1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/blk-integrity.h> 14 #include <linux/namei.h> 15 #include <linux/ctype.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/interrupt.h> 19 #include <linux/mutex.h> 20 #include <linux/delay.h> 21 #include <linux/atomic.h> 22 #include <linux/blk-mq.h> 23 #include <linux/mount.h> 24 #include <linux/dax.h> 25 26 #define DM_MSG_PREFIX "table" 27 28 #define NODE_SIZE L1_CACHE_BYTES 29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 31 32 /* 33 * Similar to ceiling(log_size(n)) 34 */ 35 static unsigned int int_log(unsigned int n, unsigned int base) 36 { 37 int result = 0; 38 39 while (n > 1) { 40 n = dm_div_up(n, base); 41 result++; 42 } 43 44 return result; 45 } 46 47 /* 48 * Calculate the index of the child node of the n'th node k'th key. 49 */ 50 static inline unsigned int get_child(unsigned int n, unsigned int k) 51 { 52 return (n * CHILDREN_PER_NODE) + k; 53 } 54 55 /* 56 * Return the n'th node of level l from table t. 57 */ 58 static inline sector_t *get_node(struct dm_table *t, 59 unsigned int l, unsigned int n) 60 { 61 return t->index[l] + (n * KEYS_PER_NODE); 62 } 63 64 /* 65 * Return the highest key that you could lookup from the n'th 66 * node on level l of the btree. 67 */ 68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 69 { 70 for (; l < t->depth - 1; l++) 71 n = get_child(n, CHILDREN_PER_NODE - 1); 72 73 if (n >= t->counts[l]) 74 return (sector_t) - 1; 75 76 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 77 } 78 79 /* 80 * Fills in a level of the btree based on the highs of the level 81 * below it. 82 */ 83 static int setup_btree_index(unsigned int l, struct dm_table *t) 84 { 85 unsigned int n, k; 86 sector_t *node; 87 88 for (n = 0U; n < t->counts[l]; n++) { 89 node = get_node(t, l, n); 90 91 for (k = 0U; k < KEYS_PER_NODE; k++) 92 node[k] = high(t, l + 1, get_child(n, k)); 93 } 94 95 return 0; 96 } 97 98 /* 99 * highs, and targets are managed as dynamic arrays during a 100 * table load. 101 */ 102 static int alloc_targets(struct dm_table *t, unsigned int num) 103 { 104 sector_t *n_highs; 105 struct dm_target *n_targets; 106 107 /* 108 * Allocate both the target array and offset array at once. 109 */ 110 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), 111 GFP_KERNEL); 112 if (!n_highs) 113 return -ENOMEM; 114 115 n_targets = (struct dm_target *) (n_highs + num); 116 117 memset(n_highs, -1, sizeof(*n_highs) * num); 118 kvfree(t->highs); 119 120 t->num_allocated = num; 121 t->highs = n_highs; 122 t->targets = n_targets; 123 124 return 0; 125 } 126 127 int dm_table_create(struct dm_table **result, fmode_t mode, 128 unsigned num_targets, struct mapped_device *md) 129 { 130 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 131 132 if (!t) 133 return -ENOMEM; 134 135 INIT_LIST_HEAD(&t->devices); 136 137 if (!num_targets) 138 num_targets = KEYS_PER_NODE; 139 140 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 141 142 if (!num_targets) { 143 kfree(t); 144 return -ENOMEM; 145 } 146 147 if (alloc_targets(t, num_targets)) { 148 kfree(t); 149 return -ENOMEM; 150 } 151 152 t->type = DM_TYPE_NONE; 153 t->mode = mode; 154 t->md = md; 155 *result = t; 156 return 0; 157 } 158 159 static void free_devices(struct list_head *devices, struct mapped_device *md) 160 { 161 struct list_head *tmp, *next; 162 163 list_for_each_safe(tmp, next, devices) { 164 struct dm_dev_internal *dd = 165 list_entry(tmp, struct dm_dev_internal, list); 166 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 167 dm_device_name(md), dd->dm_dev->name); 168 dm_put_table_device(md, dd->dm_dev); 169 kfree(dd); 170 } 171 } 172 173 static void dm_table_destroy_crypto_profile(struct dm_table *t); 174 175 void dm_table_destroy(struct dm_table *t) 176 { 177 unsigned int i; 178 179 if (!t) 180 return; 181 182 /* free the indexes */ 183 if (t->depth >= 2) 184 kvfree(t->index[t->depth - 2]); 185 186 /* free the targets */ 187 for (i = 0; i < t->num_targets; i++) { 188 struct dm_target *tgt = t->targets + i; 189 190 if (tgt->type->dtr) 191 tgt->type->dtr(tgt); 192 193 dm_put_target_type(tgt->type); 194 } 195 196 kvfree(t->highs); 197 198 /* free the device list */ 199 free_devices(&t->devices, t->md); 200 201 dm_free_md_mempools(t->mempools); 202 203 dm_table_destroy_crypto_profile(t); 204 205 kfree(t); 206 } 207 208 /* 209 * See if we've already got a device in the list. 210 */ 211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 212 { 213 struct dm_dev_internal *dd; 214 215 list_for_each_entry (dd, l, list) 216 if (dd->dm_dev->bdev->bd_dev == dev) 217 return dd; 218 219 return NULL; 220 } 221 222 /* 223 * If possible, this checks an area of a destination device is invalid. 224 */ 225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 226 sector_t start, sector_t len, void *data) 227 { 228 struct queue_limits *limits = data; 229 struct block_device *bdev = dev->bdev; 230 sector_t dev_size = bdev_nr_sectors(bdev); 231 unsigned short logical_block_size_sectors = 232 limits->logical_block_size >> SECTOR_SHIFT; 233 234 if (!dev_size) 235 return 0; 236 237 if ((start >= dev_size) || (start + len > dev_size)) { 238 DMWARN("%s: %pg too small for target: " 239 "start=%llu, len=%llu, dev_size=%llu", 240 dm_device_name(ti->table->md), bdev, 241 (unsigned long long)start, 242 (unsigned long long)len, 243 (unsigned long long)dev_size); 244 return 1; 245 } 246 247 /* 248 * If the target is mapped to zoned block device(s), check 249 * that the zones are not partially mapped. 250 */ 251 if (bdev_is_zoned(bdev)) { 252 unsigned int zone_sectors = bdev_zone_sectors(bdev); 253 254 if (start & (zone_sectors - 1)) { 255 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %pg", 256 dm_device_name(ti->table->md), 257 (unsigned long long)start, 258 zone_sectors, bdev); 259 return 1; 260 } 261 262 /* 263 * Note: The last zone of a zoned block device may be smaller 264 * than other zones. So for a target mapping the end of a 265 * zoned block device with such a zone, len would not be zone 266 * aligned. We do not allow such last smaller zone to be part 267 * of the mapping here to ensure that mappings with multiple 268 * devices do not end up with a smaller zone in the middle of 269 * the sector range. 270 */ 271 if (len & (zone_sectors - 1)) { 272 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %pg", 273 dm_device_name(ti->table->md), 274 (unsigned long long)len, 275 zone_sectors, bdev); 276 return 1; 277 } 278 } 279 280 if (logical_block_size_sectors <= 1) 281 return 0; 282 283 if (start & (logical_block_size_sectors - 1)) { 284 DMWARN("%s: start=%llu not aligned to h/w " 285 "logical block size %u of %pg", 286 dm_device_name(ti->table->md), 287 (unsigned long long)start, 288 limits->logical_block_size, bdev); 289 return 1; 290 } 291 292 if (len & (logical_block_size_sectors - 1)) { 293 DMWARN("%s: len=%llu not aligned to h/w " 294 "logical block size %u of %pg", 295 dm_device_name(ti->table->md), 296 (unsigned long long)len, 297 limits->logical_block_size, bdev); 298 return 1; 299 } 300 301 return 0; 302 } 303 304 /* 305 * This upgrades the mode on an already open dm_dev, being 306 * careful to leave things as they were if we fail to reopen the 307 * device and not to touch the existing bdev field in case 308 * it is accessed concurrently. 