xref: /openbmc/linux/drivers/md/dm-table.c (revision e4781421e883340b796da5a724bda7226817990b)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 
24 #define DM_MSG_PREFIX "table"
25 
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 struct dm_table {
32 	struct mapped_device *md;
33 	unsigned type;
34 
35 	/* btree table */
36 	unsigned int depth;
37 	unsigned int counts[MAX_DEPTH];	/* in nodes */
38 	sector_t *index[MAX_DEPTH];
39 
40 	unsigned int num_targets;
41 	unsigned int num_allocated;
42 	sector_t *highs;
43 	struct dm_target *targets;
44 
45 	struct target_type *immutable_target_type;
46 
47 	bool integrity_supported:1;
48 	bool singleton:1;
49 	bool all_blk_mq:1;
50 
51 	/*
52 	 * Indicates the rw permissions for the new logical
53 	 * device.  This should be a combination of FMODE_READ
54 	 * and FMODE_WRITE.
55 	 */
56 	fmode_t mode;
57 
58 	/* a list of devices used by this table */
59 	struct list_head devices;
60 
61 	/* events get handed up using this callback */
62 	void (*event_fn)(void *);
63 	void *event_context;
64 
65 	struct dm_md_mempools *mempools;
66 
67 	struct list_head target_callbacks;
68 };
69 
70 /*
71  * Similar to ceiling(log_size(n))
72  */
73 static unsigned int int_log(unsigned int n, unsigned int base)
74 {
75 	int result = 0;
76 
77 	while (n > 1) {
78 		n = dm_div_up(n, base);
79 		result++;
80 	}
81 
82 	return result;
83 }
84 
85 /*
86  * Calculate the index of the child node of the n'th node k'th key.
87  */
88 static inline unsigned int get_child(unsigned int n, unsigned int k)
89 {
90 	return (n * CHILDREN_PER_NODE) + k;
91 }
92 
93 /*
94  * Return the n'th node of level l from table t.
95  */
96 static inline sector_t *get_node(struct dm_table *t,
97 				 unsigned int l, unsigned int n)
98 {
99 	return t->index[l] + (n * KEYS_PER_NODE);
100 }
101 
102 /*
103  * Return the highest key that you could lookup from the n'th
104  * node on level l of the btree.
105  */
106 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
107 {
108 	for (; l < t->depth - 1; l++)
109 		n = get_child(n, CHILDREN_PER_NODE - 1);
110 
111 	if (n >= t->counts[l])
112 		return (sector_t) - 1;
113 
114 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
115 }
116 
117 /*
118  * Fills in a level of the btree based on the highs of the level
119  * below it.
120  */
121 static int setup_btree_index(unsigned int l, struct dm_table *t)
122 {
123 	unsigned int n, k;
124 	sector_t *node;
125 
126 	for (n = 0U; n < t->counts[l]; n++) {
127 		node = get_node(t, l, n);
128 
129 		for (k = 0U; k < KEYS_PER_NODE; k++)
130 			node[k] = high(t, l + 1, get_child(n, k));
131 	}
132 
133 	return 0;
134 }
135 
136 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
137 {
138 	unsigned long size;
139 	void *addr;
140 
141 	/*
142 	 * Check that we're not going to overflow.
143 	 */
144 	if (nmemb > (ULONG_MAX / elem_size))
145 		return NULL;
146 
147 	size = nmemb * elem_size;
148 	addr = vzalloc(size);
149 
150 	return addr;
151 }
152 EXPORT_SYMBOL(dm_vcalloc);
153 
154 /*
155  * highs, and targets are managed as dynamic arrays during a
156  * table load.
157  */
158 static int alloc_targets(struct dm_table *t, unsigned int num)
159 {
160 	sector_t *n_highs;
161 	struct dm_target *n_targets;
162 
163 	/*
164 	 * Allocate both the target array and offset array at once.
165 	 * Append an empty entry to catch sectors beyond the end of
166 	 * the device.
167 	 */
168 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
169 					  sizeof(sector_t));
170 	if (!n_highs)
171 		return -ENOMEM;
172 
173 	n_targets = (struct dm_target *) (n_highs + num);
174 
175 	memset(n_highs, -1, sizeof(*n_highs) * num);
176 	vfree(t->highs);
177 
178 	t->num_allocated = num;
179 	t->highs = n_highs;
180 	t->targets = n_targets;
181 
182 	return 0;
183 }
184 
185 int dm_table_create(struct dm_table **result, fmode_t mode,
186 		    unsigned num_targets, struct mapped_device *md)
187 {
188 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
189 
190 	if (!t)
191 		return -ENOMEM;
192 
193 	INIT_LIST_HEAD(&t->devices);
194 	INIT_LIST_HEAD(&t->target_callbacks);
195 
196 	if (!num_targets)
197 		num_targets = KEYS_PER_NODE;
198 
199 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
200 
201 	if (!num_targets) {
202 		kfree(t);
203 		return -ENOMEM;
204 	}
205 
206 	if (alloc_targets(t, num_targets)) {
207 		kfree(t);
208 		return -ENOMEM;
209 	}
210 
211 	t->type = DM_TYPE_NONE;
212 	t->mode = mode;
213 	t->md = md;
214 	*result = t;
215 	return 0;
216 }
217 
218 static void free_devices(struct list_head *devices, struct mapped_device *md)
219 {
220 	struct list_head *tmp, *next;
221 
222 	list_for_each_safe(tmp, next, devices) {
223 		struct dm_dev_internal *dd =
224 		    list_entry(tmp, struct dm_dev_internal, list);
225 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
226 		       dm_device_name(md), dd->dm_dev->name);
227 		dm_put_table_device(md, dd->dm_dev);
228 		kfree(dd);
229 	}
230 }
231 
232 void dm_table_destroy(struct dm_table *t)
233 {
234 	unsigned int i;
235 
236 	if (!t)
237 		return;
238 
239 	/* free the indexes */
240 	if (t->depth >= 2)
241 		vfree(t->index[t->depth - 2]);
242 
243 	/* free the targets */
244 	for (i = 0; i < t->num_targets; i++) {
245 		struct dm_target *tgt = t->targets + i;
246 
247 		if (tgt->type->dtr)
248 			tgt->type->dtr(tgt);
249 
250 		dm_put_target_type(tgt->type);
251 	}
252 
253 	vfree(t->highs);
254 
255 	/* free the device list */
256 	free_devices(&t->devices, t->md);
257 
258 	dm_free_md_mempools(t->mempools);
259 
260 	kfree(t);
261 }
262 
263 /*
264  * See if we've already got a device in the list.
