xref: /openbmc/linux/drivers/md/dm-table.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 /*
32  * Similar to ceiling(log_size(n))
33  */
34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 	int result = 0;
37 
38 	while (n > 1) {
39 		n = dm_div_up(n, base);
40 		result++;
41 	}
42 
43 	return result;
44 }
45 
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 	return (n * CHILDREN_PER_NODE) + k;
52 }
53 
54 /*
55  * Return the n'th node of level l from table t.
56  */
57 static inline sector_t *get_node(struct dm_table *t,
58 				 unsigned int l, unsigned int n)
59 {
60 	return t->index[l] + (n * KEYS_PER_NODE);
61 }
62 
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 	for (; l < t->depth - 1; l++)
70 		n = get_child(n, CHILDREN_PER_NODE - 1);
71 
72 	if (n >= t->counts[l])
73 		return (sector_t) - 1;
74 
75 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77 
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 	unsigned int n, k;
85 	sector_t *node;
86 
87 	for (n = 0U; n < t->counts[l]; n++) {
88 		node = get_node(t, l, n);
89 
90 		for (k = 0U; k < KEYS_PER_NODE; k++)
91 			node[k] = high(t, l + 1, get_child(n, k));
92 	}
93 
94 	return 0;
95 }
96 
97 /*
98  * highs, and targets are managed as dynamic arrays during a
99  * table load.
100  */
101 static int alloc_targets(struct dm_table *t, unsigned int num)
102 {
103 	sector_t *n_highs;
104 	struct dm_target *n_targets;
105 
106 	/*
107 	 * Allocate both the target array and offset array at once.
108 	 */
109 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
110 			   GFP_KERNEL);
111 	if (!n_highs)
112 		return -ENOMEM;
113 
114 	n_targets = (struct dm_target *) (n_highs + num);
115 
116 	memset(n_highs, -1, sizeof(*n_highs) * num);
117 	kvfree(t->highs);
118 
119 	t->num_allocated = num;
120 	t->highs = n_highs;
121 	t->targets = n_targets;
122 
123 	return 0;
124 }
125 
126 int dm_table_create(struct dm_table **result, fmode_t mode,
127 		    unsigned num_targets, struct mapped_device *md)
128 {
129 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
130 
131 	if (!t)
132 		return -ENOMEM;
133 
134 	INIT_LIST_HEAD(&t->devices);
135 
136 	if (!num_targets)
137 		num_targets = KEYS_PER_NODE;
138 
139 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
140 
141 	if (!num_targets) {
142 		kfree(t);
143 		return -ENOMEM;
144 	}
145 
146 	if (alloc_targets(t, num_targets)) {
147 		kfree(t);
148 		return -ENOMEM;
149 	}
150 
151 	t->type = DM_TYPE_NONE;
152 	t->mode = mode;
153 	t->md = md;
154 	*result = t;
155 	return 0;
156 }
157 
158 static void free_devices(struct list_head *devices, struct mapped_device *md)
159 {
160 	struct list_head *tmp, *next;
161 
162 	list_for_each_safe(tmp, next, devices) {
163 		struct dm_dev_internal *dd =
164 		    list_entry(tmp, struct dm_dev_internal, list);
165 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
166 		       dm_device_name(md), dd->dm_dev->name);
167 		dm_put_table_device(md, dd->dm_dev);
168 		kfree(dd);
169 	}
170 }
171 
172 static void dm_table_destroy_keyslot_manager(struct dm_table *t);
173 
174 void dm_table_destroy(struct dm_table *t)
175 {
176 	unsigned int i;
177 
178 	if (!t)
179 		return;
180 
181 	/* free the indexes */
182 	if (t->depth >= 2)
183 		kvfree(t->index[t->depth - 2]);
184 
185 	/* free the targets */
186 	for (i = 0; i < t->num_targets; i++) {
187 		struct dm_target *tgt = t->targets + i;
188 
189 		if (tgt->type->dtr)
190 			tgt->type->dtr(tgt);
191 
192 		dm_put_target_type(tgt->type);
193 	}
194 
195 	kvfree(t->highs);
196 
197 	/* free the device list */
198 	free_devices(&t->devices, t->md);
199 
200 	dm_free_md_mempools(t->mempools);
201 
202 	dm_table_destroy_keyslot_manager(t);
203 
204 	kfree(t);
205 }
206 
207 /*
208  * See if we've already got a device in the list.
209  */
210 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
211 {
212 	struct dm_dev_internal *dd;
213 
214 	list_for_each_entry (dd, l, list)
215 		if (dd->dm_dev->bdev->bd_dev == dev)
216 			return dd;
217 
218 	return NULL;
219 }
220 
221 /*
222  * If possible, this checks an area of a destination device is invalid.
223  */
224 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
225 				  sector_t start, sector_t len, void *data)
226 {
227 	struct queue_limits *limits = data;
228 	struct block_device *bdev = dev->bdev;
229 	sector_t dev_size =
230 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
231 	unsigned short logical_block_size_sectors =
232 		limits->logical_block_size >> SECTOR_SHIFT;
233 	char b[BDEVNAME_SIZE];
234 
235 	if (!dev_size)
236 		return 0;
237 
238 	if ((start >= dev_size) || (start + len > dev_size)) {
239 		DMWARN("%s: %s too small for target: "
240 		       "start=%llu, len=%llu, dev_size=%llu",
241 		       dm_device_name(ti->table->md), bdevname(bdev, b),
242 		       (unsigned long long)start,
243 		       (unsigned long long)len,
244 		       (unsigned long long)dev_size);
245 		return 1;
246 	}
247 
248 	/*
249 	 * If the target is mapped to zoned block device(s), check
250 	 * that the zones are not partially mapped.
251 	 */
252 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
253 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
254 
255 		if (start & (zone_sectors - 1)) {
256 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
257 			       dm_device_name(ti->table->md),
258 			       (unsigned long long)start,
259 			       zone_sectors, bdevname(bdev, b));
260 			return 1;
261 		}
262 
263 		/*
264 		 * Note: The last zone of a zoned block device may be smaller
265 		 * than other zones. So for a target mapping the end of a
266 		 * zoned block device with such a zone, len would not be zone
267 		 * aligned. We do not allow such last smaller zone to be part
268 		 * of the mapping here to ensure that mappings with multiple
269 		 * devices do not end up with a smaller zone in the middle of
270 		 * the sector range.
271 		 */
272 		if (len & (zone_sectors - 1)) {
273 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
274 			       dm_device_name(ti->table->md),
275 			       (unsigned long long)len,
276 			       zone_sectors, bdevname(bdev, b));
277 			return 1;
278 		}
279 	}
280 
281 	if (logical_block_size_sectors <= 1)
282 		return 0;
283 
284 	if (start & (logical_block_size_sectors - 1)) {
285 		DMWARN("%s: start=%llu not aligned to h/w "
286 		       "logical block size %u of %s",
287 		       dm_device_name(ti->table->md),
288 		       (unsigned long long)start,
289 		       limits->logical_block_size, bdevname(bdev, b));
290 		return 1;
291 	}
292 
293 	if (len & (logical_block_size_sectors - 1)) {
294 		DMWARN("%s: len=%llu not aligned to h/w "
295 		       "logical block size %u of %s",
296 		       dm_device_name(ti->table->md),
297 		       (unsigned long long)len,
298 		       limits->logical_block_size, bdevname(bdev, b));
299 		return 1;
300 	}
301 
302 	return 0;
303 }
304 
305 /*
306  * This upgrades the mode on an already open dm_dev, being
307  * careful to leave things as they were if we fail to reopen the
308  * device and not to touch the existing bdev field in case
309  * it is accessed concurrently.
