xref: /openbmc/linux/drivers/md/dm-table.c (revision bc5aa3a0)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 
24 #define DM_MSG_PREFIX "table"
25 
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 struct dm_table {
32 	struct mapped_device *md;
33 	unsigned type;
34 
35 	/* btree table */
36 	unsigned int depth;
37 	unsigned int counts[MAX_DEPTH];	/* in nodes */
38 	sector_t *index[MAX_DEPTH];
39 
40 	unsigned int num_targets;
41 	unsigned int num_allocated;
42 	sector_t *highs;
43 	struct dm_target *targets;
44 
45 	struct target_type *immutable_target_type;
46 
47 	bool integrity_supported:1;
48 	bool singleton:1;
49 	bool all_blk_mq:1;
50 
51 	/*
52 	 * Indicates the rw permissions for the new logical
53 	 * device.  This should be a combination of FMODE_READ
54 	 * and FMODE_WRITE.
55 	 */
56 	fmode_t mode;
57 
58 	/* a list of devices used by this table */
59 	struct list_head devices;
60 
61 	/* events get handed up using this callback */
62 	void (*event_fn)(void *);
63 	void *event_context;
64 
65 	struct dm_md_mempools *mempools;
66 
67 	struct list_head target_callbacks;
68 };
69 
70 /*
71  * Similar to ceiling(log_size(n))
72  */
73 static unsigned int int_log(unsigned int n, unsigned int base)
74 {
75 	int result = 0;
76 
77 	while (n > 1) {
78 		n = dm_div_up(n, base);
79 		result++;
80 	}
81 
82 	return result;
83 }
84 
85 /*
86  * Calculate the index of the child node of the n'th node k'th key.
87  */
88 static inline unsigned int get_child(unsigned int n, unsigned int k)
89 {
90 	return (n * CHILDREN_PER_NODE) + k;
91 }
92 
93 /*
94  * Return the n'th node of level l from table t.
95  */
96 static inline sector_t *get_node(struct dm_table *t,
97 				 unsigned int l, unsigned int n)
98 {
99 	return t->index[l] + (n * KEYS_PER_NODE);
100 }
101 
102 /*
103  * Return the highest key that you could lookup from the n'th
104  * node on level l of the btree.
105  */
106 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
107 {
108 	for (; l < t->depth - 1; l++)
109 		n = get_child(n, CHILDREN_PER_NODE - 1);
110 
111 	if (n >= t->counts[l])
112 		return (sector_t) - 1;
113 
114 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
115 }
116 
117 /*
118  * Fills in a level of the btree based on the highs of the level
119  * below it.
120  */
121 static int setup_btree_index(unsigned int l, struct dm_table *t)
122 {
123 	unsigned int n, k;
124 	sector_t *node;
125 
126 	for (n = 0U; n < t->counts[l]; n++) {
127 		node = get_node(t, l, n);
128 
129 		for (k = 0U; k < KEYS_PER_NODE; k++)
130 			node[k] = high(t, l + 1, get_child(n, k));
131 	}
132 
133 	return 0;
134 }
135 
136 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
137 {
138 	unsigned long size;
139 	void *addr;
140 
141 	/*
142 	 * Check that we're not going to overflow.
143 	 */
144 	if (nmemb > (ULONG_MAX / elem_size))
145 		return NULL;
146 
147 	size = nmemb * elem_size;
148 	addr = vzalloc(size);
149 
150 	return addr;
151 }
152 EXPORT_SYMBOL(dm_vcalloc);
153 
154 /*
155  * highs, and targets are managed as dynamic arrays during a
156  * table load.
157  */
158 static int alloc_targets(struct dm_table *t, unsigned int num)
159 {
160 	sector_t *n_highs;
161 	struct dm_target *n_targets;
162 
163 	/*
164 	 * Allocate both the target array and offset array at once.
165 	 * Append an empty entry to catch sectors beyond the end of
166 	 * the device.
167 	 */
168 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
169 					  sizeof(sector_t));
170 	if (!n_highs)
171 		return -ENOMEM;
172 
173 	n_targets = (struct dm_target *) (n_highs + num);
174 
175 	memset(n_highs, -1, sizeof(*n_highs) * num);
176 	vfree(t->highs);
177 
178 	t->num_allocated = num;
179 	t->highs = n_highs;
180 	t->targets = n_targets;
181 
182 	return 0;
183 }
184 
185 int dm_table_create(struct dm_table **result, fmode_t mode,
186 		    unsigned num_targets, struct mapped_device *md)
187 {
188 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
189 
190 	if (!t)
191 		return -ENOMEM;
192 
193 	INIT_LIST_HEAD(&t->devices);
194 	INIT_LIST_HEAD(&t->target_callbacks);
195 
196 	if (!num_targets)
197 		num_targets = KEYS_PER_NODE;
198 
199 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
200 
201 	if (!num_targets) {
202 		kfree(t);
203 		return -ENOMEM;
204 	}
205 
206 	if (alloc_targets(t, num_targets)) {
207 		kfree(t);
208 		return -ENOMEM;
209 	}
210 
211 	t->type = DM_TYPE_NONE;
212 	t->mode = mode;
213 	t->md = md;
214 	*result = t;
215 	return 0;
216 }
217 
218 static void free_devices(struct list_head *devices, struct mapped_device *md)
219 {
220 	struct list_head *tmp, *next;
221 
222 	list_for_each_safe(tmp, next, devices) {
223 		struct dm_dev_internal *dd =
224 		    list_entry(tmp, struct dm_dev_internal, list);
225 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
226 		       dm_device_name(md), dd->dm_dev->name);
227 		dm_put_table_device(md, dd->dm_dev);
228 		kfree(dd);
229 	}
230 }
231 
232 void dm_table_destroy(struct dm_table *t)
233 {
234 	unsigned int i;
235 
236 	if (!t)
237 		return;
238 
239 	/* free the indexes */
240 	if (t->depth >= 2)
241 		vfree(t->index[t->depth - 2]);
242 
243 	/* free the targets */
244 	for (i = 0; i < t->num_targets; i++) {
245 		struct dm_target *tgt = t->targets + i;
246 
247 		if (tgt->type->dtr)
248 			tgt->type->dtr(tgt);
249 
250 		dm_put_target_type(tgt->type);
251 	}
252 
253 	vfree(t->highs);
254 
255 	/* free the device list */
256 	free_devices(&t->devices, t->md);
257 
258 	dm_free_md_mempools(t->mempools);
259 
260 	kfree(t);
261 }
262 
263 /*
264  * See if we've already got a device in the list.
