xref: /openbmc/linux/drivers/md/dm-table.c (revision dd21bfa4)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/namei.h>
15 #include <linux/ctype.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/mount.h>
24 #include <linux/dax.h>
25 
26 #define DM_MSG_PREFIX "table"
27 
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 /*
33  * Similar to ceiling(log_size(n))
34  */
35 static unsigned int int_log(unsigned int n, unsigned int base)
36 {
37 	int result = 0;
38 
39 	while (n > 1) {
40 		n = dm_div_up(n, base);
41 		result++;
42 	}
43 
44 	return result;
45 }
46 
47 /*
48  * Calculate the index of the child node of the n'th node k'th key.
49  */
50 static inline unsigned int get_child(unsigned int n, unsigned int k)
51 {
52 	return (n * CHILDREN_PER_NODE) + k;
53 }
54 
55 /*
56  * Return the n'th node of level l from table t.
57  */
58 static inline sector_t *get_node(struct dm_table *t,
59 				 unsigned int l, unsigned int n)
60 {
61 	return t->index[l] + (n * KEYS_PER_NODE);
62 }
63 
64 /*
65  * Return the highest key that you could lookup from the n'th
66  * node on level l of the btree.
67  */
68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
69 {
70 	for (; l < t->depth - 1; l++)
71 		n = get_child(n, CHILDREN_PER_NODE - 1);
72 
73 	if (n >= t->counts[l])
74 		return (sector_t) - 1;
75 
76 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
77 }
78 
79 /*
80  * Fills in a level of the btree based on the highs of the level
81  * below it.
82  */
83 static int setup_btree_index(unsigned int l, struct dm_table *t)
84 {
85 	unsigned int n, k;
86 	sector_t *node;
87 
88 	for (n = 0U; n < t->counts[l]; n++) {
89 		node = get_node(t, l, n);
90 
91 		for (k = 0U; k < KEYS_PER_NODE; k++)
92 			node[k] = high(t, l + 1, get_child(n, k));
93 	}
94 
95 	return 0;
96 }
97 
98 /*
99  * highs, and targets are managed as dynamic arrays during a
100  * table load.
101  */
102 static int alloc_targets(struct dm_table *t, unsigned int num)
103 {
104 	sector_t *n_highs;
105 	struct dm_target *n_targets;
106 
107 	/*
108 	 * Allocate both the target array and offset array at once.
109 	 */
110 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
111 			   GFP_KERNEL);
112 	if (!n_highs)
113 		return -ENOMEM;
114 
115 	n_targets = (struct dm_target *) (n_highs + num);
116 
117 	memset(n_highs, -1, sizeof(*n_highs) * num);
118 	kvfree(t->highs);
119 
120 	t->num_allocated = num;
121 	t->highs = n_highs;
122 	t->targets = n_targets;
123 
124 	return 0;
125 }
126 
127 int dm_table_create(struct dm_table **result, fmode_t mode,
128 		    unsigned num_targets, struct mapped_device *md)
129 {
130 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
131 
132 	if (!t)
133 		return -ENOMEM;
134 
135 	INIT_LIST_HEAD(&t->devices);
136 
137 	if (!num_targets)
138 		num_targets = KEYS_PER_NODE;
139 
140 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
141 
142 	if (!num_targets) {
143 		kfree(t);
144 		return -ENOMEM;
145 	}
146 
147 	if (alloc_targets(t, num_targets)) {
148 		kfree(t);
149 		return -ENOMEM;
150 	}
151 
152 	t->type = DM_TYPE_NONE;
153 	t->mode = mode;
154 	t->md = md;
155 	*result = t;
156 	return 0;
157 }
158 
159 static void free_devices(struct list_head *devices, struct mapped_device *md)
160 {
161 	struct list_head *tmp, *next;
162 
163 	list_for_each_safe(tmp, next, devices) {
164 		struct dm_dev_internal *dd =
165 		    list_entry(tmp, struct dm_dev_internal, list);
166 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
167 		       dm_device_name(md), dd->dm_dev->name);
168 		dm_put_table_device(md, dd->dm_dev);
169 		kfree(dd);
170 	}
171 }
172 
173 static void dm_table_destroy_crypto_profile(struct dm_table *t);
174 
175 void dm_table_destroy(struct dm_table *t)
176 {
177 	unsigned int i;
178 
179 	if (!t)
180 		return;
181 
182 	/* free the indexes */
183 	if (t->depth >= 2)
184 		kvfree(t->index[t->depth - 2]);
185 
186 	/* free the targets */
187 	for (i = 0; i < t->num_targets; i++) {
188 		struct dm_target *tgt = t->targets + i;
189 
190 		if (tgt->type->dtr)
191 			tgt->type->dtr(tgt);
192 
193 		dm_put_target_type(tgt->type);
194 	}
195 
196 	kvfree(t->highs);
197 
198 	/* free the device list */
199 	free_devices(&t->devices, t->md);
200 
201 	dm_free_md_mempools(t->mempools);
202 
203 	dm_table_destroy_crypto_profile(t);
204 
205 	kfree(t);
206 }
207 
208 /*
209  * See if we've already got a device in the list.
210  */
211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
212 {
213 	struct dm_dev_internal *dd;
214 
215 	list_for_each_entry (dd, l, list)
216 		if (dd->dm_dev->bdev->bd_dev == dev)
217 			return dd;
218 
219 	return NULL;
220 }
221 
222 /*
223  * If possible, this checks an area of a destination device is invalid.
224  */
225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
226 				  sector_t start, sector_t len, void *data)
227 {
228 	struct queue_limits *limits = data;
229 	struct block_device *bdev = dev->bdev;
230 	sector_t dev_size = bdev_nr_sectors(bdev);
231 	unsigned short logical_block_size_sectors =
232 		limits->logical_block_size >> SECTOR_SHIFT;
233 	char b[BDEVNAME_SIZE];
234 
235 	if (!dev_size)
236 		return 0;
237 
238 	if ((start >= dev_size) || (start + len > dev_size)) {
239 		DMWARN("%s: %s too small for target: "
240 		       "start=%llu, len=%llu, dev_size=%llu",
241 		       dm_device_name(ti->table->md), bdevname(bdev, b),
242 		       (unsigned long long)start,
243 		       (unsigned long long)len,
244 		       (unsigned long long)dev_size);
245 		return 1;
246 	}
247 
248 	/*
249 	 * If the target is mapped to zoned block device(s), check
250 	 * that the zones are not partially mapped.
251 	 */
252 	if (bdev_is_zoned(bdev)) {
253 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
254 
255 		if (start & (zone_sectors - 1)) {
256 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
257 			       dm_device_name(ti->table->md),
258 			       (unsigned long long)start,
259 			       zone_sectors, bdevname(bdev, b));
260 			return 1;
261 		}
262 
263 		/*
264 		 * Note: The last zone of a zoned block device may be smaller
265 		 * than other zones. So for a target mapping the end of a
266 		 * zoned block device with such a zone, len would not be zone
267 		 * aligned. We do not allow such last smaller zone to be part
268 		 * of the mapping here to ensure that mappings with multiple
269 		 * devices do not end up with a smaller zone in the middle of
270 		 * the sector range.
271 		 */
272 		if (len & (zone_sectors - 1)) {
273 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
274 			       dm_device_name(ti->table->md),
275 			       (unsigned long long)len,
276 			       zone_sectors, bdevname(bdev, b));
277 			return 1;
278 		}
279 	}
280 
281 	if (logical_block_size_sectors <= 1)
282 		return 0;
283 
284 	if (start & (logical_block_size_sectors - 1)) {
285 		DMWARN("%s: start=%llu not aligned to h/w "
286 		       "logical block size %u of %s",
287 		       dm_device_name(ti->table->md),
288 		       (unsigned long long)start,
289 		       limits->logical_block_size, bdevname(bdev, b));
290 		return 1;
291 	}
292 
293 	if (len & (logical_block_size_sectors - 1)) {
294 		DMWARN("%s: len=%llu not aligned to h/w "
295 		       "logical block size %u of %s",
296 		       dm_device_name(ti->table->md),
297 		       (unsigned long long)len,
298 		       limits->logical_block_size, bdevname(bdev, b));
299 		return 1;
300 	}
301 
302 	return 0;
303 }
304 
305 /*
306  * This upgrades the mode on an already open dm_dev, being
307  * careful to leave things as they were if we fail to reopen the
308  * device and not to touch the existing bdev field in case
309  * it is accessed concurrently.