265  */
266 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
267 {
268 	struct dm_dev_internal *dd;
269 
270 	list_for_each_entry (dd, l, list)
271 		if (dd->dm_dev->bdev->bd_dev == dev)
272 			return dd;
273 
274 	return NULL;
275 }
276 
277 /*
278  * If possible, this checks an area of a destination device is invalid.
279  */
280 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
281 				  sector_t start, sector_t len, void *data)
282 {
283 	struct request_queue *q;
284 	struct queue_limits *limits = data;
285 	struct block_device *bdev = dev->bdev;
286 	sector_t dev_size =
287 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
288 	unsigned short logical_block_size_sectors =
289 		limits->logical_block_size >> SECTOR_SHIFT;
290 	char b[BDEVNAME_SIZE];
291 
292 	/*
293 	 * Some devices exist without request functions,
294 	 * such as loop devices not yet bound to backing files.
295 	 * Forbid the use of such devices.
296 	 */
297 	q = bdev_get_queue(bdev);
298 	if (!q || !q->make_request_fn) {
299 		DMWARN("%s: %s is not yet initialised: "
300 		       "start=%llu, len=%llu, dev_size=%llu",
301 		       dm_device_name(ti->table->md), bdevname(bdev, b),
302 		       (unsigned long long)start,
303 		       (unsigned long long)len,
304 		       (unsigned long long)dev_size);
305 		return 1;
306 	}
307 
308 	if (!dev_size)
309 		return 0;
310 
311 	if ((start >= dev_size) || (start + len > dev_size)) {
312 		DMWARN("%s: %s too small for target: "
313 		       "start=%llu, len=%llu, dev_size=%llu",
314 		       dm_device_name(ti->table->md), bdevname(bdev, b),
315 		       (unsigned long long)start,
316 		       (unsigned long long)len,
317 		       (unsigned long long)dev_size);
318 		return 1;
319 	}
320 
321 	if (logical_block_size_sectors <= 1)
322 		return 0;
323 
324 	if (start & (logical_block_size_sectors - 1)) {
325 		DMWARN("%s: start=%llu not aligned to h/w "
326 		       "logical block size %u of %s",
327 		       dm_device_name(ti->table->md),
328 		       (unsigned long long)start,
329 		       limits->logical_block_size, bdevname(bdev, b));
330 		return 1;
331 	}
332 
333 	if (len & (logical_block_size_sectors - 1)) {
334 		DMWARN("%s: len=%llu not aligned to h/w "
335 		       "logical block size %u of %s",
336 		       dm_device_name(ti->table->md),
337 		       (unsigned long long)len,
338 		       limits->logical_block_size, bdevname(bdev, b));
339 		return 1;
340 	}
341 
342 	return 0;
343 }
344 
345 /*
346  * This upgrades the mode on an already open dm_dev, being
347  * careful to leave things as they were if we fail to reopen the
348  * device and not to touch the existing bdev field in case
349  * it is accessed concurrently inside dm_table_any_congested().
350  */
351 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
352 			struct mapped_device *md)
353 {
354 	int r;
355 	struct dm_dev *old_dev, *new_dev;
356 
357 	old_dev = dd->dm_dev;
358 
359 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
360 				dd->dm_dev->mode | new_mode, &new_dev);
361 	if (r)
362 		return r;
363 
364 	dd->dm_dev = new_dev;
365 	dm_put_table_device(md, old_dev);
366 
367 	return 0;
368 }
369 
370 /*
371  * Convert the path to a device
372  */
373 dev_t dm_get_dev_t(const char *path)
374 {
375 	dev_t uninitialized_var(dev);
376 	struct block_device *bdev;
377 
378 	bdev = lookup_bdev(path);
379 	if (IS_ERR(bdev))
380 		dev = name_to_dev_t(path);
381 	else {
382 		dev = bdev->bd_dev;
383 		bdput(bdev);
384 	}
385 
386 	return dev;
387 }
388 EXPORT_SYMBOL_GPL(dm_get_dev_t);
389 
390 /*
391  * Add a device to the list, or just increment the usage count if
392  * it's already present.
393  */
394 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
395 		  struct dm_dev **result)
396 {
397 	int r;
398 	dev_t dev;
399 	struct dm_dev_internal *dd;
400 	struct dm_table *t = ti->table;
401 
402 	BUG_ON(!t);
403 
404 	dev = dm_get_dev_t(path);
405 	if (!dev)
406 		return -ENODEV;
407 
408 	dd = find_device(&t->devices, dev);
409 	if (!dd) {
410 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
411 		if (!dd)
412 			return -ENOMEM;
413 
414 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
415 			kfree(dd);
416 			return r;
417 		}
418 
419 		atomic_set(&dd->count, 0);
420 		list_add(&dd->list, &t->devices);
421 
422 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
423 		r = upgrade_mode(dd, mode, t->md);
424 		if (r)
425 			return r;
426 	}
427 	atomic_inc(&dd->count);
428 
429 	*result = dd->dm_dev;
430 	return 0;
431 }
432 EXPORT_SYMBOL(dm_get_device);
433 
434 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
435 				sector_t start, sector_t len, void *data)
436 {
437 	struct queue_limits *limits = data;
438 	struct block_device *bdev = dev->bdev;
439 	struct request_queue *q = bdev_get_queue(bdev);
440 	char b[BDEVNAME_SIZE];
441 
442 	if (unlikely(!q)) {
443 		DMWARN("%s: Cannot set limits for nonexistent device %s",
444 		       dm_device_name(ti->table->md), bdevname(bdev, b));
445 		return 0;
446 	}
447 
448 	if (bdev_stack_limits(limits, bdev, start) < 0)
449 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
450 		       "physical_block_size=%u, logical_block_size=%u, "
451 		       "alignment_offset=%u, start=%llu",
452 		       dm_device_name(ti->table->md), bdevname(bdev, b),
453 		       q->limits.physical_block_size,
454 		       q->limits.logical_block_size,
455 		       q->limits.alignment_offset,
456 		       (unsigned long long) start << SECTOR_SHIFT);
457 
458 	return 0;
459 }
460 
461 /*
462  * Decrement a device's use count and remove it if necessary.
