1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 24 #define DM_MSG_PREFIX "table" 25 26 #define MAX_DEPTH 16 27 #define NODE_SIZE L1_CACHE_BYTES 28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 30 31 struct dm_table { 32 struct mapped_device *md; 33 unsigned type; 34 35 /* btree table */ 36 unsigned int depth; 37 unsigned int counts[MAX_DEPTH]; /* in nodes */ 38 sector_t *index[MAX_DEPTH]; 39 40 unsigned int num_targets; 41 unsigned int num_allocated; 42 sector_t *highs; 43 struct dm_target *targets; 44 45 struct target_type *immutable_target_type; 46 47 bool integrity_supported:1; 48 bool singleton:1; 49 bool all_blk_mq:1; 50 51 /* 52 * Indicates the rw permissions for the new logical 53 * device. This should be a combination of FMODE_READ 54 * and FMODE_WRITE. 55 */ 56 fmode_t mode; 57 58 /* a list of devices used by this table */ 59 struct list_head devices; 60 61 /* events get handed up using this callback */ 62 void (*event_fn)(void *); 63 void *event_context; 64 65 struct dm_md_mempools *mempools; 66 67 struct list_head target_callbacks; 68 }; 69 70 /* 71 * Similar to ceiling(log_size(n)) 72 */ 73 static unsigned int int_log(unsigned int n, unsigned int base) 74 { 75 int result = 0; 76 77 while (n > 1) { 78 n = dm_div_up(n, base); 79 result++; 80 } 81 82 return result; 83 } 84 85 /* 86 * Calculate the index of the child node of the n'th node k'th key. 87 */ 88 static inline unsigned int get_child(unsigned int n, unsigned int k) 89 { 90 return (n * CHILDREN_PER_NODE) + k; 91 } 92 93 /* 94 * Return the n'th node of level l from table t. 95 */ 96 static inline sector_t *get_node(struct dm_table *t, 97 unsigned int l, unsigned int n) 98 { 99 return t->index[l] + (n * KEYS_PER_NODE); 100 } 101 102 /* 103 * Return the highest key that you could lookup from the n'th 104 * node on level l of the btree. 105 */ 106 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 107 { 108 for (; l < t->depth - 1; l++) 109 n = get_child(n, CHILDREN_PER_NODE - 1); 110 111 if (n >= t->counts[l]) 112 return (sector_t) - 1; 113 114 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 115 } 116 117 /* 118 * Fills in a level of the btree based on the highs of the level 119 * below it. 120 */ 121 static int setup_btree_index(unsigned int l, struct dm_table *t) 122 { 123 unsigned int n, k; 124 sector_t *node; 125 126 for (n = 0U; n < t->counts[l]; n++) { 127 node = get_node(t, l, n); 128 129 for (k = 0U; k < KEYS_PER_NODE; k++) 130 node[k] = high(t, l + 1, get_child(n, k)); 131 } 132 133 return 0; 134 } 135 136 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 137 { 138 unsigned long size; 139 void *addr; 140 141 /* 142 * Check that we're not going to overflow. 143 */ 144 if (nmemb > (ULONG_MAX / elem_size)) 145 return NULL; 146 147 size = nmemb * elem_size; 148 addr = vzalloc(size); 149 150 return addr; 151 } 152 EXPORT_SYMBOL(dm_vcalloc); 153 154 /* 155 * highs, and targets are managed as dynamic arrays during a 156 * table load. 157 */ 158 static int alloc_targets(struct dm_table *t, unsigned int num) 159 { 160 sector_t *n_highs; 161 struct dm_target *n_targets; 162 163 /* 164 * Allocate both the target array and offset array at once. 165 * Append an empty entry to catch sectors beyond the end of 166 * the device. 167 */ 168 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 169 sizeof(sector_t)); 170 if (!n_highs) 171 return -ENOMEM; 172 173 n_targets = (struct dm_target *) (n_highs + num); 174 175 memset(n_highs, -1, sizeof(*n_highs) * num); 176 vfree(t->highs); 177 178 t->num_allocated = num; 179 t->highs = n_highs; 180 t->targets = n_targets; 181 182 return 0; 183 } 184 185 int dm_table_create(struct dm_table **result, fmode_t mode, 186 unsigned num_targets, struct mapped_device *md) 187 { 188 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 189 190 if (!t) 191 return -ENOMEM; 192 193 INIT_LIST_HEAD(&t->devices); 194 INIT_LIST_HEAD(&t->target_callbacks); 195 196 if (!num_targets) 197 num_targets = KEYS_PER_NODE; 198 199 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 200 201 if (!num_targets) { 202 kfree(t); 203 return -ENOMEM; 204 } 205 206 if (alloc_targets(t, num_targets)) { 207 kfree(t); 208 return -ENOMEM; 209 } 210 211 t->type = DM_TYPE_NONE; 212 t->mode = mode; 213 t->md = md; 214 *result = t; 215 return 0; 216 } 217 218 static void free_devices(struct list_head *devices, struct mapped_device *md) 219 { 220 struct list_head *tmp, *next; 221 222 list_for_each_safe(tmp, next, devices) { 223 struct dm_dev_internal *dd = 224 list_entry(tmp, struct dm_dev_internal, list); 225 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 226 dm_device_name(md), dd->dm_dev->name); 227 dm_put_table_device(md, dd->dm_dev); 228 kfree(dd); 229 } 230 } 231 232 void dm_table_destroy(struct dm_table *t) 233 { 234 unsigned int i; 235 236 if (!t) 237 return; 238 239 /* free the indexes */ 240 if (t->depth >= 2) 241 vfree(t->index[t->depth - 2]); 242 243 /* free the targets */ 244 for (i = 0; i < t->num_targets; i++) { 245 struct dm_target *tgt = t->targets + i; 246 247 if (tgt->type->dtr) 248 tgt->type->dtr(tgt); 249 250 dm_put_target_type(tgt->type); 251 } 252 253 vfree(t->highs); 254 255 /* free the device list */ 256 free_devices(&t->devices, t->md); 257 258 dm_free_md_mempools(t->mempools); 259 260 kfree(t); 261 } 262 263 /* 264 * See if we've already got a device in the list. 265 */ 266 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 267 { 268 struct dm_dev_internal *dd; 269 270 list_for_each_entry (dd, l, list) 271 if (dd->dm_dev->bdev->bd_dev == dev) 272 return dd; 273 274 return NULL; 275 } 276 277 /* 278 * If possible, this checks an area of a destination device is invalid. 