1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 12 #include <linux/module.h> 13 #include <linux/vmalloc.h> 14 #include <linux/blkdev.h> 15 #include <linux/blk-integrity.h> 16 #include <linux/namei.h> 17 #include <linux/ctype.h> 18 #include <linux/string.h> 19 #include <linux/slab.h> 20 #include <linux/interrupt.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/atomic.h> 24 #include <linux/blk-mq.h> 25 #include <linux/mount.h> 26 #include <linux/dax.h> 27 28 #define DM_MSG_PREFIX "table" 29 30 #define NODE_SIZE L1_CACHE_BYTES 31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 33 34 /* 35 * Similar to ceiling(log_size(n)) 36 */ 37 static unsigned int int_log(unsigned int n, unsigned int base) 38 { 39 int result = 0; 40 41 while (n > 1) { 42 n = dm_div_up(n, base); 43 result++; 44 } 45 46 return result; 47 } 48 49 /* 50 * Calculate the index of the child node of the n'th node k'th key. 51 */ 52 static inline unsigned int get_child(unsigned int n, unsigned int k) 53 { 54 return (n * CHILDREN_PER_NODE) + k; 55 } 56 57 /* 58 * Return the n'th node of level l from table t. 59 */ 60 static inline sector_t *get_node(struct dm_table *t, 61 unsigned int l, unsigned int n) 62 { 63 return t->index[l] + (n * KEYS_PER_NODE); 64 } 65 66 /* 67 * Return the highest key that you could lookup from the n'th 68 * node on level l of the btree. 69 */ 70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 71 { 72 for (; l < t->depth - 1; l++) 73 n = get_child(n, CHILDREN_PER_NODE - 1); 74 75 if (n >= t->counts[l]) 76 return (sector_t) -1; 77 78 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 79 } 80 81 /* 82 * Fills in a level of the btree based on the highs of the level 83 * below it. 84 */ 85 static int setup_btree_index(unsigned int l, struct dm_table *t) 86 { 87 unsigned int n, k; 88 sector_t *node; 89 90 for (n = 0U; n < t->counts[l]; n++) { 91 node = get_node(t, l, n); 92 93 for (k = 0U; k < KEYS_PER_NODE; k++) 94 node[k] = high(t, l + 1, get_child(n, k)); 95 } 96 97 return 0; 98 } 99 100 /* 101 * highs, and targets are managed as dynamic arrays during a 102 * table load. 103 */ 104 static int alloc_targets(struct dm_table *t, unsigned int num) 105 { 106 sector_t *n_highs; 107 struct dm_target *n_targets; 108 109 /* 110 * Allocate both the target array and offset array at once. 111 */ 112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 113 GFP_KERNEL); 114 if (!n_highs) 115 return -ENOMEM; 116 117 n_targets = (struct dm_target *) (n_highs + num); 118 119 memset(n_highs, -1, sizeof(*n_highs) * num); 120 kvfree(t->highs); 121 122 t->num_allocated = num; 123 t->highs = n_highs; 124 t->targets = n_targets; 125 126 return 0; 127 } 128 129 int dm_table_create(struct dm_table **result, blk_mode_t mode, 130 unsigned int num_targets, struct mapped_device *md) 131 { 132 struct dm_table *t; 133 134 if (num_targets > DM_MAX_TARGETS) 135 return -EOVERFLOW; 136 137 t = kzalloc(sizeof(*t), GFP_KERNEL); 138 139 if (!t) 140 return -ENOMEM; 141 142 INIT_LIST_HEAD(&t->devices); 143 init_rwsem(&t->devices_lock); 144 145 if (!num_targets) 146 num_targets = KEYS_PER_NODE; 147 148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 149 150 if (!num_targets) { 151 kfree(t); 152 return -EOVERFLOW; 153 } 154 155 if (alloc_targets(t, num_targets)) { 156 kfree(t); 157 return -ENOMEM; 158 } 159 160 t->type = DM_TYPE_NONE; 161 t->mode = mode; 162 t->md = md; 163 *result = t; 164 return 0; 165 } 166 167 static void free_devices(struct list_head *devices, struct mapped_device *md) 168 { 169 struct list_head *tmp, *next; 170 171 list_for_each_safe(tmp, next, devices) { 172 struct dm_dev_internal *dd = 173 list_entry(tmp, struct dm_dev_internal, list); 174 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 175 dm_device_name(md), dd->dm_dev->name); 176 dm_put_table_device(md, dd->dm_dev); 177 kfree(dd); 178 } 179 } 180 181 static void dm_table_destroy_crypto_profile(struct dm_table *t); 182 183 void dm_table_destroy(struct dm_table *t) 184 { 185 if (!t) 186 return; 187 188 /* free the indexes */ 189 if (t->depth >= 2) 190 kvfree(t->index[t->depth - 2]); 191 192 /* free the targets */ 193 for (unsigned int i = 0; i < t->num_targets; i++) { 194 struct dm_target *ti = dm_table_get_target(t, i); 195 196 if (ti->type->dtr) 197 ti->type->dtr(ti); 198 199 dm_put_target_type(ti->type); 200 } 201 202 kvfree(t->highs); 203 204 /* free the device list */ 205 free_devices(&t->devices, t->md); 206 207 dm_free_md_mempools(t->mempools); 208 209 dm_table_destroy_crypto_profile(t); 210 211 kfree(t); 212 } 213 214 /* 215 * See if we've already got a device in the list. 216 */ 217 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 218 { 219 struct dm_dev_internal *dd; 220 221 list_for_each_entry(dd, l, list) 222 if (dd->dm_dev->bdev->bd_dev == dev) 223 return dd; 224 225 return NULL; 226 } 227 228 /* 229 * If possible, this checks an area of a destination device is invalid. 230 */ 231 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 232 sector_t start, sector_t len, void *data) 233 { 234 struct queue_limits *limits = data; 235 struct block_device *bdev = dev->bdev; 236 sector_t dev_size = bdev_nr_sectors(bdev); 237 unsigned short logical_block_size_sectors = 238 limits->logical_block_size >> SECTOR_SHIFT; 239 240 if (!dev_size) 241 return 0; 242 243 if ((start >= dev_size) || (start + len > dev_size)) { 244 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", 245 dm_device_name(ti->table->md), bdev, 246 (unsigned long long)start, 247 (unsigned long long)len, 248 (unsigned long long)dev_size); 249 return 1; 250 } 251 252 /* 253 * If the target is mapped to zoned block device(s), check 254 * that the zones are not partially mapped. 255 */ 256 if (bdev_is_zoned(bdev)) { 257 unsigned int zone_sectors = bdev_zone_sectors(bdev); 258 259 if (start & (zone_sectors - 1)) { 260 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", 261 dm_device_name(ti->table->md), 262 (unsigned long long)start, 263 zone_sectors, bdev); 264 return 1; 265 } 266 267 /* 268 * Note: The last zone of a zoned block device may be smaller 269 * than other zones. So for a target mapping the end of a 270 * zoned block device with such a zone, len would not be zone 271 * aligned. We do not allow such last smaller zone to be part 272 * of the mapping here to ensure that mappings with multiple 273 * devices do not end up with a smaller zone in the middle of 274 * the sector range. 275 */ 276 if (len & (zone_sectors - 1)) { 277 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", 278 dm_device_name(ti->table->md), 279 (unsigned long long)len, 280 zone_sectors, bdev); 281 return 1; 282 } 283 } 284 285 if (logical_block_size_sectors <= 1) 286 return 0; 287 288 if (start & (logical_block_size_sectors - 1)) { 289 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", 290 dm_device_name(ti->table->md), 291 (unsigned long long)start, 292 limits->logical_block_size, bdev); 293 return 1; 294 } 295 296 if (len & (logical_block_size_sectors - 1)) { 297 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", 298 dm_device_name(ti->table->md), 299 (unsigned long long)len, 300 limits->logical_block_size, bdev); 301 return 1; 302 } 303 304 return 0; 305 } 306 307 /* 308 * This upgrades the mode on an already open dm_dev, being 309 * careful to leave things as they were if we fail to reopen the 310 * device and not to touch the existing bdev field in case 311 * it is accessed concurrently. 