1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 #include <linux/dax.h> 24 25 #define DM_MSG_PREFIX "table" 26 27 #define MAX_DEPTH 16 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 struct dm_table { 33 struct mapped_device *md; 34 enum dm_queue_mode type; 35 36 /* btree table */ 37 unsigned int depth; 38 unsigned int counts[MAX_DEPTH]; /* in nodes */ 39 sector_t *index[MAX_DEPTH]; 40 41 unsigned int num_targets; 42 unsigned int num_allocated; 43 sector_t *highs; 44 struct dm_target *targets; 45 46 struct target_type *immutable_target_type; 47 48 bool integrity_supported:1; 49 bool singleton:1; 50 bool all_blk_mq:1; 51 unsigned integrity_added:1; 52 53 /* 54 * Indicates the rw permissions for the new logical 55 * device. This should be a combination of FMODE_READ 56 * and FMODE_WRITE. 57 */ 58 fmode_t mode; 59 60 /* a list of devices used by this table */ 61 struct list_head devices; 62 63 /* events get handed up using this callback */ 64 void (*event_fn)(void *); 65 void *event_context; 66 67 struct dm_md_mempools *mempools; 68 69 struct list_head target_callbacks; 70 }; 71 72 /* 73 * Similar to ceiling(log_size(n)) 74 */ 75 static unsigned int int_log(unsigned int n, unsigned int base) 76 { 77 int result = 0; 78 79 while (n > 1) { 80 n = dm_div_up(n, base); 81 result++; 82 } 83 84 return result; 85 } 86 87 /* 88 * Calculate the index of the child node of the n'th node k'th key. 89 */ 90 static inline unsigned int get_child(unsigned int n, unsigned int k) 91 { 92 return (n * CHILDREN_PER_NODE) + k; 93 } 94 95 /* 96 * Return the n'th node of level l from table t. 97 */ 98 static inline sector_t *get_node(struct dm_table *t, 99 unsigned int l, unsigned int n) 100 { 101 return t->index[l] + (n * KEYS_PER_NODE); 102 } 103 104 /* 105 * Return the highest key that you could lookup from the n'th 106 * node on level l of the btree. 107 */ 108 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 109 { 110 for (; l < t->depth - 1; l++) 111 n = get_child(n, CHILDREN_PER_NODE - 1); 112 113 if (n >= t->counts[l]) 114 return (sector_t) - 1; 115 116 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 117 } 118 119 /* 120 * Fills in a level of the btree based on the highs of the level 121 * below it. 122 */ 123 static int setup_btree_index(unsigned int l, struct dm_table *t) 124 { 125 unsigned int n, k; 126 sector_t *node; 127 128 for (n = 0U; n < t->counts[l]; n++) { 129 node = get_node(t, l, n); 130 131 for (k = 0U; k < KEYS_PER_NODE; k++) 132 node[k] = high(t, l + 1, get_child(n, k)); 133 } 134 135 return 0; 136 } 137 138 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 139 { 140 unsigned long size; 141 void *addr; 142 143 /* 144 * Check that we're not going to overflow. 145 */ 146 if (nmemb > (ULONG_MAX / elem_size)) 147 return NULL; 148 149 size = nmemb * elem_size; 150 addr = vzalloc(size); 151 152 return addr; 153 } 154 EXPORT_SYMBOL(dm_vcalloc); 155 156 /* 157 * highs, and targets are managed as dynamic arrays during a 158 * table load. 159 */ 160 static int alloc_targets(struct dm_table *t, unsigned int num) 161 { 162 sector_t *n_highs; 163 struct dm_target *n_targets; 164 165 /* 166 * Allocate both the target array and offset array at once. 167 * Append an empty entry to catch sectors beyond the end of 168 * the device. 169 */ 170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 171 sizeof(sector_t)); 172 if (!n_highs) 173 return -ENOMEM; 174 175 n_targets = (struct dm_target *) (n_highs + num); 176 177 memset(n_highs, -1, sizeof(*n_highs) * num); 178 vfree(t->highs); 179 180 t->num_allocated = num; 181 t->highs = n_highs; 182 t->targets = n_targets; 183 184 return 0; 185 } 186 187 int dm_table_create(struct dm_table **result, fmode_t mode, 188 unsigned num_targets, struct mapped_device *md) 189 { 190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 191 192 if (!t) 193 return -ENOMEM; 194 195 INIT_LIST_HEAD(&t->devices); 196 INIT_LIST_HEAD(&t->target_callbacks); 197 198 if (!num_targets) 199 num_targets = KEYS_PER_NODE; 200 201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 202 203 if (!num_targets) { 204 kfree(t); 205 return -ENOMEM; 206 } 207 208 if (alloc_targets(t, num_targets)) { 209 kfree(t); 210 return -ENOMEM; 211 } 212 213 t->type = DM_TYPE_NONE; 214 t->mode = mode; 215 t->md = md; 216 *result = t; 217 return 0; 218 } 219 220 static void free_devices(struct list_head *devices, struct mapped_device *md) 221 { 222 struct list_head *tmp, *next; 223 224 list_for_each_safe(tmp, next, devices) { 225 struct dm_dev_internal *dd = 226 list_entry(tmp, struct dm_dev_internal, list); 227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 228 dm_device_name(md), dd->dm_dev->name); 229 dm_put_table_device(md, dd->dm_dev); 230 kfree(dd); 231 } 232 } 233 234 void dm_table_destroy(struct dm_table *t) 235 { 236 unsigned int i; 237 238 if (!t) 239 return; 240 241 /* free the indexes */ 242 if (t->depth >= 2) 243 vfree(t->index[t->depth - 2]); 244 245 /* free the targets */ 246 for (i = 0; i < t->num_targets; i++) { 247 struct dm_target *tgt = t->targets + i; 248 249 if (tgt->type->dtr) 250 tgt->type->dtr(tgt); 251 252 dm_put_target_type(tgt->type); 253 } 254 255 vfree(t->highs); 256 257 /* free the device list */ 258 free_devices(&t->devices, t->md); 259 260 dm_free_md_mempools(t->mempools); 261 262 kfree(t); 263 } 264 265 /* 266 * See if we've already got a device in the list. 267 */ 268 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 269 { 270 struct dm_dev_internal *dd; 271 272 list_for_each_entry (dd, l, list) 273 if (dd->dm_dev->bdev->bd_dev == dev) 274 return dd; 275 276 return NULL; 277 } 278 279 /* 280 * If possible, this checks an area of a destination device is invalid. 281 */ 282 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 283 sector_t start, sector_t len, void *data) 284 { 285 struct request_queue *q; 286 struct queue_limits *limits = data; 287 struct block_device *bdev = dev->bdev; 288 sector_t dev_size = 289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 290 unsigned short logical_block_size_sectors = 291 limits->logical_block_size >> SECTOR_SHIFT; 292 char b[BDEVNAME_SIZE]; 293 294 /* 295 * Some devices exist without request functions, 296 * such as loop devices not yet bound to backing files. 297 * Forbid the use of such devices. 