xref: /openbmc/linux/drivers/md/dm-table.c (revision e23feb16)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 struct dm_table {
30 	struct mapped_device *md;
31 	unsigned type;
32 
33 	/* btree table */
34 	unsigned int depth;
35 	unsigned int counts[MAX_DEPTH];	/* in nodes */
36 	sector_t *index[MAX_DEPTH];
37 
38 	unsigned int num_targets;
39 	unsigned int num_allocated;
40 	sector_t *highs;
41 	struct dm_target *targets;
42 
43 	struct target_type *immutable_target_type;
44 	unsigned integrity_supported:1;
45 	unsigned singleton:1;
46 
47 	/*
48 	 * Indicates the rw permissions for the new logical
49 	 * device.  This should be a combination of FMODE_READ
50 	 * and FMODE_WRITE.
51 	 */
52 	fmode_t mode;
53 
54 	/* a list of devices used by this table */
55 	struct list_head devices;
56 
57 	/* events get handed up using this callback */
58 	void (*event_fn)(void *);
59 	void *event_context;
60 
61 	struct dm_md_mempools *mempools;
62 
63 	struct list_head target_callbacks;
64 };
65 
66 /*
67  * Similar to ceiling(log_size(n))
68  */
69 static unsigned int int_log(unsigned int n, unsigned int base)
70 {
71 	int result = 0;
72 
73 	while (n > 1) {
74 		n = dm_div_up(n, base);
75 		result++;
76 	}
77 
78 	return result;
79 }
80 
81 /*
82  * Calculate the index of the child node of the n'th node k'th key.
83  */
84 static inline unsigned int get_child(unsigned int n, unsigned int k)
85 {
86 	return (n * CHILDREN_PER_NODE) + k;
87 }
88 
89 /*
90  * Return the n'th node of level l from table t.
91  */
92 static inline sector_t *get_node(struct dm_table *t,
93 				 unsigned int l, unsigned int n)
94 {
95 	return t->index[l] + (n * KEYS_PER_NODE);
96 }
97 
98 /*
99  * Return the highest key that you could lookup from the n'th
100  * node on level l of the btree.
101  */
102 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
103 {
104 	for (; l < t->depth - 1; l++)
105 		n = get_child(n, CHILDREN_PER_NODE - 1);
106 
107 	if (n >= t->counts[l])
108 		return (sector_t) - 1;
109 
110 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
111 }
112 
113 /*
114  * Fills in a level of the btree based on the highs of the level
115  * below it.
116  */
117 static int setup_btree_index(unsigned int l, struct dm_table *t)
118 {
119 	unsigned int n, k;
120 	sector_t *node;
121 
122 	for (n = 0U; n < t->counts[l]; n++) {
123 		node = get_node(t, l, n);
124 
125 		for (k = 0U; k < KEYS_PER_NODE; k++)
126 			node[k] = high(t, l + 1, get_child(n, k));
127 	}
128 
129 	return 0;
130 }
131 
132 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
133 {
134 	unsigned long size;
135 	void *addr;
136 
137 	/*
138 	 * Check that we're not going to overflow.
139 	 */
140 	if (nmemb > (ULONG_MAX / elem_size))
141 		return NULL;
142 
143 	size = nmemb * elem_size;
144 	addr = vzalloc(size);
145 
146 	return addr;
147 }
148 EXPORT_SYMBOL(dm_vcalloc);
149 
150 /*
151  * highs, and targets are managed as dynamic arrays during a
152  * table load.
153  */
154 static int alloc_targets(struct dm_table *t, unsigned int num)
155 {
156 	sector_t *n_highs;
157 	struct dm_target *n_targets;
158 	int n = t->num_targets;
159 
160 	/*
161 	 * Allocate both the target array and offset array at once.
162 	 * Append an empty entry to catch sectors beyond the end of
163 	 * the device.
164 	 */
165 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
166 					  sizeof(sector_t));
167 	if (!n_highs)
168 		return -ENOMEM;
169 
170 	n_targets = (struct dm_target *) (n_highs + num);
171 
172 	if (n) {
173 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
174 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
175 	}
176 
177 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
178 	vfree(t->highs);
179 
180 	t->num_allocated = num;
181 	t->highs = n_highs;
182 	t->targets = n_targets;
183 
184 	return 0;
185 }
186 
187 int dm_table_create(struct dm_table **result, fmode_t mode,
188 		    unsigned num_targets, struct mapped_device *md)
189 {
190 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191 
192 	if (!t)
193 		return -ENOMEM;
194 
195 	INIT_LIST_HEAD(&t->devices);
196 	INIT_LIST_HEAD(&t->target_callbacks);
197 
198 	if (!num_targets)
199 		num_targets = KEYS_PER_NODE;
200 
201 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202 
203 	if (alloc_targets(t, num_targets)) {
204 		kfree(t);
205 		return -ENOMEM;
206 	}
207 
208 	t->mode = mode;
209 	t->md = md;
210 	*result = t;
211 	return 0;
212 }
213 
214 static void free_devices(struct list_head *devices)
215 {
216 	struct list_head *tmp, *next;
217 
218 	list_for_each_safe(tmp, next, devices) {
219 		struct dm_dev_internal *dd =
220 		    list_entry(tmp, struct dm_dev_internal, list);
221 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
222 		       dd->dm_dev.name);
223 		kfree(dd);
224 	}
225 }
226 
227 void dm_table_destroy(struct dm_table *t)
228 {
229 	unsigned int i;
230 
231 	if (!t)
232 		return;
233 
234 	/* free the indexes */
235 	if (t->depth >= 2)
236 		vfree(t->index[t->depth - 2]);
237 
238 	/* free the targets */
239 	for (i = 0; i < t->num_targets; i++) {
240 		struct dm_target *tgt = t->targets + i;
241 
242 		if (tgt->type->dtr)
243 			tgt->type->dtr(tgt);
244 
245 		dm_put_target_type(tgt->type);
246 	}
247 
248 	vfree(t->highs);
249 
250 	/* free the device list */
251 	free_devices(&t->devices);
252 
253 	dm_free_md_mempools(t->mempools);
254 
255 	kfree(t);
256 }
257 
258 /*
259  * Checks to see if we need to extend highs or targets.