265  */
266 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
267 {
268 	struct dm_dev_internal *dd;
269 
270 	list_for_each_entry (dd, l, list)
271 		if (dd->dm_dev->bdev->bd_dev == dev)
272 			return dd;
273 
274 	return NULL;
275 }
276 
277 /*
278  * If possible, this checks an area of a destination device is invalid.
279  */
280 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
281 				  sector_t start, sector_t len, void *data)
282 {
283 	struct request_queue *q;
284 	struct queue_limits *limits = data;
285 	struct block_device *bdev = dev->bdev;
286 	sector_t dev_size =
287 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
288 	unsigned short logical_block_size_sectors =
289 		limits->logical_block_size >> SECTOR_SHIFT;
290 	char b[BDEVNAME_SIZE];
291 
292 	/*
293 	 * Some devices exist without request functions,
294 	 * such as loop devices not yet bound to backing files.
295 	 * Forbid the use of such devices.
296 	 */
297 	q = bdev_get_queue(bdev);
298 	if (!q || !q->make_request_fn) {
299 		DMWARN("%s: %s is not yet initialised: "
300 		       "start=%llu, len=%llu, dev_size=%llu",
301 		       dm_device_name(ti->table->md), bdevname(bdev, b),
302 		       (unsigned long long)start,
303 		       (unsigned long long)len,
304 		       (unsigned long long)dev_size);
305 		return 1;
306 	}
307 
308 	if (!dev_size)
309 		return 0;
310 
311 	if ((start >= dev_size) || (start + len > dev_size)) {
312 		DMWARN("%s: %s too small for target: "
313 		       "start=%llu, len=%llu, dev_size=%llu",
314 		       dm_device_name(ti->table->md), bdevname(bdev, b),
315 		       (unsigned long long)start,
316 		       (unsigned long long)len,
317 		       (unsigned long long)dev_size);
318 		return 1;
319 	}
320 
321 	if (logical_block_size_sectors <= 1)
322 		return 0;
323 
324 	if (start & (logical_block_size_sectors - 1)) {
325 		DMWARN("%s: start=%llu not aligned to h/w "
326 		       "logical block size %u of %s",
327 		       dm_device_name(ti->table->md),
328 		       (unsigned long long)start,
329 		       limits->logical_block_size, bdevname(bdev, b));
330 		return 1;
331 	}
332 
333 	if (len & (logical_block_size_sectors - 1)) {
334 		DMWARN("%s: len=%llu not aligned to h/w "
335 		       "logical block size %u of %s",
336 		       dm_device_name(ti->table->md),
337 		       (unsigned long long)len,
338 		       limits->logical_block_size, bdevname(bdev, b));
339 		return 1;
340 	}
341 
342 	return 0;
343 }
344 
345 /*
346  * This upgrades the mode on an already open dm_dev, being
347  * careful to leave things as they were if we fail to reopen the
348  * device and not to touch the existing bdev field in case
349  * it is accessed concurrently inside dm_table_any_congested().
350  */
351 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
352 			struct mapped_device *md)
353 {
354 	int r;
355 	struct dm_dev *old_dev, *new_dev;
356 
357 	old_dev = dd->dm_dev;
358 
359 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
360 				dd->dm_dev->mode | new_mode, &new_dev);
361 	if (r)
362 		return r;
363 
364 	dd->dm_dev = new_dev;
365 	dm_put_table_device(md, old_dev);
366 
367 	return 0;
368 }
369 
370 /*
371  * Convert the path to a device
372  */
373 dev_t dm_get_dev_t(const char *path)
374 {
375 	dev_t uninitialized_var(dev);
376 	struct block_device *bdev;
377 
378 	bdev = lookup_bdev(path);
379 	if (IS_ERR(bdev))
380 		dev = name_to_dev_t(path);
381 	else {
382 		dev = bdev->bd_dev;
383 		bdput(bdev);
384 	}
385 
386 	return dev;
387 }
388 EXPORT_SYMBOL_GPL(dm_get_dev_t);
389 
390 /*
391  * Add a device to the list, or just increment the usage count if
392  * it's already present.
393  */
394 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
395 		  struct dm_dev **result)
396 {
397 	int r;
398 	dev_t dev;
399 	struct dm_dev_internal *dd;
400 	struct dm_table *t = ti->table;
401 
402 	BUG_ON(!t);
403 
404 	dev = dm_get_dev_t(path);
405 	if (!dev)
406 		return -ENODEV;
407 
408 	dd = find_device(&t->devices, dev);
409 	if (!dd) {
410 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
411 		if (!dd)
412 			return -ENOMEM;
413 
414 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
415 			kfree(dd);
416 			return r;
417 		}
418 
419 		atomic_set(&dd->count, 0);
420 		list_add(&dd->list, &t->devices);
421 
422 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
423 		r = upgrade_mode(dd, mode, t->md);
424 		if (r)
425 			return r;
426 	}
427 	atomic_inc(&dd->count);
428 
429 	*result = dd->dm_dev;
430 	return 0;
431 }
432 EXPORT_SYMBOL(dm_get_device);
433 
434 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
435 				sector_t start, sector_t len, void *data)
436 {
437 	struct queue_limits *limits = data;
438 	struct block_device *bdev = dev->bdev;
439 	struct request_queue *q = bdev_get_queue(bdev);
440 	char b[BDEVNAME_SIZE];
441 
442 	if (unlikely(!q)) {
443 		DMWARN("%s: Cannot set limits for nonexistent device %s",
444 		       dm_device_name(ti->table->md), bdevname(bdev, b));
445 		return 0;
446 	}
447 
448 	if (bdev_stack_limits(limits, bdev, start) < 0)
449 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
450 		       "physical_block_size=%u, logical_block_size=%u, "
451 		       "alignment_offset=%u, start=%llu",
452 		       dm_device_name(ti->table->md), bdevname(bdev, b),
453 		       q->limits.physical_block_size,
454 		       q->limits.logical_block_size,
455 		       q->limits.alignment_offset,
456 		       (unsigned long long) start << SECTOR_SHIFT);
457 
458 	return 0;
459 }
460 
461 /*
462  * Decrement a device's use count and remove it if necessary.
