xref: /openbmc/linux/drivers/md/dm-table.c (revision c059ee9d)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/namei.h>
15 #include <linux/ctype.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/mount.h>
24 #include <linux/dax.h>
25 
26 #define DM_MSG_PREFIX "table"
27 
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 /*
33  * Similar to ceiling(log_size(n))
34  */
35 static unsigned int int_log(unsigned int n, unsigned int base)
36 {
37 	int result = 0;
38 
39 	while (n > 1) {
40 		n = dm_div_up(n, base);
41 		result++;
42 	}
43 
44 	return result;
45 }
46 
47 /*
48  * Calculate the index of the child node of the n'th node k'th key.
49  */
50 static inline unsigned int get_child(unsigned int n, unsigned int k)
51 {
52 	return (n * CHILDREN_PER_NODE) + k;
53 }
54 
55 /*
56  * Return the n'th node of level l from table t.
57  */
58 static inline sector_t *get_node(struct dm_table *t,
59 				 unsigned int l, unsigned int n)
60 {
61 	return t->index[l] + (n * KEYS_PER_NODE);
62 }
63 
64 /*
65  * Return the highest key that you could lookup from the n'th
66  * node on level l of the btree.
67  */
68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
69 {
70 	for (; l < t->depth - 1; l++)
71 		n = get_child(n, CHILDREN_PER_NODE - 1);
72 
73 	if (n >= t->counts[l])
74 		return (sector_t) - 1;
75 
76 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
77 }
78 
79 /*
80  * Fills in a level of the btree based on the highs of the level
81  * below it.
82  */
83 static int setup_btree_index(unsigned int l, struct dm_table *t)
84 {
85 	unsigned int n, k;
86 	sector_t *node;
87 
88 	for (n = 0U; n < t->counts[l]; n++) {
89 		node = get_node(t, l, n);
90 
91 		for (k = 0U; k < KEYS_PER_NODE; k++)
92 			node[k] = high(t, l + 1, get_child(n, k));
93 	}
94 
95 	return 0;
96 }
97 
98 /*
99  * highs, and targets are managed as dynamic arrays during a
100  * table load.
101  */
102 static int alloc_targets(struct dm_table *t, unsigned int num)
103 {
104 	sector_t *n_highs;
105 	struct dm_target *n_targets;
106 
107 	/*
108 	 * Allocate both the target array and offset array at once.
109 	 */
110 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
111 			   GFP_KERNEL);
112 	if (!n_highs)
113 		return -ENOMEM;
114 
115 	n_targets = (struct dm_target *) (n_highs + num);
116 
117 	memset(n_highs, -1, sizeof(*n_highs) * num);
118 	kvfree(t->highs);
119 
120 	t->num_allocated = num;
121 	t->highs = n_highs;
122 	t->targets = n_targets;
123 
124 	return 0;
125 }
126 
127 int dm_table_create(struct dm_table **result, fmode_t mode,
128 		    unsigned num_targets, struct mapped_device *md)
129 {
130 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
131 
132 	if (!t)
133 		return -ENOMEM;
134 
135 	INIT_LIST_HEAD(&t->devices);
136 
137 	if (!num_targets)
138 		num_targets = KEYS_PER_NODE;
139 
140 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
141 
142 	if (!num_targets) {
143 		kfree(t);
144 		return -ENOMEM;
145 	}
146 
147 	if (alloc_targets(t, num_targets)) {
148 		kfree(t);
149 		return -ENOMEM;
150 	}
151 
152 	t->type = DM_TYPE_NONE;
153 	t->mode = mode;
154 	t->md = md;
155 	*result = t;
156 	return 0;
157 }
158 
159 static void free_devices(struct list_head *devices, struct mapped_device *md)
160 {
161 	struct list_head *tmp, *next;
162 
163 	list_for_each_safe(tmp, next, devices) {
164 		struct dm_dev_internal *dd =
165 		    list_entry(tmp, struct dm_dev_internal, list);
166 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
167 		       dm_device_name(md), dd->dm_dev->name);
168 		dm_put_table_device(md, dd->dm_dev);
169 		kfree(dd);
170 	}
171 }
172 
173 static void dm_table_destroy_crypto_profile(struct dm_table *t);
174 
175 void dm_table_destroy(struct dm_table *t)
176 {
177 	unsigned int i;
178 
179 	if (!t)
180 		return;
181 
182 	/* free the indexes */
183 	if (t->depth >= 2)
184 		kvfree(t->index[t->depth - 2]);
185 
186 	/* free the targets */
187 	for (i = 0; i < t->num_targets; i++) {
188 		struct dm_target *tgt = t->targets + i;
189 
190 		if (tgt->type->dtr)
191 			tgt->type->dtr(tgt);
192 
193 		dm_put_target_type(tgt->type);
194 	}
195 
196 	kvfree(t->highs);
197 
198 	/* free the device list */
199 	free_devices(&t->devices, t->md);
200 
201 	dm_free_md_mempools(t->mempools);
202 
203 	dm_table_destroy_crypto_profile(t);
204 
205 	kfree(t);
206 }
207 
208 /*
209  * See if we've already got a device in the list.
210  */
211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
212 {
213 	struct dm_dev_internal *dd;
214 
215 	list_for_each_entry (dd, l, list)
216 		if (dd->dm_dev->bdev->bd_dev == dev)
217 			return dd;
218 
219 	return NULL;
220 }
221 
222 /*
223  * If possible, this checks an area of a destination device is invalid.
224  */
225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
226 				  sector_t start, sector_t len, void *data)
227 {
228 	struct queue_limits *limits = data;
229 	struct block_device *bdev = dev->bdev;
230 	sector_t dev_size = bdev_nr_sectors(bdev);
231 	unsigned short logical_block_size_sectors =
232 		limits->logical_block_size >> SECTOR_SHIFT;
233 
234 	if (!dev_size)
235 		return 0;
236 
237 	if ((start >= dev_size) || (start + len > dev_size)) {
238 		DMWARN("%s: %pg too small for target: "
239 		       "start=%llu, len=%llu, dev_size=%llu",
240 		       dm_device_name(ti->table->md), bdev,
241 		       (unsigned long long)start,
242 		       (unsigned long long)len,
243 		       (unsigned long long)dev_size);
244 		return 1;
245 	}
246 
247 	/*
248 	 * If the target is mapped to zoned block device(s), check
249 	 * that the zones are not partially mapped.
250 	 */
251 	if (bdev_is_zoned(bdev)) {
252 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
253 
254 		if (start & (zone_sectors - 1)) {
255 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %pg",
256 			       dm_device_name(ti->table->md),
257 			       (unsigned long long)start,
258 			       zone_sectors, bdev);
259 			return 1;
260 		}
261 
262 		/*
263 		 * Note: The last zone of a zoned block device may be smaller
264 		 * than other zones. So for a target mapping the end of a
265 		 * zoned block device with such a zone, len would not be zone
266 		 * aligned. We do not allow such last smaller zone to be part
267 		 * of the mapping here to ensure that mappings with multiple
268 		 * devices do not end up with a smaller zone in the middle of
269 		 * the sector range.
270 		 */
271 		if (len & (zone_sectors - 1)) {
272 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %pg",
273 			       dm_device_name(ti->table->md),
274 			       (unsigned long long)len,
275 			       zone_sectors, bdev);
276 			return 1;
277 		}
278 	}
279 
280 	if (logical_block_size_sectors <= 1)
281 		return 0;
282 
283 	if (start & (logical_block_size_sectors - 1)) {
284 		DMWARN("%s: start=%llu not aligned to h/w "
285 		       "logical block size %u of %pg",
286 		       dm_device_name(ti->table->md),
287 		       (unsigned long long)start,
288 		       limits->logical_block_size, bdev);
289 		return 1;
290 	}
291 
292 	if (len & (logical_block_size_sectors - 1)) {
293 		DMWARN("%s: len=%llu not aligned to h/w "
294 		       "logical block size %u of %pg",
295 		       dm_device_name(ti->table->md),
296 		       (unsigned long long)len,
297 		       limits->logical_block_size, bdev);
298 		return 1;
299 	}
300 
301 	return 0;
302 }
303 
304 /*
305  * This upgrades the mode on an already open dm_dev, being
306  * careful to leave things as they were if we fail to reopen the
307  * device and not to touch the existing bdev field in case
308  * it is accessed concurrently.
