xref: /openbmc/linux/drivers/md/dm-table.c (revision c494a447)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/namei.h>
15 #include <linux/ctype.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/mount.h>
24 #include <linux/dax.h>
25 
26 #define DM_MSG_PREFIX "table"
27 
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 /*
33  * Similar to ceiling(log_size(n))
34  */
35 static unsigned int int_log(unsigned int n, unsigned int base)
36 {
37 	int result = 0;
38 
39 	while (n > 1) {
40 		n = dm_div_up(n, base);
41 		result++;
42 	}
43 
44 	return result;
45 }
46 
47 /*
48  * Calculate the index of the child node of the n'th node k'th key.
49  */
50 static inline unsigned int get_child(unsigned int n, unsigned int k)
51 {
52 	return (n * CHILDREN_PER_NODE) + k;
53 }
54 
55 /*
56  * Return the n'th node of level l from table t.
57  */
58 static inline sector_t *get_node(struct dm_table *t,
59 				 unsigned int l, unsigned int n)
60 {
61 	return t->index[l] + (n * KEYS_PER_NODE);
62 }
63 
64 /*
65  * Return the highest key that you could lookup from the n'th
66  * node on level l of the btree.
67  */
68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
69 {
70 	for (; l < t->depth - 1; l++)
71 		n = get_child(n, CHILDREN_PER_NODE - 1);
72 
73 	if (n >= t->counts[l])
74 		return (sector_t) - 1;
75 
76 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
77 }
78 
79 /*
80  * Fills in a level of the btree based on the highs of the level
81  * below it.
82  */
83 static int setup_btree_index(unsigned int l, struct dm_table *t)
84 {
85 	unsigned int n, k;
86 	sector_t *node;
87 
88 	for (n = 0U; n < t->counts[l]; n++) {
89 		node = get_node(t, l, n);
90 
91 		for (k = 0U; k < KEYS_PER_NODE; k++)
92 			node[k] = high(t, l + 1, get_child(n, k));
93 	}
94 
95 	return 0;
96 }
97 
98 /*
99  * highs, and targets are managed as dynamic arrays during a
100  * table load.
101  */
102 static int alloc_targets(struct dm_table *t, unsigned int num)
103 {
104 	sector_t *n_highs;
105 	struct dm_target *n_targets;
106 
107 	/*
108 	 * Allocate both the target array and offset array at once.
109 	 */
110 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
111 			   GFP_KERNEL);
112 	if (!n_highs)
113 		return -ENOMEM;
114 
115 	n_targets = (struct dm_target *) (n_highs + num);
116 
117 	memset(n_highs, -1, sizeof(*n_highs) * num);
118 	kvfree(t->highs);
119 
120 	t->num_allocated = num;
121 	t->highs = n_highs;
122 	t->targets = n_targets;
123 
124 	return 0;
125 }
126 
127 int dm_table_create(struct dm_table **result, fmode_t mode,
128 		    unsigned num_targets, struct mapped_device *md)
129 {
130 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
131 
132 	if (!t)
133 		return -ENOMEM;
134 
135 	INIT_LIST_HEAD(&t->devices);
136 
137 	if (!num_targets)
138 		num_targets = KEYS_PER_NODE;
139 
140 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
141 
142 	if (!num_targets) {
143 		kfree(t);
144 		return -ENOMEM;
145 	}
146 
147 	if (alloc_targets(t, num_targets)) {
148 		kfree(t);
149 		return -ENOMEM;
150 	}
151 
152 	t->type = DM_TYPE_NONE;
153 	t->mode = mode;
154 	t->md = md;
155 	*result = t;
156 	return 0;
157 }
158 
159 static void free_devices(struct list_head *devices, struct mapped_device *md)
160 {
161 	struct list_head *tmp, *next;
162 
163 	list_for_each_safe(tmp, next, devices) {
164 		struct dm_dev_internal *dd =
165 		    list_entry(tmp, struct dm_dev_internal, list);
166 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
167 		       dm_device_name(md), dd->dm_dev->name);
168 		dm_put_table_device(md, dd->dm_dev);
169 		kfree(dd);
170 	}
171 }
172 
173 static void dm_table_destroy_crypto_profile(struct dm_table *t);
174 
175 void dm_table_destroy(struct dm_table *t)
176 {
177 	unsigned int i;
178 
179 	if (!t)
180 		return;
181 
182 	/* free the indexes */
183 	if (t->depth >= 2)
184 		kvfree(t->index[t->depth - 2]);
185 
186 	/* free the targets */
187 	for (i = 0; i < t->num_targets; i++) {
188 		struct dm_target *tgt = t->targets + i;
189 
190 		if (tgt->type->dtr)
191 			tgt->type->dtr(tgt);
192 
193 		dm_put_target_type(tgt->type);
194 	}
195 
196 	kvfree(t->highs);
197 
198 	/* free the device list */
199 	free_devices(&t->devices, t->md);
200 
201 	dm_free_md_mempools(t->mempools);
202 
203 	dm_table_destroy_crypto_profile(t);
204 
205 	kfree(t);
206 }
207 
208 /*
209  * See if we've already got a device in the list.
210  */
211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
212 {
213 	struct dm_dev_internal *dd;
214 
215 	list_for_each_entry (dd, l, list)
216 		if (dd->dm_dev->bdev->bd_dev == dev)
217 			return dd;
218 
219 	return NULL;
220 }
221 
222 /*
223  * If possible, this checks an area of a destination device is invalid.
224  */
225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
226 				  sector_t start, sector_t len, void *data)
227 {
228 	struct queue_limits *limits = data;
229 	struct block_device *bdev = dev->bdev;
230 	sector_t dev_size = bdev_nr_sectors(bdev);
231 	unsigned short logical_block_size_sectors =
232 		limits->logical_block_size >> SECTOR_SHIFT;
233 
234 	if (!dev_size)
235 		return 0;
236 
237 	if ((start >= dev_size) || (start + len > dev_size)) {
238 		DMWARN("%s: %pg too small for target: "
239 		       "start=%llu, len=%llu, dev_size=%llu",
240 		       dm_device_name(ti->table->md), bdev,
241 		       (unsigned long long)start,
242 		       (unsigned long long)len,
243 		       (unsigned long long)dev_size);
244 		return 1;
245 	}
246 
247 	/*
248 	 * If the target is mapped to zoned block device(s), check
249 	 * that the zones are not partially mapped.
250 	 */
251 	if (bdev_is_zoned(bdev)) {
252 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
253 
254 		if (start & (zone_sectors - 1)) {
255 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %pg",
256 			       dm_device_name(ti->table->md),
257 			       (unsigned long long)start,
258 			       zone_sectors, bdev);
259 			return 1;
260 		}
261 
262 		/*
263 		 * Note: The last zone of a zoned block device may be smaller
264 		 * than other zones. So for a target mapping the end of a
265 		 * zoned block device with such a zone, len would not be zone
266 		 * aligned. We do not allow such last smaller zone to be part
267 		 * of the mapping here to ensure that mappings with multiple
268 		 * devices do not end up with a smaller zone in the middle of
269 		 * the sector range.
270 		 */
271 		if (len & (zone_sectors - 1)) {
272 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %pg",
273 			       dm_device_name(ti->table->md),
274 			       (unsigned long long)len,
275 			       zone_sectors, bdev);
276 			return 1;
277 		}
278 	}
279 
280 	if (logical_block_size_sectors <= 1)
281 		return 0;
282 
283 	if (start & (logical_block_size_sectors - 1)) {
284 		DMWARN("%s: start=%llu not aligned to h/w "
285 		       "logical block size %u of %pg",
286 		       dm_device_name(ti->table->md),
287 		       (unsigned long long)start,
288 		       limits->logical_block_size, bdev);
289 		return 1;
290 	}
291 
292 	if (len & (logical_block_size_sectors - 1)) {
293 		DMWARN("%s: len=%llu not aligned to h/w "
294 		       "logical block size %u of %pg",
295 		       dm_device_name(ti->table->md),
296 		       (unsigned long long)len,
297 		       limits->logical_block_size, bdev);
298 		return 1;
299 	}
300 
301 	return 0;
302 }
303 
304 /*
305  * This upgrades the mode on an already open dm_dev, being
306  * careful to leave things as they were if we fail to reopen the
307  * device and not to touch the existing bdev field in case
308  * it is accessed concurrently.