310  */
311 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
312 			struct mapped_device *md)
313 {
314 	int r;
315 	struct dm_dev *old_dev, *new_dev;
316 
317 	old_dev = dd->dm_dev;
318 
319 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
320 				dd->dm_dev->mode | new_mode, &new_dev);
321 	if (r)
322 		return r;
323 
324 	dd->dm_dev = new_dev;
325 	dm_put_table_device(md, old_dev);
326 
327 	return 0;
328 }
329 
330 /*
331  * Convert the path to a device
332  */
333 dev_t dm_get_dev_t(const char *path)
334 {
335 	dev_t dev;
336 
337 	if (lookup_bdev(path, &dev))
338 		dev = name_to_dev_t(path);
339 	return dev;
340 }
341 EXPORT_SYMBOL_GPL(dm_get_dev_t);
342 
343 /*
344  * Add a device to the list, or just increment the usage count if
345  * it's already present.
346  */
347 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
348 		  struct dm_dev **result)
349 {
350 	int r;
351 	dev_t dev;
352 	unsigned int major, minor;
353 	char dummy;
354 	struct dm_dev_internal *dd;
355 	struct dm_table *t = ti->table;
356 
357 	BUG_ON(!t);
358 
359 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
360 		/* Extract the major/minor numbers */
361 		dev = MKDEV(major, minor);
362 		if (MAJOR(dev) != major || MINOR(dev) != minor)
363 			return -EOVERFLOW;
364 	} else {
365 		dev = dm_get_dev_t(path);
366 		if (!dev)
367 			return -ENODEV;
368 	}
369 
370 	dd = find_device(&t->devices, dev);
371 	if (!dd) {
372 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 		if (!dd)
374 			return -ENOMEM;
375 
376 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
377 			kfree(dd);
378 			return r;
379 		}
380 
381 		refcount_set(&dd->count, 1);
382 		list_add(&dd->list, &t->devices);
383 		goto out;
384 
385 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
386 		r = upgrade_mode(dd, mode, t->md);
387 		if (r)
388 			return r;
389 	}
390 	refcount_inc(&dd->count);
391 out:
392 	*result = dd->dm_dev;
393 	return 0;
394 }
395 EXPORT_SYMBOL(dm_get_device);
396 
397 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
398 				sector_t start, sector_t len, void *data)
399 {
400 	struct queue_limits *limits = data;
401 	struct block_device *bdev = dev->bdev;
402 	struct request_queue *q = bdev_get_queue(bdev);
403 	char b[BDEVNAME_SIZE];
404 
405 	if (unlikely(!q)) {
406 		DMWARN("%s: Cannot set limits for nonexistent device %s",
407 		       dm_device_name(ti->table->md), bdevname(bdev, b));
408 		return 0;
409 	}
410 
411 	if (blk_stack_limits(limits, &q->limits,
412 			get_start_sect(bdev) + start) < 0)
413 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
414 		       "physical_block_size=%u, logical_block_size=%u, "
415 		       "alignment_offset=%u, start=%llu",
416 		       dm_device_name(ti->table->md), bdevname(bdev, b),
417 		       q->limits.physical_block_size,
418 		       q->limits.logical_block_size,
419 		       q->limits.alignment_offset,
420 		       (unsigned long long) start << SECTOR_SHIFT);
421 	return 0;
422 }
423 
424 /*
425  * Decrement a device's use count and remove it if necessary.
426  */
427 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
428 {
429 	int found = 0;
430 	struct list_head *devices = &ti->table->devices;
431 	struct dm_dev_internal *dd;
432 
433 	list_for_each_entry(dd, devices, list) {
434 		if (dd->dm_dev == d) {
435 			found = 1;
436 			break;
437 		}
438 	}
439 	if (!found) {
440 		DMWARN("%s: device %s not in table devices list",
441 		       dm_device_name(ti->table->md), d->name);
442 		return;
443 	}
444 	if (refcount_dec_and_test(&dd->count)) {
445 		dm_put_table_device(ti->table->md, d);
446 		list_del(&dd->list);
447 		kfree(dd);
448 	}
449 }
450 EXPORT_SYMBOL(dm_put_device);
451 
452 /*
453  * Checks to see if the target joins onto the end of the table.
454  */
455 static int adjoin(struct dm_table *table, struct dm_target *ti)
456 {
457 	struct dm_target *prev;
458 
459 	if (!table->num_targets)
460 		return !ti->begin;
461 
462 	prev = &table->targets[table->num_targets - 1];
463 	return (ti->begin == (prev->begin + prev->len));
464 }
465 
466 /*
467  * Used to dynamically allocate the arg array.
468  *
469  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
470  * process messages even if some device is suspended. These messages have a
471  * small fixed number of arguments.
472  *
473  * On the other hand, dm-switch needs to process bulk data using messages and
474  * excessive use of GFP_NOIO could cause trouble.
475  */
476 static char **realloc_argv(unsigned *size, char **old_argv)
477 {
478 	char **argv;
479 	unsigned new_size;
480 	gfp_t gfp;
481 
482 	if (*size) {
483 		new_size = *size * 2;
484 		gfp = GFP_KERNEL;
485 	} else {
486 		new_size = 8;
487 		gfp = GFP_NOIO;
488 	}
489 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
490 	if (argv && old_argv) {
491 		memcpy(argv, old_argv, *size * sizeof(*argv));
492 		*size = new_size;
493 	}
494 
495 	kfree(old_argv);
496 	return argv;
497 }
498 
499 /*
500  * Destructively splits up the argument list to pass to ctr.
501  */
502 int dm_split_args(int *argc, char ***argvp, char *input)
503 {
504 	char *start, *end = input, *out, **argv = NULL;
505 	unsigned array_size = 0;
506 
507 	*argc = 0;
508 
509 	if (!input) {
510 		*argvp = NULL;
511 		return 0;
512 	}
513 
514 	argv = realloc_argv(&array_size, argv);
515 	if (!argv)
516 		return -ENOMEM;
517 
518 	while (1) {
519 		/* Skip whitespace */
520 		start = skip_spaces(end);
521 
522 		if (!*start)
523 			break;	/* success, we hit the end */
524 
525 		/* 'out' is used to remove any back-quotes */
526 		end = out = start;
527 		while (*end) {
528 			/* Everything apart from '\0' can be quoted */
529 			if (*end == '\\' && *(end + 1)) {
530 				*out++ = *(end + 1);
531 				end += 2;
532 				continue;
533 			}
534 
535 			if (isspace(*end))
536 				break;	/* end of token */
537 
538 			*out++ = *end++;
539 		}
540 
541 		/* have we already filled the array ? */
542 		if ((*argc + 1) > array_size) {
543 			argv = realloc_argv(&array_size, argv);
544 			if (!argv)
545 				return -ENOMEM;
546 		}
547 
548 		/* we know this is whitespace */
549 		if (*end)
550 			end++;
551 
552 		/* terminate the string and put it in the array */
553 		*out = '\0';
554 		argv[*argc] = start;
555 		(*argc)++;
556 	}
557 
558 	*argvp = argv;
559 	return 0;
560 }
561 
562 /*
563  * Impose necessary and sufficient conditions on a devices's table such
564  * that any incoming bio which respects its logical_block_size can be
565  * processed successfully.  If it falls across the boundary between
566  * two or more targets, the size of each piece it gets split into must
567  * be compatible with the logical_block_size of the target processing it.
568  */
569 static int validate_hardware_logical_block_alignment(struct dm_table *table,
570 						 struct queue_limits *limits)
571 {
572 	/*
573 	 * This function uses arithmetic modulo the logical_block_size
574 	 * (in units of 512-byte sectors).
575 	 */
576 	unsigned short device_logical_block_size_sects =
577 		limits->logical_block_size >> SECTOR_SHIFT;
578 
579 	/*
580 	 * Offset of the start of the next table entry, mod logical_block_size.
581 	 */
582 	unsigned short next_target_start = 0;
583 
584 	/*
585 	 * Given an aligned bio that extends beyond the end of a
586 	 * target, how many sectors must the next target handle?
587 	 */
588 	unsigned short remaining = 0;
589 
590 	struct dm_target *ti;
591 	struct queue_limits ti_limits;
592 	unsigned i;
593 
594 	/*
595 	 * Check each entry in the table in turn.