309  */
310 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
311 			struct mapped_device *md)
312 {
313 	int r;
314 	struct dm_dev *old_dev, *new_dev;
315 
316 	old_dev = dd->dm_dev;
317 
318 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
319 				dd->dm_dev->mode | new_mode, &new_dev);
320 	if (r)
321 		return r;
322 
323 	dd->dm_dev = new_dev;
324 	dm_put_table_device(md, old_dev);
325 
326 	return 0;
327 }
328 
329 /*
330  * Convert the path to a device
331  */
332 dev_t dm_get_dev_t(const char *path)
333 {
334 	dev_t dev;
335 
336 	if (lookup_bdev(path, &dev))
337 		dev = name_to_dev_t(path);
338 	return dev;
339 }
340 EXPORT_SYMBOL_GPL(dm_get_dev_t);
341 
342 /*
343  * Add a device to the list, or just increment the usage count if
344  * it's already present.
345  */
346 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
347 		  struct dm_dev **result)
348 {
349 	int r;
350 	dev_t dev;
351 	unsigned int major, minor;
352 	char dummy;
353 	struct dm_dev_internal *dd;
354 	struct dm_table *t = ti->table;
355 
356 	BUG_ON(!t);
357 
358 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
359 		/* Extract the major/minor numbers */
360 		dev = MKDEV(major, minor);
361 		if (MAJOR(dev) != major || MINOR(dev) != minor)
362 			return -EOVERFLOW;
363 	} else {
364 		dev = dm_get_dev_t(path);
365 		if (!dev)
366 			return -ENODEV;
367 	}
368 
369 	dd = find_device(&t->devices, dev);
370 	if (!dd) {
371 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
372 		if (!dd)
373 			return -ENOMEM;
374 
375 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
376 			kfree(dd);
377 			return r;
378 		}
379 
380 		refcount_set(&dd->count, 1);
381 		list_add(&dd->list, &t->devices);
382 		goto out;
383 
384 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
385 		r = upgrade_mode(dd, mode, t->md);
386 		if (r)
387 			return r;
388 	}
389 	refcount_inc(&dd->count);
390 out:
391 	*result = dd->dm_dev;
392 	return 0;
393 }
394 EXPORT_SYMBOL(dm_get_device);
395 
396 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
397 				sector_t start, sector_t len, void *data)
398 {
399 	struct queue_limits *limits = data;
400 	struct block_device *bdev = dev->bdev;
401 	struct request_queue *q = bdev_get_queue(bdev);
402 
403 	if (unlikely(!q)) {
404 		DMWARN("%s: Cannot set limits for nonexistent device %pg",
405 		       dm_device_name(ti->table->md), bdev);
406 		return 0;
407 	}
408 
409 	if (blk_stack_limits(limits, &q->limits,
410 			get_start_sect(bdev) + start) < 0)
411 		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
412 		       "physical_block_size=%u, logical_block_size=%u, "
413 		       "alignment_offset=%u, start=%llu",
414 		       dm_device_name(ti->table->md), bdev,
415 		       q->limits.physical_block_size,
416 		       q->limits.logical_block_size,
417 		       q->limits.alignment_offset,
418 		       (unsigned long long) start << SECTOR_SHIFT);
419 	return 0;
420 }
421 
422 /*
423  * Decrement a device's use count and remove it if necessary.
424  */
425 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
426 {
427 	int found = 0;
428 	struct list_head *devices = &ti->table->devices;
429 	struct dm_dev_internal *dd;
430 
431 	list_for_each_entry(dd, devices, list) {
432 		if (dd->dm_dev == d) {
433 			found = 1;
434 			break;
435 		}
436 	}
437 	if (!found) {
438 		DMWARN("%s: device %s not in table devices list",
439 		       dm_device_name(ti->table->md), d->name);
440 		return;
441 	}
442 	if (refcount_dec_and_test(&dd->count)) {
443 		dm_put_table_device(ti->table->md, d);
444 		list_del(&dd->list);
445 		kfree(dd);
446 	}
447 }
448 EXPORT_SYMBOL(dm_put_device);
449 
450 /*
451  * Checks to see if the target joins onto the end of the table.
452  */
453 static int adjoin(struct dm_table *table, struct dm_target *ti)
454 {
455 	struct dm_target *prev;
456 
457 	if (!table->num_targets)
458 		return !ti->begin;
459 
460 	prev = &table->targets[table->num_targets - 1];
461 	return (ti->begin == (prev->begin + prev->len));
462 }
463 
464 /*
465  * Used to dynamically allocate the arg array.
466  *
467  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
468  * process messages even if some device is suspended. These messages have a
469  * small fixed number of arguments.
470  *
471  * On the other hand, dm-switch needs to process bulk data using messages and
472  * excessive use of GFP_NOIO could cause trouble.
473  */
474 static char **realloc_argv(unsigned *size, char **old_argv)
475 {
476 	char **argv;
477 	unsigned new_size;
478 	gfp_t gfp;
479 
480 	if (*size) {
481 		new_size = *size * 2;
482 		gfp = GFP_KERNEL;
483 	} else {
484 		new_size = 8;
485 		gfp = GFP_NOIO;
486 	}
487 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
488 	if (argv && old_argv) {
489 		memcpy(argv, old_argv, *size * sizeof(*argv));
490 		*size = new_size;
491 	}
492 
493 	kfree(old_argv);
494 	return argv;
495 }
496 
497 /*
498  * Destructively splits up the argument list to pass to ctr.
499  */
500 int dm_split_args(int *argc, char ***argvp, char *input)
501 {
502 	char *start, *end = input, *out, **argv = NULL;
503 	unsigned array_size = 0;
504 
505 	*argc = 0;
506 
507 	if (!input) {
508 		*argvp = NULL;
509 		return 0;
510 	}
511 
512 	argv = realloc_argv(&array_size, argv);
513 	if (!argv)
514 		return -ENOMEM;
515 
516 	while (1) {
517 		/* Skip whitespace */
518 		start = skip_spaces(end);
519 
520 		if (!*start)
521 			break;	/* success, we hit the end */
522 
523 		/* 'out' is used to remove any back-quotes */
524 		end = out = start;
525 		while (*end) {
526 			/* Everything apart from '\0' can be quoted */
527 			if (*end == '\\' && *(end + 1)) {
528 				*out++ = *(end + 1);
529 				end += 2;
530 				continue;
531 			}
532 
533 			if (isspace(*end))
534 				break;	/* end of token */
535 
536 			*out++ = *end++;
537 		}
538 
539 		/* have we already filled the array ? */
540 		if ((*argc + 1) > array_size) {
541 			argv = realloc_argv(&array_size, argv);
542 			if (!argv)
543 				return -ENOMEM;
544 		}
545 
546 		/* we know this is whitespace */
547 		if (*end)
548 			end++;
549 
550 		/* terminate the string and put it in the array */
551 		*out = '\0';
552 		argv[*argc] = start;
553 		(*argc)++;
554 	}
555 
556 	*argvp = argv;
557 	return 0;
558 }
559 
560 /*
561  * Impose necessary and sufficient conditions on a devices's table such
562  * that any incoming bio which respects its logical_block_size can be
563  * processed successfully.  If it falls across the boundary between
564  * two or more targets, the size of each piece it gets split into must
565  * be compatible with the logical_block_size of the target processing it.
566  */
567 static int validate_hardware_logical_block_alignment(struct dm_table *table,
568 						 struct queue_limits *limits)
569 {
570 	/*
571 	 * This function uses arithmetic modulo the logical_block_size
572 	 * (in units of 512-byte sectors).
573 	 */
574 	unsigned short device_logical_block_size_sects =
575 		limits->logical_block_size >> SECTOR_SHIFT;
576 
577 	/*
578 	 * Offset of the start of the next table entry, mod logical_block_size.