309  */
310 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
311 			struct mapped_device *md)
312 {
313 	int r;
314 	struct dm_dev *old_dev, *new_dev;
315 
316 	old_dev = dd->dm_dev;
317 
318 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
319 				dd->dm_dev->mode | new_mode, &new_dev);
320 	if (r)
321 		return r;
322 
323 	dd->dm_dev = new_dev;
324 	dm_put_table_device(md, old_dev);
325 
326 	return 0;
327 }
328 
329 /*
330  * Convert the path to a device
331  */
332 dev_t dm_get_dev_t(const char *path)
333 {
334 	dev_t dev;
335 
336 	if (lookup_bdev(path, &dev))
337 		dev = name_to_dev_t(path);
338 	return dev;
339 }
340 EXPORT_SYMBOL_GPL(dm_get_dev_t);
341 
342 /*
343  * Add a device to the list, or just increment the usage count if
344  * it's already present.
345  */
346 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
347 		  struct dm_dev **result)
348 {
349 	int r;
350 	dev_t dev;
351 	unsigned int major, minor;
352 	char dummy;
353 	struct dm_dev_internal *dd;
354 	struct dm_table *t = ti->table;
355 
356 	BUG_ON(!t);
357 
358 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
359 		/* Extract the major/minor numbers */
360 		dev = MKDEV(major, minor);
361 		if (MAJOR(dev) != major || MINOR(dev) != minor)
362 			return -EOVERFLOW;
363 	} else {
364 		dev = dm_get_dev_t(path);
365 		if (!dev)
366 			return -ENODEV;
367 	}
368 
369 	dd = find_device(&t->devices, dev);
370 	if (!dd) {
371 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
372 		if (!dd)
373 			return -ENOMEM;
374 
375 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
376 			kfree(dd);
377 			return r;
378 		}
379 
380 		refcount_set(&dd->count, 1);
381 		list_add(&dd->list, &t->devices);
382 		goto out;
383 
384 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
385 		r = upgrade_mode(dd, mode, t->md);
386 		if (r)
387 			return r;
388 	}
389 	refcount_inc(&dd->count);
390 out:
391 	*result = dd->dm_dev;
392 	return 0;
393 }
394 EXPORT_SYMBOL(dm_get_device);
395 
396 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
397 				sector_t start, sector_t len, void *data)
398 {
399 	struct queue_limits *limits = data;
400 	struct block_device *bdev = dev->bdev;
401 	struct request_queue *q = bdev_get_queue(bdev);
402 
403 	if (unlikely(!q)) {
404 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
405 		       dm_device_name(ti->table->md), bdev);
406 		return 0;
407 	}
408 
409 	if (blk_stack_limits(limits, &q->limits,
410 			get_start_sect(bdev) + start) < 0)
411 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
412 		       "physical_block_size=%u, logical_block_size=%u, "
413 		       "alignment_offset=%u, start=%llu",
414 		       dm_device_name(ti->table->md), bdev,
415 		       q->limits.physical_block_size,
416 		       q->limits.logical_block_size,
417 		       q->limits.alignment_offset,
418 		       (unsigned long long) start << SECTOR_SHIFT);
419 	return 0;
420 }
421 
422 /*
423  * Decrement a device's use count and remove it if necessary.
424  */
425 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
426 {
427 	int found = 0;
428 	struct list_head *devices = &ti->table->devices;
429 	struct dm_dev_internal *dd;
430 
431 	list_for_each_entry(dd, devices, list) {
432 		if (dd->dm_dev == d) {
433 			found = 1;
434 			break;
435 		}
436 	}
437 	if (!found) {
438 		DMWARN("%s: device %s not in table devices list",
439 		       dm_device_name(ti->table->md), d->name);
440 		return;
441 	}
442 	if (refcount_dec_and_test(&dd->count)) {
443 		dm_put_table_device(ti->table->md, d);
444 		list_del(&dd->list);
445 		kfree(dd);
446 	}
447 }
448 EXPORT_SYMBOL(dm_put_device);
449 
450 /*
451  * Checks to see if the target joins onto the end of the table.
452  */
453 static int adjoin(struct dm_table *table, struct dm_target *ti)
454 {
455 	struct dm_target *prev;
456 
457 	if (!table->num_targets)
458 		return !ti->begin;
459 
460 	prev = &table->targets[table->num_targets - 1];
461 	return (ti->begin == (prev->begin + prev->len));
462 }
463 
464 /*
465  * Used to dynamically allocate the arg array.
466  *
467  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
468  * process messages even if some device is suspended. These messages have a
469  * small fixed number of arguments.
470  *
471  * On the other hand, dm-switch needs to process bulk data using messages and
472  * excessive use of GFP_NOIO could cause trouble.
473  */
474 static char **realloc_argv(unsigned *size, char **old_argv)
475 {
476 	char **argv;
477 	unsigned new_size;
478 	gfp_t gfp;
479 
480 	if (*size) {
481 		new_size = *size * 2;
482 		gfp = GFP_KERNEL;
483 	} else {
484 		new_size = 8;
485 		gfp = GFP_NOIO;
486 	}
487 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
488 	if (argv && old_argv) {
489 		memcpy(argv, old_argv, *size * sizeof(*argv));
490 		*size = new_size;
491 	}
492 
493 	kfree(old_argv);
494 	return argv;
495 }
496 
497 /*
498  * Destructively splits up the argument list to pass to ctr.
499  */
500 int dm_split_args(int *argc, char ***argvp, char *input)
501 {
502 	char *start, *end = input, *out, **argv = NULL;
503 	unsigned array_size = 0;
504 
505 	*argc = 0;
506 
507 	if (!input) {
508 		*argvp = NULL;
509 		return 0;
510 	}
511 
512 	argv = realloc_argv(&array_size, argv);
513 	if (!argv)
514 		return -ENOMEM;
515 
516 	while (1) {
517 		/* Skip whitespace */
518 		start = skip_spaces(end);
519 
520 		if (!*start)
521 			break;	/* success, we hit the end */
522 
523 		/* 'out' is used to remove any back-quotes */
524 		end = out = start;
525 		while (*end) {
526 			/* Everything apart from '\0' can be quoted */
527 			if (*end == '\\' && *(end + 1)) {
528 				*out++ = *(end + 1);
529 				end += 2;
530 				continue;
531 			}
532 
533 			if (isspace(*end))
534 				break;	/* end of token */
535 
536 			*out++ = *end++;
537 		}
538 
539 		/* have we already filled the array ? */
540 		if ((*argc + 1) > array_size) {
541 			argv = realloc_argv(&array_size, argv);
542 			if (!argv)
543 				return -ENOMEM;
544 		}
545 
546 		/* we know this is whitespace */
547 		if (*end)
548 			end++;
549 
550 		/* terminate the string and put it in the array */
551 		*out = '\0';
552 		argv[*argc] = start;
553 		(*argc)++;
554 	}
555 
556 	*argvp = argv;
557 	return 0;
558 }
559 
560 /*
561  * Impose necessary and sufficient conditions on a devices's table such
562  * that any incoming bio which respects its logical_block_size can be
563  * processed successfully.  If it falls across the boundary between
564  * two or more targets, the size of each piece it gets split into must
565  * be compatible with the logical_block_size of the target processing it.
566  */
567 static int validate_hardware_logical_block_alignment(struct dm_table *table,
568 						 struct queue_limits *limits)
569 {
570 	/*
571 	 * This function uses arithmetic modulo the logical_block_size
572 	 * (in units of 512-byte sectors).
573 	 */
574 	unsigned short device_logical_block_size_sects =
575 		limits->logical_block_size >> SECTOR_SHIFT;
576 
577 	/*
578 	 * Offset of the start of the next table entry, mod logical_block_size.