312 */ 313 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, 314 struct mapped_device *md) 315 { 316 int r; 317 struct dm_dev *old_dev, *new_dev; 318 319 old_dev = dd->dm_dev; 320 321 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 322 dd->dm_dev->mode | new_mode, &new_dev); 323 if (r) 324 return r; 325 326 dd->dm_dev = new_dev; 327 dm_put_table_device(md, old_dev); 328 329 return 0; 330 } 331 332 /* 333 * Add a device to the list, or just increment the usage count if 334 * it's already present. 335 * 336 * Note: the __ref annotation is because this function can call the __init 337 * marked early_lookup_bdev when called during early boot code from dm-init.c. 338 */ 339 int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, 340 struct dm_dev **result) 341 { 342 int r; 343 dev_t dev; 344 unsigned int major, minor; 345 char dummy; 346 struct dm_dev_internal *dd; 347 struct dm_table *t = ti->table; 348 349 BUG_ON(!t); 350 351 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 352 /* Extract the major/minor numbers */ 353 dev = MKDEV(major, minor); 354 if (MAJOR(dev) != major || MINOR(dev) != minor) 355 return -EOVERFLOW; 356 } else { 357 r = lookup_bdev(path, &dev); 358 #ifndef MODULE 359 if (r && system_state < SYSTEM_RUNNING) 360 r = early_lookup_bdev(path, &dev); 361 #endif 362 if (r) 363 return r; 364 } 365 if (dev == disk_devt(t->md->disk)) 366 return -EINVAL; 367 368 down_write(&t->devices_lock); 369 370 dd = find_device(&t->devices, dev); 371 if (!dd) { 372 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 373 if (!dd) { 374 r = -ENOMEM; 375 goto unlock_ret_r; 376 } 377 378 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); 379 if (r) { 380 kfree(dd); 381 goto unlock_ret_r; 382 } 383 384 refcount_set(&dd->count, 1); 385 list_add(&dd->list, &t->devices); 386 goto out; 387 388 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 389 r = upgrade_mode(dd, mode, t->md); 390 if (r) 391 goto unlock_ret_r; 392 } 393 refcount_inc(&dd->count); 394 out: 395 up_write(&t->devices_lock); 396 *result = dd->dm_dev; 397 return 0; 398 399 unlock_ret_r: 400 up_write(&t->devices_lock); 401 return r; 402 } 403 EXPORT_SYMBOL(dm_get_device); 404 405 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 406 sector_t start, sector_t len, void *data) 407 { 408 struct queue_limits *limits = data; 409 struct block_device *bdev = dev->bdev; 410 struct request_queue *q = bdev_get_queue(bdev); 411 412 if (unlikely(!q)) { 413 DMWARN("%s: Cannot set limits for nonexistent device %pg", 414 dm_device_name(ti->table->md), bdev); 415 return 0; 416 } 417 418 if (blk_stack_limits(limits, &q->limits, 419 get_start_sect(bdev) + start) < 0) 420 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 421 "physical_block_size=%u, logical_block_size=%u, " 422 "alignment_offset=%u, start=%llu", 423 dm_device_name(ti->table->md), bdev, 424 q->limits.physical_block_size, 425 q->limits.logical_block_size, 426 q->limits.alignment_offset, 427 (unsigned long long) start << SECTOR_SHIFT); 428 return 0; 429 } 430 431 /* 432 * Decrement a device's use count and remove it if necessary. 433 */ 434 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 435 { 436 int found = 0; 437 struct dm_table *t = ti->table; 438 struct list_head *devices = &t->devices; 439 struct dm_dev_internal *dd; 440 441 down_write(&t->devices_lock); 442 443 list_for_each_entry(dd, devices, list) { 444 if (dd->dm_dev == d) { 445 found = 1; 446 break; 447 } 448 } 449 if (!found) { 450 DMERR("%s: device %s not in table devices list", 451 dm_device_name(t->md), d->name); 452 goto unlock_ret; 453 } 454 if (refcount_dec_and_test(&dd->count)) { 455 dm_put_table_device(t->md, d); 456 list_del(&dd->list); 457 kfree(dd); 458 } 459 460 unlock_ret: 461 up_write(&t->devices_lock); 462 } 463 EXPORT_SYMBOL(dm_put_device); 464 465 /* 466 * Checks to see if the target joins onto the end of the table. 467 */ 468 static int adjoin(struct dm_table *t, struct dm_target *ti) 469 { 470 struct dm_target *prev; 471 472 if (!t->num_targets) 473 return !ti->begin; 474 475 prev = &t->targets[t->num_targets - 1]; 476 return (ti->begin == (prev->begin + prev->len)); 477 } 478 479 /* 480 * Used to dynamically allocate the arg array. 481 * 482 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 483 * process messages even if some device is suspended. These messages have a 484 * small fixed number of arguments. 485 * 486 * On the other hand, dm-switch needs to process bulk data using messages and 487 * excessive use of GFP_NOIO could cause trouble. 488 */ 489 static char **realloc_argv(unsigned int *size, char **old_argv) 490 { 491 char **argv; 492 unsigned int new_size; 493 gfp_t gfp; 494 495 if (*size) { 496 new_size = *size * 2; 497 gfp = GFP_KERNEL; 498 } else { 499 new_size = 8; 500 gfp = GFP_NOIO; 501 } 502 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 503 if (argv && old_argv) { 504 memcpy(argv, old_argv, *size * sizeof(*argv)); 505 *size = new_size; 506 } 507 508 kfree(old_argv); 509 return argv; 510 } 511 512 /* 513 * Destructively splits up the argument list to pass to ctr. 514 */ 515 int dm_split_args(int *argc, char ***argvp, char *input) 516 { 517 char *start, *end = input, *out, **argv = NULL; 518 unsigned int array_size = 0; 519 520 *argc = 0; 521 522 if (!input) { 523 *argvp = NULL; 524 return 0; 525 } 526 527 argv = realloc_argv(&array_size, argv); 528 if (!argv) 529 return -ENOMEM; 530 531 while (1) { 532 /* Skip whitespace */ 533 start = skip_spaces(end); 534 535 if (!*start) 536 break; /* success, we hit the end */ 537 538 /* 'out' is used to remove any back-quotes */ 539 end = out = start; 540 while (*end) { 541 /* Everything apart from '\0' can be quoted */ 542 if (*end == '\\' && *(end + 1)) { 543 *out++ = *(end + 1); 544 end += 2; 545 continue; 546 } 547 548 if (isspace(*end)) 549 break; /* end of token */ 550 551 *out++ = *end++; 552 } 553 554 /* have we already filled the array ? */ 555 if ((*argc + 1) > array_size) { 556 argv = realloc_argv(&array_size, argv); 557 if (!argv) 558 return -ENOMEM; 559 } 560 561 /* we know this is whitespace */ 562 if (*end) 563 end++; 564 565 /* terminate the string and put it in the array */ 566 *out = '\0'; 567 argv[*argc] = start; 568 (*argc)++; 569 } 570 571 *argvp = argv; 572 return 0; 573 } 574 575 /* 576 * Impose necessary and sufficient conditions on a devices's table such 577 * that any incoming bio which respects its logical_block_size can be 578 * processed successfully. If it falls across the boundary between 579 * two or more targets, the size of each piece it gets split into must 580 * be compatible with the logical_block_size of the target processing it. 581 */ 582 static int validate_hardware_logical_block_alignment(struct dm_table *t, 583 struct queue_limits *limits) 584 { 585 /* 586 * This function uses arithmetic modulo the logical_block_size 587 * (in units of 512-byte sectors). 588 */ 589 unsigned short device_logical_block_size_sects = 590 limits->logical_block_size >> SECTOR_SHIFT; 591 592 /* 593 * Offset of the start of the next table entry, mod logical_block_size. 594 */ 595 unsigned short next_target_start = 0; 596 597 /* 598 * Given an aligned bio that extends beyond the end of a 599 * target, how many sectors must the next target handle? 