1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 24 #define DM_MSG_PREFIX "table" 25 26 #define MAX_DEPTH 16 27 #define NODE_SIZE L1_CACHE_BYTES 28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 30 31 struct dm_table { 32 struct mapped_device *md; 33 unsigned type; 34 35 /* btree table */ 36 unsigned int depth; 37 unsigned int counts[MAX_DEPTH]; /* in nodes */ 38 sector_t *index[MAX_DEPTH]; 39 40 unsigned int num_targets; 41 unsigned int num_allocated; 42 sector_t *highs; 43 struct dm_target *targets; 44 45 struct target_type *immutable_target_type; 46 47 bool integrity_supported:1; 48 bool singleton:1; 49 bool all_blk_mq:1; 50 51 /* 52 * Indicates the rw permissions for the new logical 53 * device. This should be a combination of FMODE_READ 54 * and FMODE_WRITE. 55 */ 56 fmode_t mode; 57 58 /* a list of devices used by this table */ 59 struct list_head devices; 60 61 /* events get handed up using this callback */ 62 void (*event_fn)(void *); 63 void *event_context; 64 65 struct dm_md_mempools *mempools; 66 67 struct list_head target_callbacks; 68 }; 69 70 /* 71 * Similar to ceiling(log_size(n)) 72 */ 73 static unsigned int int_log(unsigned int n, unsigned int base) 74 { 75 int result = 0; 76 77 while (n > 1) { 78 n = dm_div_up(n, base); 79 result++; 80 } 81 82 return result; 83 } 84 85 /* 86 * Calculate the index of the child node of the n'th node k'th key. 87 */ 88 static inline unsigned int get_child(unsigned int n, unsigned int k) 89 { 90 return (n * CHILDREN_PER_NODE) + k; 91 } 92 93 /* 94 * Return the n'th node of level l from table t. 95 */ 96 static inline sector_t *get_node(struct dm_table *t, 97 unsigned int l, unsigned int n) 98 { 99 return t->index[l] + (n * KEYS_PER_NODE); 100 } 101 102 /* 103 * Return the highest key that you could lookup from the n'th 104 * node on level l of the btree. 105 */ 106 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 107 { 108 for (; l < t->depth - 1; l++) 109 n = get_child(n, CHILDREN_PER_NODE - 1); 110 111 if (n >= t->counts[l]) 112 return (sector_t) - 1; 113 114 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 115 } 116 117 /* 118 * Fills in a level of the btree based on the highs of the level 119 * below it. 120 */ 121 static int setup_btree_index(unsigned int l, struct dm_table *t) 122 { 123 unsigned int n, k; 124 sector_t *node; 125 126 for (n = 0U; n < t->counts[l]; n++) { 127 node = get_node(t, l, n); 128 129 for (k = 0U; k < KEYS_PER_NODE; k++) 130 node[k] = high(t, l + 1, get_child(n, k)); 131 } 132 133 return 0; 134 } 135 136 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 137 { 138 unsigned long size; 139 void *addr; 140 141 /* 142 * Check that we're not going to overflow. 143 */ 144 if (nmemb > (ULONG_MAX / elem_size)) 145 return NULL; 146 147 size = nmemb * elem_size; 148 addr = vzalloc(size); 149 150 return addr; 151 } 152 EXPORT_SYMBOL(dm_vcalloc); 153 154 /* 155 * highs, and targets are managed as dynamic arrays during a 156 * table load. 157 */ 158 static int alloc_targets(struct dm_table *t, unsigned int num) 159 { 160 sector_t *n_highs; 161 struct dm_target *n_targets; 162 163 /* 164 * Allocate both the target array and offset array at once. 165 * Append an empty entry to catch sectors beyond the end of 166 * the device. 167 */ 168 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 169 sizeof(sector_t)); 170 if (!n_highs) 171 return -ENOMEM; 172 173 n_targets = (struct dm_target *) (n_highs + num); 174 175 memset(n_highs, -1, sizeof(*n_highs) * num); 176 vfree(t->highs); 177 178 t->num_allocated = num; 179 t->highs = n_highs; 180 t->targets = n_targets; 181 182 return 0; 183 } 184 185 int dm_table_create(struct dm_table **result, fmode_t mode, 186 unsigned num_targets, struct mapped_device *md) 187 { 188 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 189 190 if (!t) 191 return -ENOMEM; 192 193 INIT_LIST_HEAD(&t->devices); 194 INIT_LIST_HEAD(&t->target_callbacks); 195 196 if (!num_targets) 197 num_targets = KEYS_PER_NODE; 198 199 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 200 201 if (!num_targets) { 202 kfree(t); 203 return -ENOMEM; 204 } 205 206 if (alloc_targets(t, num_targets)) { 207 kfree(t); 208 return -ENOMEM; 209 } 210 211 t->type = DM_TYPE_NONE; 212 t->mode = mode; 213 t->md = md; 214 *result = t; 215 return 0; 216 } 217 218 static void free_devices(struct list_head *devices, struct mapped_device *md) 219 { 220 struct list_head *tmp, *next; 221 222 list_for_each_safe(tmp, next, devices) { 223 struct dm_dev_internal *dd = 224 list_entry(tmp, struct dm_dev_internal, list); 225 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 226 dm_device_name(md), dd->dm_dev->name); 227 dm_put_table_device(md, dd->dm_dev); 228 kfree(dd); 229 } 230 } 231 232 void dm_table_destroy(struct dm_table *t) 233 { 234 unsigned int i; 235 236 if (!t) 237 return; 238 239 /* free the indexes */ 240 if (t->depth >= 2) 241 vfree(t->index[t->depth - 2]); 242 243 /* free the targets */ 244 for (i = 0; i < t->num_targets; i++) { 245 struct dm_target *tgt = t->targets + i; 246 247 if (tgt->type->dtr) 248 tgt->type->dtr(tgt); 249 250 dm_put_target_type(tgt->type); 251 } 252 253 vfree(t->highs); 254 255 /* free the device list */ 256 free_devices(&t->devices, t->md); 257 258 dm_free_md_mempools(t->mempools); 259 260 kfree(t); 261 } 262 263 /* 264 * See if we've already got a device in the list. 265 */ 266 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 267 { 268 struct dm_dev_internal *dd; 269 270 list_for_each_entry (dd, l, list) 271 if (dd->dm_dev->bdev->bd_dev == dev) 272 return dd; 273 274 return NULL; 275 } 276 277 /* 278 * If possible, this checks an area of a destination device is invalid. 