579 	 */
580 	unsigned short next_target_start = 0;
581 
582 	/*
583 	 * Given an aligned bio that extends beyond the end of a
584 	 * target, how many sectors must the next target handle?
585 	 */
586 	unsigned short remaining = 0;
587 
588 	struct dm_target *ti;
589 	struct queue_limits ti_limits;
590 	unsigned i;
591 
592 	/*
593 	 * Check each entry in the table in turn.
594 	 */
595 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
596 		ti = dm_table_get_target(table, i);
597 
598 		blk_set_stacking_limits(&ti_limits);
599 
600 		/* combine all target devices' limits */
601 		if (ti->type->iterate_devices)
602 			ti->type->iterate_devices(ti, dm_set_device_limits,
603 						  &ti_limits);
604 
605 		/*
606 		 * If the remaining sectors fall entirely within this
607 		 * table entry are they compatible with its logical_block_size?
608 		 */
609 		if (remaining < ti->len &&
610 		    remaining & ((ti_limits.logical_block_size >>
611 				  SECTOR_SHIFT) - 1))
612 			break;	/* Error */
613 
614 		next_target_start =
615 		    (unsigned short) ((next_target_start + ti->len) &
616 				      (device_logical_block_size_sects - 1));
617 		remaining = next_target_start ?
618 		    device_logical_block_size_sects - next_target_start : 0;
619 	}
620 
621 	if (remaining) {
622 		DMWARN("%s: table line %u (start sect %llu len %llu) "
623 		       "not aligned to h/w logical block size %u",
624 		       dm_device_name(table->md), i,
625 		       (unsigned long long) ti->begin,
626 		       (unsigned long long) ti->len,
627 		       limits->logical_block_size);
628 		return -EINVAL;
629 	}
630 
631 	return 0;
632 }
633 
634 int dm_table_add_target(struct dm_table *t, const char *type,
635 			sector_t start, sector_t len, char *params)
636 {
637 	int r = -EINVAL, argc;
638 	char **argv;
639 	struct dm_target *tgt;
640 
641 	if (t->singleton) {
642 		DMERR("%s: target type %s must appear alone in table",
643 		      dm_device_name(t->md), t->targets->type->name);
644 		return -EINVAL;
645 	}
646 
647 	BUG_ON(t->num_targets >= t->num_allocated);
648 
649 	tgt = t->targets + t->num_targets;
650 	memset(tgt, 0, sizeof(*tgt));
651 
652 	if (!len) {
653 		DMERR("%s: zero-length target", dm_device_name(t->md));
654 		return -EINVAL;
655 	}
656 
657 	tgt->type = dm_get_target_type(type);
658 	if (!tgt->type) {
659 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
660 		return -EINVAL;
661 	}
662 
663 	if (dm_target_needs_singleton(tgt->type)) {
664 		if (t->num_targets) {
665 			tgt->error = "singleton target type must appear alone in table";
666 			goto bad;
667 		}
668 		t->singleton = true;
669 	}
670 
671 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
672 		tgt->error = "target type may not be included in a read-only table";
673 		goto bad;
674 	}
675 
676 	if (t->immutable_target_type) {
677 		if (t->immutable_target_type != tgt->type) {
678 			tgt->error = "immutable target type cannot be mixed with other target types";
679 			goto bad;
680 		}
681 	} else if (dm_target_is_immutable(tgt->type)) {
682 		if (t->num_targets) {
683 			tgt->error = "immutable target type cannot be mixed with other target types";
684 			goto bad;
685 		}
686 		t->immutable_target_type = tgt->type;
687 	}
688 
689 	if (dm_target_has_integrity(tgt->type))
690 		t->integrity_added = 1;
691 
692 	tgt->table = t;
693 	tgt->begin = start;
694 	tgt->len = len;
695 	tgt->error = "Unknown error";
696 
697 	/*
698 	 * Does this target adjoin the previous one ?
699 	 */
700 	if (!adjoin(t, tgt)) {
701 		tgt->error = "Gap in table";
702 		goto bad;
703 	}
704 
705 	r = dm_split_args(&argc, &argv, params);
706 	if (r) {
707 		tgt->error = "couldn't split parameters";
708 		goto bad;
709 	}
710 
711 	r = tgt->type->ctr(tgt, argc, argv);
712 	kfree(argv);
713 	if (r)
714 		goto bad;
715 
716 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
717 
718 	if (!tgt->num_discard_bios && tgt->discards_supported)
719 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
720 		       dm_device_name(t->md), type);
721 
722 	if (tgt->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
723 		static_branch_enable(&swap_bios_enabled);
724 
725 	return 0;
726 
727  bad:
728 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r));
729 	dm_put_target_type(tgt->type);
730 	return r;
731 }
732 
733 /*
734  * Target argument parsing helpers.
735  */
736 static int validate_next_arg(const struct dm_arg *arg,
737 			     struct dm_arg_set *arg_set,
738 			     unsigned *value, char **error, unsigned grouped)
739 {
740 	const char *arg_str = dm_shift_arg(arg_set);
741 	char dummy;
742 
743 	if (!arg_str ||
744 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
745 	    (*value < arg->min) ||
746 	    (*value > arg->max) ||
747 	    (grouped && arg_set->argc < *value)) {
748 		*error = arg->error;
749 		return -EINVAL;
750 	}
751 
752 	return 0;
753 }
754 
755 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
756 		unsigned *value, char **error)
757 {
758 	return validate_next_arg(arg, arg_set, value, error, 0);
759 }
760 EXPORT_SYMBOL(dm_read_arg);
761 
762 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
763 		      unsigned *value, char **error)
764 {
765 	return validate_next_arg(arg, arg_set, value, error, 1);
766 }
767 EXPORT_SYMBOL(dm_read_arg_group);
768 
769 const char *dm_shift_arg(struct dm_arg_set *as)
770 {
771 	char *r;
772 
773 	if (as->argc) {
774 		as->argc--;
775 		r = *as->argv;
776 		as->argv++;
777 		return r;
778 	}
779 
780 	return NULL;
781 }
782 EXPORT_SYMBOL(dm_shift_arg);
783 
784 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
785 {
786 	BUG_ON(as->argc < num_args);
787 	as->argc -= num_args;
788 	as->argv += num_args;
789 }
790 EXPORT_SYMBOL(dm_consume_args);
791 
792 static bool __table_type_bio_based(enum dm_queue_mode table_type)
793 {
794 	return (table_type == DM_TYPE_BIO_BASED ||
795 		table_type == DM_TYPE_DAX_BIO_BASED);
796 }
797 
798 static bool __table_type_request_based(enum dm_queue_mode table_type)
799 {
800 	return table_type == DM_TYPE_REQUEST_BASED;
801 }
802 
803 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
804 {
805 	t->type = type;
806 }
807 EXPORT_SYMBOL_GPL(dm_table_set_type);
808 
809 /* validate the dax capability of the target device span */
810 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
811 			sector_t start, sector_t len, void *data)
812 {
813 	if (dev->dax_dev)
814 		return false;
815 
816 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
817 	return true;
818 }
819 
820 /* Check devices support synchronous DAX */
821 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
822 					      sector_t start, sector_t len, void *data)
823 {
824 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
825 }
826 
827 static bool dm_table_supports_dax(struct dm_table *t,
828 			   iterate_devices_callout_fn iterate_fn)
829 {
830 	struct dm_target *ti;
831 	unsigned i;
832 
833 	/* Ensure that all targets support DAX. */
834 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
835 		ti = dm_table_get_target(t, i);
836 
837 		if (!ti->type->direct_access)
838 			return false;
839 
840 		if (!ti->type->iterate_devices ||
841 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
842 			return false;
843 	}
844 
845 	return true;
846 }
847 
848 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
849 				  sector_t start, sector_t len, void *data)
850 {
851 	struct block_device *bdev = dev->bdev;
852 	struct request_queue *q = bdev_get_queue(bdev);
853 
854 	/* request-based cannot stack on partitions! */
855 	if (bdev_is_partition(bdev))
856 		return false;
857 
858 	return queue_is_mq(q);
859 }
860 
861 static int dm_table_determine_type(struct dm_table *t)
862 {
863 	unsigned i;
864 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
865 	struct dm_target *tgt;
866 	struct list_head *devices = dm_table_get_devices(t);
867 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
868 
869 	if (t->type != DM_TYPE_NONE) {
870 		/* target already set the table's type */
871 		if (t->type == DM_TYPE_BIO_BASED) {
872 			/* possibly upgrade to a variant of bio-based */
873 			goto verify_bio_based;
874 		}
875 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
876 		goto verify_rq_based;
877 	}
878 
879 	for (i = 0; i < t->num_targets; i++) {
880 		tgt = t->targets + i;
881 		if (dm_target_hybrid(tgt))
882 			hybrid = 1;
883 		else if (dm_target_request_based(tgt))
884 			request_based = 1;
885 		else
886 			bio_based = 1;
887 
888 		if (bio_based && request_based) {
889 			DMERR("Inconsistent table: different target types"
890 			      " can't be mixed up");
891 			return -EINVAL;
892 		}
893 	}
894 
895 	if (hybrid && !bio_based && !request_based) {
896 		/*
897 		 * The targets can work either way.