310  */
311 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
312 			struct mapped_device *md)
313 {
314 	int r;
315 	struct dm_dev *old_dev, *new_dev;
316 
317 	old_dev = dd->dm_dev;
318 
319 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
320 				dd->dm_dev->mode | new_mode, &new_dev);
321 	if (r)
322 		return r;
323 
324 	dd->dm_dev = new_dev;
325 	dm_put_table_device(md, old_dev);
326 
327 	return 0;
328 }
329 
330 /*
331  * Convert the path to a device
332  */
333 dev_t dm_get_dev_t(const char *path)
334 {
335 	dev_t dev;
336 
337 	if (lookup_bdev(path, &dev))
338 		dev = name_to_dev_t(path);
339 	return dev;
340 }
341 EXPORT_SYMBOL_GPL(dm_get_dev_t);
342 
343 /*
344  * Add a device to the list, or just increment the usage count if
345  * it's already present.
346  */
347 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
348 		  struct dm_dev **result)
349 {
350 	int r;
351 	dev_t dev;
352 	unsigned int major, minor;
353 	char dummy;
354 	struct dm_dev_internal *dd;
355 	struct dm_table *t = ti->table;
356 
357 	BUG_ON(!t);
358 
359 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
360 		/* Extract the major/minor numbers */
361 		dev = MKDEV(major, minor);
362 		if (MAJOR(dev) != major || MINOR(dev) != minor)
363 			return -EOVERFLOW;
364 	} else {
365 		dev = dm_get_dev_t(path);
366 		if (!dev)
367 			return -ENODEV;
368 	}
369 
370 	dd = find_device(&t->devices, dev);
371 	if (!dd) {
372 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 		if (!dd)
374 			return -ENOMEM;
375 
376 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
377 			kfree(dd);
378 			return r;
379 		}
380 
381 		refcount_set(&dd->count, 1);
382 		list_add(&dd->list, &t->devices);
383 		goto out;
384 
385 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
386 		r = upgrade_mode(dd, mode, t->md);
387 		if (r)
388 			return r;
389 	}
390 	refcount_inc(&dd->count);
391 out:
392 	*result = dd->dm_dev;
393 	return 0;
394 }
395 EXPORT_SYMBOL(dm_get_device);
396 
397 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
398 				sector_t start, sector_t len, void *data)
399 {
400 	struct queue_limits *limits = data;
401 	struct block_device *bdev = dev->bdev;
402 	struct request_queue *q = bdev_get_queue(bdev);
403 	char b[BDEVNAME_SIZE];
404 
405 	if (unlikely(!q)) {
406 		DMWARN("%s: Cannot set limits for nonexistent device %s",
407 		       dm_device_name(ti->table->md), bdevname(bdev, b));
408 		return 0;
409 	}
410 
411 	if (blk_stack_limits(limits, &q->limits,
412 			get_start_sect(bdev) + start) < 0)
413 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
414 		       "physical_block_size=%u, logical_block_size=%u, "
415 		       "alignment_offset=%u, start=%llu",
416 		       dm_device_name(ti->table->md), bdevname(bdev, b),
417 		       q->limits.physical_block_size,
418 		       q->limits.logical_block_size,
419 		       q->limits.alignment_offset,
420 		       (unsigned long long) start << SECTOR_SHIFT);
421 	return 0;
422 }
423 
424 /*
425  * Decrement a device's use count and remove it if necessary.
426  */
427 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
428 {
429 	int found = 0;
430 	struct list_head *devices = &ti->table->devices;
431 	struct dm_dev_internal *dd;
432 
433 	list_for_each_entry(dd, devices, list) {
434 		if (dd->dm_dev == d) {
435 			found = 1;
436 			break;
437 		}
438 	}
439 	if (!found) {
440 		DMWARN("%s: device %s not in table devices list",
441 		       dm_device_name(ti->table->md), d->name);
442 		return;
443 	}
444 	if (refcount_dec_and_test(&dd->count)) {
445 		dm_put_table_device(ti->table->md, d);
446 		list_del(&dd->list);
447 		kfree(dd);
448 	}
449 }
450 EXPORT_SYMBOL(dm_put_device);
451 
452 /*
453  * Checks to see if the target joins onto the end of the table.
454  */
455 static int adjoin(struct dm_table *table, struct dm_target *ti)
456 {
457 	struct dm_target *prev;
458 
459 	if (!table->num_targets)
460 		return !ti->begin;
461 
462 	prev = &table->targets[table->num_targets - 1];
463 	return (ti->begin == (prev->begin + prev->len));
464 }
465 
466 /*
467  * Used to dynamically allocate the arg array.
468  *
469  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
470  * process messages even if some device is suspended. These messages have a
471  * small fixed number of arguments.
472  *
473  * On the other hand, dm-switch needs to process bulk data using messages and
474  * excessive use of GFP_NOIO could cause trouble.
475  */
476 static char **realloc_argv(unsigned *size, char **old_argv)
477 {
478 	char **argv;
479 	unsigned new_size;
480 	gfp_t gfp;
481 
482 	if (*size) {
483 		new_size = *size * 2;
484 		gfp = GFP_KERNEL;
485 	} else {
486 		new_size = 8;
487 		gfp = GFP_NOIO;
488 	}
489 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
490 	if (argv && old_argv) {
491 		memcpy(argv, old_argv, *size * sizeof(*argv));
492 		*size = new_size;
493 	}
494 
495 	kfree(old_argv);
496 	return argv;
497 }
498 
499 /*
500  * Destructively splits up the argument list to pass to ctr.
501  */
502 int dm_split_args(int *argc, char ***argvp, char *input)
503 {
504 	char *start, *end = input, *out, **argv = NULL;
505 	unsigned array_size = 0;
506 
507 	*argc = 0;
508 
509 	if (!input) {
510 		*argvp = NULL;
511 		return 0;
512 	}
513 
514 	argv = realloc_argv(&array_size, argv);
515 	if (!argv)
516 		return -ENOMEM;
517 
518 	while (1) {
519 		/* Skip whitespace */
520 		start = skip_spaces(end);
521 
522 		if (!*start)
523 			break;	/* success, we hit the end */
524 
525 		/* 'out' is used to remove any back-quotes */
526 		end = out = start;
527 		while (*end) {
528 			/* Everything apart from '\0' can be quoted */
529 			if (*end == '\\' && *(end + 1)) {
530 				*out++ = *(end + 1);
531 				end += 2;
532 				continue;
533 			}
534 
535 			if (isspace(*end))
536 				break;	/* end of token */
537 
538 			*out++ = *end++;
539 		}
540 
541 		/* have we already filled the array ? */
542 		if ((*argc + 1) > array_size) {
543 			argv = realloc_argv(&array_size, argv);
544 			if (!argv)
545 				return -ENOMEM;
546 		}
547 
548 		/* we know this is whitespace */
549 		if (*end)
550 			end++;
551 
552 		/* terminate the string and put it in the array */
553 		*out = '\0';
554 		argv[*argc] = start;
555 		(*argc)++;
556 	}
557 
558 	*argvp = argv;
559 	return 0;
560 }
561 
562 /*
563  * Impose necessary and sufficient conditions on a devices's table such
564  * that any incoming bio which respects its logical_block_size can be
565  * processed successfully.  If it falls across the boundary between
566  * two or more targets, the size of each piece it gets split into must
567  * be compatible with the logical_block_size of the target processing it.
568  */
569 static int validate_hardware_logical_block_alignment(struct dm_table *table,
570 						 struct queue_limits *limits)
571 {
572 	/*
573 	 * This function uses arithmetic modulo the logical_block_size
574 	 * (in units of 512-byte sectors).