596 	 */
597 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
598 		ti = dm_table_get_target(table, i);
599 
600 		blk_set_stacking_limits(&ti_limits);
601 
602 		/* combine all target devices' limits */
603 		if (ti->type->iterate_devices)
604 			ti->type->iterate_devices(ti, dm_set_device_limits,
605 						  &ti_limits);
606 
607 		/*
608 		 * If the remaining sectors fall entirely within this
609 		 * table entry are they compatible with its logical_block_size?
610 		 */
611 		if (remaining < ti->len &&
612 		    remaining & ((ti_limits.logical_block_size >>
613 				  SECTOR_SHIFT) - 1))
614 			break;	/* Error */
615 
616 		next_target_start =
617 		    (unsigned short) ((next_target_start + ti->len) &
618 				      (device_logical_block_size_sects - 1));
619 		remaining = next_target_start ?
620 		    device_logical_block_size_sects - next_target_start : 0;
621 	}
622 
623 	if (remaining) {
624 		DMWARN("%s: table line %u (start sect %llu len %llu) "
625 		       "not aligned to h/w logical block size %u",
626 		       dm_device_name(table->md), i,
627 		       (unsigned long long) ti->begin,
628 		       (unsigned long long) ti->len,
629 		       limits->logical_block_size);
630 		return -EINVAL;
631 	}
632 
633 	return 0;
634 }
635 
636 int dm_table_add_target(struct dm_table *t, const char *type,
637 			sector_t start, sector_t len, char *params)
638 {
639 	int r = -EINVAL, argc;
640 	char **argv;
641 	struct dm_target *tgt;
642 
643 	if (t->singleton) {
644 		DMERR("%s: target type %s must appear alone in table",
645 		      dm_device_name(t->md), t->targets->type->name);
646 		return -EINVAL;
647 	}
648 
649 	BUG_ON(t->num_targets >= t->num_allocated);
650 
651 	tgt = t->targets + t->num_targets;
652 	memset(tgt, 0, sizeof(*tgt));
653 
654 	if (!len) {
655 		DMERR("%s: zero-length target", dm_device_name(t->md));
656 		return -EINVAL;
657 	}
658 
659 	tgt->type = dm_get_target_type(type);
660 	if (!tgt->type) {
661 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
662 		return -EINVAL;
663 	}
664 
665 	if (dm_target_needs_singleton(tgt->type)) {
666 		if (t->num_targets) {
667 			tgt->error = "singleton target type must appear alone in table";
668 			goto bad;
669 		}
670 		t->singleton = true;
671 	}
672 
673 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
674 		tgt->error = "target type may not be included in a read-only table";
675 		goto bad;
676 	}
677 
678 	if (t->immutable_target_type) {
679 		if (t->immutable_target_type != tgt->type) {
680 			tgt->error = "immutable target type cannot be mixed with other target types";
681 			goto bad;
682 		}
683 	} else if (dm_target_is_immutable(tgt->type)) {
684 		if (t->num_targets) {
685 			tgt->error = "immutable target type cannot be mixed with other target types";
686 			goto bad;
687 		}
688 		t->immutable_target_type = tgt->type;
689 	}
690 
691 	if (dm_target_has_integrity(tgt->type))
692 		t->integrity_added = 1;
693 
694 	tgt->table = t;
695 	tgt->begin = start;
696 	tgt->len = len;
697 	tgt->error = "Unknown error";
698 
699 	/*
700 	 * Does this target adjoin the previous one ?
701 	 */
702 	if (!adjoin(t, tgt)) {
703 		tgt->error = "Gap in table";
704 		goto bad;
705 	}
706 
707 	r = dm_split_args(&argc, &argv, params);
708 	if (r) {
709 		tgt->error = "couldn't split parameters (insufficient memory)";
710 		goto bad;
711 	}
712 
713 	r = tgt->type->ctr(tgt, argc, argv);
714 	kfree(argv);
715 	if (r)
716 		goto bad;
717 
718 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
719 
720 	if (!tgt->num_discard_bios && tgt->discards_supported)
721 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
722 		       dm_device_name(t->md), type);
723 
724 	return 0;
725 
726  bad:
727 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
728 	dm_put_target_type(tgt->type);
729 	return r;
730 }
731 
732 /*
733  * Target argument parsing helpers.
734  */
735 static int validate_next_arg(const struct dm_arg *arg,
736 			     struct dm_arg_set *arg_set,
737 			     unsigned *value, char **error, unsigned grouped)
738 {
739 	const char *arg_str = dm_shift_arg(arg_set);
740 	char dummy;
741 
742 	if (!arg_str ||
743 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
744 	    (*value < arg->min) ||
745 	    (*value > arg->max) ||
746 	    (grouped && arg_set->argc < *value)) {
747 		*error = arg->error;
748 		return -EINVAL;
749 	}
750 
751 	return 0;
752 }
753 
754 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
755 		unsigned *value, char **error)
756 {
757 	return validate_next_arg(arg, arg_set, value, error, 0);
758 }
759 EXPORT_SYMBOL(dm_read_arg);
760 
761 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
762 		      unsigned *value, char **error)
763 {
764 	return validate_next_arg(arg, arg_set, value, error, 1);
765 }
766 EXPORT_SYMBOL(dm_read_arg_group);
767 
768 const char *dm_shift_arg(struct dm_arg_set *as)
769 {
770 	char *r;
771 
772 	if (as->argc) {
773 		as->argc--;
774 		r = *as->argv;
775 		as->argv++;
776 		return r;
777 	}
778 
779 	return NULL;
780 }
781 EXPORT_SYMBOL(dm_shift_arg);
782 
783 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
784 {
785 	BUG_ON(as->argc < num_args);
786 	as->argc -= num_args;
787 	as->argv += num_args;
788 }
789 EXPORT_SYMBOL(dm_consume_args);
790 
791 static bool __table_type_bio_based(enum dm_queue_mode table_type)
792 {
793 	return (table_type == DM_TYPE_BIO_BASED ||
794 		table_type == DM_TYPE_DAX_BIO_BASED);
795 }
796 
797 static bool __table_type_request_based(enum dm_queue_mode table_type)
798 {
799 	return table_type == DM_TYPE_REQUEST_BASED;
800 }
801 
802 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
803 {
804 	t->type = type;
805 }
806 EXPORT_SYMBOL_GPL(dm_table_set_type);
807 
808 /* validate the dax capability of the target device span */
809 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
810 			sector_t start, sector_t len, void *data)
811 {
812 	int blocksize = *(int *) data, id;
813 	bool rc;
814 
815 	id = dax_read_lock();
816 	rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
817 	dax_read_unlock(id);
818 
819 	return rc;
820 }
821 
822 /* Check devices support synchronous DAX */
823 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
824 					      sector_t start, sector_t len, void *data)
825 {
826 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
827 }
828 
829 bool dm_table_supports_dax(struct dm_table *t,
830 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
831 {
832 	struct dm_target *ti;
833 	unsigned i;
834 
835 	/* Ensure that all targets support DAX. */
836 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
837 		ti = dm_table_get_target(t, i);
838 
839 		if (!ti->type->direct_access)
840 			return false;
841 
842 		if (!ti->type->iterate_devices ||
843 		    ti->type->iterate_devices(ti, iterate_fn, blocksize))
844 			return false;
845 	}
846 
847 	return true;
848 }
849 
850 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
851 				  sector_t start, sector_t len, void *data)
852 {
853 	struct block_device *bdev = dev->bdev;
854 	struct request_queue *q = bdev_get_queue(bdev);
855 
856 	/* request-based cannot stack on partitions! */
857 	if (bdev_is_partition(bdev))
858 		return false;
859 
860 	return queue_is_mq(q);
861 }
862 
863 static int dm_table_determine_type(struct dm_table *t)
864 {
865 	unsigned i;
866 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
867 	struct dm_target *tgt;
868 	struct list_head *devices = dm_table_get_devices(t);
869 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
870 	int page_size = PAGE_SIZE;
871 
872 	if (t->type != DM_TYPE_NONE) {
873 		/* target already set the table's type */
874 		if (t->type == DM_TYPE_BIO_BASED) {
875 			/* possibly upgrade to a variant of bio-based */
876 			goto verify_bio_based;
877 		}
878 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
879 		goto verify_rq_based;
880 	}
881 
882 	for (i = 0; i < t->num_targets; i++) {
883 		tgt = t->targets + i;
884 		if (dm_target_hybrid(tgt))
885 			hybrid = 1;
886 		else if (dm_target_request_based(tgt))
887 			request_based = 1;
888 		else
889 			bio_based = 1;
890 
891 		if (bio_based && request_based) {
892 			DMERR("Inconsistent table: different target types"
893 			      " can't be mixed up");
894 			return -EINVAL;
895 		}
896 	}
897 
898 	if (hybrid && !bio_based && !request_based) {
899 		/*
900 		 * The targets can work either way.