463  */
464 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
465 {
466 	int found = 0;
467 	struct list_head *devices = &ti->table->devices;
468 	struct dm_dev_internal *dd;
469 
470 	list_for_each_entry(dd, devices, list) {
471 		if (dd->dm_dev == d) {
472 			found = 1;
473 			break;
474 		}
475 	}
476 	if (!found) {
477 		DMWARN("%s: device %s not in table devices list",
478 		       dm_device_name(ti->table->md), d->name);
479 		return;
480 	}
481 	if (atomic_dec_and_test(&dd->count)) {
482 		dm_put_table_device(ti->table->md, d);
483 		list_del(&dd->list);
484 		kfree(dd);
485 	}
486 }
487 EXPORT_SYMBOL(dm_put_device);
488 
489 /*
490  * Checks to see if the target joins onto the end of the table.
491  */
492 static int adjoin(struct dm_table *table, struct dm_target *ti)
493 {
494 	struct dm_target *prev;
495 
496 	if (!table->num_targets)
497 		return !ti->begin;
498 
499 	prev = &table->targets[table->num_targets - 1];
500 	return (ti->begin == (prev->begin + prev->len));
501 }
502 
503 /*
504  * Used to dynamically allocate the arg array.
505  *
506  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
507  * process messages even if some device is suspended. These messages have a
508  * small fixed number of arguments.
509  *
510  * On the other hand, dm-switch needs to process bulk data using messages and
511  * excessive use of GFP_NOIO could cause trouble.
512  */
513 static char **realloc_argv(unsigned *array_size, char **old_argv)
514 {
515 	char **argv;
516 	unsigned new_size;
517 	gfp_t gfp;
518 
519 	if (*array_size) {
520 		new_size = *array_size * 2;
521 		gfp = GFP_KERNEL;
522 	} else {
523 		new_size = 8;
524 		gfp = GFP_NOIO;
525 	}
526 	argv = kmalloc(new_size * sizeof(*argv), gfp);
527 	if (argv) {
528 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
529 		*array_size = new_size;
530 	}
531 
532 	kfree(old_argv);
533 	return argv;
534 }
535 
536 /*
537  * Destructively splits up the argument list to pass to ctr.
538  */
539 int dm_split_args(int *argc, char ***argvp, char *input)
540 {
541 	char *start, *end = input, *out, **argv = NULL;
542 	unsigned array_size = 0;
543 
544 	*argc = 0;
545 
546 	if (!input) {
547 		*argvp = NULL;
548 		return 0;
549 	}
550 
551 	argv = realloc_argv(&array_size, argv);
552 	if (!argv)
553 		return -ENOMEM;
554 
555 	while (1) {
556 		/* Skip whitespace */
557 		start = skip_spaces(end);
558 
559 		if (!*start)
560 			break;	/* success, we hit the end */
561 
562 		/* 'out' is used to remove any back-quotes */
563 		end = out = start;
564 		while (*end) {
565 			/* Everything apart from '\0' can be quoted */
566 			if (*end == '\\' && *(end + 1)) {
567 				*out++ = *(end + 1);
568 				end += 2;
569 				continue;
570 			}
571 
572 			if (isspace(*end))
573 				break;	/* end of token */
574 
575 			*out++ = *end++;
576 		}
577 
578 		/* have we already filled the array ? */
579 		if ((*argc + 1) > array_size) {
580 			argv = realloc_argv(&array_size, argv);
581 			if (!argv)
582 				return -ENOMEM;
583 		}
584 
585 		/* we know this is whitespace */
586 		if (*end)
587 			end++;
588 
589 		/* terminate the string and put it in the array */
590 		*out = '\0';
591 		argv[*argc] = start;
592 		(*argc)++;
593 	}
594 
595 	*argvp = argv;
596 	return 0;
597 }
598 
599 /*
600  * Impose necessary and sufficient conditions on a devices's table such
601  * that any incoming bio which respects its logical_block_size can be
602  * processed successfully.  If it falls across the boundary between
603  * two or more targets, the size of each piece it gets split into must
604  * be compatible with the logical_block_size of the target processing it.
605  */
606 static int validate_hardware_logical_block_alignment(struct dm_table *table,
607 						 struct queue_limits *limits)
608 {
609 	/*
610 	 * This function uses arithmetic modulo the logical_block_size
611 	 * (in units of 512-byte sectors).
612 	 */
613 	unsigned short device_logical_block_size_sects =
614 		limits->logical_block_size >> SECTOR_SHIFT;
615 
616 	/*
617 	 * Offset of the start of the next table entry, mod logical_block_size.
618 	 */
619 	unsigned short next_target_start = 0;
620 
621 	/*
622 	 * Given an aligned bio that extends beyond the end of a
623 	 * target, how many sectors must the next target handle?
624 	 */
625 	unsigned short remaining = 0;
626 
627 	struct dm_target *uninitialized_var(ti);
628 	struct queue_limits ti_limits;
629 	unsigned i = 0;
630 
631 	/*
632 	 * Check each entry in the table in turn.
633 	 */
634 	while (i < dm_table_get_num_targets(table)) {
635 		ti = dm_table_get_target(table, i++);
636 
637 		blk_set_stacking_limits(&ti_limits);
638 
639 		/* combine all target devices' limits */
640 		if (ti->type->iterate_devices)
641 			ti->type->iterate_devices(ti, dm_set_device_limits,
642 						  &ti_limits);
643 
644 		/*
645 		 * If the remaining sectors fall entirely within this
646 		 * table entry are they compatible with its logical_block_size?
647 		 */
648 		if (remaining < ti->len &&
649 		    remaining & ((ti_limits.logical_block_size >>
650 				  SECTOR_SHIFT) - 1))
651 			break;	/* Error */
652 
653 		next_target_start =
654 		    (unsigned short) ((next_target_start + ti->len) &
655 				      (device_logical_block_size_sects - 1));
656 		remaining = next_target_start ?