260  */
261 static inline int check_space(struct dm_table *t)
262 {
263 	if (t->num_targets >= t->num_allocated)
264 		return alloc_targets(t, t->num_allocated * 2);
265 
266 	return 0;
267 }
268 
269 /*
270  * See if we've already got a device in the list.
271  */
272 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
273 {
274 	struct dm_dev_internal *dd;
275 
276 	list_for_each_entry (dd, l, list)
277 		if (dd->dm_dev.bdev->bd_dev == dev)
278 			return dd;
279 
280 	return NULL;
281 }
282 
283 /*
284  * Open a device so we can use it as a map destination.
285  */
286 static int open_dev(struct dm_dev_internal *d, dev_t dev,
287 		    struct mapped_device *md)
288 {
289 	static char *_claim_ptr = "I belong to device-mapper";
290 	struct block_device *bdev;
291 
292 	int r;
293 
294 	BUG_ON(d->dm_dev.bdev);
295 
296 	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
297 	if (IS_ERR(bdev))
298 		return PTR_ERR(bdev);
299 
300 	r = bd_link_disk_holder(bdev, dm_disk(md));
301 	if (r) {
302 		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
303 		return r;
304 	}
305 
306 	d->dm_dev.bdev = bdev;
307 	return 0;
308 }
309 
310 /*
311  * Close a device that we've been using.
312  */
313 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
314 {
315 	if (!d->dm_dev.bdev)
316 		return;
317 
318 	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
319 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
320 	d->dm_dev.bdev = NULL;
321 }
322 
323 /*
324  * If possible, this checks an area of a destination device is invalid.
325  */
326 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
327 				  sector_t start, sector_t len, void *data)
328 {
329 	struct request_queue *q;
330 	struct queue_limits *limits = data;
331 	struct block_device *bdev = dev->bdev;
332 	sector_t dev_size =
333 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
334 	unsigned short logical_block_size_sectors =
335 		limits->logical_block_size >> SECTOR_SHIFT;
336 	char b[BDEVNAME_SIZE];
337 
338 	/*
339 	 * Some devices exist without request functions,
340 	 * such as loop devices not yet bound to backing files.
341 	 * Forbid the use of such devices.
342 	 */
343 	q = bdev_get_queue(bdev);
344 	if (!q || !q->make_request_fn) {
345 		DMWARN("%s: %s is not yet initialised: "
346 		       "start=%llu, len=%llu, dev_size=%llu",
347 		       dm_device_name(ti->table->md), bdevname(bdev, b),
348 		       (unsigned long long)start,
349 		       (unsigned long long)len,
350 		       (unsigned long long)dev_size);
351 		return 1;
352 	}
353 
354 	if (!dev_size)
355 		return 0;
356 
357 	if ((start >= dev_size) || (start + len > dev_size)) {
358 		DMWARN("%s: %s too small for target: "
359 		       "start=%llu, len=%llu, dev_size=%llu",
360 		       dm_device_name(ti->table->md), bdevname(bdev, b),
361 		       (unsigned long long)start,
362 		       (unsigned long long)len,
363 		       (unsigned long long)dev_size);
364 		return 1;
365 	}
366 
367 	if (logical_block_size_sectors <= 1)
368 		return 0;
369 
370 	if (start & (logical_block_size_sectors - 1)) {
371 		DMWARN("%s: start=%llu not aligned to h/w "
372 		       "logical block size %u of %s",
373 		       dm_device_name(ti->table->md),
374 		       (unsigned long long)start,
375 		       limits->logical_block_size, bdevname(bdev, b));
376 		return 1;
377 	}
378 
379 	if (len & (logical_block_size_sectors - 1)) {
380 		DMWARN("%s: len=%llu not aligned to h/w "
381 		       "logical block size %u of %s",
382 		       dm_device_name(ti->table->md),
383 		       (unsigned long long)len,
384 		       limits->logical_block_size, bdevname(bdev, b));
385 		return 1;
386 	}
387 
388 	return 0;
389 }
390 
391 /*
392  * This upgrades the mode on an already open dm_dev, being
393  * careful to leave things as they were if we fail to reopen the
394  * device and not to touch the existing bdev field in case
395  * it is accessed concurrently inside dm_table_any_congested().
396  */
397 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
398 			struct mapped_device *md)
399 {
400 	int r;
401 	struct dm_dev_internal dd_new, dd_old;
402 
403 	dd_new = dd_old = *dd;
404 
405 	dd_new.dm_dev.mode |= new_mode;
406 	dd_new.dm_dev.bdev = NULL;
407 
408 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
409 	if (r)
410 		return r;
411 
412 	dd->dm_dev.mode |= new_mode;
413 	close_dev(&dd_old, md);
414 
415 	return 0;
416 }
417 
418 /*
419  * Add a device to the list, or just increment the usage count if
420  * it's already present.