600 */ 601 unsigned short remaining = 0; 602 603 struct dm_target *ti; 604 struct queue_limits ti_limits; 605 unsigned int i; 606 607 /* 608 * Check each entry in the table in turn. 609 */ 610 for (i = 0; i < t->num_targets; i++) { 611 ti = dm_table_get_target(t, i); 612 613 blk_set_stacking_limits(&ti_limits); 614 615 /* combine all target devices' limits */ 616 if (ti->type->iterate_devices) 617 ti->type->iterate_devices(ti, dm_set_device_limits, 618 &ti_limits); 619 620 /* 621 * If the remaining sectors fall entirely within this 622 * table entry are they compatible with its logical_block_size? 623 */ 624 if (remaining < ti->len && 625 remaining & ((ti_limits.logical_block_size >> 626 SECTOR_SHIFT) - 1)) 627 break; /* Error */ 628 629 next_target_start = 630 (unsigned short) ((next_target_start + ti->len) & 631 (device_logical_block_size_sects - 1)); 632 remaining = next_target_start ? 633 device_logical_block_size_sects - next_target_start : 0; 634 } 635 636 if (remaining) { 637 DMERR("%s: table line %u (start sect %llu len %llu) " 638 "not aligned to h/w logical block size %u", 639 dm_device_name(t->md), i, 640 (unsigned long long) ti->begin, 641 (unsigned long long) ti->len, 642 limits->logical_block_size); 643 return -EINVAL; 644 } 645 646 return 0; 647 } 648 649 int dm_table_add_target(struct dm_table *t, const char *type, 650 sector_t start, sector_t len, char *params) 651 { 652 int r = -EINVAL, argc; 653 char **argv; 654 struct dm_target *ti; 655 656 if (t->singleton) { 657 DMERR("%s: target type %s must appear alone in table", 658 dm_device_name(t->md), t->targets->type->name); 659 return -EINVAL; 660 } 661 662 BUG_ON(t->num_targets >= t->num_allocated); 663 664 ti = t->targets + t->num_targets; 665 memset(ti, 0, sizeof(*ti)); 666 667 if (!len) { 668 DMERR("%s: zero-length target", dm_device_name(t->md)); 669 return -EINVAL; 670 } 671 672 ti->type = dm_get_target_type(type); 673 if (!ti->type) { 674 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 675 return -EINVAL; 676 } 677 678 if (dm_target_needs_singleton(ti->type)) { 679 if (t->num_targets) { 680 ti->error = "singleton target type must appear alone in table"; 681 goto bad; 682 } 683 t->singleton = true; 684 } 685 686 if (dm_target_always_writeable(ti->type) && 687 !(t->mode & BLK_OPEN_WRITE)) { 688 ti->error = "target type may not be included in a read-only table"; 689 goto bad; 690 } 691 692 if (t->immutable_target_type) { 693 if (t->immutable_target_type != ti->type) { 694 ti->error = "immutable target type cannot be mixed with other target types"; 695 goto bad; 696 } 697 } else if (dm_target_is_immutable(ti->type)) { 698 if (t->num_targets) { 699 ti->error = "immutable target type cannot be mixed with other target types"; 700 goto bad; 701 } 702 t->immutable_target_type = ti->type; 703 } 704 705 if (dm_target_has_integrity(ti->type)) 706 t->integrity_added = 1; 707 708 ti->table = t; 709 ti->begin = start; 710 ti->len = len; 711 ti->error = "Unknown error"; 712 713 /* 714 * Does this target adjoin the previous one ? 715 */ 716 if (!adjoin(t, ti)) { 717 ti->error = "Gap in table"; 718 goto bad; 719 } 720 721 r = dm_split_args(&argc, &argv, params); 722 if (r) { 723 ti->error = "couldn't split parameters"; 724 goto bad; 725 } 726 727 r = ti->type->ctr(ti, argc, argv); 728 kfree(argv); 729 if (r) 730 goto bad; 731 732 t->highs[t->num_targets++] = ti->begin + ti->len - 1; 733 734 if (!ti->num_discard_bios && ti->discards_supported) 735 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 736 dm_device_name(t->md), type); 737 738 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 739 static_branch_enable(&swap_bios_enabled); 740 741 return 0; 742 743 bad: 744 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); 745 dm_put_target_type(ti->type); 746 return r; 747 } 748 749 /* 750 * Target argument parsing helpers. 751 */ 752 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 753 unsigned int *value, char **error, unsigned int grouped) 754 { 755 const char *arg_str = dm_shift_arg(arg_set); 756 char dummy; 757 758 if (!arg_str || 759 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 760 (*value < arg->min) || 761 (*value > arg->max) || 762 (grouped && arg_set->argc < *value)) { 763 *error = arg->error; 764 return -EINVAL; 765 } 766 767 return 0; 768 } 769 770 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 771 unsigned int *value, char **error) 772 { 773 return validate_next_arg(arg, arg_set, value, error, 0); 774 } 775 EXPORT_SYMBOL(dm_read_arg); 776 777 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 778 unsigned int *value, char **error) 779 { 780 return validate_next_arg(arg, arg_set, value, error, 1); 781 } 782 EXPORT_SYMBOL(dm_read_arg_group); 783 784 const char *dm_shift_arg(struct dm_arg_set *as) 785 { 786 char *r; 787 788 if (as->argc) { 789 as->argc--; 790 r = *as->argv; 791 as->argv++; 792 return r; 793 } 794 795 return NULL; 796 } 797 EXPORT_SYMBOL(dm_shift_arg); 798 799 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) 800 { 801 BUG_ON(as->argc < num_args); 802 as->argc -= num_args; 803 as->argv += num_args; 804 } 805 EXPORT_SYMBOL(dm_consume_args); 806 807 static bool __table_type_bio_based(enum dm_queue_mode table_type) 808 { 809 return (table_type == DM_TYPE_BIO_BASED || 810 table_type == DM_TYPE_DAX_BIO_BASED); 811 } 812 813 static bool __table_type_request_based(enum dm_queue_mode table_type) 814 { 815 return table_type == DM_TYPE_REQUEST_BASED; 816 } 817 818 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 819 { 820 t->type = type; 821 } 822 EXPORT_SYMBOL_GPL(dm_table_set_type); 823 824 /* validate the dax capability of the target device span */ 825 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 826 sector_t start, sector_t len, void *data) 827 { 828 if (dev->dax_dev) 829 return false; 830 831 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 832 return true; 833 } 834 835 /* Check devices support synchronous DAX */ 836 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 837 sector_t start, sector_t len, void *data) 838 { 839 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 840 } 841 842 static bool dm_table_supports_dax(struct dm_table *t, 843 iterate_devices_callout_fn iterate_fn) 844 { 845 /* Ensure that all targets support DAX. */ 846 for (unsigned int i = 0; i < t->num_targets; i++) { 847 struct dm_target *ti = dm_table_get_target(t, i); 848 849 if (!ti->type->direct_access) 850 return false; 851 852 if (!ti->type->iterate_devices || 853 ti->type->iterate_devices(ti, iterate_fn, NULL)) 854 return false; 855 } 856 857 return true; 858 } 859 860 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 861 sector_t start, sector_t len, void *data) 862 { 863 struct block_device *bdev = dev->bdev; 864 struct request_queue *q = bdev_get_queue(bdev); 865 866 /* request-based cannot stack on partitions! */ 867 if (bdev_is_partition(bdev)) 868 return false; 869 870 return queue_is_mq(q); 871 } 872 873 static int dm_table_determine_type(struct dm_table *t) 874 { 875 unsigned int bio_based = 0, request_based = 0, hybrid = 0; 876 struct dm_target *ti; 877 struct list_head *devices = dm_table_get_devices(t); 878 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 879 880 if (t->type != DM_TYPE_NONE) { 881 /* target already set the table's type */ 882 if (t->type == DM_TYPE_BIO_BASED) { 883 /* possibly upgrade to a variant of bio-based */ 884 goto verify_bio_based; 885 } 886 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 887 goto verify_rq_based; 888 } 889 890 for (unsigned int i = 0; i < t->num_targets; i++) { 891 ti = dm_table_get_target(t, i); 892 if (dm_target_hybrid(ti)) 893 hybrid = 1; 894 else if (dm_target_request_based(ti)) 895 request_based = 1; 896 else 897 bio_based = 1; 898 899 if (bio_based && request_based) { 900 DMERR("Inconsistent table: different target types can't be mixed up"); 901 return -EINVAL; 902 } 903 } 904 905 if (hybrid && !bio_based && !request_based) { 906 /* 907 * The targets can work either way. 908 * Determine the type from the live device. 