298 */ 299 q = bdev_get_queue(bdev); 300 if (!q || !q->make_request_fn) { 301 DMWARN("%s: %s is not yet initialised: " 302 "start=%llu, len=%llu, dev_size=%llu", 303 dm_device_name(ti->table->md), bdevname(bdev, b), 304 (unsigned long long)start, 305 (unsigned long long)len, 306 (unsigned long long)dev_size); 307 return 1; 308 } 309 310 if (!dev_size) 311 return 0; 312 313 if ((start >= dev_size) || (start + len > dev_size)) { 314 DMWARN("%s: %s too small for target: " 315 "start=%llu, len=%llu, dev_size=%llu", 316 dm_device_name(ti->table->md), bdevname(bdev, b), 317 (unsigned long long)start, 318 (unsigned long long)len, 319 (unsigned long long)dev_size); 320 return 1; 321 } 322 323 /* 324 * If the target is mapped to zoned block device(s), check 325 * that the zones are not partially mapped. 326 */ 327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) { 328 unsigned int zone_sectors = bdev_zone_sectors(bdev); 329 330 if (start & (zone_sectors - 1)) { 331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s", 332 dm_device_name(ti->table->md), 333 (unsigned long long)start, 334 zone_sectors, bdevname(bdev, b)); 335 return 1; 336 } 337 338 /* 339 * Note: The last zone of a zoned block device may be smaller 340 * than other zones. So for a target mapping the end of a 341 * zoned block device with such a zone, len would not be zone 342 * aligned. We do not allow such last smaller zone to be part 343 * of the mapping here to ensure that mappings with multiple 344 * devices do not end up with a smaller zone in the middle of 345 * the sector range. 346 */ 347 if (len & (zone_sectors - 1)) { 348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s", 349 dm_device_name(ti->table->md), 350 (unsigned long long)len, 351 zone_sectors, bdevname(bdev, b)); 352 return 1; 353 } 354 } 355 356 if (logical_block_size_sectors <= 1) 357 return 0; 358 359 if (start & (logical_block_size_sectors - 1)) { 360 DMWARN("%s: start=%llu not aligned to h/w " 361 "logical block size %u of %s", 362 dm_device_name(ti->table->md), 363 (unsigned long long)start, 364 limits->logical_block_size, bdevname(bdev, b)); 365 return 1; 366 } 367 368 if (len & (logical_block_size_sectors - 1)) { 369 DMWARN("%s: len=%llu not aligned to h/w " 370 "logical block size %u of %s", 371 dm_device_name(ti->table->md), 372 (unsigned long long)len, 373 limits->logical_block_size, bdevname(bdev, b)); 374 return 1; 375 } 376 377 return 0; 378 } 379 380 /* 381 * This upgrades the mode on an already open dm_dev, being 382 * careful to leave things as they were if we fail to reopen the 383 * device and not to touch the existing bdev field in case 384 * it is accessed concurrently inside dm_table_any_congested(). 385 */ 386 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 387 struct mapped_device *md) 388 { 389 int r; 390 struct dm_dev *old_dev, *new_dev; 391 392 old_dev = dd->dm_dev; 393 394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 395 dd->dm_dev->mode | new_mode, &new_dev); 396 if (r) 397 return r; 398 399 dd->dm_dev = new_dev; 400 dm_put_table_device(md, old_dev); 401 402 return 0; 403 } 404 405 /* 406 * Convert the path to a device 407 */ 408 dev_t dm_get_dev_t(const char *path) 409 { 410 dev_t dev; 411 struct block_device *bdev; 412 413 bdev = lookup_bdev(path); 414 if (IS_ERR(bdev)) 415 dev = name_to_dev_t(path); 416 else { 417 dev = bdev->bd_dev; 418 bdput(bdev); 419 } 420 421 return dev; 422 } 423 EXPORT_SYMBOL_GPL(dm_get_dev_t); 424 425 /* 426 * Add a device to the list, or just increment the usage count if 427 * it's already present. 428 */ 429 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 430 struct dm_dev **result) 431 { 432 int r; 433 dev_t dev; 434 struct dm_dev_internal *dd; 435 struct dm_table *t = ti->table; 436 437 BUG_ON(!t); 438 439 dev = dm_get_dev_t(path); 440 if (!dev) 441 return -ENODEV; 442 443 dd = find_device(&t->devices, dev); 444 if (!dd) { 445 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 446 if (!dd) 447 return -ENOMEM; 448 449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 450 kfree(dd); 451 return r; 452 } 453 454 atomic_set(&dd->count, 0); 455 list_add(&dd->list, &t->devices); 456 457 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 458 r = upgrade_mode(dd, mode, t->md); 459 if (r) 460 return r; 461 } 462 atomic_inc(&dd->count); 463 464 *result = dd->dm_dev; 465 return 0; 466 } 467 EXPORT_SYMBOL(dm_get_device); 468 469 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 470 sector_t start, sector_t len, void *data) 471 { 472 struct queue_limits *limits = data; 473 struct block_device *bdev = dev->bdev; 474 struct request_queue *q = bdev_get_queue(bdev); 475 char b[BDEVNAME_SIZE]; 476 477 if (unlikely(!q)) { 478 DMWARN("%s: Cannot set limits for nonexistent device %s", 479 dm_device_name(ti->table->md), bdevname(bdev, b)); 480 return 0; 481 } 482 483 if (bdev_stack_limits(limits, bdev, start) < 0) 484 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 485 "physical_block_size=%u, logical_block_size=%u, " 486 "alignment_offset=%u, start=%llu", 487 dm_device_name(ti->table->md), bdevname(bdev, b), 488 q->limits.physical_block_size, 489 q->limits.logical_block_size, 490 q->limits.alignment_offset, 491 (unsigned long long) start << SECTOR_SHIFT); 492 493 limits->zoned = blk_queue_zoned_model(q); 494 495 return 0; 496 } 497 498 /* 499 * Decrement a device's use count and remove it if necessary. 500 */ 501 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 502 { 503 int found = 0; 504 struct list_head *devices = &ti->table->devices; 505 struct dm_dev_internal *dd; 506 507 list_for_each_entry(dd, devices, list) { 508 if (dd->dm_dev == d) { 509 found = 1; 510 break; 511 } 512 } 513 if (!found) { 514 DMWARN("%s: device %s not in table devices list", 515 dm_device_name(ti->table->md), d->name); 516 return; 517 } 518 if (atomic_dec_and_test(&dd->count)) { 519 dm_put_table_device(ti->table->md, d); 520 list_del(&dd->list); 521 kfree(dd); 522 } 523 } 524 EXPORT_SYMBOL(dm_put_device); 525 526 /* 527 * Checks to see if the target joins onto the end of the table. 528 */ 529 static int adjoin(struct dm_table *table, struct dm_target *ti) 530 { 531 struct dm_target *prev; 532 533 if (!table->num_targets) 534 return !ti->begin; 535 536 prev = &table->targets[table->num_targets - 1]; 537 return (ti->begin == (prev->begin + prev->len)); 538 } 539 540 /* 541 * Used to dynamically allocate the arg array. 542 * 543 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 544 * process messages even if some device is suspended. These messages have a 545 * small fixed number of arguments. 546 * 547 * On the other hand, dm-switch needs to process bulk data using messages and 548 * excessive use of GFP_NOIO could cause trouble. 