657 		    device_logical_block_size_sects - next_target_start : 0;
658 	}
659 
660 	if (remaining) {
661 		DMWARN("%s: table line %u (start sect %llu len %llu) "
662 		       "not aligned to h/w logical block size %u",
663 		       dm_device_name(table->md), i,
664 		       (unsigned long long) ti->begin,
665 		       (unsigned long long) ti->len,
666 		       limits->logical_block_size);
667 		return -EINVAL;
668 	}
669 
670 	return 0;
671 }
672 
673 int dm_table_add_target(struct dm_table *t, const char *type,
674 			sector_t start, sector_t len, char *params)
675 {
676 	int r = -EINVAL, argc;
677 	char **argv;
678 	struct dm_target *tgt;
679 
680 	if (t->singleton) {
681 		DMERR("%s: target type %s must appear alone in table",
682 		      dm_device_name(t->md), t->targets->type->name);
683 		return -EINVAL;
684 	}
685 
686 	BUG_ON(t->num_targets >= t->num_allocated);
687 
688 	tgt = t->targets + t->num_targets;
689 	memset(tgt, 0, sizeof(*tgt));
690 
691 	if (!len) {
692 		DMERR("%s: zero-length target", dm_device_name(t->md));
693 		return -EINVAL;
694 	}
695 
696 	tgt->type = dm_get_target_type(type);
697 	if (!tgt->type) {
698 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
699 		      type);
700 		return -EINVAL;
701 	}
702 
703 	if (dm_target_needs_singleton(tgt->type)) {
704 		if (t->num_targets) {
705 			DMERR("%s: target type %s must appear alone in table",
706 			      dm_device_name(t->md), type);
707 			return -EINVAL;
708 		}
709 		t->singleton = true;
710 	}
711 
712 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
713 		DMERR("%s: target type %s may not be included in read-only tables",
714 		      dm_device_name(t->md), type);
715 		return -EINVAL;
716 	}
717 
718 	if (t->immutable_target_type) {
719 		if (t->immutable_target_type != tgt->type) {
720 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
721 			      dm_device_name(t->md), t->immutable_target_type->name);
722 			return -EINVAL;
723 		}
724 	} else if (dm_target_is_immutable(tgt->type)) {
725 		if (t->num_targets) {
726 			DMERR("%s: immutable target type %s cannot be mixed with other target types",
727 			      dm_device_name(t->md), tgt->type->name);
728 			return -EINVAL;
729 		}
730 		t->immutable_target_type = tgt->type;
731 	}
732 
733 	tgt->table = t;
734 	tgt->begin = start;
735 	tgt->len = len;
736 	tgt->error = "Unknown error";
737 
738 	/*
739 	 * Does this target adjoin the previous one ?
740 	 */
741 	if (!adjoin(t, tgt)) {
742 		tgt->error = "Gap in table";
743 		r = -EINVAL;
744 		goto bad;
745 	}
746 
747 	r = dm_split_args(&argc, &argv, params);
748 	if (r) {
749 		tgt->error = "couldn't split parameters (insufficient memory)";
750 		goto bad;
751 	}
752 
753 	r = tgt->type->ctr(tgt, argc, argv);
754 	kfree(argv);
755 	if (r)
756 		goto bad;
757 
758 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
759 
760 	if (!tgt->num_discard_bios && tgt->discards_supported)
761 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
762 		       dm_device_name(t->md), type);
763 
764 	return 0;
765 
766  bad:
767 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
768 	dm_put_target_type(tgt->type);
769 	return r;
770 }
771 
772 /*
773  * Target argument parsing helpers.
774  */
775 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
776 			     unsigned *value, char **error, unsigned grouped)
777 {
778 	const char *arg_str = dm_shift_arg(arg_set);
779 	char dummy;
780 
781 	if (!arg_str ||
782 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
783 	    (*value < arg->min) ||
784 	    (*value > arg->max) ||
785 	    (grouped && arg_set->argc < *value)) {
786 		*error = arg->error;
787 		return -EINVAL;
788 	}
789 
790 	return 0;
791 }
792 
793 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
794 		unsigned *value, char **error)
795 {
796 	return validate_next_arg(arg, arg_set, value, error, 0);
797 }
798 EXPORT_SYMBOL(dm_read_arg);
799 
800 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
801 		      unsigned *value, char **error)
802 {
803 	return validate_next_arg(arg, arg_set, value, error, 1);
804 }
805 EXPORT_SYMBOL(dm_read_arg_group);
806 
807 const char *dm_shift_arg(struct dm_arg_set *as)
808 {
809 	char *r;
810 
811 	if (as->argc) {
812 		as->argc--;
813 		r = *as->argv;
814 		as->argv++;
815 		return r;
816 	}
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(dm_shift_arg);
821 
822 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
823 {
824 	BUG_ON(as->argc < num_args);
825 	as->argc -= num_args;
826 	as->argv += num_args;
827 }
828 EXPORT_SYMBOL(dm_consume_args);
829 
830 static bool __table_type_bio_based(unsigned table_type)
831 {
832 	return (table_type == DM_TYPE_BIO_BASED ||
833 		table_type == DM_TYPE_DAX_BIO_BASED);
834 }
835 
836 static bool __table_type_request_based(unsigned table_type)
837 {
838 	return (table_type == DM_TYPE_REQUEST_BASED ||
839 		table_type == DM_TYPE_MQ_REQUEST_BASED);
840 }
841 
842 void dm_table_set_type(struct dm_table *t, unsigned type)
843 {
844 	t->type = type;
845 }
846 EXPORT_SYMBOL_GPL(dm_table_set_type);
847 
848 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
849 			       sector_t start, sector_t len, void *data)
850 {
851 	struct request_queue *q = bdev_get_queue(dev->bdev);
852 
853 	return q && blk_queue_dax(q);
854 }
855 
856 static bool dm_table_supports_dax(struct dm_table *t)
857 {
858 	struct dm_target *ti;
859 	unsigned i = 0;
860 
861 	/* Ensure that all targets support DAX. */
862 	while (i < dm_table_get_num_targets(t)) {
863 		ti = dm_table_get_target(t, i++);
864 
865 		if (!ti->type->direct_access)
866 			return false;
867 
868 		if (!ti->type->iterate_devices ||
869 		    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
870 			return false;
871 	}
872 
873 	return true;
874 }
875 
876 static int dm_table_determine_type(struct dm_table *t)
877 {
878 	unsigned i;
879 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
880 	bool verify_blk_mq = false;
881 	struct dm_target *tgt;
882 	struct dm_dev_internal *dd;
883 	struct list_head *devices = dm_table_get_devices(t);
884 	unsigned live_md_type = dm_get_md_type(t->md);
885 
886 	if (t->type != DM_TYPE_NONE) {
887 		/* target already set the table's type */
888 		if (t->type == DM_TYPE_BIO_BASED)
889 			return 0;
890 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
891 		goto verify_rq_based;
892 	}
893 
894 	for (i = 0; i < t->num_targets; i++) {
895 		tgt = t->targets + i;
896 		if (dm_target_hybrid(tgt))
897 			hybrid = 1;
898 		else if (dm_target_request_based(tgt))
899 			request_based = 1;
900 		else
901 			bio_based = 1;
902 
903 		if (bio_based && request_based) {
904 			DMWARN("Inconsistent table: different target types"
905 			       " can't be mixed up");
906 			return -EINVAL;
907 		}
908 	}
909 
910 	if (hybrid && !bio_based && !request_based) {
911 		/*
912 		 * The targets can work either way.
913 		 * Determine the type from the live device.
914 		 * Default to bio-based if device is new.
