xref: /openbmc/linux/drivers/md/dm-table.c (revision f5ad1c74)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 /*
32  * Similar to ceiling(log_size(n))
33  */
34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 	int result = 0;
37 
38 	while (n > 1) {
39 		n = dm_div_up(n, base);
40 		result++;
41 	}
42 
43 	return result;
44 }
45 
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 	return (n * CHILDREN_PER_NODE) + k;
52 }
53 
54 /*
55  * Return the n'th node of level l from table t.
56  */
57 static inline sector_t *get_node(struct dm_table *t,
58 				 unsigned int l, unsigned int n)
59 {
60 	return t->index[l] + (n * KEYS_PER_NODE);
61 }
62 
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 	for (; l < t->depth - 1; l++)
70 		n = get_child(n, CHILDREN_PER_NODE - 1);
71 
72 	if (n >= t->counts[l])
73 		return (sector_t) - 1;
74 
75 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77 
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 	unsigned int n, k;
85 	sector_t *node;
86 
87 	for (n = 0U; n < t->counts[l]; n++) {
88 		node = get_node(t, l, n);
89 
90 		for (k = 0U; k < KEYS_PER_NODE; k++)
91 			node[k] = high(t, l + 1, get_child(n, k));
92 	}
93 
94 	return 0;
95 }
96 
97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99 	unsigned long size;
100 	void *addr;
101 
102 	/*
103 	 * Check that we're not going to overflow.
104 	 */
105 	if (nmemb > (ULONG_MAX / elem_size))
106 		return NULL;
107 
108 	size = nmemb * elem_size;
109 	addr = vzalloc(size);
110 
111 	return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114 
115 /*
116  * highs, and targets are managed as dynamic arrays during a
117  * table load.
118  */
119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121 	sector_t *n_highs;
122 	struct dm_target *n_targets;
123 
124 	/*
125 	 * Allocate both the target array and offset array at once.
126 	 */
127 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128 					  sizeof(sector_t));
129 	if (!n_highs)
130 		return -ENOMEM;
131 
132 	n_targets = (struct dm_target *) (n_highs + num);
133 
134 	memset(n_highs, -1, sizeof(*n_highs) * num);
135 	vfree(t->highs);
136 
137 	t->num_allocated = num;
138 	t->highs = n_highs;
139 	t->targets = n_targets;
140 
141 	return 0;
142 }
143 
144 int dm_table_create(struct dm_table **result, fmode_t mode,
145 		    unsigned num_targets, struct mapped_device *md)
146 {
147 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
148 
149 	if (!t)
150 		return -ENOMEM;
151 
152 	INIT_LIST_HEAD(&t->devices);
153 
154 	if (!num_targets)
155 		num_targets = KEYS_PER_NODE;
156 
157 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
158 
159 	if (!num_targets) {
160 		kfree(t);
161 		return -ENOMEM;
162 	}
163 
164 	if (alloc_targets(t, num_targets)) {
165 		kfree(t);
166 		return -ENOMEM;
167 	}
168 
169 	t->type = DM_TYPE_NONE;
170 	t->mode = mode;
171 	t->md = md;
172 	*result = t;
173 	return 0;
174 }
175 
176 static void free_devices(struct list_head *devices, struct mapped_device *md)
177 {
178 	struct list_head *tmp, *next;
179 
180 	list_for_each_safe(tmp, next, devices) {
181 		struct dm_dev_internal *dd =
182 		    list_entry(tmp, struct dm_dev_internal, list);
183 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184 		       dm_device_name(md), dd->dm_dev->name);
185 		dm_put_table_device(md, dd->dm_dev);
186 		kfree(dd);
187 	}
188 }
189 
190 void dm_table_destroy(struct dm_table *t)
191 {
192 	unsigned int i;
193 
194 	if (!t)
195 		return;
196 
197 	/* free the indexes */
198 	if (t->depth >= 2)
199 		vfree(t->index[t->depth - 2]);
200 
201 	/* free the targets */
202 	for (i = 0; i < t->num_targets; i++) {
203 		struct dm_target *tgt = t->targets + i;
204 
205 		if (tgt->type->dtr)
206 			tgt->type->dtr(tgt);
207 
208 		dm_put_target_type(tgt->type);
209 	}
210 
211 	vfree(t->highs);
212 
213 	/* free the device list */
214 	free_devices(&t->devices, t->md);
215 
216 	dm_free_md_mempools(t->mempools);
217 
218 	kfree(t);
219 }
220 
221 /*
222  * See if we've already got a device in the list.
223  */
224 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
225 {
226 	struct dm_dev_internal *dd;
227 
228 	list_for_each_entry (dd, l, list)
229 		if (dd->dm_dev->bdev->bd_dev == dev)
230 			return dd;
231 
232 	return NULL;
233 }
234 
235 /*
236  * If possible, this checks an area of a destination device is invalid.
237  */
238 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
239 				  sector_t start, sector_t len, void *data)
240 {
241 	struct queue_limits *limits = data;
242 	struct block_device *bdev = dev->bdev;
243 	sector_t dev_size =
244 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
245 	unsigned short logical_block_size_sectors =
246 		limits->logical_block_size >> SECTOR_SHIFT;
247 	char b[BDEVNAME_SIZE];
248 
249 	if (!dev_size)
250 		return 0;
251 
252 	if ((start >= dev_size) || (start + len > dev_size)) {
253 		DMWARN("%s: %s too small for target: "
254 		       "start=%llu, len=%llu, dev_size=%llu",
255 		       dm_device_name(ti->table->md), bdevname(bdev, b),
256 		       (unsigned long long)start,
257 		       (unsigned long long)len,
258 		       (unsigned long long)dev_size);
259 		return 1;
260 	}
261 
262 	/*
263 	 * If the target is mapped to zoned block device(s), check
264 	 * that the zones are not partially mapped.
265 	 */
266 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
267 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
268 
269 		if (start & (zone_sectors - 1)) {
270 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
271 			       dm_device_name(ti->table->md),
272 			       (unsigned long long)start,
273 			       zone_sectors, bdevname(bdev, b));
274 			return 1;
275 		}
276 
277 		/*
278 		 * Note: The last zone of a zoned block device may be smaller
279 		 * than other zones. So for a target mapping the end of a
280 		 * zoned block device with such a zone, len would not be zone
281 		 * aligned. We do not allow such last smaller zone to be part
282 		 * of the mapping here to ensure that mappings with multiple
283 		 * devices do not end up with a smaller zone in the middle of
284 		 * the sector range.
285 		 */
286 		if (len & (zone_sectors - 1)) {
287 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
288 			       dm_device_name(ti->table->md),
289 			       (unsigned long long)len,
290 			       zone_sectors, bdevname(bdev, b));
291 			return 1;
292 		}
293 	}
294 
295 	if (logical_block_size_sectors <= 1)
296 		return 0;
297 
298 	if (start & (logical_block_size_sectors - 1)) {
299 		DMWARN("%s: start=%llu not aligned to h/w "
300 		       "logical block size %u of %s",
301 		       dm_device_name(ti->table->md),
302 		       (unsigned long long)start,
303 		       limits->logical_block_size, bdevname(bdev, b));
304 		return 1;
305 	}
306 
307 	if (len & (logical_block_size_sectors - 1)) {
308 		DMWARN("%s: len=%llu not aligned to h/w "
309 		       "logical block size %u of %s",
310 		       dm_device_name(ti->table->md),
311 		       (unsigned long long)len,
312 		       limits->logical_block_size, bdevname(bdev, b));
313 		return 1;
314 	}
315 
316 	return 0;
317 }
318 
319 /*
320  * This upgrades the mode on an already open dm_dev, being
321  * careful to leave things as they were if we fail to reopen the
322  * device and not to touch the existing bdev field in case
323  * it is accessed concurrently.
