devices) 262 free_devices(&t->devices); 263 264 dm_free_md_mempools(t->mempools); 265 266 kfree(t); 267 } 268 269 void dm_table_get(struct dm_table *t) 270 { 271 atomic_inc(&t->holders); 272 } 273 274 void dm_table_put(struct dm_table *t) 275 { 276 if (!t) 277 return; 278 279 smp_mb__before_atomic_dec(); 280 atomic_dec(&t->holders); 281 } 282 283 /* 284 * Checks to see if we need to extend highs or targets. 285 */ 286 static inline int check_space(struct dm_table *t) 287 { 288 if (t->num_targets >= t->num_allocated) 289 return alloc_targets(t, t->num_allocated * 2); 290 291 return 0; 292 } 293 294 /* 295 * See if we've already got a device in the list. 296 */ 297 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 298 { 299 struct dm_dev_internal *dd; 300 301 list_for_each_entry (dd, l, list) 302 if (dd->dm_dev.bdev->bd_dev == dev) 303 return dd; 304 305 return NULL; 306 } 307 308 /* 309 * Open a device so we can use it as a map destination. 310 */ 311 static int open_dev(struct dm_dev_internal *d, dev_t dev, 312 struct mapped_device *md) 313 { 314 static char *_claim_ptr = "I belong to device-mapper"; 315 struct block_device *bdev; 316 317 int r; 318 319 BUG_ON(d->dm_dev.bdev); 320 321 bdev = open_by_devnum(dev, d->dm_dev.mode); 322 if (IS_ERR(bdev)) 323 return PTR_ERR(bdev); 324 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 325 if (r) 326 blkdev_put(bdev, d->dm_dev.mode); 327 else 328 d->dm_dev.bdev = bdev; 329 return r; 330 } 331 332 /* 333 * Close a device that we've been using. 334 */ 335 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 336 { 337 if (!d->dm_dev.bdev) 338 return; 339 340 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md)); 341 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode); 342 d->dm_dev.bdev = NULL; 343 } 344 345 /* 346 * If possible, this checks an area of a destination device is invalid. 347 */ 348 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 349 sector_t start, sector_t len, void *data) 350 { 351 struct queue_limits *limits = data; 352 struct block_device *bdev = dev->bdev; 353 sector_t dev_size = 354 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 355 unsigned short logical_block_size_sectors = 356 limits->logical_block_size >> SECTOR_SHIFT; 357 char b[BDEVNAME_SIZE]; 358 359 if (!dev_size) 360 return 0; 361 362 if ((start >= dev_size) || (start + len > dev_size)) { 363 DMWARN("%s: %s too small for target: " 364 "start=%llu, len=%llu, dev_size=%llu", 365 dm_device_name(ti->table->md), bdevname(bdev, b), 366 (unsigned long long)start, 367 (unsigned long long)len, 368 (unsigned long long)dev_size); 369 return 1; 370 } 371 372 if (logical_block_size_sectors <= 1) 373 return 0; 374 375 if (start & (logical_block_size_sectors - 1)) { 376 DMWARN("%s: start=%llu not aligned to h/w " 377 "logical block size %u of %s", 378 dm_device_name(ti->table->md), 379 (unsigned long long)start, 380 limits->logical_block_size, bdevname(bdev, b)); 381 return 1; 382 } 383 384 if (len & (logical_block_size_sectors - 1)) { 385 DMWARN("%s: len=%llu not aligned to h/w " 386 "logical block size %u of %s", 387 dm_device_name(ti->table->md), 388 (unsigned long long)len, 389 limits->logical_block_size, bdevname(bdev, b)); 390 return 1; 391 } 392 393 return 0; 394 } 395 396 /* 397 * This upgrades the mode on an already open dm_dev, being 398 * careful to leave things as they were if we fail to reopen the 399 * device and not to touch the existing bdev field in case 400 * it is accessed concurrently inside dm_table_any_congested(). 