901 		 * Determine the type from the live device.
902 		 * Default to bio-based if device is new.
903 		 */
904 		if (__table_type_request_based(live_md_type))
905 			request_based = 1;
906 		else
907 			bio_based = 1;
908 	}
909 
910 	if (bio_based) {
911 verify_bio_based:
912 		/* We must use this table as bio-based */
913 		t->type = DM_TYPE_BIO_BASED;
914 		if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
915 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
916 			t->type = DM_TYPE_DAX_BIO_BASED;
917 		}
918 		return 0;
919 	}
920 
921 	BUG_ON(!request_based); /* No targets in this table */
922 
923 	t->type = DM_TYPE_REQUEST_BASED;
924 
925 verify_rq_based:
926 	/*
927 	 * Request-based dm supports only tables that have a single target now.
928 	 * To support multiple targets, request splitting support is needed,
929 	 * and that needs lots of changes in the block-layer.
930 	 * (e.g. request completion process for partial completion.)
931 	 */
932 	if (t->num_targets > 1) {
933 		DMERR("request-based DM doesn't support multiple targets");
934 		return -EINVAL;
935 	}
936 
937 	if (list_empty(devices)) {
938 		int srcu_idx;
939 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
940 
941 		/* inherit live table's type */
942 		if (live_table)
943 			t->type = live_table->type;
944 		dm_put_live_table(t->md, srcu_idx);
945 		return 0;
946 	}
947 
948 	tgt = dm_table_get_immutable_target(t);
949 	if (!tgt) {
950 		DMERR("table load rejected: immutable target is required");
951 		return -EINVAL;
952 	} else if (tgt->max_io_len) {
953 		DMERR("table load rejected: immutable target that splits IO is not supported");
954 		return -EINVAL;
955 	}
956 
957 	/* Non-request-stackable devices can't be used for request-based dm */
958 	if (!tgt->type->iterate_devices ||
959 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
960 		DMERR("table load rejected: including non-request-stackable devices");
961 		return -EINVAL;
962 	}
963 
964 	return 0;
965 }
966 
967 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
968 {
969 	return t->type;
970 }
971 
972 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
973 {
974 	return t->immutable_target_type;
975 }
976 
977 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
978 {
979 	/* Immutable target is implicitly a singleton */
980 	if (t->num_targets > 1 ||
981 	    !dm_target_is_immutable(t->targets[0].type))
982 		return NULL;
983 
984 	return t->targets;
985 }
986 
987 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
988 {
989 	struct dm_target *ti;
990 	unsigned i;
991 
992 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
993 		ti = dm_table_get_target(t, i);
994 		if (dm_target_is_wildcard(ti->type))
995 			return ti;
996 	}
997 
998 	return NULL;
999 }
1000 
1001 bool dm_table_bio_based(struct dm_table *t)
1002 {
1003 	return __table_type_bio_based(dm_table_get_type(t));
1004 }
1005 
1006 bool dm_table_request_based(struct dm_table *t)
1007 {
1008 	return __table_type_request_based(dm_table_get_type(t));
1009 }
1010 
1011 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1012 {
1013 	enum dm_queue_mode type = dm_table_get_type(t);
1014 	unsigned per_io_data_size = 0;
1015 	unsigned min_pool_size = 0;
1016 	struct dm_target *ti;
1017 	unsigned i;
1018 
1019 	if (unlikely(type == DM_TYPE_NONE)) {
1020 		DMWARN("no table type is set, can't allocate mempools");
1021 		return -EINVAL;
1022 	}
1023 
1024 	if (__table_type_bio_based(type))
1025 		for (i = 0; i < t->num_targets; i++) {
1026 			ti = t->targets + i;
1027 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1028 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1029 		}
1030 
1031 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1032 					   per_io_data_size, min_pool_size);
1033 	if (!t->mempools)
1034 		return -ENOMEM;
1035 
1036 	return 0;
1037 }
1038 
1039 void dm_table_free_md_mempools(struct dm_table *t)
1040 {
1041 	dm_free_md_mempools(t->mempools);
1042 	t->mempools = NULL;
1043 }
1044 
1045 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1046 {
1047 	return t->mempools;
1048 }
1049 
1050 static int setup_indexes(struct dm_table *t)
1051 {
1052 	int i;
1053 	unsigned int total = 0;
1054 	sector_t *indexes;
1055 
1056 	/* allocate the space for *all* the indexes */
1057 	for (i = t->depth - 2; i >= 0; i--) {
1058 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1059 		total += t->counts[i];
1060 	}
1061 
1062 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1063 	if (!indexes)
1064 		return -ENOMEM;
1065 
1066 	/* set up internal nodes, bottom-up */
1067 	for (i = t->depth - 2; i >= 0; i--) {
1068 		t->index[i] = indexes;
1069 		indexes += (KEYS_PER_NODE * t->counts[i]);
1070 		setup_btree_index(i, t);
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 /*
1077  * Builds the btree to index the map.
1078  */
1079 static int dm_table_build_index(struct dm_table *t)
1080 {
1081 	int r = 0;
1082 	unsigned int leaf_nodes;
1083 
1084 	/* how many indexes will the btree have ? */
1085 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1086 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1087 
1088 	/* leaf layer has already been set up */
1089 	t->counts[t->depth - 1] = leaf_nodes;
1090 	t->index[t->depth - 1] = t->highs;
1091 
1092 	if (t->depth >= 2)
1093 		r = setup_indexes(t);
1094 
1095 	return r;
1096 }
1097 
1098 static bool integrity_profile_exists(struct gendisk *disk)
1099 {
1100 	return !!blk_get_integrity(disk);
1101 }
1102 
1103 /*
1104  * Get a disk whose integrity profile reflects the table's profile.
1105  * Returns NULL if integrity support was inconsistent or unavailable.
1106  */
1107 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1108 {
1109 	struct list_head *devices = dm_table_get_devices(t);
1110 	struct dm_dev_internal *dd = NULL;
1111 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1112 	unsigned i;
1113 
1114 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1115 		struct dm_target *ti = dm_table_get_target(t, i);
1116 		if (!dm_target_passes_integrity(ti->type))
1117 			goto no_integrity;
1118 	}
1119 
1120 	list_for_each_entry(dd, devices, list) {
1121 		template_disk = dd->dm_dev->bdev->bd_disk;
1122 		if (!integrity_profile_exists(template_disk))
1123 			goto no_integrity;
1124 		else if (prev_disk &&
1125 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1126 			goto no_integrity;
1127 		prev_disk = template_disk;
1128 	}
1129 
1130 	return template_disk;
1131 
1132 no_integrity:
1133 	if (prev_disk)
1134 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1135 		       dm_device_name(t->md),
1136 		       prev_disk->disk_name,
1137 		       template_disk->disk_name);
1138 	return NULL;
1139 }
1140 
1141 /*
1142  * Register the mapped device for blk_integrity support if the
1143  * underlying devices have an integrity profile.  But all devices may
1144  * not have matching profiles (checking all devices isn't reliable
1145  * during table load because this table may use other DM device(s) which
1146  * must be resumed before they will have an initialized integity
1147  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1148  * profile validation: First pass during table load, final pass during
1149  * resume.