324  */
325 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
326 			struct mapped_device *md)
327 {
328 	int r;
329 	struct dm_dev *old_dev, *new_dev;
330 
331 	old_dev = dd->dm_dev;
332 
333 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
334 				dd->dm_dev->mode | new_mode, &new_dev);
335 	if (r)
336 		return r;
337 
338 	dd->dm_dev = new_dev;
339 	dm_put_table_device(md, old_dev);
340 
341 	return 0;
342 }
343 
344 /*
345  * Convert the path to a device
346  */
347 dev_t dm_get_dev_t(const char *path)
348 {
349 	dev_t dev;
350 	struct block_device *bdev;
351 
352 	bdev = lookup_bdev(path);
353 	if (IS_ERR(bdev))
354 		dev = name_to_dev_t(path);
355 	else {
356 		dev = bdev->bd_dev;
357 		bdput(bdev);
358 	}
359 
360 	return dev;
361 }
362 EXPORT_SYMBOL_GPL(dm_get_dev_t);
363 
364 /*
365  * Add a device to the list, or just increment the usage count if
366  * it's already present.
367  */
368 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
369 		  struct dm_dev **result)
370 {
371 	int r;
372 	dev_t dev;
373 	struct dm_dev_internal *dd;
374 	struct dm_table *t = ti->table;
375 
376 	BUG_ON(!t);
377 
378 	dev = dm_get_dev_t(path);
379 	if (!dev)
380 		return -ENODEV;
381 
382 	dd = find_device(&t->devices, dev);
383 	if (!dd) {
384 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
385 		if (!dd)
386 			return -ENOMEM;
387 
388 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
389 			kfree(dd);
390 			return r;
391 		}
392 
393 		refcount_set(&dd->count, 1);
394 		list_add(&dd->list, &t->devices);
395 		goto out;
396 
397 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
398 		r = upgrade_mode(dd, mode, t->md);
399 		if (r)
400 			return r;
401 	}
402 	refcount_inc(&dd->count);
403 out:
404 	*result = dd->dm_dev;
405 	return 0;
406 }
407 EXPORT_SYMBOL(dm_get_device);
408 
409 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
410 				sector_t start, sector_t len, void *data)
411 {
412 	struct queue_limits *limits = data;
413 	struct block_device *bdev = dev->bdev;
414 	struct request_queue *q = bdev_get_queue(bdev);
415 	char b[BDEVNAME_SIZE];
416 
417 	if (unlikely(!q)) {
418 		DMWARN("%s: Cannot set limits for nonexistent device %s",
419 		       dm_device_name(ti->table->md), bdevname(bdev, b));
420 		return 0;
421 	}
422 
423 	if (blk_stack_limits(limits, &q->limits,
424 			get_start_sect(bdev) + start) < 0)
425 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
426 		       "physical_block_size=%u, logical_block_size=%u, "
427 		       "alignment_offset=%u, start=%llu",
428 		       dm_device_name(ti->table->md), bdevname(bdev, b),
429 		       q->limits.physical_block_size,
430 		       q->limits.logical_block_size,
431 		       q->limits.alignment_offset,
432 		       (unsigned long long) start << SECTOR_SHIFT);
433 	return 0;
434 }
435 
436 /*
437  * Decrement a device's use count and remove it if necessary.
438  */
439 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
440 {
441 	int found = 0;
442 	struct list_head *devices = &ti->table->devices;
443 	struct dm_dev_internal *dd;
444 
445 	list_for_each_entry(dd, devices, list) {
446 		if (dd->dm_dev == d) {
447 			found = 1;
448 			break;
449 		}
450 	}
451 	if (!found) {
452 		DMWARN("%s: device %s not in table devices list",
453 		       dm_device_name(ti->table->md), d->name);
454 		return;
455 	}
456 	if (refcount_dec_and_test(&dd->count)) {
457 		dm_put_table_device(ti->table->md, d);
458 		list_del(&dd->list);
459 		kfree(dd);
460 	}
461 }
462 EXPORT_SYMBOL(dm_put_device);
463 
464 /*
465  * Checks to see if the target joins onto the end of the table.
466  */
467 static int adjoin(struct dm_table *table, struct dm_target *ti)
468 {
469 	struct dm_target *prev;
470 
471 	if (!table->num_targets)
472 		return !ti->begin;
473 
474 	prev = &table->targets[table->num_targets - 1];
475 	return (ti->begin == (prev->begin + prev->len));
476 }
477 
478 /*
479  * Used to dynamically allocate the arg array.
480  *
481  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
482  * process messages even if some device is suspended. These messages have a
483  * small fixed number of arguments.
484  *
485  * On the other hand, dm-switch needs to process bulk data using messages and
486  * excessive use of GFP_NOIO could cause trouble.
487  */
488 static char **realloc_argv(unsigned *size, char **old_argv)
489 {
490 	char **argv;
491 	unsigned new_size;
492 	gfp_t gfp;
493 
494 	if (*size) {
495 		new_size = *size * 2;
496 		gfp = GFP_KERNEL;
497 	} else {
498 		new_size = 8;
499 		gfp = GFP_NOIO;
500 	}
501 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
502 	if (argv && old_argv) {
503 		memcpy(argv, old_argv, *size * sizeof(*argv));
504 		*size = new_size;
505 	}
506 
507 	kfree(old_argv);
508 	return argv;
509 }
510 
511 /*
512  * Destructively splits up the argument list to pass to ctr.
513  */
514 int dm_split_args(int *argc, char ***argvp, char *input)
515 {
516 	char *start, *end = input, *out, **argv = NULL;
517 	unsigned array_size = 0;
518 
519 	*argc = 0;
520 
521 	if (!input) {
522 		*argvp = NULL;
523 		return 0;
524 	}
525 
526 	argv = realloc_argv(&array_size, argv);
527 	if (!argv)
528 		return -ENOMEM;
529 
530 	while (1) {
531 		/* Skip whitespace */
532 		start = skip_spaces(end);
533 
534 		if (!*start)
535 			break;	/* success, we hit the end */
536 
537 		/* 'out' is used to remove any back-quotes */
538 		end = out = start;
539 		while (*end) {
540 			/* Everything apart from '\0' can be quoted */
541 			if (*end == '\\' && *(end + 1)) {
542 				*out++ = *(end + 1);
543 				end += 2;
544 				continue;
545 			}
546 
547 			if (isspace(*end))
548 				break;	/* end of token */
549 
550 			*out++ = *end++;
551 		}
552 
553 		/* have we already filled the array ? */
554 		if ((*argc + 1) > array_size) {
555 			argv = realloc_argv(&array_size, argv);
556 			if (!argv)
557 				return -ENOMEM;
558 		}
559 
560 		/* we know this is whitespace */
561 		if (*end)
562 			end++;
563 
564 		/* terminate the string and put it in the array */
565 		*out = '\0';
566 		argv[*argc] = start;
567 		(*argc)++;
568 	}
569 
570 	*argvp = argv;
571 	return 0;
572 }
573 
574 /*
575  * Impose necessary and sufficient conditions on a devices's table such
576  * that any incoming bio which respects its logical_block_size can be
577  * processed successfully.  If it falls across the boundary between
578  * two or more targets, the size of each piece it gets split into must
579  * be compatible with the logical_block_size of the target processing it.
