1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define MAX_DEPTH 16 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 struct dm_table { 33 struct mapped_device *md; 34 enum dm_queue_mode type; 35 36 /* btree table */ 37 unsigned int depth; 38 unsigned int counts[MAX_DEPTH]; /* in nodes */ 39 sector_t *index[MAX_DEPTH]; 40 41 unsigned int num_targets; 42 unsigned int num_allocated; 43 sector_t *highs; 44 struct dm_target *targets; 45 46 struct target_type *immutable_target_type; 47 48 bool integrity_supported:1; 49 bool singleton:1; 50 unsigned integrity_added:1; 51 52 /* 53 * Indicates the rw permissions for the new logical 54 * device. This should be a combination of FMODE_READ 55 * and FMODE_WRITE. 56 */ 57 fmode_t mode; 58 59 /* a list of devices used by this table */ 60 struct list_head devices; 61 62 /* events get handed up using this callback */ 63 void (*event_fn)(void *); 64 void *event_context; 65 66 struct dm_md_mempools *mempools; 67 68 struct list_head target_callbacks; 69 }; 70 71 /* 72 * Similar to ceiling(log_size(n)) 73 */ 74 static unsigned int int_log(unsigned int n, unsigned int base) 75 { 76 int result = 0; 77 78 while (n > 1) { 79 n = dm_div_up(n, base); 80 result++; 81 } 82 83 return result; 84 } 85 86 /* 87 * Calculate the index of the child node of the n'th node k'th key. 88 */ 89 static inline unsigned int get_child(unsigned int n, unsigned int k) 90 { 91 return (n * CHILDREN_PER_NODE) + k; 92 } 93 94 /* 95 * Return the n'th node of level l from table t. 96 */ 97 static inline sector_t *get_node(struct dm_table *t, 98 unsigned int l, unsigned int n) 99 { 100 return t->index[l] + (n * KEYS_PER_NODE); 101 } 102 103 /* 104 * Return the highest key that you could lookup from the n'th 105 * node on level l of the btree. 106 */ 107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 108 { 109 for (; l < t->depth - 1; l++) 110 n = get_child(n, CHILDREN_PER_NODE - 1); 111 112 if (n >= t->counts[l]) 113 return (sector_t) - 1; 114 115 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 116 } 117 118 /* 119 * Fills in a level of the btree based on the highs of the level 120 * below it. 121 */ 122 static int setup_btree_index(unsigned int l, struct dm_table *t) 123 { 124 unsigned int n, k; 125 sector_t *node; 126 127 for (n = 0U; n < t->counts[l]; n++) { 128 node = get_node(t, l, n); 129 130 for (k = 0U; k < KEYS_PER_NODE; k++) 131 node[k] = high(t, l + 1, get_child(n, k)); 132 } 133 134 return 0; 135 } 136 137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 138 { 139 unsigned long size; 140 void *addr; 141 142 /* 143 * Check that we're not going to overflow. 144 */ 145 if (nmemb > (ULONG_MAX / elem_size)) 146 return NULL; 147 148 size = nmemb * elem_size; 149 addr = vzalloc(size); 150 151 return addr; 152 } 153 EXPORT_SYMBOL(dm_vcalloc); 154 155 /* 156 * highs, and targets are managed as dynamic arrays during a 157 * table load. 158 */ 159 static int alloc_targets(struct dm_table *t, unsigned int num) 160 { 161 sector_t *n_highs; 162 struct dm_target *n_targets; 163 164 /* 165 * Allocate both the target array and offset array at once. 166 */ 167 n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) + 168 sizeof(sector_t)); 169 if (!n_highs) 170 return -ENOMEM; 171 172 n_targets = (struct dm_target *) (n_highs + num); 173 174 memset(n_highs, -1, sizeof(*n_highs) * num); 175 vfree(t->highs); 176 177 t->num_allocated = num; 178 t->highs = n_highs; 179 t->targets = n_targets; 180 181 return 0; 182 } 183 184 int dm_table_create(struct dm_table **result, fmode_t mode, 185 unsigned num_targets, struct mapped_device *md) 186 { 187 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 188 189 if (!t) 190 return -ENOMEM; 191 192 INIT_LIST_HEAD(&t->devices); 193 INIT_LIST_HEAD(&t->target_callbacks); 194 195 if (!num_targets) 196 num_targets = KEYS_PER_NODE; 197 198 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 199 200 if (!num_targets) { 201 kfree(t); 202 return -ENOMEM; 203 } 204 205 if (alloc_targets(t, num_targets)) { 206 kfree(t); 207 return -ENOMEM; 208 } 209 210 t->type = DM_TYPE_NONE; 211 t->mode = mode; 212 t->md = md; 213 *result = t; 214 return 0; 215 } 216 217 static void free_devices(struct list_head *devices, struct mapped_device *md) 218 { 219 struct list_head *tmp, *next; 220 221 list_for_each_safe(tmp, next, devices) { 222 struct dm_dev_internal *dd = 223 list_entry(tmp, struct dm_dev_internal, list); 224 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 225 dm_device_name(md), dd->dm_dev->name); 226 dm_put_table_device(md, dd->dm_dev); 227 kfree(dd); 228 } 229 } 230 231 void dm_table_destroy(struct dm_table *t) 232 { 233 unsigned int i; 234 235 if (!t) 236 return; 237 238 /* free the indexes */ 239 if (t->depth >= 2) 240 vfree(t->index[t->depth - 2]); 241 242 /* free the targets */ 243 for (i = 0; i < t->num_targets; i++) { 244 struct dm_target *tgt = t->targets + i; 245 246 if (tgt->type->dtr) 247 tgt->type->dtr(tgt); 248 249 dm_put_target_type(tgt->type); 250 } 251 252 vfree(t->highs); 253 254 /* free the device list */ 255 free_devices(&t->devices, t->md); 256 257 dm_free_md_mempools(t->mempools); 258 259 kfree(t); 260 } 261 262 /* 263 * See if we've already got a device in the list. 264 */ 265 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 266 { 267 struct dm_dev_internal *dd; 268 269 list_for_each_entry (dd, l, list) 270 if (dd->dm_dev->bdev->bd_dev == dev) 271 return dd; 272 273 return NULL; 274 } 275 276 /* 277 * If possible, this checks an area of a destination device is invalid. 278 */ 279 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 280 sector_t start, sector_t len, void *data) 281 { 282 struct queue_limits *limits = data; 283 struct block_device *bdev = dev->bdev; 284 sector_t dev_size = 285 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 286 unsigned short logical_block_size_sectors = 287 limits->logical_block_size >> SECTOR_SHIFT; 288 char b[BDEVNAME_SIZE]; 289 290 if (!dev_size) 291 return 0; 292 293 if ((start >= dev_size) || (start + len > dev_size)) { 294 DMWARN("%s: %s too small for target: " 295 "start=%llu, len=%llu, dev_size=%llu", 296 dm_device_name(ti->table->md), bdevname(bdev, b), 297 (unsigned long long)start, 298 (unsigned long long)len, 299 (unsigned long long)dev_size); 300 return 1; 301 } 302 303 /* 304 * If the target is mapped to zoned block device(s), check 305 * that the zones are not partially mapped. 306 */ 307 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 308 unsigned int zone_sectors = bdev_zone_sectors(bdev); 309 310 if (start & (zone_sectors - 1)) { 311 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 312 dm_device_name(ti->table->md), 313 (unsigned long long)start, 314 zone_sectors, bdevname(bdev, b)); 315 return 1; 316 } 317 318 /* 319 * Note: The last zone of a zoned block device may be smaller 320 * than other zones. So for a target mapping the end of a 321 * zoned block device with such a zone, len would not be zone 322 * aligned. We do not allow such last smaller zone to be part 323 * of the mapping here to ensure that mappings with multiple 324 * devices do not end up with a smaller zone in the middle of 325 * the sector range. 