401 */ 402 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 403 struct mapped_device *md) 404 { 405 int r; 406 struct dm_dev_internal dd_new, dd_old; 407 408 dd_new = dd_old = *dd; 409 410 dd_new.dm_dev.mode |= new_mode; 411 dd_new.dm_dev.bdev = NULL; 412 413 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 414 if (r) 415 return r; 416 417 dd->dm_dev.mode |= new_mode; 418 close_dev(&dd_old, md); 419 420 return 0; 421 } 422 423 /* 424 * Add a device to the list, or just increment the usage count if 425 * it's already present. 426 */ 427 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 428 const char *path, sector_t start, sector_t len, 429 fmode_t mode, struct dm_dev **result) 430 { 431 int r; 432 dev_t uninitialized_var(dev); 433 struct dm_dev_internal *dd; 434 unsigned int major, minor; 435 436 BUG_ON(!t); 437 438 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 439 /* Extract the major/minor numbers */ 440 dev = MKDEV(major, minor); 441 if (MAJOR(dev) != major || MINOR(dev) != minor) 442 return -EOVERFLOW; 443 } else { 444 /* convert the path to a device */ 445 struct block_device *bdev = lookup_bdev(path); 446 447 if (IS_ERR(bdev)) 448 return PTR_ERR(bdev); 449 dev = bdev->bd_dev; 450 bdput(bdev); 451 } 452 453 dd = find_device(&t->devices, dev); 454 if (!dd) { 455 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 456 if (!dd) 457 return -ENOMEM; 458 459 dd->dm_dev.mode = mode; 460 dd->dm_dev.bdev = NULL; 461 462 if ((r = open_dev(dd, dev, t->md))) { 463 kfree(dd); 464 return r; 465 } 466 467 format_dev_t(dd->dm_dev.name, dev); 468 469 atomic_set(&dd->count, 0); 470 list_add(&dd->list, &t->devices); 471 472 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 473 r = upgrade_mode(dd, mode, t->md); 474 if (r) 475 return r; 476 } 477 atomic_inc(&dd->count); 478 479 *result = &dd->dm_dev; 480 return 0; 481 } 482 483 /* 484 * Returns the minimum that is _not_ zero, unless both are zero. 485 */ 486 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 487 488 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 489 sector_t start, sector_t len, void *data) 490 { 491 struct queue_limits *limits = data; 492 struct block_device *bdev = dev->bdev; 493 struct request_queue *q = bdev_get_queue(bdev); 494 char b[BDEVNAME_SIZE]; 495 496 if (unlikely(!q)) { 497 DMWARN("%s: Cannot set limits for nonexistent device %s", 498 dm_device_name(ti->table->md), bdevname(bdev, b)); 499 return 0; 500 } 501 502 if (blk_stack_limits(limits, &q->limits, start << 9) < 0) 503 DMWARN("%s: target device %s is misaligned: " 504 "physical_block_size=%u, logical_block_size=%u, " 505 "alignment_offset=%u, start=%llu", 506 dm_device_name(ti->table->md), bdevname(bdev, b), 507 q->limits.physical_block_size, 508 q->limits.logical_block_size, 509 q->limits.alignment_offset, 510 (unsigned long long) start << 9); 511 512 513 /* 514 * Check if merge fn is supported. 515 * If not we'll force DM to use PAGE_SIZE or 516 * smaller I/O, just to be safe. 517 */ 518 519 if (q->merge_bvec_fn && !ti->type->merge) 520 limits->max_sectors = 521 min_not_zero(limits->max_sectors, 522 (unsigned int) (PAGE_SIZE >> 9)); 523 return 0; 524 } 525 EXPORT_SYMBOL_GPL(dm_set_device_limits); 526 527 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 528 sector_t len, fmode_t mode, struct dm_dev **result) 529 { 530 return __table_get_device(ti->table, ti, path, 531 start, len, mode, result); 532 } 533 534 535 /* 536 * Decrement a devices use count and remove it if necessary. 