463  */
464 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
465 {
466 	int found = 0;
467 	struct list_head *devices = &ti->table->devices;
468 	struct dm_dev_internal *dd;
469 
470 	list_for_each_entry(dd, devices, list) {
471 		if (dd->dm_dev == d) {
472 			found = 1;
473 			break;
474 		}
475 	}
476 	if (!found) {
477 		DMWARN("%s: device %s not in table devices list",
478 		       dm_device_name(ti->table->md), d->name);
479 		return;
480 	}
481 	if (atomic_dec_and_test(&dd->count)) {
482 		dm_put_table_device(ti->table->md, d);
483 		list_del(&dd->list);
484 		kfree(dd);
485 	}
486 }
487 EXPORT_SYMBOL(dm_put_device);
488 
489 /*
490  * Checks to see if the target joins onto the end of the table.
491  */
492 static int adjoin(struct dm_table *table, struct dm_target *ti)
493 {
494 	struct dm_target *prev;
495 
496 	if (!table->num_targets)
497 		return !ti->begin;
498 
499 	prev = &table->targets[table->num_targets - 1];
500 	return (ti->begin == (prev->begin + prev->len));
501 }
502 
503 /*
504  * Used to dynamically allocate the arg array.
505  *
506  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
507  * process messages even if some device is suspended. These messages have a
508  * small fixed number of arguments.
509  *
510  * On the other hand, dm-switch needs to process bulk data using messages and
511  * excessive use of GFP_NOIO could cause trouble.
512  */
513 static char **realloc_argv(unsigned *array_size, char **old_argv)
514 {
515 	char **argv;
516 	unsigned new_size;
517 	gfp_t gfp;
518 
519 	if (*array_size) {
520 		new_size = *array_size * 2;
521 		gfp = GFP_KERNEL;
522 	} else {
523 		new_size = 8;
524 		gfp = GFP_NOIO;
525 	}
526 	argv = kmalloc(new_size * sizeof(*argv), gfp);
527 	if (argv) {
528 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
529 		*array_size = new_size;
530 	}
531 
532 	kfree(old_argv);
533 	return argv;
534 }
535 
536 /*
537  * Destructively splits up the argument list to pass to ctr.
538  */
539 int dm_split_args(int *argc, char ***argvp, char *input)
540 {
541 	char *start, *end = input, *out, **argv = NULL;
542 	unsigned array_size = 0;
543 
544 	*argc = 0;
545 
546 	if (!input) {
547 		*argvp = NULL;
548 		return 0;
549 	}
550 
551 	argv = realloc_argv(&array_size, argv);
552 	if (!argv)
553 		return -ENOMEM;
554 
555 	while (1) {
556 		/* Skip whitespace */
557 		start = skip_spaces(end);
558 
559 		if (!*start)
560 			break;	/* success, we hit the end */
561 
562 		/* 'out' is used to remove any back-quotes */
563 		end = out = start;
564 		while (*end) {
565 			/* Everything apart from '\0' can be quoted */
566 			if (*end == '\\' && *(end + 1)) {
567 				*out++ = *(end + 1);
568 				end += 2;
569 				continue;
570 			}
571 
572 			if (isspace(*end))
573 				break;	/* end of token */
574 
575 			*out++ = *end++;
576 		}
577 
578 		/* have we already filled the array ? */
579 		if ((*argc + 1) > array_size) {
580 			argv = realloc_argv(&array_size, argv);
581 			if (!argv)
582 				return -ENOMEM;
583 		}
584 
585 		/* we know this is whitespace */
586 		if (*end)
587 			end++;
588 
589 		/* terminate the string and put it in the array */
590 		*out = '\0';
591 		argv[*argc] = start;
592 		(*argc)++;
593 	}
594 
595 	*argvp = argv;
596 	return 0;
597 }
598 
599 /*
600  * Impose necessary and sufficient conditions on a devices's table such
601  * that any incoming bio which respects its logical_block_size can be
602  * processed successfully.  If it falls across the boundary between
603  * two or more targets, the size of each piece it gets split into must
604  * be compatible with the logical_block_size of the target processing it.
605  */
606 static int validate_hardware_logical_block_alignment(struct dm_table *table,
607 						 struct queue_limits *limits)
608 {
609 	/*
610 	 * This function uses arithmetic modulo the logical_block_size
611 	 * (in units of 512-byte sectors).
612 	 */
613 	unsigned short device_logical_block_size_sects =
614 		limits->logical_block_size >> SECTOR_SHIFT;
615 
616 	/*
617 	 * Offset of the start of the next table entry, mod logical_block_size.
618 	 */
619 	unsigned short next_target_start = 0;
620 
621 	/*
622 	 * Given an aligned bio that extends beyond the end of a
623 	 * target, how many sectors must the next target handle?
624 	 */
625 	unsigned short remaining = 0;
626 
627 	struct dm_target *uninitialized_var(ti);
628 	struct queue_limits ti_limits;
629 	unsigned i = 0;
630 
631 	/*
632 	 * Check each entry in the table in turn.
633 	 */
634 	while (i < dm_table_get_num_targets(table)) {
635 		ti = dm_table_get_target(table, i++);
636 
637 		blk_set_stacking_limits(&ti_limits);
638 
639 		/* combine all target devices' limits */
640 		if (ti->type->iterate_devices)
641 			ti->type->iterate_devices(ti, dm_set_device_limits,
642 						  &ti_limits);
643 
644 		/*
645 		 * If the remaining sectors fall entirely within this
646 		 * table entry are they compatible with its logical_block_size?
647 		 */
648 		if (remaining < ti->len &&
649 		    remaining & ((ti_limits.logical_block_size >>
650 				  SECTOR_SHIFT) - 1))
651 			break;	/* Error */
652 
653 		next_target_start =
654 		    (unsigned short) ((next_target_start + ti->len) &
655 				      (device_logical_block_size_sects - 1));
656 		remaining = next_target_start ?