309 */ 310 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 311 struct mapped_device *md) 312 { 313 int r; 314 struct dm_dev *old_dev, *new_dev; 315 316 old_dev = dd->dm_dev; 317 318 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 319 dd->dm_dev->mode | new_mode, &new_dev); 320 if (r) 321 return r; 322 323 dd->dm_dev = new_dev; 324 dm_put_table_device(md, old_dev); 325 326 return 0; 327 } 328 329 /* 330 * Convert the path to a device 331 */ 332 dev_t dm_get_dev_t(const char *path) 333 { 334 dev_t dev; 335 336 if (lookup_bdev(path, &dev)) 337 dev = name_to_dev_t(path); 338 return dev; 339 } 340 EXPORT_SYMBOL_GPL(dm_get_dev_t); 341 342 /* 343 * Add a device to the list, or just increment the usage count if 344 * it's already present. 345 */ 346 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 347 struct dm_dev **result) 348 { 349 int r; 350 dev_t dev; 351 unsigned int major, minor; 352 char dummy; 353 struct dm_dev_internal *dd; 354 struct dm_table *t = ti->table; 355 356 BUG_ON(!t); 357 358 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 359 /* Extract the major/minor numbers */ 360 dev = MKDEV(major, minor); 361 if (MAJOR(dev) != major || MINOR(dev) != minor) 362 return -EOVERFLOW; 363 } else { 364 dev = dm_get_dev_t(path); 365 if (!dev) 366 return -ENODEV; 367 } 368 369 dd = find_device(&t->devices, dev); 370 if (!dd) { 371 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 372 if (!dd) 373 return -ENOMEM; 374 375 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 376 kfree(dd); 377 return r; 378 } 379 380 refcount_set(&dd->count, 1); 381 list_add(&dd->list, &t->devices); 382 goto out; 383 384 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 385 r = upgrade_mode(dd, mode, t->md); 386 if (r) 387 return r; 388 } 389 refcount_inc(&dd->count); 390 out: 391 *result = dd->dm_dev; 392 return 0; 393 } 394 EXPORT_SYMBOL(dm_get_device); 395 396 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 397 sector_t start, sector_t len, void *data) 398 { 399 struct queue_limits *limits = data; 400 struct block_device *bdev = dev->bdev; 401 struct request_queue *q = bdev_get_queue(bdev); 402 403 if (unlikely(!q)) { 404 DMWARN("%s: Cannot set limits for nonexistent device %pg", 405 dm_device_name(ti->table->md), bdev); 406 return 0; 407 } 408 409 if (blk_stack_limits(limits, &q->limits, 410 get_start_sect(bdev) + start) < 0) 411 DMWARN("%s: adding target device %pg caused an alignment inconsistency: " 412 "physical_block_size=%u, logical_block_size=%u, " 413 "alignment_offset=%u, start=%llu", 414 dm_device_name(ti->table->md), bdev, 415 q->limits.physical_block_size, 416 q->limits.logical_block_size, 417 q->limits.alignment_offset, 418 (unsigned long long) start << SECTOR_SHIFT); 419 return 0; 420 } 421 422 /* 423 * Decrement a device's use count and remove it if necessary. 424 */ 425 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 426 { 427 int found = 0; 428 struct list_head *devices = &ti->table->devices; 429 struct dm_dev_internal *dd; 430 431 list_for_each_entry(dd, devices, list) { 432 if (dd->dm_dev == d) { 433 found = 1; 434 break; 435 } 436 } 437 if (!found) { 438 DMWARN("%s: device %s not in table devices list", 439 dm_device_name(ti->table->md), d->name); 440 return; 441 } 442 if (refcount_dec_and_test(&dd->count)) { 443 dm_put_table_device(ti->table->md, d); 444 list_del(&dd->list); 445 kfree(dd); 446 } 447 } 448 EXPORT_SYMBOL(dm_put_device); 449 450 /* 451 * Checks to see if the target joins onto the end of the table. 452 */ 453 static int adjoin(struct dm_table *table, struct dm_target *ti) 454 { 455 struct dm_target *prev; 456 457 if (!table->num_targets) 458 return !ti->begin; 459 460 prev = &table->targets[table->num_targets - 1]; 461 return (ti->begin == (prev->begin + prev->len)); 462 } 463 464 /* 465 * Used to dynamically allocate the arg array. 466 * 467 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 468 * process messages even if some device is suspended. These messages have a 469 * small fixed number of arguments. 470 * 471 * On the other hand, dm-switch needs to process bulk data using messages and 472 * excessive use of GFP_NOIO could cause trouble. 473 */ 474 static char **realloc_argv(unsigned *size, char **old_argv) 475 { 476 char **argv; 477 unsigned new_size; 478 gfp_t gfp; 479 480 if (*size) { 481 new_size = *size * 2; 482 gfp = GFP_KERNEL; 483 } else { 484 new_size = 8; 485 gfp = GFP_NOIO; 486 } 487 argv = kmalloc_array(new_size, sizeof(*argv), gfp); 488 if (argv && old_argv) { 489 memcpy(argv, old_argv, *size * sizeof(*argv)); 490 *size = new_size; 491 } 492 493 kfree(old_argv); 494 return argv; 495 } 496 497 /* 498 * Destructively splits up the argument list to pass to ctr. 499 */ 500 int dm_split_args(int *argc, char ***argvp, char *input) 501 { 502 char *start, *end = input, *out, **argv = NULL; 503 unsigned array_size = 0; 504 505 *argc = 0; 506 507 if (!input) { 508 *argvp = NULL; 509 return 0; 510 } 511 512 argv = realloc_argv(&array_size, argv); 513 if (!argv) 514 return -ENOMEM; 515 516 while (1) { 517 /* Skip whitespace */ 518 start = skip_spaces(end); 519 520 if (!*start) 521 break; /* success, we hit the end */ 522 523 /* 'out' is used to remove any back-quotes */ 524 end = out = start; 525 while (*end) { 526 /* Everything apart from '\0' can be quoted */ 527 if (*end == '\\' && *(end + 1)) { 528 *out++ = *(end + 1); 529 end += 2; 530 continue; 531 } 532 533 if (isspace(*end)) 534 break; /* end of token */ 535 536 *out++ = *end++; 537 } 538 539 /* have we already filled the array ? */ 540 if ((*argc + 1) > array_size) { 541 argv = realloc_argv(&array_size, argv); 542 if (!argv) 543 return -ENOMEM; 544 } 545 546 /* we know this is whitespace */ 547 if (*end) 548 end++; 549 550 /* terminate the string and put it in the array */ 551 *out = '\0'; 552 argv[*argc] = start; 553 (*argc)++; 554 } 555 556 *argvp = argv; 557 return 0; 558 } 559 560 /* 561 * Impose necessary and sufficient conditions on a devices's table such 562 * that any incoming bio which respects its logical_block_size can be 563 * processed successfully. If it falls across the boundary between 564 * two or more targets, the size of each piece it gets split into must 565 * be compatible with the logical_block_size of the target processing it. 566 */ 567 static int validate_hardware_logical_block_alignment(struct dm_table *table, 568 struct queue_limits *limits) 569 { 570 /* 571 * This function uses arithmetic modulo the logical_block_size 572 * (in units of 512-byte sectors). 573 */ 574 unsigned short device_logical_block_size_sects = 575 limits->logical_block_size >> SECTOR_SHIFT; 576 577 /* 578 * Offset of the start of the next table entry, mod logical_block_size. 579 */ 580 unsigned short next_target_start = 0; 581 582 /* 583 * Given an aligned bio that extends beyond the end of a 584 * target, how many sectors must the next target handle? 585 */ 586 unsigned short remaining = 0; 587 588 struct dm_target *ti; 589 struct queue_limits ti_limits; 590 unsigned i; 591 592 /* 593 * Check each entry in the table in turn. 594 */ 595 for (i = 0; i < dm_table_get_num_targets(table); i++) { 596 ti = dm_table_get_target(table, i); 597 598 blk_set_stacking_limits(&ti_limits); 599 600 /* combine all target devices' limits */ 601 if (ti->type->iterate_devices) 602 ti->type->iterate_devices(ti, dm_set_device_limits, 603 &ti_limits); 604 605 /* 606 * If the remaining sectors fall entirely within this 607 * table entry are they compatible with its logical_block_size? 608 */ 609 if (remaining < ti->len && 610 remaining & ((ti_limits.logical_block_size >> 611 SECTOR_SHIFT) - 1)) 612 break; /* Error */ 613 614 next_target_start = 615 (unsigned short) ((next_target_start + ti->len) & 616 (device_logical_block_size_sects - 1)); 617 remaining = next_target_start ? 