579 	 */
580 	unsigned short next_target_start = 0;
581 
582 	/*
583 	 * Given an aligned bio that extends beyond the end of a
584 	 * target, how many sectors must the next target handle?
585 	 */
586 	unsigned short remaining = 0;
587 
588 	struct dm_target *ti;
589 	struct queue_limits ti_limits;
590 	unsigned i;
591 
592 	/*
593 	 * Check each entry in the table in turn.
594 	 */
595 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
596 		ti = dm_table_get_target(table, i);
597 
598 		blk_set_stacking_limits(&ti_limits);
599 
600 		/* combine all target devices' limits */
601 		if (ti->type->iterate_devices)
602 			ti->type->iterate_devices(ti, dm_set_device_limits,
603 						  &ti_limits);
604 
605 		/*
606 		 * If the remaining sectors fall entirely within this
607 		 * table entry are they compatible with its logical_block_size?
608 		 */
609 		if (remaining < ti->len &&
610 		    remaining & ((ti_limits.logical_block_size >>
611 				  SECTOR_SHIFT) - 1))
612 			break;	/* Error */
613 
614 		next_target_start =
615 		    (unsigned short) ((next_target_start + ti->len) &
616 				      (device_logical_block_size_sects - 1));
617 		remaining = next_target_start ?
618 		    device_logical_block_size_sects - next_target_start : 0;
619 	}
620 
621 	if (remaining) {
622 		DMWARN("%s: table line %u (start sect %llu len %llu) "
623 		       "not aligned to h/w logical block size %u",
624 		       dm_device_name(table->md), i,
625 		       (unsigned long long) ti->begin,
626 		       (unsigned long long) ti->len,
627 		       limits->logical_block_size);
628 		return -EINVAL;
629 	}
630 
631 	return 0;
632 }
633 
634 int dm_table_add_target(struct dm_table *t, const char *type,
635 			sector_t start, sector_t len, char *params)
636 {
637 	int r = -EINVAL, argc;
638 	char **argv;
639 	struct dm_target *tgt;
640 
641 	if (t->singleton) {
642 		DMERR("%s: target type %s must appear alone in table",
643 		      dm_device_name(t->md), t->targets->type->name);
644 		return -EINVAL;
645 	}
646 
647 	BUG_ON(t->num_targets >= t->num_allocated);
648 
649 	tgt = t->targets + t->num_targets;
650 	memset(tgt, 0, sizeof(*tgt));
651 
652 	if (!len) {
653 		DMERR("%s: zero-length target", dm_device_name(t->md));
654 		return -EINVAL;
655 	}
656 
657 	tgt->type = dm_get_target_type(type);
658 	if (!tgt->type) {
659 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
660 		return -EINVAL;
661 	}
662 
663 	if (dm_target_needs_singleton(tgt->type)) {
664 		if (t->num_targets) {
665 			tgt->error = "singleton target type must appear alone in table";
666 			goto bad;
667 		}
668 		t->singleton = true;
669 	}
670 
671 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
672 		tgt->error = "target type may not be included in a read-only table";
673 		goto bad;
674 	}
675 
676 	if (t->immutable_target_type) {
677 		if (t->immutable_target_type != tgt->type) {
678 			tgt->error = "immutable target type cannot be mixed with other target types";
679 			goto bad;
680 		}
681 	} else if (dm_target_is_immutable(tgt->type)) {
682 		if (t->num_targets) {
683 			tgt->error = "immutable target type cannot be mixed with other target types";
684 			goto bad;
685 		}
686 		t->immutable_target_type = tgt->type;
687 	}
688 
689 	if (dm_target_has_integrity(tgt->type))
690 		t->integrity_added = 1;
691 
692 	tgt->table = t;
693 	tgt->begin = start;
694 	tgt->len = len;
695 	tgt->error = "Unknown error";
696 
697 	/*
698 	 * Does this target adjoin the previous one ?
699 	 */
700 	if (!adjoin(t, tgt)) {
701 		tgt->error = "Gap in table";
702 		goto bad;
703 	}
704 
705 	r = dm_split_args(&argc, &argv, params);
706 	if (r) {
707 		tgt->error = "couldn't split parameters";
708 		goto bad;
709 	}
710 
711 	r = tgt->type->ctr(tgt, argc, argv);
712 	kfree(argv);
713 	if (r)
714 		goto bad;
715 
716 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
717 
718 	if (!tgt->num_discard_bios && tgt->discards_supported)
719 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
720 		       dm_device_name(t->md), type);
721 
722 	if (tgt->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
723 		static_branch_enable(&swap_bios_enabled);
724 
725 	return 0;
726 
727  bad:
728 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r));
729 	dm_put_target_type(tgt->type);
730 	return r;
731 }
732 
733 /*
734  * Target argument parsing helpers.
735  */
736 static int validate_next_arg(const struct dm_arg *arg,
737 			     struct dm_arg_set *arg_set,
738 			     unsigned *value, char **error, unsigned grouped)
739 {
740 	const char *arg_str = dm_shift_arg(arg_set);
741 	char dummy;
742 
743 	if (!arg_str ||
744 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
745 	    (*value < arg->min) ||
746 	    (*value > arg->max) ||
747 	    (grouped && arg_set->argc < *value)) {
748 		*error = arg->error;
749 		return -EINVAL;
750 	}
751 
752 	return 0;
753 }
754 
755 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
756 		unsigned *value, char **error)
757 {
758 	return validate_next_arg(arg, arg_set, value, error, 0);
759 }
760 EXPORT_SYMBOL(dm_read_arg);
761 
762 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
763 		      unsigned *value, char **error)
764 {
765 	return validate_next_arg(arg, arg_set, value, error, 1);
766 }
767 EXPORT_SYMBOL(dm_read_arg_group);
768 
769 const char *dm_shift_arg(struct dm_arg_set *as)
770 {
771 	char *r;
772 
773 	if (as->argc) {
774 		as->argc--;
775 		r = *as->argv;
776 		as->argv++;
777 		return r;
778 	}
779 
780 	return NULL;
781 }
782 EXPORT_SYMBOL(dm_shift_arg);
783 
784 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
785 {
786 	BUG_ON(as->argc < num_args);
787 	as->argc -= num_args;
788 	as->argv += num_args;
789 }
790 EXPORT_SYMBOL(dm_consume_args);
791 
792 static bool __table_type_bio_based(enum dm_queue_mode table_type)
793 {
794 	return (table_type == DM_TYPE_BIO_BASED ||
795 		table_type == DM_TYPE_DAX_BIO_BASED);
796 }
797 
798 static bool __table_type_request_based(enum dm_queue_mode table_type)
799 {
800 	return table_type == DM_TYPE_REQUEST_BASED;
801 }
802 
803 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
804 {
805 	t->type = type;
806 }
807 EXPORT_SYMBOL_GPL(dm_table_set_type);
808 
809 /* validate the dax capability of the target device span */
810 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
811 			sector_t start, sector_t len, void *data)
812 {
813 	if (dev->dax_dev)
814 		return false;
815 
816 	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
817 	return true;
818 }
819 
820 /* Check devices support synchronous DAX */
821 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
822 					      sector_t start, sector_t len, void *data)
823 {
824 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
825 }
826 
827 static bool dm_table_supports_dax(struct dm_table *t,
828 			   iterate_devices_callout_fn iterate_fn)
829 {
830 	struct dm_target *ti;
831 	unsigned i;
832 
833 	/* Ensure that all targets support DAX. */
834 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
835 		ti = dm_table_get_target(t, i);
836 
837 		if (!ti->type->direct_access)
838 			return false;
839 
840 		if (!ti->type->iterate_devices ||
841 		    ti->type->iterate_devices(ti, iterate_fn, NULL))
842 			return false;
843 	}
844 
845 	return true;
846 }
847 
848 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
849 				  sector_t start, sector_t len, void *data)
850 {
851 	struct block_device *bdev = dev->bdev;
852 	struct request_queue *q = bdev_get_queue(bdev);
853 
854 	/* request-based cannot stack on partitions! */
855 	if (bdev_is_partition(bdev))
856 		return false;
857 
858 	return queue_is_mq(q);
859 }
860 
861 static int dm_table_determine_type(struct dm_table *t)
862 {
863 	unsigned i;
864 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
865 	struct dm_target *tgt;
866 	struct list_head *devices = dm_table_get_devices(t);
867 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
868 
869 	if (t->type != DM_TYPE_NONE) {
870 		/* target already set the table's type */
871 		if (t->type == DM_TYPE_BIO_BASED) {
872 			/* possibly upgrade to a variant of bio-based */
873 			goto verify_bio_based;
874 		}
875 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
876 		goto verify_rq_based;
877 	}
878 
879 	for (i = 0; i < t->num_targets; i++) {
880 		tgt = t->targets + i;
881 		if (dm_target_hybrid(tgt))
882 			hybrid = 1;
883 		else if (dm_target_request_based(tgt))
884 			request_based = 1;
885 		else
886 			bio_based = 1;
887 
888 		if (bio_based && request_based) {
889 			DMERR("Inconsistent table: different target types"
890 			      " can't be mixed up");
891 			return -EINVAL;
892 		}
893 	}
894 
895 	if (hybrid && !bio_based && !request_based) {
896 		/*
897 		 * The targets can work either way.