657 		    device_logical_block_size_sects - next_target_start : 0;
658 	}
659 
660 	if (remaining) {
661 		DMWARN("%s: table line %u (start sect %llu len %llu) "
662 		       "not aligned to h/w logical block size %u",
663 		       dm_device_name(table->md), i,
664 		       (unsigned long long) ti->begin,
665 		       (unsigned long long) ti->len,
666 		       limits->logical_block_size);
667 		return -EINVAL;
668 	}
669 
670 	return 0;
671 }
672 
673 int dm_table_add_target(struct dm_table *t, const char *type,
674 			sector_t start, sector_t len, char *params)
675 {
676 	int r = -EINVAL, argc;
677 	char **argv;
678 	struct dm_target *tgt;
679 
680 	if (t->singleton) {
681 		DMERR("%s: target type %s must appear alone in table",
682 		      dm_device_name(t->md), t->targets->type->name);
683 		return -EINVAL;
684 	}
685 
686 	BUG_ON(t->num_targets >= t->num_allocated);
687 
688 	tgt = t->targets + t->num_targets;
689 	memset(tgt, 0, sizeof(*tgt));
690 
691 	if (!len) {
692 		DMERR("%s: zero-length target", dm_device_name(t->md));
693 		return -EINVAL;
694 	}
695 
696 	tgt->type = dm_get_target_type(type);
697 	if (!tgt->type) {
698 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
699 		return -EINVAL;
700 	}
701 
702 	if (dm_target_needs_singleton(tgt->type)) {
703 		if (t->num_targets) {
704 			tgt->error = "singleton target type must appear alone in table";
705 			goto bad;
706 		}
707 		t->singleton = true;
708 	}
709 
710 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
711 		tgt->error = "target type may not be included in a read-only table";
712 		goto bad;
713 	}
714 
715 	if (t->immutable_target_type) {
716 		if (t->immutable_target_type != tgt->type) {
717 			tgt->error = "immutable target type cannot be mixed with other target types";
718 			goto bad;
719 		}
720 	} else if (dm_target_is_immutable(tgt->type)) {
721 		if (t->num_targets) {
722 			tgt->error = "immutable target type cannot be mixed with other target types";
723 			goto bad;
724 		}
725 		t->immutable_target_type = tgt->type;
726 	}
727 
728 	tgt->table = t;
729 	tgt->begin = start;
730 	tgt->len = len;
731 	tgt->error = "Unknown error";
732 
733 	/*
734 	 * Does this target adjoin the previous one ?
735 	 */
736 	if (!adjoin(t, tgt)) {
737 		tgt->error = "Gap in table";
738 		goto bad;
739 	}
740 
741 	r = dm_split_args(&argc, &argv, params);
742 	if (r) {
743 		tgt->error = "couldn't split parameters (insufficient memory)";
744 		goto bad;
745 	}
746 
747 	r = tgt->type->ctr(tgt, argc, argv);
748 	kfree(argv);
749 	if (r)
750 		goto bad;
751 
752 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
753 
754 	if (!tgt->num_discard_bios && tgt->discards_supported)
755 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
756 		       dm_device_name(t->md), type);
757 
758 	return 0;
759 
760  bad:
761 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
762 	dm_put_target_type(tgt->type);
763 	return r;
764 }
765 
766 /*
767  * Target argument parsing helpers.
768  */
769 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
770 			     unsigned *value, char **error, unsigned grouped)
771 {
772 	const char *arg_str = dm_shift_arg(arg_set);
773 	char dummy;
774 
775 	if (!arg_str ||
776 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
777 	    (*value < arg->min) ||
778 	    (*value > arg->max) ||
779 	    (grouped && arg_set->argc < *value)) {
780 		*error = arg->error;
781 		return -EINVAL;
782 	}
783 
784 	return 0;
785 }
786 
787 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
788 		unsigned *value, char **error)
789 {
790 	return validate_next_arg(arg, arg_set, value, error, 0);
791 }
792 EXPORT_SYMBOL(dm_read_arg);
793 
794 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
795 		      unsigned *value, char **error)
796 {
797 	return validate_next_arg(arg, arg_set, value, error, 1);
798 }
799 EXPORT_SYMBOL(dm_read_arg_group);
800 
801 const char *dm_shift_arg(struct dm_arg_set *as)
802 {
803 	char *r;
804 
805 	if (as->argc) {
806 		as->argc--;
807 		r = *as->argv;
808 		as->argv++;
809 		return r;
810 	}
811 
812 	return NULL;
813 }
814 EXPORT_SYMBOL(dm_shift_arg);
815 
816 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
817 {
818 	BUG_ON(as->argc < num_args);
819 	as->argc -= num_args;
820 	as->argv += num_args;
821 }
822 EXPORT_SYMBOL(dm_consume_args);
823 
824 static bool __table_type_bio_based(unsigned table_type)
825 {
826 	return (table_type == DM_TYPE_BIO_BASED ||
827 		table_type == DM_TYPE_DAX_BIO_BASED);
828 }
829 
830 static bool __table_type_request_based(unsigned table_type)
831 {
832 	return (table_type == DM_TYPE_REQUEST_BASED ||
833 		table_type == DM_TYPE_MQ_REQUEST_BASED);
834 }
835 
836 void dm_table_set_type(struct dm_table *t, unsigned type)
837 {
838 	t->type = type;
839 }
840 EXPORT_SYMBOL_GPL(dm_table_set_type);
841 
842 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
843 			       sector_t start, sector_t len, void *data)
844 {
845 	struct request_queue *q = bdev_get_queue(dev->bdev);
846 
847 	return q && blk_queue_dax(q);
848 }
849 
850 static bool dm_table_supports_dax(struct dm_table *t)
851 {
852 	struct dm_target *ti;
853 	unsigned i = 0;
854 
855 	/* Ensure that all targets support DAX. */
856 	while (i < dm_table_get_num_targets(t)) {
857 		ti = dm_table_get_target(t, i++);
858 
859 		if (!ti->type->direct_access)
860 			return false;
861 
862 		if (!ti->type->iterate_devices ||
863 		    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
864 			return false;
865 	}
866 
867 	return true;
868 }
869 
870 static int dm_table_determine_type(struct dm_table *t)
871 {
872 	unsigned i;
873 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
874 	unsigned sq_count = 0, mq_count = 0;
875 	struct dm_target *tgt;
876 	struct dm_dev_internal *dd;
877 	struct list_head *devices = dm_table_get_devices(t);
878 	unsigned live_md_type = dm_get_md_type(t->md);
879 
880 	if (t->type != DM_TYPE_NONE) {
881 		/* target already set the table's type */
882 		if (t->type == DM_TYPE_BIO_BASED)
883 			return 0;
884 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
885 		goto verify_rq_based;
886 	}
887 
888 	for (i = 0; i < t->num_targets; i++) {
889 		tgt = t->targets + i;
890 		if (dm_target_hybrid(tgt))
891 			hybrid = 1;
892 		else if (dm_target_request_based(tgt))
893 			request_based = 1;
894 		else
895 			bio_based = 1;
896 
897 		if (bio_based && request_based) {
898 			DMWARN("Inconsistent table: different target types"
899 			       " can't be mixed up");
900 			return -EINVAL;
901 		}
902 	}
903 
904 	if (hybrid && !bio_based && !request_based) {
905 		/*
906 		 * The targets can work either way.
907 		 * Determine the type from the live device.
908 		 * Default to bio-based if device is new.