618 device_logical_block_size_sects - next_target_start : 0; 619 } 620 621 if (remaining) { 622 DMWARN("%s: table line %u (start sect %llu len %llu) " 623 "not aligned to h/w logical block size %u", 624 dm_device_name(table->md), i, 625 (unsigned long long) ti->begin, 626 (unsigned long long) ti->len, 627 limits->logical_block_size); 628 return -EINVAL; 629 } 630 631 return 0; 632 } 633 634 int dm_table_add_target(struct dm_table *t, const char *type, 635 sector_t start, sector_t len, char *params) 636 { 637 int r = -EINVAL, argc; 638 char **argv; 639 struct dm_target *tgt; 640 641 if (t->singleton) { 642 DMERR("%s: target type %s must appear alone in table", 643 dm_device_name(t->md), t->targets->type->name); 644 return -EINVAL; 645 } 646 647 BUG_ON(t->num_targets >= t->num_allocated); 648 649 tgt = t->targets + t->num_targets; 650 memset(tgt, 0, sizeof(*tgt)); 651 652 if (!len) { 653 DMERR("%s: zero-length target", dm_device_name(t->md)); 654 return -EINVAL; 655 } 656 657 tgt->type = dm_get_target_type(type); 658 if (!tgt->type) { 659 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 660 return -EINVAL; 661 } 662 663 if (dm_target_needs_singleton(tgt->type)) { 664 if (t->num_targets) { 665 tgt->error = "singleton target type must appear alone in table"; 666 goto bad; 667 } 668 t->singleton = true; 669 } 670 671 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 672 tgt->error = "target type may not be included in a read-only table"; 673 goto bad; 674 } 675 676 if (t->immutable_target_type) { 677 if (t->immutable_target_type != tgt->type) { 678 tgt->error = "immutable target type cannot be mixed with other target types"; 679 goto bad; 680 } 681 } else if (dm_target_is_immutable(tgt->type)) { 682 if (t->num_targets) { 683 tgt->error = "immutable target type cannot be mixed with other target types"; 684 goto bad; 685 } 686 t->immutable_target_type = tgt->type; 687 } 688 689 if (dm_target_has_integrity(tgt->type)) 690 t->integrity_added = 1; 691 692 tgt->table = t; 693 tgt->begin = start; 694 tgt->len = len; 695 tgt->error = "Unknown error"; 696 697 /* 698 * Does this target adjoin the previous one ? 699 */ 700 if (!adjoin(t, tgt)) { 701 tgt->error = "Gap in table"; 702 goto bad; 703 } 704 705 r = dm_split_args(&argc, &argv, params); 706 if (r) { 707 tgt->error = "couldn't split parameters"; 708 goto bad; 709 } 710 711 r = tgt->type->ctr(tgt, argc, argv); 712 kfree(argv); 713 if (r) 714 goto bad; 715 716 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 717 718 if (!tgt->num_discard_bios && tgt->discards_supported) 719 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 720 dm_device_name(t->md), type); 721 722 if (tgt->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) 723 static_branch_enable(&swap_bios_enabled); 724 725 return 0; 726 727 bad: 728 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r)); 729 dm_put_target_type(tgt->type); 730 return r; 731 } 732 733 /* 734 * Target argument parsing helpers. 735 */ 736 static int validate_next_arg(const struct dm_arg *arg, 737 struct dm_arg_set *arg_set, 738 unsigned *value, char **error, unsigned grouped) 739 { 740 const char *arg_str = dm_shift_arg(arg_set); 741 char dummy; 742 743 if (!arg_str || 744 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 745 (*value < arg->min) || 746 (*value > arg->max) || 747 (grouped && arg_set->argc < *value)) { 748 *error = arg->error; 749 return -EINVAL; 750 } 751 752 return 0; 753 } 754 755 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, 756 unsigned *value, char **error) 757 { 758 return validate_next_arg(arg, arg_set, value, error, 0); 759 } 760 EXPORT_SYMBOL(dm_read_arg); 761 762 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, 763 unsigned *value, char **error) 764 { 765 return validate_next_arg(arg, arg_set, value, error, 1); 766 } 767 EXPORT_SYMBOL(dm_read_arg_group); 768 769 const char *dm_shift_arg(struct dm_arg_set *as) 770 { 771 char *r; 772 773 if (as->argc) { 774 as->argc--; 775 r = *as->argv; 776 as->argv++; 777 return r; 778 } 779 780 return NULL; 781 } 782 EXPORT_SYMBOL(dm_shift_arg); 783 784 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 785 { 786 BUG_ON(as->argc < num_args); 787 as->argc -= num_args; 788 as->argv += num_args; 789 } 790 EXPORT_SYMBOL(dm_consume_args); 791 792 static bool __table_type_bio_based(enum dm_queue_mode table_type) 793 { 794 return (table_type == DM_TYPE_BIO_BASED || 795 table_type == DM_TYPE_DAX_BIO_BASED); 796 } 797 798 static bool __table_type_request_based(enum dm_queue_mode table_type) 799 { 800 return table_type == DM_TYPE_REQUEST_BASED; 801 } 802 803 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 804 { 805 t->type = type; 806 } 807 EXPORT_SYMBOL_GPL(dm_table_set_type); 808 809 /* validate the dax capability of the target device span */ 810 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, 811 sector_t start, sector_t len, void *data) 812 { 813 if (dev->dax_dev) 814 return false; 815 816 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); 817 return true; 818 } 819 820 /* Check devices support synchronous DAX */ 821 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, 822 sector_t start, sector_t len, void *data) 823 { 824 return !dev->dax_dev || !dax_synchronous(dev->dax_dev); 825 } 826 827 static bool dm_table_supports_dax(struct dm_table *t, 828 iterate_devices_callout_fn iterate_fn) 829 { 830 struct dm_target *ti; 831 unsigned i; 832 833 /* Ensure that all targets support DAX. */ 834 for (i = 0; i < dm_table_get_num_targets(t); i++) { 835 ti = dm_table_get_target(t, i); 836 837 if (!ti->type->direct_access) 838 return false; 839 840 if (!ti->type->iterate_devices || 841 ti->type->iterate_devices(ti, iterate_fn, NULL)) 842 return false; 843 } 844 845 return true; 846 } 847 848 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, 849 sector_t start, sector_t len, void *data) 850 { 851 struct block_device *bdev = dev->bdev; 852 struct request_queue *q = bdev_get_queue(bdev); 853 854 /* request-based cannot stack on partitions! */ 855 if (bdev_is_partition(bdev)) 856 return false; 857 858 return queue_is_mq(q); 859 } 860 861 static int dm_table_determine_type(struct dm_table *t) 862 { 863 unsigned i; 864 unsigned bio_based = 0, request_based = 0, hybrid = 0; 865 struct dm_target *tgt; 866 struct list_head *devices = dm_table_get_devices(t); 867 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 868 869 if (t->type != DM_TYPE_NONE) { 870 /* target already set the table's type */ 871 if (t->type == DM_TYPE_BIO_BASED) { 872 /* possibly upgrade to a variant of bio-based */ 873 goto verify_bio_based; 874 } 875 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 876 goto verify_rq_based; 877 } 878 879 for (i = 0; i < t->num_targets; i++) { 880 tgt = t->targets + i; 881 if (dm_target_hybrid(tgt)) 882 hybrid = 1; 883 else if (dm_target_request_based(tgt)) 884 request_based = 1; 885 else 886 bio_based = 1; 887 888 if (bio_based && request_based) { 889 DMERR("Inconsistent table: different target types" 890 " can't be mixed up"); 891 return -EINVAL; 892 } 893 } 894 895 if (hybrid && !bio_based && !request_based) { 896 /* 897 * The targets can work either way. 898 * Determine the type from the live device. 