279 */ 280 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 281 sector_t start, sector_t len, void *data) 282 { 283 struct request_queue *q; 284 struct queue_limits *limits = data; 285 struct block_device *bdev = dev->bdev; 286 sector_t dev_size = 287 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 288 unsigned short logical_block_size_sectors = 289 limits->logical_block_size >> SECTOR_SHIFT; 290 char b[BDEVNAME_SIZE]; 291 292 /* 293 * Some devices exist without request functions, 294 * such as loop devices not yet bound to backing files. 295 * Forbid the use of such devices. 296 */ 297 q = bdev_get_queue(bdev); 298 if (!q || !q->make_request_fn) { 299 DMWARN("%s: %s is not yet initialised: " 300 "start=%llu, len=%llu, dev_size=%llu", 301 dm_device_name(ti->table->md), bdevname(bdev, b), 302 (unsigned long long)start, 303 (unsigned long long)len, 304 (unsigned long long)dev_size); 305 return 1; 306 } 307 308 if (!dev_size) 309 return 0; 310 311 if ((start >= dev_size) || (start + len > dev_size)) { 312 DMWARN("%s: %s too small for target: " 313 "start=%llu, len=%llu, dev_size=%llu", 314 dm_device_name(ti->table->md), bdevname(bdev, b), 315 (unsigned long long)start, 316 (unsigned long long)len, 317 (unsigned long long)dev_size); 318 return 1; 319 } 320 321 if (logical_block_size_sectors <= 1) 322 return 0; 323 324 if (start & (logical_block_size_sectors - 1)) { 325 DMWARN("%s: start=%llu not aligned to h/w " 326 "logical block size %u of %s", 327 dm_device_name(ti->table->md), 328 (unsigned long long)start, 329 limits->logical_block_size, bdevname(bdev, b)); 330 return 1; 331 } 332 333 if (len & (logical_block_size_sectors - 1)) { 334 DMWARN("%s: len=%llu not aligned to h/w " 335 "logical block size %u of %s", 336 dm_device_name(ti->table->md), 337 (unsigned long long)len, 338 limits->logical_block_size, bdevname(bdev, b)); 339 return 1; 340 } 341 342 return 0; 343 } 344 345 /* 346 * This upgrades the mode on an already open dm_dev, being 347 * careful to leave things as they were if we fail to reopen the 348 * device and not to touch the existing bdev field in case 349 * it is accessed concurrently inside dm_table_any_congested(). 350 */ 351 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 352 struct mapped_device *md) 353 { 354 int r; 355 struct dm_dev *old_dev, *new_dev; 356 357 old_dev = dd->dm_dev; 358 359 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 360 dd->dm_dev->mode | new_mode, &new_dev); 361 if (r) 362 return r; 363 364 dd->dm_dev = new_dev; 365 dm_put_table_device(md, old_dev); 366 367 return 0; 368 } 369 370 /* 371 * Convert the path to a device 372 */ 373 dev_t dm_get_dev_t(const char *path) 374 { 375 dev_t uninitialized_var(dev); 376 struct block_device *bdev; 377 378 bdev = lookup_bdev(path); 379 if (IS_ERR(bdev)) 380 dev = name_to_dev_t(path); 381 else { 382 dev = bdev->bd_dev; 383 bdput(bdev); 384 } 385 386 return dev; 387 } 388 EXPORT_SYMBOL_GPL(dm_get_dev_t); 389 390 /* 391 * Add a device to the list, or just increment the usage count if 392 * it's already present. 393 */ 394 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 395 struct dm_dev **result) 396 { 397 int r; 398 dev_t dev; 399 struct dm_dev_internal *dd; 400 struct dm_table *t = ti->table; 401 402 BUG_ON(!t); 403 404 dev = dm_get_dev_t(path); 405 if (!dev) 406 return -ENODEV; 407 408 dd = find_device(&t->devices, dev); 409 if (!dd) { 410 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 411 if (!dd) 412 return -ENOMEM; 413 414 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 415 kfree(dd); 416 return r; 417 } 418 419 atomic_set(&dd->count, 0); 420 list_add(&dd->list, &t->devices); 421 422 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 423 r = upgrade_mode(dd, mode, t->md); 424 if (r) 425 return r; 426 } 427 atomic_inc(&dd->count); 428 429 *result = dd->dm_dev; 430 return 0; 431 } 432 EXPORT_SYMBOL(dm_get_device); 433 434 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 435 sector_t start, sector_t len, void *data) 436 { 437 struct queue_limits *limits = data; 438 struct block_device *bdev = dev->bdev; 439 struct request_queue *q = bdev_get_queue(bdev); 440 char b[BDEVNAME_SIZE]; 441 442 if (unlikely(!q)) { 443 DMWARN("%s: Cannot set limits for nonexistent device %s", 444 dm_device_name(ti->table->md), bdevname(bdev, b)); 445 return 0; 446 } 447 448 if (bdev_stack_limits(limits, bdev, start) < 0) 449 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 450 "physical_block_size=%u, logical_block_size=%u, " 451 "alignment_offset=%u, start=%llu", 452 dm_device_name(ti->table->md), bdevname(bdev, b), 453 q->limits.physical_block_size, 454 q->limits.logical_block_size, 455 q->limits.alignment_offset, 456 (unsigned long long) start << SECTOR_SHIFT); 457 458 return 0; 459 } 460 461 /* 462 * Decrement a device's use count and remove it if necessary. 463 */ 464 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 465 { 466 int found = 0; 467 struct list_head *devices = &ti->table->devices; 468 struct dm_dev_internal *dd; 469 470 list_for_each_entry(dd, devices, list) { 471 if (dd->dm_dev == d) { 472 found = 1; 473 break; 474 } 475 } 476 if (!found) { 477 DMWARN("%s: device %s not in table devices list", 478 dm_device_name(ti->table->md), d->name); 479 return; 480 } 481 if (atomic_dec_and_test(&dd->count)) { 482 dm_put_table_device(ti->table->md, d); 483 list_del(&dd->list); 484 kfree(dd); 485 } 486 } 487 EXPORT_SYMBOL(dm_put_device); 488 489 /* 490 * Checks to see if the target joins onto the end of the table. 491 */ 492 static int adjoin(struct dm_table *table, struct dm_target *ti) 493 { 494 struct dm_target *prev; 495 496 if (!table->num_targets) 497 return !ti->begin; 498 499 prev = &table->targets[table->num_targets - 1]; 500 return (ti->begin == (prev->begin + prev->len)); 501 } 502 503 /* 504 * Used to dynamically allocate the arg array. 