1150  */
1151 static int dm_table_register_integrity(struct dm_table *t)
1152 {
1153 	struct mapped_device *md = t->md;
1154 	struct gendisk *template_disk = NULL;
1155 
1156 	/* If target handles integrity itself do not register it here. */
1157 	if (t->integrity_added)
1158 		return 0;
1159 
1160 	template_disk = dm_table_get_integrity_disk(t);
1161 	if (!template_disk)
1162 		return 0;
1163 
1164 	if (!integrity_profile_exists(dm_disk(md))) {
1165 		t->integrity_supported = true;
1166 		/*
1167 		 * Register integrity profile during table load; we can do
1168 		 * this because the final profile must match during resume.
1169 		 */
1170 		blk_integrity_register(dm_disk(md),
1171 				       blk_get_integrity(template_disk));
1172 		return 0;
1173 	}
1174 
1175 	/*
1176 	 * If DM device already has an initialized integrity
1177 	 * profile the new profile should not conflict.
1178 	 */
1179 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1180 		DMWARN("%s: conflict with existing integrity profile: "
1181 		       "%s profile mismatch",
1182 		       dm_device_name(t->md),
1183 		       template_disk->disk_name);
1184 		return 1;
1185 	}
1186 
1187 	/* Preserve existing integrity profile */
1188 	t->integrity_supported = true;
1189 	return 0;
1190 }
1191 
1192 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1193 
1194 struct dm_keyslot_manager {
1195 	struct blk_keyslot_manager ksm;
1196 	struct mapped_device *md;
1197 };
1198 
1199 struct dm_keyslot_evict_args {
1200 	const struct blk_crypto_key *key;
1201 	int err;
1202 };
1203 
1204 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1205 				     sector_t start, sector_t len, void *data)
1206 {
1207 	struct dm_keyslot_evict_args *args = data;
1208 	int err;
1209 
1210 	err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1211 	if (!args->err)
1212 		args->err = err;
1213 	/* Always try to evict the key from all devices. */
1214 	return 0;
1215 }
1216 
1217 /*
1218  * When an inline encryption key is evicted from a device-mapper device, evict
1219  * it from all the underlying devices.
1220  */
1221 static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
1222 			    const struct blk_crypto_key *key, unsigned int slot)
1223 {
1224 	struct dm_keyslot_manager *dksm = container_of(ksm,
1225 						       struct dm_keyslot_manager,
1226 						       ksm);
1227 	struct mapped_device *md = dksm->md;
1228 	struct dm_keyslot_evict_args args = { key };
1229 	struct dm_table *t;
1230 	int srcu_idx;
1231 	int i;
1232 	struct dm_target *ti;
1233 
1234 	t = dm_get_live_table(md, &srcu_idx);
1235 	if (!t)
1236 		return 0;
1237 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1238 		ti = dm_table_get_target(t, i);
1239 		if (!ti->type->iterate_devices)
1240 			continue;
1241 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1242 	}
1243 	dm_put_live_table(md, srcu_idx);
1244 	return args.err;
1245 }
1246 
1247 static struct blk_ksm_ll_ops dm_ksm_ll_ops = {
1248 	.keyslot_evict = dm_keyslot_evict,
1249 };
1250 
1251 static int device_intersect_crypto_modes(struct dm_target *ti,
1252 					 struct dm_dev *dev, sector_t start,
1253 					 sector_t len, void *data)
1254 {
1255 	struct blk_keyslot_manager *parent = data;
1256 	struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
1257 
1258 	blk_ksm_intersect_modes(parent, child);
1259 	return 0;
1260 }
1261 
1262 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1263 {
1264 	struct dm_keyslot_manager *dksm = container_of(ksm,
1265 						       struct dm_keyslot_manager,
1266 						       ksm);
1267 
1268 	if (!ksm)
1269 		return;
1270 
1271 	blk_ksm_destroy(ksm);
1272 	kfree(dksm);
1273 }
1274 
1275 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1276 {
1277 	dm_destroy_keyslot_manager(t->ksm);
1278 	t->ksm = NULL;
1279 }
1280 
1281 /*
1282  * Constructs and initializes t->ksm with a keyslot manager that
1283  * represents the common set of crypto capabilities of the devices
1284  * described by the dm_table. However, if the constructed keyslot
1285  * manager does not support a superset of the crypto capabilities
1286  * supported by the current keyslot manager of the mapped_device,
1287  * it returns an error instead, since we don't support restricting
1288  * crypto capabilities on table changes. Finally, if the constructed
1289  * keyslot manager doesn't actually support any crypto modes at all,
1290  * it just returns NULL.
1291  */
1292 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1293 {
1294 	struct dm_keyslot_manager *dksm;
1295 	struct blk_keyslot_manager *ksm;
1296 	struct dm_target *ti;
1297 	unsigned int i;
1298 	bool ksm_is_empty = true;
1299 
1300 	dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
1301 	if (!dksm)
1302 		return -ENOMEM;
1303 	dksm->md = t->md;
1304 
1305 	ksm = &dksm->ksm;
1306 	blk_ksm_init_passthrough(ksm);
1307 	ksm->ksm_ll_ops = dm_ksm_ll_ops;
1308 	ksm->max_dun_bytes_supported = UINT_MAX;
1309 	memset(ksm->crypto_modes_supported, 0xFF,
1310 	       sizeof(ksm->crypto_modes_supported));
1311 
1312 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1313 		ti = dm_table_get_target(t, i);
1314 
1315 		if (!dm_target_passes_crypto(ti->type)) {
1316 			blk_ksm_intersect_modes(ksm, NULL);
1317 			break;
1318 		}
1319 		if (!ti->type->iterate_devices)
1320 			continue;
1321 		ti->type->iterate_devices(ti, device_intersect_crypto_modes,
1322 					  ksm);
1323 	}
1324 
1325 	if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
1326 		DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1327 		dm_destroy_keyslot_manager(ksm);
1328 		return -EINVAL;
1329 	}
1330 
1331 	/*
1332 	 * If the new KSM doesn't actually support any crypto modes, we may as
1333 	 * well represent it with a NULL ksm.
1334 	 */
1335 	ksm_is_empty = true;
1336 	for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
1337 		if (ksm->crypto_modes_supported[i]) {
1338 			ksm_is_empty = false;
1339 			break;
1340 		}
1341 	}
1342 
1343 	if (ksm_is_empty) {
1344 		dm_destroy_keyslot_manager(ksm);
1345 		ksm = NULL;
1346 	}
1347 
1348 	/*
1349 	 * t->ksm is only set temporarily while the table is being set
1350 	 * up, and it gets set to NULL after the capabilities have
1351 	 * been transferred to the request_queue.
1352 	 */
1353 	t->ksm = ksm;
1354 
1355 	return 0;
1356 }
1357 
1358 static void dm_update_keyslot_manager(struct request_queue *q,
1359 				      struct dm_table *t)
1360 {
1361 	if (!t->ksm)
1362 		return;
1363 
1364 	/* Make the ksm less restrictive */
1365 	if (!q->ksm) {
1366 		blk_ksm_register(t->ksm, q);
1367 	} else {
1368 		blk_ksm_update_capabilities(q->ksm, t->ksm);
1369 		dm_destroy_keyslot_manager(t->ksm);
1370 	}
1371 	t->ksm = NULL;
1372 }
1373 
1374 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1375 
1376 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1377 {
1378 	return 0;
1379 }
1380 
1381 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1382 {
1383 }
1384 
1385 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1386 {
1387 }
1388 
1389 static void dm_update_keyslot_manager(struct request_queue *q,
1390 				      struct dm_table *t)
1391 {
1392 }
1393 
1394 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1395 
1396 /*
1397  * Prepares the table for use by building the indices,
1398  * setting the type, and allocating mempools.