898 		 * Determine the type from the live device.
899 		 * Default to bio-based if device is new.
900 		 */
901 		if (__table_type_request_based(live_md_type))
902 			request_based = 1;
903 		else
904 			bio_based = 1;
905 	}
906 
907 	if (bio_based) {
908 verify_bio_based:
909 		/* We must use this table as bio-based */
910 		t->type = DM_TYPE_BIO_BASED;
911 		if (dm_table_supports_dax(t, device_not_dax_capable) ||
912 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
913 			t->type = DM_TYPE_DAX_BIO_BASED;
914 		}
915 		return 0;
916 	}
917 
918 	BUG_ON(!request_based); /* No targets in this table */
919 
920 	t->type = DM_TYPE_REQUEST_BASED;
921 
922 verify_rq_based:
923 	/*
924 	 * Request-based dm supports only tables that have a single target now.
925 	 * To support multiple targets, request splitting support is needed,
926 	 * and that needs lots of changes in the block-layer.
927 	 * (e.g. request completion process for partial completion.)
928 	 */
929 	if (t->num_targets > 1) {
930 		DMERR("request-based DM doesn't support multiple targets");
931 		return -EINVAL;
932 	}
933 
934 	if (list_empty(devices)) {
935 		int srcu_idx;
936 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
937 
938 		/* inherit live table's type */
939 		if (live_table)
940 			t->type = live_table->type;
941 		dm_put_live_table(t->md, srcu_idx);
942 		return 0;
943 	}
944 
945 	tgt = dm_table_get_immutable_target(t);
946 	if (!tgt) {
947 		DMERR("table load rejected: immutable target is required");
948 		return -EINVAL;
949 	} else if (tgt->max_io_len) {
950 		DMERR("table load rejected: immutable target that splits IO is not supported");
951 		return -EINVAL;
952 	}
953 
954 	/* Non-request-stackable devices can't be used for request-based dm */
955 	if (!tgt->type->iterate_devices ||
956 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
957 		DMERR("table load rejected: including non-request-stackable devices");
958 		return -EINVAL;
959 	}
960 
961 	return 0;
962 }
963 
964 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
965 {
966 	return t->type;
967 }
968 
969 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
970 {
971 	return t->immutable_target_type;
972 }
973 
974 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
975 {
976 	/* Immutable target is implicitly a singleton */
977 	if (t->num_targets > 1 ||
978 	    !dm_target_is_immutable(t->targets[0].type))
979 		return NULL;
980 
981 	return t->targets;
982 }
983 
984 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
985 {
986 	struct dm_target *ti;
987 	unsigned i;
988 
989 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
990 		ti = dm_table_get_target(t, i);
991 		if (dm_target_is_wildcard(ti->type))
992 			return ti;
993 	}
994 
995 	return NULL;
996 }
997 
998 bool dm_table_bio_based(struct dm_table *t)
999 {
1000 	return __table_type_bio_based(dm_table_get_type(t));
1001 }
1002 
1003 bool dm_table_request_based(struct dm_table *t)
1004 {
1005 	return __table_type_request_based(dm_table_get_type(t));
1006 }
1007 
1008 static bool dm_table_supports_poll(struct dm_table *t);
1009 
1010 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1011 {
1012 	enum dm_queue_mode type = dm_table_get_type(t);
1013 	unsigned per_io_data_size = 0;
1014 	unsigned min_pool_size = 0;
1015 	struct dm_target *ti;
1016 	unsigned i;
1017 	bool poll_supported = false;
1018 
1019 	if (unlikely(type == DM_TYPE_NONE)) {
1020 		DMWARN("no table type is set, can't allocate mempools");
1021 		return -EINVAL;
1022 	}
1023 
1024 	if (__table_type_bio_based(type)) {
1025 		for (i = 0; i < t->num_targets; i++) {
1026 			ti = t->targets + i;
1027 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1028 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1029 		}
1030 		poll_supported = dm_table_supports_poll(t);
1031 	}
1032 
1033 	t->mempools = dm_alloc_md_mempools(md, type, per_io_data_size, min_pool_size,
1034 					   t->integrity_supported, poll_supported);
1035 	if (!t->mempools)
1036 		return -ENOMEM;
1037 
1038 	return 0;
1039 }
1040 
1041 static int setup_indexes(struct dm_table *t)
1042 {
1043 	int i;
1044 	unsigned int total = 0;
1045 	sector_t *indexes;
1046 
1047 	/* allocate the space for *all* the indexes */
1048 	for (i = t->depth - 2; i >= 0; i--) {
1049 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1050 		total += t->counts[i];
1051 	}
1052 
1053 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1054 	if (!indexes)
1055 		return -ENOMEM;
1056 
1057 	/* set up internal nodes, bottom-up */
1058 	for (i = t->depth - 2; i >= 0; i--) {
1059 		t->index[i] = indexes;
1060 		indexes += (KEYS_PER_NODE * t->counts[i]);
1061 		setup_btree_index(i, t);
1062 	}
1063 
1064 	return 0;
1065 }
1066 
1067 /*
1068  * Builds the btree to index the map.
1069  */
1070 static int dm_table_build_index(struct dm_table *t)
1071 {
1072 	int r = 0;
1073 	unsigned int leaf_nodes;
1074 
1075 	/* how many indexes will the btree have ? */
1076 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1077 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1078 
1079 	/* leaf layer has already been set up */
1080 	t->counts[t->depth - 1] = leaf_nodes;
1081 	t->index[t->depth - 1] = t->highs;
1082 
1083 	if (t->depth >= 2)
1084 		r = setup_indexes(t);
1085 
1086 	return r;
1087 }
1088 
1089 static bool integrity_profile_exists(struct gendisk *disk)
1090 {
1091 	return !!blk_get_integrity(disk);
1092 }
1093 
1094 /*
1095  * Get a disk whose integrity profile reflects the table's profile.
1096  * Returns NULL if integrity support was inconsistent or unavailable.
1097  */
1098 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1099 {
1100 	struct list_head *devices = dm_table_get_devices(t);
1101 	struct dm_dev_internal *dd = NULL;
1102 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1103 	unsigned i;
1104 
1105 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1106 		struct dm_target *ti = dm_table_get_target(t, i);
1107 		if (!dm_target_passes_integrity(ti->type))
1108 			goto no_integrity;
1109 	}
1110 
1111 	list_for_each_entry(dd, devices, list) {
1112 		template_disk = dd->dm_dev->bdev->bd_disk;
1113 		if (!integrity_profile_exists(template_disk))
1114 			goto no_integrity;
1115 		else if (prev_disk &&
1116 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1117 			goto no_integrity;
1118 		prev_disk = template_disk;
1119 	}
1120 
1121 	return template_disk;
1122 
1123 no_integrity:
1124 	if (prev_disk)
1125 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1126 		       dm_device_name(t->md),
1127 		       prev_disk->disk_name,
1128 		       template_disk->disk_name);
1129 	return NULL;
1130 }
1131 
1132 /*
1133  * Register the mapped device for blk_integrity support if the
1134  * underlying devices have an integrity profile.  But all devices may
1135  * not have matching profiles (checking all devices isn't reliable
1136  * during table load because this table may use other DM device(s) which
1137  * must be resumed before they will have an initialized integity
1138  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1139  * profile validation: First pass during table load, final pass during
1140  * resume.