537 */ 538 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 539 { 540 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 541 dm_dev); 542 543 if (atomic_dec_and_test(&dd->count)) { 544 close_dev(dd, ti->table->md); 545 list_del(&dd->list); 546 kfree(dd); 547 } 548 } 549 550 /* 551 * Checks to see if the target joins onto the end of the table. 552 */ 553 static int adjoin(struct dm_table *table, struct dm_target *ti) 554 { 555 struct dm_target *prev; 556 557 if (!table->num_targets) 558 return !ti->begin; 559 560 prev = &table->targets[table->num_targets - 1]; 561 return (ti->begin == (prev->begin + prev->len)); 562 } 563 564 /* 565 * Used to dynamically allocate the arg array. 566 */ 567 static char **realloc_argv(unsigned *array_size, char **old_argv) 568 { 569 char **argv; 570 unsigned new_size; 571 572 new_size = *array_size ? *array_size * 2 : 64; 573 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 574 if (argv) { 575 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 576 *array_size = new_size; 577 } 578 579 kfree(old_argv); 580 return argv; 581 } 582 583 /* 584 * Destructively splits up the argument list to pass to ctr. 585 */ 586 int dm_split_args(int *argc, char ***argvp, char *input) 587 { 588 char *start, *end = input, *out, **argv = NULL; 589 unsigned array_size = 0; 590 591 *argc = 0; 592 593 if (!input) { 594 *argvp = NULL; 595 return 0; 596 } 597 598 argv = realloc_argv(&array_size, argv); 599 if (!argv) 600 return -ENOMEM; 601 602 while (1) { 603 start = end; 604 605 /* Skip whitespace */ 606 while (*start && isspace(*start)) 607 start++; 608 609 if (!*start) 610 break; /* success, we hit the end */ 611 612 /* 'out' is used to remove any back-quotes */ 613 end = out = start; 614 while (*end) { 615 /* Everything apart from '\0' can be quoted */ 616 if (*end == '\\' && *(end + 1)) { 617 *out++ = *(end + 1); 618 end += 2; 619 continue; 620 } 621 622 if (isspace(*end)) 623 break; /* end of token */ 624 625 *out++ = *end++; 626 } 627 628 /* have we already filled the array ? */ 629 if ((*argc + 1) > array_size) { 630 argv = realloc_argv(&array_size, argv); 631 if (!argv) 632 return -ENOMEM; 633 } 634 635 /* we know this is whitespace */ 636 if (*end) 637 end++; 638 639 /* terminate the string and put it in the array */ 640 *out = '\0'; 641 argv[*argc] = start; 642 (*argc)++; 643 } 644 645 *argvp = argv; 646 return 0; 647 } 648 649 /* 650 * Impose necessary and sufficient conditions on a devices's table such 651 * that any incoming bio which respects its logical_block_size can be 652 * processed successfully. If it falls across the boundary between 653 * two or more targets, the size of each piece it gets split into must 654 * be compatible with the logical_block_size of the target processing it. 655 */ 656 static int validate_hardware_logical_block_alignment(struct dm_table *table, 657 struct queue_limits *limits) 658 { 659 /* 660 * This function uses arithmetic modulo the logical_block_size 661 * (in units of 512-byte sectors). 662 */ 663 unsigned short device_logical_block_size_sects = 664 limits->logical_block_size >> SECTOR_SHIFT; 665 666 /* 667 * Offset of the start of the next table entry, mod logical_block_size. 668 */ 669 unsigned short next_target_start = 0; 670 671 /* 672 * Given an aligned bio that extends beyond the end of a 673 * target, how many sectors must the next target handle? 