326 */ 327 if (len & (zone_sectors - 1)) { 328 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 329 dm_device_name(ti->table->md), 330 (unsigned long long)len, 331 zone_sectors, bdevname(bdev, b)); 332 return 1; 333 } 334 } 335 336 if (logical_block_size_sectors <= 1) 337 return 0; 338 339 if (start & (logical_block_size_sectors - 1)) { 340 DMWARN("%s: start=%llu not aligned to h/w " 341 "logical block size %u of %s", 342 dm_device_name(ti->table->md), 343 (unsigned long long)start, 344 limits->logical_block_size, bdevname(bdev, b)); 345 return 1; 346 } 347 348 if (len & (logical_block_size_sectors - 1)) { 349 DMWARN("%s: len=%llu not aligned to h/w " 350 "logical block size %u of %s", 351 dm_device_name(ti->table->md), 352 (unsigned long long)len, 353 limits->logical_block_size, bdevname(bdev, b)); 354 return 1; 355 } 356 357 return 0; 358 } 359 360 /* 361 * This upgrades the mode on an already open dm_dev, being 362 * careful to leave things as they were if we fail to reopen the 363 * device and not to touch the existing bdev field in case 364 * it is accessed concurrently inside dm_table_any_congested(). 365 */ 366 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 367 struct mapped_device *md) 368 { 369 int r; 370 struct dm_dev *old_dev, *new_dev; 371 372 old_dev = dd->dm_dev; 373 374 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 375 dd->dm_dev->mode | new_mode, &new_dev); 376 if (r) 377 return r; 378 379 dd->dm_dev = new_dev; 380 dm_put_table_device(md, old_dev); 381 382 return 0; 383 } 384 385 /* 386 * Convert the path to a device 387 */ 388 dev_t dm_get_dev_t(const char *path) 389 { 390 dev_t dev; 391 struct block_device *bdev; 392 393 bdev = lookup_bdev(path); 394 if (IS_ERR(bdev)) 395 dev = name_to_dev_t(path); 396 else { 397 dev = bdev->bd_dev; 398 bdput(bdev); 399 } 400 401 return dev; 402 } 403 EXPORT_SYMBOL_GPL(dm_get_dev_t); 404 405 /* 406 * Add a device to the list, or just increment the usage count if 407 * it's already present. 408 */ 409 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 410 struct dm_dev **result) 411 { 412 int r; 413 dev_t dev; 414 struct dm_dev_internal *dd; 415 struct dm_table *t = ti->table; 416 417 BUG_ON(!t); 418 419 dev = dm_get_dev_t(path); 420 if (!dev) 421 return -ENODEV; 422 423 dd = find_device(&t->devices, dev); 424 if (!dd) { 425 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 426 if (!dd) 427 return -ENOMEM; 428 429 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 430 kfree(dd); 431 return r; 432 } 433 434 refcount_set(&dd->count, 1); 435 list_add(&dd->list, &t->devices); 436 goto out; 437 438 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 439 r = upgrade_mode(dd, mode, t->md); 440 if (r) 441 return r; 442 } 443 refcount_inc(&dd->count); 444 out: 445 *result = dd->dm_dev; 446 return 0; 447 } 448 EXPORT_SYMBOL(dm_get_device); 449 450 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 451 sector_t start, sector_t len, void *data) 452 { 453 struct queue_limits *limits = data; 454 struct block_device *bdev = dev->bdev; 455 struct request_queue *q = bdev_get_queue(bdev); 456 char b[BDEVNAME_SIZE]; 457 458 if (unlikely(!q)) { 459 DMWARN("%s: Cannot set limits for nonexistent device %s", 460 dm_device_name(ti->table->md), bdevname(bdev, b)); 461 return 0; 462 } 463 464 if (bdev_stack_limits(limits, bdev, start) < 0) 465 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 466 "physical_block_size=%u, logical_block_size=%u, " 467 "alignment_offset=%u, start=%llu", 468 dm_device_name(ti->table->md), bdevname(bdev, b), 469 q->limits.physical_block_size, 470 q->limits.logical_block_size, 471 q->limits.alignment_offset, 472 (unsigned long long) start << SECTOR_SHIFT); 473 474 limits->zoned = blk_queue_zoned_model(q); 475 476 return 0; 477 } 478 479 /* 480 * Decrement a device's use count and remove it if necessary. 481 */ 482 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 483 { 484 int found = 0; 485 struct list_head *devices = &ti->table->devices; 486 struct dm_dev_internal *dd; 487 488 list_for_each_entry(dd, devices, list) { 489 if (dd->dm_dev == d) { 490 found = 1; 491 break; 492 } 493 } 494 if (!found) { 495 DMWARN("%s: device %s not in table devices list", 496 dm_device_name(ti->table->md), d->name); 497 return; 498 } 499 if (refcount_dec_and_test(&dd->count)) { 500 dm_put_table_device(ti->table->md, d); 501 list_del(&dd->list); 502 kfree(dd); 503 } 504 } 505 EXPORT_SYMBOL(dm_put_device); 506 507 /* 508 * Checks to see if the target joins onto the end of the table. 509 */ 510 static int adjoin(struct dm_table *table, struct dm_target *ti) 511 { 512 struct dm_target *prev; 513 514 if (!table->num_targets) 515 return !ti->begin; 516 517 prev = &table->targets[table->num_targets - 1]; 518 return (ti->begin == (prev->begin + prev->len)); 519 } 520 521 /* 522 * Used to dynamically allocate the arg array. 523 * 524 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 525 * process messages even if some device is suspended. These messages have a 526 * small fixed number of arguments. 527 * 528 * On the other hand, dm-switch needs to process bulk data using messages and 529 * excessive use of GFP_NOIO could cause trouble. 530 */ 531 static char **realloc_argv(unsigned *size, char **old_argv) 532 { 533 char **argv; 534 unsigned new_size; 535 gfp_t gfp; 536 537 if (*size) { 538 new_size = *size * 2; 539 gfp = GFP_KERNEL; 540 } else { 541 new_size = 8; 542 gfp = GFP_NOIO; 543 } 544 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 545 if (argv && old_argv) { 546 memcpy(argv, old_argv, *size * sizeof(*argv)); 547 *size = new_size; 548 } 549 550 kfree(old_argv); 551 return argv; 552 } 553 554 /* 555 * Destructively splits up the argument list to pass to ctr. 556 */ 557 int dm_split_args(int *argc, char ***argvp, char *input) 558 { 559 char *start, *end = input, *out, **argv = NULL; 560 unsigned array_size = 0; 561 562 *argc = 0; 563 564 if (!input) { 565 *argvp = NULL; 566 return 0; 567 } 568 569 argv = realloc_argv(&array_size, argv); 570 if (!argv) 571 return -ENOMEM; 572 573 while (1) { 574 /* Skip whitespace */ 575 start = skip_spaces(end); 576 577 if (!