421  */
422 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
423 		  struct dm_dev **result)
424 {
425 	int r;
426 	dev_t uninitialized_var(dev);
427 	struct dm_dev_internal *dd;
428 	unsigned int major, minor;
429 	struct dm_table *t = ti->table;
430 	char dummy;
431 
432 	BUG_ON(!t);
433 
434 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
435 		/* Extract the major/minor numbers */
436 		dev = MKDEV(major, minor);
437 		if (MAJOR(dev) != major || MINOR(dev) != minor)
438 			return -EOVERFLOW;
439 	} else {
440 		/* convert the path to a device */
441 		struct block_device *bdev = lookup_bdev(path);
442 
443 		if (IS_ERR(bdev))
444 			return PTR_ERR(bdev);
445 		dev = bdev->bd_dev;
446 		bdput(bdev);
447 	}
448 
449 	dd = find_device(&t->devices, dev);
450 	if (!dd) {
451 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
452 		if (!dd)
453 			return -ENOMEM;
454 
455 		dd->dm_dev.mode = mode;
456 		dd->dm_dev.bdev = NULL;
457 
458 		if ((r = open_dev(dd, dev, t->md))) {
459 			kfree(dd);
460 			return r;
461 		}
462 
463 		format_dev_t(dd->dm_dev.name, dev);
464 
465 		atomic_set(&dd->count, 0);
466 		list_add(&dd->list, &t->devices);
467 
468 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
469 		r = upgrade_mode(dd, mode, t->md);
470 		if (r)
471 			return r;
472 	}
473 	atomic_inc(&dd->count);
474 
475 	*result = &dd->dm_dev;
476 	return 0;
477 }
478 EXPORT_SYMBOL(dm_get_device);
479 
480 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
481 			 sector_t start, sector_t len, void *data)
482 {
483 	struct queue_limits *limits = data;
484 	struct block_device *bdev = dev->bdev;
485 	struct request_queue *q = bdev_get_queue(bdev);
486 	char b[BDEVNAME_SIZE];
487 
488 	if (unlikely(!q)) {
489 		DMWARN("%s: Cannot set limits for nonexistent device %s",
490 		       dm_device_name(ti->table->md), bdevname(bdev, b));
491 		return 0;
492 	}
493 
494 	if (bdev_stack_limits(limits, bdev, start) < 0)
495 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
496 		       "physical_block_size=%u, logical_block_size=%u, "
497 		       "alignment_offset=%u, start=%llu",
498 		       dm_device_name(ti->table->md), bdevname(bdev, b),
499 		       q->limits.physical_block_size,
500 		       q->limits.logical_block_size,
501 		       q->limits.alignment_offset,
502 		       (unsigned long long) start << SECTOR_SHIFT);
503 
504 	/*
505 	 * Check if merge fn is supported.
506 	 * If not we'll force DM to use PAGE_SIZE or
507 	 * smaller I/O, just to be safe.
508 	 */
509 	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
510 		blk_limits_max_hw_sectors(limits,
511 					  (unsigned int) (PAGE_SIZE >> 9));
512 	return 0;
513 }
514 EXPORT_SYMBOL_GPL(dm_set_device_limits);
515 
516 /*
517  * Decrement a device's use count and remove it if necessary.
518  */
519 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
520 {
521 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
522 						  dm_dev);
523 
524 	if (atomic_dec_and_test(&dd->count)) {
525 		close_dev(dd, ti->table->md);
526 		list_del(&dd->list);
527 		kfree(dd);
528 	}
529 }
530 EXPORT_SYMBOL(dm_put_device);
531 
532 /*
533  * Checks to see if the target joins onto the end of the table.
534  */
535 static int adjoin(struct dm_table *table, struct dm_target *ti)
536 {
537 	struct dm_target *prev;
538 
539 	if (!table->num_targets)
540 		return !ti->begin;
541 
542 	prev = &table->targets[table->num_targets - 1];
543 	return (ti->begin == (prev->begin + prev->len));
544 }
545 
546 /*
547  * Used to dynamically allocate the arg array.
548  */
549 static char **realloc_argv(unsigned *array_size, char **old_argv)
550 {
551 	char **argv;
552 	unsigned new_size;
553 
554 	new_size = *array_size ? *array_size * 2 : 64;
555 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
556 	if (argv) {
557 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
558 		*array_size = new_size;
559 	}
560 
561 	kfree(old_argv);
562 	return argv;
563 }
564 
565 /*
566  * Destructively splits up the argument list to pass to ctr.
567  */
568 int dm_split_args(int *argc, char ***argvp, char *input)
569 {
570 	char *start, *end = input, *out, **argv = NULL;
571 	unsigned array_size = 0;
572 
573 	*argc = 0;
574 
575 	if (!input) {
576 		*argvp = NULL;
577 		return 0;
578 	}
579 
580 	argv = realloc_argv(&array_size, argv);
581 	if (!argv)
582 		return -ENOMEM;
583 
584 	while (1) {
585 		/* Skip whitespace */
586 		start = skip_spaces(end);
587 
588 		if (!*start)
589 			break;	/* success, we hit the end */
590 
591 		/* 'out' is used to remove any back-quotes */
592 		end = out = start;
593 		while (*end) {
594 			/* Everything apart from '\0' can be quoted */
595 			if (*end == '\\' && *(end + 1)) {
596 				*out++ = *(end + 1);
597 				end += 2;
598 				continue;
599 			}
600 
601 			if (isspace(*end))
602 				break;	/* end of token */
603 
604 			*out++ = *end++;
605 		}
606 
607 		/* have we already filled the array ? */
608 		if ((*argc + 1) > array_size) {
609 			argv = realloc_argv(&array_size, argv);
610 			if (!argv)
611 				return -ENOMEM;
612 		}
613 
614 		/* we know this is whitespace */
615 		if (*end)
616 			end++;
617 
618 		/* terminate the string and put it in the array */
619 		*out = '\0';
620 		argv[*argc] = start;
621 		(*argc)++;
622 	}
623 
624 	*argvp = argv;
625 	return 0;
626 }
627 
628 /*
629  * Impose necessary and sufficient conditions on a devices's table such
630  * that any incoming bio which respects its logical_block_size can be
631  * processed successfully.  If it falls across the boundary between
632  * two or more targets, the size of each piece it gets split into must
633  * be compatible with the logical_block_size of the target processing it.
634  */
635 static int validate_hardware_logical_block_alignment(struct dm_table *table,
636 						 struct queue_limits *limits)
637 {
638 	/*
639 	 * This function uses arithmetic modulo the logical_block_size
640 	 * (in units of 512-byte sectors).
641 	 */
642 	unsigned short device_logical_block_size_sects =
643 		limits->logical_block_size >> SECTOR_SHIFT;
644 
645 	/*
646 	 * Offset of the start of the next table entry, mod logical_block_size.
647 	 */
648 	unsigned short next_target_start = 0;
649 
650 	/*
651 	 * Given an aligned bio that extends beyond the end of a
652 	 * target, how many sectors must the next target handle?