580  */
581 static int validate_hardware_logical_block_alignment(struct dm_table *table,
582 						 struct queue_limits *limits)
583 {
584 	/*
585 	 * This function uses arithmetic modulo the logical_block_size
586 	 * (in units of 512-byte sectors).
587 	 */
588 	unsigned short device_logical_block_size_sects =
589 		limits->logical_block_size >> SECTOR_SHIFT;
590 
591 	/*
592 	 * Offset of the start of the next table entry, mod logical_block_size.
593 	 */
594 	unsigned short next_target_start = 0;
595 
596 	/*
597 	 * Given an aligned bio that extends beyond the end of a
598 	 * target, how many sectors must the next target handle?
599 	 */
600 	unsigned short remaining = 0;
601 
602 	struct dm_target *ti;
603 	struct queue_limits ti_limits;
604 	unsigned i;
605 
606 	/*
607 	 * Check each entry in the table in turn.
608 	 */
609 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
610 		ti = dm_table_get_target(table, i);
611 
612 		blk_set_stacking_limits(&ti_limits);
613 
614 		/* combine all target devices' limits */
615 		if (ti->type->iterate_devices)
616 			ti->type->iterate_devices(ti, dm_set_device_limits,
617 						  &ti_limits);
618 
619 		/*
620 		 * If the remaining sectors fall entirely within this
621 		 * table entry are they compatible with its logical_block_size?
622 		 */
623 		if (remaining < ti->len &&
624 		    remaining & ((ti_limits.logical_block_size >>
625 				  SECTOR_SHIFT) - 1))
626 			break;	/* Error */
627 
628 		next_target_start =
629 		    (unsigned short) ((next_target_start + ti->len) &
630 				      (device_logical_block_size_sects - 1));
631 		remaining = next_target_start ?
632 		    device_logical_block_size_sects - next_target_start : 0;
633 	}
634 
635 	if (remaining) {
636 		DMWARN("%s: table line %u (start sect %llu len %llu) "
637 		       "not aligned to h/w logical block size %u",
638 		       dm_device_name(table->md), i,
639 		       (unsigned long long) ti->begin,
640 		       (unsigned long long) ti->len,
641 		       limits->logical_block_size);
642 		return -EINVAL;
643 	}
644 
645 	return 0;
646 }
647 
648 int dm_table_add_target(struct dm_table *t, const char *type,
649 			sector_t start, sector_t len, char *params)
650 {
651 	int r = -EINVAL, argc;
652 	char **argv;
653 	struct dm_target *tgt;
654 
655 	if (t->singleton) {
656 		DMERR("%s: target type %s must appear alone in table",
657 		      dm_device_name(t->md), t->targets->type->name);
658 		return -EINVAL;
659 	}
660 
661 	BUG_ON(t->num_targets >= t->num_allocated);
662 
663 	tgt = t->targets + t->num_targets;
664 	memset(tgt, 0, sizeof(*tgt));
665 
666 	if (!len) {
667 		DMERR("%s: zero-length target", dm_device_name(t->md));
668 		return -EINVAL;
669 	}
670 
671 	tgt->type = dm_get_target_type(type);
672 	if (!tgt->type) {
673 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
674 		return -EINVAL;
675 	}
676 
677 	if (dm_target_needs_singleton(tgt->type)) {
678 		if (t->num_targets) {
679 			tgt->error = "singleton target type must appear alone in table";
680 			goto bad;
681 		}
682 		t->singleton = true;
683 	}
684 
685 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
686 		tgt->error = "target type may not be included in a read-only table";
687 		goto bad;
688 	}
689 
690 	if (t->immutable_target_type) {
691 		if (t->immutable_target_type != tgt->type) {
692 			tgt->error = "immutable target type cannot be mixed with other target types";
693 			goto bad;
694 		}
695 	} else if (dm_target_is_immutable(tgt->type)) {
696 		if (t->num_targets) {
697 			tgt->error = "immutable target type cannot be mixed with other target types";
698 			goto bad;
699 		}
700 		t->immutable_target_type = tgt->type;
701 	}
702 
703 	if (dm_target_has_integrity(tgt->type))
704 		t->integrity_added = 1;
705 
706 	tgt->table = t;
707 	tgt->begin = start;
708 	tgt->len = len;
709 	tgt->error = "Unknown error";
710 
711 	/*
712 	 * Does this target adjoin the previous one ?
713 	 */
714 	if (!adjoin(t, tgt)) {
715 		tgt->error = "Gap in table";
716 		goto bad;
717 	}
718 
719 	r = dm_split_args(&argc, &argv, params);
720 	if (r) {
721 		tgt->error = "couldn't split parameters (insufficient memory)";
722 		goto bad;
723 	}
724 
725 	r = tgt->type->ctr(tgt, argc, argv);
726 	kfree(argv);
727 	if (r)
728 		goto bad;
729 
730 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
731 
732 	if (!tgt->num_discard_bios && tgt->discards_supported)
733 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
734 		       dm_device_name(t->md), type);
735 
736 	return 0;
737 
738  bad:
739 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
740 	dm_put_target_type(tgt->type);
741 	return r;
742 }
743 
744 /*
745  * Target argument parsing helpers.