*start) 578 break; /* success, we hit the end */ 579 580 /* 'out' is used to remove any back-quotes */ 581 end = out = start; 582 while (*end) { 583 /* Everything apart from '\0' can be quoted */ 584 if (*end == '\\' && *(end + 1)) { 585 *out++ = *(end + 1); 586 end += 2; 587 continue; 588 } 589 590 if (isspace(*end)) 591 break; /* end of token */ 592 593 *out++ = *end++; 594 } 595 596 /* have we already filled the array ? */ 597 if ((*argc + 1) > array_size) { 598 argv = realloc_argv(&array_size, argv); 599 if (!argv) 600 return -ENOMEM; 601 } 602 603 /* we know this is whitespace */ 604 if (*end) 605 end++; 606 607 /* terminate the string and put it in the array */ 608 *out = '\0'; 609 argv[*argc] = start; 610 (*argc)++; 611 } 612 613 *argvp = argv; 614 return 0; 615 } 616 617 /* 618 * Impose necessary and sufficient conditions on a devices's table such 619 * that any incoming bio which respects its logical_block_size can be 620 * processed successfully. If it falls across the boundary between 621 * two or more targets, the size of each piece it gets split into must 622 * be compatible with the logical_block_size of the target processing it. 623 */ 624 static int validate_hardware_logical_block_alignment(struct dm_table *table, 625 struct queue_limits *limits) 626 { 627 /* 628 * This function uses arithmetic modulo the logical_block_size 629 * (in units of 512-byte sectors). 630 */ 631 unsigned short device_logical_block_size_sects = 632 limits->logical_block_size >> SECTOR_SHIFT; 633 634 /* 635 * Offset of the start of the next table entry, mod logical_block_size. 636 */ 637 unsigned short next_target_start = 0; 638 639 /* 640 * Given an aligned bio that extends beyond the end of a 641 * target, how many sectors must the next target handle? 642 */ 643 unsigned short remaining = 0; 644 645 struct dm_target *uninitialized_var(ti); 646 struct queue_limits ti_limits; 647 unsigned i; 648 649 /* 650 * Check each entry in the table in turn. 651 */ 652 for (i = 0; i < dm_table_get_num_targets(table); i++) { 653 ti = dm_table_get_target(table, i); 654 655 blk_set_stacking_limits(&ti_limits); 656 657 /* combine all target devices' limits */ 658 if (ti->type->iterate_devices) 659 ti->type->iterate_devices(ti, dm_set_device_limits, 660 &ti_limits); 661 662 /* 663 * If the remaining sectors fall entirely within this 664 * table entry are they compatible with its logical_block_size? 665 */ 666 if (remaining < ti->len && 667 remaining & ((ti_limits.logical_block_size >> 668 SECTOR_SHIFT) - 1)) 669 break; /* Error */ 670 671 next_target_start = 672 (unsigned short) ((next_target_start + ti->len) & 673 (device_logical_block_size_sects - 1)); 674 remaining = next_target_start ? 675 device_logical_block_size_sects - next_target_start : 0; 676 } 677 678 if (remaining) { 679 DMWARN("%s: table line %u (start sect %llu len %llu) " 680 "not aligned to h/w logical block size %u", 681 dm_device_name(table->md), i, 682 (unsigned long long) ti->begin, 683 (unsigned long long) ti->len, 684 limits->logical_block_size); 685 return -EINVAL; 686 } 687 688 return 0; 689 } 690 691 int dm_table_add_target(struct dm_table *t, const char *type, 692 sector_t start, sector_t len, char *params) 693 { 694 int r = -EINVAL, argc; 695 char **argv; 696 struct dm_target *tgt; 697 698 if (t->singleton) { 699 DMERR("%s: target type %s must appear alone in table", 700 dm_device_name(t->md), t->targets->type->name); 701 return -EINVAL; 702 } 703 704 BUG_ON(t->num_targets >= t->num_allocated); 705 706 tgt = t->targets + t->num_targets; 707 memset(tgt, 0, sizeof(*tgt)); 708 709 if (!len) { 710 DMERR("%s: zero-length target", dm_device_name(t->md)); 711 return -EINVAL; 712 } 713 714 tgt->type = dm_get_target_type(type); 715 if (!tgt->type) { 716 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 717 return -EINVAL; 718 } 719 720 if (dm_target_needs_singleton(tgt->type)) { 721 if (t->num_targets) { 722 tgt->error = "singleton target type must appear alone in table"; 723 goto bad; 724 } 725 t->singleton = true; 726 } 727 728 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 729 tgt->error = "target type may not be included in a read-only table"; 730 goto bad; 731 } 732 733 if (t->immutable_target_type) { 734 if (t->immutable_target_type != tgt->type) { 735 tgt->error = "immutable target type cannot be mixed with other target types"; 736 goto bad; 737 } 738 } else if (dm_target_is_immutable(tgt->type)) { 739 if (t->num_targets) { 740 tgt->error = "immutable target type cannot be mixed with other target types"; 741 goto bad; 742 } 743 t->immutable_target_type = tgt->type; 744 } 745 746 if (dm_target_has_integrity(tgt->type)) 747 t->integrity_added = 1; 748 749 tgt->table = t; 750 tgt->begin = start; 751 tgt->len = len; 752 tgt->error = "Unknown error"; 753 754 /* 755 * Does this target adjoin the previous one ? 756 */ 757 if (!adjoin(t, tgt)) { 758 tgt->error = "Gap in table"; 759 goto bad; 760 } 761 762 r = dm_split_args(&argc, &argv, params); 763 if (r) { 764 tgt->error = "couldn't split parameters (insufficient memory)"; 765 goto bad; 766 } 767 768 r = tgt->type->ctr(tgt, argc, argv); 769 kfree(argv); 770 if (r) 771 goto bad; 772 773 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 774 775 if (!tgt->num_discard_bios && tgt->discards_supported) 776 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 777 dm_device_name(t->md), type); 778 779 return 0; 780 781 bad: 782 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 783 dm_put_target_type(tgt->type); 784 return r; 785 } 786 787 /* 788 * Target argument parsing helpers. 789 */ 790 static int validate_next_arg(const struct dm_arg *arg, 791 struct dm_arg_set *arg_set, 792 unsigned *value, char **error, unsigned grouped) 793 { 794 const char *arg_str = dm_shift_arg(arg_set); 795 char dummy; 796 797 if (!arg_str || 798 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 799 (*value < arg->min) || 800 (*value > arg->max) || 801 (grouped && arg_set->argc < *value)) { 802 *error = arg->error; 803 return -EINVAL; 804 } 805 806 return 0; 807 } 808 809 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 810 unsigned *value, char **error) 811 { 812 return validate_next_arg(arg, arg_set, value, error, 0); 813 } 814 EXPORT_SYMBOL(dm_read_arg); 815 816 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 817 unsigned *value, char **error) 818 { 819 return validate_next_arg(arg, arg_set, value, error, 1); 820 } 821 EXPORT_SYMBOL(dm_read_arg_group); 822 823 const char *dm_shift_arg(struct dm_arg_set *as) 824 { 825 char *r; 826 827 if (as->argc) { 828 as->argc--; 829 r = *as->argv; 830 as->argv++; 831 return r; 832 } 833 834 return NULL; 835 } 836 EXPORT_SYMBOL(dm_shift_arg); 837 838 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 839 { 840 BUG_ON(as->argc < num_args); 841 as->argc -= num_args; 842 as->argv += num_args; 843 } 844 EXPORT_SYMBOL(dm_consume_args); 845 846 static bool __table_type_bio_based(enum dm_queue_mode table_type) 847 { 848 return (table_type == DM_TYPE_BIO_BASED || 849 table_type == DM_TYPE_DAX_BIO_BASED || 850 table_type == DM_TYPE_NVME_BIO_BASED); 851 } 852 853 static bool __table_type_request_based(enum dm_queue_mode table_type) 854 { 855 return table_type == DM_TYPE_REQUEST_BASED; 856 } 857 858 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 859 { 860 t->type = type; 861 } 862 EXPORT_SYMBOL_GPL(dm_table_set_type); 863 864 /* validate the dax capability of the target device span */ 865 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 866 sector_t start, sector_t len, void *data) 867 { 868 int blocksize = *(int *) data; 869 870 return generic_fsdax_supported(dev->dax_dev, dev->bdev, blocksize, 871 start, len); 872 } 873 874 /* Check devices support synchronous DAX */ 875 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev, 876 sector_t start, sector_t len, void *data) 877 { 878 return dev->dax_dev && dax_synchronous(dev->dax_dev); 879 } 880 881 bool dm_table_supports_dax(struct dm_table *t, 882 iterate_devices_callout_fn iterate_fn, int *blocksize) 883 { 884 struct dm_target *ti; 885 unsigned i; 886 887 /* Ensure that all targets support DAX. */ 888 for (i = 0; i < dm_table_get_num_targets(t); i++) { 889 ti = dm_table_get_target(t, i); 890 891 if (!ti->type->direct_access) 892 return false; 893 894 if (!ti->type->iterate_devices || 895 !ti->type->iterate_devices(ti, iterate_fn, blocksize)) 896 return false; 897 } 898 899 return true; 900 } 901 902 static bool dm_table_does_not_support_partial_completion(struct dm_table *t); 903 904 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 905 sector_t start, sector_t len, void *data) 906 { 907 struct block_device *bdev = dev->bdev; 908 struct request_queue *q = bdev_get_queue(bdev); 909 910 /* request-based cannot stack on partitions! */ 911 if (bdev != bdev->bd_contains) 912 return false; 913 914 return queue_is_mq(q); 915 } 916 917 static int dm_table_determine_type(struct dm_table *t) 918 { 919 unsigned i; 920 unsigned bio_based = 0, request_based = 0, hybrid = 0; 921 struct dm_target *tgt; 922 struct list_head *devices = dm_table_get_devices(t); 923 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 924 int page_size = PAGE_SIZE; 925 926 if (t->type != DM_TYPE_NONE) { 927 /* target already set the table's type */ 928 if (t->type == DM_TYPE_BIO_BASED) { 929 /* possibly upgrade to a variant of bio-based */ 930 goto verify_bio_based; 931 } 932 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 933 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED); 934 goto verify_rq_based; 935 } 936 937 for (i = 0; i < t->num_targets; i++) { 938 tgt = t->targets + i; 939 if (dm_target_hybrid(tgt)) 940 hybrid = 1; 941 else if (dm_target_request_based(tgt)) 942 request_based = 1; 943 else 944 bio_based = 1; 945 946 if (bio_based && request_based) { 947 DMERR("Inconsistent table: different target types" 948 " can't be mixed up"); 949 return -EINVAL; 950 } 951 } 952 953 if (hybrid && !bio_based && !request_based) { 954 /* 955 * The targets can work either way. 956 * Determine the type from the live device. 957 * Default to bio-based if device is new. 958 */ 959 if (__table_type_request_based(live_md_type)) 960 request_based = 1; 961 else 962 bio_based = 1; 963 } 964 965 if (bio_based) { 966 verify_bio_based: 967 /* We must use this table as bio-based */ 968 t->type = DM_TYPE_BIO_BASED; 969 if (dm_table_supports_dax(t, device_supports_dax, &page_size) || 970 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 971 t->type = DM_TYPE_DAX_BIO_BASED; 972 } else { 973 /* Check if upgrading to NVMe bio-based is valid or required */ 974 tgt = dm_table_get_immutable_target(t); 975 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) { 976 t->type = DM_TYPE_NVME_BIO_BASED; 977 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */ 978 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) { 979 t->type = DM_TYPE_NVME_BIO_BASED; 980 } 981 } 982 return 0; 983 } 984 985 BUG_ON(!request_based); /* No targets in this table */ 986 987 t->type = DM_TYPE_REQUEST_BASED; 988 989 verify_rq_based: 990 /* 991 * Request-based dm supports only tables that have a single target now. 992 * To support multiple targets, request splitting support is needed, 993 * and that needs lots of changes in the block-layer. 994 * (e.g. request completion process for partial completion.) 995 */ 996 if (t->num_targets > 1) { 997 DMERR("%s DM doesn't support multiple targets", 998 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based"); 999 return -EINVAL; 1000 } 1001 1002 if (list_empty(devices)) { 1003 int srcu_idx; 1004 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 1005 1006 /* inherit live table's type */ 1007 if (live_table) 1008 t->type = live_table->type; 1009 dm_put_live_table(t->md, srcu_idx); 1010 return 0; 1011 } 1012 1013 tgt = dm_table_get_immutable_target(t); 1014 if (!tgt) { 1015 DMERR("table load rejected: immutable target is required"); 1016 return -EINVAL; 1017 } else if (tgt->max_io_len) { 1018 DMERR("table load rejected: immutable target that splits IO is not supported"); 1019 return -EINVAL; 1020 } 1021 1022 /* Non-request-stackable devices can't be used for request-based dm */ 1023 if (!tgt->type->iterate_devices || 1024 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 1025 DMERR("table load rejected: including non-request-stackable devices"); 1026 return -EINVAL; 1027 } 1028 1029 return 0; 1030 } 1031 1032 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1033 { 1034 return t->type; 1035 } 1036 1037 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1038 { 1039 return t->immutable_target_type; 1040 } 1041 1042 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1043 { 1044 /* Immutable target is implicitly a singleton */ 1045 if (t->num_targets > 1 || 1046 !dm_target_is_immutable(t->targets[0].type)) 1047 return NULL; 1048 1049 return t->targets; 1050 } 1051 1052 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1053 { 1054 struct dm_target *ti; 1055 unsigned i; 1056 1057 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1058 ti = dm_table_get_target(t, i); 1059 if (dm_target_is_wildcard(ti->type)) 1060 return ti; 1061 } 1062 1063 return NULL; 1064 } 1065 1066 bool dm_table_bio_based(struct dm_table *t) 1067 { 1068 return __table_type_bio_based(dm_table_get_type(t)); 1069 } 1070 1071 bool dm_table_request_based(struct dm_table *t) 1072 { 1073 return __table_type_request_based(dm_table_get_type(t)); 1074 } 1075 1076 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1077 { 1078 enum dm_queue_mode type = dm_table_get_type(t); 1079 unsigned per_io_data_size = 0; 1080 unsigned min_pool_size = 0; 1081 struct dm_target *ti; 1082 unsigned i; 1083 1084 if (unlikely(type == DM_TYPE_NONE)) { 1085 DMWARN("no table type is set, can't allocate mempools"); 1086 return -EINVAL; 1087 } 1088 1089 if (__table_type_bio_based(type)) 1090 for (i = 0; i < t->num_targets; i++) { 1091 ti = t->targets + i; 1092 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1093 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1094 } 1095 1096 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, 1097 per_io_data_size, min_pool_size); 1098 if (!t->mempools) 1099 return -ENOMEM; 1100 1101 return 0; 1102 } 1103 1104 void dm_table_free_md_mempools(struct dm_table *t) 1105 { 1106 