915 		 */
916 		if (__table_type_request_based(live_md_type))
917 			request_based = 1;
918 		else
919 			bio_based = 1;
920 	}
921 
922 	if (bio_based) {
923 		/* We must use this table as bio-based */
924 		t->type = DM_TYPE_BIO_BASED;
925 		if (dm_table_supports_dax(t) ||
926 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
927 			t->type = DM_TYPE_DAX_BIO_BASED;
928 		return 0;
929 	}
930 
931 	BUG_ON(!request_based); /* No targets in this table */
932 
933 	if (list_empty(devices) && __table_type_request_based(live_md_type)) {
934 		/* inherit live MD type */
935 		t->type = live_md_type;
936 		return 0;
937 	}
938 
939 	/*
940 	 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
941 	 * having a compatible target use dm_table_set_type.
942 	 */
943 	t->type = DM_TYPE_REQUEST_BASED;
944 
945 verify_rq_based:
946 	/*
947 	 * Request-based dm supports only tables that have a single target now.
948 	 * To support multiple targets, request splitting support is needed,
949 	 * and that needs lots of changes in the block-layer.
950 	 * (e.g. request completion process for partial completion.)
951 	 */
952 	if (t->num_targets > 1) {
953 		DMWARN("Request-based dm doesn't support multiple targets yet");
954 		return -EINVAL;
955 	}
956 
957 	/* Non-request-stackable devices can't be used for request-based dm */
958 	list_for_each_entry(dd, devices, list) {
959 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
960 
961 		if (!blk_queue_stackable(q)) {
962 			DMERR("table load rejected: including"
963 			      " non-request-stackable devices");
964 			return -EINVAL;
965 		}
966 
967 		if (q->mq_ops)
968 			verify_blk_mq = true;
969 	}
970 
971 	if (verify_blk_mq) {
972 		/* verify _all_ devices in the table are blk-mq devices */
973 		list_for_each_entry(dd, devices, list)
974 			if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
975 				DMERR("table load rejected: not all devices"
976 				      " are blk-mq request-stackable");
977 				return -EINVAL;
978 			}
979 
980 		t->all_blk_mq = true;
981 	}
982 
983 	return 0;
984 }
985 
986 unsigned dm_table_get_type(struct dm_table *t)
987 {
988 	return t->type;
989 }
990 
991 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
992 {
993 	return t->immutable_target_type;
994 }
995 
996 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
997 {
998 	/* Immutable target is implicitly a singleton */
999 	if (t->num_targets > 1 ||
1000 	    !dm_target_is_immutable(t->targets[0].type))
1001 		return NULL;
1002 
1003 	return t->targets;
1004 }
1005 
1006 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1007 {
1008 	struct dm_target *uninitialized_var(ti);
1009 	unsigned i = 0;
1010 
1011 	while (i < dm_table_get_num_targets(t)) {
1012 		ti = dm_table_get_target(t, i++);
1013 		if (dm_target_is_wildcard(ti->type))
1014 			return ti;
1015 	}
1016 
1017 	return NULL;
1018 }
1019 
1020 bool dm_table_bio_based(struct dm_table *t)
1021 {
1022 	return __table_type_bio_based(dm_table_get_type(t));
1023 }
1024 
1025 bool dm_table_request_based(struct dm_table *t)
1026 {
1027 	return __table_type_request_based(dm_table_get_type(t));
1028 }
1029 
1030 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1031 {
1032 	return t->all_blk_mq;
1033 }
1034 
1035 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1036 {
1037 	unsigned type = dm_table_get_type(t);
1038 	unsigned per_io_data_size = 0;
1039 	struct dm_target *tgt;
1040 	unsigned i;
1041 
1042 	if (unlikely(type == DM_TYPE_NONE)) {
1043 		DMWARN("no table type is set, can't allocate mempools");
1044 		return -EINVAL;
1045 	}
1046 
1047 	if (__table_type_bio_based(type))
1048 		for (i = 0; i < t->num_targets; i++) {
1049 			tgt = t->targets + i;
1050 			per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1051 		}
1052 
1053 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1054 	if (!t->mempools)
1055 		return -ENOMEM;
1056 
1057 	return 0;
1058 }
1059 
1060 void dm_table_free_md_mempools(struct dm_table *t)
1061 {
1062 	dm_free_md_mempools(t->mempools);
1063 	t->mempools = NULL;
1064 }
1065 
1066 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1067 {
1068 	return t->mempools;
1069 }
1070 
1071 static int setup_indexes(struct dm_table *t)
1072 {
1073 	int i;
1074 	unsigned int total = 0;
1075 	sector_t *indexes;
1076 
1077 	/* allocate the space for *all* the indexes */
1078 	for (i = t->depth - 2; i >= 0; i--) {
1079 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1080 		total += t->counts[i];
1081 	}
1082 
1083 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1084 	if (!indexes)
1085 		return -ENOMEM;
1086 
1087 	/* set up internal nodes, bottom-up */
1088 	for (i = t->depth - 2; i >= 0; i--) {
1089 		t->index[i] = indexes;
1090 		indexes += (KEYS_PER_NODE * t->counts[i]);
1091 		setup_btree_index(i, t);
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 /*
1098  * Builds the btree to index the map.
1099  */
1100 static int dm_table_build_index(struct dm_table *t)
1101 {
1102 	int r = 0;
1103 	unsigned int leaf_nodes;
1104 
1105 	/* how many indexes will the btree have ? */
1106 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1107 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1108 
1109 	/* leaf layer has already been set up */
1110 	t->counts[t->depth - 1] = leaf_nodes;
1111 	t->index[t->depth - 1] = t->highs;
1112 
1113 	if (t->depth >= 2)
1114 		r = setup_indexes(t);
1115 
1116 	return r;
1117 }
1118 
1119 static bool integrity_profile_exists(struct gendisk *disk)
1120 {
1121 	return !!blk_get_integrity(disk);
1122 }
1123 
1124 /*
1125  * Get a disk whose integrity profile reflects the table's profile.
1126  * Returns NULL if integrity support was inconsistent or unavailable.