746  */
747 static int validate_next_arg(const struct dm_arg *arg,
748 			     struct dm_arg_set *arg_set,
749 			     unsigned *value, char **error, unsigned grouped)
750 {
751 	const char *arg_str = dm_shift_arg(arg_set);
752 	char dummy;
753 
754 	if (!arg_str ||
755 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
756 	    (*value < arg->min) ||
757 	    (*value > arg->max) ||
758 	    (grouped && arg_set->argc < *value)) {
759 		*error = arg->error;
760 		return -EINVAL;
761 	}
762 
763 	return 0;
764 }
765 
766 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
767 		unsigned *value, char **error)
768 {
769 	return validate_next_arg(arg, arg_set, value, error, 0);
770 }
771 EXPORT_SYMBOL(dm_read_arg);
772 
773 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
774 		      unsigned *value, char **error)
775 {
776 	return validate_next_arg(arg, arg_set, value, error, 1);
777 }
778 EXPORT_SYMBOL(dm_read_arg_group);
779 
780 const char *dm_shift_arg(struct dm_arg_set *as)
781 {
782 	char *r;
783 
784 	if (as->argc) {
785 		as->argc--;
786 		r = *as->argv;
787 		as->argv++;
788 		return r;
789 	}
790 
791 	return NULL;
792 }
793 EXPORT_SYMBOL(dm_shift_arg);
794 
795 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
796 {
797 	BUG_ON(as->argc < num_args);
798 	as->argc -= num_args;
799 	as->argv += num_args;
800 }
801 EXPORT_SYMBOL(dm_consume_args);
802 
803 static bool __table_type_bio_based(enum dm_queue_mode table_type)
804 {
805 	return (table_type == DM_TYPE_BIO_BASED ||
806 		table_type == DM_TYPE_DAX_BIO_BASED);
807 }
808 
809 static bool __table_type_request_based(enum dm_queue_mode table_type)
810 {
811 	return table_type == DM_TYPE_REQUEST_BASED;
812 }
813 
814 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
815 {
816 	t->type = type;
817 }
818 EXPORT_SYMBOL_GPL(dm_table_set_type);
819 
820 /* validate the dax capability of the target device span */
821 int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
822 			sector_t start, sector_t len, void *data)
823 {
824 	int blocksize = *(int *) data, id;
825 	bool rc;
826 
827 	id = dax_read_lock();
828 	rc = dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
829 	dax_read_unlock(id);
830 
831 	return rc;
832 }
833 
834 /* Check devices support synchronous DAX */
835 static int device_dax_synchronous(struct dm_target *ti, struct dm_dev *dev,
836 				  sector_t start, sector_t len, void *data)
837 {
838 	return dev->dax_dev && dax_synchronous(dev->dax_dev);
839 }
840 
841 bool dm_table_supports_dax(struct dm_table *t,
842 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
843 {
844 	struct dm_target *ti;
845 	unsigned i;
846 
847 	/* Ensure that all targets support DAX. */
848 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
849 		ti = dm_table_get_target(t, i);
850 
851 		if (!ti->type->direct_access)
852 			return false;
853 
854 		if (!ti->type->iterate_devices ||
855 		    !ti->type->iterate_devices(ti, iterate_fn, blocksize))
856 			return false;
857 	}
858 
859 	return true;
860 }
861 
862 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
863 				  sector_t start, sector_t len, void *data)
864 {
865 	struct block_device *bdev = dev->bdev;
866 	struct request_queue *q = bdev_get_queue(bdev);
867 
868 	/* request-based cannot stack on partitions! */
869 	if (bdev_is_partition(bdev))
870 		return false;
871 
872 	return queue_is_mq(q);
873 }
874 
875 static int dm_table_determine_type(struct dm_table *t)
876 {
877 	unsigned i;
878 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
879 	struct dm_target *tgt;
880 	struct list_head *devices = dm_table_get_devices(t);
881 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
882 	int page_size = PAGE_SIZE;
883 
884 	if (t->type != DM_TYPE_NONE) {
885 		/* target already set the table's type */
886 		if (t->type == DM_TYPE_BIO_BASED) {
887 			/* possibly upgrade to a variant of bio-based */
888 			goto verify_bio_based;
889 		}
890 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
891 		goto verify_rq_based;
892 	}
893 
894 	for (i = 0; i < t->num_targets; i++) {
895 		tgt = t->targets + i;
896 		if (dm_target_hybrid(tgt))
897 			hybrid = 1;
898 		else if (dm_target_request_based(tgt))
899 			request_based = 1;
900 		else
901 			bio_based = 1;
902 
903 		if (bio_based && request_based) {
904 			DMERR("Inconsistent table: different target types"
905 			      " can't be mixed up");
906 			return -EINVAL;
907 		}
908 	}
909 
910 	if (hybrid && !bio_based && !request_based) {
911 		/*
912 		 * The targets can work either way.
913 		 * Determine the type from the live device.
914 		 * Default to bio-based if device is new.
915 		 */
916 		if (__table_type_request_based(live_md_type))
917 			request_based = 1;
918 		else
919 			bio_based = 1;
920 	}
921 
922 	if (bio_based) {
923 verify_bio_based:
924 		/* We must use this table as bio-based */
925 		t->type = DM_TYPE_BIO_BASED;
926 		if (dm_table_supports_dax(t, device_supports_dax, &page_size) ||
927 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
928 			t->type = DM_TYPE_DAX_BIO_BASED;
929 		}
930 		return 0;
931 	}
932 
933 	BUG_ON(!request_based); /* No targets in this table */
934 
935 	t->type = DM_TYPE_REQUEST_BASED;
936 
937 verify_rq_based:
938 	/*
939 	 * Request-based dm supports only tables that have a single target now.
940 	 * To support multiple targets, request splitting support is needed,
941 	 * and that needs lots of changes in the block-layer.
942 	 * (e.g. request completion process for partial completion.)
943 	 */
944 	if (t->num_targets > 1) {
945 		DMERR("request-based DM doesn't support multiple targets");
946 		return -EINVAL;
947 	}
948 
949 	if (list_empty(devices)) {
950 		int srcu_idx;
951 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
952 
953 		/* inherit live table's type */
954 		if (live_table)
955 			t->type = live_table->type;
956 		dm_put_live_table(t->md, srcu_idx);
957 		return 0;
958 	}
959 
960 	tgt = dm_table_get_immutable_target(t);
961 	if (!tgt) {
962 		DMERR("table load rejected: immutable target is required");
963 		return -EINVAL;
964 	} else if (tgt->max_io_len) {
965 		DMERR("table load rejected: immutable target that splits IO is not supported");
966 		return -EINVAL;
967 	}
968 
969 	/* Non-request-stackable devices can't be used for request-based dm */
970 	if (!tgt->type->iterate_devices ||
971 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
972 		DMERR("table load rejected: including non-request-stackable devices");
973 		return -EINVAL;
974 	}
975 
976 	return 0;
977 }
978 
979 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
980 {
981 	return t->type;
982 }
983 
984 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
985 {
986 	return t->immutable_target_type;
987 }
988 
989 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
990 {
991 	/* Immutable target is implicitly a singleton */
992 	if (t->num_targets > 1 ||
993 	    !dm_target_is_immutable(t->targets[0].type))
994 		return NULL;
995 
996 	return t->targets;
997 }
998 
999 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1000 {
1001 	struct dm_target *ti;
1002 	unsigned i;
1003 
1004 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1005 		ti = dm_table_get_target(t, i);
1006 		if (dm_target_is_wildcard(ti->type))
1007 			return ti;
1008 	}
1009 
1010 	return NULL;
1011 }
1012 
1013 bool dm_table_bio_based(struct dm_table *t)
1014 {
1015 	return __table_type_bio_based(dm_table_get_type(t));
1016 }
1017 
1018 bool dm_table_request_based(struct dm_table *t)
1019 {
1020 	return __table_type_request_based(dm_table_get_type(t));
1021 }
1022 
1023 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1024 {
1025 	enum dm_queue_mode type = dm_table_get_type(t);
1026 	unsigned per_io_data_size = 0;
1027 	unsigned min_pool_size = 0;
1028 	struct dm_target *ti;
1029 	unsigned i;
1030 
1031 	if (unlikely(type == DM_TYPE_NONE)) {
1032 		DMWARN("no table type is set, can't allocate mempools");
1033 		return -EINVAL;
1034 	}
1035 
1036 	if (__table_type_bio_based(type))
1037 		for (i = 0; i < t->num_targets; i++) {
1038 			ti = t->targets + i;
1039 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1040 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1041 		}
1042 
1043 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1044 					   per_io_data_size, min_pool_size);
1045 	if (!t->mempools)
1046 		return -ENOMEM;
1047 
1048 	return 0;
1049 }
1050 
1051 void dm_table_free_md_mempools(struct dm_table *t)
1052 {
1053 	dm_free_md_mempools(t->mempools);
1054 	t->mempools = NULL;
1055 }
1056 
1057 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1058 {
1059 	return t->mempools;
1060 }
1061 
1062 static int setup_indexes(struct dm_table *t)
1063 {
1064 	int i;
1065 	unsigned int total = 0;
1066 	sector_t *indexes;
1067 
1068 	/* allocate the space for *all* the indexes */
1069 	for (i = t->depth - 2; i >= 0; i--) {
1070 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1071 		total += t->counts[i];
1072 	}
1073 
1074 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1075 	if (!indexes)
1076 		return -ENOMEM;
1077 
1078 	/* set up internal nodes, bottom-up */
1079 	for (i = t->depth - 2; i >= 0; i--) {
1080 		t->index[i] = indexes;
1081 		indexes += (KEYS_PER_NODE * t->counts[i]);
1082 		setup_btree_index(i, t);
1083 	}
1084 
1085 	return 0;
1086 }
1087 
1088 /*
1089  * Builds the btree to index the map.