549 */ 550 static char **realloc_argv(unsigned *array_size, char **old_argv) 551 { 552 char **argv; 553 unsigned new_size; 554 gfp_t gfp; 555 556 if (*array_size) { 557 new_size = *array_size * 2; 558 gfp = GFP_KERNEL; 559 } else { 560 new_size = 8; 561 gfp = GFP_NOIO; 562 } 563 argv = kmalloc(new_size * sizeof(*argv), gfp); 564 if (argv) { 565 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 566 *array_size = new_size; 567 } 568 569 kfree(old_argv); 570 return argv; 571 } 572 573 /* 574 * Destructively splits up the argument list to pass to ctr. 575 */ 576 int dm_split_args(int *argc, char ***argvp, char *input) 577 { 578 char *start, *end = input, *out, **argv = NULL; 579 unsigned array_size = 0; 580 581 *argc = 0; 582 583 if (!input) { 584 *argvp = NULL; 585 return 0; 586 } 587 588 argv = realloc_argv(&array_size, argv); 589 if (!argv) 590 return -ENOMEM; 591 592 while (1) { 593 /* Skip whitespace */ 594 start = skip_spaces(end); 595 596 if (!*start) 597 break; /* success, we hit the end */ 598 599 /* 'out' is used to remove any back-quotes */ 600 end = out = start; 601 while (*end) { 602 /* Everything apart from '\0' can be quoted */ 603 if (*end == '\\' && *(end + 1)) { 604 *out++ = *(end + 1); 605 end += 2; 606 continue; 607 } 608 609 if (isspace(*end)) 610 break; /* end of token */ 611 612 *out++ = *end++; 613 } 614 615 /* have we already filled the array ? */ 616 if ((*argc + 1) > array_size) { 617 argv = realloc_argv(&array_size, argv); 618 if (!argv) 619 return -ENOMEM; 620 } 621 622 /* we know this is whitespace */ 623 if (*end) 624 end++; 625 626 /* terminate the string and put it in the array */ 627 *out = '\0'; 628 argv[*argc] = start; 629 (*argc)++; 630 } 631 632 *argvp = argv; 633 return 0; 634 } 635 636 /* 637 * Impose necessary and sufficient conditions on a devices's table such 638 * that any incoming bio which respects its logical_block_size can be 639 * processed successfully. If it falls across the boundary between 640 * two or more targets, the size of each piece it gets split into must 641 * be compatible with the logical_block_size of the target processing it. 642 */ 643 static int validate_hardware_logical_block_alignment(struct dm_table *table, 644 struct queue_limits *limits) 645 { 646 /* 647 * This function uses arithmetic modulo the logical_block_size 648 * (in units of 512-byte sectors). 649 */ 650 unsigned short device_logical_block_size_sects = 651 limits->logical_block_size >> SECTOR_SHIFT; 652 653 /* 654 * Offset of the start of the next table entry, mod logical_block_size. 655 */ 656 unsigned short next_target_start = 0; 657 658 /* 659 * Given an aligned bio that extends beyond the end of a 660 * target, how many sectors must the next target handle? 661 */ 662 unsigned short remaining = 0; 663 664 struct dm_target *uninitialized_var(ti); 665 struct queue_limits ti_limits; 666 unsigned i; 667 668 /* 669 * Check each entry in the table in turn. 670 */ 671 for (i = 0; i < dm_table_get_num_targets(table); i++) { 672 ti = dm_table_get_target(table, i); 673 674 blk_set_stacking_limits(&ti_limits); 675 676 /* combine all target devices' limits */ 677 if (ti->type->iterate_devices) 678 ti->type->iterate_devices(ti, dm_set_device_limits, 679 &ti_limits); 680 681 /* 682 * If the remaining sectors fall entirely within this 683 * table entry are they compatible with its logical_block_size? 684 */ 685 if (remaining < ti->len && 686 remaining & ((ti_limits.logical_block_size >> 687 SECTOR_SHIFT) - 1)) 688 break; /* Error */ 689 690 next_target_start = 691 (unsigned short) ((next_target_start + ti->len) & 692 (device_logical_block_size_sects - 1)); 693 remaining = next_target_start ? 694 device_logical_block_size_sects - next_target_start : 0; 695 } 696 697 if (remaining) { 698 DMWARN("%s: table line %u (start sect %llu len %llu) " 699 "not aligned to h/w logical block size %u", 700 dm_device_name(table->md), i, 701 (unsigned long long) ti->begin, 702 (unsigned long long) ti->len, 703 limits->logical_block_size); 704 return -EINVAL; 705 } 706 707 return 0; 708 } 709 710 int dm_table_add_target(struct dm_table *t, const char *type, 711 sector_t start, sector_t len, char *params) 712 { 713 int r = -EINVAL, argc; 714 char **argv; 715 struct dm_target *tgt; 716 717 if (t->singleton) { 718 DMERR("%s: target type %s must appear alone in table", 719 dm_device_name(t->md), t->targets->type->name); 720 return -EINVAL; 721 } 722 723 BUG_ON(t->num_targets >= t->num_allocated); 724 725 tgt = t->targets + t->num_targets; 726 memset(tgt, 0, sizeof(*tgt)); 727 728 if (!len) { 729 DMERR("%s: zero-length target", dm_device_name(t->md)); 730 return -EINVAL; 731 } 732 733 tgt->type = dm_get_target_type(type); 734 if (!tgt->type) { 735 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 736 return -EINVAL; 737 } 738 739 if (dm_target_needs_singleton(tgt->type)) { 740 if (t->num_targets) { 741 tgt->error = "singleton target type must appear alone in table"; 742 goto bad; 743 } 744 t->singleton = true; 745 } 746 747 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 748 tgt->error = "target type may not be included in a read-only table"; 749 goto bad; 750 } 751 752 if (t->immutable_target_type) { 753 if (t->immutable_target_type != tgt->type) { 754 tgt->error = "immutable target type cannot be mixed with other target types"; 755 goto bad; 756 } 757 } else if (dm_target_is_immutable(tgt->type)) { 758 if (t->num_targets) { 759 tgt->error = "immutable target type cannot be mixed with other target types"; 760 goto bad; 761 } 762 t->immutable_target_type = tgt->type; 763 } 764 765 if (dm_target_has_integrity(tgt->type)) 766 t->integrity_added = 1; 767 768 tgt->table = t; 769 tgt->begin = start; 770 tgt->len = len; 771 tgt->error = "Unknown error"; 772 773 /* 774 * Does this target adjoin the previous one ? 775 */ 776 if (!adjoin(t, tgt)) { 777 tgt->error = "Gap in table"; 778 goto bad; 779 } 780 781 r = dm_split_args(&argc, &argv, params); 782 if (r) { 783 tgt->error = "couldn't split parameters (insufficient memory)"; 784 goto bad; 785 } 786 787 r = tgt->type->ctr(tgt, argc, argv); 788 kfree(argv); 789 if (r) 790 goto bad; 791 792 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 793 794 if (!tgt->num_discard_bios && tgt->discards_supported) 795 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 796 dm_device_name(t->md), type); 797 798 return 0; 799 800 bad: 801 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 802 dm_put_target_type(tgt->type); 803 return r; 804 } 805 806 /* 807 * Target argument parsing helpers. 