575 	 */
576 	unsigned short device_logical_block_size_sects =
577 		limits->logical_block_size >> SECTOR_SHIFT;
578 
579 	/*
580 	 * Offset of the start of the next table entry, mod logical_block_size.
581 	 */
582 	unsigned short next_target_start = 0;
583 
584 	/*
585 	 * Given an aligned bio that extends beyond the end of a
586 	 * target, how many sectors must the next target handle?
587 	 */
588 	unsigned short remaining = 0;
589 
590 	struct dm_target *ti;
591 	struct queue_limits ti_limits;
592 	unsigned i;
593 
594 	/*
595 	 * Check each entry in the table in turn.
596 	 */
597 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
598 		ti = dm_table_get_target(table, i);
599 
600 		blk_set_stacking_limits(&ti_limits);
601 
602 		/* combine all target devices' limits */
603 		if (ti->type->iterate_devices)
604 			ti->type->iterate_devices(ti, dm_set_device_limits,
605 						  &ti_limits);
606 
607 		/*
608 		 * If the remaining sectors fall entirely within this
609 		 * table entry are they compatible with its logical_block_size?
610 		 */
611 		if (remaining < ti->len &&
612 		    remaining & ((ti_limits.logical_block_size >>
613 				  SECTOR_SHIFT) - 1))
614 			break;	/* Error */
615 
616 		next_target_start =
617 		    (unsigned short) ((next_target_start + ti->len) &
618 				      (device_logical_block_size_sects - 1));
619 		remaining = next_target_start ?
620 		    device_logical_block_size_sects - next_target_start : 0;
621 	}
622 
623 	if (remaining) {
624 		DMWARN("%s: table line %u (start sect %llu len %llu) "
625 		       "not aligned to h/w logical block size %u",
626 		       dm_device_name(table->md), i,
627 		       (unsigned long long) ti->begin,
628 		       (unsigned long long) ti->len,
629 		       limits->logical_block_size);
630 		return -EINVAL;
631 	}
632 
633 	return 0;
634 }
635 
636 int dm_table_add_target(struct dm_table *t, const char *type,
637 			sector_t start, sector_t len, char *params)
638 {
639 	int r = -EINVAL, argc;
640 	char **argv;
641 	struct dm_target *tgt;
642 
643 	if (t->singleton) {
644 		DMERR("%s: target type %s must appear alone in table",
645 		      dm_device_name(t->md), t->targets->type->name);
646 		return -EINVAL;
647 	}
648 
649 	BUG_ON(t->num_targets >= t->num_allocated);
650 
651 	tgt = t->targets + t->num_targets;
652 	memset(tgt, 0, sizeof(*tgt));
653 
654 	if (!len) {
655 		DMERR("%s: zero-length target", dm_device_name(t->md));
656 		return -EINVAL;
657 	}
658 
659 	tgt->type = dm_get_target_type(type);
660 	if (!tgt->type) {
661 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
662 		return -EINVAL;
663 	}
664 
665 	if (dm_target_needs_singleton(tgt->type)) {
666 		if (t->num_targets) {
667 			tgt->error = "singleton target type must appear alone in table";
668 			goto bad;
669 		}
670 		t->singleton = true;
671 	}
672 
673 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
674 		tgt->error = "target type may not be included in a read-only table";
675 		goto bad;
676 	}
677 
678 	if (t->immutable_target_type) {
679 		if (t->immutable_target_type != tgt->type) {
680 			tgt->error = "immutable target type cannot be mixed with other target types";
681 			goto bad;
682 		}
683 	} else if (dm_target_is_immutable(tgt->type)) {
684 		if (t->num_targets) {
685 			tgt->error = "immutable target type cannot be mixed with other target types";
686 			goto bad;
687 		}
688 		t->immutable_target_type = tgt->type;
689 	}
690 
691 	if (dm_target_has_integrity(tgt->type))
692 		t->integrity_added = 1;
693 
694 	tgt->table = t;
695 	tgt->begin = start;
696 	tgt->len = len;
697 	tgt->error = "Unknown error";
698 
699 	/*
700 	 * Does this target adjoin the previous one ?
701 	 */
702 	if (!adjoin(t, tgt)) {
703 		tgt->error = "Gap in table";
704 		goto bad;
705 	}
706 
707 	r = dm_split_args(&argc, &argv, params);
708 	if (r) {
709 		tgt->error = "couldn't split parameters";
710 		goto bad;
711 	}
712 
713 	r = tgt->type->ctr(tgt, argc, argv);
714 	kfree(argv);
715 	if (r)
716 		goto bad;
717 
718 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
719 
720 	if (!tgt->num_discard_bios && tgt->discards_supported)
721 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
722 		       dm_device_name(t->md), type);
723 
724 	return 0;
725 
726  bad:
727 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r));
728 	dm_put_target_type(tgt->type);
729 	return r;
730 }
731 
732 /*
733  * Target argument parsing helpers.
734  */
735 static int validate_next_arg(const struct dm_arg *arg,
736 			     struct dm_arg_set *arg_set,
737 			     unsigned *value, char **error, unsigned grouped)
738 {
739 	const char *arg_str = dm_shift_arg(arg_set);
740 	char dummy;
741 
742 	if (!arg_str ||
743 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
744 	    (*value < arg->min) ||
745 	    (*value > arg->max) ||
746 	    (grouped && arg_set->argc < *value)) {
747 		*error = arg->error;
748 		return -EINVAL;
749 	}
750 
751 	return 0;
752 }
753 
754 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
755 		unsigned *value, char **error)
756 {
757 	return validate_next_arg(arg, arg_set, value, error, 0);
758 }
759 EXPORT_SYMBOL(dm_read_arg);
760 
761 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
762 		      unsigned *value, char **error)
763 {
764 	return validate_next_arg(arg, arg_set, value, error, 1);
765 }
766 EXPORT_SYMBOL(dm_read_arg_group);
767 
768 const char *dm_shift_arg(struct dm_arg_set *as)
769 {
770 	char *r;
771 
772 	if (as->argc) {
773 		as->argc--;
774 		r = *as->argv;
775 		as->argv++;
776 		return r;
777 	}
778 
779 	return NULL;
780 }
781 EXPORT_SYMBOL(dm_shift_arg);
782 
783 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
784 {
785 	BUG_ON(as->argc < num_args);
786 	as->argc -= num_args;
787 	as->argv += num_args;
788 }
789 EXPORT_SYMBOL(dm_consume_args);
790 
791 static bool __table_type_bio_based(enum dm_queue_mode table_type)
792 {
793 	return (table_type == DM_TYPE_BIO_BASED ||
794 		table_type == DM_TYPE_DAX_BIO_BASED);
795 }
796 
797 static bool __table_type_request_based(enum dm_queue_mode table_type)
798 {
799 	return table_type == DM_TYPE_REQUEST_BASED;
800 }
801 
802 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
803 {
804 	t->type = type;
805 }
806 EXPORT_SYMBOL_GPL(dm_table_set_type);
807 
808 /* validate the dax capability of the target device span */
809 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
810 			sector_t start, sector_t len, void *data)
811 {
812 	if (dev->dax_dev)
813 		return false;
814 
815 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
816 	return true;
817 }
818 
819 /* Check devices support synchronous DAX */
820 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
821 					      sector_t start, sector_t len, void *data)
822 {
823 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
824 }
825 
826 static bool dm_table_supports_dax(struct dm_table *t,
827 			   iterate_devices_callout_fn iterate_fn)
828 {
829 	struct dm_target *ti;
830 	unsigned i;
831 
832 	/* Ensure that all targets support DAX. */
833 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
834 		ti = dm_table_get_target(t, i);
835 
836 		if (!ti->type->direct_access)
837 			return false;
838 
839 		if (!ti->type->iterate_devices ||
840 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
841 			return false;
842 	}
843 
844 	return true;
845 }
846 
847 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
848 				  sector_t start, sector_t len, void *data)
849 {
850 	struct block_device *bdev = dev->bdev;
851 	struct request_queue *q = bdev_get_queue(bdev);
852 
853 	/* request-based cannot stack on partitions! */
854 	if (bdev_is_partition(bdev))
855 		return false;
856 
857 	return queue_is_mq(q);
858 }
859 
860 static int dm_table_determine_type(struct dm_table *t)
861 {
862 	unsigned i;
863 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
864 	struct dm_target *tgt;
865 	struct list_head *devices = dm_table_get_devices(t);
866 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
867 
868 	if (t->type != DM_TYPE_NONE) {
869 		/* target already set the table's type */
870 		if (t->type == DM_TYPE_BIO_BASED) {
871 			/* possibly upgrade to a variant of bio-based */
872 			goto verify_bio_based;
873 		}
874 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
875 		goto verify_rq_based;
876 	}
877 
878 	for (i = 0; i < t->num_targets; i++) {
879 		tgt = t->targets + i;
880 		if (dm_target_hybrid(tgt))
881 			hybrid = 1;
882 		else if (dm_target_request_based(tgt))
883 			request_based = 1;
884 		else
885 			bio_based = 1;
886 
887 		if (bio_based && request_based) {
888 			DMERR("Inconsistent table: different target types"
889 			      " can't be mixed up");
890 			return -EINVAL;
891 		}
892 	}
893 
894 	if (hybrid && !bio_based && !request_based) {
895 		/*
896 		 * The targets can work either way.