899 * Default to bio-based if device is new. 900 */ 901 if (__table_type_request_based(live_md_type)) 902 request_based = 1; 903 else 904 bio_based = 1; 905 } 906 907 if (bio_based) { 908 verify_bio_based: 909 /* We must use this table as bio-based */ 910 t->type = DM_TYPE_BIO_BASED; 911 if (dm_table_supports_dax(t, device_not_dax_capable) || 912 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { 913 t->type = DM_TYPE_DAX_BIO_BASED; 914 } 915 return 0; 916 } 917 918 BUG_ON(!request_based); /* No targets in this table */ 919 920 t->type = DM_TYPE_REQUEST_BASED; 921 922 verify_rq_based: 923 /* 924 * Request-based dm supports only tables that have a single target now. 925 * To support multiple targets, request splitting support is needed, 926 * and that needs lots of changes in the block-layer. 927 * (e.g. request completion process for partial completion.) 928 */ 929 if (t->num_targets > 1) { 930 DMERR("request-based DM doesn't support multiple targets"); 931 return -EINVAL; 932 } 933 934 if (list_empty(devices)) { 935 int srcu_idx; 936 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 937 938 /* inherit live table's type */ 939 if (live_table) 940 t->type = live_table->type; 941 dm_put_live_table(t->md, srcu_idx); 942 return 0; 943 } 944 945 tgt = dm_table_get_immutable_target(t); 946 if (!tgt) { 947 DMERR("table load rejected: immutable target is required"); 948 return -EINVAL; 949 } else if (tgt->max_io_len) { 950 DMERR("table load rejected: immutable target that splits IO is not supported"); 951 return -EINVAL; 952 } 953 954 /* Non-request-stackable devices can't be used for request-based dm */ 955 if (!tgt->type->iterate_devices || 956 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) { 957 DMERR("table load rejected: including non-request-stackable devices"); 958 return -EINVAL; 959 } 960 961 return 0; 962 } 963 964 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 965 { 966 return t->type; 967 } 968 969 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 970 { 971 return t->immutable_target_type; 972 } 973 974 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 975 { 976 /* Immutable target is implicitly a singleton */ 977 if (t->num_targets > 1 || 978 !dm_target_is_immutable(t->targets[0].type)) 979 return NULL; 980 981 return t->targets; 982 } 983 984 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 985 { 986 struct dm_target *ti; 987 unsigned i; 988 989 for (i = 0; i < dm_table_get_num_targets(t); i++) { 990 ti = dm_table_get_target(t, i); 991 if (dm_target_is_wildcard(ti->type)) 992 return ti; 993 } 994 995 return NULL; 996 } 997 998 bool dm_table_bio_based(struct dm_table *t) 999 { 1000 return __table_type_bio_based(dm_table_get_type(t)); 1001 } 1002 1003 bool dm_table_request_based(struct dm_table *t) 1004 { 1005 return __table_type_request_based(dm_table_get_type(t)); 1006 } 1007 1008 static bool dm_table_supports_poll(struct dm_table *t); 1009 1010 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1011 { 1012 enum dm_queue_mode type = dm_table_get_type(t); 1013 unsigned per_io_data_size = 0; 1014 unsigned min_pool_size = 0; 1015 struct dm_target *ti; 1016 unsigned i; 1017 bool poll_supported = false; 1018 1019 if (unlikely(type == DM_TYPE_NONE)) { 1020 DMWARN("no table type is set, can't allocate mempools"); 1021 return -EINVAL; 1022 } 1023 1024 if (__table_type_bio_based(type)) { 1025 for (i = 0; i < t->num_targets; i++) { 1026 ti = t->targets + i; 1027 per_io_data_size = max(per_io_data_size, ti->per_io_data_size); 1028 min_pool_size = max(min_pool_size, ti->num_flush_bios); 1029 } 1030 poll_supported = dm_table_supports_poll(t); 1031 } 1032 1033 t->mempools = dm_alloc_md_mempools(md, type, per_io_data_size, min_pool_size, 1034 t->integrity_supported, poll_supported); 1035 if (!t->mempools) 1036 return -ENOMEM; 1037 1038 return 0; 1039 } 1040 1041 static int setup_indexes(struct dm_table *t) 1042 { 1043 int i; 1044 unsigned int total = 0; 1045 sector_t *indexes; 1046 1047 /* allocate the space for *all* the indexes */ 1048 for (i = t->depth - 2; i >= 0; i--) { 1049 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1050 total += t->counts[i]; 1051 } 1052 1053 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); 1054 if (!indexes) 1055 return -ENOMEM; 1056 1057 /* set up internal nodes, bottom-up */ 1058 for (i = t->depth - 2; i >= 0; i--) { 1059 t->index[i] = indexes; 1060 indexes += (KEYS_PER_NODE * t->counts[i]); 1061 setup_btree_index(i, t); 1062 } 1063 1064 return 0; 1065 } 1066 1067 /* 1068 * Builds the btree to index the map. 1069 */ 1070 static int dm_table_build_index(struct dm_table *t) 1071 { 1072 int r = 0; 1073 unsigned int leaf_nodes; 1074 1075 /* how many indexes will the btree have ? */ 1076 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1077 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1078 1079 /* leaf layer has already been set up */ 1080 t->counts[t->depth - 1] = leaf_nodes; 1081 t->index[t->depth - 1] = t->highs; 1082 1083 if (t->depth >= 2) 1084 r = setup_indexes(t); 1085 1086 return r; 1087 } 1088 1089 static bool integrity_profile_exists(struct gendisk *disk) 1090 { 1091 return !!blk_get_integrity(disk); 1092 } 1093 1094 /* 1095 * Get a disk whose integrity profile reflects the table's profile. 1096 * Returns NULL if integrity support was inconsistent or unavailable. 1097 */ 1098 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1099 { 1100 struct list_head *devices = dm_table_get_devices(t); 1101 struct dm_dev_internal *dd = NULL; 1102 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1103 unsigned i; 1104 1105 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1106 struct dm_target *ti = dm_table_get_target(t, i); 1107 if (!dm_target_passes_integrity(ti->type)) 1108 goto no_integrity; 1109 } 1110 1111 list_for_each_entry(dd, devices, list) { 1112 template_disk = dd->dm_dev->bdev->bd_disk; 1113 if (!integrity_profile_exists(template_disk)) 1114 goto no_integrity; 1115 else if (prev_disk && 1116 blk_integrity_compare(prev_disk, template_disk) < 0) 1117 goto no_integrity; 1118 prev_disk = template_disk; 1119 } 1120 1121 return template_disk; 1122 1123 no_integrity: 1124 if (prev_disk) 1125 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1126 dm_device_name(t->md), 1127 prev_disk->disk_name, 1128 template_disk->disk_name); 1129 return NULL; 1130 } 1131 1132 /* 1133 * Register the mapped device for blk_integrity support if the 1134 * underlying devices have an integrity profile. But all devices may 1135 * not have matching profiles (checking all devices isn't reliable 1136 * during table load because this table may use other DM device(s) which 1137 * must be resumed before they will have an initialized integity 1138 * profile). Consequently, stacked DM devices force a 2 stage integrity 1139 * profile validation: First pass during table load, final pass during 1140 * resume. 