674 */ 675 unsigned short remaining = 0; 676 677 struct dm_target *uninitialized_var(ti); 678 struct queue_limits ti_limits; 679 unsigned i = 0; 680 681 /* 682 * Check each entry in the table in turn. 683 */ 684 while (i < dm_table_get_num_targets(table)) { 685 ti = dm_table_get_target(table, i++); 686 687 blk_set_default_limits(&ti_limits); 688 689 /* combine all target devices' limits */ 690 if (ti->type->iterate_devices) 691 ti->type->iterate_devices(ti, dm_set_device_limits, 692 &ti_limits); 693 694 /* 695 * If the remaining sectors fall entirely within this 696 * table entry are they compatible with its logical_block_size? 697 */ 698 if (remaining < ti->len && 699 remaining & ((ti_limits.logical_block_size >> 700 SECTOR_SHIFT) - 1)) 701 break; /* Error */ 702 703 next_target_start = 704 (unsigned short) ((next_target_start + ti->len) & 705 (device_logical_block_size_sects - 1)); 706 remaining = next_target_start ? 707 device_logical_block_size_sects - next_target_start : 0; 708 } 709 710 if (remaining) { 711 DMWARN("%s: table line %u (start sect %llu len %llu) " 712 "not aligned to h/w logical block size %u", 713 dm_device_name(table->md), i, 714 (unsigned long long) ti->begin, 715 (unsigned long long) ti->len, 716 limits->logical_block_size); 717 return -EINVAL; 718 } 719 720 return 0; 721 } 722 723 int dm_table_add_target(struct dm_table *t, const char *type, 724 sector_t start, sector_t len, char *params) 725 { 726 int r = -EINVAL, argc; 727 char **argv; 728 struct dm_target *tgt; 729 730 if ((r = check_space(t))) 731 return r; 732 733 tgt = t->targets + t->num_targets; 734 memset(tgt, 0, sizeof(*tgt)); 735 736 if (!len) { 737 DMERR("%s: zero-length target", dm_device_name(t->md)); 738 return -EINVAL; 739 } 740 741 tgt->type = dm_get_target_type(type); 742 if (!tgt->type) { 743 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 744 type); 745 return -EINVAL; 746 } 747 748 tgt->table = t; 749 tgt->begin = start; 750 tgt->len = len; 751 tgt->error = "Unknown error"; 752 753 /* 754 * Does this target adjoin the previous one ? 755 */ 756 if (!adjoin(t, tgt)) { 757 tgt->error = "Gap in table"; 758 r = -EINVAL; 759 goto bad; 760 } 761 762 r = dm_split_args(&argc, &argv, params); 763 if (r) { 764 tgt->error = "couldn't split parameters (insufficient memory)"; 765 goto bad; 766 } 767 768 r = tgt->type->ctr(tgt, argc, argv); 769 kfree(argv); 770 if (r) 771 goto bad; 772 773 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 774 775 return 0; 776 777 bad: 778 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 779 dm_put_target_type(tgt->type); 780 return r; 781 } 782 783 int dm_table_set_type(struct dm_table *t) 784 { 785 unsigned i; 786 unsigned bio_based = 0, request_based = 0; 787 struct dm_target *tgt; 788 struct dm_dev_internal *dd; 789 struct list_head *devices; 790 791 for (i = 0; i < t->num_targets; i++) { 792 tgt = t->targets + i; 793 if (dm_target_request_based(tgt)) 794 request_based = 1; 795 else 796 bio_based = 1; 797 798 if (bio_based && request_based) { 799 DMWARN("Inconsistent table: different target types" 800 " can't be mixed up"); 801 return -EINVAL; 802 } 803 } 804 805 if (bio_based) { 806 /* We must use this table as bio-based */ 807 t->type = DM_TYPE_BIO_BASED; 808 return 0; 809 } 810 811 BUG_ON(!request_based); /* No targets in this table */ 812 813 /* Non-request-stackable devices can't be used for request-based dm */ 814 devices = dm_table_get_devices(t); 815 list_for_each_entry(dd, devices, list) { 816 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 817 DMWARN("table load rejected: including" 818 " non-request-stackable devices"); 819 return -EINVAL; 820 } 821 } 822 823 /* 824 * Request-based dm supports only tables that have a single target now. 825 * To support multiple targets, request splitting support is needed, 826 * and that needs lots of changes in the block-layer. 