897 		 * Determine the type from the live device.
898 		 * Default to bio-based if device is new.
899 		 */
900 		if (__table_type_request_based(live_md_type))
901 			request_based = 1;
902 		else
903 			bio_based = 1;
904 	}
905 
906 	if (bio_based) {
907 verify_bio_based:
908 		/* We must use this table as bio-based */
909 		t->type = DM_TYPE_BIO_BASED;
910 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
911 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
912 			t->type = DM_TYPE_DAX_BIO_BASED;
913 		}
914 		return 0;
915 	}
916 
917 	BUG_ON(!request_based); /* No targets in this table */
918 
919 	t->type = DM_TYPE_REQUEST_BASED;
920 
921 verify_rq_based:
922 	/*
923 	 * Request-based dm supports only tables that have a single target now.
924 	 * To support multiple targets, request splitting support is needed,
925 	 * and that needs lots of changes in the block-layer.
926 	 * (e.g. request completion process for partial completion.)
927 	 */
928 	if (t->num_targets > 1) {
929 		DMERR("request-based DM doesn't support multiple targets");
930 		return -EINVAL;
931 	}
932 
933 	if (list_empty(devices)) {
934 		int srcu_idx;
935 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
936 
937 		/* inherit live table's type */
938 		if (live_table)
939 			t->type = live_table->type;
940 		dm_put_live_table(t->md, srcu_idx);
941 		return 0;
942 	}
943 
944 	tgt = dm_table_get_immutable_target(t);
945 	if (!tgt) {
946 		DMERR("table load rejected: immutable target is required");
947 		return -EINVAL;
948 	} else if (tgt->max_io_len) {
949 		DMERR("table load rejected: immutable target that splits IO is not supported");
950 		return -EINVAL;
951 	}
952 
953 	/* Non-request-stackable devices can't be used for request-based dm */
954 	if (!tgt->type->iterate_devices ||
955 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
956 		DMERR("table load rejected: including non-request-stackable devices");
957 		return -EINVAL;
958 	}
959 
960 	return 0;
961 }
962 
963 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
964 {
965 	return t->type;
966 }
967 
968 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
969 {
970 	return t->immutable_target_type;
971 }
972 
973 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
974 {
975 	/* Immutable target is implicitly a singleton */
976 	if (t->num_targets > 1 ||
977 	    !dm_target_is_immutable(t->targets[0].type))
978 		return NULL;
979 
980 	return t->targets;
981 }
982 
983 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
984 {
985 	struct dm_target *ti;
986 	unsigned i;
987 
988 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
989 		ti = dm_table_get_target(t, i);
990 		if (dm_target_is_wildcard(ti->type))
991 			return ti;
992 	}
993 
994 	return NULL;
995 }
996 
997 bool dm_table_bio_based(struct dm_table *t)
998 {
999 	return __table_type_bio_based(dm_table_get_type(t));
1000 }
1001 
1002 bool dm_table_request_based(struct dm_table *t)
1003 {
1004 	return __table_type_request_based(dm_table_get_type(t));
1005 }
1006 
1007 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1008 {
1009 	enum dm_queue_mode type = dm_table_get_type(t);
1010 	unsigned per_io_data_size = 0;
1011 	unsigned min_pool_size = 0;
1012 	struct dm_target *ti;
1013 	unsigned i;
1014 
1015 	if (unlikely(type == DM_TYPE_NONE)) {
1016 		DMWARN("no table type is set, can't allocate mempools");
1017 		return -EINVAL;
1018 	}
1019 
1020 	if (__table_type_bio_based(type))
1021 		for (i = 0; i < t->num_targets; i++) {
1022 			ti = t->targets + i;
1023 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1024 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1025 		}
1026 
1027 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1028 					   per_io_data_size, min_pool_size);
1029 	if (!t->mempools)
1030 		return -ENOMEM;
1031 
1032 	return 0;
1033 }
1034 
1035 void dm_table_free_md_mempools(struct dm_table *t)
1036 {
1037 	dm_free_md_mempools(t->mempools);
1038 	t->mempools = NULL;
1039 }
1040 
1041 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1042 {
1043 	return t->mempools;
1044 }
1045 
1046 static int setup_indexes(struct dm_table *t)
1047 {
1048 	int i;
1049 	unsigned int total = 0;
1050 	sector_t *indexes;
1051 
1052 	/* allocate the space for *all* the indexes */
1053 	for (i = t->depth - 2; i >= 0; i--) {
1054 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1055 		total += t->counts[i];
1056 	}
1057 
1058 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1059 	if (!indexes)
1060 		return -ENOMEM;
1061 
1062 	/* set up internal nodes, bottom-up */
1063 	for (i = t->depth - 2; i >= 0; i--) {
1064 		t->index[i] = indexes;
1065 		indexes += (KEYS_PER_NODE * t->counts[i]);
1066 		setup_btree_index(i, t);
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 /*
1073  * Builds the btree to index the map.
1074  */
1075 static int dm_table_build_index(struct dm_table *t)
1076 {
1077 	int r = 0;
1078 	unsigned int leaf_nodes;
1079 
1080 	/* how many indexes will the btree have ? */
1081 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1082 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1083 
1084 	/* leaf layer has already been set up */
1085 	t->counts[t->depth - 1] = leaf_nodes;
1086 	t->index[t->depth - 1] = t->highs;
1087 
1088 	if (t->depth >= 2)
1089 		r = setup_indexes(t);
1090 
1091 	return r;
1092 }
1093 
1094 static bool integrity_profile_exists(struct gendisk *disk)
1095 {
1096 	return !!blk_get_integrity(disk);
1097 }
1098 
1099 /*
1100  * Get a disk whose integrity profile reflects the table's profile.
1101  * Returns NULL if integrity support was inconsistent or unavailable.
1102  */
1103 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1104 {
1105 	struct list_head *devices = dm_table_get_devices(t);
1106 	struct dm_dev_internal *dd = NULL;
1107 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1108 	unsigned i;
1109 
1110 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1111 		struct dm_target *ti = dm_table_get_target(t, i);
1112 		if (!dm_target_passes_integrity(ti->type))
1113 			goto no_integrity;
1114 	}
1115 
1116 	list_for_each_entry(dd, devices, list) {
1117 		template_disk = dd->dm_dev->bdev->bd_disk;
1118 		if (!integrity_profile_exists(template_disk))
1119 			goto no_integrity;
1120 		else if (prev_disk &&
1121 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1122 			goto no_integrity;
1123 		prev_disk = template_disk;
1124 	}
1125 
1126 	return template_disk;
1127 
1128 no_integrity:
1129 	if (prev_disk)
1130 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1131 		       dm_device_name(t->md),
1132 		       prev_disk->disk_name,
1133 		       template_disk->disk_name);
1134 	return NULL;
1135 }
1136 
1137 /*
1138  * Register the mapped device for blk_integrity support if the
1139  * underlying devices have an integrity profile.  But all devices may
1140  * not have matching profiles (checking all devices isn't reliable
1141  * during table load because this table may use other DM device(s) which
1142  * must be resumed before they will have an initialized integity
1143  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1144  * profile validation: First pass during table load, final pass during
1145  * resume.