1141 */ 1142 static int dm_table_register_integrity(struct dm_table *t) 1143 { 1144 struct mapped_device *md = t->md; 1145 struct gendisk *template_disk = NULL; 1146 1147 /* If target handles integrity itself do not register it here. */ 1148 if (t->integrity_added) 1149 return 0; 1150 1151 template_disk = dm_table_get_integrity_disk(t); 1152 if (!template_disk) 1153 return 0; 1154 1155 if (!integrity_profile_exists(dm_disk(md))) { 1156 t->integrity_supported = true; 1157 /* 1158 * Register integrity profile during table load; we can do 1159 * this because the final profile must match during resume. 1160 */ 1161 blk_integrity_register(dm_disk(md), 1162 blk_get_integrity(template_disk)); 1163 return 0; 1164 } 1165 1166 /* 1167 * If DM device already has an initialized integrity 1168 * profile the new profile should not conflict. 1169 */ 1170 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1171 DMWARN("%s: conflict with existing integrity profile: " 1172 "%s profile mismatch", 1173 dm_device_name(t->md), 1174 template_disk->disk_name); 1175 return 1; 1176 } 1177 1178 /* Preserve existing integrity profile */ 1179 t->integrity_supported = true; 1180 return 0; 1181 } 1182 1183 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1184 1185 struct dm_crypto_profile { 1186 struct blk_crypto_profile profile; 1187 struct mapped_device *md; 1188 }; 1189 1190 struct dm_keyslot_evict_args { 1191 const struct blk_crypto_key *key; 1192 int err; 1193 }; 1194 1195 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, 1196 sector_t start, sector_t len, void *data) 1197 { 1198 struct dm_keyslot_evict_args *args = data; 1199 int err; 1200 1201 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key); 1202 if (!args->err) 1203 args->err = err; 1204 /* Always try to evict the key from all devices. */ 1205 return 0; 1206 } 1207 1208 /* 1209 * When an inline encryption key is evicted from a device-mapper device, evict 1210 * it from all the underlying devices. 1211 */ 1212 static int dm_keyslot_evict(struct blk_crypto_profile *profile, 1213 const struct blk_crypto_key *key, unsigned int slot) 1214 { 1215 struct mapped_device *md = 1216 container_of(profile, struct dm_crypto_profile, profile)->md; 1217 struct dm_keyslot_evict_args args = { key }; 1218 struct dm_table *t; 1219 int srcu_idx; 1220 int i; 1221 struct dm_target *ti; 1222 1223 t = dm_get_live_table(md, &srcu_idx); 1224 if (!t) 1225 return 0; 1226 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1227 ti = dm_table_get_target(t, i); 1228 if (!ti->type->iterate_devices) 1229 continue; 1230 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args); 1231 } 1232 dm_put_live_table(md, srcu_idx); 1233 return args.err; 1234 } 1235 1236 static int 1237 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, 1238 sector_t start, sector_t len, void *data) 1239 { 1240 struct blk_crypto_profile *parent = data; 1241 struct blk_crypto_profile *child = 1242 bdev_get_queue(dev->bdev)->crypto_profile; 1243 1244 blk_crypto_intersect_capabilities(parent, child); 1245 return 0; 1246 } 1247 1248 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1249 { 1250 struct dm_crypto_profile *dmcp = container_of(profile, 1251 struct dm_crypto_profile, 1252 profile); 1253 1254 if (!profile) 1255 return; 1256 1257 blk_crypto_profile_destroy(profile); 1258 kfree(dmcp); 1259 } 1260 1261 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1262 { 1263 dm_destroy_crypto_profile(t->crypto_profile); 1264 t->crypto_profile = NULL; 1265 } 1266 1267 /* 1268 * Constructs and initializes t->crypto_profile with a crypto profile that 1269 * represents the common set of crypto capabilities of the devices described by 1270 * the dm_table. However, if the constructed crypto profile doesn't support all 1271 * crypto capabilities that are supported by the current mapped_device, it 1272 * returns an error instead, since we don't support removing crypto capabilities 1273 * on table changes. Finally, if the constructed crypto profile is "empty" (has 1274 * no crypto capabilities at all), it just sets t->crypto_profile to NULL. 1275 */ 1276 static int dm_table_construct_crypto_profile(struct dm_table *t) 1277 { 1278 struct dm_crypto_profile *dmcp; 1279 struct blk_crypto_profile *profile; 1280 struct dm_target *ti; 1281 unsigned int i; 1282 bool empty_profile = true; 1283 1284 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); 1285 if (!dmcp) 1286 return -ENOMEM; 1287 dmcp->md = t->md; 1288 1289 profile = &dmcp->profile; 1290 blk_crypto_profile_init(profile, 0); 1291 profile->ll_ops.keyslot_evict = dm_keyslot_evict; 1292 profile->max_dun_bytes_supported = UINT_MAX; 1293 memset(profile->modes_supported, 0xFF, 1294 sizeof(profile->modes_supported)); 1295 1296 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1297 ti = dm_table_get_target(t, i); 1298 1299 if (!dm_target_passes_crypto(ti->type)) { 1300 blk_crypto_intersect_capabilities(profile, NULL); 1301 break; 1302 } 1303 if (!ti->type->iterate_devices) 1304 continue; 1305 ti->type->iterate_devices(ti, 1306 device_intersect_crypto_capabilities, 1307 profile); 1308 } 1309 1310 if (t->md->queue && 1311 !blk_crypto_has_capabilities(profile, 1312 t->md->queue->crypto_profile)) { 1313 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); 1314 dm_destroy_crypto_profile(profile); 1315 return -EINVAL; 1316 } 1317 1318 /* 1319 * If the new profile doesn't actually support any crypto capabilities, 1320 * we may as well represent it with a NULL profile. 1321 */ 1322 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { 1323 if (profile->modes_supported[i]) { 1324 empty_profile = false; 1325 break; 1326 } 1327 } 1328 1329 if (empty_profile) { 1330 dm_destroy_crypto_profile(profile); 1331 profile = NULL; 1332 } 1333 1334 /* 1335 * t->crypto_profile is only set temporarily while the table is being 1336 * set up, and it gets set to NULL after the profile has been 1337 * transferred to the request_queue. 1338 */ 1339 t->crypto_profile = profile; 1340 1341 return 0; 1342 } 1343 1344 static void dm_update_crypto_profile(struct request_queue *q, 1345 struct dm_table *t) 1346 { 1347 if (!t->crypto_profile) 1348 return; 1349 1350 /* Make the crypto profile less restrictive. */ 1351 if (!q->crypto_profile) { 1352 blk_crypto_register(t->crypto_profile, q); 1353 } else { 1354 blk_crypto_update_capabilities(q->crypto_profile, 1355 t->crypto_profile); 1356 dm_destroy_crypto_profile(t->crypto_profile); 1357 } 1358 t->crypto_profile = NULL; 1359 } 1360 1361 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1362 1363 static int dm_table_construct_crypto_profile(struct dm_table *t) 1364 { 1365 return 0; 1366 } 1367 1368 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) 1369 { 1370 } 1371 1372 static void dm_table_destroy_crypto_profile(struct dm_table *t) 1373 { 1374 } 1375 1376 static void dm_update_crypto_profile(struct request_queue *q, 1377 struct dm_table *t) 1378 { 1379 } 1380 1381 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 1382 1383 /* 1384 * Prepares the table for use by building the indices, 1385 * setting the type, and allocating mempools. 