279 */ 280 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 281 sector_t start, sector_t len, void *data) 282 { 283 struct request_queue *q; 284 struct queue_limits *limits = data; 285 struct block_device *bdev = dev->bdev; 286 sector_t dev_size = 287 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 288 unsigned short logical_block_size_sectors = 289 limits->logical_block_size >> SECTOR_SHIFT; 290 char b[BDEVNAME_SIZE]; 291 292 /* 293 * Some devices exist without request functions, 294 * such as loop devices not yet bound to backing files. 295 * Forbid the use of such devices. 296 */ 297 q = bdev_get_queue(bdev); 298 if (!q || !q->make_request_fn) { 299 DMWARN("%s: %s is not yet initialised: " 300 "start=%llu, len=%llu, dev_size=%llu", 301 dm_device_name(ti->table->md), bdevname(bdev, b), 302 (unsigned long long)start, 303 (unsigned long long)len, 304 (unsigned long long)dev_size); 305 return 1; 306 } 307 308 if (!dev_size) 309 return 0; 310 311 if ((start >= dev_size) || (start + len > dev_size)) { 312 DMWARN("%s: %s too small for target: " 313 "start=%llu, len=%llu, dev_size=%llu", 314 dm_device_name(ti->table->md), bdevname(bdev, b), 315 (unsigned long long)start, 316 (unsigned long long)len, 317 (unsigned long long)dev_size); 318 return 1; 319 } 320 321 if (logical_block_size_sectors <= 1) 322 return 0; 323 324 if (start & (logical_block_size_sectors - 1)) { 325 DMWARN("%s: start=%llu not aligned to h/w " 326 "logical block size %u of %s", 327 dm_device_name(ti->table->md), 328 (unsigned long long)start, 329 limits->logical_block_size, bdevname(bdev, b)); 330 return 1; 331 } 332 333 if (len & (logical_block_size_sectors - 1)) { 334 DMWARN("%s: len=%llu not aligned to h/w " 335 "logical block size %u of %s", 336 dm_device_name(ti->table->md), 337 (unsigned long long)len, 338 limits->logical_block_size, bdevname(bdev, b)); 339 return 1; 340 } 341 342 return 0; 343 } 344 345 /* 346 * This upgrades the mode on an already open dm_dev, being 347 * careful to leave things as they were if we fail to reopen the 348 * device and not to touch the existing bdev field in case 349 * it is accessed concurrently inside dm_table_any_congested(). 350 */ 351 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 352 struct mapped_device *md) 353 { 354 int r; 355 struct dm_dev *old_dev, *new_dev; 356 357 old_dev = dd->dm_dev; 358 359 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 360 dd->dm_dev->mode | new_mode, &new_dev); 361 if (r) 362 return r; 363 364 dd->dm_dev = new_dev; 365 dm_put_table_device(md, old_dev); 366 367 return 0; 368 } 369 370 /* 371 * Convert the path to a device 372 */ 373 dev_t dm_get_dev_t(const char *path) 374 { 375 dev_t uninitialized_var(dev); 376 struct block_device *bdev; 377 378 bdev = lookup_bdev(path); 379 if (IS_ERR(bdev)) 380 dev = name_to_dev_t(path); 381 else { 382 dev = bdev->bd_dev; 383 bdput(bdev); 384 } 385 386 return dev; 387 } 388 EXPORT_SYMBOL_GPL(dm_get_dev_t); 389 390 /* 391 * Add a device to the list, or just increment the usage count if 392 * it's already present. 393 */ 394 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 395 struct dm_dev **result) 396 { 397 int r; 398 dev_t dev; 399 struct dm_dev_internal *dd; 400 struct dm_table *t = ti->table; 401 402 BUG_ON(!t); 403 404 dev = dm_get_dev_t(path); 405 if (!dev) 406 return -ENODEV; 407 408 dd = find_device(&t->devices, dev); 409 if (!dd) { 410 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 411 if (!dd) 412 return -ENOMEM; 413 414 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 415 kfree(dd); 416 return r; 417 } 418 419 atomic_set(&dd->count, 0); 420 list_add(&dd->list, &t->devices); 421 422 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 423 r = upgrade_mode(dd, mode, t->md); 424 if (r) 425 return r; 426 } 427 atomic_inc(&dd->count); 428 429 *result = dd->dm_dev; 430 return 0; 431 } 432 EXPORT_SYMBOL(dm_get_device); 433 434 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 435 sector_t start, sector_t len, void *data) 436 { 437 struct queue_limits *limits = data; 438 struct block_device *bdev = dev->bdev; 439 struct request_queue *q = bdev_get_queue(bdev); 440 char b[BDEVNAME_SIZE]; 441 442 if (unlikely(!q)) { 443 DMWARN("%s: Cannot set limits for nonexistent device %s", 444 dm_device_name(ti->table->md), bdevname(bdev, b)); 445 return 0; 446 } 447 448 if (bdev_stack_limits(limits, bdev, start) < 0) 449 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 450 "physical_block_size=%u, logical_block_size=%u, " 451 "alignment_offset=%u, start=%llu", 452 dm_device_name(ti->table->md), bdevname(bdev, b), 453 q->limits.physical_block_size, 454 q->limits.logical_block_size, 455 q->limits.alignment_offset, 456 (unsigned long long) start << SECTOR_SHIFT); 457 458 return 0; 459 } 460 461 /* 462 * Decrement a device's use count and remove it if necessary. 