1146  */
1147 static int dm_table_register_integrity(struct dm_table *t)
1148 {
1149 	struct mapped_device *md = t->md;
1150 	struct gendisk *template_disk = NULL;
1151 
1152 	/* If target handles integrity itself do not register it here. */
1153 	if (t->integrity_added)
1154 		return 0;
1155 
1156 	template_disk = dm_table_get_integrity_disk(t);
1157 	if (!template_disk)
1158 		return 0;
1159 
1160 	if (!integrity_profile_exists(dm_disk(md))) {
1161 		t->integrity_supported = true;
1162 		/*
1163 		 * Register integrity profile during table load; we can do
1164 		 * this because the final profile must match during resume.
1165 		 */
1166 		blk_integrity_register(dm_disk(md),
1167 				       blk_get_integrity(template_disk));
1168 		return 0;
1169 	}
1170 
1171 	/*
1172 	 * If DM device already has an initialized integrity
1173 	 * profile the new profile should not conflict.
1174 	 */
1175 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1176 		DMWARN("%s: conflict with existing integrity profile: "
1177 		       "%s profile mismatch",
1178 		       dm_device_name(t->md),
1179 		       template_disk->disk_name);
1180 		return 1;
1181 	}
1182 
1183 	/* Preserve existing integrity profile */
1184 	t->integrity_supported = true;
1185 	return 0;
1186 }
1187 
1188 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1189 
1190 struct dm_crypto_profile {
1191 	struct blk_crypto_profile profile;
1192 	struct mapped_device *md;
1193 };
1194 
1195 struct dm_keyslot_evict_args {
1196 	const struct blk_crypto_key *key;
1197 	int err;
1198 };
1199 
1200 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1201 				     sector_t start, sector_t len, void *data)
1202 {
1203 	struct dm_keyslot_evict_args *args = data;
1204 	int err;
1205 
1206 	err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1207 	if (!args->err)
1208 		args->err = err;
1209 	/* Always try to evict the key from all devices. */
1210 	return 0;
1211 }
1212 
1213 /*
1214  * When an inline encryption key is evicted from a device-mapper device, evict
1215  * it from all the underlying devices.
1216  */
1217 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1218 			    const struct blk_crypto_key *key, unsigned int slot)
1219 {
1220 	struct mapped_device *md =
1221 		container_of(profile, struct dm_crypto_profile, profile)->md;
1222 	struct dm_keyslot_evict_args args = { key };
1223 	struct dm_table *t;
1224 	int srcu_idx;
1225 	int i;
1226 	struct dm_target *ti;
1227 
1228 	t = dm_get_live_table(md, &srcu_idx);
1229 	if (!t)
1230 		return 0;
1231 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1232 		ti = dm_table_get_target(t, i);
1233 		if (!ti->type->iterate_devices)
1234 			continue;
1235 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1236 	}
1237 	dm_put_live_table(md, srcu_idx);
1238 	return args.err;
1239 }
1240 
1241 static int
1242 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1243 				     sector_t start, sector_t len, void *data)
1244 {
1245 	struct blk_crypto_profile *parent = data;
1246 	struct blk_crypto_profile *child =
1247 		bdev_get_queue(dev->bdev)->crypto_profile;
1248 
1249 	blk_crypto_intersect_capabilities(parent, child);
1250 	return 0;
1251 }
1252 
1253 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1254 {
1255 	struct dm_crypto_profile *dmcp = container_of(profile,
1256 						      struct dm_crypto_profile,
1257 						      profile);
1258 
1259 	if (!profile)
1260 		return;
1261 
1262 	blk_crypto_profile_destroy(profile);
1263 	kfree(dmcp);
1264 }
1265 
1266 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1267 {
1268 	dm_destroy_crypto_profile(t->crypto_profile);
1269 	t->crypto_profile = NULL;
1270 }
1271 
1272 /*
1273  * Constructs and initializes t->crypto_profile with a crypto profile that
1274  * represents the common set of crypto capabilities of the devices described by
1275  * the dm_table.  However, if the constructed crypto profile doesn't support all
1276  * crypto capabilities that are supported by the current mapped_device, it
1277  * returns an error instead, since we don't support removing crypto capabilities
1278  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1279  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1280  */
1281 static int dm_table_construct_crypto_profile(struct dm_table *t)
1282 {
1283 	struct dm_crypto_profile *dmcp;
1284 	struct blk_crypto_profile *profile;
1285 	struct dm_target *ti;
1286 	unsigned int i;
1287 	bool empty_profile = true;
1288 
1289 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1290 	if (!dmcp)
1291 		return -ENOMEM;
1292 	dmcp->md = t->md;
1293 
1294 	profile = &dmcp->profile;
1295 	blk_crypto_profile_init(profile, 0);
1296 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1297 	profile->max_dun_bytes_supported = UINT_MAX;
1298 	memset(profile->modes_supported, 0xFF,
1299 	       sizeof(profile->modes_supported));
1300 
1301 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1302 		ti = dm_table_get_target(t, i);
1303 
1304 		if (!dm_target_passes_crypto(ti->type)) {
1305 			blk_crypto_intersect_capabilities(profile, NULL);
1306 			break;
1307 		}
1308 		if (!ti->type->iterate_devices)
1309 			continue;
1310 		ti->type->iterate_devices(ti,
1311 					  device_intersect_crypto_capabilities,
1312 					  profile);
1313 	}
1314 
1315 	if (t->md->queue &&
1316 	    !blk_crypto_has_capabilities(profile,
1317 					 t->md->queue->crypto_profile)) {
1318 		DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1319 		dm_destroy_crypto_profile(profile);
1320 		return -EINVAL;
1321 	}
1322 
1323 	/*
1324 	 * If the new profile doesn't actually support any crypto capabilities,
1325 	 * we may as well represent it with a NULL profile.
1326 	 */
1327 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1328 		if (profile->modes_supported[i]) {
1329 			empty_profile = false;
1330 			break;
1331 		}
1332 	}
1333 
1334 	if (empty_profile) {
1335 		dm_destroy_crypto_profile(profile);
1336 		profile = NULL;
1337 	}
1338 
1339 	/*
1340 	 * t->crypto_profile is only set temporarily while the table is being
1341 	 * set up, and it gets set to NULL after the profile has been
1342 	 * transferred to the request_queue.
1343 	 */
1344 	t->crypto_profile = profile;
1345 
1346 	return 0;
1347 }
1348 
1349 static void dm_update_crypto_profile(struct request_queue *q,
1350 				     struct dm_table *t)
1351 {
1352 	if (!t->crypto_profile)
1353 		return;
1354 
1355 	/* Make the crypto profile less restrictive. */
1356 	if (!q->crypto_profile) {
1357 		blk_crypto_register(t->crypto_profile, q);
1358 	} else {
1359 		blk_crypto_update_capabilities(q->crypto_profile,
1360 					       t->crypto_profile);
1361 		dm_destroy_crypto_profile(t->crypto_profile);
1362 	}
1363 	t->crypto_profile = NULL;
1364 }
1365 
1366 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1367 
1368 static int dm_table_construct_crypto_profile(struct dm_table *t)
1369 {
1370 	return 0;
1371 }
1372 
1373 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1374 {
1375 }
1376 
1377 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1378 {
1379 }
1380 
1381 static void dm_update_crypto_profile(struct request_queue *q,
1382 				     struct dm_table *t)
1383 {
1384 }
1385 
1386 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1387 
1388 /*
1389  * Prepares the table for use by building the indices,
1390  * setting the type, and allocating mempools.