827 * (e.g. request completion process for partial completion.) 828 */ 829 if (t->num_targets > 1) { 830 DMWARN("Request-based dm doesn't support multiple targets yet"); 831 return -EINVAL; 832 } 833 834 t->type = DM_TYPE_REQUEST_BASED; 835 836 return 0; 837 } 838 839 unsigned dm_table_get_type(struct dm_table *t) 840 { 841 return t->type; 842 } 843 844 bool dm_table_request_based(struct dm_table *t) 845 { 846 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 847 } 848 849 int dm_table_alloc_md_mempools(struct dm_table *t) 850 { 851 unsigned type = dm_table_get_type(t); 852 853 if (unlikely(type == DM_TYPE_NONE)) { 854 DMWARN("no table type is set, can't allocate mempools"); 855 return -EINVAL; 856 } 857 858 t->mempools = dm_alloc_md_mempools(type); 859 if (!t->mempools) 860 return -ENOMEM; 861 862 return 0; 863 } 864 865 void dm_table_free_md_mempools(struct dm_table *t) 866 { 867 dm_free_md_mempools(t->mempools); 868 t->mempools = NULL; 869 } 870 871 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 872 { 873 return t->mempools; 874 } 875 876 static int setup_indexes(struct dm_table *t) 877 { 878 int i; 879 unsigned int total = 0; 880 sector_t *indexes; 881 882 /* allocate the space for *all* the indexes */ 883 for (i = t->depth - 2; i >= 0; i--) { 884 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 885 total += t->counts[i]; 886 } 887 888 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 889 if (!indexes) 890 return -ENOMEM; 891 892 /* set up internal nodes, bottom-up */ 893 for (i = t->depth - 2; i >= 0; i--) { 894 t->index[i] = indexes; 895 indexes += (KEYS_PER_NODE * t->counts[i]); 896 setup_btree_index(i, t); 897 } 898 899 return 0; 900 } 901 902 /* 903 * Builds the btree to index the map. 904 */ 905 int dm_table_complete(struct dm_table *t) 906 { 907 int r = 0; 908 unsigned int leaf_nodes; 909 910 /* how many indexes will the btree have ? */ 911 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 912 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 913 914 /* leaf layer has already been set up */ 915 t->counts[t->depth - 1] = leaf_nodes; 916 t->index[t->depth - 1] = t->highs; 917 918 if (t->depth >= 2) 919 r = setup_indexes(t); 920 921 return r; 922 } 923 924 static DEFINE_MUTEX(_event_lock); 925 void dm_table_event_callback(struct dm_table *t, 926 void (*fn)(void *), void *context) 927 { 928 mutex_lock(&_event_lock); 929 t->event_fn = fn; 930 t->event_context = context; 931 mutex_unlock(&_event_lock); 932 } 933 934 void dm_table_event(struct dm_table *t) 935 { 936 /* 937 * You can no longer call dm_table_event() from interrupt 938 * context, use a bottom half instead. 939 */ 940 BUG_ON(in_interrupt()); 941 942 mutex_lock(&_event_lock); 943 if (t->event_fn) 944 t->event_fn(t->event_context); 945 mutex_unlock(&_event_lock); 946 } 947 948 sector_t dm_table_get_size(struct dm_table *t) 949 { 950 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 951 } 952 953 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 954 { 955 if (index >= t->num_targets) 956 return NULL; 957 958 return t->targets + index; 959 } 960 961 /* 962 * Search the btree for the correct target. 963 * 964 * Caller should check returned pointer with dm_target_is_valid() 965 * to trap I/O beyond end of device. 