1090  */
1091 static int dm_table_build_index(struct dm_table *t)
1092 {
1093 	int r = 0;
1094 	unsigned int leaf_nodes;
1095 
1096 	/* how many indexes will the btree have ? */
1097 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1098 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1099 
1100 	/* leaf layer has already been set up */
1101 	t->counts[t->depth - 1] = leaf_nodes;
1102 	t->index[t->depth - 1] = t->highs;
1103 
1104 	if (t->depth >= 2)
1105 		r = setup_indexes(t);
1106 
1107 	return r;
1108 }
1109 
1110 static bool integrity_profile_exists(struct gendisk *disk)
1111 {
1112 	return !!blk_get_integrity(disk);
1113 }
1114 
1115 /*
1116  * Get a disk whose integrity profile reflects the table's profile.
1117  * Returns NULL if integrity support was inconsistent or unavailable.
1118  */
1119 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1120 {
1121 	struct list_head *devices = dm_table_get_devices(t);
1122 	struct dm_dev_internal *dd = NULL;
1123 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1124 	unsigned i;
1125 
1126 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1127 		struct dm_target *ti = dm_table_get_target(t, i);
1128 		if (!dm_target_passes_integrity(ti->type))
1129 			goto no_integrity;
1130 	}
1131 
1132 	list_for_each_entry(dd, devices, list) {
1133 		template_disk = dd->dm_dev->bdev->bd_disk;
1134 		if (!integrity_profile_exists(template_disk))
1135 			goto no_integrity;
1136 		else if (prev_disk &&
1137 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1138 			goto no_integrity;
1139 		prev_disk = template_disk;
1140 	}
1141 
1142 	return template_disk;
1143 
1144 no_integrity:
1145 	if (prev_disk)
1146 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1147 		       dm_device_name(t->md),
1148 		       prev_disk->disk_name,
1149 		       template_disk->disk_name);
1150 	return NULL;
1151 }
1152 
1153 /*
1154  * Register the mapped device for blk_integrity support if the
1155  * underlying devices have an integrity profile.  But all devices may
1156  * not have matching profiles (checking all devices isn't reliable
1157  * during table load because this table may use other DM device(s) which
1158  * must be resumed before they will have an initialized integity
1159  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1160  * profile validation: First pass during table load, final pass during
1161  * resume.
1162  */
1163 static int dm_table_register_integrity(struct dm_table *t)
1164 {
1165 	struct mapped_device *md = t->md;
1166 	struct gendisk *template_disk = NULL;
1167 
1168 	/* If target handles integrity itself do not register it here. */
1169 	if (t->integrity_added)
1170 		return 0;
1171 
1172 	template_disk = dm_table_get_integrity_disk(t);
1173 	if (!template_disk)
1174 		return 0;
1175 
1176 	if (!integrity_profile_exists(dm_disk(md))) {
1177 		t->integrity_supported = true;
1178 		/*
1179 		 * Register integrity profile during table load; we can do
1180 		 * this because the final profile must match during resume.
1181 		 */
1182 		blk_integrity_register(dm_disk(md),
1183 				       blk_get_integrity(template_disk));
1184 		return 0;
1185 	}
1186 
1187 	/*
1188 	 * If DM device already has an initialized integrity
1189 	 * profile the new profile should not conflict.
1190 	 */
1191 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1192 		DMWARN("%s: conflict with existing integrity profile: "
1193 		       "%s profile mismatch",
1194 		       dm_device_name(t->md),
1195 		       template_disk->disk_name);
1196 		return 1;
1197 	}
1198 
1199 	/* Preserve existing integrity profile */
1200 	t->integrity_supported = true;
1201 	return 0;
1202 }
1203 
1204 /*
1205  * Prepares the table for use by building the indices,
1206  * setting the type, and allocating mempools.
1207  */
1208 int dm_table_complete(struct dm_table *t)
1209 {
1210 	int r;
1211 
1212 	r = dm_table_determine_type(t);
1213 	if (r) {
1214 		DMERR("unable to determine table type");
1215 		return r;
1216 	}
1217 
1218 	r = dm_table_build_index(t);
1219 	if (r) {
1220 		DMERR("unable to build btrees");
1221 		return r;
1222 	}
1223 
1224 	r = dm_table_register_integrity(t);
1225 	if (r) {
1226 		DMERR("could not register integrity profile.");
1227 		return r;
1228 	}
1229 
1230 	r = dm_table_alloc_md_mempools(t, t->md);
1231 	if (r)
1232 		DMERR("unable to allocate mempools");
1233 
1234 	return r;
1235 }
1236 
1237 static DEFINE_MUTEX(_event_lock);
1238 void dm_table_event_callback(struct dm_table *t,
1239 			     void (*fn)(void *), void *context)
1240 {
1241 	mutex_lock(&_event_lock);
1242 	t->event_fn = fn;
1243 	t->event_context = context;
1244 	mutex_unlock(&_event_lock);
1245 }
1246 
1247 void dm_table_event(struct dm_table *t)
1248 {
1249 	mutex_lock(&_event_lock);
1250 	if (t->event_fn)
1251 		t->event_fn(t->event_context);
1252 	mutex_unlock(&_event_lock);
1253 }
1254 EXPORT_SYMBOL(dm_table_event);
1255 
1256 inline sector_t dm_table_get_size(struct dm_table *t)
1257 {
1258 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1259 }
1260 EXPORT_SYMBOL(dm_table_get_size);
1261 
1262 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1263 {
1264 	if (index >= t->num_targets)
1265 		return NULL;
1266 
1267 	return t->targets + index;
1268 }
1269 
1270 /*
1271  * Search the btree for the correct target.
1272  *
1273  * Caller should check returned pointer for NULL
1274  * to trap I/O beyond end of device.