808 */ 809 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 810 unsigned *value, char **error, unsigned grouped) 811 { 812 const char *arg_str = dm_shift_arg(arg_set); 813 char dummy; 814 815 if (!arg_str || 816 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 817 (*value < arg->min) || 818 (*value > arg->max) || 819 (grouped && arg_set->argc < *value)) { 820 *error = arg->error; 821 return -EINVAL; 822 } 823 824 return 0; 825 } 826 827 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 828 unsigned *value, char **error) 829 { 830 return validate_next_arg(arg, arg_set, value, error, 0); 831 } 832 EXPORT_SYMBOL(dm_read_arg); 833 834 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 835 unsigned *value, char **error) 836 { 837 return validate_next_arg(arg, arg_set, value, error, 1); 838 } 839 EXPORT_SYMBOL(dm_read_arg_group); 840 841 const char *dm_shift_arg(struct dm_arg_set *as) 842 { 843 char *r; 844 845 if (as->argc) { 846 as->argc--; 847 r = *as->argv; 848 as->argv++; 849 return r; 850 } 851 852 return NULL; 853 } 854 EXPORT_SYMBOL(dm_shift_arg); 855 856 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 857 { 858 BUG_ON(as->argc < num_args); 859 as->argc -= num_args; 860 as->argv += num_args; 861 } 862 EXPORT_SYMBOL(dm_consume_args); 863 864 static bool __table_type_bio_based(enum dm_queue_mode table_type) 865 { 866 return (table_type == DM_TYPE_BIO_BASED || 867 table_type == DM_TYPE_DAX_BIO_BASED); 868 } 869 870 static bool __table_type_request_based(enum dm_queue_mode table_type) 871 { 872 return (table_type == DM_TYPE_REQUEST_BASED || 873 table_type == DM_TYPE_MQ_REQUEST_BASED); 874 } 875 876 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 877 { 878 t->type = type; 879 } 880 EXPORT_SYMBOL_GPL(dm_table_set_type); 881 882 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 883 sector_t start, sector_t len, void *data) 884 { 885 struct request_queue *q = bdev_get_queue(dev->bdev); 886 887 return q && blk_queue_dax(q); 888 } 889 890 static bool dm_table_supports_dax(struct dm_table *t) 891 { 892 struct dm_target *ti; 893 unsigned i; 894 895 /* Ensure that all targets support DAX. */ 896 for (i = 0; i < dm_table_get_num_targets(t); i++) { 897 ti = dm_table_get_target(t, i); 898 899 if (!ti->type->direct_access) 900 return false; 901 902 if (!ti->type->iterate_devices || 903 !ti->type->iterate_devices(ti, device_supports_dax, NULL)) 904 return false; 905 } 906 907 return true; 908 } 909 910 static int dm_table_determine_type(struct dm_table *t) 911 { 912 unsigned i; 913 unsigned bio_based = 0, request_based = 0, hybrid = 0; 914 unsigned sq_count = 0, mq_count = 0; 915 struct dm_target *tgt; 916 struct dm_dev_internal *dd; 917 struct list_head *devices = dm_table_get_devices(t); 918 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 919 920 if (t->type != DM_TYPE_NONE) { 921 /* target already set the table's type */ 922 if (t->type == DM_TYPE_BIO_BASED) 923 return 0; 924 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 925 goto verify_rq_based; 926 } 927 928 for (i = 0; i < t->num_targets; i++) { 929 tgt = t->targets + i; 930 if (dm_target_hybrid(tgt)) 931 hybrid = 1; 932 else if (dm_target_request_based(tgt)) 933 request_based = 1; 934 else 935 bio_based = 1; 936 937 if (bio_based && request_based) { 938 DMWARN("Inconsistent table: different target types" 939 " can't be mixed up"); 940 return -EINVAL; 941 } 942 } 943 944 if (hybrid && !bio_based && !request_based) { 945 /* 946 * The targets can work either way. 947 * Determine the type from the live device. 948 * Default to bio-based if device is new. 949 */ 950 if (__table_type_request_based(live_md_type)) 951 request_based = 1; 952 else 953 bio_based = 1; 954 } 955 956 if (bio_based) { 957 /* We must use this table as bio-based */ 958 t->type = DM_TYPE_BIO_BASED; 959 if (dm_table_supports_dax(t) || 960 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) 961 t->type = DM_TYPE_DAX_BIO_BASED; 962 return 0; 963 } 964 965 BUG_ON(!request_based); /* No targets in this table */ 966 967 /* 968 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by 969 * having a compatible target use dm_table_set_type. 970 */ 971 t->type = DM_TYPE_REQUEST_BASED; 972 973 verify_rq_based: 974 /* 975 * Request-based dm supports only tables that have a single target now. 976 * To support multiple targets, request splitting support is needed, 977 * and that needs lots of changes in the block-layer. 978 * (e.g. request completion process for partial completion.) 979 */ 980 if (t->num_targets > 1) { 981 DMWARN("Request-based dm doesn't support multiple targets yet"); 982 return -EINVAL; 983 } 984 985 if (list_empty(devices)) { 986 int srcu_idx; 987 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 988 989 /* inherit live table's type and all_blk_mq */ 990 if (live_table) { 991 t->type = live_table->type; 992 t->all_blk_mq = live_table->all_blk_mq; 993 } 994 dm_put_live_table(t->md, srcu_idx); 995 return 0; 996 } 997 998 /* Non-request-stackable devices can't be used for request-based dm */ 999 list_for_each_entry(dd, devices, list) { 1000 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 1001 1002 if (!blk_queue_stackable(q)) { 1003 DMERR("table load rejected: including" 1004 " non-request-stackable devices"); 1005 return -EINVAL; 1006 } 1007 1008 if (q->mq_ops) 1009 mq_count++; 1010 else 1011 sq_count++; 1012 } 1013 if (sq_count && mq_count) { 1014 DMERR("table load rejected: not all devices are blk-mq request-stackable"); 1015 return -EINVAL; 1016 } 1017 t->all_blk_mq = mq_count > 0; 1018 1019 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) { 1020 DMERR("table load rejected: all devices are not blk-mq request-stackable"); 1021 return -EINVAL; 1022 } 1023 1024 return 0; 1025 } 1026 1027 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 1028 { 1029 return t->type; 1030 } 1031 1032 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 1033 { 1034 return t->immutable_target_type; 1035 } 1036 1037 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1038 { 1039 /* Immutable target is implicitly a singleton */ 1040 if (t->num_targets > 1 || 1041 !dm_target_is_immutable(t->targets[0].type)) 1042 return NULL; 1043 1044 return t->targets; 1045 } 1046 1047 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1048 { 1049 struct dm_target *ti; 1050 unsigned i; 1051 1052 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1053 ti = dm_table_get_target(t, i); 1054 if (dm_target_is_wildcard(ti->type)) 1055 return ti; 1056 } 1057 1058 return NULL; 1059 } 1060 1061 bool dm_table_bio_based(struct dm_table *t) 1062 { 1063 return __table_type_bio_based(dm_table_get_type(t)); 