dm_free_md_mempools(t->mempools); 1107 t->mempools = NULL; 1108 } 1109 1110 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1111 { 1112 return t->mempools; 1113 } 1114 1115 static int setup_indexes(struct dm_table *t) 1116 { 1117 int i; 1118 unsigned int total = 0; 1119 sector_t *indexes; 1120 1121 /* allocate the space for *all* the indexes */ 1122 for (i = t->depth - 2; i >= 0; i--) { 1123 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1124 total += t->counts[i]; 1125 } 1126 1127 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1128 if (!indexes) 1129 return -ENOMEM; 1130 1131 /* set up internal nodes, bottom-up */ 1132 for (i = t->depth - 2; i >= 0; i--) { 1133 t->index[i] = indexes; 1134 indexes += (KEYS_PER_NODE * t->counts[i]); 1135 setup_btree_index(i, t); 1136 } 1137 1138 return 0; 1139 } 1140 1141 /* 1142 * Builds the btree to index the map. 1143 */ 1144 static int dm_table_build_index(struct dm_table *t) 1145 { 1146 int r = 0; 1147 unsigned int leaf_nodes; 1148 1149 /* how many indexes will the btree have ? */ 1150 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1151 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1152 1153 /* leaf layer has already been set up */ 1154 t->counts[t->depth - 1] = leaf_nodes; 1155 t->index[t->depth - 1] = t->highs; 1156 1157 if (t->depth >= 2) 1158 r = setup_indexes(t); 1159 1160 return r; 1161 } 1162 1163 static bool integrity_profile_exists(struct gendisk *disk) 1164 { 1165 return !!blk_get_integrity(disk); 1166 } 1167 1168 /* 1169 * Get a disk whose integrity profile reflects the table's profile. 1170 * Returns NULL if integrity support was inconsistent or unavailable. 1171 */ 1172 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1173 { 1174 struct list_head *devices = dm_table_get_devices(t); 1175 struct dm_dev_internal *dd = NULL; 1176 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1177 unsigned i; 1178 1179 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1180 struct dm_target *ti = dm_table_get_target(t, i); 1181 if (!dm_target_passes_integrity(ti->type)) 1182 goto no_integrity; 1183 } 1184 1185 list_for_each_entry(dd, devices, list) { 1186 template_disk = dd->dm_dev->bdev->bd_disk; 1187 if (!integrity_profile_exists(template_disk)) 1188 goto no_integrity; 1189 else if (prev_disk && 1190 blk_integrity_compare(prev_disk, template_disk) < 0) 1191 goto no_integrity; 1192 prev_disk = template_disk; 1193 } 1194 1195 return template_disk; 1196 1197 no_integrity: 1198 if (prev_disk) 1199 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1200 dm_device_name(t->md), 1201 prev_disk->disk_name, 1202 template_disk->disk_name); 1203 return NULL; 1204 } 1205 1206 /* 1207 * Register the mapped device for blk_integrity support if the 1208 * underlying devices have an integrity profile. But all devices may 1209 * not have matching profiles (checking all devices isn't reliable 1210 * during table load because this table may use other DM device(s) which 1211 * must be resumed before they will have an initialized integity 1212 * profile). Consequently, stacked DM devices force a 2 stage integrity 1213 * profile validation: First pass during table load, final pass during 1214 * resume. 1215 */ 1216 static int dm_table_register_integrity(struct dm_table *t) 1217 { 1218 struct mapped_device *md = t->md; 1219 struct gendisk *template_disk = NULL; 1220 1221 /* If target handles integrity itself do not register it here. */ 1222 if (t->integrity_added) 1223 return 0; 1224 1225 template_disk = dm_table_get_integrity_disk(t); 1226 if (!template_disk) 1227 return 0; 1228 1229 if (!integrity_profile_exists(dm_disk(md))) { 1230 t->integrity_supported = true; 1231 /* 1232 * Register integrity profile during table load; we can do 1233 * this because the final profile must match during resume. 1234 */ 1235 blk_integrity_register(dm_disk(md), 1236 blk_get_integrity(template_disk)); 1237 return 0; 1238 } 1239 1240 /* 1241 * If DM device already has an initialized integrity 1242 * profile the new profile should not conflict. 1243 */ 1244 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1245 DMWARN("%s: conflict with existing integrity profile: " 1246 "%s profile mismatch", 1247 dm_device_name(t->md), 1248 template_disk->disk_name); 1249 return 1; 1250 } 1251 1252 /* Preserve existing integrity profile */ 1253 t->integrity_supported = true; 1254 return 0; 1255 } 1256 1257 /* 1258 * Prepares the table for use by building the indices, 1259 * setting the type, and allocating mempools. 1260 */ 1261 int dm_table_complete(struct dm_table *t) 1262 { 1263 int r; 1264 1265 r = dm_table_determine_type(t); 1266 if (r) { 1267 DMERR("unable to determine table type"); 1268 return r; 1269 } 1270 1271 r = dm_table_build_index(t); 1272 if (r) { 1273 DMERR("unable to build btrees"); 1274 return r; 1275 } 1276 1277 r = dm_table_register_integrity(t); 1278 if (r) { 1279 DMERR("could not register integrity profile."); 1280 return r; 1281 } 1282 1283 r = dm_table_alloc_md_mempools(t, t->md); 1284 if (r) 1285 DMERR("unable to allocate mempools"); 1286 1287 return r; 1288 } 1289 1290 static DEFINE_MUTEX(_event_lock); 1291 void dm_table_event_callback(struct dm_table *t, 1292 void (*fn)(void *), void *context) 1293 { 1294 mutex_lock(&_event_lock); 1295 t->event_fn = fn; 1296 t->event_context = context; 1297 mutex_unlock(&_event_lock); 1298 } 1299 1300 void dm_table_event(struct dm_table *t) 1301 { 1302 /* 1303 * You can no longer call dm_table_event() from interrupt 1304 * context, use a bottom half instead. 1305 */ 1306 BUG_ON(in_interrupt()); 1307 1308 mutex_lock(&_event_lock); 1309 if (t->event_fn) 1310 t->event_fn(t->event_context); 1311 mutex_unlock(&_event_lock); 1312 } 1313 EXPORT_SYMBOL(dm_table_event); 1314 1315 inline sector_t dm_table_get_size(struct dm_table *t) 1316 { 1317 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1318 } 1319 EXPORT_SYMBOL(dm_table_get_size); 1320 1321 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1322 { 1323 if (index >= t->num_targets) 1324 return NULL; 1325 1326 return t->targets + index; 1327 } 1328 1329 /* 1330 * Search the btree for the correct target. 1331 * 1332 * Caller should check returned pointer for NULL 1333 * to trap I/O beyond end of device. 1334 */ 1335 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1336 { 1337 unsigned int l, n = 0, k = 0; 1338 sector_t *node; 1339 1340 if (unlikely(sector >= dm_table_get_size(t))) 1341 return NULL; 1342 1343 for (l = 0; l < t->depth; l++) { 1344 n = get_child(n, k); 1345 node = get_node(t, l, n); 1346 1347 for (k = 0; k < KEYS_PER_NODE; k++) 1348 if (node[k] >= sector) 1349 break; 1350 } 1351 1352 return &t->targets[(KEYS_PER_NODE * n) + k]; 1353 } 1354 1355 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1356 sector_t start, sector_t len, void *data) 1357 { 1358 unsigned *num_devices = data; 1359 1360 (*num_devices)++; 1361 1362 return 0; 1363 } 1364 1365 /* 1366 * Check whether a table has no data devices attached using each 1367 * target's iterate_devices method. 