909 		 */
910 		if (__table_type_request_based(live_md_type))
911 			request_based = 1;
912 		else
913 			bio_based = 1;
914 	}
915 
916 	if (bio_based) {
917 		/* We must use this table as bio-based */
918 		t->type = DM_TYPE_BIO_BASED;
919 		if (dm_table_supports_dax(t) ||
920 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
921 			t->type = DM_TYPE_DAX_BIO_BASED;
922 		return 0;
923 	}
924 
925 	BUG_ON(!request_based); /* No targets in this table */
926 
927 	/*
928 	 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
929 	 * having a compatible target use dm_table_set_type.
930 	 */
931 	t->type = DM_TYPE_REQUEST_BASED;
932 
933 verify_rq_based:
934 	/*
935 	 * Request-based dm supports only tables that have a single target now.
936 	 * To support multiple targets, request splitting support is needed,
937 	 * and that needs lots of changes in the block-layer.
938 	 * (e.g. request completion process for partial completion.)
939 	 */
940 	if (t->num_targets > 1) {
941 		DMWARN("Request-based dm doesn't support multiple targets yet");
942 		return -EINVAL;
943 	}
944 
945 	if (list_empty(devices)) {
946 		int srcu_idx;
947 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
948 
949 		/* inherit live table's type and all_blk_mq */
950 		if (live_table) {
951 			t->type = live_table->type;
952 			t->all_blk_mq = live_table->all_blk_mq;
953 		}
954 		dm_put_live_table(t->md, srcu_idx);
955 		return 0;
956 	}
957 
958 	/* Non-request-stackable devices can't be used for request-based dm */
959 	list_for_each_entry(dd, devices, list) {
960 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
961 
962 		if (!blk_queue_stackable(q)) {
963 			DMERR("table load rejected: including"
964 			      " non-request-stackable devices");
965 			return -EINVAL;
966 		}
967 
968 		if (q->mq_ops)
969 			mq_count++;
970 		else
971 			sq_count++;
972 	}
973 	if (sq_count && mq_count) {
974 		DMERR("table load rejected: not all devices are blk-mq request-stackable");
975 		return -EINVAL;
976 	}
977 	t->all_blk_mq = mq_count > 0;
978 
979 	if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
980 		DMERR("table load rejected: all devices are not blk-mq request-stackable");
981 		return -EINVAL;
982 	}
983 
984 	return 0;
985 }
986 
987 unsigned dm_table_get_type(struct dm_table *t)
988 {
989 	return t->type;
990 }
991 
992 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
993 {
994 	return t->immutable_target_type;
995 }
996 
997 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
998 {
999 	/* Immutable target is implicitly a singleton */
1000 	if (t->num_targets > 1 ||
1001 	    !dm_target_is_immutable(t->targets[0].type))
1002 		return NULL;
1003 
1004 	return t->targets;
1005 }
1006 
1007 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1008 {
1009 	struct dm_target *uninitialized_var(ti);
1010 	unsigned i = 0;
1011 
1012 	while (i < dm_table_get_num_targets(t)) {
1013 		ti = dm_table_get_target(t, i++);
1014 		if (dm_target_is_wildcard(ti->type))
1015 			return ti;
1016 	}
1017 
1018 	return NULL;
1019 }
1020 
1021 bool dm_table_bio_based(struct dm_table *t)
1022 {
1023 	return __table_type_bio_based(dm_table_get_type(t));
1024 }
1025 
1026 bool dm_table_request_based(struct dm_table *t)
1027 {
1028 	return __table_type_request_based(dm_table_get_type(t));
1029 }
1030 
1031 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1032 {
1033 	return t->all_blk_mq;
1034 }
1035 
1036 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1037 {
1038 	unsigned type = dm_table_get_type(t);
1039 	unsigned per_io_data_size = 0;
1040 	struct dm_target *tgt;
1041 	unsigned i;
1042 
1043 	if (unlikely(type == DM_TYPE_NONE)) {
1044 		DMWARN("no table type is set, can't allocate mempools");
1045 		return -EINVAL;
1046 	}
1047 
1048 	if (__table_type_bio_based(type))
1049 		for (i = 0; i < t->num_targets; i++) {
1050 			tgt = t->targets + i;
1051 			per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1052 		}
1053 
1054 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1055 	if (!t->mempools)
1056 		return -ENOMEM;
1057 
1058 	return 0;
1059 }
1060 
1061 void dm_table_free_md_mempools(struct dm_table *t)
1062 {
1063 	dm_free_md_mempools(t->mempools);
1064 	t->mempools = NULL;
1065 }
1066 
1067 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1068 {
1069 	return t->mempools;
1070 }
1071 
1072 static int setup_indexes(struct dm_table *t)
1073 {
1074 	int i;
1075 	unsigned int total = 0;
1076 	sector_t *indexes;
1077 
1078 	/* allocate the space for *all* the indexes */
1079 	for (i = t->depth - 2; i >= 0; i--) {
1080 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1081 		total += t->counts[i];
1082 	}
1083 
1084 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1085 	if (!indexes)
1086 		return -ENOMEM;
1087 
1088 	/* set up internal nodes, bottom-up */
1089 	for (i = t->depth - 2; i >= 0; i--) {
1090 		t->index[i] = indexes;
1091 		indexes += (KEYS_PER_NODE * t->counts[i]);
1092 		setup_btree_index(i, t);
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /*
1099  * Builds the btree to index the map.
1100  */
1101 static int dm_table_build_index(struct dm_table *t)
1102 {
1103 	int r = 0;
1104 	unsigned int leaf_nodes;
1105 
1106 	/* how many indexes will the btree have ? */
1107 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1108 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1109 
1110 	/* leaf layer has already been set up */
1111 	t->counts[t->depth - 1] = leaf_nodes;
1112 	t->index[t->depth - 1] = t->highs;
1113 
1114 	if (t->depth >= 2)
1115 		r = setup_indexes(t);
1116 
1117 	return r;
1118 }
1119 
1120 static bool integrity_profile_exists(struct gendisk *disk)
1121 {
1122 	return !!blk_get_integrity(disk);
1123 }
1124 
1125 /*
1126  * Get a disk whose integrity profile reflects the table's profile.
1127  * Returns NULL if integrity support was inconsistent or unavailable.