1391  */
1392 int dm_table_complete(struct dm_table *t)
1393 {
1394 	int r;
1395 
1396 	r = dm_table_determine_type(t);
1397 	if (r) {
1398 		DMERR("unable to determine table type");
1399 		return r;
1400 	}
1401 
1402 	r = dm_table_build_index(t);
1403 	if (r) {
1404 		DMERR("unable to build btrees");
1405 		return r;
1406 	}
1407 
1408 	r = dm_table_register_integrity(t);
1409 	if (r) {
1410 		DMERR("could not register integrity profile.");
1411 		return r;
1412 	}
1413 
1414 	r = dm_table_construct_crypto_profile(t);
1415 	if (r) {
1416 		DMERR("could not construct crypto profile.");
1417 		return r;
1418 	}
1419 
1420 	r = dm_table_alloc_md_mempools(t, t->md);
1421 	if (r)
1422 		DMERR("unable to allocate mempools");
1423 
1424 	return r;
1425 }
1426 
1427 static DEFINE_MUTEX(_event_lock);
1428 void dm_table_event_callback(struct dm_table *t,
1429 			     void (*fn)(void *), void *context)
1430 {
1431 	mutex_lock(&_event_lock);
1432 	t->event_fn = fn;
1433 	t->event_context = context;
1434 	mutex_unlock(&_event_lock);
1435 }
1436 
1437 void dm_table_event(struct dm_table *t)
1438 {
1439 	mutex_lock(&_event_lock);
1440 	if (t->event_fn)
1441 		t->event_fn(t->event_context);
1442 	mutex_unlock(&_event_lock);
1443 }
1444 EXPORT_SYMBOL(dm_table_event);
1445 
1446 inline sector_t dm_table_get_size(struct dm_table *t)
1447 {
1448 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1449 }
1450 EXPORT_SYMBOL(dm_table_get_size);
1451 
1452 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1453 {
1454 	if (index >= t->num_targets)
1455 		return NULL;
1456 
1457 	return t->targets + index;
1458 }
1459 
1460 /*
1461  * Search the btree for the correct target.
1462  *
1463  * Caller should check returned pointer for NULL
1464  * to trap I/O beyond end of device.
1465  */
1466 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1467 {
1468 	unsigned int l, n = 0, k = 0;
1469 	sector_t *node;
1470 
1471 	if (unlikely(sector >= dm_table_get_size(t)))
1472 		return NULL;
1473 
1474 	for (l = 0; l < t->depth; l++) {
1475 		n = get_child(n, k);
1476 		node = get_node(t, l, n);
1477 
1478 		for (k = 0; k < KEYS_PER_NODE; k++)
1479 			if (node[k] >= sector)
1480 				break;
1481 	}
1482 
1483 	return &t->targets[(KEYS_PER_NODE * n) + k];
1484 }
1485 
1486 /*
1487  * type->iterate_devices() should be called when the sanity check needs to
1488  * iterate and check all underlying data devices. iterate_devices() will
1489  * iterate all underlying data devices until it encounters a non-zero return
1490  * code, returned by whether the input iterate_devices_callout_fn, or
1491  * iterate_devices() itself internally.
1492  *
1493  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1494  * iterate multiple underlying devices internally, in which case a non-zero
1495  * return code returned by iterate_devices_callout_fn will stop the iteration
1496  * in advance.
1497  *
1498  * Cases requiring _any_ underlying device supporting some kind of attribute,
1499  * should use the iteration structure like dm_table_any_dev_attr(), or call
1500  * it directly. @func should handle semantics of positive examples, e.g.
1501  * capable of something.
1502  *
1503  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1504  * should use the iteration structure like dm_table_supports_nowait() or
1505  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1506  * uses an @anti_func that handle semantics of counter examples, e.g. not
1507  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1508  */
1509 static bool dm_table_any_dev_attr(struct dm_table *t,
1510 				  iterate_devices_callout_fn func, void *data)
1511 {
1512 	struct dm_target *ti;
1513 	unsigned int i;
1514 
1515 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1516 		ti = dm_table_get_target(t, i);
1517 
1518 		if (ti->type->iterate_devices &&
1519 		    ti->type->iterate_devices(ti, func, data))
1520 			return true;
1521         }
1522 
1523 	return false;
1524 }
1525 
1526 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1527 			sector_t start, sector_t len, void *data)
1528 {
1529 	unsigned *num_devices = data;
1530 
1531 	(*num_devices)++;
1532 
1533 	return 0;
1534 }
1535 
1536 /*
1537  * Check whether a table has no data devices attached using each
1538  * target's iterate_devices method.
1539  * Returns false if the result is unknown because a target doesn't
1540  * support iterate_devices.
1541  */
1542 bool dm_table_has_no_data_devices(struct dm_table *table)
1543 {
1544 	struct dm_target *ti;
1545 	unsigned i, num_devices;
1546 
1547 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1548 		ti = dm_table_get_target(table, i);
1549 
1550 		if (!ti->type->iterate_devices)
1551 			return false;
1552 
1553 		num_devices = 0;
1554 		ti->type->iterate_devices(ti, count_device, &num_devices);
1555 		if (num_devices)
1556 			return false;
1557 	}
1558 
1559 	return true;
1560 }
1561 
1562 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1563 				  sector_t start, sector_t len, void *data)
1564 {
1565 	struct request_queue *q = bdev_get_queue(dev->bdev);
1566 	enum blk_zoned_model *zoned_model = data;
1567 
1568 	return blk_queue_zoned_model(q) != *zoned_model;
1569 }
1570 
1571 /*
1572  * Check the device zoned model based on the target feature flag. If the target
1573  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1574  * also accepted but all devices must have the same zoned model. If the target
1575  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1576  * zoned model with all zoned devices having the same zone size.
1577  */
1578 static bool dm_table_supports_zoned_model(struct dm_table *t,
1579 					  enum blk_zoned_model zoned_model)
1580 {
1581 	struct dm_target *ti;
1582 	unsigned i;
1583 
1584 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1585 		ti = dm_table_get_target(t, i);
1586 
1587 		if (dm_target_supports_zoned_hm(ti->type)) {
1588 			if (!ti->type->iterate_devices ||
1589 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1590 						      &zoned_model))
1591 				return false;
1592 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1593 			if (zoned_model == BLK_ZONED_HM)
1594 				return false;
1595 		}
1596 	}
1597 
1598 	return true;
1599 }
1600 
1601 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1602 					   sector_t start, sector_t len, void *data)
1603 {
1604 	struct request_queue *q = bdev_get_queue(dev->bdev);
1605 	unsigned int *zone_sectors = data;
1606 
1607 	if (!blk_queue_is_zoned(q))
1608 		return 0;
1609 
1610 	return blk_queue_zone_sectors(q) != *zone_sectors;
1611 }
1612 
1613 /*
1614  * Check consistency of zoned model and zone sectors across all targets. For
1615  * zone sectors, if the destination device is a zoned block device, it shall
1616  * have the specified zone_sectors.
1617  */
1618 static int validate_hardware_zoned_model(struct dm_table *table,
1619 					 enum blk_zoned_model zoned_model,
1620 					 unsigned int zone_sectors)
1621 {
1622 	if (zoned_model == BLK_ZONED_NONE)
1623 		return 0;
1624 
1625 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1626 		DMERR("%s: zoned model is not consistent across all devices",
1627 		      dm_device_name(table->md));
1628 		return -EINVAL;
1629 	}
1630 
1631 	/* Check zone size validity and compatibility */
1632 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1633 		return -EINVAL;
1634 
1635 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1636 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1637 		      dm_device_name(table->md));
1638 		return -EINVAL;
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 /*
1645  * Establish the new table's queue_limits and validate them.