1399  */
1400 int dm_table_complete(struct dm_table *t)
1401 {
1402 	int r;
1403 
1404 	r = dm_table_determine_type(t);
1405 	if (r) {
1406 		DMERR("unable to determine table type");
1407 		return r;
1408 	}
1409 
1410 	r = dm_table_build_index(t);
1411 	if (r) {
1412 		DMERR("unable to build btrees");
1413 		return r;
1414 	}
1415 
1416 	r = dm_table_register_integrity(t);
1417 	if (r) {
1418 		DMERR("could not register integrity profile.");
1419 		return r;
1420 	}
1421 
1422 	r = dm_table_construct_keyslot_manager(t);
1423 	if (r) {
1424 		DMERR("could not construct keyslot manager.");
1425 		return r;
1426 	}
1427 
1428 	r = dm_table_alloc_md_mempools(t, t->md);
1429 	if (r)
1430 		DMERR("unable to allocate mempools");
1431 
1432 	return r;
1433 }
1434 
1435 static DEFINE_MUTEX(_event_lock);
1436 void dm_table_event_callback(struct dm_table *t,
1437 			     void (*fn)(void *), void *context)
1438 {
1439 	mutex_lock(&_event_lock);
1440 	t->event_fn = fn;
1441 	t->event_context = context;
1442 	mutex_unlock(&_event_lock);
1443 }
1444 
1445 void dm_table_event(struct dm_table *t)
1446 {
1447 	mutex_lock(&_event_lock);
1448 	if (t->event_fn)
1449 		t->event_fn(t->event_context);
1450 	mutex_unlock(&_event_lock);
1451 }
1452 EXPORT_SYMBOL(dm_table_event);
1453 
1454 inline sector_t dm_table_get_size(struct dm_table *t)
1455 {
1456 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1457 }
1458 EXPORT_SYMBOL(dm_table_get_size);
1459 
1460 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1461 {
1462 	if (index >= t->num_targets)
1463 		return NULL;
1464 
1465 	return t->targets + index;
1466 }
1467 
1468 /*
1469  * Search the btree for the correct target.
1470  *
1471  * Caller should check returned pointer for NULL
1472  * to trap I/O beyond end of device.
1473  */
1474 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1475 {
1476 	unsigned int l, n = 0, k = 0;
1477 	sector_t *node;
1478 
1479 	if (unlikely(sector >= dm_table_get_size(t)))
1480 		return NULL;
1481 
1482 	for (l = 0; l < t->depth; l++) {
1483 		n = get_child(n, k);
1484 		node = get_node(t, l, n);
1485 
1486 		for (k = 0; k < KEYS_PER_NODE; k++)
1487 			if (node[k] >= sector)
1488 				break;
1489 	}
1490 
1491 	return &t->targets[(KEYS_PER_NODE * n) + k];
1492 }
1493 
1494 /*
1495  * type->iterate_devices() should be called when the sanity check needs to
1496  * iterate and check all underlying data devices. iterate_devices() will
1497  * iterate all underlying data devices until it encounters a non-zero return
1498  * code, returned by whether the input iterate_devices_callout_fn, or
1499  * iterate_devices() itself internally.
1500  *
1501  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1502  * iterate multiple underlying devices internally, in which case a non-zero
1503  * return code returned by iterate_devices_callout_fn will stop the iteration
1504  * in advance.
1505  *
1506  * Cases requiring _any_ underlying device supporting some kind of attribute,
1507  * should use the iteration structure like dm_table_any_dev_attr(), or call
1508  * it directly. @func should handle semantics of positive examples, e.g.
1509  * capable of something.
1510  *
1511  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1512  * should use the iteration structure like dm_table_supports_nowait() or
1513  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1514  * uses an @anti_func that handle semantics of counter examples, e.g. not
1515  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1516  */
1517 static bool dm_table_any_dev_attr(struct dm_table *t,
1518 				  iterate_devices_callout_fn func, void *data)
1519 {
1520 	struct dm_target *ti;
1521 	unsigned int i;
1522 
1523 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1524 		ti = dm_table_get_target(t, i);
1525 
1526 		if (ti->type->iterate_devices &&
1527 		    ti->type->iterate_devices(ti, func, data))
1528 			return true;
1529         }
1530 
1531 	return false;
1532 }
1533 
1534 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1535 			sector_t start, sector_t len, void *data)
1536 {
1537 	unsigned *num_devices = data;
1538 
1539 	(*num_devices)++;
1540 
1541 	return 0;
1542 }
1543 
1544 /*
1545  * Check whether a table has no data devices attached using each
1546  * target's iterate_devices method.
1547  * Returns false if the result is unknown because a target doesn't
1548  * support iterate_devices.
1549  */
1550 bool dm_table_has_no_data_devices(struct dm_table *table)
1551 {
1552 	struct dm_target *ti;
1553 	unsigned i, num_devices;
1554 
1555 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1556 		ti = dm_table_get_target(table, i);
1557 
1558 		if (!ti->type->iterate_devices)
1559 			return false;
1560 
1561 		num_devices = 0;
1562 		ti->type->iterate_devices(ti, count_device, &num_devices);
1563 		if (num_devices)
1564 			return false;
1565 	}
1566 
1567 	return true;
1568 }
1569 
1570 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1571 				  sector_t start, sector_t len, void *data)
1572 {
1573 	struct request_queue *q = bdev_get_queue(dev->bdev);
1574 	enum blk_zoned_model *zoned_model = data;
1575 
1576 	return blk_queue_zoned_model(q) != *zoned_model;
1577 }
1578 
1579 /*
1580  * Check the device zoned model based on the target feature flag. If the target
1581  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1582  * also accepted but all devices must have the same zoned model. If the target
1583  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1584  * zoned model with all zoned devices having the same zone size.
1585  */
1586 static bool dm_table_supports_zoned_model(struct dm_table *t,
1587 					  enum blk_zoned_model zoned_model)
1588 {
1589 	struct dm_target *ti;
1590 	unsigned i;
1591 
1592 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1593 		ti = dm_table_get_target(t, i);
1594 
1595 		if (dm_target_supports_zoned_hm(ti->type)) {
1596 			if (!ti->type->iterate_devices ||
1597 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1598 						      &zoned_model))
1599 				return false;
1600 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1601 			if (zoned_model == BLK_ZONED_HM)
1602 				return false;
1603 		}
1604 	}
1605 
1606 	return true;
1607 }
1608 
1609 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1610 					   sector_t start, sector_t len, void *data)
1611 {
1612 	struct request_queue *q = bdev_get_queue(dev->bdev);
1613 	unsigned int *zone_sectors = data;
1614 
1615 	if (!blk_queue_is_zoned(q))
1616 		return 0;
1617 
1618 	return blk_queue_zone_sectors(q) != *zone_sectors;
1619 }
1620 
1621 /*
1622  * Check consistency of zoned model and zone sectors across all targets. For
1623  * zone sectors, if the destination device is a zoned block device, it shall
1624  * have the specified zone_sectors.
1625  */
1626 static int validate_hardware_zoned_model(struct dm_table *table,
1627 					 enum blk_zoned_model zoned_model,
1628 					 unsigned int zone_sectors)
1629 {
1630 	if (zoned_model == BLK_ZONED_NONE)
1631 		return 0;
1632 
1633 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1634 		DMERR("%s: zoned model is not consistent across all devices",
1635 		      dm_device_name(table->md));
1636 		return -EINVAL;
1637 	}
1638 
1639 	/* Check zone size validity and compatibility */
1640 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1641 		return -EINVAL;
1642 
1643 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1644 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1645 		      dm_device_name(table->md));
1646 		return -EINVAL;
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 /*
1653  * Establish the new table's queue_limits and validate them.
1654  */
1655 int dm_calculate_queue_limits(struct dm_table *table,
1656 			      struct queue_limits *limits)
1657 {
1658 	struct dm_target *ti;
1659 	struct queue_limits ti_limits;
1660 	unsigned i;
1661 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1662 	unsigned int zone_sectors = 0;
1663 
1664 	blk_set_stacking_limits(limits);
1665 
1666 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1667 		blk_set_stacking_limits(&ti_limits);
1668 
1669 		ti = dm_table_get_target(table, i);
1670 
1671 		if (!ti->type->iterate_devices)
1672 			goto combine_limits;
1673 
1674 		/*
1675 		 * Combine queue limits of all the devices this target uses.