1141  */
1142 static int dm_table_register_integrity(struct dm_table *t)
1143 {
1144 	struct mapped_device *md = t->md;
1145 	struct gendisk *template_disk = NULL;
1146 
1147 	/* If target handles integrity itself do not register it here. */
1148 	if (t->integrity_added)
1149 		return 0;
1150 
1151 	template_disk = dm_table_get_integrity_disk(t);
1152 	if (!template_disk)
1153 		return 0;
1154 
1155 	if (!integrity_profile_exists(dm_disk(md))) {
1156 		t->integrity_supported = true;
1157 		/*
1158 		 * Register integrity profile during table load; we can do
1159 		 * this because the final profile must match during resume.
1160 		 */
1161 		blk_integrity_register(dm_disk(md),
1162 				       blk_get_integrity(template_disk));
1163 		return 0;
1164 	}
1165 
1166 	/*
1167 	 * If DM device already has an initialized integrity
1168 	 * profile the new profile should not conflict.
1169 	 */
1170 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1171 		DMWARN("%s: conflict with existing integrity profile: "
1172 		       "%s profile mismatch",
1173 		       dm_device_name(t->md),
1174 		       template_disk->disk_name);
1175 		return 1;
1176 	}
1177 
1178 	/* Preserve existing integrity profile */
1179 	t->integrity_supported = true;
1180 	return 0;
1181 }
1182 
1183 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1184 
1185 struct dm_crypto_profile {
1186 	struct blk_crypto_profile profile;
1187 	struct mapped_device *md;
1188 };
1189 
1190 struct dm_keyslot_evict_args {
1191 	const struct blk_crypto_key *key;
1192 	int err;
1193 };
1194 
1195 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1196 				     sector_t start, sector_t len, void *data)
1197 {
1198 	struct dm_keyslot_evict_args *args = data;
1199 	int err;
1200 
1201 	err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1202 	if (!args->err)
1203 		args->err = err;
1204 	/* Always try to evict the key from all devices. */
1205 	return 0;
1206 }
1207 
1208 /*
1209  * When an inline encryption key is evicted from a device-mapper device, evict
1210  * it from all the underlying devices.
1211  */
1212 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1213 			    const struct blk_crypto_key *key, unsigned int slot)
1214 {
1215 	struct mapped_device *md =
1216 		container_of(profile, struct dm_crypto_profile, profile)->md;
1217 	struct dm_keyslot_evict_args args = { key };
1218 	struct dm_table *t;
1219 	int srcu_idx;
1220 	int i;
1221 	struct dm_target *ti;
1222 
1223 	t = dm_get_live_table(md, &srcu_idx);
1224 	if (!t)
1225 		return 0;
1226 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1227 		ti = dm_table_get_target(t, i);
1228 		if (!ti->type->iterate_devices)
1229 			continue;
1230 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1231 	}
1232 	dm_put_live_table(md, srcu_idx);
1233 	return args.err;
1234 }
1235 
1236 static int
1237 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1238 				     sector_t start, sector_t len, void *data)
1239 {
1240 	struct blk_crypto_profile *parent = data;
1241 	struct blk_crypto_profile *child =
1242 		bdev_get_queue(dev->bdev)->crypto_profile;
1243 
1244 	blk_crypto_intersect_capabilities(parent, child);
1245 	return 0;
1246 }
1247 
1248 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1249 {
1250 	struct dm_crypto_profile *dmcp = container_of(profile,
1251 						      struct dm_crypto_profile,
1252 						      profile);
1253 
1254 	if (!profile)
1255 		return;
1256 
1257 	blk_crypto_profile_destroy(profile);
1258 	kfree(dmcp);
1259 }
1260 
1261 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1262 {
1263 	dm_destroy_crypto_profile(t->crypto_profile);
1264 	t->crypto_profile = NULL;
1265 }
1266 
1267 /*
1268  * Constructs and initializes t->crypto_profile with a crypto profile that
1269  * represents the common set of crypto capabilities of the devices described by
1270  * the dm_table.  However, if the constructed crypto profile doesn't support all
1271  * crypto capabilities that are supported by the current mapped_device, it
1272  * returns an error instead, since we don't support removing crypto capabilities
1273  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1274  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1275  */
1276 static int dm_table_construct_crypto_profile(struct dm_table *t)
1277 {
1278 	struct dm_crypto_profile *dmcp;
1279 	struct blk_crypto_profile *profile;
1280 	struct dm_target *ti;
1281 	unsigned int i;
1282 	bool empty_profile = true;
1283 
1284 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1285 	if (!dmcp)
1286 		return -ENOMEM;
1287 	dmcp->md = t->md;
1288 
1289 	profile = &dmcp->profile;
1290 	blk_crypto_profile_init(profile, 0);
1291 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1292 	profile->max_dun_bytes_supported = UINT_MAX;
1293 	memset(profile->modes_supported, 0xFF,
1294 	       sizeof(profile->modes_supported));
1295 
1296 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1297 		ti = dm_table_get_target(t, i);
1298 
1299 		if (!dm_target_passes_crypto(ti->type)) {
1300 			blk_crypto_intersect_capabilities(profile, NULL);
1301 			break;
1302 		}
1303 		if (!ti->type->iterate_devices)
1304 			continue;
1305 		ti->type->iterate_devices(ti,
1306 					  device_intersect_crypto_capabilities,
1307 					  profile);
1308 	}
1309 
1310 	if (t->md->queue &&
1311 	    !blk_crypto_has_capabilities(profile,
1312 					 t->md->queue->crypto_profile)) {
1313 		DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1314 		dm_destroy_crypto_profile(profile);
1315 		return -EINVAL;
1316 	}
1317 
1318 	/*
1319 	 * If the new profile doesn't actually support any crypto capabilities,
1320 	 * we may as well represent it with a NULL profile.
1321 	 */
1322 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1323 		if (profile->modes_supported[i]) {
1324 			empty_profile = false;
1325 			break;
1326 		}
1327 	}
1328 
1329 	if (empty_profile) {
1330 		dm_destroy_crypto_profile(profile);
1331 		profile = NULL;
1332 	}
1333 
1334 	/*
1335 	 * t->crypto_profile is only set temporarily while the table is being
1336 	 * set up, and it gets set to NULL after the profile has been
1337 	 * transferred to the request_queue.
1338 	 */
1339 	t->crypto_profile = profile;
1340 
1341 	return 0;
1342 }
1343 
1344 static void dm_update_crypto_profile(struct request_queue *q,
1345 				     struct dm_table *t)
1346 {
1347 	if (!t->crypto_profile)
1348 		return;
1349 
1350 	/* Make the crypto profile less restrictive. */
1351 	if (!q->crypto_profile) {
1352 		blk_crypto_register(t->crypto_profile, q);
1353 	} else {
1354 		blk_crypto_update_capabilities(q->crypto_profile,
1355 					       t->crypto_profile);
1356 		dm_destroy_crypto_profile(t->crypto_profile);
1357 	}
1358 	t->crypto_profile = NULL;
1359 }
1360 
1361 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1362 
1363 static int dm_table_construct_crypto_profile(struct dm_table *t)
1364 {
1365 	return 0;
1366 }
1367 
1368 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1369 {
1370 }
1371 
1372 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1373 {
1374 }
1375 
1376 static void dm_update_crypto_profile(struct request_queue *q,
1377 				     struct dm_table *t)
1378 {
1379 }
1380 
1381 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1382 
1383 /*
1384  * Prepares the table for use by building the indices,
1385  * setting the type, and allocating mempools.