1646  */
1647 int dm_calculate_queue_limits(struct dm_table *table,
1648 			      struct queue_limits *limits)
1649 {
1650 	struct dm_target *ti;
1651 	struct queue_limits ti_limits;
1652 	unsigned i;
1653 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1654 	unsigned int zone_sectors = 0;
1655 
1656 	blk_set_stacking_limits(limits);
1657 
1658 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1659 		blk_set_stacking_limits(&ti_limits);
1660 
1661 		ti = dm_table_get_target(table, i);
1662 
1663 		if (!ti->type->iterate_devices)
1664 			goto combine_limits;
1665 
1666 		/*
1667 		 * Combine queue limits of all the devices this target uses.
1668 		 */
1669 		ti->type->iterate_devices(ti, dm_set_device_limits,
1670 					  &ti_limits);
1671 
1672 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1673 			/*
1674 			 * After stacking all limits, validate all devices
1675 			 * in table support this zoned model and zone sectors.
1676 			 */
1677 			zoned_model = ti_limits.zoned;
1678 			zone_sectors = ti_limits.chunk_sectors;
1679 		}
1680 
1681 		/* Set I/O hints portion of queue limits */
1682 		if (ti->type->io_hints)
1683 			ti->type->io_hints(ti, &ti_limits);
1684 
1685 		/*
1686 		 * Check each device area is consistent with the target's
1687 		 * overall queue limits.
1688 		 */
1689 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1690 					      &ti_limits))
1691 			return -EINVAL;
1692 
1693 combine_limits:
1694 		/*
1695 		 * Merge this target's queue limits into the overall limits
1696 		 * for the table.
1697 		 */
1698 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1699 			DMWARN("%s: adding target device "
1700 			       "(start sect %llu len %llu) "
1701 			       "caused an alignment inconsistency",
1702 			       dm_device_name(table->md),
1703 			       (unsigned long long) ti->begin,
1704 			       (unsigned long long) ti->len);
1705 	}
1706 
1707 	/*
1708 	 * Verify that the zoned model and zone sectors, as determined before
1709 	 * any .io_hints override, are the same across all devices in the table.
1710 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1711 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1712 	 * BUT...
1713 	 */
1714 	if (limits->zoned != BLK_ZONED_NONE) {
1715 		/*
1716 		 * ...IF the above limits stacking determined a zoned model
1717 		 * validate that all of the table's devices conform to it.
1718 		 */
1719 		zoned_model = limits->zoned;
1720 		zone_sectors = limits->chunk_sectors;
1721 	}
1722 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1723 		return -EINVAL;
1724 
1725 	return validate_hardware_logical_block_alignment(table, limits);
1726 }
1727 
1728 /*
1729  * Verify that all devices have an integrity profile that matches the
1730  * DM device's registered integrity profile.  If the profiles don't
1731  * match then unregister the DM device's integrity profile.
1732  */
1733 static void dm_table_verify_integrity(struct dm_table *t)
1734 {
1735 	struct gendisk *template_disk = NULL;
1736 
1737 	if (t->integrity_added)
1738 		return;
1739 
1740 	if (t->integrity_supported) {
1741 		/*
1742 		 * Verify that the original integrity profile
1743 		 * matches all the devices in this table.
1744 		 */
1745 		template_disk = dm_table_get_integrity_disk(t);
1746 		if (template_disk &&
1747 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1748 			return;
1749 	}
1750 
1751 	if (integrity_profile_exists(dm_disk(t->md))) {
1752 		DMWARN("%s: unable to establish an integrity profile",
1753 		       dm_device_name(t->md));
1754 		blk_integrity_unregister(dm_disk(t->md));
1755 	}
1756 }
1757 
1758 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1759 				sector_t start, sector_t len, void *data)
1760 {
1761 	unsigned long flush = (unsigned long) data;
1762 	struct request_queue *q = bdev_get_queue(dev->bdev);
1763 
1764 	return (q->queue_flags & flush);
1765 }
1766 
1767 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1768 {
1769 	struct dm_target *ti;
1770 	unsigned i;
1771 
1772 	/*
1773 	 * Require at least one underlying device to support flushes.
1774 	 * t->devices includes internal dm devices such as mirror logs
1775 	 * so we need to use iterate_devices here, which targets
1776 	 * supporting flushes must provide.
1777 	 */
1778 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1779 		ti = dm_table_get_target(t, i);
1780 
1781 		if (!ti->num_flush_bios)
1782 			continue;
1783 
1784 		if (ti->flush_supported)
1785 			return true;
1786 
1787 		if (ti->type->iterate_devices &&
1788 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1789 			return true;
1790 	}
1791 
1792 	return false;
1793 }
1794 
1795 static int device_dax_write_cache_enabled(struct dm_target *ti,
1796 					  struct dm_dev *dev, sector_t start,
1797 					  sector_t len, void *data)
1798 {
1799 	struct dax_device *dax_dev = dev->dax_dev;
1800 
1801 	if (!dax_dev)
1802 		return false;
1803 
1804 	if (dax_write_cache_enabled(dax_dev))
1805 		return true;
1806 	return false;
1807 }
1808 
1809 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1810 				sector_t start, sector_t len, void *data)
1811 {
1812 	struct request_queue *q = bdev_get_queue(dev->bdev);
1813 
1814 	return !blk_queue_nonrot(q);
1815 }
1816 
1817 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1818 			     sector_t start, sector_t len, void *data)
1819 {
1820 	struct request_queue *q = bdev_get_queue(dev->bdev);
1821 
1822 	return !blk_queue_add_random(q);
1823 }
1824 
1825 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1826 					 sector_t start, sector_t len, void *data)
1827 {
1828 	struct request_queue *q = bdev_get_queue(dev->bdev);
1829 
1830 	return !q->limits.max_write_same_sectors;
1831 }
1832 
1833 static bool dm_table_supports_write_same(struct dm_table *t)
1834 {
1835 	struct dm_target *ti;
1836 	unsigned i;
1837 
1838 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1839 		ti = dm_table_get_target(t, i);
1840 
1841 		if (!ti->num_write_same_bios)
1842 			return false;
1843 
1844 		if (!ti->type->iterate_devices ||
1845 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1846 			return false;
1847 	}
1848 
1849 	return true;
1850 }
1851 
1852 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1853 					   sector_t start, sector_t len, void *data)
1854 {
1855 	struct request_queue *q = bdev_get_queue(dev->bdev);
1856 
1857 	return !q->limits.max_write_zeroes_sectors;
1858 }
1859 
1860 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1861 {
1862 	struct dm_target *ti;
1863 	unsigned i = 0;
1864 
1865 	while (i < dm_table_get_num_targets(t)) {
1866 		ti = dm_table_get_target(t, i++);
1867 
1868 		if (!ti->num_write_zeroes_bios)
1869 			return false;
1870 
1871 		if (!ti->type->iterate_devices ||
1872 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1873 			return false;
1874 	}
1875 
1876 	return true;
1877 }
1878 
1879 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1880 				     sector_t start, sector_t len, void *data)
1881 {
1882 	struct request_queue *q = bdev_get_queue(dev->bdev);
1883 
1884 	return !blk_queue_nowait(q);
1885 }
1886 
1887 static bool dm_table_supports_nowait(struct dm_table *t)
1888 {
1889 	struct dm_target *ti;
1890 	unsigned i = 0;
1891 
1892 	while (i < dm_table_get_num_targets(t)) {
1893 		ti = dm_table_get_target(t, i++);
1894 
1895 		if (!dm_target_supports_nowait(ti->type))
1896 			return false;
1897 
1898 		if (!ti->type->iterate_devices ||
1899 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1900 			return false;
1901 	}
1902 
1903 	return true;
1904 }
1905 
1906 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1907 				      sector_t start, sector_t len, void *data)
1908 {
1909 	struct request_queue *q = bdev_get_queue(dev->bdev);
1910 
1911 	return !blk_queue_discard(q);
1912 }
1913 
1914 static bool dm_table_supports_discards(struct dm_table *t)
1915 {
1916 	struct dm_target *ti;
1917 	unsigned i;
1918 
1919 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1920 		ti = dm_table_get_target(t, i);
1921 
1922 		if (!ti->num_discard_bios)
1923 			return false;
1924 
1925 		/*
1926 		 * Either the target provides discard support (as implied by setting
1927 		 * 'discards_supported') or it relies on _all_ data devices having
1928 		 * discard support.