463 */ 464 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 465 { 466 int found = 0; 467 struct list_head *devices = &ti->table->devices; 468 struct dm_dev_internal *dd; 469 470 list_for_each_entry(dd, devices, list) { 471 if (dd->dm_dev == d) { 472 found = 1; 473 break; 474 } 475 } 476 if (!found) { 477 DMWARN("%s: device %s not in table devices list", 478 dm_device_name(ti->table->md), d->name); 479 return; 480 } 481 if (atomic_dec_and_test(&dd->count)) { 482 dm_put_table_device(ti->table->md, d); 483 list_del(&dd->list); 484 kfree(dd); 485 } 486 } 487 EXPORT_SYMBOL(dm_put_device); 488 489 /* 490 * Checks to see if the target joins onto the end of the table. 491 */ 492 static int adjoin(struct dm_table *table, struct dm_target *ti) 493 { 494 struct dm_target *prev; 495 496 if (!table->num_targets) 497 return !ti->begin; 498 499 prev = &table->targets[table->num_targets - 1]; 500 return (ti->begin == (prev->begin + prev->len)); 501 } 502 503 /* 504 * Used to dynamically allocate the arg array. 505 * 506 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 507 * process messages even if some device is suspended. These messages have a 508 * small fixed number of arguments. 509 * 510 * On the other hand, dm-switch needs to process bulk data using messages and 511 * excessive use of GFP_NOIO could cause trouble. 512 */ 513 static char **realloc_argv(unsigned *array_size, char **old_argv) 514 { 515 char **argv; 516 unsigned new_size; 517 gfp_t gfp; 518 519 if (*array_size) { 520 new_size = *array_size * 2; 521 gfp = GFP_KERNEL; 522 } else { 523 new_size = 8; 524 gfp = GFP_NOIO; 525 } 526 argv = kmalloc(new_size * sizeof(*argv), gfp); 527 if (argv) { 528 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 529 *array_size = new_size; 530 } 531 532 kfree(old_argv); 533 return argv; 534 } 535 536 /* 537 * Destructively splits up the argument list to pass to ctr. 538 */ 539 int dm_split_args(int *argc, char ***argvp, char *input) 540 { 541 char *start, *end = input, *out, **argv = NULL; 542 unsigned array_size = 0; 543 544 *argc = 0; 545 546 if (!input) { 547 *argvp = NULL; 548 return 0; 549 } 550 551 argv = realloc_argv(&array_size, argv); 552 if (!argv) 553 return -ENOMEM; 554 555 while (1) { 556 /* Skip whitespace */ 557 start = skip_spaces(end); 558 559 if (!*start) 560 break; /* success, we hit the end */ 561 562 /* 'out' is used to remove any back-quotes */ 563 end = out = start; 564 while (*end) { 565 /* Everything apart from '\0' can be quoted */ 566 if (*end == '\\' && *(end + 1)) { 567 *out++ = *(end + 1); 568 end += 2; 569 continue; 570 } 571 572 if (isspace(*end)) 573 break; /* end of token */ 574 575 *out++ = *end++; 576 } 577 578 /* have we already filled the array ? */ 579 if ((*argc + 1) > array_size) { 580 argv = realloc_argv(&array_size, argv); 581 if (!argv) 582 return -ENOMEM; 583 } 584 585 /* we know this is whitespace */ 586 if (*end) 587 end++; 588 589 /* terminate the string and put it in the array */ 590 *out = '\0'; 591 argv[*argc] = start; 592 (*argc)++; 593 } 594 595 *argvp = argv; 596 return 0; 597 } 598 599 /* 600 * Impose necessary and sufficient conditions on a devices's table such 601 * that any incoming bio which respects its logical_block_size can be 602 * processed successfully. If it falls across the boundary between 603 * two or more targets, the size of each piece it gets split into must 604 * be compatible with the logical_block_size of the target processing it. 605 */ 606 static int validate_hardware_logical_block_alignment(struct dm_table *table, 607 struct queue_limits *limits) 608 { 609 /* 610 * This function uses arithmetic modulo the logical_block_size 611 * (in units of 512-byte sectors). 612 */ 613 unsigned short device_logical_block_size_sects = 614 limits->logical_block_size >> SECTOR_SHIFT; 615 616 /* 617 * Offset of the start of the next table entry, mod logical_block_size. 618 */ 619 unsigned short next_target_start = 0; 620 621 /* 622 * Given an aligned bio that extends beyond the end of a 623 * target, how many sectors must the next target handle? 624 */ 625 unsigned short remaining = 0; 626 627 struct dm_target *uninitialized_var(ti); 628 struct queue_limits ti_limits; 629 unsigned i = 0; 630 631 /* 632 * Check each entry in the table in turn. 633 */ 634 while (i < dm_table_get_num_targets(table)) { 635 ti = dm_table_get_target(table, i++); 636 637 blk_set_stacking_limits(&ti_limits); 638 639 /* combine all target devices' limits */ 640 if (ti->type->iterate_devices) 641 ti->type->iterate_devices(ti, dm_set_device_limits, 642 &ti_limits); 643 644 /* 645 * If the remaining sectors fall entirely within this 646 * table entry are they compatible with its logical_block_size? 647 */ 648 if (remaining < ti->len && 649 remaining & ((ti_limits.logical_block_size >> 650 SECTOR_SHIFT) - 1)) 651 break; /* Error */ 652 653 next_target_start = 654 (unsigned short) ((next_target_start + ti->len) & 655 (device_logical_block_size_sects - 1)); 656 remaining = next_target_start ? 