505 * 506 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 507 * process messages even if some device is suspended. These messages have a 508 * small fixed number of arguments. 509 * 510 * On the other hand, dm-switch needs to process bulk data using messages and 511 * excessive use of GFP_NOIO could cause trouble. 512 */ 513 static char **realloc_argv(unsigned *array_size, char **old_argv) 514 { 515 char **argv; 516 unsigned new_size; 517 gfp_t gfp; 518 519 if (*array_size) { 520 new_size = *array_size * 2; 521 gfp = GFP_KERNEL; 522 } else { 523 new_size = 8; 524 gfp = GFP_NOIO; 525 } 526 argv = kmalloc(new_size * sizeof(*argv), gfp); 527 if (argv) { 528 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 529 *array_size = new_size; 530 } 531 532 kfree(old_argv); 533 return argv; 534 } 535 536 /* 537 * Destructively splits up the argument list to pass to ctr. 538 */ 539 int dm_split_args(int *argc, char ***argvp, char *input) 540 { 541 char *start, *end = input, *out, **argv = NULL; 542 unsigned array_size = 0; 543 544 *argc = 0; 545 546 if (!input) { 547 *argvp = NULL; 548 return 0; 549 } 550 551 argv = realloc_argv(&array_size, argv); 552 if (!argv) 553 return -ENOMEM; 554 555 while (1) { 556 /* Skip whitespace */ 557 start = skip_spaces(end); 558 559 if (!*start) 560 break; /* success, we hit the end */ 561 562 /* 'out' is used to remove any back-quotes */ 563 end = out = start; 564 while (*end) { 565 /* Everything apart from '\0' can be quoted */ 566 if (*end == '\\' && *(end + 1)) { 567 *out++ = *(end + 1); 568 end += 2; 569 continue; 570 } 571 572 if (isspace(*end)) 573 break; /* end of token */ 574 575 *out++ = *end++; 576 } 577 578 /* have we already filled the array ? */ 579 if ((*argc + 1) > array_size) { 580 argv = realloc_argv(&array_size, argv); 581 if (!argv) 582 return -ENOMEM; 583 } 584 585 /* we know this is whitespace */ 586 if (*end) 587 end++; 588 589 /* terminate the string and put it in the array */ 590 *out = '\0'; 591 argv[*argc] = start; 592 (*argc)++; 593 } 594 595 *argvp = argv; 596 return 0; 597 } 598 599 /* 600 * Impose necessary and sufficient conditions on a devices's table such 601 * that any incoming bio which respects its logical_block_size can be 602 * processed successfully. If it falls across the boundary between 603 * two or more targets, the size of each piece it gets split into must 604 * be compatible with the logical_block_size of the target processing it. 605 */ 606 static int validate_hardware_logical_block_alignment(struct dm_table *table, 607 struct queue_limits *limits) 608 { 609 /* 610 * This function uses arithmetic modulo the logical_block_size 611 * (in units of 512-byte sectors). 612 */ 613 unsigned short device_logical_block_size_sects = 614 limits->logical_block_size >> SECTOR_SHIFT; 615 616 /* 617 * Offset of the start of the next table entry, mod logical_block_size. 618 */ 619 unsigned short next_target_start = 0; 620 621 /* 622 * Given an aligned bio that extends beyond the end of a 623 * target, how many sectors must the next target handle? 624 */ 625 unsigned short remaining = 0; 626 627 struct dm_target *uninitialized_var(ti); 628 struct queue_limits ti_limits; 629 unsigned i = 0; 630 631 /* 632 * Check each entry in the table in turn. 633 */ 634 while (i < dm_table_get_num_targets(table)) { 635 ti = dm_table_get_target(table, i++); 636 637 blk_set_stacking_limits(&ti_limits); 638 639 /* combine all target devices' limits */ 640 if (ti->type->iterate_devices) 641 ti->type->iterate_devices(ti, dm_set_device_limits, 642 &ti_limits); 643 644 /* 645 * If the remaining sectors fall entirely within this 646 * table entry are they compatible with its logical_block_size? 647 */ 648 if (remaining < ti->len && 649 remaining & ((ti_limits.logical_block_size >> 650 SECTOR_SHIFT) - 1)) 651 break; /* Error */ 652 653 next_target_start = 654 (unsigned short) ((next_target_start + ti->len) & 655 (device_logical_block_size_sects - 1)); 656 remaining = next_target_start ? 657 device_logical_block_size_sects - next_target_start : 0; 658 } 659 660 if (remaining) { 661 DMWARN("%s: table line %u (start sect %llu len %llu) " 662 "not aligned to h/w logical block size %u", 663 dm_device_name(table->md), i, 664 (unsigned long long) ti->begin, 665 (unsigned long long) ti->len, 666 limits->logical_block_size); 667 return -EINVAL; 668 } 669 670 return 0; 671 } 672 673 int dm_table_add_target(struct dm_table *t, const char *type, 674 sector_t start, sector_t len, char *params) 675 { 676 int r = -EINVAL, argc; 677 char **argv; 678 struct dm_target *tgt; 679 680 if (t->singleton) { 681 DMERR("%s: target type %s must appear alone in table", 682 dm_device_name(t->md), t->targets->type->name); 683 return -EINVAL; 684 } 685 686 BUG_ON(t->num_targets >= t->num_allocated); 687 688 tgt = t->targets + t->num_targets; 689 memset(tgt, 0, sizeof(*tgt)); 690 691 if (!len) { 692 DMERR("%s: zero-length target", dm_device_name(t->md)); 693 return -EINVAL; 694 } 695 696 tgt->type = dm_get_target_type(type); 697 if (!tgt->type) { 698 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 699 return -EINVAL; 700 } 701 702 if (dm_target_needs_singleton(tgt->type)) { 703 if (t->num_targets) { 704 tgt->error = "singleton target type must appear alone in table"; 705 goto bad; 706 } 707 t->singleton = true; 708 } 709 710 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 711 tgt->error = "target type may not be included in a read-only table"; 712 goto bad; 713 } 714 715 if (t->immutable_target_type) { 716 if (t->immutable_target_type != tgt->type) { 717 tgt->error = "immutable target type cannot be mixed with other target types"; 718 goto bad; 719 } 720 } else if (dm_target_is_immutable(tgt->type)) { 721 if (t->num_targets) { 722 tgt->error = "immutable target type cannot be mixed with other target types"; 723 goto bad; 724 } 725 t->immutable_target_type = tgt->type; 726 } 727 728 tgt->table = t; 729 tgt->begin = start; 730 tgt->len = len; 731 tgt->error = "Unknown error"; 732 733 /* 734 * Does this target adjoin the previous one ? 