1386 */ 1387 int dm_table_complete(struct dm_table *t) 1388 { 1389 int r; 1390 1391 r = dm_table_determine_type(t); 1392 if (r) { 1393 DMERR("unable to determine table type"); 1394 return r; 1395 } 1396 1397 r = dm_table_build_index(t); 1398 if (r) { 1399 DMERR("unable to build btrees"); 1400 return r; 1401 } 1402 1403 r = dm_table_register_integrity(t); 1404 if (r) { 1405 DMERR("could not register integrity profile."); 1406 return r; 1407 } 1408 1409 r = dm_table_construct_crypto_profile(t); 1410 if (r) { 1411 DMERR("could not construct crypto profile."); 1412 return r; 1413 } 1414 1415 r = dm_table_alloc_md_mempools(t, t->md); 1416 if (r) 1417 DMERR("unable to allocate mempools"); 1418 1419 return r; 1420 } 1421 1422 static DEFINE_MUTEX(_event_lock); 1423 void dm_table_event_callback(struct dm_table *t, 1424 void (*fn)(void *), void *context) 1425 { 1426 mutex_lock(&_event_lock); 1427 t->event_fn = fn; 1428 t->event_context = context; 1429 mutex_unlock(&_event_lock); 1430 } 1431 1432 void dm_table_event(struct dm_table *t) 1433 { 1434 mutex_lock(&_event_lock); 1435 if (t->event_fn) 1436 t->event_fn(t->event_context); 1437 mutex_unlock(&_event_lock); 1438 } 1439 EXPORT_SYMBOL(dm_table_event); 1440 1441 inline sector_t dm_table_get_size(struct dm_table *t) 1442 { 1443 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1444 } 1445 EXPORT_SYMBOL(dm_table_get_size); 1446 1447 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1448 { 1449 if (index >= t->num_targets) 1450 return NULL; 1451 1452 return t->targets + index; 1453 } 1454 1455 /* 1456 * Search the btree for the correct target. 1457 * 1458 * Caller should check returned pointer for NULL 1459 * to trap I/O beyond end of device. 1460 */ 1461 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1462 { 1463 unsigned int l, n = 0, k = 0; 1464 sector_t *node; 1465 1466 if (unlikely(sector >= dm_table_get_size(t))) 1467 return NULL; 1468 1469 for (l = 0; l < t->depth; l++) { 1470 n = get_child(n, k); 1471 node = get_node(t, l, n); 1472 1473 for (k = 0; k < KEYS_PER_NODE; k++) 1474 if (node[k] >= sector) 1475 break; 1476 } 1477 1478 return &t->targets[(KEYS_PER_NODE * n) + k]; 1479 } 1480 1481 static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev, 1482 sector_t start, sector_t len, void *data) 1483 { 1484 struct request_queue *q = bdev_get_queue(dev->bdev); 1485 1486 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags); 1487 } 1488 1489 /* 1490 * type->iterate_devices() should be called when the sanity check needs to 1491 * iterate and check all underlying data devices. iterate_devices() will 1492 * iterate all underlying data devices until it encounters a non-zero return 1493 * code, returned by whether the input iterate_devices_callout_fn, or 1494 * iterate_devices() itself internally. 1495 * 1496 * For some target type (e.g. dm-stripe), one call of iterate_devices() may 1497 * iterate multiple underlying devices internally, in which case a non-zero 1498 * return code returned by iterate_devices_callout_fn will stop the iteration 1499 * in advance. 1500 * 1501 * Cases requiring _any_ underlying device supporting some kind of attribute, 1502 * should use the iteration structure like dm_table_any_dev_attr(), or call 1503 * it directly. @func should handle semantics of positive examples, e.g. 1504 * capable of something. 1505 * 1506 * Cases requiring _all_ underlying devices supporting some kind of attribute, 1507 * should use the iteration structure like dm_table_supports_nowait() or 1508 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that 1509 * uses an @anti_func that handle semantics of counter examples, e.g. not 1510 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); 1511 */ 1512 static bool dm_table_any_dev_attr(struct dm_table *t, 1513 iterate_devices_callout_fn func, void *data) 1514 { 1515 struct dm_target *ti; 1516 unsigned int i; 1517 1518 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1519 ti = dm_table_get_target(t, i); 1520 1521 if (ti->type->iterate_devices && 1522 ti->type->iterate_devices(ti, func, data)) 1523 return true; 1524 } 1525 1526 return false; 1527 } 1528 1529 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1530 sector_t start, sector_t len, void *data) 1531 { 1532 unsigned *num_devices = data; 1533 1534 (*num_devices)++; 1535 1536 return 0; 1537 } 1538 1539 static bool dm_table_supports_poll(struct dm_table *t) 1540 { 1541 struct dm_target *ti; 1542 unsigned i = 0; 1543 1544 while (i < dm_table_get_num_targets(t)) { 1545 ti = dm_table_get_target(t, i++); 1546 1547 if (!ti->type->iterate_devices || 1548 ti->type->iterate_devices(ti, device_not_poll_capable, NULL)) 1549 return false; 1550 } 1551 1552 return true; 1553 } 1554 1555 /* 1556 * Check whether a table has no data devices attached using each 1557 * target's iterate_devices method. 1558 * Returns false if the result is unknown because a target doesn't 1559 * support iterate_devices. 1560 */ 1561 bool dm_table_has_no_data_devices(struct dm_table *table) 1562 { 1563 struct dm_target *ti; 1564 unsigned i, num_devices; 1565 1566 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1567 ti = dm_table_get_target(table, i); 1568 1569 if (!ti->type->iterate_devices) 1570 return false; 1571 1572 num_devices = 0; 1573 ti->type->iterate_devices(ti, count_device, &num_devices); 1574 if (num_devices) 1575 return false; 1576 } 1577 1578 return true; 1579 } 1580 1581 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev, 1582 sector_t start, sector_t len, void *data) 1583 { 1584 struct request_queue *q = bdev_get_queue(dev->bdev); 1585 enum blk_zoned_model *zoned_model = data; 1586 1587 return blk_queue_zoned_model(q) != *zoned_model; 1588 } 1589 1590 /* 1591 * Check the device zoned model based on the target feature flag. If the target 1592 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are 1593 * also accepted but all devices must have the same zoned model. If the target 1594 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any 1595 * zoned model with all zoned devices having the same zone size. 1596 */ 1597 static bool dm_table_supports_zoned_model(struct dm_table *t, 1598 enum blk_zoned_model zoned_model) 1599 { 1600 struct dm_target *ti; 1601 unsigned i; 1602 1603 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1604 ti = dm_table_get_target(t, i); 1605 1606 if (dm_target_supports_zoned_hm(ti->type)) { 1607 if (!ti->type->iterate_devices || 1608 ti->type->iterate_devices(ti, device_not_zoned_model, 1609 &zoned_model)) 1610 return false; 1611 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { 1612 if (zoned_model == BLK_ZONED_HM) 1613 return false; 1614 } 1615 } 1616 1617 return true; 1618 } 1619 1620 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, 1621 sector_t start, sector_t len, void *data) 1622 { 1623 struct request_queue *q = bdev_get_queue(dev->bdev); 1624 unsigned int *zone_sectors = data; 1625 1626 if (!blk_queue_is_zoned(q)) 1627 return 0; 1628 1629 return blk_queue_zone_sectors(q) != *zone_sectors; 1630 } 1631 1632 /* 1633 * Check consistency of zoned model and zone sectors across all targets. For 1634 * zone sectors, if the destination device is a zoned block device, it shall 1635 * have the specified zone_sectors. 