657 device_logical_block_size_sects - next_target_start : 0; 658 } 659 660 if (remaining) { 661 DMWARN("%s: table line %u (start sect %llu len %llu) " 662 "not aligned to h/w logical block size %u", 663 dm_device_name(table->md), i, 664 (unsigned long long) ti->begin, 665 (unsigned long long) ti->len, 666 limits->logical_block_size); 667 return -EINVAL; 668 } 669 670 return 0; 671 } 672 673 int dm_table_add_target(struct dm_table *t, const char *type, 674 sector_t start, sector_t len, char *params) 675 { 676 int r = -EINVAL, argc; 677 char **argv; 678 struct dm_target *tgt; 679 680 if (t->singleton) { 681 DMERR("%s: target type %s must appear alone in table", 682 dm_device_name(t->md), t->targets->type->name); 683 return -EINVAL; 684 } 685 686 BUG_ON(t->num_targets >= t->num_allocated); 687 688 tgt = t->targets + t->num_targets; 689 memset(tgt, 0, sizeof(*tgt)); 690 691 if (!len) { 692 DMERR("%s: zero-length target", dm_device_name(t->md)); 693 return -EINVAL; 694 } 695 696 tgt->type = dm_get_target_type(type); 697 if (!tgt->type) { 698 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 699 type); 700 return -EINVAL; 701 } 702 703 if (dm_target_needs_singleton(tgt->type)) { 704 if (t->num_targets) { 705 DMERR("%s: target type %s must appear alone in table", 706 dm_device_name(t->md), type); 707 return -EINVAL; 708 } 709 t->singleton = true; 710 } 711 712 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 713 DMERR("%s: target type %s may not be included in read-only tables", 714 dm_device_name(t->md), type); 715 return -EINVAL; 716 } 717 718 if (t->immutable_target_type) { 719 if (t->immutable_target_type != tgt->type) { 720 DMERR("%s: immutable target type %s cannot be mixed with other target types", 721 dm_device_name(t->md), t->immutable_target_type->name); 722 return -EINVAL; 723 } 724 } else if (dm_target_is_immutable(tgt->type)) { 725 if (t->num_targets) { 726 DMERR("%s: immutable target type %s cannot be mixed with other target types", 727 dm_device_name(t->md), tgt->type->name); 728 return -EINVAL; 729 } 730 t->immutable_target_type = tgt->type; 731 } 732 733 tgt->table = t; 734 tgt->begin = start; 735 tgt->len = len; 736 tgt->error = "Unknown error"; 737 738 /* 739 * Does this target adjoin the previous one ? 740 */ 741 if (!adjoin(t, tgt)) { 742 tgt->error = "Gap in table"; 743 r = -EINVAL; 744 goto bad; 745 } 746 747 r = dm_split_args(&argc, &argv, params); 748 if (r) { 749 tgt->error = "couldn't split parameters (insufficient memory)"; 750 goto bad; 751 } 752 753 r = tgt->type->ctr(tgt, argc, argv); 754 kfree(argv); 755 if (r) 756 goto bad; 757 758 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 759 760 if (!tgt->num_discard_bios && tgt->discards_supported) 761 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 762 dm_device_name(t->md), type); 763 764 return 0; 765 766 bad: 767 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 768 dm_put_target_type(tgt->type); 769 return r; 770 } 771 772 /* 773 * Target argument parsing helpers. 774 */ 775 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 776 unsigned *value, char **error, unsigned grouped) 777 { 778 const char *arg_str = dm_shift_arg(arg_set); 779 char dummy; 780 781 if (!arg_str || 782 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 783 (*value < arg->min) || 784 (*value > arg->max) || 785 (grouped && arg_set->argc < *value)) { 786 *error = arg->error; 787 return -EINVAL; 788 } 789 790 return 0; 791 } 792 793 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 794 unsigned *value, char **error) 795 { 796 return validate_next_arg(arg, arg_set, value, error, 0); 797 } 798 EXPORT_SYMBOL(dm_read_arg); 799 800 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 801 unsigned *value, char **error) 802 { 803 return validate_next_arg(arg, arg_set, value, error, 1); 804 } 805 EXPORT_SYMBOL(dm_read_arg_group); 806 807 const char *dm_shift_arg(struct dm_arg_set *as) 808 { 809 char *r; 810 811 if (as->argc) { 812 as->argc--; 813 r = *as->argv; 814 as->argv++; 815 return r; 816 } 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(dm_shift_arg); 821 822 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 823 { 824 BUG_ON(as->argc < num_args); 825 as->argc -= num_args; 826 as->argv += num_args; 827 } 828 EXPORT_SYMBOL(dm_consume_args); 829 830 static bool __table_type_bio_based(unsigned table_type) 831 { 832 return (table_type == DM_TYPE_BIO_BASED || 833 table_type == DM_TYPE_DAX_BIO_BASED); 834 } 835 836 static bool __table_type_request_based(unsigned table_type) 837 { 838 return (table_type == DM_TYPE_REQUEST_BASED || 839 table_type == DM_TYPE_MQ_REQUEST_BASED); 840 } 841 842 void dm_table_set_type(struct dm_table *t, unsigned type) 