1368 * Returns false if the result is unknown because a target doesn't 1369 * support iterate_devices. 1370 */ 1371 bool dm_table_has_no_data_devices(struct dm_table *table) 1372 { 1373 struct dm_target *ti; 1374 unsigned i, num_devices; 1375 1376 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1377 ti = dm_table_get_target(table, i); 1378 1379 if (!ti->type->iterate_devices) 1380 return false; 1381 1382 num_devices = 0; 1383 ti->type->iterate_devices(ti, count_device, &num_devices); 1384 if (num_devices) 1385 return false; 1386 } 1387 1388 return true; 1389 } 1390 1391 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1392 sector_t start, sector_t len, void *data) 1393 { 1394 struct request_queue *q = bdev_get_queue(dev->bdev); 1395 enum blk_zoned_model *zoned_model = data; 1396 1397 return q && blk_queue_zoned_model(q) == *zoned_model; 1398 } 1399 1400 static bool dm_table_supports_zoned_model(struct dm_table *t, 1401 enum blk_zoned_model zoned_model) 1402 { 1403 struct dm_target *ti; 1404 unsigned i; 1405 1406 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1407 ti = dm_table_get_target(t, i); 1408 1409 if (zoned_model == BLK_ZONED_HM && 1410 !dm_target_supports_zoned_hm(ti->type)) 1411 return false; 1412 1413 if (!ti->type->iterate_devices || 1414 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1415 return false; 1416 } 1417 1418 return true; 1419 } 1420 1421 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1422 sector_t start, sector_t len, void *data) 1423 { 1424 struct request_queue *q = bdev_get_queue(dev->bdev); 1425 unsigned int *zone_sectors = data; 1426 1427 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1428 } 1429 1430 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1431 unsigned int zone_sectors) 1432 { 1433 struct dm_target *ti; 1434 unsigned i; 1435 1436 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1437 ti = dm_table_get_target(t, i); 1438 1439 if (!ti->type->iterate_devices || 1440 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1441 return false; 1442 } 1443 1444 return true; 1445 } 1446 1447 static int validate_hardware_zoned_model(struct dm_table *table, 1448 enum blk_zoned_model zoned_model, 1449 unsigned int zone_sectors) 1450 { 1451 if (zoned_model == BLK_ZONED_NONE) 1452 return 0; 1453 1454 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1455 DMERR("%s: zoned model is not consistent across all devices", 1456 dm_device_name(table->md)); 1457 return -EINVAL; 1458 } 1459 1460 /* Check zone size validity and compatibility */ 1461 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1462 return -EINVAL; 1463 1464 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1465 DMERR("%s: zone sectors is not consistent across all devices", 1466 dm_device_name(table->md)); 1467 return -EINVAL; 1468 } 1469 1470 return 0; 1471 } 1472 1473 /* 1474 * Establish the new table's queue_limits and validate them. 1475 */ 1476 int dm_calculate_queue_limits(struct dm_table *table, 1477 struct queue_limits *limits) 1478 { 1479 struct dm_target *ti; 1480 struct queue_limits ti_limits; 1481 unsigned i; 1482 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1483 unsigned int zone_sectors = 0; 1484 1485 blk_set_stacking_limits(limits); 1486 1487 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1488 blk_set_stacking_limits(&ti_limits); 1489 1490 ti = dm_table_get_target(table, i); 1491 1492 if (!ti->type->iterate_devices) 1493 goto combine_limits; 1494 1495 /* 1496 * Combine queue limits of all the devices this target uses. 1497 */ 1498 ti->type->iterate_devices(ti, dm_set_device_limits, 1499 &ti_limits); 1500 1501 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1502 /* 1503 * After stacking all limits, validate all devices 1504 * in table support this zoned model and zone sectors. 1505 */ 1506 zoned_model = ti_limits.zoned; 1507 zone_sectors = ti_limits.chunk_sectors; 1508 } 1509 1510 /* Set I/O hints portion of queue limits */ 1511 if (ti->type->io_hints) 1512 ti->type->io_hints(ti, &ti_limits); 1513 1514 /* 1515 * Check each device area is consistent with the target's 1516 * overall queue limits. 1517 */ 1518 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1519 &ti_limits)) 1520 return -EINVAL; 1521 1522 combine_limits: 1523 /* 1524 * Merge this target's queue limits into the overall limits 1525 * for the table. 1526 */ 1527 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1528 DMWARN("%s: adding target device " 1529 "(start sect %llu len %llu) " 1530 "caused an alignment inconsistency", 1531 dm_device_name(table->md), 1532 (unsigned long long) ti->begin, 1533 (unsigned long long) ti->len); 1534 1535 /* 1536 * FIXME: this should likely be moved to blk_stack_limits(), would 1537 * also eliminate limits->zoned stacking hack in dm_set_device_limits() 1538 */ 1539 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1540 /* 1541 * By default, the stacked limits zoned model is set to 1542 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update 1543 * this model using the first target model reported 1544 * that is not BLK_ZONED_NONE. This will be either the 1545 * first target device zoned model or the model reported 1546 * by the target .io_hints. 1547 */ 1548 limits->zoned = ti_limits.zoned; 1549 } 1550 } 1551 1552 /* 1553 * Verify that the zoned model and zone sectors, as determined before 1554 * any .io_hints override, are the same across all devices in the table. 1555 * - this is especially relevant if .io_hints is emulating a disk-managed 1556 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1557 * BUT... 1558 */ 1559 if (limits->zoned != BLK_ZONED_NONE) { 1560 /* 1561 * ...IF the above limits stacking determined a zoned model 1562 * validate that all of the table's devices conform to it. 1563 */ 1564 zoned_model = limits->zoned; 1565 zone_sectors = limits->chunk_sectors; 1566 } 1567 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1568 return -EINVAL; 1569 1570 return validate_hardware_logical_block_alignment(table, limits); 1571 } 1572 1573 /* 1574 * Verify that all devices have an integrity profile that matches the 1575 * DM device's registered integrity profile. If the profiles don't 1576 * match then unregister the DM device's integrity profile. 1577 */ 1578 static void dm_table_verify_integrity(struct dm_table *t) 1579 { 1580 struct gendisk *template_disk = NULL; 1581 1582 if (t->integrity_added) 1583 return; 1584 1585 if (t->integrity_supported) { 1586 /* 1587 * Verify that the original integrity profile 1588 * matches all the devices in this table. 