1064 } 1065 1066 bool dm_table_request_based(struct dm_table *t) 1067 { 1068 return __table_type_request_based(dm_table_get_type(t)); 1069 } 1070 1071 bool dm_table_all_blk_mq_devices(struct dm_table *t) 1072 { 1073 return t->all_blk_mq; 1074 } 1075 1076 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1077 { 1078 enum dm_queue_mode type = dm_table_get_type(t); 1079 unsigned per_io_data_size = 0; 1080 struct dm_target *tgt; 1081 unsigned i; 1082 1083 if (unlikely(type == DM_TYPE_NONE)) { 1084 DMWARN("no table type is set, can't allocate mempools"); 1085 return -EINVAL; 1086 } 1087 1088 if (__table_type_bio_based(type)) 1089 for (i = 0; i < t->num_targets; i++) { 1090 tgt = t->targets + i; 1091 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size); 1092 } 1093 1094 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size); 1095 if (!t->mempools) 1096 return -ENOMEM; 1097 1098 return 0; 1099 } 1100 1101 void dm_table_free_md_mempools(struct dm_table *t) 1102 { 1103 dm_free_md_mempools(t->mempools); 1104 t->mempools = NULL; 1105 } 1106 1107 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1108 { 1109 return t->mempools; 1110 } 1111 1112 static int setup_indexes(struct dm_table *t) 1113 { 1114 int i; 1115 unsigned int total = 0; 1116 sector_t *indexes; 1117 1118 /* allocate the space for *all* the indexes */ 1119 for (i = t->depth - 2; i >= 0; i--) { 1120 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1121 total += t->counts[i]; 1122 } 1123 1124 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1125 if (!indexes) 1126 return -ENOMEM; 1127 1128 /* set up internal nodes, bottom-up */ 1129 for (i = t->depth - 2; i >= 0; i--) { 1130 t->index[i] = indexes; 1131 indexes += (KEYS_PER_NODE * t->counts[i]); 1132 setup_btree_index(i, t); 1133 } 1134 1135 return 0; 1136 } 1137 1138 /* 1139 * Builds the btree to index the map. 1140 */ 1141 static int dm_table_build_index(struct dm_table *t) 1142 { 1143 int r = 0; 1144 unsigned int leaf_nodes; 1145 1146 /* how many indexes will the btree have ? */ 1147 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1148 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1149 1150 /* leaf layer has already been set up */ 1151 t->counts[t->depth - 1] = leaf_nodes; 1152 t->index[t->depth - 1] = t->highs; 1153 1154 if (t->depth >= 2) 1155 r = setup_indexes(t); 1156 1157 return r; 1158 } 1159 1160 static bool integrity_profile_exists(struct gendisk *disk) 1161 { 1162 return !!blk_get_integrity(disk); 1163 } 1164 1165 /* 1166 * Get a disk whose integrity profile reflects the table's profile. 1167 * Returns NULL if integrity support was inconsistent or unavailable. 1168 */ 1169 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1170 { 1171 struct list_head *devices = dm_table_get_devices(t); 1172 struct dm_dev_internal *dd = NULL; 1173 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1174 unsigned i; 1175 1176 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1177 struct dm_target *ti = dm_table_get_target(t, i); 1178 if (!dm_target_passes_integrity(ti->type)) 1179 goto no_integrity; 1180 } 1181 1182 list_for_each_entry(dd, devices, list) { 1183 template_disk = dd->dm_dev->bdev->bd_disk; 1184 if (!integrity_profile_exists(template_disk)) 1185 goto no_integrity; 1186 else if (prev_disk && 1187 blk_integrity_compare(prev_disk, template_disk) < 0) 1188 goto no_integrity; 1189 prev_disk = template_disk; 1190 } 1191 1192 return template_disk; 1193 1194 no_integrity: 1195 if (prev_disk) 1196 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1197 dm_device_name(t->md), 1198 prev_disk->disk_name, 1199 template_disk->disk_name); 1200 return NULL; 1201 } 1202 1203 /* 1204 * Register the mapped device for blk_integrity support if the 1205 * underlying devices have an integrity profile. But all devices may 1206 * not have matching profiles (checking all devices isn't reliable 1207 * during table load because this table may use other DM device(s) which 1208 * must be resumed before they will have an initialized integity 1209 * profile). Consequently, stacked DM devices force a 2 stage integrity 1210 * profile validation: First pass during table load, final pass during 1211 * resume. 1212 */ 1213 static int dm_table_register_integrity(struct dm_table *t) 1214 { 1215 struct mapped_device *md = t->md; 1216 struct gendisk *template_disk = NULL; 1217 1218 /* If target handles integrity itself do not register it here. */ 1219 if (t->integrity_added) 1220 return 0; 1221 1222 template_disk = dm_table_get_integrity_disk(t); 1223 if (!template_disk) 1224 return 0; 1225 1226 if (!integrity_profile_exists(dm_disk(md))) { 1227 t->integrity_supported = true; 1228 /* 1229 * Register integrity profile during table load; we can do 1230 * this because the final profile must match during resume. 1231 */ 1232 blk_integrity_register(dm_disk(md), 1233 blk_get_integrity(template_disk)); 1234 return 0; 1235 } 1236 1237 /* 1238 * If DM device already has an initialized integrity 1239 * profile the new profile should not conflict. 1240 */ 1241 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1242 DMWARN("%s: conflict with existing integrity profile: " 1243 "%s profile mismatch", 1244 dm_device_name(t->md), 1245 template_disk->disk_name); 1246 return 1; 1247 } 1248 1249 /* Preserve existing integrity profile */ 1250 t->integrity_supported = true; 1251 return 0; 1252 } 1253 1254 /* 1255 * Prepares the table for use by building the indices, 1256 * setting the type, and allocating mempools. 1257 */ 1258 int dm_table_complete(struct dm_table *t) 1259 { 1260 int r; 1261 1262 r = dm_table_determine_type(t); 1263 if (r) { 1264 DMERR("unable to determine table type"); 1265 return r; 1266 } 1267 1268 r = dm_table_build_index(t); 1269 if (r) { 1270 DMERR("unable to build btrees"); 1271 return r; 1272 } 1273 1274 r = dm_table_register_integrity(t); 1275 if (r) { 1276 DMERR("could not register integrity profile."); 1277 return r; 1278 } 1279 1280 r = dm_table_alloc_md_mempools(t, t->md); 1281 if (r) 1282 DMERR("unable to allocate mempools"); 1283 1284 return r; 1285 } 1286 1287 static DEFINE_MUTEX(_event_lock); 1288 void dm_table_event_callback(struct dm_table *t, 1289 void (*fn)(void *), void *context) 1290 { 1291 mutex_lock(&_event_lock); 1292 t->event_fn = fn; 1293 t->event_context = context; 1294 mutex_unlock(&_event_lock); 1295 } 1296 1297 void dm_table_event(struct dm_table *t) 1298 { 1299 /* 1300 * You can no longer call dm_table_event() from interrupt 1301 * context, use a bottom half instead. 