843 { 844 t->type = type; 845 } 846 EXPORT_SYMBOL_GPL(dm_table_set_type); 847 848 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 849 sector_t start, sector_t len, void *data) 850 { 851 struct request_queue *q = bdev_get_queue(dev->bdev); 852 853 return q && blk_queue_dax(q); 854 } 855 856 static bool dm_table_supports_dax(struct dm_table *t) 857 { 858 struct dm_target *ti; 859 unsigned i = 0; 860 861 /* Ensure that all targets support DAX. */ 862 while (i < dm_table_get_num_targets(t)) { 863 ti = dm_table_get_target(t, i++); 864 865 if (!ti->type->direct_access) 866 return false; 867 868 if (!ti->type->iterate_devices || 869 !ti->type->iterate_devices(ti, device_supports_dax, NULL)) 870 return false; 871 } 872 873 return true; 874 } 875 876 static int dm_table_determine_type(struct dm_table *t) 877 { 878 unsigned i; 879 unsigned bio_based = 0, request_based = 0, hybrid = 0; 880 bool verify_blk_mq = false; 881 struct dm_target *tgt; 882 struct dm_dev_internal *dd; 883 struct list_head *devices = dm_table_get_devices(t); 884 unsigned live_md_type = dm_get_md_type(t->md); 885 886 if (t->type != DM_TYPE_NONE) { 887 /* target already set the table's type */ 888 if (t->type == DM_TYPE_BIO_BASED) 889 return 0; 890 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 891 goto verify_rq_based; 892 } 893 894 for (i = 0; i < t->num_targets; i++) { 895 tgt = t->targets + i; 896 if (dm_target_hybrid(tgt)) 897 hybrid = 1; 898 else if (dm_target_request_based(tgt)) 899 request_based = 1; 900 else 901 bio_based = 1; 902 903 if (bio_based && request_based) { 904 DMWARN("Inconsistent table: different target types" 905 " can't be mixed up"); 906 return -EINVAL; 907 } 908 } 909 910 if (hybrid && !bio_based && !request_based) { 911 /* 912 * The targets can work either way. 913 * Determine the type from the live device. 914 * Default to bio-based if device is new. 915 */ 916 if (__table_type_request_based(live_md_type)) 917 request_based = 1; 918 else 919 bio_based = 1; 920 } 921 922 if (bio_based) { 923 /* We must use this table as bio-based */ 924 t->type = DM_TYPE_BIO_BASED; 925 if (dm_table_supports_dax(t) || 926 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) 927 t->type = DM_TYPE_DAX_BIO_BASED; 928 return 0; 929 } 930 931 BUG_ON(!request_based); /* No targets in this table */ 932 933 if (list_empty(devices) && __table_type_request_based(live_md_type)) { 934 /* inherit live MD type */ 935 t->type = live_md_type; 936 return 0; 937 } 938 939 /* 940 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by 941 * having a compatible target use dm_table_set_type. 942 */ 943 t->type = DM_TYPE_REQUEST_BASED; 944 945 verify_rq_based: 946 /* 947 * Request-based dm supports only tables that have a single target now. 948 * To support multiple targets, request splitting support is needed, 949 * and that needs lots of changes in the block-layer. 950 * (e.g. request completion process for partial completion.) 951 */ 952 if (t->num_targets > 1) { 953 DMWARN("Request-based dm doesn't support multiple targets yet"); 954 return -EINVAL; 955 } 956 957 /* Non-request-stackable devices can't be used for request-based dm */ 958 list_for_each_entry(dd, devices, list) { 959 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 960 961 if (!blk_queue_stackable(q)) { 962 DMERR("table load rejected: including" 963 " non-request-stackable devices"); 964 return -EINVAL; 965 } 966 967 if (q->mq_ops) 968 verify_blk_mq = true; 969 } 970 971 if (verify_blk_mq) { 972 /* verify _all_ devices in the table are blk-mq devices */ 973 list_for_each_entry(dd, devices, list) 974 if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) { 975 DMERR("table load rejected: not all devices" 976 " are blk-mq request-stackable"); 977 return -EINVAL; 978 } 979 980 t->all_blk_mq = true; 981 } 982 983 return 0; 984 } 985 986 unsigned dm_table_get_type(struct dm_table *t) 987 { 988 return t->type; 989 } 990 991 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 992 { 993 return t->immutable_target_type; 994 } 995 996 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 997 { 998 /* Immutable target is implicitly a singleton */ 999 if (t->num_targets > 1 || 1000 !dm_target_is_immutable(t->targets[0].type)) 1001 return NULL; 1002 1003 return t->targets; 1004 } 1005 1006 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1007 { 1008 struct dm_target *uninitialized_var(ti); 1009 unsigned i = 0; 1010 1011 while (i < dm_table_get_num_targets(t)) { 1012 ti = dm_table_get_target(t, i++); 1013 if (dm_target_is_wildcard(ti->type)) 1014 return ti; 1015 } 1016 1017 return NULL; 1018 } 1019 1020 bool dm_table_bio_based(struct dm_table *t) 1021 { 1022 return __table_type_bio_based(dm_table_get_type(t)); 1023 } 1024 1025 bool dm_table_request_based(struct dm_table *t) 1026 { 1027 return __table_type_request_based(dm_table_get_type(t)); 1028 } 1029 1030 bool dm_table_all_blk_mq_devices(struct dm_table *t) 1031 { 1032 return t->all_blk_mq; 1033 } 1034 1035 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1036 { 1037 unsigned type = dm_table_get_type(t); 1038 unsigned per_io_data_size = 0; 1039 struct dm_target *tgt; 1040 unsigned i; 1041 1042 if (unlikely(type == DM_TYPE_NONE)) { 1043 DMWARN("no table type is set, can't allocate mempools"); 1044 return -EINVAL; 1045 } 1046 1047 if (__table_type_bio_based(type)) 1048 for (i = 0; i < t->num_targets; i++) { 1049 tgt = t->targets + i; 1050 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size); 1051 } 1052 1053 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size); 1054 if (!t->mempools) 1055 return -ENOMEM; 1056 1057 return 0; 1058 } 1059 1060 void dm_table_free_md_mempools(struct dm_table *t) 1061 { 1062 dm_free_md_mempools(t->mempools); 1063 t->mempools = NULL; 1064 } 1065 1066 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1067 { 1068 return t->mempools; 1069 } 1070 1071 static int setup_indexes(struct dm_table *t) 1072 { 1073 int i; 1074 unsigned int total = 0; 1075 sector_t *indexes; 1076 1077 /* allocate the space for *all* the indexes */ 1078 for (i = t->depth - 2; i >= 0; i--) { 1079 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1080 total += t->counts[i]; 1081 } 1082 1083 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1084 if (!indexes) 1085 return -ENOMEM; 1086 1087 /* set up internal nodes, bottom-up */ 1088 for (i = t->depth - 2; i >= 0; i--) { 1089 t->index[i] = indexes; 1090 indexes += (KEYS_PER_NODE * t->counts[i]); 1091 setup_btree_index(i, t); 1092 } 1093 1094 return 0; 1095 } 1096 1097 /* 1098 * Builds the btree to index the map. 1099 */ 1100 static int dm_table_build_index(struct dm_table *t) 1101 { 1102 int r = 0; 1103 unsigned int leaf_nodes; 1104 1105 /* how many indexes will the btree have ? */ 1106 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1107 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1108 1109 /* leaf layer has already been set up */ 1110 t->counts[t->depth - 1] = leaf_nodes; 1111 t->index[t->depth - 1] = t->highs; 1112 1113 if (t->depth >= 2) 1114 r = setup_indexes(t); 1115 1116 return r; 1117 } 1118 1119 static bool integrity_profile_exists(struct gendisk *disk) 1120 { 1121 return !!blk_get_integrity(disk); 1122 } 1123 1124 /* 1125 * Get a disk whose integrity profile reflects the table's profile. 1126 * Returns NULL if integrity support was inconsistent or unavailable. 1127 */ 1128 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1129 { 1130 struct list_head *devices = dm_table_get_devices(t); 1131 struct dm_dev_internal *dd = NULL; 1132 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1133 1134 list_for_each_entry(dd, devices, list) { 1135 template_disk = dd->dm_dev->bdev->bd_disk; 1136 if (!integrity_profile_exists(template_disk)) 1137 goto no_integrity; 1138 else if (prev_disk && 1139 blk_integrity_compare(prev_disk, template_disk) < 0) 1140 goto no_integrity; 1141 prev_disk = template_disk; 1142 } 1143 1144 return template_disk; 1145 1146 no_integrity: 1147 if (prev_disk) 1148 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1149 dm_device_name(t->md), 1150 prev_disk->disk_name, 1151 template_disk->disk_name); 1152 return NULL; 1153 } 1154 1155 /* 1156 * Register the mapped device for blk_integrity support if the 1157 * underlying devices have an integrity profile. But all devices may 1158 * not have matching profiles (checking all devices isn't reliable 1159 * during table load because this table may use other DM device(s) which 1160 * must be resumed before they will have an initialized integity 1161 * profile). Consequently, stacked DM devices force a 2 stage integrity 1162 * profile validation: First pass during table load, final pass during 1163 * resume. 1164 */ 1165 static int dm_table_register_integrity(struct dm_table *t) 1166 { 1167 struct mapped_device *md = t->md; 1168 struct gendisk *template_disk = NULL; 1169 1170 template_disk = dm_table_get_integrity_disk(t); 1171 if (!template_disk) 1172 return 0; 1173 1174 if (!integrity_profile_exists(dm_disk(md))) { 1175 t->integrity_supported = true; 1176 /* 1177 * Register integrity profile during table load; we can do 1178 * this because the final profile must match during resume. 1179 */ 1180 blk_integrity_register(dm_disk(md), 1181 blk_get_integrity(template_disk)); 1182 return 0; 1183 } 1184 1185 /* 1186 * If DM device already has an initialized integrity 1187 * profile the new profile should not conflict. 1188 */ 1189 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1190 DMWARN("%s: conflict with existing integrity profile: " 1191 "%s profile mismatch", 1192 dm_device_name(t->md), 1193 template_disk->disk_name); 1194 return 1; 1195 } 1196 1197 /* Preserve existing integrity profile */ 1198 t->integrity_supported = true; 1199 return 0; 1200 } 1201 1202 /* 1203 * Prepares the table for use by building the indices, 1204 * setting the type, and allocating mempools. 