898 		 * Determine the type from the live device.
899 		 * Default to bio-based if device is new.
900 		 */
901 		if (__table_type_request_based(live_md_type))
902 			request_based = 1;
903 		else
904 			bio_based = 1;
905 	}
906 
907 	if (bio_based) {
908 verify_bio_based:
909 		/* We must use this table as bio-based */
910 		t->type = DM_TYPE_BIO_BASED;
911 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
912 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
913 			t->type = DM_TYPE_DAX_BIO_BASED;
914 		}
915 		return 0;
916 	}
917 
918 	BUG_ON(!request_based); /* No targets in this table */
919 
920 	t->type = DM_TYPE_REQUEST_BASED;
921 
922 verify_rq_based:
923 	/*
924 	 * Request-based dm supports only tables that have a single target now.
925 	 * To support multiple targets, request splitting support is needed,
926 	 * and that needs lots of changes in the block-layer.
927 	 * (e.g. request completion process for partial completion.)
928 	 */
929 	if (t->num_targets > 1) {
930 		DMERR("request-based DM doesn't support multiple targets");
931 		return -EINVAL;
932 	}
933 
934 	if (list_empty(devices)) {
935 		int srcu_idx;
936 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
937 
938 		/* inherit live table's type */
939 		if (live_table)
940 			t->type = live_table->type;
941 		dm_put_live_table(t->md, srcu_idx);
942 		return 0;
943 	}
944 
945 	tgt = dm_table_get_immutable_target(t);
946 	if (!tgt) {
947 		DMERR("table load rejected: immutable target is required");
948 		return -EINVAL;
949 	} else if (tgt->max_io_len) {
950 		DMERR("table load rejected: immutable target that splits IO is not supported");
951 		return -EINVAL;
952 	}
953 
954 	/* Non-request-stackable devices can't be used for request-based dm */
955 	if (!tgt->type->iterate_devices ||
956 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
957 		DMERR("table load rejected: including non-request-stackable devices");
958 		return -EINVAL;
959 	}
960 
961 	return 0;
962 }
963 
964 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
965 {
966 	return t->type;
967 }
968 
969 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
970 {
971 	return t->immutable_target_type;
972 }
973 
974 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
975 {
976 	/* Immutable target is implicitly a singleton */
977 	if (t->num_targets > 1 ||
978 	    !dm_target_is_immutable(t->targets[0].type))
979 		return NULL;
980 
981 	return t->targets;
982 }
983 
984 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
985 {
986 	struct dm_target *ti;
987 	unsigned i;
988 
989 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
990 		ti = dm_table_get_target(t, i);
991 		if (dm_target_is_wildcard(ti->type))
992 			return ti;
993 	}
994 
995 	return NULL;
996 }
997 
998 bool dm_table_bio_based(struct dm_table *t)
999 {
1000 	return __table_type_bio_based(dm_table_get_type(t));
1001 }
1002 
1003 bool dm_table_request_based(struct dm_table *t)
1004 {
1005 	return __table_type_request_based(dm_table_get_type(t));
1006 }
1007 
1008 static bool dm_table_supports_poll(struct dm_table *t);
1009 
1010 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1011 {
1012 	enum dm_queue_mode type = dm_table_get_type(t);
1013 	unsigned per_io_data_size = 0;
1014 	unsigned min_pool_size = 0;
1015 	struct dm_target *ti;
1016 	unsigned i;
1017 	bool poll_supported = false;
1018 
1019 	if (unlikely(type == DM_TYPE_NONE)) {
1020 		DMWARN("no table type is set, can't allocate mempools");
1021 		return -EINVAL;
1022 	}
1023 
1024 	if (__table_type_bio_based(type)) {
1025 		for (i = 0; i < t->num_targets; i++) {
1026 			ti = t->targets + i;
1027 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1028 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1029 		}
1030 		poll_supported = dm_table_supports_poll(t);
1031 	}
1032 
1033 	t->mempools = dm_alloc_md_mempools(md, type, per_io_data_size, min_pool_size,
1034 					   t->integrity_supported, poll_supported);
1035 	if (!t->mempools)
1036 		return -ENOMEM;
1037 
1038 	return 0;
1039 }
1040 
1041 void dm_table_free_md_mempools(struct dm_table *t)
1042 {
1043 	dm_free_md_mempools(t->mempools);
1044 	t->mempools = NULL;
1045 }
1046 
1047 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1048 {
1049 	return t->mempools;
1050 }
1051 
1052 static int setup_indexes(struct dm_table *t)
1053 {
1054 	int i;
1055 	unsigned int total = 0;
1056 	sector_t *indexes;
1057 
1058 	/* allocate the space for *all* the indexes */
1059 	for (i = t->depth - 2; i >= 0; i--) {
1060 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1061 		total += t->counts[i];
1062 	}
1063 
1064 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1065 	if (!indexes)
1066 		return -ENOMEM;
1067 
1068 	/* set up internal nodes, bottom-up */
1069 	for (i = t->depth - 2; i >= 0; i--) {
1070 		t->index[i] = indexes;
1071 		indexes += (KEYS_PER_NODE * t->counts[i]);
1072 		setup_btree_index(i, t);
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 /*
1079  * Builds the btree to index the map.
1080  */
1081 static int dm_table_build_index(struct dm_table *t)
1082 {
1083 	int r = 0;
1084 	unsigned int leaf_nodes;
1085 
1086 	/* how many indexes will the btree have ? */
1087 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1088 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1089 
1090 	/* leaf layer has already been set up */
1091 	t->counts[t->depth - 1] = leaf_nodes;
1092 	t->index[t->depth - 1] = t->highs;
1093 
1094 	if (t->depth >= 2)
1095 		r = setup_indexes(t);
1096 
1097 	return r;
1098 }
1099 
1100 static bool integrity_profile_exists(struct gendisk *disk)
1101 {
1102 	return !!blk_get_integrity(disk);
1103 }
1104 
1105 /*
1106  * Get a disk whose integrity profile reflects the table's profile.
1107  * Returns NULL if integrity support was inconsistent or unavailable.
1108  */
1109 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1110 {
1111 	struct list_head *devices = dm_table_get_devices(t);
1112 	struct dm_dev_internal *dd = NULL;
1113 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1114 	unsigned i;
1115 
1116 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1117 		struct dm_target *ti = dm_table_get_target(t, i);
1118 		if (!dm_target_passes_integrity(ti->type))
1119 			goto no_integrity;
1120 	}
1121 
1122 	list_for_each_entry(dd, devices, list) {
1123 		template_disk = dd->dm_dev->bdev->bd_disk;
1124 		if (!integrity_profile_exists(template_disk))
1125 			goto no_integrity;
1126 		else if (prev_disk &&
1127 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1128 			goto no_integrity;
1129 		prev_disk = template_disk;
1130 	}
1131 
1132 	return template_disk;
1133 
1134 no_integrity:
1135 	if (prev_disk)
1136 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1137 		       dm_device_name(t->md),
1138 		       prev_disk->disk_name,
1139 		       template_disk->disk_name);
1140 	return NULL;
1141 }
1142 
1143 /*
1144  * Register the mapped device for blk_integrity support if the
1145  * underlying devices have an integrity profile.  But all devices may
1146  * not have matching profiles (checking all devices isn't reliable
1147  * during table load because this table may use other DM device(s) which
1148  * must be resumed before they will have an initialized integity
1149  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1150  * profile validation: First pass during table load, final pass during
1151  * resume.