653 	 */
654 	unsigned short remaining = 0;
655 
656 	struct dm_target *uninitialized_var(ti);
657 	struct queue_limits ti_limits;
658 	unsigned i = 0;
659 
660 	/*
661 	 * Check each entry in the table in turn.
662 	 */
663 	while (i < dm_table_get_num_targets(table)) {
664 		ti = dm_table_get_target(table, i++);
665 
666 		blk_set_stacking_limits(&ti_limits);
667 
668 		/* combine all target devices' limits */
669 		if (ti->type->iterate_devices)
670 			ti->type->iterate_devices(ti, dm_set_device_limits,
671 						  &ti_limits);
672 
673 		/*
674 		 * If the remaining sectors fall entirely within this
675 		 * table entry are they compatible with its logical_block_size?
676 		 */
677 		if (remaining < ti->len &&
678 		    remaining & ((ti_limits.logical_block_size >>
679 				  SECTOR_SHIFT) - 1))
680 			break;	/* Error */
681 
682 		next_target_start =
683 		    (unsigned short) ((next_target_start + ti->len) &
684 				      (device_logical_block_size_sects - 1));
685 		remaining = next_target_start ?
686 		    device_logical_block_size_sects - next_target_start : 0;
687 	}
688 
689 	if (remaining) {
690 		DMWARN("%s: table line %u (start sect %llu len %llu) "
691 		       "not aligned to h/w logical block size %u",
692 		       dm_device_name(table->md), i,
693 		       (unsigned long long) ti->begin,
694 		       (unsigned long long) ti->len,
695 		       limits->logical_block_size);
696 		return -EINVAL;
697 	}
698 
699 	return 0;
700 }
701 
702 int dm_table_add_target(struct dm_table *t, const char *type,
703 			sector_t start, sector_t len, char *params)
704 {
705 	int r = -EINVAL, argc;
706 	char **argv;
707 	struct dm_target *tgt;
708 
709 	if (t->singleton) {
710 		DMERR("%s: target type %s must appear alone in table",
711 		      dm_device_name(t->md), t->targets->type->name);
712 		return -EINVAL;
713 	}
714 
715 	if ((r = check_space(t)))
716 		return r;
717 
718 	tgt = t->targets + t->num_targets;
719 	memset(tgt, 0, sizeof(*tgt));
720 
721 	if (!len) {
722 		DMERR("%s: zero-length target", dm_device_name(t->md));
723 		return -EINVAL;
724 	}
725 
726 	tgt->type = dm_get_target_type(type);
727 	if (!tgt->type) {
728 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
729 		      type);
730 		return -EINVAL;
731 	}
732 
733 	if (dm_target_needs_singleton(tgt->type)) {
734 		if (t->num_targets) {
735 			DMERR("%s: target type %s must appear alone in table",
736 			      dm_device_name(t->md), type);
737 			return -EINVAL;
738 		}
739 		t->singleton = 1;
740 	}
741 
742 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
743 		DMERR("%s: target type %s may not be included in read-only tables",
744 		      dm_device_name(t->md), type);
745 		return -EINVAL;
746 	}
747 
748 	if (t->immutable_target_type) {
749 		if (t->immutable_target_type != tgt->type) {
750 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
751 			      dm_device_name(t->md), t->immutable_target_type->name);
752 			return -EINVAL;
753 		}
754 	} else if (dm_target_is_immutable(tgt->type)) {
755 		if (t->num_targets) {
756 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
757 			      dm_device_name(t->md), tgt->type->name);
758 			return -EINVAL;
759 		}
760 		t->immutable_target_type = tgt->type;
761 	}
762 
763 	tgt->table = t;
764 	tgt->begin = start;
765 	tgt->len = len;
766 	tgt->error = "Unknown error";
767 
768 	/*
769 	 * Does this target adjoin the previous one ?
770 	 */
771 	if (!adjoin(t, tgt)) {
772 		tgt->error = "Gap in table";
773 		r = -EINVAL;
774 		goto bad;
775 	}
776 
777 	r = dm_split_args(&argc, &argv, params);
778 	if (r) {
779 		tgt->error = "couldn't split parameters (insufficient memory)";
780 		goto bad;
781 	}
782 
783 	r = tgt->type->ctr(tgt, argc, argv);
784 	kfree(argv);
785 	if (r)
786 		goto bad;
787 
788 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
789 
790 	if (!tgt->num_discard_bios && tgt->discards_supported)
791 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
792 		       dm_device_name(t->md), type);
793 
794 	return 0;
795 
796  bad:
797 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
798 	dm_put_target_type(tgt->type);
799 	return r;
800 }
801 
802 /*
803  * Target argument parsing helpers.
804  */
805 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
806 			     unsigned *value, char **error, unsigned grouped)
807 {
808 	const char *arg_str = dm_shift_arg(arg_set);
809 	char dummy;
810 
811 	if (!arg_str ||
812 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
813 	    (*value < arg->min) ||
814 	    (*value > arg->max) ||
815 	    (grouped && arg_set->argc < *value)) {
816 		*error = arg->error;
817 		return -EINVAL;
818 	}
819 
820 	return 0;
821 }
822 
823 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
824 		unsigned *value, char **error)
825 {
826 	return validate_next_arg(arg, arg_set, value, error, 0);
827 }
828 EXPORT_SYMBOL(dm_read_arg);
829 
830 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
831 		      unsigned *value, char **error)
832 {
833 	return validate_next_arg(arg, arg_set, value, error, 1);
834 }
835 EXPORT_SYMBOL(dm_read_arg_group);
836 
837 const char *dm_shift_arg(struct dm_arg_set *as)
838 {
839 	char *r;
840 
841 	if (as->argc) {
842 		as->argc--;
843 		r = *as->argv;
844 		as->argv++;
845 		return r;
846 	}
847 
848 	return NULL;
849 }
850 EXPORT_SYMBOL(dm_shift_arg);
851 
852 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
853 {
854 	BUG_ON(as->argc < num_args);
855 	as->argc -= num_args;
856 	as->argv += num_args;
857 }
858 EXPORT_SYMBOL(dm_consume_args);
859 
860 static int dm_table_set_type(struct dm_table *t)
861 {
862 	unsigned i;
863 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
864 	struct dm_target *tgt;
865 	struct dm_dev_internal *dd;
866 	struct list_head *devices;
867 	unsigned live_md_type;
868 
869 	for (i = 0; i < t->num_targets; i++) {
870 		tgt = t->targets + i;
871 		if (dm_target_hybrid(tgt))
872 			hybrid = 1;
873 		else if (dm_target_request_based(tgt))
874 			request_based = 1;
875 		else
876 			bio_based = 1;
877 
878 		if (bio_based && request_based) {
879 			DMWARN("Inconsistent table: different target types"
880 			       " can't be mixed up");
881 			return -EINVAL;
882 		}
883 	}
884 
885 	if (hybrid && !bio_based && !request_based) {
886 		/*
887 		 * The targets can work either way.