1205 */ 1206 int dm_table_complete(struct dm_table *t) 1207 { 1208 int r; 1209 1210 r = dm_table_determine_type(t); 1211 if (r) { 1212 DMERR("unable to determine table type"); 1213 return r; 1214 } 1215 1216 r = dm_table_build_index(t); 1217 if (r) { 1218 DMERR("unable to build btrees"); 1219 return r; 1220 } 1221 1222 r = dm_table_register_integrity(t); 1223 if (r) { 1224 DMERR("could not register integrity profile."); 1225 return r; 1226 } 1227 1228 r = dm_table_alloc_md_mempools(t, t->md); 1229 if (r) 1230 DMERR("unable to allocate mempools"); 1231 1232 return r; 1233 } 1234 1235 static DEFINE_MUTEX(_event_lock); 1236 void dm_table_event_callback(struct dm_table *t, 1237 void (*fn)(void *), void *context) 1238 { 1239 mutex_lock(&_event_lock); 1240 t->event_fn = fn; 1241 t->event_context = context; 1242 mutex_unlock(&_event_lock); 1243 } 1244 1245 void dm_table_event(struct dm_table *t) 1246 { 1247 /* 1248 * You can no longer call dm_table_event() from interrupt 1249 * context, use a bottom half instead. 1250 */ 1251 BUG_ON(in_interrupt()); 1252 1253 mutex_lock(&_event_lock); 1254 if (t->event_fn) 1255 t->event_fn(t->event_context); 1256 mutex_unlock(&_event_lock); 1257 } 1258 EXPORT_SYMBOL(dm_table_event); 1259 1260 sector_t dm_table_get_size(struct dm_table *t) 1261 { 1262 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1263 } 1264 EXPORT_SYMBOL(dm_table_get_size); 1265 1266 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1267 { 1268 if (index >= t->num_targets) 1269 return NULL; 1270 1271 return t->targets + index; 1272 } 1273 1274 /* 1275 * Search the btree for the correct target. 1276 * 1277 * Caller should check returned pointer with dm_target_is_valid() 1278 * to trap I/O beyond end of device. 1279 */ 1280 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1281 { 1282 unsigned int l, n = 0, k = 0; 1283 sector_t *node; 1284 1285 for (l = 0; l < t->depth; l++) { 1286 n = get_child(n, k); 1287 node = get_node(t, l, n); 1288 1289 for (k = 0; k < KEYS_PER_NODE; k++) 1290 if (node[k] >= sector) 1291 break; 1292 } 1293 1294 return &t->targets[(KEYS_PER_NODE * n) + k]; 1295 } 1296 1297 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1298 sector_t start, sector_t len, void *data) 1299 { 1300 unsigned *num_devices = data; 1301 1302 (*num_devices)++; 1303 1304 return 0; 1305 } 1306 1307 /* 1308 * Check whether a table has no data devices attached using each 1309 * target's iterate_devices method. 1310 * Returns false if the result is unknown because a target doesn't 1311 * support iterate_devices. 1312 */ 1313 bool dm_table_has_no_data_devices(struct dm_table *table) 1314 { 1315 struct dm_target *uninitialized_var(ti); 1316 unsigned i = 0, num_devices = 0; 1317 1318 while (i < dm_table_get_num_targets(table)) { 1319 ti = dm_table_get_target(table, i++); 1320 1321 if (!ti->type->iterate_devices) 1322 return false; 1323 1324 ti->type->iterate_devices(ti, count_device, &num_devices); 1325 if (num_devices) 1326 return false; 1327 } 1328 1329 return true; 1330 } 1331 1332 /* 1333 * Establish the new table's queue_limits and validate them. 1334 */ 1335 int dm_calculate_queue_limits(struct dm_table *table, 1336 struct queue_limits *limits) 1337 { 1338 struct dm_target *uninitialized_var(ti); 1339 struct queue_limits ti_limits; 1340 unsigned i = 0; 1341 1342 blk_set_stacking_limits(limits); 1343 1344 while (i < dm_table_get_num_targets(table)) { 1345 blk_set_stacking_limits(&ti_limits); 1346 1347 ti = dm_table_get_target(table, i++); 1348 1349 if (!ti->type->iterate_devices) 1350 goto combine_limits; 1351 1352 /* 1353 * Combine queue limits of all the devices this target uses. 1354 */ 1355 ti->type->iterate_devices(ti, dm_set_device_limits, 1356 &ti_limits); 1357 1358 /* Set I/O hints portion of queue limits */ 1359 if (ti->type->io_hints) 1360 ti->type->io_hints(ti, &ti_limits); 1361 1362 /* 1363 * Check each device area is consistent with the target's 1364 * overall queue limits. 1365 */ 1366 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1367 &ti_limits)) 1368 return -EINVAL; 1369 1370 combine_limits: 1371 /* 1372 * Merge this target's queue limits into the overall limits 1373 * for the table. 1374 */ 1375 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1376 DMWARN("%s: adding target device " 1377 "(start sect %llu len %llu) " 1378 "caused an alignment inconsistency", 1379 dm_device_name(table->md), 1380 (unsigned long long) ti->begin, 1381 (unsigned long long) ti->len); 1382 } 1383 1384 return validate_hardware_logical_block_alignment(table, limits); 1385 } 1386 1387 /* 1388 * Verify that all devices have an integrity profile that matches the 1389 * DM device's registered integrity profile. If the profiles don't 1390 * match then unregister the DM device's integrity profile. 1391 */ 1392 static void dm_table_verify_integrity(struct dm_table *t) 1393 { 1394 struct gendisk *template_disk = NULL; 1395 1396 if (t->integrity_supported) { 1397 /* 1398 * Verify that the original integrity profile 1399 * matches all the devices in this table. 