735 */ 736 if (!adjoin(t, tgt)) { 737 tgt->error = "Gap in table"; 738 goto bad; 739 } 740 741 r = dm_split_args(&argc, &argv, params); 742 if (r) { 743 tgt->error = "couldn't split parameters (insufficient memory)"; 744 goto bad; 745 } 746 747 r = tgt->type->ctr(tgt, argc, argv); 748 kfree(argv); 749 if (r) 750 goto bad; 751 752 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 753 754 if (!tgt->num_discard_bios && tgt->discards_supported) 755 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 756 dm_device_name(t->md), type); 757 758 return 0; 759 760 bad: 761 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 762 dm_put_target_type(tgt->type); 763 return r; 764 } 765 766 /* 767 * Target argument parsing helpers. 768 */ 769 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 770 unsigned *value, char **error, unsigned grouped) 771 { 772 const char *arg_str = dm_shift_arg(arg_set); 773 char dummy; 774 775 if (!arg_str || 776 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 777 (*value < arg->min) || 778 (*value > arg->max) || 779 (grouped && arg_set->argc < *value)) { 780 *error = arg->error; 781 return -EINVAL; 782 } 783 784 return 0; 785 } 786 787 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 788 unsigned *value, char **error) 789 { 790 return validate_next_arg(arg, arg_set, value, error, 0); 791 } 792 EXPORT_SYMBOL(dm_read_arg); 793 794 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 795 unsigned *value, char **error) 796 { 797 return validate_next_arg(arg, arg_set, value, error, 1); 798 } 799 EXPORT_SYMBOL(dm_read_arg_group); 800 801 const char *dm_shift_arg(struct dm_arg_set *as) 802 { 803 char *r; 804 805 if (as->argc) { 806 as->argc--; 807 r = *as->argv; 808 as->argv++; 809 return r; 810 } 811 812 return NULL; 813 } 814 EXPORT_SYMBOL(dm_shift_arg); 815 816 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 817 { 818 BUG_ON(as->argc < num_args); 819 as->argc -= num_args; 820 as->argv += num_args; 821 } 822 EXPORT_SYMBOL(dm_consume_args); 823 824 static bool __table_type_bio_based(unsigned table_type) 825 { 826 return (table_type == DM_TYPE_BIO_BASED || 827 table_type == DM_TYPE_DAX_BIO_BASED); 828 } 829 830 static bool __table_type_request_based(unsigned table_type) 831 { 832 return (table_type == DM_TYPE_REQUEST_BASED || 833 table_type == DM_TYPE_MQ_REQUEST_BASED); 834 } 835 836 void dm_table_set_type(struct dm_table *t, unsigned type) 837 { 838 t->type = type; 839 } 840 EXPORT_SYMBOL_GPL(dm_table_set_type); 841 842 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 843 sector_t start, sector_t len, void *data) 844 { 845 struct request_queue *q = bdev_get_queue(dev->bdev); 846 847 return q && blk_queue_dax(q); 848 } 849 850 static bool dm_table_supports_dax(struct dm_table *t) 851 { 852 struct dm_target *ti; 853 unsigned i = 0; 854 855 /* Ensure that all targets support DAX. */ 856 while (i < dm_table_get_num_targets(t)) { 857 ti = dm_table_get_target(t, i++); 858 859 if (!ti->type->direct_access) 860 return false; 861 862 if (!ti->type->iterate_devices || 863 !ti->type->iterate_devices(ti, device_supports_dax, NULL)) 864 return false; 865 } 866 867 return true; 868 } 869 870 static int dm_table_determine_type(struct dm_table *t) 871 { 872 unsigned i; 873 unsigned bio_based = 0, request_based = 0, hybrid = 0; 874 unsigned sq_count = 0, mq_count = 0; 875 struct dm_target *tgt; 876 struct dm_dev_internal *dd; 877 struct list_head *devices = dm_table_get_devices(t); 878 unsigned live_md_type = dm_get_md_type(t->md); 879 880 if (t->type != DM_TYPE_NONE) { 881 /* target already set the table's type */ 882 if (t->type == DM_TYPE_BIO_BASED) 883 return 0; 884 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 885 goto verify_rq_based; 886 } 887 888 for (i = 0; i < t->num_targets; i++) { 889 tgt = t->targets + i; 890 if (dm_target_hybrid(tgt)) 891 hybrid = 1; 892 else if (dm_target_request_based(tgt)) 893 request_based = 1; 894 else 895 bio_based = 1; 896 897 if (bio_based && request_based) { 898 DMWARN("Inconsistent table: different target types" 899 " can't be mixed up"); 900 return -EINVAL; 901 } 902 } 903 904 if (hybrid && !bio_based && !request_based) { 905 /* 906 * The targets can work either way. 907 * Determine the type from the live device. 908 * Default to bio-based if device is new. 909 */ 910 if (__table_type_request_based(live_md_type)) 911 request_based = 1; 912 else 913 bio_based = 1; 914 } 915 916 if (bio_based) { 917 /* We must use this table as bio-based */ 918 t->type = DM_TYPE_BIO_BASED; 919 if (dm_table_supports_dax(t) || 920 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) 921 t->type = DM_TYPE_DAX_BIO_BASED; 922 return 0; 923 } 924 925 BUG_ON(!request_based); /* No targets in this table */ 926 927 /* 928 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by 929 * having a compatible target use dm_table_set_type. 930 */ 931 t->type = DM_TYPE_REQUEST_BASED; 932 933 verify_rq_based: 934 /* 935 * Request-based dm supports only tables that have a single target now. 936 * To support multiple targets, request splitting support is needed, 937 * and that needs lots of changes in the block-layer. 