1275  */
1276 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1277 {
1278 	unsigned int l, n = 0, k = 0;
1279 	sector_t *node;
1280 
1281 	if (unlikely(sector >= dm_table_get_size(t)))
1282 		return NULL;
1283 
1284 	for (l = 0; l < t->depth; l++) {
1285 		n = get_child(n, k);
1286 		node = get_node(t, l, n);
1287 
1288 		for (k = 0; k < KEYS_PER_NODE; k++)
1289 			if (node[k] >= sector)
1290 				break;
1291 	}
1292 
1293 	return &t->targets[(KEYS_PER_NODE * n) + k];
1294 }
1295 
1296 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1297 			sector_t start, sector_t len, void *data)
1298 {
1299 	unsigned *num_devices = data;
1300 
1301 	(*num_devices)++;
1302 
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Check whether a table has no data devices attached using each
1308  * target's iterate_devices method.
1309  * Returns false if the result is unknown because a target doesn't
1310  * support iterate_devices.
1311  */
1312 bool dm_table_has_no_data_devices(struct dm_table *table)
1313 {
1314 	struct dm_target *ti;
1315 	unsigned i, num_devices;
1316 
1317 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1318 		ti = dm_table_get_target(table, i);
1319 
1320 		if (!ti->type->iterate_devices)
1321 			return false;
1322 
1323 		num_devices = 0;
1324 		ti->type->iterate_devices(ti, count_device, &num_devices);
1325 		if (num_devices)
1326 			return false;
1327 	}
1328 
1329 	return true;
1330 }
1331 
1332 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1333 				 sector_t start, sector_t len, void *data)
1334 {
1335 	struct request_queue *q = bdev_get_queue(dev->bdev);
1336 	enum blk_zoned_model *zoned_model = data;
1337 
1338 	return q && blk_queue_zoned_model(q) == *zoned_model;
1339 }
1340 
1341 static bool dm_table_supports_zoned_model(struct dm_table *t,
1342 					  enum blk_zoned_model zoned_model)
1343 {
1344 	struct dm_target *ti;
1345 	unsigned i;
1346 
1347 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1348 		ti = dm_table_get_target(t, i);
1349 
1350 		if (zoned_model == BLK_ZONED_HM &&
1351 		    !dm_target_supports_zoned_hm(ti->type))
1352 			return false;
1353 
1354 		if (!ti->type->iterate_devices ||
1355 		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1356 			return false;
1357 	}
1358 
1359 	return true;
1360 }
1361 
1362 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1363 				       sector_t start, sector_t len, void *data)
1364 {
1365 	struct request_queue *q = bdev_get_queue(dev->bdev);
1366 	unsigned int *zone_sectors = data;
1367 
1368 	return q && blk_queue_zone_sectors(q) == *zone_sectors;
1369 }
1370 
1371 static bool dm_table_matches_zone_sectors(struct dm_table *t,
1372 					  unsigned int zone_sectors)
1373 {
1374 	struct dm_target *ti;
1375 	unsigned i;
1376 
1377 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1378 		ti = dm_table_get_target(t, i);
1379 
1380 		if (!ti->type->iterate_devices ||
1381 		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1382 			return false;
1383 	}
1384 
1385 	return true;
1386 }
1387 
1388 static int validate_hardware_zoned_model(struct dm_table *table,
1389 					 enum blk_zoned_model zoned_model,
1390 					 unsigned int zone_sectors)
1391 {
1392 	if (zoned_model == BLK_ZONED_NONE)
1393 		return 0;
1394 
1395 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1396 		DMERR("%s: zoned model is not consistent across all devices",
1397 		      dm_device_name(table->md));
1398 		return -EINVAL;
1399 	}
1400 
1401 	/* Check zone size validity and compatibility */
1402 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1403 		return -EINVAL;
1404 
1405 	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1406 		DMERR("%s: zone sectors is not consistent across all devices",
1407 		      dm_device_name(table->md));
1408 		return -EINVAL;
1409 	}
1410 
1411 	return 0;
1412 }
1413 
1414 /*
1415  * Establish the new table's queue_limits and validate them.
1416  */
1417 int dm_calculate_queue_limits(struct dm_table *table,
1418 			      struct queue_limits *limits)
1419 {
1420 	struct dm_target *ti;
1421 	struct queue_limits ti_limits;
1422 	unsigned i;
1423 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1424 	unsigned int zone_sectors = 0;
1425 
1426 	blk_set_stacking_limits(limits);
1427 
1428 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1429 		blk_set_stacking_limits(&ti_limits);
1430 
1431 		ti = dm_table_get_target(table, i);
1432 
1433 		if (!ti->type->iterate_devices)
1434 			goto combine_limits;
1435 
1436 		/*
1437 		 * Combine queue limits of all the devices this target uses.
1438 		 */
1439 		ti->type->iterate_devices(ti, dm_set_device_limits,
1440 					  &ti_limits);
1441 
1442 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1443 			/*
1444 			 * After stacking all limits, validate all devices
1445 			 * in table support this zoned model and zone sectors.
1446 			 */
1447 			zoned_model = ti_limits.zoned;
1448 			zone_sectors = ti_limits.chunk_sectors;
1449 		}
1450 
1451 		/* Set I/O hints portion of queue limits */
1452 		if (ti->type->io_hints)
1453 			ti->type->io_hints(ti, &ti_limits);
1454 
1455 		/*
1456 		 * Check each device area is consistent with the target's
1457 		 * overall queue limits.
1458 		 */
1459 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1460 					      &ti_limits))
1461 			return -EINVAL;
1462 
1463 combine_limits:
1464 		/*
1465 		 * Merge this target's queue limits into the overall limits
1466 		 * for the table.
1467 		 */
1468 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1469 			DMWARN("%s: adding target device "
1470 			       "(start sect %llu len %llu) "
1471 			       "caused an alignment inconsistency",
1472 			       dm_device_name(table->md),
1473 			       (unsigned long long) ti->begin,
1474 			       (unsigned long long) ti->len);
1475 	}
1476 
1477 	/*
1478 	 * Verify that the zoned model and zone sectors, as determined before
1479 	 * any .io_hints override, are the same across all devices in the table.
1480 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1481 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1482 	 * BUT...
1483 	 */
1484 	if (limits->zoned != BLK_ZONED_NONE) {
1485 		/*
1486 		 * ...IF the above limits stacking determined a zoned model
1487 		 * validate that all of the table's devices conform to it.
1488 		 */
1489 		zoned_model = limits->zoned;
1490 		zone_sectors = limits->chunk_sectors;
1491 	}
1492 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1493 		return -EINVAL;
1494 
1495 	return validate_hardware_logical_block_alignment(table, limits);
1496 }
1497 
1498 /*
1499  * Verify that all devices have an integrity profile that matches the
1500  * DM device's registered integrity profile.  If the profiles don't
1501  * match then unregister the DM device's integrity profile.
1502  */
1503 static void dm_table_verify_integrity(struct dm_table *t)
1504 {
1505 	struct gendisk *template_disk = NULL;
1506 
1507 	if (t->integrity_added)
1508 		return;
1509 
1510 	if (t->integrity_supported) {
1511 		/*
1512 		 * Verify that the original integrity profile
1513 		 * matches all the devices in this table.