909 * Default to bio-based if device is new. 910 */ 911 if (__table_type_request_based(live_md_type)) 912 request_based = 1; 913 else 914 bio_based = 1; 915 } 916 917 if (bio_based) { 918 verify_bio_based: 919 /* We must use this table as bio-based */ 920 t->type = DM_TYPE_BIO_BASED; 921 if (dm_table_supports_dax(t, device_not_dax_capable) || 922 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 923 t->type = DM_TYPE_DAX_BIO_BASED; 924 } 925 return 0; 926 } 927 928 BUG_ON(!request_based); /* No targets in this table */ 929 930 t->type = DM_TYPE_REQUEST_BASED; 931 932 verify_rq_based: 933 /* 934 * Request-based dm supports only tables that have a single target now. 935 * To support multiple targets, request splitting support is needed, 936 * and that needs lots of changes in the block-layer. 937 * (e.g. request completion process for partial completion.) 938 */ 939 if (t->num_targets > 1) { 940 DMERR("request-based DM doesn't support multiple targets"); 941 return -EINVAL; 942 } 943 944 if (list_empty(devices)) { 945 int srcu_idx; 946 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 947 948 /* inherit live table's type */ 949 if (live_table) 950 t->type = live_table->type; 951 dm_put_live_table(t->md, srcu_idx); 952 return 0; 953 } 954 955 ti = dm_table_get_immutable_target(t); 956 if (!ti) { 957 DMERR("table load rejected: immutable target is required"); 958 return -EINVAL; 959 } else if (ti->max_io_len) { 960 DMERR("table load rejected: immutable target that splits IO is not supported"); 961 return -EINVAL; 962 } 963 964 /* Non-request-stackable devices can't be used for request-based dm */ 965 if (!ti->type->iterate_devices || 966 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { 967 DMERR("table load rejected: including non-request-stackable devices"); 968 return -EINVAL; 969 } 970 971 return 0; 972 } 973 974 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 975 { 976 return t->type; 977 } 978 979 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 980 { 981 return t->immutable_target_type; 982 } 983 984 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 985 { 986 /* Immutable target is implicitly a singleton */ 987 if (t->num_targets > 1 || 988 !dm_target_is_immutable(t->targets[0].type)) 989 return NULL; 990 991 return t->targets; 992 } 993 994 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 995 { 996 for (unsigned int i = 0; i < t->num_targets; i++) { 997 struct dm_target *ti = dm_table_get_target(t, i); 998 999 if (dm_target_is_wildcard(ti->type)) 1000 return ti; 1001 } 1002 1003 return NULL; 1004 } 1005 1006 bool dm_table_bio_based(struct dm_table *t) 1007 { 1008 return __table_type_bio_based(dm_table_get_type(t)); 1009 } 1010 1011 bool dm_table_request_based(struct dm_table *t) 1012 { 1013 return __table_type_request_based(dm_table_get_type(t)); 1014 } 1015 1016 static bool dm_table_supports_poll(struct dm_table *t); 1017 1018 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1019 { 1020 enum dm_queue_mode type = dm_table_get_type(t); 1021 unsigned int per_io_data_size = 0, front_pad, io_front_pad; 1022 unsigned int min_pool_size = 0, pool_size; 1023 struct dm_md_mempools *pools; 1024 1025 if (unlikely(type == DM_TYPE_NONE)) { 1026 DMERR("no table type is set, can't allocate mempools"); 1027 return -EINVAL; 1028 } 1029 1030 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 1031 if (!pools) 1032 return -ENOMEM; 1033 1034 if (type == DM_TYPE_REQUEST_BASED) { 1035 pool_size = dm_get_reserved_rq_based_ios(); 1036 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 1037 goto init_bs; 1038 } 1039 1040 for (unsigned int i = 0; i < t->num_targets; i++) { 1041 struct dm_target *ti = dm_table_get_target(t, i); 1042 1043 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1044 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1045 } 1046 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 1047 front_pad = roundup(per_io_data_size, 1048 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; 1049 1050 io_front_pad = roundup(per_io_data_size, 1051 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; 1052 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, 1053 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0)) 1054 goto out_free_pools; 1055 if (t->integrity_supported && 1056 bioset_integrity_create(&pools->io_bs, pool_size)) 1057 goto out_free_pools; 1058 init_bs: 1059 if (bioset_init(&pools->bs, pool_size, front_pad, 0)) 1060 goto out_free_pools; 1061 if (t->integrity_supported && 1062 bioset_integrity_create(&pools->bs, pool_size)) 1063 goto out_free_pools; 1064 1065 t->mempools = pools; 1066 return 0; 1067 1068 out_free_pools: 1069 dm_free_md_mempools(pools); 1070 return -ENOMEM; 1071 } 1072 1073 static int setup_indexes(struct dm_table *t) 1074 { 1075 int i; 1076 unsigned int total = 0; 1077 sector_t *indexes; 1078 1079 /* allocate the space for *all* the indexes */ 1080 for (i = t->depth - 2; i >= 0; i--) { 1081 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1082 total += t->counts[i]; 1083 } 1084 1085 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1086 if (!indexes) 1087 return -ENOMEM; 1088 1089 /* set up internal nodes, bottom-up */ 1090 for (i = t->depth - 2; i >= 0; i--) { 1091 t->index[i] = indexes; 1092 indexes += (KEYS_PER_NODE * t->counts[i]); 1093 setup_btree_index(i, t); 1094 } 1095 1096 return 0; 1097 } 1098 1099 /* 1100 * Builds the btree to index the map. 1101 */ 1102 static int dm_table_build_index(struct dm_table *t) 1103 { 1104 int r = 0; 1105 unsigned int leaf_nodes; 1106 1107 /* how many indexes will the btree have ? */ 1108 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1109 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1110 1111 /* leaf layer has already been set up */ 1112 t->counts[t->depth - 1] = leaf_nodes; 1113 t->index[t->depth - 1] = t->highs; 1114 1115 if (t->depth >= 2) 1116 r = setup_indexes(t); 1117 1118 return r; 1119 } 1120 1121 static bool integrity_profile_exists(struct gendisk *disk) 1122 { 1123 return !!blk_get_integrity(disk); 1124 } 1125 1126 /* 1127 * Get a disk whose integrity profile reflects the table's profile. 1128 * Returns NULL if integrity support was inconsistent or unavailable. 