1929 		 */
1930 		if (!ti->discards_supported &&
1931 		    (!ti->type->iterate_devices ||
1932 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1933 			return false;
1934 	}
1935 
1936 	return true;
1937 }
1938 
1939 static int device_not_secure_erase_capable(struct dm_target *ti,
1940 					   struct dm_dev *dev, sector_t start,
1941 					   sector_t len, void *data)
1942 {
1943 	struct request_queue *q = bdev_get_queue(dev->bdev);
1944 
1945 	return !blk_queue_secure_erase(q);
1946 }
1947 
1948 static bool dm_table_supports_secure_erase(struct dm_table *t)
1949 {
1950 	struct dm_target *ti;
1951 	unsigned int i;
1952 
1953 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1954 		ti = dm_table_get_target(t, i);
1955 
1956 		if (!ti->num_secure_erase_bios)
1957 			return false;
1958 
1959 		if (!ti->type->iterate_devices ||
1960 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1961 			return false;
1962 	}
1963 
1964 	return true;
1965 }
1966 
1967 static int device_requires_stable_pages(struct dm_target *ti,
1968 					struct dm_dev *dev, sector_t start,
1969 					sector_t len, void *data)
1970 {
1971 	struct request_queue *q = bdev_get_queue(dev->bdev);
1972 
1973 	return blk_queue_stable_writes(q);
1974 }
1975 
1976 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1977 			      struct queue_limits *limits)
1978 {
1979 	bool wc = false, fua = false;
1980 	int r;
1981 
1982 	/*
1983 	 * Copy table's limits to the DM device's request_queue
1984 	 */
1985 	q->limits = *limits;
1986 
1987 	if (dm_table_supports_nowait(t))
1988 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1989 	else
1990 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1991 
1992 	if (!dm_table_supports_discards(t)) {
1993 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1994 		/* Must also clear discard limits... */
1995 		q->limits.max_discard_sectors = 0;
1996 		q->limits.max_hw_discard_sectors = 0;
1997 		q->limits.discard_granularity = 0;
1998 		q->limits.discard_alignment = 0;
1999 		q->limits.discard_misaligned = 0;
2000 	} else
2001 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2002 
2003 	if (dm_table_supports_secure_erase(t))
2004 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2005 
2006 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2007 		wc = true;
2008 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2009 			fua = true;
2010 	}
2011 	blk_queue_write_cache(q, wc, fua);
2012 
2013 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
2014 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2015 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
2016 			set_dax_synchronous(t->md->dax_dev);
2017 	}
2018 	else
2019 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2020 
2021 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2022 		dax_write_cache(t->md->dax_dev, true);
2023 
2024 	/* Ensure that all underlying devices are non-rotational. */
2025 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2026 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2027 	else
2028 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2029 
2030 	if (!dm_table_supports_write_same(t))
2031 		q->limits.max_write_same_sectors = 0;
2032 	if (!dm_table_supports_write_zeroes(t))
2033 		q->limits.max_write_zeroes_sectors = 0;
2034 
2035 	dm_table_verify_integrity(t);
2036 
2037 	/*
2038 	 * Some devices don't use blk_integrity but still want stable pages
2039 	 * because they do their own checksumming.
2040 	 * If any underlying device requires stable pages, a table must require
2041 	 * them as well.  Only targets that support iterate_devices are considered:
2042 	 * don't want error, zero, etc to require stable pages.
2043 	 */
2044 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2045 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2046 	else
2047 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2048 
2049 	/*
2050 	 * Determine whether or not this queue's I/O timings contribute
2051 	 * to the entropy pool, Only request-based targets use this.
2052 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2053 	 * have it set.
2054 	 */
2055 	if (blk_queue_add_random(q) &&
2056 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2057 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2058 
2059 	/*
2060 	 * For a zoned target, setup the zones related queue attributes
2061 	 * and resources necessary for zone append emulation if necessary.
2062 	 */
2063 	if (blk_queue_is_zoned(q)) {
2064 		r = dm_set_zones_restrictions(t, q);
2065 		if (r)
2066 			return r;
2067 	}
2068 
2069 	dm_update_crypto_profile(q, t);
2070 	disk_update_readahead(t->md->disk);
2071 
2072 	return 0;
2073 }
2074 
2075 unsigned int dm_table_get_num_targets(struct dm_table *t)
2076 {
2077 	return t->num_targets;
2078 }
2079 
2080 struct list_head *dm_table_get_devices(struct dm_table *t)
2081 {
2082 	return &t->devices;
2083 }
2084 
2085 fmode_t dm_table_get_mode(struct dm_table *t)
2086 {
2087 	return t->mode;
2088 }
2089 EXPORT_SYMBOL(dm_table_get_mode);
2090 
2091 enum suspend_mode {
2092 	PRESUSPEND,
2093 	PRESUSPEND_UNDO,
2094 	POSTSUSPEND,
2095 };
2096 
2097 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2098 {
2099 	int i = t->num_targets;
2100 	struct dm_target *ti = t->targets;
2101 
2102 	lockdep_assert_held(&t->md->suspend_lock);
2103 
2104 	while (i--) {
2105 		switch (mode) {
2106 		case PRESUSPEND:
2107 			if (ti->type->presuspend)
2108 				ti->type->presuspend(ti);
2109 			break;
2110 		case PRESUSPEND_UNDO:
2111 			if (ti->type->presuspend_undo)
2112 				ti->type->presuspend_undo(ti);
2113 			break;
2114 		case POSTSUSPEND:
2115 			if (ti->type->postsuspend)
2116 				ti->type->postsuspend(ti);
2117 			break;
2118 		}
2119 		ti++;
2120 	}
2121 }
2122 
2123 void dm_table_presuspend_targets(struct dm_table *t)
2124 {
2125 	if (!t)
2126 		return;
2127 
2128 	suspend_targets(t, PRESUSPEND);
2129 }
2130 
2131 void dm_table_presuspend_undo_targets(struct dm_table *t)
2132 {
2133 	if (!t)
2134 		return;
2135 
2136 	suspend_targets(t, PRESUSPEND_UNDO);
2137 }
2138 
2139 void dm_table_postsuspend_targets(struct dm_table *t)
2140 {
2141 	if (!t)
2142 		return;
2143 
2144 	suspend_targets(t, POSTSUSPEND);
2145 }
2146 
2147 int dm_table_resume_targets(struct dm_table *t)
2148 {
2149 	int i, r = 0;
2150 
2151 	lockdep_assert_held(&t->md->suspend_lock);
2152 
2153 	for (i = 0; i < t->num_targets; i++) {
2154 		struct dm_target *ti = t->targets + i;
2155 
2156 		if (!ti->type->preresume)
2157 			continue;
2158 
2159 		r = ti->type->preresume(ti);
2160 		if (r) {
2161 			DMERR("%s: %s: preresume failed, error = %d",
2162 			      dm_device_name(t->md), ti->type->name, r);
2163 			return r;
2164 		}
2165 	}
2166 
2167 	for (i = 0; i < t->num_targets; i++) {
2168 		struct dm_target *ti = t->targets + i;
2169 
2170 		if (ti->type->resume)
2171 			ti->type->resume(ti);
2172 	}
2173 
2174 	return 0;
2175 }
2176 
2177 struct mapped_device *dm_table_get_md(struct dm_table *t)
2178 {
2179 	return t->md;
2180 }
2181 EXPORT_SYMBOL(dm_table_get_md);
2182 
2183 const char *dm_table_device_name(struct dm_table *t)
2184 {
2185 	return dm_device_name(t->md);
2186 }
2187 EXPORT_SYMBOL_GPL(dm_table_device_name);
2188 
2189 void dm_table_run_md_queue_async(struct dm_table *t)
2190 {
2191 	if (!dm_table_request_based(t))
2192 		return;
2193 
2194 	if (t->md->queue)
2195 		blk_mq_run_hw_queues(t->md->queue, true);
2196 }
2197 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2198 
2199