1128  */
1129 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1130 {
1131 	struct list_head *devices = dm_table_get_devices(t);
1132 	struct dm_dev_internal *dd = NULL;
1133 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1134 
1135 	list_for_each_entry(dd, devices, list) {
1136 		template_disk = dd->dm_dev->bdev->bd_disk;
1137 		if (!integrity_profile_exists(template_disk))
1138 			goto no_integrity;
1139 		else if (prev_disk &&
1140 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1141 			goto no_integrity;
1142 		prev_disk = template_disk;
1143 	}
1144 
1145 	return template_disk;
1146 
1147 no_integrity:
1148 	if (prev_disk)
1149 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1150 		       dm_device_name(t->md),
1151 		       prev_disk->disk_name,
1152 		       template_disk->disk_name);
1153 	return NULL;
1154 }
1155 
1156 /*
1157  * Register the mapped device for blk_integrity support if the
1158  * underlying devices have an integrity profile.  But all devices may
1159  * not have matching profiles (checking all devices isn't reliable
1160  * during table load because this table may use other DM device(s) which
1161  * must be resumed before they will have an initialized integity
1162  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1163  * profile validation: First pass during table load, final pass during
1164  * resume.
1165  */
1166 static int dm_table_register_integrity(struct dm_table *t)
1167 {
1168 	struct mapped_device *md = t->md;
1169 	struct gendisk *template_disk = NULL;
1170 
1171 	template_disk = dm_table_get_integrity_disk(t);
1172 	if (!template_disk)
1173 		return 0;
1174 
1175 	if (!integrity_profile_exists(dm_disk(md))) {
1176 		t->integrity_supported = true;
1177 		/*
1178 		 * Register integrity profile during table load; we can do
1179 		 * this because the final profile must match during resume.
1180 		 */
1181 		blk_integrity_register(dm_disk(md),
1182 				       blk_get_integrity(template_disk));
1183 		return 0;
1184 	}
1185 
1186 	/*
1187 	 * If DM device already has an initialized integrity
1188 	 * profile the new profile should not conflict.
1189 	 */
1190 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1191 		DMWARN("%s: conflict with existing integrity profile: "
1192 		       "%s profile mismatch",
1193 		       dm_device_name(t->md),
1194 		       template_disk->disk_name);
1195 		return 1;
1196 	}
1197 
1198 	/* Preserve existing integrity profile */
1199 	t->integrity_supported = true;
1200 	return 0;
1201 }
1202 
1203 /*
1204  * Prepares the table for use by building the indices,
1205  * setting the type, and allocating mempools.
1206  */
1207 int dm_table_complete(struct dm_table *t)
1208 {
1209 	int r;
1210 
1211 	r = dm_table_determine_type(t);
1212 	if (r) {
1213 		DMERR("unable to determine table type");
1214 		return r;
1215 	}
1216 
1217 	r = dm_table_build_index(t);
1218 	if (r) {
1219 		DMERR("unable to build btrees");
1220 		return r;
1221 	}
1222 
1223 	r = dm_table_register_integrity(t);
1224 	if (r) {
1225 		DMERR("could not register integrity profile.");
1226 		return r;
1227 	}
1228 
1229 	r = dm_table_alloc_md_mempools(t, t->md);
1230 	if (r)
1231 		DMERR("unable to allocate mempools");
1232 
1233 	return r;
1234 }
1235 
1236 static DEFINE_MUTEX(_event_lock);
1237 void dm_table_event_callback(struct dm_table *t,
1238 			     void (*fn)(void *), void *context)
1239 {
1240 	mutex_lock(&_event_lock);
1241 	t->event_fn = fn;
1242 	t->event_context = context;
1243 	mutex_unlock(&_event_lock);
1244 }
1245 
1246 void dm_table_event(struct dm_table *t)
1247 {
1248 	/*
1249 	 * You can no longer call dm_table_event() from interrupt
1250 	 * context, use a bottom half instead.
1251 	 */
1252 	BUG_ON(in_interrupt());
1253 
1254 	mutex_lock(&_event_lock);
1255 	if (t->event_fn)
1256 		t->event_fn(t->event_context);
1257 	mutex_unlock(&_event_lock);
1258 }
1259 EXPORT_SYMBOL(dm_table_event);
1260 
1261 sector_t dm_table_get_size(struct dm_table *t)
1262 {
1263 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1264 }
1265 EXPORT_SYMBOL(dm_table_get_size);
1266 
1267 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1268 {
1269 	if (index >= t->num_targets)
1270 		return NULL;
1271 
1272 	return t->targets + index;
1273 }
1274 
1275 /*
1276  * Search the btree for the correct target.
1277  *
1278  * Caller should check returned pointer with dm_target_is_valid()
1279  * to trap I/O beyond end of device.
1280  */
1281 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1282 {
1283 	unsigned int l, n = 0, k = 0;
1284 	sector_t *node;
1285 
1286 	for (l = 0; l < t->depth; l++) {
1287 		n = get_child(n, k);
1288 		node = get_node(t, l, n);
1289 
1290 		for (k = 0; k < KEYS_PER_NODE; k++)
1291 			if (node[k] >= sector)
1292 				break;
1293 	}
1294 
1295 	return &t->targets[(KEYS_PER_NODE * n) + k];
1296 }
1297 
1298 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1299 			sector_t start, sector_t len, void *data)
1300 {
1301 	unsigned *num_devices = data;
1302 
1303 	(*num_devices)++;
1304 
1305 	return 0;
1306 }
1307 
1308 /*
1309  * Check whether a table has no data devices attached using each
1310  * target's iterate_devices method.
1311  * Returns false if the result is unknown because a target doesn't
1312  * support iterate_devices.
1313  */
1314 bool dm_table_has_no_data_devices(struct dm_table *table)
1315 {
1316 	struct dm_target *uninitialized_var(ti);
1317 	unsigned i = 0, num_devices = 0;
1318 
1319 	while (i < dm_table_get_num_targets(table)) {
1320 		ti = dm_table_get_target(table, i++);
1321 
1322 		if (!ti->type->iterate_devices)
1323 			return false;
1324 
1325 		ti->type->iterate_devices(ti, count_device, &num_devices);
1326 		if (num_devices)
1327 			return false;
1328 	}
1329 
1330 	return true;
1331 }
1332 
1333 /*
1334  * Establish the new table's queue_limits and validate them.
1335  */
1336 int dm_calculate_queue_limits(struct dm_table *table,
1337 			      struct queue_limits *limits)
1338 {
1339 	struct dm_target *uninitialized_var(ti);
1340 	struct queue_limits ti_limits;
1341 	unsigned i = 0;
1342 
1343 	blk_set_stacking_limits(limits);
1344 
1345 	while (i < dm_table_get_num_targets(table)) {
1346 		blk_set_stacking_limits(&ti_limits);
1347 
1348 		ti = dm_table_get_target(table, i++);
1349 
1350 		if (!ti->type->iterate_devices)
1351 			goto combine_limits;
1352 
1353 		/*
1354 		 * Combine queue limits of all the devices this target uses.