1302 */ 1303 BUG_ON(in_interrupt()); 1304 1305 mutex_lock(&_event_lock); 1306 if (t->event_fn) 1307 t->event_fn(t->event_context); 1308 mutex_unlock(&_event_lock); 1309 } 1310 EXPORT_SYMBOL(dm_table_event); 1311 1312 sector_t dm_table_get_size(struct dm_table *t) 1313 { 1314 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1315 } 1316 EXPORT_SYMBOL(dm_table_get_size); 1317 1318 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1319 { 1320 if (index >= t->num_targets) 1321 return NULL; 1322 1323 return t->targets + index; 1324 } 1325 1326 /* 1327 * Search the btree for the correct target. 1328 * 1329 * Caller should check returned pointer with dm_target_is_valid() 1330 * to trap I/O beyond end of device. 1331 */ 1332 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1333 { 1334 unsigned int l, n = 0, k = 0; 1335 sector_t *node; 1336 1337 for (l = 0; l < t->depth; l++) { 1338 n = get_child(n, k); 1339 node = get_node(t, l, n); 1340 1341 for (k = 0; k < KEYS_PER_NODE; k++) 1342 if (node[k] >= sector) 1343 break; 1344 } 1345 1346 return &t->targets[(KEYS_PER_NODE * n) + k]; 1347 } 1348 1349 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1350 sector_t start, sector_t len, void *data) 1351 { 1352 unsigned *num_devices = data; 1353 1354 (*num_devices)++; 1355 1356 return 0; 1357 } 1358 1359 /* 1360 * Check whether a table has no data devices attached using each 1361 * target's iterate_devices method. 1362 * Returns false if the result is unknown because a target doesn't 1363 * support iterate_devices. 1364 */ 1365 bool dm_table_has_no_data_devices(struct dm_table *table) 1366 { 1367 struct dm_target *ti; 1368 unsigned i, num_devices; 1369 1370 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1371 ti = dm_table_get_target(table, i); 1372 1373 if (!ti->type->iterate_devices) 1374 return false; 1375 1376 num_devices = 0; 1377 ti->type->iterate_devices(ti, count_device, &num_devices); 1378 if (num_devices) 1379 return false; 1380 } 1381 1382 return true; 1383 } 1384 1385 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1386 sector_t start, sector_t len, void *data) 1387 { 1388 struct request_queue *q = bdev_get_queue(dev->bdev); 1389 enum blk_zoned_model *zoned_model = data; 1390 1391 return q && blk_queue_zoned_model(q) == *zoned_model; 1392 } 1393 1394 static bool dm_table_supports_zoned_model(struct dm_table *t, 1395 enum blk_zoned_model zoned_model) 1396 { 1397 struct dm_target *ti; 1398 unsigned i; 1399 1400 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1401 ti = dm_table_get_target(t, i); 1402 1403 if (zoned_model == BLK_ZONED_HM && 1404 !dm_target_supports_zoned_hm(ti->type)) 1405 return false; 1406 1407 if (!ti->type->iterate_devices || 1408 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model)) 1409 return false; 1410 } 1411 1412 return true; 1413 } 1414 1415 static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1416 sector_t start, sector_t len, void *data) 1417 { 1418 struct request_queue *q = bdev_get_queue(dev->bdev); 1419 unsigned int *zone_sectors = data; 1420 1421 return q && blk_queue_zone_sectors(q) == *zone_sectors; 1422 } 1423 1424 static bool dm_table_matches_zone_sectors(struct dm_table *t, 1425 unsigned int zone_sectors) 1426 { 1427 struct dm_target *ti; 1428 unsigned i; 1429 1430 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1431 ti = dm_table_get_target(t, i); 1432 1433 if (!ti->type->iterate_devices || 1434 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors)) 1435 return false; 1436 } 1437 1438 return true; 1439 } 1440 1441 static int validate_hardware_zoned_model(struct dm_table *table, 1442 enum blk_zoned_model zoned_model, 1443 unsigned int zone_sectors) 1444 { 1445 if (zoned_model == BLK_ZONED_NONE) 1446 return 0; 1447 1448 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1449 DMERR("%s: zoned model is not consistent across all devices", 1450 dm_device_name(table->md)); 1451 return -EINVAL; 1452 } 1453 1454 /* Check zone size validity and compatibility */ 1455 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1456 return -EINVAL; 1457 1458 if (!dm_table_matches_zone_sectors(table, zone_sectors)) { 1459 DMERR("%s: zone sectors is not consistent across all devices", 1460 dm_device_name(table->md)); 1461 return -EINVAL; 1462 } 1463 1464 return 0; 1465 } 1466 1467 /* 1468 * Establish the new table's queue_limits and validate them. 1469 */ 1470 int dm_calculate_queue_limits(struct dm_table *table, 1471 struct queue_limits *limits) 1472 { 1473 struct dm_target *ti; 1474 struct queue_limits ti_limits; 1475 unsigned i; 1476 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1477 unsigned int zone_sectors = 0; 1478 1479 blk_set_stacking_limits(limits); 1480 1481 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1482 blk_set_stacking_limits(&ti_limits); 1483 1484 ti = dm_table_get_target(table, i); 1485 1486 if (!ti->type->iterate_devices) 1487 goto combine_limits; 1488 1489 /* 1490 * Combine queue limits of all the devices this target uses. 1491 */ 1492 ti->type->iterate_devices(ti, dm_set_device_limits, 1493 &ti_limits); 1494 1495 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1496 /* 1497 * After stacking all limits, validate all devices 1498 * in table support this zoned model and zone sectors. 1499 */ 1500 zoned_model = ti_limits.zoned; 1501 zone_sectors = ti_limits.chunk_sectors; 1502 } 1503 1504 /* Set I/O hints portion of queue limits */ 1505 if (ti->type->io_hints) 1506 ti->type->io_hints(ti, &ti_limits); 1507 1508 /* 1509 * Check each device area is consistent with the target's 1510 * overall queue limits. 1511 */ 1512 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1513 &ti_limits)) 1514 return -EINVAL; 1515 1516 combine_limits: 1517 /* 1518 * Merge this target's queue limits into the overall limits 1519 * for the table. 1520 */ 1521 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1522 DMWARN("%s: adding target device " 1523 "(start sect %llu len %llu) " 1524 "caused an alignment inconsistency", 1525 dm_device_name(table->md), 1526 (unsigned long long) ti->begin, 1527 (unsigned long long) ti->len); 1528 1529 /* 1530 * FIXME: this should likely be moved to blk_stack_limits(), would 1531 * also eliminate limits->zoned stacking hack in dm_set_device_limits() 1532 */ 1533 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1534 /* 1535 * By default, the stacked limits zoned model is set to 1536 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update 1537 * this model using the first target model reported 1538 * that is not BLK_ZONED_NONE. This will be either the 1539 * first target device zoned model or the model reported 1540 * by the target .io_hints. 