1636 */ 1637 static int validate_hardware_zoned_model(struct dm_table *table, 1638 enum blk_zoned_model zoned_model, 1639 unsigned int zone_sectors) 1640 { 1641 if (zoned_model == BLK_ZONED_NONE) 1642 return 0; 1643 1644 if (!dm_table_supports_zoned_model(table, zoned_model)) { 1645 DMERR("%s: zoned model is not consistent across all devices", 1646 dm_device_name(table->md)); 1647 return -EINVAL; 1648 } 1649 1650 /* Check zone size validity and compatibility */ 1651 if (!zone_sectors || !is_power_of_2(zone_sectors)) 1652 return -EINVAL; 1653 1654 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) { 1655 DMERR("%s: zone sectors is not consistent across all zoned devices", 1656 dm_device_name(table->md)); 1657 return -EINVAL; 1658 } 1659 1660 return 0; 1661 } 1662 1663 /* 1664 * Establish the new table's queue_limits and validate them. 1665 */ 1666 int dm_calculate_queue_limits(struct dm_table *table, 1667 struct queue_limits *limits) 1668 { 1669 struct dm_target *ti; 1670 struct queue_limits ti_limits; 1671 unsigned i; 1672 enum blk_zoned_model zoned_model = BLK_ZONED_NONE; 1673 unsigned int zone_sectors = 0; 1674 1675 blk_set_stacking_limits(limits); 1676 1677 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1678 blk_set_stacking_limits(&ti_limits); 1679 1680 ti = dm_table_get_target(table, i); 1681 1682 if (!ti->type->iterate_devices) 1683 goto combine_limits; 1684 1685 /* 1686 * Combine queue limits of all the devices this target uses. 1687 */ 1688 ti->type->iterate_devices(ti, dm_set_device_limits, 1689 &ti_limits); 1690 1691 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) { 1692 /* 1693 * After stacking all limits, validate all devices 1694 * in table support this zoned model and zone sectors. 1695 */ 1696 zoned_model = ti_limits.zoned; 1697 zone_sectors = ti_limits.chunk_sectors; 1698 } 1699 1700 /* Set I/O hints portion of queue limits */ 1701 if (ti->type->io_hints) 1702 ti->type->io_hints(ti, &ti_limits); 1703 1704 /* 1705 * Check each device area is consistent with the target's 1706 * overall queue limits. 1707 */ 1708 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1709 &ti_limits)) 1710 return -EINVAL; 1711 1712 combine_limits: 1713 /* 1714 * Merge this target's queue limits into the overall limits 1715 * for the table. 1716 */ 1717 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1718 DMWARN("%s: adding target device " 1719 "(start sect %llu len %llu) " 1720 "caused an alignment inconsistency", 1721 dm_device_name(table->md), 1722 (unsigned long long) ti->begin, 1723 (unsigned long long) ti->len); 1724 } 1725 1726 /* 1727 * Verify that the zoned model and zone sectors, as determined before 1728 * any .io_hints override, are the same across all devices in the table. 1729 * - this is especially relevant if .io_hints is emulating a disk-managed 1730 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices. 1731 * BUT... 1732 */ 1733 if (limits->zoned != BLK_ZONED_NONE) { 1734 /* 1735 * ...IF the above limits stacking determined a zoned model 1736 * validate that all of the table's devices conform to it. 1737 */ 1738 zoned_model = limits->zoned; 1739 zone_sectors = limits->chunk_sectors; 1740 } 1741 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors)) 1742 return -EINVAL; 1743 1744 return validate_hardware_logical_block_alignment(table, limits); 1745 } 1746 1747 /* 1748 * Verify that all devices have an integrity profile that matches the 1749 * DM device's registered integrity profile. If the profiles don't 1750 * match then unregister the DM device's integrity profile. 1751 */ 1752 static void dm_table_verify_integrity(struct dm_table *t) 1753 { 1754 struct gendisk *template_disk = NULL; 1755 1756 if (t->integrity_added) 1757 return; 1758 1759 if (t->integrity_supported) { 1760 /* 1761 * Verify that the original integrity profile 1762 * matches all the devices in this table. 1763 */ 1764 template_disk = dm_table_get_integrity_disk(t); 1765 if (template_disk && 1766 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1767 return; 1768 } 1769 1770 if (integrity_profile_exists(dm_disk(t->md))) { 1771 DMWARN("%s: unable to establish an integrity profile", 1772 dm_device_name(t->md)); 1773 blk_integrity_unregister(dm_disk(t->md)); 1774 } 1775 } 1776 1777 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1778 sector_t start, sector_t len, void *data) 1779 { 1780 unsigned long flush = (unsigned long) data; 1781 struct request_queue *q = bdev_get_queue(dev->bdev); 1782 1783 return (q->queue_flags & flush); 1784 } 1785 1786 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1787 { 1788 struct dm_target *ti; 1789 unsigned i; 1790 1791 /* 1792 * Require at least one underlying device to support flushes. 1793 * t->devices includes internal dm devices such as mirror logs 1794 * so we need to use iterate_devices here, which targets 1795 * supporting flushes must provide. 1796 */ 1797 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1798 ti = dm_table_get_target(t, i); 1799 1800 if (!ti->num_flush_bios) 1801 continue; 1802 1803 if (ti->flush_supported) 1804 return true; 1805 1806 if (ti->type->iterate_devices && 1807 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1808 return true; 1809 } 1810 1811 return false; 1812 } 1813 1814 static int device_dax_write_cache_enabled(struct dm_target *ti, 1815 struct dm_dev *dev, sector_t start, 1816 sector_t len, void *data) 1817 { 1818 struct dax_device *dax_dev = dev->dax_dev; 1819 1820 if (!dax_dev) 1821 return false; 1822 1823 if (dax_write_cache_enabled(dax_dev)) 1824 return true; 1825 return false; 1826 } 1827 1828 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, 1829 sector_t start, sector_t len, void *data) 1830 { 1831 return !bdev_nonrot(dev->bdev); 1832 } 1833 1834 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1835 sector_t start, sector_t len, void *data) 1836 { 1837 struct request_queue *q = bdev_get_queue(dev->bdev); 1838 1839 return !blk_queue_add_random(q); 1840 } 1841 1842 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1843 sector_t start, sector_t len, void *data) 1844 { 1845 struct request_queue *q = bdev_get_queue(dev->bdev); 1846 1847 return !q->limits.max_write_zeroes_sectors; 1848 } 1849 1850 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1851 { 1852 struct dm_target *ti; 1853 unsigned i = 0; 1854 1855 while (i < dm_table_get_num_targets(t)) { 1856 ti = dm_table_get_target(t, i++); 1857 1858 if (!ti->num_write_zeroes_bios) 1859 return false; 1860 1861 if (!ti->type->iterate_devices || 1862 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1863 return false; 1864 } 1865 1866 return true; 1867 } 1868 1869 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, 1870 sector_t start, sector_t len, void *data) 1871 { 1872 struct request_queue *q = bdev_get_queue(dev->bdev); 1873 1874 return !blk_queue_nowait(q); 1875 } 1876 1877 static bool dm_table_supports_nowait(struct dm_table *t) 1878 { 1879 struct dm_target *ti; 1880 unsigned i = 0; 1881 1882 while (i < dm_table_get_num_targets(t)) { 1883 ti = dm_table_get_target(t, i++); 1884 1885 if (!dm_target_supports_nowait(ti->type)) 1886 return false; 1887 1888 if (!ti->type->iterate_devices || 1889 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) 1890 return false; 1891 } 1892 1893 return true; 1894 } 1895 1896 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1897 sector_t start, sector_t len, void *data) 1898 { 1899 return !bdev_max_discard_sectors(dev->bdev); 1900 } 1901 1902 static bool dm_table_supports_discards(struct dm_table *t) 1903 { 1904 struct dm_target *ti; 1905 unsigned i; 1906 1907 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1908 ti = dm_table_get_target(t, i); 1909 1910 if (!ti->num_discard_bios) 1911 return false; 1912 1913 /* 1914 * Either the target provides discard support (as implied by setting 1915 * 'discards_supported') or it relies on _all_ data devices having 1916 * discard support. 