1386  */
1387 int dm_table_complete(struct dm_table *t)
1388 {
1389 	int r;
1390 
1391 	r = dm_table_determine_type(t);
1392 	if (r) {
1393 		DMERR("unable to determine table type");
1394 		return r;
1395 	}
1396 
1397 	r = dm_table_build_index(t);
1398 	if (r) {
1399 		DMERR("unable to build btrees");
1400 		return r;
1401 	}
1402 
1403 	r = dm_table_register_integrity(t);
1404 	if (r) {
1405 		DMERR("could not register integrity profile.");
1406 		return r;
1407 	}
1408 
1409 	r = dm_table_construct_crypto_profile(t);
1410 	if (r) {
1411 		DMERR("could not construct crypto profile.");
1412 		return r;
1413 	}
1414 
1415 	r = dm_table_alloc_md_mempools(t, t->md);
1416 	if (r)
1417 		DMERR("unable to allocate mempools");
1418 
1419 	return r;
1420 }
1421 
1422 static DEFINE_MUTEX(_event_lock);
1423 void dm_table_event_callback(struct dm_table *t,
1424 			     void (*fn)(void *), void *context)
1425 {
1426 	mutex_lock(&_event_lock);
1427 	t->event_fn = fn;
1428 	t->event_context = context;
1429 	mutex_unlock(&_event_lock);
1430 }
1431 
1432 void dm_table_event(struct dm_table *t)
1433 {
1434 	mutex_lock(&_event_lock);
1435 	if (t->event_fn)
1436 		t->event_fn(t->event_context);
1437 	mutex_unlock(&_event_lock);
1438 }
1439 EXPORT_SYMBOL(dm_table_event);
1440 
1441 inline sector_t dm_table_get_size(struct dm_table *t)
1442 {
1443 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1444 }
1445 EXPORT_SYMBOL(dm_table_get_size);
1446 
1447 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1448 {
1449 	if (index >= t->num_targets)
1450 		return NULL;
1451 
1452 	return t->targets + index;
1453 }
1454 
1455 /*
1456  * Search the btree for the correct target.
1457  *
1458  * Caller should check returned pointer for NULL
1459  * to trap I/O beyond end of device.
1460  */
1461 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1462 {
1463 	unsigned int l, n = 0, k = 0;
1464 	sector_t *node;
1465 
1466 	if (unlikely(sector >= dm_table_get_size(t)))
1467 		return NULL;
1468 
1469 	for (l = 0; l < t->depth; l++) {
1470 		n = get_child(n, k);
1471 		node = get_node(t, l, n);
1472 
1473 		for (k = 0; k < KEYS_PER_NODE; k++)
1474 			if (node[k] >= sector)
1475 				break;
1476 	}
1477 
1478 	return &t->targets[(KEYS_PER_NODE * n) + k];
1479 }
1480 
1481 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1482 				   sector_t start, sector_t len, void *data)
1483 {
1484 	struct request_queue *q = bdev_get_queue(dev->bdev);
1485 
1486 	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1487 }
1488 
1489 /*
1490  * type->iterate_devices() should be called when the sanity check needs to
1491  * iterate and check all underlying data devices. iterate_devices() will
1492  * iterate all underlying data devices until it encounters a non-zero return
1493  * code, returned by whether the input iterate_devices_callout_fn, or
1494  * iterate_devices() itself internally.
1495  *
1496  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1497  * iterate multiple underlying devices internally, in which case a non-zero
1498  * return code returned by iterate_devices_callout_fn will stop the iteration
1499  * in advance.
1500  *
1501  * Cases requiring _any_ underlying device supporting some kind of attribute,
1502  * should use the iteration structure like dm_table_any_dev_attr(), or call
1503  * it directly. @func should handle semantics of positive examples, e.g.
1504  * capable of something.
1505  *
1506  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1507  * should use the iteration structure like dm_table_supports_nowait() or
1508  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1509  * uses an @anti_func that handle semantics of counter examples, e.g. not
1510  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1511  */
1512 static bool dm_table_any_dev_attr(struct dm_table *t,
1513 				  iterate_devices_callout_fn func, void *data)
1514 {
1515 	struct dm_target *ti;
1516 	unsigned int i;
1517 
1518 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1519 		ti = dm_table_get_target(t, i);
1520 
1521 		if (ti->type->iterate_devices &&
1522 		    ti->type->iterate_devices(ti, func, data))
1523 			return true;
1524         }
1525 
1526 	return false;
1527 }
1528 
1529 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1530 			sector_t start, sector_t len, void *data)
1531 {
1532 	unsigned *num_devices = data;
1533 
1534 	(*num_devices)++;
1535 
1536 	return 0;
1537 }
1538 
1539 static bool dm_table_supports_poll(struct dm_table *t)
1540 {
1541 	struct dm_target *ti;
1542 	unsigned i = 0;
1543 
1544 	while (i < dm_table_get_num_targets(t)) {
1545 		ti = dm_table_get_target(t, i++);
1546 
1547 		if (!ti->type->iterate_devices ||
1548 		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1549 			return false;
1550 	}
1551 
1552 	return true;
1553 }
1554 
1555 /*
1556  * Check whether a table has no data devices attached using each
1557  * target's iterate_devices method.
1558  * Returns false if the result is unknown because a target doesn't
1559  * support iterate_devices.
1560  */
1561 bool dm_table_has_no_data_devices(struct dm_table *table)
1562 {
1563 	struct dm_target *ti;
1564 	unsigned i, num_devices;
1565 
1566 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1567 		ti = dm_table_get_target(table, i);
1568 
1569 		if (!ti->type->iterate_devices)
1570 			return false;
1571 
1572 		num_devices = 0;
1573 		ti->type->iterate_devices(ti, count_device, &num_devices);
1574 		if (num_devices)
1575 			return false;
1576 	}
1577 
1578 	return true;
1579 }
1580 
1581 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1582 				  sector_t start, sector_t len, void *data)
1583 {
1584 	struct request_queue *q = bdev_get_queue(dev->bdev);
1585 	enum blk_zoned_model *zoned_model = data;
1586 
1587 	return blk_queue_zoned_model(q) != *zoned_model;
1588 }
1589 
1590 /*
1591  * Check the device zoned model based on the target feature flag. If the target
1592  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1593  * also accepted but all devices must have the same zoned model. If the target
1594  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1595  * zoned model with all zoned devices having the same zone size.
1596  */
1597 static bool dm_table_supports_zoned_model(struct dm_table *t,
1598 					  enum blk_zoned_model zoned_model)
1599 {
1600 	struct dm_target *ti;
1601 	unsigned i;
1602 
1603 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1604 		ti = dm_table_get_target(t, i);
1605 
1606 		if (dm_target_supports_zoned_hm(ti->type)) {
1607 			if (!ti->type->iterate_devices ||
1608 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1609 						      &zoned_model))
1610 				return false;
1611 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1612 			if (zoned_model == BLK_ZONED_HM)
1613 				return false;
1614 		}
1615 	}
1616 
1617 	return true;
1618 }
1619 
1620 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1621 					   sector_t start, sector_t len, void *data)
1622 {
1623 	struct request_queue *q = bdev_get_queue(dev->bdev);
1624 	unsigned int *zone_sectors = data;
1625 
1626 	if (!blk_queue_is_zoned(q))
1627 		return 0;
1628 
1629 	return blk_queue_zone_sectors(q) != *zone_sectors;
1630 }
1631 
1632 /*
1633  * Check consistency of zoned model and zone sectors across all targets. For
1634  * zone sectors, if the destination device is a zoned block device, it shall
1635  * have the specified zone_sectors.