1129 */ 1130 static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t) 1131 { 1132 struct list_head *devices = dm_table_get_devices(t); 1133 struct dm_dev_internal *dd = NULL; 1134 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1135 1136 for (unsigned int i = 0; i < t->num_targets; i++) { 1137 struct dm_target *ti = dm_table_get_target(t, i); 1138 1139 if (!dm_target_passes_integrity(ti->type)) 1140 goto no_integrity; 1141 } 1142 1143 list_for_each_entry(dd, devices, list) { 1144 template_disk = dd->dm_dev->bdev->bd_disk; 1145 if (!integrity_profile_exists(template_disk)) 1146 goto no_integrity; 1147 else if (prev_disk && 1148 blk_integrity_compare(prev_disk, template_disk) < 0) 1149 goto no_integrity; 1150 prev_disk = template_disk; 1151 } 1152 1153 return template_disk; 1154 1155 no_integrity: 1156 if (prev_disk) 1157 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1158 dm_device_name(t->md), 1159 prev_disk->disk_name, 1160 template_disk->disk_name); 1161 return NULL; 1162 } 1163 1164 /* 1165 * Register the mapped device for blk_integrity support if the 1166 * underlying devices have an integrity profile. But all devices may 1167 * not have matching profiles (checking all devices isn't reliable 1168 * during table load because this table may use other DM device(s) which 1169 * must be resumed before they will have an initialized integity 1170 * profile). Consequently, stacked DM devices force a 2 stage integrity 1171 * profile validation: First pass during table load, final pass during 1172 * resume. 1173 */ 1174 static int dm_table_register_integrity(struct dm_table *t) 1175 { 1176 struct mapped_device *md = t->md; 1177 struct gendisk *template_disk = NULL; 1178 1179 /* If target handles integrity itself do not register it here. */ 1180 if (t->integrity_added) 1181 return 0; 1182 1183 template_disk = dm_table_get_integrity_disk(t); 1184 if (!template_disk) 1185 return 0; 1186 1187 if (!integrity_profile_exists(dm_disk(md))) { 1188 t->integrity_supported = true; 1189 /* 1190 * Register integrity profile during table load; we can do 1191 * this because the final profile must match during resume. 1192 */ 1193 blk_integrity_register(dm_disk(md), 1194 blk_get_integrity(template_disk)); 1195 return 0; 1196 } 1197 1198 /* 1199 * If DM device already has an initialized integrity 1200 * profile the new profile should not conflict. 1201 */ 1202 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1203 DMERR("%s: conflict with existing integrity profile: %s profile mismatch", 1204 dm_device_name(t->md), 1205 template_disk->disk_name); 1206 return 1; 1207 } 1208 1209 /* Preserve existing integrity profile */ 1210 t->integrity_supported = true; 1211 return 0; 1212 } 1213 1214 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1215 1216 struct dm_crypto_profile { 1217 struct blk_crypto_profile profile; 1218 struct mapped_device *md; 1219 }; 1220 1221 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1222 sector_t start, sector_t len, void *data) 1223 { 1224 const struct blk_crypto_key *key = data; 1225 1226 blk_crypto_evict_key(dev->bdev, key); 1227 return 0; 1228 } 1229 1230 /* 1231 * When an inline encryption key is evicted from a device-mapper device, evict 1232 * it from all the underlying devices. 1233 */ 1234 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1235 const struct blk_crypto_key *key, unsigned int slot) 1236 { 1237 struct mapped_device *md = 1238 container_of(profile, struct dm_crypto_profile, profile)->md; 1239 struct dm_table *t; 1240 int srcu_idx; 1241 1242 t = dm_get_live_table(md, &srcu_idx); 1243 if (!t) 1244 return 0; 1245 1246 for (unsigned int i = 0; i < t->num_targets; i++) { 1247 struct dm_target *ti = dm_table_get_target(t, i); 1248 1249 if (!ti->type->iterate_devices) 1250 continue; 1251 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, 1252 (void *)key); 1253 } 1254 1255 dm_put_live_table(md, srcu_idx); 1256 return 0; 1257 } 1258 1259 static int 1260 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1261 sector_t start, sector_t len, void *data) 1262 { 1263 struct blk_crypto_profile *parent = data; 1264 struct blk_crypto_profile *child = 1265 bdev_get_queue(dev->bdev)->crypto_profile; 1266 1267 blk_crypto_intersect_capabilities(parent, child); 1268 return 0; 1269 } 1270 1271 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1272 { 1273 struct dm_crypto_profile *dmcp = container_of(profile, 1274 struct dm_crypto_profile, 1275 profile); 1276 1277 if (!profile) 1278 return; 1279 1280 blk_crypto_profile_destroy(profile); 1281 kfree(dmcp); 1282 } 1283 1284 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1285 { 1286 dm_destroy_crypto_profile(t->crypto_profile); 1287 t->crypto_profile = NULL; 1288 } 1289 1290 /* 1291 * Constructs and initializes t->crypto_profile with a crypto profile that 1292 * represents the common set of crypto capabilities of the devices described by 1293 * the dm_table. However, if the constructed crypto profile doesn't support all 1294 * crypto capabilities that are supported by the current mapped_device, it 1295 * returns an error instead, since we don't support removing crypto capabilities 1296 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1297 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1298 */ 1299 static int dm_table_construct_crypto_profile(struct dm_table *t) 1300 { 1301 struct dm_crypto_profile *dmcp; 1302 struct blk_crypto_profile *profile; 1303 unsigned int i; 1304 bool empty_profile = true; 1305 1306 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1307 if (!dmcp) 1308 return -ENOMEM; 1309 dmcp->md = t->md; 1310 1311 profile = &dmcp->profile; 1312 blk_crypto_profile_init(profile, 0); 1313 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1314 profile->max_dun_bytes_supported = UINT_MAX; 1315 memset(profile->modes_supported, 0xFF, 1316 sizeof(profile->modes_supported)); 1317 1318 for (i = 0; i < t->num_targets; i++) { 1319 struct dm_target *ti = dm_table_get_target(t, i); 1320 1321 if (!dm_target_passes_crypto(ti->type)) { 1322 blk_crypto_intersect_capabilities(profile, NULL); 1323 break; 1324 } 1325 if (!ti->type->iterate_devices) 1326 continue; 1327 ti->type->iterate_devices(ti, 1328 device_intersect_crypto_capabilities, 1329 profile); 1330 } 1331 1332 if (t->md->queue && 1333 !blk_crypto_has_capabilities(profile, 1334 t->md->queue->crypto_profile)) { 1335 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1336 dm_destroy_crypto_profile(profile); 1337 return -EINVAL; 1338 } 1339 1340 /* 1341 * If the new profile doesn't actually support any crypto capabilities, 1342 * we may as well represent it with a NULL profile. 1343 */ 1344 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1345 if (profile->modes_supported[i]) { 1346 empty_profile = false; 1347 break; 1348 } 1349 } 1350 1351 if (empty_profile) { 1352 dm_destroy_crypto_profile(profile); 1353 profile = NULL; 1354 } 1355 1356 /* 1357 * t->crypto_profile is only set temporarily while the table is being 1358 * set up, and it gets set to NULL after the profile has been 1359 * transferred to the request_queue. 1360 */ 1361 t->crypto_profile = profile; 1362 1363 return 0; 1364 } 1365 1366 static void dm_update_crypto_profile(struct request_queue *q, 1367 struct dm_table *t) 1368 { 1369 if (!t->crypto_profile) 1370 return; 1371 1372 /* Make the crypto profile less restrictive. */ 1373 if (!q->crypto_profile) { 1374 blk_crypto_register(t->crypto_profile, q); 1375 } else { 1376 blk_crypto_update_capabilities(q->crypto_profile, 1377 t->crypto_profile); 1378 dm_destroy_crypto_profile(t->crypto_profile); 1379 } 1380 t->crypto_profile = NULL; 1381 } 1382 1383 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1384 1385 static int dm_table_construct_crypto_profile(struct dm_table *t) 1386 { 1387 return 0; 1388 } 1389 1390 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1391 { 1392 } 1393 1394 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1395 { 1396 } 1397 1398 static void dm_update_crypto_profile(struct request_queue *q, 1399 struct dm_table *t) 1400 { 1401 } 1402 1403 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1404 1405 /* 1406 * Prepares the table for use by building the indices, 1407 * setting the type, and allocating mempools. 