1541 */ 1542 limits->zoned = ti_limits.zoned; 1543 } 1544 } 1545 1546 /* 1547 * Verify that the zoned model and zone sectors, as determined before 1548 * any .io_hints override, are the same across all devices in the table. 1549 * - this is especially relevant if .io_hints is emulating a disk-managed 1550 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1551 * BUT... 1552 */ 1553 if (limits->zoned != BLK_ZONED_NONE) { 1554 /* 1555 * ...IF the above limits stacking determined a zoned model 1556 * validate that all of the table's devices conform to it. 1557 */ 1558 zoned_model = limits->zoned; 1559 zone_sectors = limits->chunk_sectors; 1560 } 1561 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1562 return -EINVAL; 1563 1564 return validate_hardware_logical_block_alignment(table, limits); 1565 } 1566 1567 /* 1568 * Verify that all devices have an integrity profile that matches the 1569 * DM device's registered integrity profile. If the profiles don't 1570 * match then unregister the DM device's integrity profile. 1571 */ 1572 static void dm_table_verify_integrity(struct dm_table *t) 1573 { 1574 struct gendisk *template_disk = NULL; 1575 1576 if (t->integrity_added) 1577 return; 1578 1579 if (t->integrity_supported) { 1580 /* 1581 * Verify that the original integrity profile 1582 * matches all the devices in this table. 1583 */ 1584 template_disk = dm_table_get_integrity_disk(t); 1585 if (template_disk && 1586 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1587 return; 1588 } 1589 1590 if (integrity_profile_exists(dm_disk(t->md))) { 1591 DMWARN("%s: unable to establish an integrity profile", 1592 dm_device_name(t->md)); 1593 blk_integrity_unregister(dm_disk(t->md)); 1594 } 1595 } 1596 1597 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1598 sector_t start, sector_t len, void *data) 1599 { 1600 unsigned long flush = (unsigned long) data; 1601 struct request_queue *q = bdev_get_queue(dev->bdev); 1602 1603 return q && (q->queue_flags & flush); 1604 } 1605 1606 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1607 { 1608 struct dm_target *ti; 1609 unsigned i; 1610 1611 /* 1612 * Require at least one underlying device to support flushes. 1613 * t->devices includes internal dm devices such as mirror logs 1614 * so we need to use iterate_devices here, which targets 1615 * supporting flushes must provide. 1616 */ 1617 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1618 ti = dm_table_get_target(t, i); 1619 1620 if (!ti->num_flush_bios) 1621 continue; 1622 1623 if (ti->flush_supported) 1624 return true; 1625 1626 if (ti->type->iterate_devices && 1627 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1628 return true; 1629 } 1630 1631 return false; 1632 } 1633 1634 static int device_dax_write_cache_enabled(struct dm_target *ti, 1635 struct dm_dev *dev, sector_t start, 1636 sector_t len, void *data) 1637 { 1638 struct dax_device *dax_dev = dev->dax_dev; 1639 1640 if (!dax_dev) 1641 return false; 1642 1643 if (dax_write_cache_enabled(dax_dev)) 1644 return true; 1645 return false; 1646 } 1647 1648 static int dm_table_supports_dax_write_cache(struct dm_table *t) 1649 { 1650 struct dm_target *ti; 1651 unsigned i; 1652 1653 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1654 ti = dm_table_get_target(t, i); 1655 1656 if (ti->type->iterate_devices && 1657 ti->type->iterate_devices(ti, 1658 device_dax_write_cache_enabled, NULL)) 1659 return true; 1660 } 1661 1662 return false; 1663 } 1664 1665 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1666 sector_t start, sector_t len, void *data) 1667 { 1668 struct request_queue *q = bdev_get_queue(dev->bdev); 1669 1670 return q && blk_queue_nonrot(q); 1671 } 1672 1673 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1674 sector_t start, sector_t len, void *data) 1675 { 1676 struct request_queue *q = bdev_get_queue(dev->bdev); 1677 1678 return q && !blk_queue_add_random(q); 1679 } 1680 1681 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev, 1682 sector_t start, sector_t len, void *data) 1683 { 1684 struct request_queue *q = bdev_get_queue(dev->bdev); 1685 1686 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags); 1687 } 1688 1689 static bool dm_table_all_devices_attribute(struct dm_table *t, 1690 iterate_devices_callout_fn func) 1691 { 1692 struct dm_target *ti; 1693 unsigned i; 1694 1695 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1696 ti = dm_table_get_target(t, i); 1697 1698 if (!ti->type->iterate_devices || 1699 !ti->type->iterate_devices(ti, func, NULL)) 1700 return false; 1701 } 1702 1703 return true; 1704 } 1705 1706 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1707 sector_t start, sector_t len, void *data) 1708 { 1709 struct request_queue *q = bdev_get_queue(dev->bdev); 1710 1711 return q && !q->limits.max_write_same_sectors; 1712 } 1713 1714 static bool dm_table_supports_write_same(struct dm_table *t) 1715 { 1716 struct dm_target *ti; 1717 unsigned i; 1718 1719 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1720 ti = dm_table_get_target(t, i); 1721 1722 if (!ti->num_write_same_bios) 1723 return false; 1724 1725 if (!ti->type->iterate_devices || 1726 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1727 return false; 1728 } 1729 1730 return true; 1731 } 1732 1733 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1734 sector_t start, sector_t len, void *data) 1735 { 1736 struct request_queue *q = bdev_get_queue(dev->bdev); 1737 1738 return q && !q->limits.max_write_zeroes_sectors; 1739 } 1740 1741 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1742 { 1743 struct dm_target *ti; 1744 unsigned i = 0; 1745 1746 while (i < dm_table_get_num_targets(t)) { 1747 ti = dm_table_get_target(t, i++); 1748 1749 if (!ti->num_write_zeroes_bios) 1750 return false; 1751 1752 if (!ti->type->iterate_devices || 1753 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1754 return false; 1755 } 1756 1757 return true; 1758 } 1759 1760 1761 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1762 sector_t start, sector_t len, void *data) 1763 { 1764 struct request_queue *q = bdev_get_queue(dev->bdev); 1765 1766 return q && blk_queue_discard(q); 1767 } 1768 1769 static bool dm_table_supports_discards(struct dm_table *t) 1770 { 1771 struct dm_target *ti; 1772 unsigned i; 1773 1774 /* 1775 * Unless any target used by the table set discards_supported, 1776 * require at least one underlying device to support discards. 