938 * (e.g. request completion process for partial completion.) 939 */ 940 if (t->num_targets > 1) { 941 DMWARN("Request-based dm doesn't support multiple targets yet"); 942 return -EINVAL; 943 } 944 945 if (list_empty(devices)) { 946 int srcu_idx; 947 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 948 949 /* inherit live table's type and all_blk_mq */ 950 if (live_table) { 951 t->type = live_table->type; 952 t->all_blk_mq = live_table->all_blk_mq; 953 } 954 dm_put_live_table(t->md, srcu_idx); 955 return 0; 956 } 957 958 /* Non-request-stackable devices can't be used for request-based dm */ 959 list_for_each_entry(dd, devices, list) { 960 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 961 962 if (!blk_queue_stackable(q)) { 963 DMERR("table load rejected: including" 964 " non-request-stackable devices"); 965 return -EINVAL; 966 } 967 968 if (q->mq_ops) 969 mq_count++; 970 else 971 sq_count++; 972 } 973 if (sq_count && mq_count) { 974 DMERR("table load rejected: not all devices are blk-mq request-stackable"); 975 return -EINVAL; 976 } 977 t->all_blk_mq = mq_count > 0; 978 979 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) { 980 DMERR("table load rejected: all devices are not blk-mq request-stackable"); 981 return -EINVAL; 982 } 983 984 return 0; 985 } 986 987 unsigned dm_table_get_type(struct dm_table *t) 988 { 989 return t->type; 990 } 991 992 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 993 { 994 return t->immutable_target_type; 995 } 996 997 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 998 { 999 /* Immutable target is implicitly a singleton */ 1000 if (t->num_targets > 1 || 1001 !dm_target_is_immutable(t->targets[0].type)) 1002 return NULL; 1003 1004 return t->targets; 1005 } 1006 1007 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1008 { 1009 struct dm_target *uninitialized_var(ti); 1010 unsigned i = 0; 1011 1012 while (i < dm_table_get_num_targets(t)) { 1013 ti = dm_table_get_target(t, i++); 1014 if (dm_target_is_wildcard(ti->type)) 1015 return ti; 1016 } 1017 1018 return NULL; 1019 } 1020 1021 bool dm_table_bio_based(struct dm_table *t) 1022 { 1023 return __table_type_bio_based(dm_table_get_type(t)); 1024 } 1025 1026 bool dm_table_request_based(struct dm_table *t) 1027 { 1028 return __table_type_request_based(dm_table_get_type(t)); 1029 } 1030 1031 bool dm_table_all_blk_mq_devices(struct dm_table *t) 1032 { 1033 return t->all_blk_mq; 1034 } 1035 1036 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1037 { 1038 unsigned type = dm_table_get_type(t); 1039 unsigned per_io_data_size = 0; 1040 struct dm_target *tgt; 1041 unsigned i; 1042 1043 if (unlikely(type == DM_TYPE_NONE)) { 1044 DMWARN("no table type is set, can't allocate mempools"); 1045 return -EINVAL; 1046 } 1047 1048 if (__table_type_bio_based(type)) 1049 for (i = 0; i < t->num_targets; i++) { 1050 tgt = t->targets + i; 1051 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size); 1052 } 1053 1054 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size); 1055 if (!t->mempools) 1056 return -ENOMEM; 1057 1058 return 0; 1059 } 1060 1061 void dm_table_free_md_mempools(struct dm_table *t) 1062 { 1063 dm_free_md_mempools(t->mempools); 1064 t->mempools = NULL; 1065 } 1066 1067 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1068 { 1069 return t->mempools; 1070 } 1071 1072 static int setup_indexes(struct dm_table *t) 1073 { 1074 int i; 1075 unsigned int total = 0; 1076 sector_t *indexes; 1077 1078 /* allocate the space for *all* the indexes */ 1079 for (i = t->depth - 2; i >= 0; i--) { 1080 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1081 total += t->counts[i]; 1082 } 1083 1084 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1085 if (!indexes) 1086 return -ENOMEM; 1087 1088 /* set up internal nodes, bottom-up */ 1089 for (i = t->depth - 2; i >= 0; i--) { 1090 t->index[i] = indexes; 1091 indexes += (KEYS_PER_NODE * t->counts[i]); 1092 setup_btree_index(i, t); 1093 } 1094 1095 return 0; 1096 } 1097 1098 /* 1099 * Builds the btree to index the map. 1100 */ 1101 static int dm_table_build_index(struct dm_table *t) 1102 { 1103 int r = 0; 1104 unsigned int leaf_nodes; 1105 1106 /* how many indexes will the btree have ? */ 1107 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1108 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1109 1110 /* leaf layer has already been set up */ 1111 t->counts[t->depth - 1] = leaf_nodes; 1112 t->index[t->depth - 1] = t->highs; 1113 1114 if (t->depth >= 2) 1115 r = setup_indexes(t); 1116 1117 return r; 1118 } 1119 1120 static bool integrity_profile_exists(struct gendisk *disk) 1121 { 1122 return !!blk_get_integrity(disk); 1123 } 1124 1125 /* 1126 * Get a disk whose integrity profile reflects the table's profile. 1127 * Returns NULL if integrity support was inconsistent or unavailable. 1128 */ 1129 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1130 { 1131 struct list_head *devices = dm_table_get_devices(t); 1132 struct dm_dev_internal *dd = NULL; 1133 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1134 1135 list_for_each_entry(dd, devices, list) { 1136 template_disk = dd->dm_dev->bdev->bd_disk; 1137 if (!integrity_profile_exists(template_disk)) 1138 goto no_integrity; 1139 else if (prev_disk && 1140 blk_integrity_compare(prev_disk, template_disk) < 0) 1141 goto no_integrity; 1142 prev_disk = template_disk; 1143 } 1144 1145 return template_disk; 1146 1147 no_integrity: 1148 if (prev_disk) 1149 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1150 dm_device_name(t->md), 1151 prev_disk->disk_name, 1152 template_disk->disk_name); 1153 return NULL; 1154 } 1155 1156 /* 1157 * Register the mapped device for blk_integrity support if the 1158 * underlying devices have an integrity profile. But all devices may 1159 * not have matching profiles (checking all devices isn't reliable 1160 * during table load because this table may use other DM device(s) which 1161 * must be resumed before they will have an initialized integity 1162 * profile). Consequently, stacked DM devices force a 2 stage integrity 1163 * profile validation: First pass during table load, final pass during 1164 * resume. 