966 */ 967 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 968 { 969 unsigned int l, n = 0, k = 0; 970 sector_t *node; 971 972 for (l = 0; l < t->depth; l++) { 973 n = get_child(n, k); 974 node = get_node(t, l, n); 975 976 for (k = 0; k < KEYS_PER_NODE; k++) 977 if (node[k] >= sector) 978 break; 979 } 980 981 return &t->targets[(KEYS_PER_NODE * n) + k]; 982 } 983 984 /* 985 * Establish the new table's queue_limits and validate them. 986 */ 987 int dm_calculate_queue_limits(struct dm_table *table, 988 struct queue_limits *limits) 989 { 990 struct dm_target *uninitialized_var(ti); 991 struct queue_limits ti_limits; 992 unsigned i = 0; 993 994 blk_set_default_limits(limits); 995 996 while (i < dm_table_get_num_targets(table)) { 997 blk_set_default_limits(&ti_limits); 998 999 ti = dm_table_get_target(table, i++); 1000 1001 if (!ti->type->iterate_devices) 1002 goto combine_limits; 1003 1004 /* 1005 * Combine queue limits of all the devices this target uses. 1006 */ 1007 ti->type->iterate_devices(ti, dm_set_device_limits, 1008 &ti_limits); 1009 1010 /* Set I/O hints portion of queue limits */ 1011 if (ti->type->io_hints) 1012 ti->type->io_hints(ti, &ti_limits); 1013 1014 /* 1015 * Check each device area is consistent with the target's 1016 * overall queue limits. 1017 */ 1018 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1019 &ti_limits)) 1020 return -EINVAL; 1021 1022 combine_limits: 1023 /* 1024 * Merge this target's queue limits into the overall limits 1025 * for the table. 1026 */ 1027 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1028 DMWARN("%s: target device " 1029 "(start sect %llu len %llu) " 1030 "is misaligned", 1031 dm_device_name(table->md), 1032 (unsigned long long) ti->begin, 1033 (unsigned long long) ti->len); 1034 } 1035 1036 return validate_hardware_logical_block_alignment(table, limits); 1037 } 1038 1039 /* 1040 * Set the integrity profile for this device if all devices used have 1041 * matching profiles. 1042 */ 1043 static void dm_table_set_integrity(struct dm_table *t) 1044 { 1045 struct list_head *devices = dm_table_get_devices(t); 1046 struct dm_dev_internal *prev = NULL, *dd = NULL; 1047 1048 if (!blk_get_integrity(dm_disk(t->md))) 1049 return; 1050 1051 list_for_each_entry(dd, devices, list) { 1052 if (prev && 1053 blk_integrity_compare(prev->dm_dev.bdev->bd_disk, 1054 dd->dm_dev.bdev->bd_disk) < 0) { 1055 DMWARN("%s: integrity not set: %s and %s mismatch", 1056 dm_device_name(t->md), 1057 prev->dm_dev.bdev->bd_disk->disk_name, 1058 dd->dm_dev.bdev->bd_disk->disk_name); 1059 goto no_integrity; 1060 } 1061 prev = dd; 1062 } 1063 1064 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev)) 1065 goto no_integrity; 1066 1067 blk_integrity_register(dm_disk(t->md), 1068 bdev_get_integrity(prev->dm_dev.bdev)); 1069 1070 return; 1071 1072 no_integrity: 1073 blk_integrity_register(dm_disk(t->md), NULL); 1074 1075 return; 1076 } 1077 1078 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1079 struct queue_limits *limits) 1080 { 1081 /* 1082 * Each target device in the table has a data area that should normally 1083 * be aligned such that the DM device's alignment_offset is 0. 1084 * FIXME: Propagate alignment_offsets up the stack and warn of 1085 * sub-optimal or inconsistent settings. 1086 */ 1087 limits->alignment_offset = 0; 1088 limits->misaligned = 0; 1089 1090 /* 1091 * Copy table's limits to the DM device's request_queue 1092 */ 1093 q->limits = *limits; 1094 1095 if (limits->no_cluster) 1096 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 1097 else 1098 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); 1099 1100 dm_table_set_integrity(t); 1101 1102 /* 1103 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1104 * visible to other CPUs because, once the flag is set, incoming bios 1105 * are processed by request-based dm, which refers to the queue 1106 * settings. 