1777 * t->devices includes internal dm devices such as mirror logs 1778 * so we need to use iterate_devices here, which targets 1779 * supporting discard selectively must provide. 1780 */ 1781 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1782 ti = dm_table_get_target(t, i); 1783 1784 if (!ti->num_discard_bios) 1785 continue; 1786 1787 if (ti->discards_supported) 1788 return true; 1789 1790 if (ti->type->iterate_devices && 1791 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1792 return true; 1793 } 1794 1795 return false; 1796 } 1797 1798 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1799 struct queue_limits *limits) 1800 { 1801 bool wc = false, fua = false; 1802 1803 /* 1804 * Copy table's limits to the DM device's request_queue 1805 */ 1806 q->limits = *limits; 1807 1808 if (!dm_table_supports_discards(t)) 1809 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1810 else 1811 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1812 1813 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1814 wc = true; 1815 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1816 fua = true; 1817 } 1818 blk_queue_write_cache(q, wc, fua); 1819 1820 if (dm_table_supports_dax_write_cache(t)) 1821 dax_write_cache(t->md->dax_dev, true); 1822 1823 /* Ensure that all underlying devices are non-rotational. */ 1824 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1825 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1826 else 1827 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1828 1829 if (!dm_table_supports_write_same(t)) 1830 q->limits.max_write_same_sectors = 0; 1831 if (!dm_table_supports_write_zeroes(t)) 1832 q->limits.max_write_zeroes_sectors = 0; 1833 1834 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge)) 1835 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1836 else 1837 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1838 1839 dm_table_verify_integrity(t); 1840 1841 /* 1842 * Determine whether or not this queue's I/O timings contribute 1843 * to the entropy pool, Only request-based targets use this. 1844 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1845 * have it set. 1846 */ 1847 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1848 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1849 1850 /* 1851 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1852 * visible to other CPUs because, once the flag is set, incoming bios 1853 * are processed by request-based dm, which refers to the queue 1854 * settings. 1855 * Until the flag set, bios are passed to bio-based dm and queued to 1856 * md->deferred where queue settings are not needed yet. 1857 * Those bios are passed to request-based dm at the resume time. 1858 */ 1859 smp_mb(); 1860 if (dm_table_request_based(t)) 1861 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1862 } 1863 1864 unsigned int dm_table_get_num_targets(struct dm_table *t) 1865 { 1866 return t->num_targets; 1867 } 1868 1869 struct list_head *dm_table_get_devices(struct dm_table *t) 1870 { 1871 return &t->devices; 1872 } 1873 1874 fmode_t dm_table_get_mode(struct dm_table *t) 1875 { 1876 return t->mode; 1877 } 1878 EXPORT_SYMBOL(dm_table_get_mode); 1879 1880 enum suspend_mode { 1881 PRESUSPEND, 1882 PRESUSPEND_UNDO, 1883 POSTSUSPEND, 1884 }; 1885 1886 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1887 { 1888 int i = t->num_targets; 1889 struct dm_target *ti = t->targets; 1890 1891 lockdep_assert_held(&t->md->suspend_lock); 1892 1893 while (i--) { 1894 switch (mode) { 1895 case PRESUSPEND: 1896 if (ti->type->presuspend) 1897 ti->type->presuspend(ti); 1898 break; 1899 case PRESUSPEND_UNDO: 1900 if (ti->type->presuspend_undo) 1901 ti->type->presuspend_undo(ti); 1902 break; 1903 case POSTSUSPEND: 1904 if (ti->type->postsuspend) 1905 ti->type->postsuspend(ti); 1906 break; 1907 } 1908 ti++; 1909 } 1910 } 1911 1912 void dm_table_presuspend_targets(struct dm_table *t) 1913 { 1914 if (!t) 1915 return; 1916 1917 suspend_targets(t, PRESUSPEND); 1918 } 1919 1920 void dm_table_presuspend_undo_targets(struct dm_table *t) 1921 { 1922 if (!t) 1923 return; 1924 1925 suspend_targets(t, PRESUSPEND_UNDO); 1926 } 1927 1928 void dm_table_postsuspend_targets(struct dm_table *t) 1929 { 1930 if (!t) 1931 return; 1932 1933 suspend_targets(t, POSTSUSPEND); 1934 } 1935 1936 int dm_table_resume_targets(struct dm_table *t) 1937 { 1938 int i, r = 0; 1939 1940 lockdep_assert_held(&t->md->suspend_lock); 1941 1942 for (i = 0; i < t->num_targets; i++) { 1943 struct dm_target *ti = t->targets + i; 1944 1945 if (!ti->type->preresume) 1946 continue; 1947 1948 r = ti->type->preresume(ti); 1949 if (r) { 1950 DMERR("%s: %s: preresume failed, error = %d", 1951 dm_device_name(t->md), ti->type->name, r); 1952 return r; 1953 } 1954 } 1955 1956 for (i = 0; i < t->num_targets; i++) { 1957 struct dm_target *ti = t->targets + i; 1958 1959 if (ti->type->resume) 1960 ti->type->resume(ti); 1961 } 1962 1963 return 0; 1964 } 1965 1966 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1967 { 1968 list_add(&cb->list, &t->target_callbacks); 1969 } 1970 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1971 1972 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1973 { 1974 struct dm_dev_internal *dd; 1975 struct list_head *devices = dm_table_get_devices(t); 1976 struct dm_target_callbacks *cb; 1977 int r = 0; 1978 1979 list_for_each_entry(dd, devices, list) { 1980 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 1981 char b[BDEVNAME_SIZE]; 1982 1983 if (likely(q)) 1984 r |= bdi_congested(q->backing_dev_info, bdi_bits); 1985 else 1986 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1987 dm_device_name(t->md), 1988 bdevname(dd->dm_dev->bdev, b)); 1989 } 1990 1991 list_for_each_entry(cb, &t->target_callbacks, list) 1992 if (cb->congested_fn) 1993 r |= cb->congested_fn(cb, bdi_bits); 1994 1995 return r; 1996 } 1997 1998 struct mapped_device *dm_table_get_md(struct dm_table *t) 1999 { 2000 return t->md; 2001 } 2002 EXPORT_SYMBOL(dm_table_get_md); 2003 2004 void dm_table_run_md_queue_async(struct dm_table *t) 2005 { 2006 struct mapped_device *md; 2007 struct request_queue *queue; 2008 unsigned long flags; 2009 2010 if (!dm_table_request_based(t)) 2011 return; 2012 2013 md = dm_table_get_md(t); 2014 queue = dm_get_md_queue(md); 2015 if (queue) { 2016 if (queue->mq_ops) 2017 blk_mq_run_hw_queues(queue, true); 2018 else { 2019 spin_lock_irqsave(queue->queue_lock, flags); 2020 blk_run_queue_async(queue); 2021 spin_unlock_irqrestore(queue->queue_lock, flags); 2022 } 2023 } 2024 } 2025 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2026 2027