1355 		 */
1356 		ti->type->iterate_devices(ti, dm_set_device_limits,
1357 					  &ti_limits);
1358 
1359 		/* Set I/O hints portion of queue limits */
1360 		if (ti->type->io_hints)
1361 			ti->type->io_hints(ti, &ti_limits);
1362 
1363 		/*
1364 		 * Check each device area is consistent with the target's
1365 		 * overall queue limits.
1366 		 */
1367 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1368 					      &ti_limits))
1369 			return -EINVAL;
1370 
1371 combine_limits:
1372 		/*
1373 		 * Merge this target's queue limits into the overall limits
1374 		 * for the table.
1375 		 */
1376 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1377 			DMWARN("%s: adding target device "
1378 			       "(start sect %llu len %llu) "
1379 			       "caused an alignment inconsistency",
1380 			       dm_device_name(table->md),
1381 			       (unsigned long long) ti->begin,
1382 			       (unsigned long long) ti->len);
1383 	}
1384 
1385 	return validate_hardware_logical_block_alignment(table, limits);
1386 }
1387 
1388 /*
1389  * Verify that all devices have an integrity profile that matches the
1390  * DM device's registered integrity profile.  If the profiles don't
1391  * match then unregister the DM device's integrity profile.
1392  */
1393 static void dm_table_verify_integrity(struct dm_table *t)
1394 {
1395 	struct gendisk *template_disk = NULL;
1396 
1397 	if (t->integrity_supported) {
1398 		/*
1399 		 * Verify that the original integrity profile
1400 		 * matches all the devices in this table.
1401 		 */
1402 		template_disk = dm_table_get_integrity_disk(t);
1403 		if (template_disk &&
1404 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1405 			return;
1406 	}
1407 
1408 	if (integrity_profile_exists(dm_disk(t->md))) {
1409 		DMWARN("%s: unable to establish an integrity profile",
1410 		       dm_device_name(t->md));
1411 		blk_integrity_unregister(dm_disk(t->md));
1412 	}
1413 }
1414 
1415 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1416 				sector_t start, sector_t len, void *data)
1417 {
1418 	unsigned long flush = (unsigned long) data;
1419 	struct request_queue *q = bdev_get_queue(dev->bdev);
1420 
1421 	return q && (q->queue_flags & flush);
1422 }
1423 
1424 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1425 {
1426 	struct dm_target *ti;
1427 	unsigned i = 0;
1428 
1429 	/*
1430 	 * Require at least one underlying device to support flushes.
1431 	 * t->devices includes internal dm devices such as mirror logs
1432 	 * so we need to use iterate_devices here, which targets
1433 	 * supporting flushes must provide.
1434 	 */
1435 	while (i < dm_table_get_num_targets(t)) {
1436 		ti = dm_table_get_target(t, i++);
1437 
1438 		if (!ti->num_flush_bios)
1439 			continue;
1440 
1441 		if (ti->flush_supported)
1442 			return true;
1443 
1444 		if (ti->type->iterate_devices &&
1445 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1446 			return true;
1447 	}
1448 
1449 	return false;
1450 }
1451 
1452 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1453 {
1454 	struct dm_target *ti;
1455 	unsigned i = 0;
1456 
1457 	/* Ensure that all targets supports discard_zeroes_data. */
1458 	while (i < dm_table_get_num_targets(t)) {
1459 		ti = dm_table_get_target(t, i++);
1460 
1461 		if (ti->discard_zeroes_data_unsupported)
1462 			return false;
1463 	}
1464 
1465 	return true;
1466 }
1467 
1468 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1469 			    sector_t start, sector_t len, void *data)
1470 {
1471 	struct request_queue *q = bdev_get_queue(dev->bdev);
1472 
1473 	return q && blk_queue_nonrot(q);
1474 }
1475 
1476 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1477 			     sector_t start, sector_t len, void *data)
1478 {
1479 	struct request_queue *q = bdev_get_queue(dev->bdev);
1480 
1481 	return q && !blk_queue_add_random(q);
1482 }
1483 
1484 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1485 				   sector_t start, sector_t len, void *data)
1486 {
1487 	struct request_queue *q = bdev_get_queue(dev->bdev);
1488 
1489 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1490 }
1491 
1492 static bool dm_table_all_devices_attribute(struct dm_table *t,
1493 					   iterate_devices_callout_fn func)
1494 {
1495 	struct dm_target *ti;
1496 	unsigned i = 0;
1497 
1498 	while (i < dm_table_get_num_targets(t)) {
1499 		ti = dm_table_get_target(t, i++);
1500 
1501 		if (!ti->type->iterate_devices ||
1502 		    !ti->type->iterate_devices(ti, func, NULL))
1503 			return false;
1504 	}
1505 
1506 	return true;
1507 }
1508 
1509 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1510 					 sector_t start, sector_t len, void *data)
1511 {
1512 	struct request_queue *q = bdev_get_queue(dev->bdev);
1513 
1514 	return q && !q->limits.max_write_same_sectors;
1515 }
1516 
1517 static bool dm_table_supports_write_same(struct dm_table *t)
1518 {
1519 	struct dm_target *ti;
1520 	unsigned i = 0;
1521 
1522 	while (i < dm_table_get_num_targets(t)) {
1523 		ti = dm_table_get_target(t, i++);
1524 
1525 		if (!ti->num_write_same_bios)
1526 			return false;
1527 
1528 		if (!ti->type->iterate_devices ||
1529 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1530 			return false;
1531 	}
1532 
1533 	return true;
1534 }
1535 
1536 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1537 				  sector_t start, sector_t len, void *data)
1538 {
1539 	struct request_queue *q = bdev_get_queue(dev->bdev);
1540 
1541 	return q && blk_queue_discard(q);
1542 }
1543 
1544 static bool dm_table_supports_discards(struct dm_table *t)
1545 {
1546 	struct dm_target *ti;
1547 	unsigned i = 0;
1548 
1549 	/*
1550 	 * Unless any target used by the table set discards_supported,
1551 	 * require at least one underlying device to support discards.
1552 	 * t->devices includes internal dm devices such as mirror logs
1553 	 * so we need to use iterate_devices here, which targets
1554 	 * supporting discard selectively must provide.