1152  */
1153 static int dm_table_register_integrity(struct dm_table *t)
1154 {
1155 	struct mapped_device *md = t->md;
1156 	struct gendisk *template_disk = NULL;
1157 
1158 	/* If target handles integrity itself do not register it here. */
1159 	if (t->integrity_added)
1160 		return 0;
1161 
1162 	template_disk = dm_table_get_integrity_disk(t);
1163 	if (!template_disk)
1164 		return 0;
1165 
1166 	if (!integrity_profile_exists(dm_disk(md))) {
1167 		t->integrity_supported = true;
1168 		/*
1169 		 * Register integrity profile during table load; we can do
1170 		 * this because the final profile must match during resume.
1171 		 */
1172 		blk_integrity_register(dm_disk(md),
1173 				       blk_get_integrity(template_disk));
1174 		return 0;
1175 	}
1176 
1177 	/*
1178 	 * If DM device already has an initialized integrity
1179 	 * profile the new profile should not conflict.
1180 	 */
1181 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1182 		DMWARN("%s: conflict with existing integrity profile: "
1183 		       "%s profile mismatch",
1184 		       dm_device_name(t->md),
1185 		       template_disk->disk_name);
1186 		return 1;
1187 	}
1188 
1189 	/* Preserve existing integrity profile */
1190 	t->integrity_supported = true;
1191 	return 0;
1192 }
1193 
1194 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1195 
1196 struct dm_crypto_profile {
1197 	struct blk_crypto_profile profile;
1198 	struct mapped_device *md;
1199 };
1200 
1201 struct dm_keyslot_evict_args {
1202 	const struct blk_crypto_key *key;
1203 	int err;
1204 };
1205 
1206 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1207 				     sector_t start, sector_t len, void *data)
1208 {
1209 	struct dm_keyslot_evict_args *args = data;
1210 	int err;
1211 
1212 	err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1213 	if (!args->err)
1214 		args->err = err;
1215 	/* Always try to evict the key from all devices. */
1216 	return 0;
1217 }
1218 
1219 /*
1220  * When an inline encryption key is evicted from a device-mapper device, evict
1221  * it from all the underlying devices.
1222  */
1223 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1224 			    const struct blk_crypto_key *key, unsigned int slot)
1225 {
1226 	struct mapped_device *md =
1227 		container_of(profile, struct dm_crypto_profile, profile)->md;
1228 	struct dm_keyslot_evict_args args = { key };
1229 	struct dm_table *t;
1230 	int srcu_idx;
1231 	int i;
1232 	struct dm_target *ti;
1233 
1234 	t = dm_get_live_table(md, &srcu_idx);
1235 	if (!t)
1236 		return 0;
1237 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1238 		ti = dm_table_get_target(t, i);
1239 		if (!ti->type->iterate_devices)
1240 			continue;
1241 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1242 	}
1243 	dm_put_live_table(md, srcu_idx);
1244 	return args.err;
1245 }
1246 
1247 static int
1248 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1249 				     sector_t start, sector_t len, void *data)
1250 {
1251 	struct blk_crypto_profile *parent = data;
1252 	struct blk_crypto_profile *child =
1253 		bdev_get_queue(dev->bdev)->crypto_profile;
1254 
1255 	blk_crypto_intersect_capabilities(parent, child);
1256 	return 0;
1257 }
1258 
1259 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1260 {
1261 	struct dm_crypto_profile *dmcp = container_of(profile,
1262 						      struct dm_crypto_profile,
1263 						      profile);
1264 
1265 	if (!profile)
1266 		return;
1267 
1268 	blk_crypto_profile_destroy(profile);
1269 	kfree(dmcp);
1270 }
1271 
1272 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1273 {
1274 	dm_destroy_crypto_profile(t->crypto_profile);
1275 	t->crypto_profile = NULL;
1276 }
1277 
1278 /*
1279  * Constructs and initializes t->crypto_profile with a crypto profile that
1280  * represents the common set of crypto capabilities of the devices described by
1281  * the dm_table.  However, if the constructed crypto profile doesn't support all
1282  * crypto capabilities that are supported by the current mapped_device, it
1283  * returns an error instead, since we don't support removing crypto capabilities
1284  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1285  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1286  */
1287 static int dm_table_construct_crypto_profile(struct dm_table *t)
1288 {
1289 	struct dm_crypto_profile *dmcp;
1290 	struct blk_crypto_profile *profile;
1291 	struct dm_target *ti;
1292 	unsigned int i;
1293 	bool empty_profile = true;
1294 
1295 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1296 	if (!dmcp)
1297 		return -ENOMEM;
1298 	dmcp->md = t->md;
1299 
1300 	profile = &dmcp->profile;
1301 	blk_crypto_profile_init(profile, 0);
1302 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1303 	profile->max_dun_bytes_supported = UINT_MAX;
1304 	memset(profile->modes_supported, 0xFF,
1305 	       sizeof(profile->modes_supported));
1306 
1307 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1308 		ti = dm_table_get_target(t, i);
1309 
1310 		if (!dm_target_passes_crypto(ti->type)) {
1311 			blk_crypto_intersect_capabilities(profile, NULL);
1312 			break;
1313 		}
1314 		if (!ti->type->iterate_devices)
1315 			continue;
1316 		ti->type->iterate_devices(ti,
1317 					  device_intersect_crypto_capabilities,
1318 					  profile);
1319 	}
1320 
1321 	if (t->md->queue &&
1322 	    !blk_crypto_has_capabilities(profile,
1323 					 t->md->queue->crypto_profile)) {
1324 		DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1325 		dm_destroy_crypto_profile(profile);
1326 		return -EINVAL;
1327 	}
1328 
1329 	/*
1330 	 * If the new profile doesn't actually support any crypto capabilities,
1331 	 * we may as well represent it with a NULL profile.
1332 	 */
1333 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1334 		if (profile->modes_supported[i]) {
1335 			empty_profile = false;
1336 			break;
1337 		}
1338 	}
1339 
1340 	if (empty_profile) {
1341 		dm_destroy_crypto_profile(profile);
1342 		profile = NULL;
1343 	}
1344 
1345 	/*
1346 	 * t->crypto_profile is only set temporarily while the table is being
1347 	 * set up, and it gets set to NULL after the profile has been
1348 	 * transferred to the request_queue.
1349 	 */
1350 	t->crypto_profile = profile;
1351 
1352 	return 0;
1353 }
1354 
1355 static void dm_update_crypto_profile(struct request_queue *q,
1356 				     struct dm_table *t)
1357 {
1358 	if (!t->crypto_profile)
1359 		return;
1360 
1361 	/* Make the crypto profile less restrictive. */
1362 	if (!q->crypto_profile) {
1363 		blk_crypto_register(t->crypto_profile, q);
1364 	} else {
1365 		blk_crypto_update_capabilities(q->crypto_profile,
1366 					       t->crypto_profile);
1367 		dm_destroy_crypto_profile(t->crypto_profile);
1368 	}
1369 	t->crypto_profile = NULL;
1370 }
1371 
1372 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1373 
1374 static int dm_table_construct_crypto_profile(struct dm_table *t)
1375 {
1376 	return 0;
1377 }
1378 
1379 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1380 {
1381 }
1382 
1383 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1384 {
1385 }
1386 
1387 static void dm_update_crypto_profile(struct request_queue *q,
1388 				     struct dm_table *t)
1389 {
1390 }
1391 
1392 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1393 
1394 /*
1395  * Prepares the table for use by building the indices,
1396  * setting the type, and allocating mempools.