1408 */ 1409 int dm_table_complete(struct dm_table *t) 1410 { 1411 int r; 1412 1413 r = dm_table_determine_type(t); 1414 if (r) { 1415 DMERR("unable to determine table type"); 1416 return r; 1417 } 1418 1419 r = dm_table_build_index(t); 1420 if (r) { 1421 DMERR("unable to build btrees"); 1422 return r; 1423 } 1424 1425 r = dm_table_register_integrity(t); 1426 if (r) { 1427 DMERR("could not register integrity profile."); 1428 return r; 1429 } 1430 1431 r = dm_table_construct_crypto_profile(t); 1432 if (r) { 1433 DMERR("could not construct crypto profile."); 1434 return r; 1435 } 1436 1437 r = dm_table_alloc_md_mempools(t, t->md); 1438 if (r) 1439 DMERR("unable to allocate mempools"); 1440 1441 return r; 1442 } 1443 1444 static DEFINE_MUTEX(_event_lock); 1445 void dm_table_event_callback(struct dm_table *t, 1446 void (*fn)(void *), void *context) 1447 { 1448 mutex_lock(&_event_lock); 1449 t->event_fn = fn; 1450 t->event_context = context; 1451 mutex_unlock(&_event_lock); 1452 } 1453 1454 void dm_table_event(struct dm_table *t) 1455 { 1456 mutex_lock(&_event_lock); 1457 if (t->event_fn) 1458 t->event_fn(t->event_context); 1459 mutex_unlock(&_event_lock); 1460 } 1461 EXPORT_SYMBOL(dm_table_event); 1462 1463 inline sector_t dm_table_get_size(struct dm_table *t) 1464 { 1465 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1466 } 1467 EXPORT_SYMBOL(dm_table_get_size); 1468 1469 /* 1470 * Search the btree for the correct target. 1471 * 1472 * Caller should check returned pointer for NULL 1473 * to trap I/O beyond end of device. 1474 */ 1475 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1476 { 1477 unsigned int l, n = 0, k = 0; 1478 sector_t *node; 1479 1480 if (unlikely(sector >= dm_table_get_size(t))) 1481 return NULL; 1482 1483 for (l = 0; l < t->depth; l++) { 1484 n = get_child(n, k); 1485 node = get_node(t, l, n); 1486 1487 for (k = 0; k < KEYS_PER_NODE; k++) 1488 if (node[k] >= sector) 1489 break; 1490 } 1491 1492 return &t->targets[(KEYS_PER_NODE * n) + k]; 1493 } 1494 1495 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev, 1496 sector_t start, sector_t len, void *data) 1497 { 1498 struct request_queue *q = bdev_get_queue(dev->bdev); 1499 1500 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags); 1501 } 1502 1503 /* 1504 * type->iterate_devices() should be called when the sanity check needs to 1505 * iterate and check all underlying data devices. iterate_devices() will 1506 * iterate all underlying data devices until it encounters a non-zero return 1507 * code, returned by whether the input iterate_devices_callout_fn, or 1508 * iterate_devices() itself internally. 1509 * 1510 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1511 * iterate multiple underlying devices internally, in which case a non-zero 1512 * return code returned by iterate_devices_callout_fn will stop the iteration 1513 * in advance. 1514 * 1515 * Cases requiring _any_ underlying device supporting some kind of attribute, 1516 * should use the iteration structure like dm_table_any_dev_attr(), or call 1517 * it directly. @func should handle semantics of positive examples, e.g. 1518 * capable of something. 1519 * 1520 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1521 * should use the iteration structure like dm_table_supports_nowait() or 1522 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1523 * uses an @anti_func that handle semantics of counter examples, e.g. not 1524 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1525 */ 1526 static bool dm_table_any_dev_attr(struct dm_table *t, 1527 iterate_devices_callout_fn func, void *data) 1528 { 1529 for (unsigned int i = 0; i < t->num_targets; i++) { 1530 struct dm_target *ti = dm_table_get_target(t, i); 1531 1532 if (ti->type->iterate_devices && 1533 ti->type->iterate_devices(ti, func, data)) 1534 return true; 1535 } 1536 1537 return false; 1538 } 1539 1540 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1541 sector_t start, sector_t len, void *data) 1542 { 1543 unsigned int *num_devices = data; 1544 1545 (*num_devices)++; 1546 1547 return 0; 1548 } 1549 1550 static bool dm_table_supports_poll(struct dm_table *t) 1551 { 1552 for (unsigned int i = 0; i < t->num_targets; i++) { 1553 struct dm_target *ti = dm_table_get_target(t, i); 1554 1555 if (!ti->type->iterate_devices || 1556 ti->type->iterate_devices(ti, device_not_poll_capable, NULL)) 1557 return false; 1558 } 1559 1560 return true; 1561 } 1562 1563 /* 1564 * Check whether a table has no data devices attached using each 1565 * target's iterate_devices method. 1566 * Returns false if the result is unknown because a target doesn't 1567 * support iterate_devices. 1568 */ 1569 bool dm_table_has_no_data_devices(struct dm_table *t) 1570 { 1571 for (unsigned int i = 0; i < t->num_targets; i++) { 1572 struct dm_target *ti = dm_table_get_target(t, i); 1573 unsigned int num_devices = 0; 1574 1575 if (!ti->type->iterate_devices) 1576 return false; 1577 1578 ti->type->iterate_devices(ti, count_device, &num_devices); 1579 if (num_devices) 1580 return false; 1581 } 1582 1583 return true; 1584 } 1585 1586 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1587 sector_t start, sector_t len, void *data) 1588 { 1589 struct request_queue *q = bdev_get_queue(dev->bdev); 1590 enum blk_zoned_model *zoned_model = data; 1591 1592 return blk_queue_zoned_model(q) != *zoned_model; 1593 } 1594 1595 /* 1596 * Check the device zoned model based on the target feature flag. If the target 1597 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1598 * also accepted but all devices must have the same zoned model. If the target 1599 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1600 * zoned model with all zoned devices having the same zone size. 1601 */ 1602 static bool dm_table_supports_zoned_model(struct dm_table *t, 1603 enum blk_zoned_model zoned_model) 1604 { 1605 for (unsigned int i = 0; i < t->num_targets; i++) { 1606 struct dm_target *ti = dm_table_get_target(t, i); 1607 1608 if (dm_target_supports_zoned_hm(ti->type)) { 1609 if (!ti->type->iterate_devices || 1610 ti->type->iterate_devices(ti, device_not_zoned_model, 1611 &zoned_model)) 1612 return false; 1613 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1614 if (zoned_model == BLK_ZONED_HM) 1615 return false; 1616 } 1617 } 1618 1619 return true; 1620 } 1621 1622 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1623 sector_t start, sector_t len, void *data) 1624 { 1625 unsigned int *zone_sectors = data; 1626 1627 if (!bdev_is_zoned(dev->bdev)) 1628 return 0; 1629 return bdev_zone_sectors(dev->bdev) != *zone_sectors; 1630 } 1631 1632 /* 1633 * Check consistency of zoned model and zone sectors across all targets. For 1634 * zone sectors, if the destination device is a zoned block device, it shall 1635 * have the specified zone_sectors. 