1107 * Until the flag set, bios are passed to bio-based dm and queued to 1108 * md->deferred where queue settings are not needed yet. 1109 * Those bios are passed to request-based dm at the resume time. 1110 */ 1111 smp_mb(); 1112 if (dm_table_request_based(t)) 1113 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1114 } 1115 1116 unsigned int dm_table_get_num_targets(struct dm_table *t) 1117 { 1118 return t->num_targets; 1119 } 1120 1121 struct list_head *dm_table_get_devices(struct dm_table *t) 1122 { 1123 return &t->devices; 1124 } 1125 1126 fmode_t dm_table_get_mode(struct dm_table *t) 1127 { 1128 return t->mode; 1129 } 1130 1131 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1132 { 1133 int i = t->num_targets; 1134 struct dm_target *ti = t->targets; 1135 1136 while (i--) { 1137 if (postsuspend) { 1138 if (ti->type->postsuspend) 1139 ti->type->postsuspend(ti); 1140 } else if (ti->type->presuspend) 1141 ti->type->presuspend(ti); 1142 1143 ti++; 1144 } 1145 } 1146 1147 void dm_table_presuspend_targets(struct dm_table *t) 1148 { 1149 if (!t) 1150 return; 1151 1152 suspend_targets(t, 0); 1153 } 1154 1155 void dm_table_postsuspend_targets(struct dm_table *t) 1156 { 1157 if (!t) 1158 return; 1159 1160 suspend_targets(t, 1); 1161 } 1162 1163 int dm_table_resume_targets(struct dm_table *t) 1164 { 1165 int i, r = 0; 1166 1167 for (i = 0; i < t->num_targets; i++) { 1168 struct dm_target *ti = t->targets + i; 1169 1170 if (!ti->type->preresume) 1171 continue; 1172 1173 r = ti->type->preresume(ti); 1174 if (r) 1175 return r; 1176 } 1177 1178 for (i = 0; i < t->num_targets; i++) { 1179 struct dm_target *ti = t->targets + i; 1180 1181 if (ti->type->resume) 1182 ti->type->resume(ti); 1183 } 1184 1185 return 0; 1186 } 1187 1188 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1189 { 1190 struct dm_dev_internal *dd; 1191 struct list_head *devices = dm_table_get_devices(t); 1192 int r = 0; 1193 1194 list_for_each_entry(dd, devices, list) { 1195 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1196 char b[BDEVNAME_SIZE]; 1197 1198 if (likely(q)) 1199 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1200 else 1201 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1202 dm_device_name(t->md), 1203 bdevname(dd->dm_dev.bdev, b)); 1204 } 1205 1206 return r; 1207 } 1208 1209 int dm_table_any_busy_target(struct dm_table *t) 1210 { 1211 unsigned i; 1212 struct dm_target *ti; 1213 1214 for (i = 0; i < t->num_targets; i++) { 1215 ti = t->targets + i; 1216 if (ti->type->busy && ti->type->busy(ti)) 1217 return 1; 1218 } 1219 1220 return 0; 1221 } 1222 1223 void dm_table_unplug_all(struct dm_table *t) 1224 { 1225 struct dm_dev_internal *dd; 1226 struct list_head *devices = dm_table_get_devices(t); 1227 1228 list_for_each_entry(dd, devices, list) { 1229 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1230 char b[BDEVNAME_SIZE]; 1231 1232 if (likely(q)) 1233 blk_unplug(q); 1234 else 1235 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s", 1236 dm_device_name(t->md), 1237 bdevname(dd->dm_dev.bdev, b)); 1238 } 1239 } 1240 1241 struct mapped_device *dm_table_get_md(struct dm_table *t) 1242 { 1243 dm_get(t->md); 1244 1245 return t->md; 1246 } 1247 1248 EXPORT_SYMBOL(dm_vcalloc); 1249 EXPORT_SYMBOL(dm_get_device); 1250 EXPORT_SYMBOL(dm_put_device); 1251 EXPORT_SYMBOL(dm_table_event); 1252 EXPORT_SYMBOL(dm_table_get_size); 1253 EXPORT_SYMBOL(dm_table_get_mode); 1254 EXPORT_SYMBOL(dm_table_get_md); 1255 EXPORT_SYMBOL(dm_table_put); 1256 EXPORT_SYMBOL(dm_table_get); 1257 EXPORT_SYMBOL(dm_table_unplug_all); 1258