1397  */
1398 int dm_table_complete(struct dm_table *t)
1399 {
1400 	int r;
1401 
1402 	r = dm_table_determine_type(t);
1403 	if (r) {
1404 		DMERR("unable to determine table type");
1405 		return r;
1406 	}
1407 
1408 	r = dm_table_build_index(t);
1409 	if (r) {
1410 		DMERR("unable to build btrees");
1411 		return r;
1412 	}
1413 
1414 	r = dm_table_register_integrity(t);
1415 	if (r) {
1416 		DMERR("could not register integrity profile.");
1417 		return r;
1418 	}
1419 
1420 	r = dm_table_construct_crypto_profile(t);
1421 	if (r) {
1422 		DMERR("could not construct crypto profile.");
1423 		return r;
1424 	}
1425 
1426 	r = dm_table_alloc_md_mempools(t, t->md);
1427 	if (r)
1428 		DMERR("unable to allocate mempools");
1429 
1430 	return r;
1431 }
1432 
1433 static DEFINE_MUTEX(_event_lock);
1434 void dm_table_event_callback(struct dm_table *t,
1435 			     void (*fn)(void *), void *context)
1436 {
1437 	mutex_lock(&_event_lock);
1438 	t->event_fn = fn;
1439 	t->event_context = context;
1440 	mutex_unlock(&_event_lock);
1441 }
1442 
1443 void dm_table_event(struct dm_table *t)
1444 {
1445 	mutex_lock(&_event_lock);
1446 	if (t->event_fn)
1447 		t->event_fn(t->event_context);
1448 	mutex_unlock(&_event_lock);
1449 }
1450 EXPORT_SYMBOL(dm_table_event);
1451 
1452 inline sector_t dm_table_get_size(struct dm_table *t)
1453 {
1454 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1455 }
1456 EXPORT_SYMBOL(dm_table_get_size);
1457 
1458 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1459 {
1460 	if (index >= t->num_targets)
1461 		return NULL;
1462 
1463 	return t->targets + index;
1464 }
1465 
1466 /*
1467  * Search the btree for the correct target.
1468  *
1469  * Caller should check returned pointer for NULL
1470  * to trap I/O beyond end of device.
1471  */
1472 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1473 {
1474 	unsigned int l, n = 0, k = 0;
1475 	sector_t *node;
1476 
1477 	if (unlikely(sector >= dm_table_get_size(t)))
1478 		return NULL;
1479 
1480 	for (l = 0; l < t->depth; l++) {
1481 		n = get_child(n, k);
1482 		node = get_node(t, l, n);
1483 
1484 		for (k = 0; k < KEYS_PER_NODE; k++)
1485 			if (node[k] >= sector)
1486 				break;
1487 	}
1488 
1489 	return &t->targets[(KEYS_PER_NODE * n) + k];
1490 }
1491 
1492 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1493 				   sector_t start, sector_t len, void *data)
1494 {
1495 	struct request_queue *q = bdev_get_queue(dev->bdev);
1496 
1497 	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1498 }
1499 
1500 /*
1501  * type->iterate_devices() should be called when the sanity check needs to
1502  * iterate and check all underlying data devices. iterate_devices() will
1503  * iterate all underlying data devices until it encounters a non-zero return
1504  * code, returned by whether the input iterate_devices_callout_fn, or
1505  * iterate_devices() itself internally.
1506  *
1507  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1508  * iterate multiple underlying devices internally, in which case a non-zero
1509  * return code returned by iterate_devices_callout_fn will stop the iteration
1510  * in advance.
1511  *
1512  * Cases requiring _any_ underlying device supporting some kind of attribute,
1513  * should use the iteration structure like dm_table_any_dev_attr(), or call
1514  * it directly. @func should handle semantics of positive examples, e.g.
1515  * capable of something.
1516  *
1517  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1518  * should use the iteration structure like dm_table_supports_nowait() or
1519  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1520  * uses an @anti_func that handle semantics of counter examples, e.g. not
1521  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1522  */
1523 static bool dm_table_any_dev_attr(struct dm_table *t,
1524 				  iterate_devices_callout_fn func, void *data)
1525 {
1526 	struct dm_target *ti;
1527 	unsigned int i;
1528 
1529 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1530 		ti = dm_table_get_target(t, i);
1531 
1532 		if (ti->type->iterate_devices &&
1533 		    ti->type->iterate_devices(ti, func, data))
1534 			return true;
1535         }
1536 
1537 	return false;
1538 }
1539 
1540 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1541 			sector_t start, sector_t len, void *data)
1542 {
1543 	unsigned *num_devices = data;
1544 
1545 	(*num_devices)++;
1546 
1547 	return 0;
1548 }
1549 
1550 static bool dm_table_supports_poll(struct dm_table *t)
1551 {
1552 	struct dm_target *ti;
1553 	unsigned i = 0;
1554 
1555 	while (i < dm_table_get_num_targets(t)) {
1556 		ti = dm_table_get_target(t, i++);
1557 
1558 		if (!ti->type->iterate_devices ||
1559 		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1560 			return false;
1561 	}
1562 
1563 	return true;
1564 }
1565 
1566 /*
1567  * Check whether a table has no data devices attached using each
1568  * target's iterate_devices method.
1569  * Returns false if the result is unknown because a target doesn't
1570  * support iterate_devices.
1571  */
1572 bool dm_table_has_no_data_devices(struct dm_table *table)
1573 {
1574 	struct dm_target *ti;
1575 	unsigned i, num_devices;
1576 
1577 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1578 		ti = dm_table_get_target(table, i);
1579 
1580 		if (!ti->type->iterate_devices)
1581 			return false;
1582 
1583 		num_devices = 0;
1584 		ti->type->iterate_devices(ti, count_device, &num_devices);
1585 		if (num_devices)
1586 			return false;
1587 	}
1588 
1589 	return true;
1590 }
1591 
1592 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1593 				  sector_t start, sector_t len, void *data)
1594 {
1595 	struct request_queue *q = bdev_get_queue(dev->bdev);
1596 	enum blk_zoned_model *zoned_model = data;
1597 
1598 	return blk_queue_zoned_model(q) != *zoned_model;
1599 }
1600 
1601 /*
1602  * Check the device zoned model based on the target feature flag. If the target
1603  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1604  * also accepted but all devices must have the same zoned model. If the target
1605  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1606  * zoned model with all zoned devices having the same zone size.
1607  */
1608 static bool dm_table_supports_zoned_model(struct dm_table *t,
1609 					  enum blk_zoned_model zoned_model)
1610 {
1611 	struct dm_target *ti;
1612 	unsigned i;
1613 
1614 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1615 		ti = dm_table_get_target(t, i);
1616 
1617 		if (dm_target_supports_zoned_hm(ti->type)) {
1618 			if (!ti->type->iterate_devices ||
1619 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1620 						      &zoned_model))
1621 				return false;
1622 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1623 			if (zoned_model == BLK_ZONED_HM)
1624 				return false;
1625 		}
1626 	}
1627 
1628 	return true;
1629 }
1630 
1631 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1632 					   sector_t start, sector_t len, void *data)
1633 {
1634 	struct request_queue *q = bdev_get_queue(dev->bdev);
1635 	unsigned int *zone_sectors = data;
1636 
1637 	if (!blk_queue_is_zoned(q))
1638 		return 0;
1639 
1640 	return blk_queue_zone_sectors(q) != *zone_sectors;
1641 }
1642 
1643 /*
1644  * Check consistency of zoned model and zone sectors across all targets. For
1645  * zone sectors, if the destination device is a zoned block device, it shall
1646  * have the specified zone_sectors.