888 		 * Determine the type from the live device.
889 		 * Default to bio-based if device is new.
890 		 */
891 		live_md_type = dm_get_md_type(t->md);
892 		if (live_md_type == DM_TYPE_REQUEST_BASED)
893 			request_based = 1;
894 		else
895 			bio_based = 1;
896 	}
897 
898 	if (bio_based) {
899 		/* We must use this table as bio-based */
900 		t->type = DM_TYPE_BIO_BASED;
901 		return 0;
902 	}
903 
904 	BUG_ON(!request_based); /* No targets in this table */
905 
906 	/* Non-request-stackable devices can't be used for request-based dm */
907 	devices = dm_table_get_devices(t);
908 	list_for_each_entry(dd, devices, list) {
909 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
910 			DMWARN("table load rejected: including"
911 			       " non-request-stackable devices");
912 			return -EINVAL;
913 		}
914 	}
915 
916 	/*
917 	 * Request-based dm supports only tables that have a single target now.
918 	 * To support multiple targets, request splitting support is needed,
919 	 * and that needs lots of changes in the block-layer.
920 	 * (e.g. request completion process for partial completion.)
921 	 */
922 	if (t->num_targets > 1) {
923 		DMWARN("Request-based dm doesn't support multiple targets yet");
924 		return -EINVAL;
925 	}
926 
927 	t->type = DM_TYPE_REQUEST_BASED;
928 
929 	return 0;
930 }
931 
932 unsigned dm_table_get_type(struct dm_table *t)
933 {
934 	return t->type;
935 }
936 
937 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
938 {
939 	return t->immutable_target_type;
940 }
941 
942 bool dm_table_request_based(struct dm_table *t)
943 {
944 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
945 }
946 
947 int dm_table_alloc_md_mempools(struct dm_table *t)
948 {
949 	unsigned type = dm_table_get_type(t);
950 	unsigned per_bio_data_size = 0;
951 	struct dm_target *tgt;
952 	unsigned i;
953 
954 	if (unlikely(type == DM_TYPE_NONE)) {
955 		DMWARN("no table type is set, can't allocate mempools");
956 		return -EINVAL;
957 	}
958 
959 	if (type == DM_TYPE_BIO_BASED)
960 		for (i = 0; i < t->num_targets; i++) {
961 			tgt = t->targets + i;
962 			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
963 		}
964 
965 	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
966 	if (!t->mempools)
967 		return -ENOMEM;
968 
969 	return 0;
970 }
971 
972 void dm_table_free_md_mempools(struct dm_table *t)
973 {
974 	dm_free_md_mempools(t->mempools);
975 	t->mempools = NULL;
976 }
977 
978 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
979 {
980 	return t->mempools;
981 }
982 
983 static int setup_indexes(struct dm_table *t)
984 {
985 	int i;
986 	unsigned int total = 0;
987 	sector_t *indexes;
988 
989 	/* allocate the space for *all* the indexes */
990 	for (i = t->depth - 2; i >= 0; i--) {
991 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
992 		total += t->counts[i];
993 	}
994 
995 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
996 	if (!indexes)
997 		return -ENOMEM;
998 
999 	/* set up internal nodes, bottom-up */
1000 	for (i = t->depth - 2; i >= 0; i--) {
1001 		t->index[i] = indexes;
1002 		indexes += (KEYS_PER_NODE * t->counts[i]);
1003 		setup_btree_index(i, t);
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 /*
1010  * Builds the btree to index the map.
1011  */
1012 static int dm_table_build_index(struct dm_table *t)
1013 {
1014 	int r = 0;
1015 	unsigned int leaf_nodes;
1016 
1017 	/* how many indexes will the btree have ? */
1018 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1019 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1020 
1021 	/* leaf layer has already been set up */
1022 	t->counts[t->depth - 1] = leaf_nodes;
1023 	t->index[t->depth - 1] = t->highs;
1024 
1025 	if (t->depth >= 2)
1026 		r = setup_indexes(t);
1027 
1028 	return r;
1029 }
1030 
1031 /*
1032  * Get a disk whose integrity profile reflects the table's profile.
1033  * If %match_all is true, all devices' profiles must match.
1034  * If %match_all is false, all devices must at least have an
1035  * allocated integrity profile; but uninitialized is ok.
1036  * Returns NULL if integrity support was inconsistent or unavailable.
1037  */
1038 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1039 						    bool match_all)
1040 {
1041 	struct list_head *devices = dm_table_get_devices(t);
1042 	struct dm_dev_internal *dd = NULL;
1043 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1044 
1045 	list_for_each_entry(dd, devices, list) {
1046 		template_disk = dd->dm_dev.bdev->bd_disk;
1047 		if (!blk_get_integrity(template_disk))
1048 			goto no_integrity;
1049 		if (!match_all && !blk_integrity_is_initialized(template_disk))
1050 			continue; /* skip uninitialized profiles */
1051 		else if (prev_disk &&
1052 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1053 			goto no_integrity;
1054 		prev_disk = template_disk;
1055 	}
1056 
1057 	return template_disk;
1058 
1059 no_integrity:
1060 	if (prev_disk)
1061 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1062 		       dm_device_name(t->md),
1063 		       prev_disk->disk_name,
1064 		       template_disk->disk_name);
1065 	return NULL;
1066 }
1067 
1068 /*
1069  * Register the mapped device for blk_integrity support if
1070  * the underlying devices have an integrity profile.  But all devices
1071  * may not have matching profiles (checking all devices isn't reliable
1072  * during table load because this table may use other DM device(s) which
1073  * must be resumed before they will have an initialized integity profile).