1165 */ 1166 static int dm_table_register_integrity(struct dm_table *t) 1167 { 1168 struct mapped_device *md = t->md; 1169 struct gendisk *template_disk = NULL; 1170 1171 template_disk = dm_table_get_integrity_disk(t); 1172 if (!template_disk) 1173 return 0; 1174 1175 if (!integrity_profile_exists(dm_disk(md))) { 1176 t->integrity_supported = true; 1177 /* 1178 * Register integrity profile during table load; we can do 1179 * this because the final profile must match during resume. 1180 */ 1181 blk_integrity_register(dm_disk(md), 1182 blk_get_integrity(template_disk)); 1183 return 0; 1184 } 1185 1186 /* 1187 * If DM device already has an initialized integrity 1188 * profile the new profile should not conflict. 1189 */ 1190 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1191 DMWARN("%s: conflict with existing integrity profile: " 1192 "%s profile mismatch", 1193 dm_device_name(t->md), 1194 template_disk->disk_name); 1195 return 1; 1196 } 1197 1198 /* Preserve existing integrity profile */ 1199 t->integrity_supported = true; 1200 return 0; 1201 } 1202 1203 /* 1204 * Prepares the table for use by building the indices, 1205 * setting the type, and allocating mempools. 1206 */ 1207 int dm_table_complete(struct dm_table *t) 1208 { 1209 int r; 1210 1211 r = dm_table_determine_type(t); 1212 if (r) { 1213 DMERR("unable to determine table type"); 1214 return r; 1215 } 1216 1217 r = dm_table_build_index(t); 1218 if (r) { 1219 DMERR("unable to build btrees"); 1220 return r; 1221 } 1222 1223 r = dm_table_register_integrity(t); 1224 if (r) { 1225 DMERR("could not register integrity profile."); 1226 return r; 1227 } 1228 1229 r = dm_table_alloc_md_mempools(t, t->md); 1230 if (r) 1231 DMERR("unable to allocate mempools"); 1232 1233 return r; 1234 } 1235 1236 static DEFINE_MUTEX(_event_lock); 1237 void dm_table_event_callback(struct dm_table *t, 1238 void (*fn)(void *), void *context) 1239 { 1240 mutex_lock(&_event_lock); 1241 t->event_fn = fn; 1242 t->event_context = context; 1243 mutex_unlock(&_event_lock); 1244 } 1245 1246 void dm_table_event(struct dm_table *t) 1247 { 1248 /* 1249 * You can no longer call dm_table_event() from interrupt 1250 * context, use a bottom half instead. 1251 */ 1252 BUG_ON(in_interrupt()); 1253 1254 mutex_lock(&_event_lock); 1255 if (t->event_fn) 1256 t->event_fn(t->event_context); 1257 mutex_unlock(&_event_lock); 1258 } 1259 EXPORT_SYMBOL(dm_table_event); 1260 1261 sector_t dm_table_get_size(struct dm_table *t) 1262 { 1263 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1264 } 1265 EXPORT_SYMBOL(dm_table_get_size); 1266 1267 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1268 { 1269 if (index >= t->num_targets) 1270 return NULL; 1271 1272 return t->targets + index; 1273 } 1274 1275 /* 1276 * Search the btree for the correct target. 1277 * 1278 * Caller should check returned pointer with dm_target_is_valid() 1279 * to trap I/O beyond end of device. 1280 */ 1281 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1282 { 1283 unsigned int l, n = 0, k = 0; 1284 sector_t *node; 1285 1286 for (l = 0; l < t->depth; l++) { 1287 n = get_child(n, k); 1288 node = get_node(t, l, n); 1289 1290 for (k = 0; k < KEYS_PER_NODE; k++) 1291 if (node[k] >= sector) 1292 break; 1293 } 1294 1295 return &t->targets[(KEYS_PER_NODE * n) + k]; 1296 } 1297 1298 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1299 sector_t start, sector_t len, void *data) 1300 { 1301 unsigned *num_devices = data; 1302 1303 (*num_devices)++; 1304 1305 return 0; 1306 } 1307 1308 /* 1309 * Check whether a table has no data devices attached using each 1310 * target's iterate_devices method. 1311 * Returns false if the result is unknown because a target doesn't 1312 * support iterate_devices. 1313 */ 1314 bool dm_table_has_no_data_devices(struct dm_table *table) 1315 { 1316 struct dm_target *uninitialized_var(ti); 1317 unsigned i = 0, num_devices = 0; 1318 1319 while (i < dm_table_get_num_targets(table)) { 1320 ti = dm_table_get_target(table, i++); 1321 1322 if (!ti->type->iterate_devices) 1323 return false; 1324 1325 ti->type->iterate_devices(ti, count_device, &num_devices); 1326 if (num_devices) 1327 return false; 1328 } 1329 1330 return true; 1331 } 1332 1333 /* 1334 * Establish the new table's queue_limits and validate them. 1335 */ 1336 int dm_calculate_queue_limits(struct dm_table *table, 1337 struct queue_limits *limits) 1338 { 1339 struct dm_target *uninitialized_var(ti); 1340 struct queue_limits ti_limits; 1341 unsigned i = 0; 1342 1343 blk_set_stacking_limits(limits); 1344 1345 while (i < dm_table_get_num_targets(table)) { 1346 blk_set_stacking_limits(&ti_limits); 1347 1348 ti = dm_table_get_target(table, i++); 1349 1350 if (!ti->type->iterate_devices) 1351 goto combine_limits; 1352 1353 /* 1354 * Combine queue limits of all the devices this target uses. 1355 */ 1356 ti->type->iterate_devices(ti, dm_set_device_limits, 1357 &ti_limits); 1358 1359 /* Set I/O hints portion of queue limits */ 1360 if (ti->type->io_hints) 1361 ti->type->io_hints(ti, &ti_limits); 1362 1363 /* 1364 * Check each device area is consistent with the target's 1365 * overall queue limits. 1366 */ 1367 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1368 &ti_limits)) 1369 return -EINVAL; 1370 1371 combine_limits: 1372 /* 1373 * Merge this target's queue limits into the overall limits 1374 * for the table. 