1647  */
1648 static int validate_hardware_zoned_model(struct dm_table *table,
1649 					 enum blk_zoned_model zoned_model,
1650 					 unsigned int zone_sectors)
1651 {
1652 	if (zoned_model == BLK_ZONED_NONE)
1653 		return 0;
1654 
1655 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1656 		DMERR("%s: zoned model is not consistent across all devices",
1657 		      dm_device_name(table->md));
1658 		return -EINVAL;
1659 	}
1660 
1661 	/* Check zone size validity and compatibility */
1662 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1663 		return -EINVAL;
1664 
1665 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1666 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1667 		      dm_device_name(table->md));
1668 		return -EINVAL;
1669 	}
1670 
1671 	return 0;
1672 }
1673 
1674 /*
1675  * Establish the new table's queue_limits and validate them.
1676  */
1677 int dm_calculate_queue_limits(struct dm_table *table,
1678 			      struct queue_limits *limits)
1679 {
1680 	struct dm_target *ti;
1681 	struct queue_limits ti_limits;
1682 	unsigned i;
1683 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1684 	unsigned int zone_sectors = 0;
1685 
1686 	blk_set_stacking_limits(limits);
1687 
1688 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1689 		blk_set_stacking_limits(&ti_limits);
1690 
1691 		ti = dm_table_get_target(table, i);
1692 
1693 		if (!ti->type->iterate_devices)
1694 			goto combine_limits;
1695 
1696 		/*
1697 		 * Combine queue limits of all the devices this target uses.
1698 		 */
1699 		ti->type->iterate_devices(ti, dm_set_device_limits,
1700 					  &ti_limits);
1701 
1702 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1703 			/*
1704 			 * After stacking all limits, validate all devices
1705 			 * in table support this zoned model and zone sectors.
1706 			 */
1707 			zoned_model = ti_limits.zoned;
1708 			zone_sectors = ti_limits.chunk_sectors;
1709 		}
1710 
1711 		/* Set I/O hints portion of queue limits */
1712 		if (ti->type->io_hints)
1713 			ti->type->io_hints(ti, &ti_limits);
1714 
1715 		/*
1716 		 * Check each device area is consistent with the target's
1717 		 * overall queue limits.
1718 		 */
1719 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1720 					      &ti_limits))
1721 			return -EINVAL;
1722 
1723 combine_limits:
1724 		/*
1725 		 * Merge this target's queue limits into the overall limits
1726 		 * for the table.
1727 		 */
1728 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1729 			DMWARN("%s: adding target device "
1730 			       "(start sect %llu len %llu) "
1731 			       "caused an alignment inconsistency",
1732 			       dm_device_name(table->md),
1733 			       (unsigned long long) ti->begin,
1734 			       (unsigned long long) ti->len);
1735 	}
1736 
1737 	/*
1738 	 * Verify that the zoned model and zone sectors, as determined before
1739 	 * any .io_hints override, are the same across all devices in the table.
1740 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1741 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1742 	 * BUT...
1743 	 */
1744 	if (limits->zoned != BLK_ZONED_NONE) {
1745 		/*
1746 		 * ...IF the above limits stacking determined a zoned model
1747 		 * validate that all of the table's devices conform to it.
1748 		 */
1749 		zoned_model = limits->zoned;
1750 		zone_sectors = limits->chunk_sectors;
1751 	}
1752 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1753 		return -EINVAL;
1754 
1755 	return validate_hardware_logical_block_alignment(table, limits);
1756 }
1757 
1758 /*
1759  * Verify that all devices have an integrity profile that matches the
1760  * DM device's registered integrity profile.  If the profiles don't
1761  * match then unregister the DM device's integrity profile.
1762  */
1763 static void dm_table_verify_integrity(struct dm_table *t)
1764 {
1765 	struct gendisk *template_disk = NULL;
1766 
1767 	if (t->integrity_added)
1768 		return;
1769 
1770 	if (t->integrity_supported) {
1771 		/*
1772 		 * Verify that the original integrity profile
1773 		 * matches all the devices in this table.
1774 		 */
1775 		template_disk = dm_table_get_integrity_disk(t);
1776 		if (template_disk &&
1777 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1778 			return;
1779 	}
1780 
1781 	if (integrity_profile_exists(dm_disk(t->md))) {
1782 		DMWARN("%s: unable to establish an integrity profile",
1783 		       dm_device_name(t->md));
1784 		blk_integrity_unregister(dm_disk(t->md));
1785 	}
1786 }
1787 
1788 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1789 				sector_t start, sector_t len, void *data)
1790 {
1791 	unsigned long flush = (unsigned long) data;
1792 	struct request_queue *q = bdev_get_queue(dev->bdev);
1793 
1794 	return (q->queue_flags & flush);
1795 }
1796 
1797 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1798 {
1799 	struct dm_target *ti;
1800 	unsigned i;
1801 
1802 	/*
1803 	 * Require at least one underlying device to support flushes.
1804 	 * t->devices includes internal dm devices such as mirror logs
1805 	 * so we need to use iterate_devices here, which targets
1806 	 * supporting flushes must provide.
1807 	 */
1808 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1809 		ti = dm_table_get_target(t, i);
1810 
1811 		if (!ti->num_flush_bios)
1812 			continue;
1813 
1814 		if (ti->flush_supported)
1815 			return true;
1816 
1817 		if (ti->type->iterate_devices &&
1818 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1819 			return true;
1820 	}
1821 
1822 	return false;
1823 }
1824 
1825 static int device_dax_write_cache_enabled(struct dm_target *ti,
1826 					  struct dm_dev *dev, sector_t start,
1827 					  sector_t len, void *data)
1828 {
1829 	struct dax_device *dax_dev = dev->dax_dev;
1830 
1831 	if (!dax_dev)
1832 		return false;
1833 
1834 	if (dax_write_cache_enabled(dax_dev))
1835 		return true;
1836 	return false;
1837 }
1838 
1839 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1840 				sector_t start, sector_t len, void *data)
1841 {
1842 	return !bdev_nonrot(dev->bdev);
1843 }
1844 
1845 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1846 			     sector_t start, sector_t len, void *data)
1847 {
1848 	struct request_queue *q = bdev_get_queue(dev->bdev);
1849 
1850 	return !blk_queue_add_random(q);
1851 }
1852 
1853 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1854 					   sector_t start, sector_t len, void *data)
1855 {
1856 	struct request_queue *q = bdev_get_queue(dev->bdev);
1857 
1858 	return !q->limits.max_write_zeroes_sectors;
1859 }
1860 
1861 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1862 {
1863 	struct dm_target *ti;
1864 	unsigned i = 0;
1865 
1866 	while (i < dm_table_get_num_targets(t)) {
1867 		ti = dm_table_get_target(t, i++);
1868 
1869 		if (!ti->num_write_zeroes_bios)
1870 			return false;
1871 
1872 		if (!ti->type->iterate_devices ||
1873 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1874 			return false;
1875 	}
1876 
1877 	return true;
1878 }
1879 
1880 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1881 				     sector_t start, sector_t len, void *data)
1882 {
1883 	struct request_queue *q = bdev_get_queue(dev->bdev);
1884 
1885 	return !blk_queue_nowait(q);
1886 }
1887 
1888 static bool dm_table_supports_nowait(struct dm_table *t)
1889 {
1890 	struct dm_target *ti;
1891 	unsigned i = 0;
1892 
1893 	while (i < dm_table_get_num_targets(t)) {
1894 		ti = dm_table_get_target(t, i++);
1895 
1896 		if (!dm_target_supports_nowait(ti->type))
1897 			return false;
1898 
1899 		if (!ti->type->iterate_devices ||
1900 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1901 			return false;
1902 	}
1903 
1904 	return true;
1905 }
1906 
1907 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1908 				      sector_t start, sector_t len, void *data)
1909 {
1910 	return !bdev_max_discard_sectors(dev->bdev);
1911 }
1912 
1913 static bool dm_table_supports_discards(struct dm_table *t)
1914 {
1915 	struct dm_target *ti;
1916 	unsigned i;
1917 
1918 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1919 		ti = dm_table_get_target(t, i);
1920 
1921 		if (!ti->num_discard_bios)
1922 			return false;
1923 
1924 		/*
1925 		 * Either the target provides discard support (as implied by setting
1926 		 * 'discards_supported') or it relies on _all_ data devices having
1927 		 * discard support.