1636 */ 1637 static int validate_hardware_zoned_model(struct dm_table *t, 1638 enum blk_zoned_model zoned_model, 1639 unsigned int zone_sectors) 1640 { 1641 if (zoned_model == BLK_ZONED_NONE) 1642 return 0; 1643 1644 if (!dm_table_supports_zoned_model(t, zoned_model)) { 1645 DMERR("%s: zoned model is not consistent across all devices", 1646 dm_device_name(t->md)); 1647 return -EINVAL; 1648 } 1649 1650 /* Check zone size validity and compatibility */ 1651 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1652 return -EINVAL; 1653 1654 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { 1655 DMERR("%s: zone sectors is not consistent across all zoned devices", 1656 dm_device_name(t->md)); 1657 return -EINVAL; 1658 } 1659 1660 return 0; 1661 } 1662 1663 /* 1664 * Establish the new table's queue_limits and validate them. 1665 */ 1666 int dm_calculate_queue_limits(struct dm_table *t, 1667 struct queue_limits *limits) 1668 { 1669 struct queue_limits ti_limits; 1670 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1671 unsigned int zone_sectors = 0; 1672 1673 blk_set_stacking_limits(limits); 1674 1675 for (unsigned int i = 0; i < t->num_targets; i++) { 1676 struct dm_target *ti = dm_table_get_target(t, i); 1677 1678 blk_set_stacking_limits(&ti_limits); 1679 1680 if (!ti->type->iterate_devices) { 1681 /* Set I/O hints portion of queue limits */ 1682 if (ti->type->io_hints) 1683 ti->type->io_hints(ti, &ti_limits); 1684 goto combine_limits; 1685 } 1686 1687 /* 1688 * Combine queue limits of all the devices this target uses. 1689 */ 1690 ti->type->iterate_devices(ti, dm_set_device_limits, 1691 &ti_limits); 1692 1693 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1694 /* 1695 * After stacking all limits, validate all devices 1696 * in table support this zoned model and zone sectors. 1697 */ 1698 zoned_model = ti_limits.zoned; 1699 zone_sectors = ti_limits.chunk_sectors; 1700 } 1701 1702 /* Set I/O hints portion of queue limits */ 1703 if (ti->type->io_hints) 1704 ti->type->io_hints(ti, &ti_limits); 1705 1706 /* 1707 * Check each device area is consistent with the target's 1708 * overall queue limits. 1709 */ 1710 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1711 &ti_limits)) 1712 return -EINVAL; 1713 1714 combine_limits: 1715 /* 1716 * Merge this target's queue limits into the overall limits 1717 * for the table. 1718 */ 1719 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1720 DMWARN("%s: adding target device (start sect %llu len %llu) " 1721 "caused an alignment inconsistency", 1722 dm_device_name(t->md), 1723 (unsigned long long) ti->begin, 1724 (unsigned long long) ti->len); 1725 } 1726 1727 /* 1728 * Verify that the zoned model and zone sectors, as determined before 1729 * any .io_hints override, are the same across all devices in the table. 1730 * - this is especially relevant if .io_hints is emulating a disk-managed 1731 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1732 * BUT... 1733 */ 1734 if (limits->zoned != BLK_ZONED_NONE) { 1735 /* 1736 * ...IF the above limits stacking determined a zoned model 1737 * validate that all of the table's devices conform to it. 1738 */ 1739 zoned_model = limits->zoned; 1740 zone_sectors = limits->chunk_sectors; 1741 } 1742 if (validate_hardware_zoned_model(t, zoned_model, zone_sectors)) 1743 return -EINVAL; 1744 1745 return validate_hardware_logical_block_alignment(t, limits); 1746 } 1747 1748 /* 1749 * Verify that all devices have an integrity profile that matches the 1750 * DM device's registered integrity profile. If the profiles don't 1751 * match then unregister the DM device's integrity profile. 1752 */ 1753 static void dm_table_verify_integrity(struct dm_table *t) 1754 { 1755 struct gendisk *template_disk = NULL; 1756 1757 if (t->integrity_added) 1758 return; 1759 1760 if (t->integrity_supported) { 1761 /* 1762 * Verify that the original integrity profile 1763 * matches all the devices in this table. 1764 */ 1765 template_disk = dm_table_get_integrity_disk(t); 1766 if (template_disk && 1767 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1768 return; 1769 } 1770 1771 if (integrity_profile_exists(dm_disk(t->md))) { 1772 DMWARN("%s: unable to establish an integrity profile", 1773 dm_device_name(t->md)); 1774 blk_integrity_unregister(dm_disk(t->md)); 1775 } 1776 } 1777 1778 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1779 sector_t start, sector_t len, void *data) 1780 { 1781 unsigned long flush = (unsigned long) data; 1782 struct request_queue *q = bdev_get_queue(dev->bdev); 1783 1784 return (q->queue_flags & flush); 1785 } 1786 1787 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1788 { 1789 /* 1790 * Require at least one underlying device to support flushes. 1791 * t->devices includes internal dm devices such as mirror logs 1792 * so we need to use iterate_devices here, which targets 1793 * supporting flushes must provide. 1794 */ 1795 for (unsigned int i = 0; i < t->num_targets; i++) { 1796 struct dm_target *ti = dm_table_get_target(t, i); 1797 1798 if (!ti->num_flush_bios) 1799 continue; 1800 1801 if (ti->flush_supported) 1802 return true; 1803 1804 if (ti->type->iterate_devices && 1805 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1806 return true; 1807 } 1808 1809 return false; 1810 } 1811 1812 static int device_dax_write_cache_enabled(struct dm_target *ti, 1813 struct dm_dev *dev, sector_t start, 1814 sector_t len, void *data) 1815 { 1816 struct dax_device *dax_dev = dev->dax_dev; 1817 1818 if (!dax_dev) 1819 return false; 1820 1821 if (dax_write_cache_enabled(dax_dev)) 1822 return true; 1823 return false; 1824 } 1825 1826 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, 1827 sector_t start, sector_t len, void *data) 1828 { 1829 return !bdev_nonrot(dev->bdev); 1830 } 1831 1832 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1833 sector_t start, sector_t len, void *data) 1834 { 1835 struct request_queue *q = bdev_get_queue(dev->bdev); 1836 1837 return !blk_queue_add_random(q); 1838 } 1839 1840 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1841 sector_t start, sector_t len, void *data) 1842 { 1843 struct request_queue *q = bdev_get_queue(dev->bdev); 1844 1845 return !q->limits.max_write_zeroes_sectors; 1846 } 1847 1848 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1849 { 1850 for (unsigned int i = 0; i < t->num_targets; i++) { 1851 struct dm_target *ti = dm_table_get_target(t, i); 1852 1853 if (!ti->num_write_zeroes_bios) 1854 return false; 1855 1856 if (!ti->type->iterate_devices || 1857 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1858 return false; 1859 } 1860 1861 return true; 1862 } 1863 1864 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1865 sector_t start, sector_t len, void *data) 1866 { 1867 return !bdev_nowait(dev->bdev); 1868 } 1869 1870 static bool dm_table_supports_nowait(struct dm_table *t) 1871 { 1872 for (unsigned int i = 0; i < t->num_targets; i++) { 1873 struct dm_target *ti = dm_table_get_target(t, i); 1874 1875 if (!dm_target_supports_nowait(ti->type)) 1876 return false; 1877 1878 if (!ti->type->iterate_devices || 1879 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1880 return false; 1881 } 1882 1883 return true; 1884 } 1885 1886 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1887 sector_t start, sector_t len, void *data) 1888 { 1889 return !bdev_max_discard_sectors(dev->bdev); 1890 } 1891 1892 static bool dm_table_supports_discards(struct dm_table *t) 1893 { 1894 for (unsigned int i = 0; i < t->num_targets; i++) { 1895 struct dm_target *ti = dm_table_get_target(t, i); 1896 1897 if (!ti->num_discard_bios) 1898 return false; 1899 1900 /* 1901 * Either the target provides discard support (as implied by setting 1902 * 'discards_supported') or it relies on _all_ data devices having 1903 * discard support. 