1676 		 */
1677 		ti->type->iterate_devices(ti, dm_set_device_limits,
1678 					  &ti_limits);
1679 
1680 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1681 			/*
1682 			 * After stacking all limits, validate all devices
1683 			 * in table support this zoned model and zone sectors.
1684 			 */
1685 			zoned_model = ti_limits.zoned;
1686 			zone_sectors = ti_limits.chunk_sectors;
1687 		}
1688 
1689 		/* Set I/O hints portion of queue limits */
1690 		if (ti->type->io_hints)
1691 			ti->type->io_hints(ti, &ti_limits);
1692 
1693 		/*
1694 		 * Check each device area is consistent with the target's
1695 		 * overall queue limits.
1696 		 */
1697 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1698 					      &ti_limits))
1699 			return -EINVAL;
1700 
1701 combine_limits:
1702 		/*
1703 		 * Merge this target's queue limits into the overall limits
1704 		 * for the table.
1705 		 */
1706 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1707 			DMWARN("%s: adding target device "
1708 			       "(start sect %llu len %llu) "
1709 			       "caused an alignment inconsistency",
1710 			       dm_device_name(table->md),
1711 			       (unsigned long long) ti->begin,
1712 			       (unsigned long long) ti->len);
1713 	}
1714 
1715 	/*
1716 	 * Verify that the zoned model and zone sectors, as determined before
1717 	 * any .io_hints override, are the same across all devices in the table.
1718 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1719 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1720 	 * BUT...
1721 	 */
1722 	if (limits->zoned != BLK_ZONED_NONE) {
1723 		/*
1724 		 * ...IF the above limits stacking determined a zoned model
1725 		 * validate that all of the table's devices conform to it.
1726 		 */
1727 		zoned_model = limits->zoned;
1728 		zone_sectors = limits->chunk_sectors;
1729 	}
1730 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1731 		return -EINVAL;
1732 
1733 	return validate_hardware_logical_block_alignment(table, limits);
1734 }
1735 
1736 /*
1737  * Verify that all devices have an integrity profile that matches the
1738  * DM device's registered integrity profile.  If the profiles don't
1739  * match then unregister the DM device's integrity profile.
1740  */
1741 static void dm_table_verify_integrity(struct dm_table *t)
1742 {
1743 	struct gendisk *template_disk = NULL;
1744 
1745 	if (t->integrity_added)
1746 		return;
1747 
1748 	if (t->integrity_supported) {
1749 		/*
1750 		 * Verify that the original integrity profile
1751 		 * matches all the devices in this table.
1752 		 */
1753 		template_disk = dm_table_get_integrity_disk(t);
1754 		if (template_disk &&
1755 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1756 			return;
1757 	}
1758 
1759 	if (integrity_profile_exists(dm_disk(t->md))) {
1760 		DMWARN("%s: unable to establish an integrity profile",
1761 		       dm_device_name(t->md));
1762 		blk_integrity_unregister(dm_disk(t->md));
1763 	}
1764 }
1765 
1766 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1767 				sector_t start, sector_t len, void *data)
1768 {
1769 	unsigned long flush = (unsigned long) data;
1770 	struct request_queue *q = bdev_get_queue(dev->bdev);
1771 
1772 	return (q->queue_flags & flush);
1773 }
1774 
1775 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1776 {
1777 	struct dm_target *ti;
1778 	unsigned i;
1779 
1780 	/*
1781 	 * Require at least one underlying device to support flushes.
1782 	 * t->devices includes internal dm devices such as mirror logs
1783 	 * so we need to use iterate_devices here, which targets
1784 	 * supporting flushes must provide.
1785 	 */
1786 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1787 		ti = dm_table_get_target(t, i);
1788 
1789 		if (!ti->num_flush_bios)
1790 			continue;
1791 
1792 		if (ti->flush_supported)
1793 			return true;
1794 
1795 		if (ti->type->iterate_devices &&
1796 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1797 			return true;
1798 	}
1799 
1800 	return false;
1801 }
1802 
1803 static int device_dax_write_cache_enabled(struct dm_target *ti,
1804 					  struct dm_dev *dev, sector_t start,
1805 					  sector_t len, void *data)
1806 {
1807 	struct dax_device *dax_dev = dev->dax_dev;
1808 
1809 	if (!dax_dev)
1810 		return false;
1811 
1812 	if (dax_write_cache_enabled(dax_dev))
1813 		return true;
1814 	return false;
1815 }
1816 
1817 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1818 				sector_t start, sector_t len, void *data)
1819 {
1820 	struct request_queue *q = bdev_get_queue(dev->bdev);
1821 
1822 	return !blk_queue_nonrot(q);
1823 }
1824 
1825 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1826 			     sector_t start, sector_t len, void *data)
1827 {
1828 	struct request_queue *q = bdev_get_queue(dev->bdev);
1829 
1830 	return !blk_queue_add_random(q);
1831 }
1832 
1833 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1834 					 sector_t start, sector_t len, void *data)
1835 {
1836 	struct request_queue *q = bdev_get_queue(dev->bdev);
1837 
1838 	return !q->limits.max_write_same_sectors;
1839 }
1840 
1841 static bool dm_table_supports_write_same(struct dm_table *t)
1842 {
1843 	struct dm_target *ti;
1844 	unsigned i;
1845 
1846 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1847 		ti = dm_table_get_target(t, i);
1848 
1849 		if (!ti->num_write_same_bios)
1850 			return false;
1851 
1852 		if (!ti->type->iterate_devices ||
1853 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1854 			return false;
1855 	}
1856 
1857 	return true;
1858 }
1859 
1860 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1861 					   sector_t start, sector_t len, void *data)
1862 {
1863 	struct request_queue *q = bdev_get_queue(dev->bdev);
1864 
1865 	return !q->limits.max_write_zeroes_sectors;
1866 }
1867 
1868 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1869 {
1870 	struct dm_target *ti;
1871 	unsigned i = 0;
1872 
1873 	while (i < dm_table_get_num_targets(t)) {
1874 		ti = dm_table_get_target(t, i++);
1875 
1876 		if (!ti->num_write_zeroes_bios)
1877 			return false;
1878 
1879 		if (!ti->type->iterate_devices ||
1880 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1881 			return false;
1882 	}
1883 
1884 	return true;
1885 }
1886 
1887 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1888 				     sector_t start, sector_t len, void *data)
1889 {
1890 	struct request_queue *q = bdev_get_queue(dev->bdev);
1891 
1892 	return !blk_queue_nowait(q);
1893 }
1894 
1895 static bool dm_table_supports_nowait(struct dm_table *t)
1896 {
1897 	struct dm_target *ti;
1898 	unsigned i = 0;
1899 
1900 	while (i < dm_table_get_num_targets(t)) {
1901 		ti = dm_table_get_target(t, i++);
1902 
1903 		if (!dm_target_supports_nowait(ti->type))
1904 			return false;
1905 
1906 		if (!ti->type->iterate_devices ||
1907 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1908 			return false;
1909 	}
1910 
1911 	return true;
1912 }
1913 
1914 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1915 				      sector_t start, sector_t len, void *data)
1916 {
1917 	struct request_queue *q = bdev_get_queue(dev->bdev);
1918 
1919 	return !blk_queue_discard(q);
1920 }
1921 
1922 static bool dm_table_supports_discards(struct dm_table *t)
1923 {
1924 	struct dm_target *ti;
1925 	unsigned i;
1926 
1927 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1928 		ti = dm_table_get_target(t, i);
1929 
1930 		if (!ti->num_discard_bios)
1931 			return false;
1932 
1933 		/*
1934 		 * Either the target provides discard support (as implied by setting
1935 		 * 'discards_supported') or it relies on _all_ data devices having
1936 		 * discard support.