1375 */ 1376 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1377 DMWARN("%s: adding target device " 1378 "(start sect %llu len %llu) " 1379 "caused an alignment inconsistency", 1380 dm_device_name(table->md), 1381 (unsigned long long) ti->begin, 1382 (unsigned long long) ti->len); 1383 } 1384 1385 return validate_hardware_logical_block_alignment(table, limits); 1386 } 1387 1388 /* 1389 * Verify that all devices have an integrity profile that matches the 1390 * DM device's registered integrity profile. If the profiles don't 1391 * match then unregister the DM device's integrity profile. 1392 */ 1393 static void dm_table_verify_integrity(struct dm_table *t) 1394 { 1395 struct gendisk *template_disk = NULL; 1396 1397 if (t->integrity_supported) { 1398 /* 1399 * Verify that the original integrity profile 1400 * matches all the devices in this table. 1401 */ 1402 template_disk = dm_table_get_integrity_disk(t); 1403 if (template_disk && 1404 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1405 return; 1406 } 1407 1408 if (integrity_profile_exists(dm_disk(t->md))) { 1409 DMWARN("%s: unable to establish an integrity profile", 1410 dm_device_name(t->md)); 1411 blk_integrity_unregister(dm_disk(t->md)); 1412 } 1413 } 1414 1415 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1416 sector_t start, sector_t len, void *data) 1417 { 1418 unsigned long flush = (unsigned long) data; 1419 struct request_queue *q = bdev_get_queue(dev->bdev); 1420 1421 return q && (q->queue_flags & flush); 1422 } 1423 1424 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1425 { 1426 struct dm_target *ti; 1427 unsigned i = 0; 1428 1429 /* 1430 * Require at least one underlying device to support flushes. 1431 * t->devices includes internal dm devices such as mirror logs 1432 * so we need to use iterate_devices here, which targets 1433 * supporting flushes must provide. 1434 */ 1435 while (i < dm_table_get_num_targets(t)) { 1436 ti = dm_table_get_target(t, i++); 1437 1438 if (!ti->num_flush_bios) 1439 continue; 1440 1441 if (ti->flush_supported) 1442 return true; 1443 1444 if (ti->type->iterate_devices && 1445 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1446 return true; 1447 } 1448 1449 return false; 1450 } 1451 1452 static bool dm_table_discard_zeroes_data(struct dm_table *t) 1453 { 1454 struct dm_target *ti; 1455 unsigned i = 0; 1456 1457 /* Ensure that all targets supports discard_zeroes_data. */ 1458 while (i < dm_table_get_num_targets(t)) { 1459 ti = dm_table_get_target(t, i++); 1460 1461 if (ti->discard_zeroes_data_unsupported) 1462 return false; 1463 } 1464 1465 return true; 1466 } 1467 1468 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1469 sector_t start, sector_t len, void *data) 1470 { 1471 struct request_queue *q = bdev_get_queue(dev->bdev); 1472 1473 return q && blk_queue_nonrot(q); 1474 } 1475 1476 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1477 sector_t start, sector_t len, void *data) 1478 { 1479 struct request_queue *q = bdev_get_queue(dev->bdev); 1480 1481 return q && !blk_queue_add_random(q); 1482 } 1483 1484 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev, 1485 sector_t start, sector_t len, void *data) 1486 { 1487 struct request_queue *q = bdev_get_queue(dev->bdev); 1488 1489 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags); 1490 } 1491 1492 static bool dm_table_all_devices_attribute(struct dm_table *t, 1493 iterate_devices_callout_fn func) 1494 { 1495 struct dm_target *ti; 1496 unsigned i = 0; 1497 1498 while (i < dm_table_get_num_targets(t)) { 1499 ti = dm_table_get_target(t, i++); 1500 1501 if (!ti->type->iterate_devices || 1502 !ti->type->iterate_devices(ti, func, NULL)) 1503 return false; 1504 } 1505 1506 return true; 1507 } 1508 1509 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1510 sector_t start, sector_t len, void *data) 1511 { 1512 struct request_queue *q = bdev_get_queue(dev->bdev); 1513 1514 return q && !q->limits.max_write_same_sectors; 1515 } 1516 1517 static bool dm_table_supports_write_same(struct dm_table *t) 1518 { 1519 struct dm_target *ti; 1520 unsigned i = 0; 1521 1522 while (i < dm_table_get_num_targets(t)) { 1523 ti = dm_table_get_target(t, i++); 1524 1525 if (!ti->num_write_same_bios) 1526 return false; 1527 1528 if (!ti->type->iterate_devices || 1529 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1530 return false; 1531 } 1532 1533 return true; 1534 } 1535 1536 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1537 sector_t start, sector_t len, void *data) 1538 { 1539 struct request_queue *q = bdev_get_queue(dev->bdev); 1540 1541 return q && blk_queue_discard(q); 1542 } 1543 1544 static bool dm_table_supports_discards(struct dm_table *t) 1545 { 1546 struct dm_target *ti; 1547 unsigned i = 0; 1548 1549 /* 1550 * Unless any target used by the table set discards_supported, 1551 * require at least one underlying device to support discards. 1552 * t->devices includes internal dm devices such as mirror logs 1553 * so we need to use iterate_devices here, which targets 1554 * supporting discard selectively must provide. 