1514 		 */
1515 		template_disk = dm_table_get_integrity_disk(t);
1516 		if (template_disk &&
1517 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1518 			return;
1519 	}
1520 
1521 	if (integrity_profile_exists(dm_disk(t->md))) {
1522 		DMWARN("%s: unable to establish an integrity profile",
1523 		       dm_device_name(t->md));
1524 		blk_integrity_unregister(dm_disk(t->md));
1525 	}
1526 }
1527 
1528 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1529 				sector_t start, sector_t len, void *data)
1530 {
1531 	unsigned long flush = (unsigned long) data;
1532 	struct request_queue *q = bdev_get_queue(dev->bdev);
1533 
1534 	return q && (q->queue_flags & flush);
1535 }
1536 
1537 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1538 {
1539 	struct dm_target *ti;
1540 	unsigned i;
1541 
1542 	/*
1543 	 * Require at least one underlying device to support flushes.
1544 	 * t->devices includes internal dm devices such as mirror logs
1545 	 * so we need to use iterate_devices here, which targets
1546 	 * supporting flushes must provide.
1547 	 */
1548 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1549 		ti = dm_table_get_target(t, i);
1550 
1551 		if (!ti->num_flush_bios)
1552 			continue;
1553 
1554 		if (ti->flush_supported)
1555 			return true;
1556 
1557 		if (ti->type->iterate_devices &&
1558 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1559 			return true;
1560 	}
1561 
1562 	return false;
1563 }
1564 
1565 static int device_dax_write_cache_enabled(struct dm_target *ti,
1566 					  struct dm_dev *dev, sector_t start,
1567 					  sector_t len, void *data)
1568 {
1569 	struct dax_device *dax_dev = dev->dax_dev;
1570 
1571 	if (!dax_dev)
1572 		return false;
1573 
1574 	if (dax_write_cache_enabled(dax_dev))
1575 		return true;
1576 	return false;
1577 }
1578 
1579 static int dm_table_supports_dax_write_cache(struct dm_table *t)
1580 {
1581 	struct dm_target *ti;
1582 	unsigned i;
1583 
1584 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1585 		ti = dm_table_get_target(t, i);
1586 
1587 		if (ti->type->iterate_devices &&
1588 		    ti->type->iterate_devices(ti,
1589 				device_dax_write_cache_enabled, NULL))
1590 			return true;
1591 	}
1592 
1593 	return false;
1594 }
1595 
1596 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1597 			    sector_t start, sector_t len, void *data)
1598 {
1599 	struct request_queue *q = bdev_get_queue(dev->bdev);
1600 
1601 	return q && blk_queue_nonrot(q);
1602 }
1603 
1604 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1605 			     sector_t start, sector_t len, void *data)
1606 {
1607 	struct request_queue *q = bdev_get_queue(dev->bdev);
1608 
1609 	return q && !blk_queue_add_random(q);
1610 }
1611 
1612 static bool dm_table_all_devices_attribute(struct dm_table *t,
1613 					   iterate_devices_callout_fn func)
1614 {
1615 	struct dm_target *ti;
1616 	unsigned i;
1617 
1618 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1619 		ti = dm_table_get_target(t, i);
1620 
1621 		if (!ti->type->iterate_devices ||
1622 		    !ti->type->iterate_devices(ti, func, NULL))
1623 			return false;
1624 	}
1625 
1626 	return true;
1627 }
1628 
1629 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1630 					 sector_t start, sector_t len, void *data)
1631 {
1632 	struct request_queue *q = bdev_get_queue(dev->bdev);
1633 
1634 	return q && !q->limits.max_write_same_sectors;
1635 }
1636 
1637 static bool dm_table_supports_write_same(struct dm_table *t)
1638 {
1639 	struct dm_target *ti;
1640 	unsigned i;
1641 
1642 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1643 		ti = dm_table_get_target(t, i);
1644 
1645 		if (!ti->num_write_same_bios)
1646 			return false;
1647 
1648 		if (!ti->type->iterate_devices ||
1649 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1650 			return false;
1651 	}
1652 
1653 	return true;
1654 }
1655 
1656 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1657 					   sector_t start, sector_t len, void *data)
1658 {
1659 	struct request_queue *q = bdev_get_queue(dev->bdev);
1660 
1661 	return q && !q->limits.max_write_zeroes_sectors;
1662 }
1663 
1664 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1665 {
1666 	struct dm_target *ti;
1667 	unsigned i = 0;
1668 
1669 	while (i < dm_table_get_num_targets(t)) {
1670 		ti = dm_table_get_target(t, i++);
1671 
1672 		if (!ti->num_write_zeroes_bios)
1673 			return false;
1674 
1675 		if (!ti->type->iterate_devices ||
1676 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1677 			return false;
1678 	}
1679 
1680 	return true;
1681 }
1682 
1683 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1684 				     sector_t start, sector_t len, void *data)
1685 {
1686 	struct request_queue *q = bdev_get_queue(dev->bdev);
1687 
1688 	return q && !blk_queue_nowait(q);
1689 }
1690 
1691 static bool dm_table_supports_nowait(struct dm_table *t)
1692 {
1693 	struct dm_target *ti;
1694 	unsigned i = 0;
1695 
1696 	while (i < dm_table_get_num_targets(t)) {
1697 		ti = dm_table_get_target(t, i++);
1698 
1699 		if (!dm_target_supports_nowait(ti->type))
1700 			return false;
1701 
1702 		if (!ti->type->iterate_devices ||
1703 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1704 			return false;
1705 	}
1706 
1707 	return true;
1708 }
1709 
1710 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1711 				      sector_t start, sector_t len, void *data)
1712 {
1713 	struct request_queue *q = bdev_get_queue(dev->bdev);
1714 
1715 	return q && !blk_queue_discard(q);
1716 }
1717 
1718 static bool dm_table_supports_discards(struct dm_table *t)
1719 {
1720 	struct dm_target *ti;
1721 	unsigned i;
1722 
1723 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1724 		ti = dm_table_get_target(t, i);
1725 
1726 		if (!ti->num_discard_bios)
1727 			return false;
1728 
1729 		/*
1730 		 * Either the target provides discard support (as implied by setting
1731 		 * 'discards_supported') or it relies on _all_ data devices having
1732 		 * discard support.
1733 		 */
1734 		if (!ti->discards_supported &&
1735 		    (!ti->type->iterate_devices ||
1736 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1737 			return false;
1738 	}
1739 
1740 	return true;
1741 }
1742 
1743 static int device_not_secure_erase_capable(struct dm_target *ti,
1744 					   struct dm_dev *dev, sector_t start,
1745 					   sector_t len, void *data)
1746 {
1747 	struct request_queue *q = bdev_get_queue(dev->bdev);
1748 
1749 	return q && !blk_queue_secure_erase(q);
1750 }
1751 
1752 static bool dm_table_supports_secure_erase(struct dm_table *t)
1753 {
1754 	struct dm_target *ti;
1755 	unsigned int i;
1756 
1757 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1758 		ti = dm_table_get_target(t, i);
1759 
1760 		if (!ti->num_secure_erase_bios)
1761 			return false;
1762 
1763 		if (!ti->type->iterate_devices ||
1764 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1765 			return false;
1766 	}
1767 
1768 	return true;
1769 }
1770 
1771 static int device_requires_stable_pages(struct dm_target *ti,
1772 					struct dm_dev *dev, sector_t start,
1773 					sector_t len, void *data)
1774 {
1775 	struct request_queue *q = bdev_get_queue(dev->bdev);
1776 
1777 	return q && blk_queue_stable_writes(q);
1778 }
1779 
1780 /*
1781  * If any underlying device requires stable pages, a table must require
1782  * them as well.  Only targets that support iterate_devices are considered:
1783  * don't want error, zero, etc to require stable pages.