1074  * Stacked DM devices force a 2 stage integrity profile validation:
1075  * 1 - during load, validate all initialized integrity profiles match
1076  * 2 - during resume, validate all integrity profiles match
1077  */
1078 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1079 {
1080 	struct gendisk *template_disk = NULL;
1081 
1082 	template_disk = dm_table_get_integrity_disk(t, false);
1083 	if (!template_disk)
1084 		return 0;
1085 
1086 	if (!blk_integrity_is_initialized(dm_disk(md))) {
1087 		t->integrity_supported = 1;
1088 		return blk_integrity_register(dm_disk(md), NULL);
1089 	}
1090 
1091 	/*
1092 	 * If DM device already has an initalized integrity
1093 	 * profile the new profile should not conflict.
1094 	 */
1095 	if (blk_integrity_is_initialized(template_disk) &&
1096 	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1097 		DMWARN("%s: conflict with existing integrity profile: "
1098 		       "%s profile mismatch",
1099 		       dm_device_name(t->md),
1100 		       template_disk->disk_name);
1101 		return 1;
1102 	}
1103 
1104 	/* Preserve existing initialized integrity profile */
1105 	t->integrity_supported = 1;
1106 	return 0;
1107 }
1108 
1109 /*
1110  * Prepares the table for use by building the indices,
1111  * setting the type, and allocating mempools.
1112  */
1113 int dm_table_complete(struct dm_table *t)
1114 {
1115 	int r;
1116 
1117 	r = dm_table_set_type(t);
1118 	if (r) {
1119 		DMERR("unable to set table type");
1120 		return r;
1121 	}
1122 
1123 	r = dm_table_build_index(t);
1124 	if (r) {
1125 		DMERR("unable to build btrees");
1126 		return r;
1127 	}
1128 
1129 	r = dm_table_prealloc_integrity(t, t->md);
1130 	if (r) {
1131 		DMERR("could not register integrity profile.");
1132 		return r;
1133 	}
1134 
1135 	r = dm_table_alloc_md_mempools(t);
1136 	if (r)
1137 		DMERR("unable to allocate mempools");
1138 
1139 	return r;
1140 }
1141 
1142 static DEFINE_MUTEX(_event_lock);
1143 void dm_table_event_callback(struct dm_table *t,
1144 			     void (*fn)(void *), void *context)
1145 {
1146 	mutex_lock(&_event_lock);
1147 	t->event_fn = fn;
1148 	t->event_context = context;
1149 	mutex_unlock(&_event_lock);
1150 }
1151 
1152 void dm_table_event(struct dm_table *t)
1153 {
1154 	/*
1155 	 * You can no longer call dm_table_event() from interrupt
1156 	 * context, use a bottom half instead.
1157 	 */
1158 	BUG_ON(in_interrupt());
1159 
1160 	mutex_lock(&_event_lock);
1161 	if (t->event_fn)
1162 		t->event_fn(t->event_context);
1163 	mutex_unlock(&_event_lock);
1164 }
1165 EXPORT_SYMBOL(dm_table_event);
1166 
1167 sector_t dm_table_get_size(struct dm_table *t)
1168 {
1169 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1170 }
1171 EXPORT_SYMBOL(dm_table_get_size);
1172 
1173 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1174 {
1175 	if (index >= t->num_targets)
1176 		return NULL;
1177 
1178 	return t->targets + index;
1179 }
1180 
1181 /*
1182  * Search the btree for the correct target.
1183  *
1184  * Caller should check returned pointer with dm_target_is_valid()
1185  * to trap I/O beyond end of device.
1186  */
1187 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1188 {
1189 	unsigned int l, n = 0, k = 0;
1190 	sector_t *node;
1191 
1192 	for (l = 0; l < t->depth; l++) {
1193 		n = get_child(n, k);
1194 		node = get_node(t, l, n);
1195 
1196 		for (k = 0; k < KEYS_PER_NODE; k++)
1197 			if (node[k] >= sector)
1198 				break;
1199 	}
1200 
1201 	return &t->targets[(KEYS_PER_NODE * n) + k];
1202 }
1203 
1204 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1205 			sector_t start, sector_t len, void *data)
1206 {
1207 	unsigned *num_devices = data;
1208 
1209 	(*num_devices)++;
1210 
1211 	return 0;
1212 }
1213 
1214 /*
1215  * Check whether a table has no data devices attached using each
1216  * target's iterate_devices method.
1217  * Returns false if the result is unknown because a target doesn't
1218  * support iterate_devices.
1219  */
1220 bool dm_table_has_no_data_devices(struct dm_table *table)
1221 {
1222 	struct dm_target *uninitialized_var(ti);
1223 	unsigned i = 0, num_devices = 0;
1224 
1225 	while (i < dm_table_get_num_targets(table)) {
1226 		ti = dm_table_get_target(table, i++);
1227 
1228 		if (!ti->type->iterate_devices)
1229 			return false;
1230 
1231 		ti->type->iterate_devices(ti, count_device, &num_devices);
1232 		if (num_devices)
1233 			return false;
1234 	}
1235 
1236 	return true;
1237 }
1238 
1239 /*
1240  * Establish the new table's queue_limits and validate them.
1241  */
1242 int dm_calculate_queue_limits(struct dm_table *table,
1243 			      struct queue_limits *limits)
1244 {
1245 	struct dm_target *uninitialized_var(ti);
1246 	struct queue_limits ti_limits;
1247 	unsigned i = 0;
1248 
1249 	blk_set_stacking_limits(limits);
1250 
1251 	while (i < dm_table_get_num_targets(table)) {
1252 		blk_set_stacking_limits(&ti_limits);
1253 
1254 		ti = dm_table_get_target(table, i++);
1255 
1256 		if (!ti->type->iterate_devices)
1257 			goto combine_limits;
1258 
1259 		/*
1260 		 * Combine queue limits of all the devices this target uses.