1127  */
1128 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1129 {
1130 	struct list_head *devices = dm_table_get_devices(t);
1131 	struct dm_dev_internal *dd = NULL;
1132 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1133 
1134 	list_for_each_entry(dd, devices, list) {
1135 		template_disk = dd->dm_dev->bdev->bd_disk;
1136 		if (!integrity_profile_exists(template_disk))
1137 			goto no_integrity;
1138 		else if (prev_disk &&
1139 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1140 			goto no_integrity;
1141 		prev_disk = template_disk;
1142 	}
1143 
1144 	return template_disk;
1145 
1146 no_integrity:
1147 	if (prev_disk)
1148 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1149 		       dm_device_name(t->md),
1150 		       prev_disk->disk_name,
1151 		       template_disk->disk_name);
1152 	return NULL;
1153 }
1154 
1155 /*
1156  * Register the mapped device for blk_integrity support if the
1157  * underlying devices have an integrity profile.  But all devices may
1158  * not have matching profiles (checking all devices isn't reliable
1159  * during table load because this table may use other DM device(s) which
1160  * must be resumed before they will have an initialized integity
1161  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1162  * profile validation: First pass during table load, final pass during
1163  * resume.
1164  */
1165 static int dm_table_register_integrity(struct dm_table *t)
1166 {
1167 	struct mapped_device *md = t->md;
1168 	struct gendisk *template_disk = NULL;
1169 
1170 	template_disk = dm_table_get_integrity_disk(t);
1171 	if (!template_disk)
1172 		return 0;
1173 
1174 	if (!integrity_profile_exists(dm_disk(md))) {
1175 		t->integrity_supported = true;
1176 		/*
1177 		 * Register integrity profile during table load; we can do
1178 		 * this because the final profile must match during resume.
1179 		 */
1180 		blk_integrity_register(dm_disk(md),
1181 				       blk_get_integrity(template_disk));
1182 		return 0;
1183 	}
1184 
1185 	/*
1186 	 * If DM device already has an initialized integrity
1187 	 * profile the new profile should not conflict.
1188 	 */
1189 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1190 		DMWARN("%s: conflict with existing integrity profile: "
1191 		       "%s profile mismatch",
1192 		       dm_device_name(t->md),
1193 		       template_disk->disk_name);
1194 		return 1;
1195 	}
1196 
1197 	/* Preserve existing integrity profile */
1198 	t->integrity_supported = true;
1199 	return 0;
1200 }
1201 
1202 /*
1203  * Prepares the table for use by building the indices,
1204  * setting the type, and allocating mempools.
1205  */
1206 int dm_table_complete(struct dm_table *t)
1207 {
1208 	int r;
1209 
1210 	r = dm_table_determine_type(t);
1211 	if (r) {
1212 		DMERR("unable to determine table type");
1213 		return r;
1214 	}
1215 
1216 	r = dm_table_build_index(t);
1217 	if (r) {
1218 		DMERR("unable to build btrees");
1219 		return r;
1220 	}
1221 
1222 	r = dm_table_register_integrity(t);
1223 	if (r) {
1224 		DMERR("could not register integrity profile.");
1225 		return r;
1226 	}
1227 
1228 	r = dm_table_alloc_md_mempools(t, t->md);
1229 	if (r)
1230 		DMERR("unable to allocate mempools");
1231 
1232 	return r;
1233 }
1234 
1235 static DEFINE_MUTEX(_event_lock);
1236 void dm_table_event_callback(struct dm_table *t,
1237 			     void (*fn)(void *), void *context)
1238 {
1239 	mutex_lock(&_event_lock);
1240 	t->event_fn = fn;
1241 	t->event_context = context;
1242 	mutex_unlock(&_event_lock);
1243 }
1244 
1245 void dm_table_event(struct dm_table *t)
1246 {
1247 	/*
1248 	 * You can no longer call dm_table_event() from interrupt
1249 	 * context, use a bottom half instead.
1250 	 */
1251 	BUG_ON(in_interrupt());
1252 
1253 	mutex_lock(&_event_lock);
1254 	if (t->event_fn)
1255 		t->event_fn(t->event_context);
1256 	mutex_unlock(&_event_lock);
1257 }
1258 EXPORT_SYMBOL(dm_table_event);
1259 
1260 sector_t dm_table_get_size(struct dm_table *t)
1261 {
1262 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1263 }
1264 EXPORT_SYMBOL(dm_table_get_size);
1265 
1266 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1267 {
1268 	if (index >= t->num_targets)
1269 		return NULL;
1270 
1271 	return t->targets + index;
1272 }
1273 
1274 /*
1275  * Search the btree for the correct target.
1276  *
1277  * Caller should check returned pointer with dm_target_is_valid()
1278  * to trap I/O beyond end of device.
1279  */
1280 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1281 {
1282 	unsigned int l, n = 0, k = 0;
1283 	sector_t *node;
1284 
1285 	for (l = 0; l < t->depth; l++) {
1286 		n = get_child(n, k);
1287 		node = get_node(t, l, n);
1288 
1289 		for (k = 0; k < KEYS_PER_NODE; k++)
1290 			if (node[k] >= sector)
1291 				break;
1292 	}
1293 
1294 	return &t->targets[(KEYS_PER_NODE * n) + k];
1295 }
1296 
1297 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1298 			sector_t start, sector_t len, void *data)
1299 {
1300 	unsigned *num_devices = data;
1301 
1302 	(*num_devices)++;
1303 
1304 	return 0;
1305 }
1306 
1307 /*
1308  * Check whether a table has no data devices attached using each
1309  * target's iterate_devices method.
1310  * Returns false if the result is unknown because a target doesn't
1311  * support iterate_devices.
1312  */
1313 bool dm_table_has_no_data_devices(struct dm_table *table)
1314 {
1315 	struct dm_target *uninitialized_var(ti);
1316 	unsigned i = 0, num_devices = 0;
1317 
1318 	while (i < dm_table_get_num_targets(table)) {
1319 		ti = dm_table_get_target(table, i++);
1320 
1321 		if (!ti->type->iterate_devices)
1322 			return false;
1323 
1324 		ti->type->iterate_devices(ti, count_device, &num_devices);
1325 		if (num_devices)
1326 			return false;
1327 	}
1328 
1329 	return true;
1330 }
1331 
1332 /*
1333  * Establish the new table's queue_limits and validate them.
1334  */
1335 int dm_calculate_queue_limits(struct dm_table *table,
1336 			      struct queue_limits *limits)
1337 {
1338 	struct dm_target *uninitialized_var(ti);
1339 	struct queue_limits ti_limits;
1340 	unsigned i = 0;
1341 
1342 	blk_set_stacking_limits(limits);
1343 
1344 	while (i < dm_table_get_num_targets(table)) {
1345 		blk_set_stacking_limits(&ti_limits);
1346 
1347 		ti = dm_table_get_target(table, i++);
1348 
1349 		if (!ti->type->iterate_devices)
1350 			goto combine_limits;
1351 
1352 		/*
1353 		 * Combine queue limits of all the devices this target uses.