1784  */
1785 static bool dm_table_requires_stable_pages(struct dm_table *t)
1786 {
1787 	struct dm_target *ti;
1788 	unsigned i;
1789 
1790 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1791 		ti = dm_table_get_target(t, i);
1792 
1793 		if (ti->type->iterate_devices &&
1794 		    ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1795 			return true;
1796 	}
1797 
1798 	return false;
1799 }
1800 
1801 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1802 			       struct queue_limits *limits)
1803 {
1804 	bool wc = false, fua = false;
1805 	int page_size = PAGE_SIZE;
1806 
1807 	/*
1808 	 * Copy table's limits to the DM device's request_queue
1809 	 */
1810 	q->limits = *limits;
1811 
1812 	if (dm_table_supports_nowait(t))
1813 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1814 	else
1815 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1816 
1817 	if (!dm_table_supports_discards(t)) {
1818 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1819 		/* Must also clear discard limits... */
1820 		q->limits.max_discard_sectors = 0;
1821 		q->limits.max_hw_discard_sectors = 0;
1822 		q->limits.discard_granularity = 0;
1823 		q->limits.discard_alignment = 0;
1824 		q->limits.discard_misaligned = 0;
1825 	} else
1826 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1827 
1828 	if (dm_table_supports_secure_erase(t))
1829 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1830 
1831 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1832 		wc = true;
1833 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1834 			fua = true;
1835 	}
1836 	blk_queue_write_cache(q, wc, fua);
1837 
1838 	if (dm_table_supports_dax(t, device_supports_dax, &page_size)) {
1839 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1840 		if (dm_table_supports_dax(t, device_dax_synchronous, NULL))
1841 			set_dax_synchronous(t->md->dax_dev);
1842 	}
1843 	else
1844 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1845 
1846 	if (dm_table_supports_dax_write_cache(t))
1847 		dax_write_cache(t->md->dax_dev, true);
1848 
1849 	/* Ensure that all underlying devices are non-rotational. */
1850 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1851 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1852 	else
1853 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1854 
1855 	if (!dm_table_supports_write_same(t))
1856 		q->limits.max_write_same_sectors = 0;
1857 	if (!dm_table_supports_write_zeroes(t))
1858 		q->limits.max_write_zeroes_sectors = 0;
1859 
1860 	dm_table_verify_integrity(t);
1861 
1862 	/*
1863 	 * Some devices don't use blk_integrity but still want stable pages
1864 	 * because they do their own checksumming.
1865 	 */
1866 	if (dm_table_requires_stable_pages(t))
1867 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
1868 	else
1869 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
1870 
1871 	/*
1872 	 * Determine whether or not this queue's I/O timings contribute
1873 	 * to the entropy pool, Only request-based targets use this.
1874 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1875 	 * have it set.
1876 	 */
1877 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1878 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1879 
1880 	/*
1881 	 * For a zoned target, the number of zones should be updated for the
1882 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
1883 	 * target, this is all that is needed.
1884 	 */
1885 #ifdef CONFIG_BLK_DEV_ZONED
1886 	if (blk_queue_is_zoned(q)) {
1887 		WARN_ON_ONCE(queue_is_mq(q));
1888 		q->nr_zones = blkdev_nr_zones(t->md->disk);
1889 	}
1890 #endif
1891 
1892 	blk_queue_update_readahead(q);
1893 }
1894 
1895 unsigned int dm_table_get_num_targets(struct dm_table *t)
1896 {
1897 	return t->num_targets;
1898 }
1899 
1900 struct list_head *dm_table_get_devices(struct dm_table *t)
1901 {
1902 	return &t->devices;
1903 }
1904 
1905 fmode_t dm_table_get_mode(struct dm_table *t)
1906 {
1907 	return t->mode;
1908 }
1909 EXPORT_SYMBOL(dm_table_get_mode);
1910 
1911 enum suspend_mode {
1912 	PRESUSPEND,
1913 	PRESUSPEND_UNDO,
1914 	POSTSUSPEND,
1915 };
1916 
1917 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1918 {
1919 	int i = t->num_targets;
1920 	struct dm_target *ti = t->targets;
1921 
1922 	lockdep_assert_held(&t->md->suspend_lock);
1923 
1924 	while (i--) {
1925 		switch (mode) {
1926 		case PRESUSPEND:
1927 			if (ti->type->presuspend)
1928 				ti->type->presuspend(ti);
1929 			break;
1930 		case PRESUSPEND_UNDO:
1931 			if (ti->type->presuspend_undo)
1932 				ti->type->presuspend_undo(ti);
1933 			break;
1934 		case POSTSUSPEND:
1935 			if (ti->type->postsuspend)
1936 				ti->type->postsuspend(ti);
1937 			break;
1938 		}
1939 		ti++;
1940 	}
1941 }
1942 
1943 void dm_table_presuspend_targets(struct dm_table *t)
1944 {
1945 	if (!t)
1946 		return;
1947 
1948 	suspend_targets(t, PRESUSPEND);
1949 }
1950 
1951 void dm_table_presuspend_undo_targets(struct dm_table *t)
1952 {
1953 	if (!t)
1954 		return;
1955 
1956 	suspend_targets(t, PRESUSPEND_UNDO);
1957 }
1958 
1959 void dm_table_postsuspend_targets(struct dm_table *t)
1960 {
1961 	if (!t)
1962 		return;
1963 
1964 	suspend_targets(t, POSTSUSPEND);
1965 }
1966 
1967 int dm_table_resume_targets(struct dm_table *t)
1968 {
1969 	int i, r = 0;
1970 
1971 	lockdep_assert_held(&t->md->suspend_lock);
1972 
1973 	for (i = 0; i < t->num_targets; i++) {
1974 		struct dm_target *ti = t->targets + i;
1975 
1976 		if (!ti->type->preresume)
1977 			continue;
1978 
1979 		r = ti->type->preresume(ti);
1980 		if (r) {
1981 			DMERR("%s: %s: preresume failed, error = %d",
1982 			      dm_device_name(t->md), ti->type->name, r);
1983 			return r;
1984 		}
1985 	}
1986 
1987 	for (i = 0; i < t->num_targets; i++) {
1988 		struct dm_target *ti = t->targets + i;
1989 
1990 		if (ti->type->resume)
1991 			ti->type->resume(ti);
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 struct mapped_device *dm_table_get_md(struct dm_table *t)
1998 {
1999 	return t->md;
2000 }
2001 EXPORT_SYMBOL(dm_table_get_md);
2002 
2003 const char *dm_table_device_name(struct dm_table *t)
2004 {
2005 	return dm_device_name(t->md);
2006 }
2007 EXPORT_SYMBOL_GPL(dm_table_device_name);
2008 
2009 void dm_table_run_md_queue_async(struct dm_table *t)
2010 {
2011 	if (!dm_table_request_based(t))
2012 		return;
2013 
2014 	if (t->md->queue)
2015 		blk_mq_run_hw_queues(t->md->queue, true);
2016 }
2017 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2018 
2019