1636  */
1637 static int validate_hardware_zoned_model(struct dm_table *table,
1638 					 enum blk_zoned_model zoned_model,
1639 					 unsigned int zone_sectors)
1640 {
1641 	if (zoned_model == BLK_ZONED_NONE)
1642 		return 0;
1643 
1644 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1645 		DMERR("%s: zoned model is not consistent across all devices",
1646 		      dm_device_name(table->md));
1647 		return -EINVAL;
1648 	}
1649 
1650 	/* Check zone size validity and compatibility */
1651 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1652 		return -EINVAL;
1653 
1654 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1655 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1656 		      dm_device_name(table->md));
1657 		return -EINVAL;
1658 	}
1659 
1660 	return 0;
1661 }
1662 
1663 /*
1664  * Establish the new table's queue_limits and validate them.
1665  */
1666 int dm_calculate_queue_limits(struct dm_table *table,
1667 			      struct queue_limits *limits)
1668 {
1669 	struct dm_target *ti;
1670 	struct queue_limits ti_limits;
1671 	unsigned i;
1672 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1673 	unsigned int zone_sectors = 0;
1674 
1675 	blk_set_stacking_limits(limits);
1676 
1677 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1678 		blk_set_stacking_limits(&ti_limits);
1679 
1680 		ti = dm_table_get_target(table, i);
1681 
1682 		if (!ti->type->iterate_devices)
1683 			goto combine_limits;
1684 
1685 		/*
1686 		 * Combine queue limits of all the devices this target uses.
1687 		 */
1688 		ti->type->iterate_devices(ti, dm_set_device_limits,
1689 					  &ti_limits);
1690 
1691 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1692 			/*
1693 			 * After stacking all limits, validate all devices
1694 			 * in table support this zoned model and zone sectors.
1695 			 */
1696 			zoned_model = ti_limits.zoned;
1697 			zone_sectors = ti_limits.chunk_sectors;
1698 		}
1699 
1700 		/* Set I/O hints portion of queue limits */
1701 		if (ti->type->io_hints)
1702 			ti->type->io_hints(ti, &ti_limits);
1703 
1704 		/*
1705 		 * Check each device area is consistent with the target's
1706 		 * overall queue limits.
1707 		 */
1708 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1709 					      &ti_limits))
1710 			return -EINVAL;
1711 
1712 combine_limits:
1713 		/*
1714 		 * Merge this target's queue limits into the overall limits
1715 		 * for the table.
1716 		 */
1717 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1718 			DMWARN("%s: adding target device "
1719 			       "(start sect %llu len %llu) "
1720 			       "caused an alignment inconsistency",
1721 			       dm_device_name(table->md),
1722 			       (unsigned long long) ti->begin,
1723 			       (unsigned long long) ti->len);
1724 	}
1725 
1726 	/*
1727 	 * Verify that the zoned model and zone sectors, as determined before
1728 	 * any .io_hints override, are the same across all devices in the table.
1729 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1730 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1731 	 * BUT...
1732 	 */
1733 	if (limits->zoned != BLK_ZONED_NONE) {
1734 		/*
1735 		 * ...IF the above limits stacking determined a zoned model
1736 		 * validate that all of the table's devices conform to it.
1737 		 */
1738 		zoned_model = limits->zoned;
1739 		zone_sectors = limits->chunk_sectors;
1740 	}
1741 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1742 		return -EINVAL;
1743 
1744 	return validate_hardware_logical_block_alignment(table, limits);
1745 }
1746 
1747 /*
1748  * Verify that all devices have an integrity profile that matches the
1749  * DM device's registered integrity profile.  If the profiles don't
1750  * match then unregister the DM device's integrity profile.
1751  */
1752 static void dm_table_verify_integrity(struct dm_table *t)
1753 {
1754 	struct gendisk *template_disk = NULL;
1755 
1756 	if (t->integrity_added)
1757 		return;
1758 
1759 	if (t->integrity_supported) {
1760 		/*
1761 		 * Verify that the original integrity profile
1762 		 * matches all the devices in this table.
1763 		 */
1764 		template_disk = dm_table_get_integrity_disk(t);
1765 		if (template_disk &&
1766 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1767 			return;
1768 	}
1769 
1770 	if (integrity_profile_exists(dm_disk(t->md))) {
1771 		DMWARN("%s: unable to establish an integrity profile",
1772 		       dm_device_name(t->md));
1773 		blk_integrity_unregister(dm_disk(t->md));
1774 	}
1775 }
1776 
1777 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1778 				sector_t start, sector_t len, void *data)
1779 {
1780 	unsigned long flush = (unsigned long) data;
1781 	struct request_queue *q = bdev_get_queue(dev->bdev);
1782 
1783 	return (q->queue_flags & flush);
1784 }
1785 
1786 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1787 {
1788 	struct dm_target *ti;
1789 	unsigned i;
1790 
1791 	/*
1792 	 * Require at least one underlying device to support flushes.
1793 	 * t->devices includes internal dm devices such as mirror logs
1794 	 * so we need to use iterate_devices here, which targets
1795 	 * supporting flushes must provide.
1796 	 */
1797 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1798 		ti = dm_table_get_target(t, i);
1799 
1800 		if (!ti->num_flush_bios)
1801 			continue;
1802 
1803 		if (ti->flush_supported)
1804 			return true;
1805 
1806 		if (ti->type->iterate_devices &&
1807 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1808 			return true;
1809 	}
1810 
1811 	return false;
1812 }
1813 
1814 static int device_dax_write_cache_enabled(struct dm_target *ti,
1815 					  struct dm_dev *dev, sector_t start,
1816 					  sector_t len, void *data)
1817 {
1818 	struct dax_device *dax_dev = dev->dax_dev;
1819 
1820 	if (!dax_dev)
1821 		return false;
1822 
1823 	if (dax_write_cache_enabled(dax_dev))
1824 		return true;
1825 	return false;
1826 }
1827 
1828 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1829 				sector_t start, sector_t len, void *data)
1830 {
1831 	return !bdev_nonrot(dev->bdev);
1832 }
1833 
1834 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1835 			     sector_t start, sector_t len, void *data)
1836 {
1837 	struct request_queue *q = bdev_get_queue(dev->bdev);
1838 
1839 	return !blk_queue_add_random(q);
1840 }
1841 
1842 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1843 					   sector_t start, sector_t len, void *data)
1844 {
1845 	struct request_queue *q = bdev_get_queue(dev->bdev);
1846 
1847 	return !q->limits.max_write_zeroes_sectors;
1848 }
1849 
1850 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1851 {
1852 	struct dm_target *ti;
1853 	unsigned i = 0;
1854 
1855 	while (i < dm_table_get_num_targets(t)) {
1856 		ti = dm_table_get_target(t, i++);
1857 
1858 		if (!ti->num_write_zeroes_bios)
1859 			return false;
1860 
1861 		if (!ti->type->iterate_devices ||
1862 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1863 			return false;
1864 	}
1865 
1866 	return true;
1867 }
1868 
1869 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1870 				     sector_t start, sector_t len, void *data)
1871 {
1872 	struct request_queue *q = bdev_get_queue(dev->bdev);
1873 
1874 	return !blk_queue_nowait(q);
1875 }
1876 
1877 static bool dm_table_supports_nowait(struct dm_table *t)
1878 {
1879 	struct dm_target *ti;
1880 	unsigned i = 0;
1881 
1882 	while (i < dm_table_get_num_targets(t)) {
1883 		ti = dm_table_get_target(t, i++);
1884 
1885 		if (!dm_target_supports_nowait(ti->type))
1886 			return false;
1887 
1888 		if (!ti->type->iterate_devices ||
1889 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1890 			return false;
1891 	}
1892 
1893 	return true;
1894 }
1895 
1896 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1897 				      sector_t start, sector_t len, void *data)
1898 {
1899 	return !bdev_max_discard_sectors(dev->bdev);
1900 }
1901 
1902 static bool dm_table_supports_discards(struct dm_table *t)
1903 {
1904 	struct dm_target *ti;
1905 	unsigned i;
1906 
1907 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1908 		ti = dm_table_get_target(t, i);
1909 
1910 		if (!ti->num_discard_bios)
1911 			return false;
1912 
1913 		/*
1914 		 * Either the target provides discard support (as implied by setting
1915 		 * 'discards_supported') or it relies on _all_ data devices having
1916 		 * discard support.