1917 */ 1918 if (!ti->discards_supported && 1919 (!ti->type->iterate_devices || 1920 ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) 1921 return false; 1922 } 1923 1924 return true; 1925 } 1926 1927 static int device_not_secure_erase_capable(struct dm_target *ti, 1928 struct dm_dev *dev, sector_t start, 1929 sector_t len, void *data) 1930 { 1931 return !bdev_max_secure_erase_sectors(dev->bdev); 1932 } 1933 1934 static bool dm_table_supports_secure_erase(struct dm_table *t) 1935 { 1936 struct dm_target *ti; 1937 unsigned int i; 1938 1939 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1940 ti = dm_table_get_target(t, i); 1941 1942 if (!ti->num_secure_erase_bios) 1943 return false; 1944 1945 if (!ti->type->iterate_devices || 1946 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) 1947 return false; 1948 } 1949 1950 return true; 1951 } 1952 1953 static int device_requires_stable_pages(struct dm_target *ti, 1954 struct dm_dev *dev, sector_t start, 1955 sector_t len, void *data) 1956 { 1957 return bdev_stable_writes(dev->bdev); 1958 } 1959 1960 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1961 struct queue_limits *limits) 1962 { 1963 bool wc = false, fua = false; 1964 int r; 1965 1966 /* 1967 * Copy table's limits to the DM device's request_queue 1968 */ 1969 q->limits = *limits; 1970 1971 if (dm_table_supports_nowait(t)) 1972 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); 1973 else 1974 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); 1975 1976 if (!dm_table_supports_discards(t)) { 1977 q->limits.max_discard_sectors = 0; 1978 q->limits.max_hw_discard_sectors = 0; 1979 q->limits.discard_granularity = 0; 1980 q->limits.discard_alignment = 0; 1981 q->limits.discard_misaligned = 0; 1982 } 1983 1984 if (!dm_table_supports_secure_erase(t)) 1985 q->limits.max_secure_erase_sectors = 0; 1986 1987 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1988 wc = true; 1989 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1990 fua = true; 1991 } 1992 blk_queue_write_cache(q, wc, fua); 1993 1994 if (dm_table_supports_dax(t, device_not_dax_capable)) { 1995 blk_queue_flag_set(QUEUE_FLAG_DAX, q); 1996 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) 1997 set_dax_synchronous(t->md->dax_dev); 1998 } 1999 else 2000 blk_queue_flag_clear(QUEUE_FLAG_DAX, q); 2001 2002 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) 2003 dax_write_cache(t->md->dax_dev, true); 2004 2005 /* Ensure that all underlying devices are non-rotational. */ 2006 if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) 2007 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 2008 else 2009 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2010 2011 if (!dm_table_supports_write_zeroes(t)) 2012 q->limits.max_write_zeroes_sectors = 0; 2013 2014 dm_table_verify_integrity(t); 2015 2016 /* 2017 * Some devices don't use blk_integrity but still want stable pages 2018 * because they do their own checksumming. 2019 * If any underlying device requires stable pages, a table must require 2020 * them as well. Only targets that support iterate_devices are considered: 2021 * don't want error, zero, etc to require stable pages. 2022 */ 2023 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) 2024 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); 2025 else 2026 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); 2027 2028 /* 2029 * Determine whether or not this queue's I/O timings contribute 2030 * to the entropy pool, Only request-based targets use this. 2031 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 2032 * have it set. 2033 */ 2034 if (blk_queue_add_random(q) && 2035 dm_table_any_dev_attr(t, device_is_not_random, NULL)) 2036 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2037 2038 /* 2039 * For a zoned target, setup the zones related queue attributes 2040 * and resources necessary for zone append emulation if necessary. 2041 */ 2042 if (blk_queue_is_zoned(q)) { 2043 r = dm_set_zones_restrictions(t, q); 2044 if (r) 2045 return r; 2046 if (!static_key_enabled(&zoned_enabled.key)) 2047 static_branch_enable(&zoned_enabled); 2048 } 2049 2050 dm_update_crypto_profile(q, t); 2051 disk_update_readahead(t->md->disk); 2052 2053 /* 2054 * Check for request-based device is left to 2055 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue(). 2056 * 2057 * For bio-based device, only set QUEUE_FLAG_POLL when all 2058 * underlying devices supporting polling. 2059 */ 2060 if (__table_type_bio_based(t->type)) { 2061 if (dm_table_supports_poll(t)) 2062 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2063 else 2064 blk_queue_flag_clear(QUEUE_FLAG_POLL, q); 2065 } 2066 2067 return 0; 2068 } 2069 2070 unsigned int dm_table_get_num_targets(struct dm_table *t) 2071 { 2072 return t->num_targets; 2073 } 2074 2075 struct list_head *dm_table_get_devices(struct dm_table *t) 2076 { 2077 return &t->devices; 2078 } 2079 2080 fmode_t dm_table_get_mode(struct dm_table *t) 2081 { 2082 return t->mode; 2083 } 2084 EXPORT_SYMBOL(dm_table_get_mode); 2085 2086 enum suspend_mode { 2087 PRESUSPEND, 2088 PRESUSPEND_UNDO, 2089 POSTSUSPEND, 2090 }; 2091 2092 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 2093 { 2094 int i = t->num_targets; 2095 struct dm_target *ti = t->targets; 2096 2097 lockdep_assert_held(&t->md->suspend_lock); 2098 2099 while (i--) { 2100 switch (mode) { 2101 case PRESUSPEND: 2102 if (ti->type->presuspend) 2103 ti->type->presuspend(ti); 2104 break; 2105 case PRESUSPEND_UNDO: 2106 if (ti->type->presuspend_undo) 2107 ti->type->presuspend_undo(ti); 2108 break; 2109 case POSTSUSPEND: 2110 if (ti->type->postsuspend) 2111 ti->type->postsuspend(ti); 2112 break; 2113 } 2114 ti++; 2115 } 2116 } 2117 2118 void dm_table_presuspend_targets(struct dm_table *t) 2119 { 2120 if (!t) 2121 return; 2122 2123 suspend_targets(t, PRESUSPEND); 2124 } 2125 2126 void dm_table_presuspend_undo_targets(struct dm_table *t) 2127 { 2128 if (!t) 2129 return; 2130 2131 suspend_targets(t, PRESUSPEND_UNDO); 2132 } 2133 2134 void dm_table_postsuspend_targets(struct dm_table *t) 2135 { 2136 if (!t) 2137 return; 2138 2139 suspend_targets(t, POSTSUSPEND); 2140 } 2141 2142 int dm_table_resume_targets(struct dm_table *t) 2143 { 2144 int i, r = 0; 2145 2146 lockdep_assert_held(&t->md->suspend_lock); 2147 2148 for (i = 0; i < t->num_targets; i++) { 2149 struct dm_target *ti = t->targets + i; 2150 2151 if (!ti->type->preresume) 2152 continue; 2153 2154 r = ti->type->preresume(ti); 2155 if (r) { 2156 DMERR("%s: %s: preresume failed, error = %d", 2157 dm_device_name(t->md), ti->type->name, r); 2158 return r; 2159 } 2160 } 2161 2162 for (i = 0; i < t->num_targets; i++) { 2163 struct dm_target *ti = t->targets + i; 2164 2165 if (ti->type->resume) 2166 ti->type->resume(ti); 2167 } 2168 2169 return 0; 2170 } 2171 2172 struct mapped_device *dm_table_get_md(struct dm_table *t) 2173 { 2174 return t->md; 2175 } 2176 EXPORT_SYMBOL(dm_table_get_md); 2177 2178 const char *dm_table_device_name(struct dm_table *t) 2179 { 2180 return dm_device_name(t->md); 2181 } 2182 EXPORT_SYMBOL_GPL(dm_table_device_name); 2183 2184 void dm_table_run_md_queue_async(struct dm_table *t) 2185 { 2186 if (!dm_table_request_based(t)) 2187 return; 2188 2189 if (t->md->queue) 2190 blk_mq_run_hw_queues(t->md->queue, true); 2191 } 2192 EXPORT_SYMBOL(dm_table_run_md_queue_async); 2193 2194