1261 		 */
1262 		ti->type->iterate_devices(ti, dm_set_device_limits,
1263 					  &ti_limits);
1264 
1265 		/* Set I/O hints portion of queue limits */
1266 		if (ti->type->io_hints)
1267 			ti->type->io_hints(ti, &ti_limits);
1268 
1269 		/*
1270 		 * Check each device area is consistent with the target's
1271 		 * overall queue limits.
1272 		 */
1273 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1274 					      &ti_limits))
1275 			return -EINVAL;
1276 
1277 combine_limits:
1278 		/*
1279 		 * Merge this target's queue limits into the overall limits
1280 		 * for the table.
1281 		 */
1282 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1283 			DMWARN("%s: adding target device "
1284 			       "(start sect %llu len %llu) "
1285 			       "caused an alignment inconsistency",
1286 			       dm_device_name(table->md),
1287 			       (unsigned long long) ti->begin,
1288 			       (unsigned long long) ti->len);
1289 	}
1290 
1291 	return validate_hardware_logical_block_alignment(table, limits);
1292 }
1293 
1294 /*
1295  * Set the integrity profile for this device if all devices used have
1296  * matching profiles.  We're quite deep in the resume path but still
1297  * don't know if all devices (particularly DM devices this device
1298  * may be stacked on) have matching profiles.  Even if the profiles
1299  * don't match we have no way to fail (to resume) at this point.
1300  */
1301 static void dm_table_set_integrity(struct dm_table *t)
1302 {
1303 	struct gendisk *template_disk = NULL;
1304 
1305 	if (!blk_get_integrity(dm_disk(t->md)))
1306 		return;
1307 
1308 	template_disk = dm_table_get_integrity_disk(t, true);
1309 	if (template_disk)
1310 		blk_integrity_register(dm_disk(t->md),
1311 				       blk_get_integrity(template_disk));
1312 	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1313 		DMWARN("%s: device no longer has a valid integrity profile",
1314 		       dm_device_name(t->md));
1315 	else
1316 		DMWARN("%s: unable to establish an integrity profile",
1317 		       dm_device_name(t->md));
1318 }
1319 
1320 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1321 				sector_t start, sector_t len, void *data)
1322 {
1323 	unsigned flush = (*(unsigned *)data);
1324 	struct request_queue *q = bdev_get_queue(dev->bdev);
1325 
1326 	return q && (q->flush_flags & flush);
1327 }
1328 
1329 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1330 {
1331 	struct dm_target *ti;
1332 	unsigned i = 0;
1333 
1334 	/*
1335 	 * Require at least one underlying device to support flushes.
1336 	 * t->devices includes internal dm devices such as mirror logs
1337 	 * so we need to use iterate_devices here, which targets
1338 	 * supporting flushes must provide.
1339 	 */
1340 	while (i < dm_table_get_num_targets(t)) {
1341 		ti = dm_table_get_target(t, i++);
1342 
1343 		if (!ti->num_flush_bios)
1344 			continue;
1345 
1346 		if (ti->flush_supported)
1347 			return 1;
1348 
1349 		if (ti->type->iterate_devices &&
1350 		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1351 			return 1;
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1358 {
1359 	struct dm_target *ti;
1360 	unsigned i = 0;
1361 
1362 	/* Ensure that all targets supports discard_zeroes_data. */
1363 	while (i < dm_table_get_num_targets(t)) {
1364 		ti = dm_table_get_target(t, i++);
1365 
1366 		if (ti->discard_zeroes_data_unsupported)
1367 			return 0;
1368 	}
1369 
1370 	return 1;
1371 }
1372 
1373 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1374 			    sector_t start, sector_t len, void *data)
1375 {
1376 	struct request_queue *q = bdev_get_queue(dev->bdev);
1377 
1378 	return q && blk_queue_nonrot(q);
1379 }
1380 
1381 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1382 			     sector_t start, sector_t len, void *data)
1383 {
1384 	struct request_queue *q = bdev_get_queue(dev->bdev);
1385 
1386 	return q && !blk_queue_add_random(q);
1387 }
1388 
1389 static bool dm_table_all_devices_attribute(struct dm_table *t,
1390 					   iterate_devices_callout_fn func)
1391 {
1392 	struct dm_target *ti;
1393 	unsigned i = 0;
1394 
1395 	while (i < dm_table_get_num_targets(t)) {
1396 		ti = dm_table_get_target(t, i++);
1397 
1398 		if (!ti->type->iterate_devices ||
1399 		    !ti->type->iterate_devices(ti, func, NULL))
1400 			return 0;
1401 	}
1402 
1403 	return 1;
1404 }
1405 
1406 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1407 					 sector_t start, sector_t len, void *data)
1408 {
1409 	struct request_queue *q = bdev_get_queue(dev->bdev);
1410 
1411 	return q && !q->limits.max_write_same_sectors;
1412 }
1413 
1414 static bool dm_table_supports_write_same(struct dm_table *t)
1415 {
1416 	struct dm_target *ti;
1417 	unsigned i = 0;
1418 
1419 	while (i < dm_table_get_num_targets(t)) {
1420 		ti = dm_table_get_target(t, i++);
1421 
1422 		if (!ti->num_write_same_bios)
1423 			return false;
1424 
1425 		if (!ti->type->iterate_devices ||
1426 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1427 			return false;
1428 	}
1429 
1430 	return true;
1431 }
1432 
1433 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1434 			       struct queue_limits *limits)
1435 {
1436 	unsigned flush = 0;
1437 
1438 	/*
1439 	 * Copy table's limits to the DM device's request_queue
1440 	 */
1441 	q->limits = *limits;
1442 
1443 	if (!dm_table_supports_discards(t))
1444 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1445 	else
1446 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1447 
1448 	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1449 		flush |= REQ_FLUSH;
1450 		if (dm_table_supports_flush(t, REQ_FUA))
1451 			flush |= REQ_FUA;
1452 	}
1453 	blk_queue_flush(q, flush);
1454 
1455 	if (!dm_table_discard_zeroes_data(t))
1456 		q->limits.discard_zeroes_data = 0;
1457 
1458 	/* Ensure that all underlying devices are non-rotational. */
1459 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1460 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1461 	else
1462 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1463 
1464 	if (!dm_table_supports_write_same(t))
1465 		q->limits.max_write_same_sectors = 0;
1466 
1467 	dm_table_set_integrity(t);
1468 
1469 	/*
1470 	 * Determine whether or not this queue's I/O timings contribute
1471 	 * to the entropy pool, Only request-based targets use this.