1555 */ 1556 while (i < dm_table_get_num_targets(t)) { 1557 ti = dm_table_get_target(t, i++); 1558 1559 if (!ti->num_discard_bios) 1560 continue; 1561 1562 if (ti->discards_supported) 1563 return true; 1564 1565 if (ti->type->iterate_devices && 1566 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1567 return true; 1568 } 1569 1570 return false; 1571 } 1572 1573 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1574 struct queue_limits *limits) 1575 { 1576 bool wc = false, fua = false; 1577 1578 /* 1579 * Copy table's limits to the DM device's request_queue 1580 */ 1581 q->limits = *limits; 1582 1583 if (!dm_table_supports_discards(t)) 1584 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1585 else 1586 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1587 1588 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1589 wc = true; 1590 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1591 fua = true; 1592 } 1593 blk_queue_write_cache(q, wc, fua); 1594 1595 if (!dm_table_discard_zeroes_data(t)) 1596 q->limits.discard_zeroes_data = 0; 1597 1598 /* Ensure that all underlying devices are non-rotational. */ 1599 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1600 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1601 else 1602 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1603 1604 if (!dm_table_supports_write_same(t)) 1605 q->limits.max_write_same_sectors = 0; 1606 1607 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge)) 1608 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1609 else 1610 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1611 1612 dm_table_verify_integrity(t); 1613 1614 /* 1615 * Determine whether or not this queue's I/O timings contribute 1616 * to the entropy pool, Only request-based targets use this. 1617 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1618 * have it set. 1619 */ 1620 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1621 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1622 1623 /* 1624 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1625 * visible to other CPUs because, once the flag is set, incoming bios 1626 * are processed by request-based dm, which refers to the queue 1627 * settings. 1628 * Until the flag set, bios are passed to bio-based dm and queued to 1629 * md->deferred where queue settings are not needed yet. 1630 * Those bios are passed to request-based dm at the resume time. 1631 */ 1632 smp_mb(); 1633 if (dm_table_request_based(t)) 1634 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1635 } 1636 1637 unsigned int dm_table_get_num_targets(struct dm_table *t) 1638 { 1639 return t->num_targets; 1640 } 1641 1642 struct list_head *dm_table_get_devices(struct dm_table *t) 1643 { 1644 return &t->devices; 1645 } 1646 1647 fmode_t dm_table_get_mode(struct dm_table *t) 1648 { 1649 return t->mode; 1650 } 1651 EXPORT_SYMBOL(dm_table_get_mode); 1652 1653 enum suspend_mode { 1654 PRESUSPEND, 1655 PRESUSPEND_UNDO, 1656 POSTSUSPEND, 1657 }; 1658 1659 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1660 { 1661 int i = t->num_targets; 1662 struct dm_target *ti = t->targets; 1663 1664 while (i--) { 1665 switch (mode) { 1666 case PRESUSPEND: 1667 if (ti->type->presuspend) 1668 ti->type->presuspend(ti); 1669 break; 1670 case PRESUSPEND_UNDO: 1671 if (ti->type->presuspend_undo) 1672 ti->type->presuspend_undo(ti); 1673 break; 1674 case POSTSUSPEND: 1675 if (ti->type->postsuspend) 1676 ti->type->postsuspend(ti); 1677 break; 1678 } 1679 ti++; 1680 } 1681 } 1682 1683 void dm_table_presuspend_targets(struct dm_table *t) 1684 { 1685 if (!t) 1686 return; 1687 1688 suspend_targets(t, PRESUSPEND); 1689 } 1690 1691 void dm_table_presuspend_undo_targets(struct dm_table *t) 1692 { 1693 if (!t) 1694 return; 1695 1696 suspend_targets(t, PRESUSPEND_UNDO); 1697 } 1698 1699 void dm_table_postsuspend_targets(struct dm_table *t) 1700 { 1701 if (!t) 1702 return; 1703 1704 suspend_targets(t, POSTSUSPEND); 1705 } 1706 1707 int dm_table_resume_targets(struct dm_table *t) 1708 { 1709 int i, r = 0; 1710 1711 for (i = 0; i < t->num_targets; i++) { 1712 struct dm_target *ti = t->targets + i; 1713 1714 if (!ti->type->preresume) 1715 continue; 1716 1717 r = ti->type->preresume(ti); 1718 if (r) { 1719 DMERR("%s: %s: preresume failed, error = %d", 1720 dm_device_name(t->md), ti->type->name, r); 1721 return r; 1722 } 1723 } 1724 1725 for (i = 0; i < t->num_targets; i++) { 1726 struct dm_target *ti = t->targets + i; 1727 1728 if (ti->type->resume) 1729 ti->type->resume(ti); 1730 } 1731 1732 return 0; 1733 } 1734 1735 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1736 { 1737 list_add(&cb->list, &t->target_callbacks); 1738 } 1739 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1740 1741 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1742 { 1743 struct dm_dev_internal *dd; 1744 struct list_head *devices = dm_table_get_devices(t); 1745 struct dm_target_callbacks *cb; 1746 int r = 0; 1747 1748 list_for_each_entry(dd, devices, list) { 1749 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 1750 char b[BDEVNAME_SIZE]; 1751 1752 if (likely(q)) 1753 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1754 else 1755 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1756 dm_device_name(t->md), 1757 bdevname(dd->dm_dev->bdev, b)); 1758 } 1759 1760 list_for_each_entry(cb, &t->target_callbacks, list) 1761 if (cb->congested_fn) 1762 r |= cb->congested_fn(cb, bdi_bits); 1763 1764 return r; 1765 } 1766 1767 struct mapped_device *dm_table_get_md(struct dm_table *t) 1768 { 1769 return t->md; 1770 } 1771 EXPORT_SYMBOL(dm_table_get_md); 1772 1773 void dm_table_run_md_queue_async(struct dm_table *t) 1774 { 1775 struct mapped_device *md; 1776 struct request_queue *queue; 1777 unsigned long flags; 1778 1779 if (!dm_table_request_based(t)) 1780 return; 1781 1782 md = dm_table_get_md(t); 1783 queue = dm_get_md_queue(md); 1784 if (queue) { 1785 if (queue->mq_ops) 1786 blk_mq_run_hw_queues(queue, true); 1787 else { 1788 spin_lock_irqsave(queue->queue_lock, flags); 1789 blk_run_queue_async(queue); 1790 spin_unlock_irqrestore(queue->queue_lock, flags); 1791 } 1792 } 1793 } 1794 EXPORT_SYMBOL(dm_table_run_md_queue_async); 1795 1796