1589 */ 1590 template_disk = dm_table_get_integrity_disk(t); 1591 if (template_disk && 1592 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1593 return; 1594 } 1595 1596 if (integrity_profile_exists(dm_disk(t->md))) { 1597 DMWARN("%s: unable to establish an integrity profile", 1598 dm_device_name(t->md)); 1599 blk_integrity_unregister(dm_disk(t->md)); 1600 } 1601 } 1602 1603 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1604 sector_t start, sector_t len, void *data) 1605 { 1606 unsigned long flush = (unsigned long) data; 1607 struct request_queue *q = bdev_get_queue(dev->bdev); 1608 1609 return q && (q->queue_flags & flush); 1610 } 1611 1612 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1613 { 1614 struct dm_target *ti; 1615 unsigned i; 1616 1617 /* 1618 * Require at least one underlying device to support flushes. 1619 * t->devices includes internal dm devices such as mirror logs 1620 * so we need to use iterate_devices here, which targets 1621 * supporting flushes must provide. 1622 */ 1623 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1624 ti = dm_table_get_target(t, i); 1625 1626 if (!ti->num_flush_bios) 1627 continue; 1628 1629 if (ti->flush_supported) 1630 return true; 1631 1632 if (ti->type->iterate_devices && 1633 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1634 return true; 1635 } 1636 1637 return false; 1638 } 1639 1640 static int device_dax_write_cache_enabled(struct dm_target *ti, 1641 struct dm_dev *dev, sector_t start, 1642 sector_t len, void *data) 1643 { 1644 struct dax_device *dax_dev = dev->dax_dev; 1645 1646 if (!dax_dev) 1647 return false; 1648 1649 if (dax_write_cache_enabled(dax_dev)) 1650 return true; 1651 return false; 1652 } 1653 1654 static int dm_table_supports_dax_write_cache(struct dm_table *t) 1655 { 1656 struct dm_target *ti; 1657 unsigned i; 1658 1659 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1660 ti = dm_table_get_target(t, i); 1661 1662 if (ti->type->iterate_devices && 1663 ti->type->iterate_devices(ti, 1664 device_dax_write_cache_enabled, NULL)) 1665 return true; 1666 } 1667 1668 return false; 1669 } 1670 1671 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1672 sector_t start, sector_t len, void *data) 1673 { 1674 struct request_queue *q = bdev_get_queue(dev->bdev); 1675 1676 return q && blk_queue_nonrot(q); 1677 } 1678 1679 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1680 sector_t start, sector_t len, void *data) 1681 { 1682 struct request_queue *q = bdev_get_queue(dev->bdev); 1683 1684 return q && !blk_queue_add_random(q); 1685 } 1686 1687 static bool dm_table_all_devices_attribute(struct dm_table *t, 1688 iterate_devices_callout_fn func) 1689 { 1690 struct dm_target *ti; 1691 unsigned i; 1692 1693 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1694 ti = dm_table_get_target(t, i); 1695 1696 if (!ti->type->iterate_devices || 1697 !ti->type->iterate_devices(ti, func, NULL)) 1698 return false; 1699 } 1700 1701 return true; 1702 } 1703 1704 static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev, 1705 sector_t start, sector_t len, void *data) 1706 { 1707 char b[BDEVNAME_SIZE]; 1708 1709 /* For now, NVMe devices are the only devices of this class */ 1710 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0); 1711 } 1712 1713 static bool dm_table_does_not_support_partial_completion(struct dm_table *t) 1714 { 1715 return dm_table_all_devices_attribute(t, device_no_partial_completion); 1716 } 1717 1718 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1719 sector_t start, sector_t len, void *data) 1720 { 1721 struct request_queue *q = bdev_get_queue(dev->bdev); 1722 1723 return q && !q->limits.max_write_same_sectors; 1724 } 1725 1726 static bool dm_table_supports_write_same(struct dm_table *t) 1727 { 1728 struct dm_target *ti; 1729 unsigned i; 1730 1731 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1732 ti = dm_table_get_target(t, i); 1733 1734 if (!ti->num_write_same_bios) 1735 return false; 1736 1737 if (!ti->type->iterate_devices || 1738 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1739 return false; 1740 } 1741 1742 return true; 1743 } 1744 1745 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1746 sector_t start, sector_t len, void *data) 1747 { 1748 struct request_queue *q = bdev_get_queue(dev->bdev); 1749 1750 return q && !q->limits.max_write_zeroes_sectors; 1751 } 1752 1753 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1754 { 1755 struct dm_target *ti; 1756 unsigned i = 0; 1757 1758 while (i < dm_table_get_num_targets(t)) { 1759 ti = dm_table_get_target(t, i++); 1760 1761 if (!ti->num_write_zeroes_bios) 1762 return false; 1763 1764 if (!ti->type->iterate_devices || 1765 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1766 return false; 1767 } 1768 1769 return true; 1770 } 1771 1772 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1773 sector_t start, sector_t len, void *data) 1774 { 1775 struct request_queue *q = bdev_get_queue(dev->bdev); 1776 1777 return q && !blk_queue_discard(q); 1778 } 1779 1780 static bool dm_table_supports_discards(struct dm_table *t) 1781 { 1782 struct dm_target *ti; 1783 unsigned i; 1784 1785 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1786 ti = dm_table_get_target(t, i); 1787 1788 if (!ti->num_discard_bios) 1789 return false; 1790 1791 /* 1792 * Either the target provides discard support (as implied by setting 1793 * 'discards_supported') or it relies on _all_ data devices having 1794 * discard support. 1795 */ 1796 if (!ti->discards_supported && 1797 (!ti->type->iterate_devices || 1798 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1799 return false; 1800 } 1801 1802 return true; 1803 } 1804 1805 static int device_not_secure_erase_capable(struct dm_target *ti, 1806 struct dm_dev *dev, sector_t start, 1807 sector_t len, void *data) 1808 { 1809 struct request_queue *q = bdev_get_queue(dev->bdev); 1810 1811 return q && !blk_queue_secure_erase(q); 1812 } 1813 1814 static bool dm_table_supports_secure_erase(struct dm_table *t) 1815 { 1816 struct dm_target *ti; 1817 unsigned int i; 1818 1819 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1820 ti = dm_table_get_target(t, i); 1821 1822 if (!ti->num_secure_erase_bios) 1823 return false; 1824 1825 if (!ti->type->iterate_devices || 1826 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1827 return false; 1828 } 1829 1830 return true; 1831 } 1832 1833 static int device_requires_stable_pages(struct dm_target *ti, 1834 struct dm_dev *dev, sector_t start, 1835 sector_t len, void *data) 1836 { 1837 struct request_queue *q = bdev_get_queue(dev->bdev); 1838 1839 return q && bdi_cap_stable_pages_required(q->backing_dev_info); 1840 } 1841 1842 /* 1843 * If any underlying device requires stable pages, a table must require 1844 * them as well. Only targets that support iterate_devices are considered: 1845 * don't want error, zero, etc to require stable pages. 