1917 		 */
1918 		if (!ti->discards_supported &&
1919 		    (!ti->type->iterate_devices ||
1920 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1921 			return false;
1922 	}
1923 
1924 	return true;
1925 }
1926 
1927 static int device_not_secure_erase_capable(struct dm_target *ti,
1928 					   struct dm_dev *dev, sector_t start,
1929 					   sector_t len, void *data)
1930 {
1931 	return !bdev_max_secure_erase_sectors(dev->bdev);
1932 }
1933 
1934 static bool dm_table_supports_secure_erase(struct dm_table *t)
1935 {
1936 	struct dm_target *ti;
1937 	unsigned int i;
1938 
1939 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1940 		ti = dm_table_get_target(t, i);
1941 
1942 		if (!ti->num_secure_erase_bios)
1943 			return false;
1944 
1945 		if (!ti->type->iterate_devices ||
1946 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1947 			return false;
1948 	}
1949 
1950 	return true;
1951 }
1952 
1953 static int device_requires_stable_pages(struct dm_target *ti,
1954 					struct dm_dev *dev, sector_t start,
1955 					sector_t len, void *data)
1956 {
1957 	return bdev_stable_writes(dev->bdev);
1958 }
1959 
1960 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1961 			      struct queue_limits *limits)
1962 {
1963 	bool wc = false, fua = false;
1964 	int r;
1965 
1966 	/*
1967 	 * Copy table's limits to the DM device's request_queue
1968 	 */
1969 	q->limits = *limits;
1970 
1971 	if (dm_table_supports_nowait(t))
1972 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1973 	else
1974 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1975 
1976 	if (!dm_table_supports_discards(t)) {
1977 		q->limits.max_discard_sectors = 0;
1978 		q->limits.max_hw_discard_sectors = 0;
1979 		q->limits.discard_granularity = 0;
1980 		q->limits.discard_alignment = 0;
1981 		q->limits.discard_misaligned = 0;
1982 	}
1983 
1984 	if (!dm_table_supports_secure_erase(t))
1985 		q->limits.max_secure_erase_sectors = 0;
1986 
1987 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1988 		wc = true;
1989 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1990 			fua = true;
1991 	}
1992 	blk_queue_write_cache(q, wc, fua);
1993 
1994 	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1995 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1996 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1997 			set_dax_synchronous(t->md->dax_dev);
1998 	}
1999 	else
2000 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2001 
2002 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2003 		dax_write_cache(t->md->dax_dev, true);
2004 
2005 	/* Ensure that all underlying devices are non-rotational. */
2006 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2007 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2008 	else
2009 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2010 
2011 	if (!dm_table_supports_write_zeroes(t))
2012 		q->limits.max_write_zeroes_sectors = 0;
2013 
2014 	dm_table_verify_integrity(t);
2015 
2016 	/*
2017 	 * Some devices don't use blk_integrity but still want stable pages
2018 	 * because they do their own checksumming.
2019 	 * If any underlying device requires stable pages, a table must require
2020 	 * them as well.  Only targets that support iterate_devices are considered:
2021 	 * don't want error, zero, etc to require stable pages.
2022 	 */
2023 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2024 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2025 	else
2026 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2027 
2028 	/*
2029 	 * Determine whether or not this queue's I/O timings contribute
2030 	 * to the entropy pool, Only request-based targets use this.
2031 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2032 	 * have it set.
2033 	 */
2034 	if (blk_queue_add_random(q) &&
2035 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2036 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2037 
2038 	/*
2039 	 * For a zoned target, setup the zones related queue attributes
2040 	 * and resources necessary for zone append emulation if necessary.
2041 	 */
2042 	if (blk_queue_is_zoned(q)) {
2043 		r = dm_set_zones_restrictions(t, q);
2044 		if (r)
2045 			return r;
2046 		if (!static_key_enabled(&zoned_enabled.key))
2047 			static_branch_enable(&zoned_enabled);
2048 	}
2049 
2050 	dm_update_crypto_profile(q, t);
2051 	disk_update_readahead(t->md->disk);
2052 
2053 	/*
2054 	 * Check for request-based device is left to
2055 	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2056 	 *
2057 	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2058 	 * underlying devices supporting polling.
2059 	 */
2060 	if (__table_type_bio_based(t->type)) {
2061 		if (dm_table_supports_poll(t))
2062 			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2063 		else
2064 			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 unsigned int dm_table_get_num_targets(struct dm_table *t)
2071 {
2072 	return t->num_targets;
2073 }
2074 
2075 struct list_head *dm_table_get_devices(struct dm_table *t)
2076 {
2077 	return &t->devices;
2078 }
2079 
2080 fmode_t dm_table_get_mode(struct dm_table *t)
2081 {
2082 	return t->mode;
2083 }
2084 EXPORT_SYMBOL(dm_table_get_mode);
2085 
2086 enum suspend_mode {
2087 	PRESUSPEND,
2088 	PRESUSPEND_UNDO,
2089 	POSTSUSPEND,
2090 };
2091 
2092 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2093 {
2094 	int i = t->num_targets;
2095 	struct dm_target *ti = t->targets;
2096 
2097 	lockdep_assert_held(&t->md->suspend_lock);
2098 
2099 	while (i--) {
2100 		switch (mode) {
2101 		case PRESUSPEND:
2102 			if (ti->type->presuspend)
2103 				ti->type->presuspend(ti);
2104 			break;
2105 		case PRESUSPEND_UNDO:
2106 			if (ti->type->presuspend_undo)
2107 				ti->type->presuspend_undo(ti);
2108 			break;
2109 		case POSTSUSPEND:
2110 			if (ti->type->postsuspend)
2111 				ti->type->postsuspend(ti);
2112 			break;
2113 		}
2114 		ti++;
2115 	}
2116 }
2117 
2118 void dm_table_presuspend_targets(struct dm_table *t)
2119 {
2120 	if (!t)
2121 		return;
2122 
2123 	suspend_targets(t, PRESUSPEND);
2124 }
2125 
2126 void dm_table_presuspend_undo_targets(struct dm_table *t)
2127 {
2128 	if (!t)
2129 		return;
2130 
2131 	suspend_targets(t, PRESUSPEND_UNDO);
2132 }
2133 
2134 void dm_table_postsuspend_targets(struct dm_table *t)
2135 {
2136 	if (!t)
2137 		return;
2138 
2139 	suspend_targets(t, POSTSUSPEND);
2140 }
2141 
2142 int dm_table_resume_targets(struct dm_table *t)
2143 {
2144 	int i, r = 0;
2145 
2146 	lockdep_assert_held(&t->md->suspend_lock);
2147 
2148 	for (i = 0; i < t->num_targets; i++) {
2149 		struct dm_target *ti = t->targets + i;
2150 
2151 		if (!ti->type->preresume)
2152 			continue;
2153 
2154 		r = ti->type->preresume(ti);
2155 		if (r) {
2156 			DMERR("%s: %s: preresume failed, error = %d",
2157 			      dm_device_name(t->md), ti->type->name, r);
2158 			return r;
2159 		}
2160 	}
2161 
2162 	for (i = 0; i < t->num_targets; i++) {
2163 		struct dm_target *ti = t->targets + i;
2164 
2165 		if (ti->type->resume)
2166 			ti->type->resume(ti);
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 struct mapped_device *dm_table_get_md(struct dm_table *t)
2173 {
2174 	return t->md;
2175 }
2176 EXPORT_SYMBOL(dm_table_get_md);
2177 
2178 const char *dm_table_device_name(struct dm_table *t)
2179 {
2180 	return dm_device_name(t->md);
2181 }
2182 EXPORT_SYMBOL_GPL(dm_table_device_name);
2183 
2184 void dm_table_run_md_queue_async(struct dm_table *t)
2185 {
2186 	if (!dm_table_request_based(t))
2187 		return;
2188 
2189 	if (t->md->queue)
2190 		blk_mq_run_hw_queues(t->md->queue, true);
2191 }
2192 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2193 
2194