1904 */ 1905 if (!ti->discards_supported && 1906 (!ti->type->iterate_devices || 1907 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1908 return false; 1909 } 1910 1911 return true; 1912 } 1913 1914 static int device_not_secure_erase_capable(struct dm_target *ti, 1915 struct dm_dev *dev, sector_t start, 1916 sector_t len, void *data) 1917 { 1918 return !bdev_max_secure_erase_sectors(dev->bdev); 1919 } 1920 1921 static bool dm_table_supports_secure_erase(struct dm_table *t) 1922 { 1923 for (unsigned int i = 0; i < t->num_targets; i++) { 1924 struct dm_target *ti = dm_table_get_target(t, i); 1925 1926 if (!ti->num_secure_erase_bios) 1927 return false; 1928 1929 if (!ti->type->iterate_devices || 1930 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1931 return false; 1932 } 1933 1934 return true; 1935 } 1936 1937 static int device_requires_stable_pages(struct dm_target *ti, 1938 struct dm_dev *dev, sector_t start, 1939 sector_t len, void *data) 1940 { 1941 return bdev_stable_writes(dev->bdev); 1942 } 1943 1944 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1945 struct queue_limits *limits) 1946 { 1947 bool wc = false, fua = false; 1948 int r; 1949 1950 /* 1951 * Copy table's limits to the DM device's request_queue 1952 */ 1953 q->limits = *limits; 1954 1955 if (dm_table_supports_nowait(t)) 1956 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1957 else 1958 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1959 1960 if (!dm_table_supports_discards(t)) { 1961 q->limits.max_discard_sectors = 0; 1962 q->limits.max_hw_discard_sectors = 0; 1963 q->limits.discard_granularity = 0; 1964 q->limits.discard_alignment = 0; 1965 q->limits.discard_misaligned = 0; 1966 } 1967 1968 if (!dm_table_supports_secure_erase(t)) 1969 q->limits.max_secure_erase_sectors = 0; 1970 1971 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1972 wc = true; 1973 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1974 fua = true; 1975 } 1976 blk_queue_write_cache(q, wc, fua); 1977 1978 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1979 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1980 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 1981 set_dax_synchronous(t->md->dax_dev); 1982 } else 1983 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 1984 1985 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 1986 dax_write_cache(t->md->dax_dev, true); 1987 1988 /* Ensure that all underlying devices are non-rotational. */ 1989 if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) 1990 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 1991 else 1992 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 1993 1994 if (!dm_table_supports_write_zeroes(t)) 1995 q->limits.max_write_zeroes_sectors = 0; 1996 1997 dm_table_verify_integrity(t); 1998 1999 /* 2000 * Some devices don't use blk_integrity but still want stable pages 2001 * because they do their own checksumming. 2002 * If any underlying device requires stable pages, a table must require 2003 * them as well. Only targets that support iterate_devices are considered: 2004 * don't want error, zero, etc to require stable pages. 2005 */ 2006 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) 2007 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 2008 else 2009 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 2010 2011 /* 2012 * Determine whether or not this queue's I/O timings contribute 2013 * to the entropy pool, Only request-based targets use this. 2014 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 2015 * have it set. 2016 */ 2017 if (blk_queue_add_random(q) && 2018 dm_table_any_dev_attr(t, device_is_not_random, NULL)) 2019 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2020 2021 /* 2022 * For a zoned target, setup the zones related queue attributes 2023 * and resources necessary for zone append emulation if necessary. 2024 */ 2025 if (blk_queue_is_zoned(q)) { 2026 r = dm_set_zones_restrictions(t, q); 2027 if (r) 2028 return r; 2029 if (!static_key_enabled(&zoned_enabled.key)) 2030 static_branch_enable(&zoned_enabled); 2031 } 2032 2033 dm_update_crypto_profile(q, t); 2034 disk_update_readahead(t->md->disk); 2035 2036 /* 2037 * Check for request-based device is left to 2038 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue(). 2039 * 2040 * For bio-based device, only set QUEUE_FLAG_POLL when all 2041 * underlying devices supporting polling. 2042 */ 2043 if (__table_type_bio_based(t->type)) { 2044 if (dm_table_supports_poll(t)) 2045 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2046 else 2047 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 2048 } 2049 2050 return 0; 2051 } 2052 2053 struct list_head *dm_table_get_devices(struct dm_table *t) 2054 { 2055 return &t->devices; 2056 } 2057 2058 blk_mode_t dm_table_get_mode(struct dm_table *t) 2059 { 2060 return t->mode; 2061 } 2062 EXPORT_SYMBOL(dm_table_get_mode); 2063 2064 enum suspend_mode { 2065 PRESUSPEND, 2066 PRESUSPEND_UNDO, 2067 POSTSUSPEND, 2068 }; 2069 2070 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2071 { 2072 lockdep_assert_held(&t->md->suspend_lock); 2073 2074 for (unsigned int i = 0; i < t->num_targets; i++) { 2075 struct dm_target *ti = dm_table_get_target(t, i); 2076 2077 switch (mode) { 2078 case PRESUSPEND: 2079 if (ti->type->presuspend) 2080 ti->type->presuspend(ti); 2081 break; 2082 case PRESUSPEND_UNDO: 2083 if (ti->type->presuspend_undo) 2084 ti->type->presuspend_undo(ti); 2085 break; 2086 case POSTSUSPEND: 2087 if (ti->type->postsuspend) 2088 ti->type->postsuspend(ti); 2089 break; 2090 } 2091 } 2092 } 2093 2094 void dm_table_presuspend_targets(struct dm_table *t) 2095 { 2096 if (!t) 2097 return; 2098 2099 suspend_targets(t, PRESUSPEND); 2100 } 2101 2102 void dm_table_presuspend_undo_targets(struct dm_table *t) 2103 { 2104 if (!t) 2105 return; 2106 2107 suspend_targets(t, PRESUSPEND_UNDO); 2108 } 2109 2110 void dm_table_postsuspend_targets(struct dm_table *t) 2111 { 2112 if (!t) 2113 return; 2114 2115 suspend_targets(t, POSTSUSPEND); 2116 } 2117 2118 int dm_table_resume_targets(struct dm_table *t) 2119 { 2120 unsigned int i; 2121 int r = 0; 2122 2123 lockdep_assert_held(&t->md->suspend_lock); 2124 2125 for (i = 0; i < t->num_targets; i++) { 2126 struct dm_target *ti = dm_table_get_target(t, i); 2127 2128 if (!ti->type->preresume) 2129 continue; 2130 2131 r = ti->type->preresume(ti); 2132 if (r) { 2133 DMERR("%s: %s: preresume failed, error = %d", 2134 dm_device_name(t->md), ti->type->name, r); 2135 return r; 2136 } 2137 } 2138 2139 for (i = 0; i < t->num_targets; i++) { 2140 struct dm_target *ti = dm_table_get_target(t, i); 2141 2142 if (ti->type->resume) 2143 ti->type->resume(ti); 2144 } 2145 2146 return 0; 2147 } 2148 2149 struct mapped_device *dm_table_get_md(struct dm_table *t) 2150 { 2151 return t->md; 2152 } 2153 EXPORT_SYMBOL(dm_table_get_md); 2154 2155 const char *dm_table_device_name(struct dm_table *t) 2156 { 2157 return dm_device_name(t->md); 2158 } 2159 EXPORT_SYMBOL_GPL(dm_table_device_name); 2160 2161 void dm_table_run_md_queue_async(struct dm_table *t) 2162 { 2163 if (!dm_table_request_based(t)) 2164 return; 2165 2166 if (t->md->queue) 2167 blk_mq_run_hw_queues(t->md->queue, true); 2168 } 2169 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2170 2171