1354 		 */
1355 		ti->type->iterate_devices(ti, dm_set_device_limits,
1356 					  &ti_limits);
1357 
1358 		/* Set I/O hints portion of queue limits */
1359 		if (ti->type->io_hints)
1360 			ti->type->io_hints(ti, &ti_limits);
1361 
1362 		/*
1363 		 * Check each device area is consistent with the target's
1364 		 * overall queue limits.
1365 		 */
1366 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1367 					      &ti_limits))
1368 			return -EINVAL;
1369 
1370 combine_limits:
1371 		/*
1372 		 * Merge this target's queue limits into the overall limits
1373 		 * for the table.
1374 		 */
1375 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1376 			DMWARN("%s: adding target device "
1377 			       "(start sect %llu len %llu) "
1378 			       "caused an alignment inconsistency",
1379 			       dm_device_name(table->md),
1380 			       (unsigned long long) ti->begin,
1381 			       (unsigned long long) ti->len);
1382 	}
1383 
1384 	return validate_hardware_logical_block_alignment(table, limits);
1385 }
1386 
1387 /*
1388  * Verify that all devices have an integrity profile that matches the
1389  * DM device's registered integrity profile.  If the profiles don't
1390  * match then unregister the DM device's integrity profile.
1391  */
1392 static void dm_table_verify_integrity(struct dm_table *t)
1393 {
1394 	struct gendisk *template_disk = NULL;
1395 
1396 	if (t->integrity_supported) {
1397 		/*
1398 		 * Verify that the original integrity profile
1399 		 * matches all the devices in this table.
1400 		 */
1401 		template_disk = dm_table_get_integrity_disk(t);
1402 		if (template_disk &&
1403 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1404 			return;
1405 	}
1406 
1407 	if (integrity_profile_exists(dm_disk(t->md))) {
1408 		DMWARN("%s: unable to establish an integrity profile",
1409 		       dm_device_name(t->md));
1410 		blk_integrity_unregister(dm_disk(t->md));
1411 	}
1412 }
1413 
1414 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1415 				sector_t start, sector_t len, void *data)
1416 {
1417 	unsigned long flush = (unsigned long) data;
1418 	struct request_queue *q = bdev_get_queue(dev->bdev);
1419 
1420 	return q && (q->queue_flags & flush);
1421 }
1422 
1423 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1424 {
1425 	struct dm_target *ti;
1426 	unsigned i = 0;
1427 
1428 	/*
1429 	 * Require at least one underlying device to support flushes.
1430 	 * t->devices includes internal dm devices such as mirror logs
1431 	 * so we need to use iterate_devices here, which targets
1432 	 * supporting flushes must provide.
1433 	 */
1434 	while (i < dm_table_get_num_targets(t)) {
1435 		ti = dm_table_get_target(t, i++);
1436 
1437 		if (!ti->num_flush_bios)
1438 			continue;
1439 
1440 		if (ti->flush_supported)
1441 			return true;
1442 
1443 		if (ti->type->iterate_devices &&
1444 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1445 			return true;
1446 	}
1447 
1448 	return false;
1449 }
1450 
1451 static bool dm_table_discard_zeroes_data(struct dm_table *t)
1452 {
1453 	struct dm_target *ti;
1454 	unsigned i = 0;
1455 
1456 	/* Ensure that all targets supports discard_zeroes_data. */
1457 	while (i < dm_table_get_num_targets(t)) {
1458 		ti = dm_table_get_target(t, i++);
1459 
1460 		if (ti->discard_zeroes_data_unsupported)
1461 			return false;
1462 	}
1463 
1464 	return true;
1465 }
1466 
1467 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1468 			    sector_t start, sector_t len, void *data)
1469 {
1470 	struct request_queue *q = bdev_get_queue(dev->bdev);
1471 
1472 	return q && blk_queue_nonrot(q);
1473 }
1474 
1475 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1476 			     sector_t start, sector_t len, void *data)
1477 {
1478 	struct request_queue *q = bdev_get_queue(dev->bdev);
1479 
1480 	return q && !blk_queue_add_random(q);
1481 }
1482 
1483 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1484 				   sector_t start, sector_t len, void *data)
1485 {
1486 	struct request_queue *q = bdev_get_queue(dev->bdev);
1487 
1488 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1489 }
1490 
1491 static bool dm_table_all_devices_attribute(struct dm_table *t,
1492 					   iterate_devices_callout_fn func)
1493 {
1494 	struct dm_target *ti;
1495 	unsigned i = 0;
1496 
1497 	while (i < dm_table_get_num_targets(t)) {
1498 		ti = dm_table_get_target(t, i++);
1499 
1500 		if (!ti->type->iterate_devices ||
1501 		    !ti->type->iterate_devices(ti, func, NULL))
1502 			return false;
1503 	}
1504 
1505 	return true;
1506 }
1507 
1508 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1509 					 sector_t start, sector_t len, void *data)
1510 {
1511 	struct request_queue *q = bdev_get_queue(dev->bdev);
1512 
1513 	return q && !q->limits.max_write_same_sectors;
1514 }
1515 
1516 static bool dm_table_supports_write_same(struct dm_table *t)
1517 {
1518 	struct dm_target *ti;
1519 	unsigned i = 0;
1520 
1521 	while (i < dm_table_get_num_targets(t)) {
1522 		ti = dm_table_get_target(t, i++);
1523 
1524 		if (!ti->num_write_same_bios)
1525 			return false;
1526 
1527 		if (!ti->type->iterate_devices ||
1528 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1529 			return false;
1530 	}
1531 
1532 	return true;
1533 }
1534 
1535 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1536 				  sector_t start, sector_t len, void *data)
1537 {
1538 	struct request_queue *q = bdev_get_queue(dev->bdev);
1539 
1540 	return q && blk_queue_discard(q);
1541 }
1542 
1543 static bool dm_table_supports_discards(struct dm_table *t)
1544 {
1545 	struct dm_target *ti;
1546 	unsigned i = 0;
1547 
1548 	/*
1549 	 * Unless any target used by the table set discards_supported,
1550 	 * require at least one underlying device to support discards.
1551 	 * t->devices includes internal dm devices such as mirror logs
1552 	 * so we need to use iterate_devices here, which targets
1553 	 * supporting discard selectively must provide.