1472 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1473 	 * have it set.
1474 	 */
1475 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1476 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1477 
1478 	/*
1479 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1480 	 * visible to other CPUs because, once the flag is set, incoming bios
1481 	 * are processed by request-based dm, which refers to the queue
1482 	 * settings.
1483 	 * Until the flag set, bios are passed to bio-based dm and queued to
1484 	 * md->deferred where queue settings are not needed yet.
1485 	 * Those bios are passed to request-based dm at the resume time.
1486 	 */
1487 	smp_mb();
1488 	if (dm_table_request_based(t))
1489 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1490 }
1491 
1492 unsigned int dm_table_get_num_targets(struct dm_table *t)
1493 {
1494 	return t->num_targets;
1495 }
1496 
1497 struct list_head *dm_table_get_devices(struct dm_table *t)
1498 {
1499 	return &t->devices;
1500 }
1501 
1502 fmode_t dm_table_get_mode(struct dm_table *t)
1503 {
1504 	return t->mode;
1505 }
1506 EXPORT_SYMBOL(dm_table_get_mode);
1507 
1508 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1509 {
1510 	int i = t->num_targets;
1511 	struct dm_target *ti = t->targets;
1512 
1513 	while (i--) {
1514 		if (postsuspend) {
1515 			if (ti->type->postsuspend)
1516 				ti->type->postsuspend(ti);
1517 		} else if (ti->type->presuspend)
1518 			ti->type->presuspend(ti);
1519 
1520 		ti++;
1521 	}
1522 }
1523 
1524 void dm_table_presuspend_targets(struct dm_table *t)
1525 {
1526 	if (!t)
1527 		return;
1528 
1529 	suspend_targets(t, 0);
1530 }
1531 
1532 void dm_table_postsuspend_targets(struct dm_table *t)
1533 {
1534 	if (!t)
1535 		return;
1536 
1537 	suspend_targets(t, 1);
1538 }
1539 
1540 int dm_table_resume_targets(struct dm_table *t)
1541 {
1542 	int i, r = 0;
1543 
1544 	for (i = 0; i < t->num_targets; i++) {
1545 		struct dm_target *ti = t->targets + i;
1546 
1547 		if (!ti->type->preresume)
1548 			continue;
1549 
1550 		r = ti->type->preresume(ti);
1551 		if (r)
1552 			return r;
1553 	}
1554 
1555 	for (i = 0; i < t->num_targets; i++) {
1556 		struct dm_target *ti = t->targets + i;
1557 
1558 		if (ti->type->resume)
1559 			ti->type->resume(ti);
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1566 {
1567 	list_add(&cb->list, &t->target_callbacks);
1568 }
1569 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1570 
1571 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1572 {
1573 	struct dm_dev_internal *dd;
1574 	struct list_head *devices = dm_table_get_devices(t);
1575 	struct dm_target_callbacks *cb;
1576 	int r = 0;
1577 
1578 	list_for_each_entry(dd, devices, list) {
1579 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1580 		char b[BDEVNAME_SIZE];
1581 
1582 		if (likely(q))
1583 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1584 		else
1585 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1586 				     dm_device_name(t->md),
1587 				     bdevname(dd->dm_dev.bdev, b));
1588 	}
1589 
1590 	list_for_each_entry(cb, &t->target_callbacks, list)
1591 		if (cb->congested_fn)
1592 			r |= cb->congested_fn(cb, bdi_bits);
1593 
1594 	return r;
1595 }
1596 
1597 int dm_table_any_busy_target(struct dm_table *t)
1598 {
1599 	unsigned i;
1600 	struct dm_target *ti;
1601 
1602 	for (i = 0; i < t->num_targets; i++) {
1603 		ti = t->targets + i;
1604 		if (ti->type->busy && ti->type->busy(ti))
1605 			return 1;
1606 	}
1607 
1608 	return 0;
1609 }
1610 
1611 struct mapped_device *dm_table_get_md(struct dm_table *t)
1612 {
1613 	return t->md;
1614 }
1615 EXPORT_SYMBOL(dm_table_get_md);
1616 
1617 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1618 				  sector_t start, sector_t len, void *data)
1619 {
1620 	struct request_queue *q = bdev_get_queue(dev->bdev);
1621 
1622 	return q && blk_queue_discard(q);
1623 }
1624 
1625 bool dm_table_supports_discards(struct dm_table *t)
1626 {
1627 	struct dm_target *ti;
1628 	unsigned i = 0;
1629 
1630 	/*
1631 	 * Unless any target used by the table set discards_supported,
1632 	 * require at least one underlying device to support discards.
1633 	 * t->devices includes internal dm devices such as mirror logs
1634 	 * so we need to use iterate_devices here, which targets
1635 	 * supporting discard selectively must provide.
1636 	 */
1637 	while (i < dm_table_get_num_targets(t)) {
1638 		ti = dm_table_get_target(t, i++);
1639 
1640 		if (!ti->num_discard_bios)
1641 			continue;
1642 
1643 		if (ti->discards_supported)
1644 			return 1;
1645 
1646 		if (ti->type->iterate_devices &&
1647 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1648 			return 1;
1649 	}
1650 
1651 	return 0;
1652 }
1653