1846 */ 1847 static bool dm_table_requires_stable_pages(struct dm_table *t) 1848 { 1849 struct dm_target *ti; 1850 unsigned i; 1851 1852 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1853 ti = dm_table_get_target(t, i); 1854 1855 if (ti->type->iterate_devices && 1856 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL)) 1857 return true; 1858 } 1859 1860 return false; 1861 } 1862 1863 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1864 struct queue_limits *limits) 1865 { 1866 bool wc = false, fua = false; 1867 int page_size = PAGE_SIZE; 1868 1869 /* 1870 * Copy table's limits to the DM device's request_queue 1871 */ 1872 q->limits = *limits; 1873 1874 if (!dm_table_supports_discards(t)) { 1875 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 1876 /* Must also clear discard limits... */ 1877 q->limits.max_discard_sectors = 0; 1878 q->limits.max_hw_discard_sectors = 0; 1879 q->limits.discard_granularity = 0; 1880 q->limits.discard_alignment = 0; 1881 q->limits.discard_misaligned = 0; 1882 } else 1883 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 1884 1885 if (dm_table_supports_secure_erase(t)) 1886 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q); 1887 1888 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1889 wc = true; 1890 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1891 fua = true; 1892 } 1893 blk_queue_write_cache(q, wc, fua); 1894 1895 if (dm_table_supports_dax(t, device_supports_dax, &page_size)) { 1896 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1897 if (dm_table_supports_dax(t, device_dax_synchronous, NULL)) 1898 set_dax_synchronous(t->md->dax_dev); 1899 } 1900 else 1901 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1902 1903 if (dm_table_supports_dax_write_cache(t)) 1904 dax_write_cache(t->md->dax_dev, true); 1905 1906 /* Ensure that all underlying devices are non-rotational. */ 1907 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1908 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1909 else 1910 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1911 1912 if (!dm_table_supports_write_same(t)) 1913 q->limits.max_write_same_sectors = 0; 1914 if (!dm_table_supports_write_zeroes(t)) 1915 q->limits.max_write_zeroes_sectors = 0; 1916 1917 dm_table_verify_integrity(t); 1918 1919 /* 1920 * Some devices don't use blk_integrity but still want stable pages 1921 * because they do their own checksumming. 1922 */ 1923 if (dm_table_requires_stable_pages(t)) 1924 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES; 1925 else 1926 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES; 1927 1928 /* 1929 * Determine whether or not this queue's I/O timings contribute 1930 * to the entropy pool, Only request-based targets use this. 1931 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1932 * have it set. 1933 */ 1934 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1935 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 1936 1937 /* 1938 * For a zoned target, the number of zones should be updated for the 1939 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based 1940 * target, this is all that is needed. 1941 */ 1942 #ifdef CONFIG_BLK_DEV_ZONED 1943 if (blk_queue_is_zoned(q)) { 1944 WARN_ON_ONCE(queue_is_mq(q)); 1945 q->nr_zones = blkdev_nr_zones(t->md->disk); 1946 } 1947 #endif 1948 1949 /* Allow reads to exceed readahead limits */ 1950 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9); 1951 } 1952 1953 unsigned int dm_table_get_num_targets(struct dm_table *t) 1954 { 1955 return t->num_targets; 1956 } 1957 1958 struct list_head *dm_table_get_devices(struct dm_table *t) 1959 { 1960 return &t->devices; 1961 } 1962 1963 fmode_t dm_table_get_mode(struct dm_table *t) 1964 { 1965 return t->mode; 1966 } 1967 EXPORT_SYMBOL(dm_table_get_mode); 1968 1969 enum suspend_mode { 1970 PRESUSPEND, 1971 PRESUSPEND_UNDO, 1972 POSTSUSPEND, 1973 }; 1974 1975 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1976 { 1977 int i = t->num_targets; 1978 struct dm_target *ti = t->targets; 1979 1980 lockdep_assert_held(&t->md->suspend_lock); 1981 1982 while (i--) { 1983 switch (mode) { 1984 case PRESUSPEND: 1985 if (ti->type->presuspend) 1986 ti->type->presuspend(ti); 1987 break; 1988 case PRESUSPEND_UNDO: 1989 if (ti->type->presuspend_undo) 1990 ti->type->presuspend_undo(ti); 1991 break; 1992 case POSTSUSPEND: 1993 if (ti->type->postsuspend) 1994 ti->type->postsuspend(ti); 1995 break; 1996 } 1997 ti++; 1998 } 1999 } 2000 2001 void dm_table_presuspend_targets(struct dm_table *t) 2002 { 2003 if (!t) 2004 return; 2005 2006 suspend_targets(t, PRESUSPEND); 2007 } 2008 2009 void dm_table_presuspend_undo_targets(struct dm_table *t) 2010 { 2011 if (!t) 2012 return; 2013 2014 suspend_targets(t, PRESUSPEND_UNDO); 2015 } 2016 2017 void dm_table_postsuspend_targets(struct dm_table *t) 2018 { 2019 if (!t) 2020 return; 2021 2022 suspend_targets(t, POSTSUSPEND); 2023 } 2024 2025 int dm_table_resume_targets(struct dm_table *t) 2026 { 2027 int i, r = 0; 2028 2029 lockdep_assert_held(&t->md->suspend_lock); 2030 2031 for (i = 0; i < t->num_targets; i++) { 2032 struct dm_target *ti = t->targets + i; 2033 2034 if (!ti->type->preresume) 2035 continue; 2036 2037 r = ti->type->preresume(ti); 2038 if (r) { 2039 DMERR("%s: %s: preresume failed, error = %d", 2040 dm_device_name(t->md), ti->type->name, r); 2041 return r; 2042 } 2043 } 2044 2045 for (i = 0; i < t->num_targets; i++) { 2046 struct dm_target *ti = t->targets + i; 2047 2048 if (ti->type->resume) 2049 ti->type->resume(ti); 2050 } 2051 2052 return 0; 2053 } 2054 2055 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 2056 { 2057 list_add(&cb->list, &t->target_callbacks); 2058 } 2059 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 2060 2061 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 2062 { 2063 struct dm_dev_internal *dd; 2064 struct list_head *devices = dm_table_get_devices(t); 2065 struct dm_target_callbacks *cb; 2066 int r = 0; 2067 2068 list_for_each_entry(dd, devices, list) { 2069 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 2070 char b[BDEVNAME_SIZE]; 2071 2072 if (likely(q)) 2073 r |= bdi_congested(q->backing_dev_info, bdi_bits); 2074 else 2075 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 2076 dm_device_name(t->md), 2077 bdevname(dd->dm_dev->bdev, b)); 2078 } 2079 2080 list_for_each_entry(cb, &t->target_callbacks, list) 2081 if (cb->congested_fn) 2082 r |= cb->congested_fn(cb, bdi_bits); 2083 2084 return r; 2085 } 2086 2087 struct mapped_device *dm_table_get_md(struct dm_table *t) 2088 { 2089 return t->md; 2090 } 2091 EXPORT_SYMBOL(dm_table_get_md); 2092 2093 const char *dm_table_device_name(struct dm_table *t) 2094 { 2095 return dm_device_name(t->md); 2096 } 2097 EXPORT_SYMBOL_GPL(dm_table_device_name); 2098 2099 void dm_table_run_md_queue_async(struct dm_table *t) 2100 { 2101 struct mapped_device *md; 2102 struct request_queue *queue; 2103 2104 if (!dm_table_request_based(t)) 2105 return; 2106 2107 md = dm_table_get_md(t); 2108 queue = dm_get_md_queue(md); 2109 if (queue) 2110 blk_mq_run_hw_queues(queue, true); 2111 } 2112 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2113 2114