1554 	 */
1555 	while (i < dm_table_get_num_targets(t)) {
1556 		ti = dm_table_get_target(t, i++);
1557 
1558 		if (!ti->num_discard_bios)
1559 			continue;
1560 
1561 		if (ti->discards_supported)
1562 			return true;
1563 
1564 		if (ti->type->iterate_devices &&
1565 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1566 			return true;
1567 	}
1568 
1569 	return false;
1570 }
1571 
1572 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1573 			       struct queue_limits *limits)
1574 {
1575 	bool wc = false, fua = false;
1576 
1577 	/*
1578 	 * Copy table's limits to the DM device's request_queue
1579 	 */
1580 	q->limits = *limits;
1581 
1582 	if (!dm_table_supports_discards(t))
1583 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1584 	else
1585 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1586 
1587 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1588 		wc = true;
1589 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1590 			fua = true;
1591 	}
1592 	blk_queue_write_cache(q, wc, fua);
1593 
1594 	if (!dm_table_discard_zeroes_data(t))
1595 		q->limits.discard_zeroes_data = 0;
1596 
1597 	/* Ensure that all underlying devices are non-rotational. */
1598 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1599 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1600 	else
1601 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1602 
1603 	if (!dm_table_supports_write_same(t))
1604 		q->limits.max_write_same_sectors = 0;
1605 
1606 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1607 		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1608 	else
1609 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1610 
1611 	dm_table_verify_integrity(t);
1612 
1613 	/*
1614 	 * Determine whether or not this queue's I/O timings contribute
1615 	 * to the entropy pool, Only request-based targets use this.
1616 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1617 	 * have it set.
1618 	 */
1619 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1620 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1621 
1622 	/*
1623 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1624 	 * visible to other CPUs because, once the flag is set, incoming bios
1625 	 * are processed by request-based dm, which refers to the queue
1626 	 * settings.
1627 	 * Until the flag set, bios are passed to bio-based dm and queued to
1628 	 * md->deferred where queue settings are not needed yet.
1629 	 * Those bios are passed to request-based dm at the resume time.
1630 	 */
1631 	smp_mb();
1632 	if (dm_table_request_based(t))
1633 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1634 }
1635 
1636 unsigned int dm_table_get_num_targets(struct dm_table *t)
1637 {
1638 	return t->num_targets;
1639 }
1640 
1641 struct list_head *dm_table_get_devices(struct dm_table *t)
1642 {
1643 	return &t->devices;
1644 }
1645 
1646 fmode_t dm_table_get_mode(struct dm_table *t)
1647 {
1648 	return t->mode;
1649 }
1650 EXPORT_SYMBOL(dm_table_get_mode);
1651 
1652 enum suspend_mode {
1653 	PRESUSPEND,
1654 	PRESUSPEND_UNDO,
1655 	POSTSUSPEND,
1656 };
1657 
1658 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1659 {
1660 	int i = t->num_targets;
1661 	struct dm_target *ti = t->targets;
1662 
1663 	while (i--) {
1664 		switch (mode) {
1665 		case PRESUSPEND:
1666 			if (ti->type->presuspend)
1667 				ti->type->presuspend(ti);
1668 			break;
1669 		case PRESUSPEND_UNDO:
1670 			if (ti->type->presuspend_undo)
1671 				ti->type->presuspend_undo(ti);
1672 			break;
1673 		case POSTSUSPEND:
1674 			if (ti->type->postsuspend)
1675 				ti->type->postsuspend(ti);
1676 			break;
1677 		}
1678 		ti++;
1679 	}
1680 }
1681 
1682 void dm_table_presuspend_targets(struct dm_table *t)
1683 {
1684 	if (!t)
1685 		return;
1686 
1687 	suspend_targets(t, PRESUSPEND);
1688 }
1689 
1690 void dm_table_presuspend_undo_targets(struct dm_table *t)
1691 {
1692 	if (!t)
1693 		return;
1694 
1695 	suspend_targets(t, PRESUSPEND_UNDO);
1696 }
1697 
1698 void dm_table_postsuspend_targets(struct dm_table *t)
1699 {
1700 	if (!t)
1701 		return;
1702 
1703 	suspend_targets(t, POSTSUSPEND);
1704 }
1705 
1706 int dm_table_resume_targets(struct dm_table *t)
1707 {
1708 	int i, r = 0;
1709 
1710 	for (i = 0; i < t->num_targets; i++) {
1711 		struct dm_target *ti = t->targets + i;
1712 
1713 		if (!ti->type->preresume)
1714 			continue;
1715 
1716 		r = ti->type->preresume(ti);
1717 		if (r) {
1718 			DMERR("%s: %s: preresume failed, error = %d",
1719 			      dm_device_name(t->md), ti->type->name, r);
1720 			return r;
1721 		}
1722 	}
1723 
1724 	for (i = 0; i < t->num_targets; i++) {
1725 		struct dm_target *ti = t->targets + i;
1726 
1727 		if (ti->type->resume)
1728 			ti->type->resume(ti);
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1735 {
1736 	list_add(&cb->list, &t->target_callbacks);
1737 }
1738 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1739 
1740 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1741 {
1742 	struct dm_dev_internal *dd;
1743 	struct list_head *devices = dm_table_get_devices(t);
1744 	struct dm_target_callbacks *cb;
1745 	int r = 0;
1746 
1747 	list_for_each_entry(dd, devices, list) {
1748 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1749 		char b[BDEVNAME_SIZE];
1750 
1751 		if (likely(q))
1752 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1753 		else
1754 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1755 				     dm_device_name(t->md),
1756 				     bdevname(dd->dm_dev->bdev, b));
1757 	}
1758 
1759 	list_for_each_entry(cb, &t->target_callbacks, list)
1760 		if (cb->congested_fn)
1761 			r |= cb->congested_fn(cb, bdi_bits);
1762 
1763 	return r;
1764 }
1765 
1766 struct mapped_device *dm_table_get_md(struct dm_table *t)
1767 {
1768 	return t->md;
1769 }
1770 EXPORT_SYMBOL(dm_table_get_md);
1771 
1772 void dm_table_run_md_queue_async(struct dm_table *t)
1773 {
1774 	struct mapped_device *md;
1775 	struct request_queue *queue;
1776 	unsigned long flags;
1777 
1778 	if (!dm_table_request_based(t))
1779 		return;
1780 
1781 	md = dm_table_get_md(t);
1782 	queue = dm_get_md_queue(md);
1783 	if (queue) {
1784 		if (queue->mq_ops)
1785 			blk_mq_run_hw_queues(queue, true);
1786 		else {
1787 			spin_lock_irqsave(queue->queue_lock, flags);
1788 			blk_run_queue_async(queue);
1789 			spin_unlock_irqrestore(queue->queue_lock, flags);
1790 		}
1791 	}
1792 }
1793 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1794 
1795