1937 		 */
1938 		if (!ti->discards_supported &&
1939 		    (!ti->type->iterate_devices ||
1940 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1941 			return false;
1942 	}
1943 
1944 	return true;
1945 }
1946 
1947 static int device_not_secure_erase_capable(struct dm_target *ti,
1948 					   struct dm_dev *dev, sector_t start,
1949 					   sector_t len, void *data)
1950 {
1951 	struct request_queue *q = bdev_get_queue(dev->bdev);
1952 
1953 	return !blk_queue_secure_erase(q);
1954 }
1955 
1956 static bool dm_table_supports_secure_erase(struct dm_table *t)
1957 {
1958 	struct dm_target *ti;
1959 	unsigned int i;
1960 
1961 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1962 		ti = dm_table_get_target(t, i);
1963 
1964 		if (!ti->num_secure_erase_bios)
1965 			return false;
1966 
1967 		if (!ti->type->iterate_devices ||
1968 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1969 			return false;
1970 	}
1971 
1972 	return true;
1973 }
1974 
1975 static int device_requires_stable_pages(struct dm_target *ti,
1976 					struct dm_dev *dev, sector_t start,
1977 					sector_t len, void *data)
1978 {
1979 	struct request_queue *q = bdev_get_queue(dev->bdev);
1980 
1981 	return blk_queue_stable_writes(q);
1982 }
1983 
1984 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1985 			       struct queue_limits *limits)
1986 {
1987 	bool wc = false, fua = false;
1988 	int page_size = PAGE_SIZE;
1989 
1990 	/*
1991 	 * Copy table's limits to the DM device's request_queue
1992 	 */
1993 	q->limits = *limits;
1994 
1995 	if (dm_table_supports_nowait(t))
1996 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1997 	else
1998 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1999 
2000 	if (!dm_table_supports_discards(t)) {
2001 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
2002 		/* Must also clear discard limits... */
2003 		q->limits.max_discard_sectors = 0;
2004 		q->limits.max_hw_discard_sectors = 0;
2005 		q->limits.discard_granularity = 0;
2006 		q->limits.discard_alignment = 0;
2007 		q->limits.discard_misaligned = 0;
2008 	} else
2009 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2010 
2011 	if (dm_table_supports_secure_erase(t))
2012 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2013 
2014 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2015 		wc = true;
2016 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2017 			fua = true;
2018 	}
2019 	blk_queue_write_cache(q, wc, fua);
2020 
2021 	if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2022 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2023 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2024 			set_dax_synchronous(t->md->dax_dev);
2025 	}
2026 	else
2027 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2028 
2029 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2030 		dax_write_cache(t->md->dax_dev, true);
2031 
2032 	/* Ensure that all underlying devices are non-rotational. */
2033 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2034 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2035 	else
2036 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2037 
2038 	if (!dm_table_supports_write_same(t))
2039 		q->limits.max_write_same_sectors = 0;
2040 	if (!dm_table_supports_write_zeroes(t))
2041 		q->limits.max_write_zeroes_sectors = 0;
2042 
2043 	dm_table_verify_integrity(t);
2044 
2045 	/*
2046 	 * Some devices don't use blk_integrity but still want stable pages
2047 	 * because they do their own checksumming.
2048 	 * If any underlying device requires stable pages, a table must require
2049 	 * them as well.  Only targets that support iterate_devices are considered:
2050 	 * don't want error, zero, etc to require stable pages.
2051 	 */
2052 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2053 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2054 	else
2055 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2056 
2057 	/*
2058 	 * Determine whether or not this queue's I/O timings contribute
2059 	 * to the entropy pool, Only request-based targets use this.
2060 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2061 	 * have it set.
2062 	 */
2063 	if (blk_queue_add_random(q) &&
2064 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2065 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2066 
2067 	/*
2068 	 * For a zoned target, the number of zones should be updated for the
2069 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
2070 	 * target, this is all that is needed.
2071 	 */
2072 #ifdef CONFIG_BLK_DEV_ZONED
2073 	if (blk_queue_is_zoned(q)) {
2074 		WARN_ON_ONCE(queue_is_mq(q));
2075 		q->nr_zones = blkdev_nr_zones(t->md->disk);
2076 	}
2077 #endif
2078 
2079 	dm_update_keyslot_manager(q, t);
2080 	blk_queue_update_readahead(q);
2081 }
2082 
2083 unsigned int dm_table_get_num_targets(struct dm_table *t)
2084 {
2085 	return t->num_targets;
2086 }
2087 
2088 struct list_head *dm_table_get_devices(struct dm_table *t)
2089 {
2090 	return &t->devices;
2091 }
2092 
2093 fmode_t dm_table_get_mode(struct dm_table *t)
2094 {
2095 	return t->mode;
2096 }
2097 EXPORT_SYMBOL(dm_table_get_mode);
2098 
2099 enum suspend_mode {
2100 	PRESUSPEND,
2101 	PRESUSPEND_UNDO,
2102 	POSTSUSPEND,
2103 };
2104 
2105 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2106 {
2107 	int i = t->num_targets;
2108 	struct dm_target *ti = t->targets;
2109 
2110 	lockdep_assert_held(&t->md->suspend_lock);
2111 
2112 	while (i--) {
2113 		switch (mode) {
2114 		case PRESUSPEND:
2115 			if (ti->type->presuspend)
2116 				ti->type->presuspend(ti);
2117 			break;
2118 		case PRESUSPEND_UNDO:
2119 			if (ti->type->presuspend_undo)
2120 				ti->type->presuspend_undo(ti);
2121 			break;
2122 		case POSTSUSPEND:
2123 			if (ti->type->postsuspend)
2124 				ti->type->postsuspend(ti);
2125 			break;
2126 		}
2127 		ti++;
2128 	}
2129 }
2130 
2131 void dm_table_presuspend_targets(struct dm_table *t)
2132 {
2133 	if (!t)
2134 		return;
2135 
2136 	suspend_targets(t, PRESUSPEND);
2137 }
2138 
2139 void dm_table_presuspend_undo_targets(struct dm_table *t)
2140 {
2141 	if (!t)
2142 		return;
2143 
2144 	suspend_targets(t, PRESUSPEND_UNDO);
2145 }
2146 
2147 void dm_table_postsuspend_targets(struct dm_table *t)
2148 {
2149 	if (!t)
2150 		return;
2151 
2152 	suspend_targets(t, POSTSUSPEND);
2153 }
2154 
2155 int dm_table_resume_targets(struct dm_table *t)
2156 {
2157 	int i, r = 0;
2158 
2159 	lockdep_assert_held(&t->md->suspend_lock);
2160 
2161 	for (i = 0; i < t->num_targets; i++) {
2162 		struct dm_target *ti = t->targets + i;
2163 
2164 		if (!ti->type->preresume)
2165 			continue;
2166 
2167 		r = ti->type->preresume(ti);
2168 		if (r) {
2169 			DMERR("%s: %s: preresume failed, error = %d",
2170 			      dm_device_name(t->md), ti->type->name, r);
2171 			return r;
2172 		}
2173 	}
2174 
2175 	for (i = 0; i < t->num_targets; i++) {
2176 		struct dm_target *ti = t->targets + i;
2177 
2178 		if (ti->type->resume)
2179 			ti->type->resume(ti);
2180 	}
2181 
2182 	return 0;
2183 }
2184 
2185 struct mapped_device *dm_table_get_md(struct dm_table *t)
2186 {
2187 	return t->md;
2188 }
2189 EXPORT_SYMBOL(dm_table_get_md);
2190 
2191 const char *dm_table_device_name(struct dm_table *t)
2192 {
2193 	return dm_device_name(t->md);
2194 }
2195 EXPORT_SYMBOL_GPL(dm_table_device_name);
2196 
2197 void dm_table_run_md_queue_async(struct dm_table *t)
2198 {
2199 	if (!dm_table_request_based(t))
2200 		return;
2201 
2202 	if (t->md->queue)
2203 		blk_mq_run_hw_queues(t->md->queue, true);
2204 }
2205 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2206 
2207