1555 	 */
1556 	while (i < dm_table_get_num_targets(t)) {
1557 		ti = dm_table_get_target(t, i++);
1558 
1559 		if (!ti->num_discard_bios)
1560 			continue;
1561 
1562 		if (ti->discards_supported)
1563 			return true;
1564 
1565 		if (ti->type->iterate_devices &&
1566 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1567 			return true;
1568 	}
1569 
1570 	return false;
1571 }
1572 
1573 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1574 			       struct queue_limits *limits)
1575 {
1576 	bool wc = false, fua = false;
1577 
1578 	/*
1579 	 * Copy table's limits to the DM device's request_queue
1580 	 */
1581 	q->limits = *limits;
1582 
1583 	if (!dm_table_supports_discards(t))
1584 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1585 	else
1586 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1587 
1588 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1589 		wc = true;
1590 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1591 			fua = true;
1592 	}
1593 	blk_queue_write_cache(q, wc, fua);
1594 
1595 	if (!dm_table_discard_zeroes_data(t))
1596 		q->limits.discard_zeroes_data = 0;
1597 
1598 	/* Ensure that all underlying devices are non-rotational. */
1599 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1600 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1601 	else
1602 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1603 
1604 	if (!dm_table_supports_write_same(t))
1605 		q->limits.max_write_same_sectors = 0;
1606 
1607 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1608 		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1609 	else
1610 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1611 
1612 	dm_table_verify_integrity(t);
1613 
1614 	/*
1615 	 * Determine whether or not this queue's I/O timings contribute
1616 	 * to the entropy pool, Only request-based targets use this.
1617 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1618 	 * have it set.
1619 	 */
1620 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1621 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1622 
1623 	/*
1624 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1625 	 * visible to other CPUs because, once the flag is set, incoming bios
1626 	 * are processed by request-based dm, which refers to the queue
1627 	 * settings.
1628 	 * Until the flag set, bios are passed to bio-based dm and queued to
1629 	 * md->deferred where queue settings are not needed yet.
1630 	 * Those bios are passed to request-based dm at the resume time.
1631 	 */
1632 	smp_mb();
1633 	if (dm_table_request_based(t))
1634 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1635 }
1636 
1637 unsigned int dm_table_get_num_targets(struct dm_table *t)
1638 {
1639 	return t->num_targets;
1640 }
1641 
1642 struct list_head *dm_table_get_devices(struct dm_table *t)
1643 {
1644 	return &t->devices;
1645 }
1646 
1647 fmode_t dm_table_get_mode(struct dm_table *t)
1648 {
1649 	return t->mode;
1650 }
1651 EXPORT_SYMBOL(dm_table_get_mode);
1652 
1653 enum suspend_mode {
1654 	PRESUSPEND,
1655 	PRESUSPEND_UNDO,
1656 	POSTSUSPEND,
1657 };
1658 
1659 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1660 {
1661 	int i = t->num_targets;
1662 	struct dm_target *ti = t->targets;
1663 
1664 	while (i--) {
1665 		switch (mode) {
1666 		case PRESUSPEND:
1667 			if (ti->type->presuspend)
1668 				ti->type->presuspend(ti);
1669 			break;
1670 		case PRESUSPEND_UNDO:
1671 			if (ti->type->presuspend_undo)
1672 				ti->type->presuspend_undo(ti);
1673 			break;
1674 		case POSTSUSPEND:
1675 			if (ti->type->postsuspend)
1676 				ti->type->postsuspend(ti);
1677 			break;
1678 		}
1679 		ti++;
1680 	}
1681 }
1682 
1683 void dm_table_presuspend_targets(struct dm_table *t)
1684 {
1685 	if (!t)
1686 		return;
1687 
1688 	suspend_targets(t, PRESUSPEND);
1689 }
1690 
1691 void dm_table_presuspend_undo_targets(struct dm_table *t)
1692 {
1693 	if (!t)
1694 		return;
1695 
1696 	suspend_targets(t, PRESUSPEND_UNDO);
1697 }
1698 
1699 void dm_table_postsuspend_targets(struct dm_table *t)
1700 {
1701 	if (!t)
1702 		return;
1703 
1704 	suspend_targets(t, POSTSUSPEND);
1705 }
1706 
1707 int dm_table_resume_targets(struct dm_table *t)
1708 {
1709 	int i, r = 0;
1710 
1711 	for (i = 0; i < t->num_targets; i++) {
1712 		struct dm_target *ti = t->targets + i;
1713 
1714 		if (!ti->type->preresume)
1715 			continue;
1716 
1717 		r = ti->type->preresume(ti);
1718 		if (r) {
1719 			DMERR("%s: %s: preresume failed, error = %d",
1720 			      dm_device_name(t->md), ti->type->name, r);
1721 			return r;
1722 		}
1723 	}
1724 
1725 	for (i = 0; i < t->num_targets; i++) {
1726 		struct dm_target *ti = t->targets + i;
1727 
1728 		if (ti->type->resume)
1729 			ti->type->resume(ti);
1730 	}
1731 
1732 	return 0;
1733 }
1734 
1735 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1736 {
1737 	list_add(&cb->list, &t->target_callbacks);
1738 }
1739 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1740 
1741 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1742 {
1743 	struct dm_dev_internal *dd;
1744 	struct list_head *devices = dm_table_get_devices(t);
1745 	struct dm_target_callbacks *cb;
1746 	int r = 0;
1747 
1748 	list_for_each_entry(dd, devices, list) {
1749 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1750 		char b[BDEVNAME_SIZE];
1751 
1752 		if (likely(q))
1753 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1754 		else
1755 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1756 				     dm_device_name(t->md),
1757 				     bdevname(dd->dm_dev->bdev, b));
1758 	}
1759 
1760 	list_for_each_entry(cb, &t->target_callbacks, list)
1761 		if (cb->congested_fn)
1762 			r |= cb->congested_fn(cb, bdi_bits);
1763 
1764 	return r;
1765 }
1766 
1767 struct mapped_device *dm_table_get_md(struct dm_table *t)
1768 {
1769 	return t->md;
1770 }
1771 EXPORT_SYMBOL(dm_table_get_md);
1772 
1773 void dm_table_run_md_queue_async(struct dm_table *t)
1774 {
1775 	struct mapped_device *md;
1776 	struct request_queue *queue;
1777 	unsigned long flags;
1778 
1779 	if (!dm_table_request_based(t))
1780 		return;
1781 
1782 	md = dm_table_get_md(t);
1783 	queue = dm_get_md_queue(md);
1784 	if (queue) {
1785 		if (queue->mq_ops)
1786 			blk_mq_run_hw_queues(queue, true);
1787 		else {
1788 			spin_lock_irqsave(queue->queue_lock, flags);
1789 			blk_run_queue_async(queue);
1790 			spin_unlock_irqrestore(queue->queue_lock, flags);
1791 		}
1792 	}
1793 }
1794 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1795 
1796