1928 		 */
1929 		if (!ti->discards_supported &&
1930 		    (!ti->type->iterate_devices ||
1931 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1932 			return false;
1933 	}
1934 
1935 	return true;
1936 }
1937 
1938 static int device_not_secure_erase_capable(struct dm_target *ti,
1939 					   struct dm_dev *dev, sector_t start,
1940 					   sector_t len, void *data)
1941 {
1942 	return !bdev_max_secure_erase_sectors(dev->bdev);
1943 }
1944 
1945 static bool dm_table_supports_secure_erase(struct dm_table *t)
1946 {
1947 	struct dm_target *ti;
1948 	unsigned int i;
1949 
1950 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1951 		ti = dm_table_get_target(t, i);
1952 
1953 		if (!ti->num_secure_erase_bios)
1954 			return false;
1955 
1956 		if (!ti->type->iterate_devices ||
1957 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1958 			return false;
1959 	}
1960 
1961 	return true;
1962 }
1963 
1964 static int device_requires_stable_pages(struct dm_target *ti,
1965 					struct dm_dev *dev, sector_t start,
1966 					sector_t len, void *data)
1967 {
1968 	return bdev_stable_writes(dev->bdev);
1969 }
1970 
1971 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1972 			      struct queue_limits *limits)
1973 {
1974 	bool wc = false, fua = false;
1975 	int r;
1976 
1977 	/*
1978 	 * Copy table's limits to the DM device's request_queue
1979 	 */
1980 	q->limits = *limits;
1981 
1982 	if (dm_table_supports_nowait(t))
1983 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1984 	else
1985 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1986 
1987 	if (!dm_table_supports_discards(t)) {
1988 		q->limits.max_discard_sectors = 0;
1989 		q->limits.max_hw_discard_sectors = 0;
1990 		q->limits.discard_granularity = 0;
1991 		q->limits.discard_alignment = 0;
1992 		q->limits.discard_misaligned = 0;
1993 	}
1994 
1995 	if (!dm_table_supports_secure_erase(t))
1996 		q->limits.max_secure_erase_sectors = 0;
1997 
1998 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1999 		wc = true;
2000 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2001 			fua = true;
2002 	}
2003 	blk_queue_write_cache(q, wc, fua);
2004 
2005 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
2006 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2007 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
2008 			set_dax_synchronous(t->md->dax_dev);
2009 	}
2010 	else
2011 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2012 
2013 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2014 		dax_write_cache(t->md->dax_dev, true);
2015 
2016 	/* Ensure that all underlying devices are non-rotational. */
2017 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2018 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2019 	else
2020 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2021 
2022 	if (!dm_table_supports_write_zeroes(t))
2023 		q->limits.max_write_zeroes_sectors = 0;
2024 
2025 	dm_table_verify_integrity(t);
2026 
2027 	/*
2028 	 * Some devices don't use blk_integrity but still want stable pages
2029 	 * because they do their own checksumming.
2030 	 * If any underlying device requires stable pages, a table must require
2031 	 * them as well.  Only targets that support iterate_devices are considered:
2032 	 * don't want error, zero, etc to require stable pages.
2033 	 */
2034 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2035 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2036 	else
2037 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2038 
2039 	/*
2040 	 * Determine whether or not this queue's I/O timings contribute
2041 	 * to the entropy pool, Only request-based targets use this.
2042 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2043 	 * have it set.
2044 	 */
2045 	if (blk_queue_add_random(q) &&
2046 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2047 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2048 
2049 	/*
2050 	 * For a zoned target, setup the zones related queue attributes
2051 	 * and resources necessary for zone append emulation if necessary.
2052 	 */
2053 	if (blk_queue_is_zoned(q)) {
2054 		r = dm_set_zones_restrictions(t, q);
2055 		if (r)
2056 			return r;
2057 		if (!static_key_enabled(&zoned_enabled.key))
2058 			static_branch_enable(&zoned_enabled);
2059 	}
2060 
2061 	dm_update_crypto_profile(q, t);
2062 	disk_update_readahead(t->md->disk);
2063 
2064 	/*
2065 	 * Check for request-based device is left to
2066 	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2067 	 *
2068 	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2069 	 * underlying devices supporting polling.
2070 	 */
2071 	if (__table_type_bio_based(t->type)) {
2072 		if (dm_table_supports_poll(t))
2073 			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2074 		else
2075 			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2076 	}
2077 
2078 	return 0;
2079 }
2080 
2081 unsigned int dm_table_get_num_targets(struct dm_table *t)
2082 {
2083 	return t->num_targets;
2084 }
2085 
2086 struct list_head *dm_table_get_devices(struct dm_table *t)
2087 {
2088 	return &t->devices;
2089 }
2090 
2091 fmode_t dm_table_get_mode(struct dm_table *t)
2092 {
2093 	return t->mode;
2094 }
2095 EXPORT_SYMBOL(dm_table_get_mode);
2096 
2097 enum suspend_mode {
2098 	PRESUSPEND,
2099 	PRESUSPEND_UNDO,
2100 	POSTSUSPEND,
2101 };
2102 
2103 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2104 {
2105 	int i = t->num_targets;
2106 	struct dm_target *ti = t->targets;
2107 
2108 	lockdep_assert_held(&t->md->suspend_lock);
2109 
2110 	while (i--) {
2111 		switch (mode) {
2112 		case PRESUSPEND:
2113 			if (ti->type->presuspend)
2114 				ti->type->presuspend(ti);
2115 			break;
2116 		case PRESUSPEND_UNDO:
2117 			if (ti->type->presuspend_undo)
2118 				ti->type->presuspend_undo(ti);
2119 			break;
2120 		case POSTSUSPEND:
2121 			if (ti->type->postsuspend)
2122 				ti->type->postsuspend(ti);
2123 			break;
2124 		}
2125 		ti++;
2126 	}
2127 }
2128 
2129 void dm_table_presuspend_targets(struct dm_table *t)
2130 {
2131 	if (!t)
2132 		return;
2133 
2134 	suspend_targets(t, PRESUSPEND);
2135 }
2136 
2137 void dm_table_presuspend_undo_targets(struct dm_table *t)
2138 {
2139 	if (!t)
2140 		return;
2141 
2142 	suspend_targets(t, PRESUSPEND_UNDO);
2143 }
2144 
2145 void dm_table_postsuspend_targets(struct dm_table *t)
2146 {
2147 	if (!t)
2148 		return;
2149 
2150 	suspend_targets(t, POSTSUSPEND);
2151 }
2152 
2153 int dm_table_resume_targets(struct dm_table *t)
2154 {
2155 	int i, r = 0;
2156 
2157 	lockdep_assert_held(&t->md->suspend_lock);
2158 
2159 	for (i = 0; i < t->num_targets; i++) {
2160 		struct dm_target *ti = t->targets + i;
2161 
2162 		if (!ti->type->preresume)
2163 			continue;
2164 
2165 		r = ti->type->preresume(ti);
2166 		if (r) {
2167 			DMERR("%s: %s: preresume failed, error = %d",
2168 			      dm_device_name(t->md), ti->type->name, r);
2169 			return r;
2170 		}
2171 	}
2172 
2173 	for (i = 0; i < t->num_targets; i++) {
2174 		struct dm_target *ti = t->targets + i;
2175 
2176 		if (ti->type->resume)
2177 			ti->type->resume(ti);
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 struct mapped_device *dm_table_get_md(struct dm_table *t)
2184 {
2185 	return t->md;
2186 }
2187 EXPORT_SYMBOL(dm_table_get_md);
2188 
2189 const char *dm_table_device_name(struct dm_table *t)
2190 {
2191 	return dm_device_name(t->md);
2192 }
2193 EXPORT_SYMBOL_GPL(dm_table_device_name);
2194 
2195 void dm_table_run_md_queue_async(struct dm_table *t)
2196 {
2197 	if (!dm_table_request_based(t))
2198 		return;
2199 
2200 	if (t->md->queue)
2201 		blk_mq_run_hw_queues(t->md->queue, true);
2202 }
2203 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2204 
2205