1400 */ 1401 template_disk = dm_table_get_integrity_disk(t); 1402 if (template_disk && 1403 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1404 return; 1405 } 1406 1407 if (integrity_profile_exists(dm_disk(t->md))) { 1408 DMWARN("%s: unable to establish an integrity profile", 1409 dm_device_name(t->md)); 1410 blk_integrity_unregister(dm_disk(t->md)); 1411 } 1412 } 1413 1414 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1415 sector_t start, sector_t len, void *data) 1416 { 1417 unsigned long flush = (unsigned long) data; 1418 struct request_queue *q = bdev_get_queue(dev->bdev); 1419 1420 return q && (q->queue_flags & flush); 1421 } 1422 1423 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1424 { 1425 struct dm_target *ti; 1426 unsigned i = 0; 1427 1428 /* 1429 * Require at least one underlying device to support flushes. 1430 * t->devices includes internal dm devices such as mirror logs 1431 * so we need to use iterate_devices here, which targets 1432 * supporting flushes must provide. 1433 */ 1434 while (i < dm_table_get_num_targets(t)) { 1435 ti = dm_table_get_target(t, i++); 1436 1437 if (!ti->num_flush_bios) 1438 continue; 1439 1440 if (ti->flush_supported) 1441 return true; 1442 1443 if (ti->type->iterate_devices && 1444 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1445 return true; 1446 } 1447 1448 return false; 1449 } 1450 1451 static bool dm_table_discard_zeroes_data(struct dm_table *t) 1452 { 1453 struct dm_target *ti; 1454 unsigned i = 0; 1455 1456 /* Ensure that all targets supports discard_zeroes_data. */ 1457 while (i < dm_table_get_num_targets(t)) { 1458 ti = dm_table_get_target(t, i++); 1459 1460 if (ti->discard_zeroes_data_unsupported) 1461 return false; 1462 } 1463 1464 return true; 1465 } 1466 1467 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1468 sector_t start, sector_t len, void *data) 1469 { 1470 struct request_queue *q = bdev_get_queue(dev->bdev); 1471 1472 return q && blk_queue_nonrot(q); 1473 } 1474 1475 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1476 sector_t start, sector_t len, void *data) 1477 { 1478 struct request_queue *q = bdev_get_queue(dev->bdev); 1479 1480 return q && !blk_queue_add_random(q); 1481 } 1482 1483 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev, 1484 sector_t start, sector_t len, void *data) 1485 { 1486 struct request_queue *q = bdev_get_queue(dev->bdev); 1487 1488 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags); 1489 } 1490 1491 static bool dm_table_all_devices_attribute(struct dm_table *t, 1492 iterate_devices_callout_fn func) 1493 { 1494 struct dm_target *ti; 1495 unsigned i = 0; 1496 1497 while (i < dm_table_get_num_targets(t)) { 1498 ti = dm_table_get_target(t, i++); 1499 1500 if (!ti->type->iterate_devices || 1501 !ti->type->iterate_devices(ti, func, NULL)) 1502 return false; 1503 } 1504 1505 return true; 1506 } 1507 1508 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1509 sector_t start, sector_t len, void *data) 1510 { 1511 struct request_queue *q = bdev_get_queue(dev->bdev); 1512 1513 return q && !q->limits.max_write_same_sectors; 1514 } 1515 1516 static bool dm_table_supports_write_same(struct dm_table *t) 1517 { 1518 struct dm_target *ti; 1519 unsigned i = 0; 1520 1521 while (i < dm_table_get_num_targets(t)) { 1522 ti = dm_table_get_target(t, i++); 1523 1524 if (!ti->num_write_same_bios) 1525 return false; 1526 1527 if (!ti->type->iterate_devices || 1528 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1529 return false; 1530 } 1531 1532 return true; 1533 } 1534 1535 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1536 sector_t start, sector_t len, void *data) 1537 { 1538 struct request_queue *q = bdev_get_queue(dev->bdev); 1539 1540 return q && blk_queue_discard(q); 1541 } 1542 1543 static bool dm_table_supports_discards(struct dm_table *t) 1544 { 1545 struct dm_target *ti; 1546 unsigned i = 0; 1547 1548 /* 1549 * Unless any target used by the table set discards_supported, 1550 * require at least one underlying device to support discards. 1551 * t->devices includes internal dm devices such as mirror logs 1552 * so we need to use iterate_devices here, which targets 1553 * supporting discard selectively must provide. 1554 */ 1555 while (i < dm_table_get_num_targets(t)) { 1556 ti = dm_table_get_target(t, i++); 1557 1558 if (!ti->num_discard_bios) 1559 continue; 1560 1561 if (ti->discards_supported) 1562 return true; 1563 1564 if (ti->type->iterate_devices && 1565 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1566 return true; 1567 } 1568 1569 return false; 1570 } 1571 1572 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1573 struct queue_limits *limits) 1574 { 1575 bool wc = false, fua = false; 1576 1577 /* 1578 * Copy table's limits to the DM device's request_queue 1579 */ 1580 q->limits = *limits; 1581 1582 if (!dm_table_supports_discards(t)) 1583 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1584 else 1585 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1586 1587 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1588 wc = true; 1589 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1590 fua = true; 1591 } 1592 blk_queue_write_cache(q, wc, fua); 1593 1594 if (!dm_table_discard_zeroes_data(t)) 1595 q->limits.discard_zeroes_data = 0; 1596 1597 /* Ensure that all underlying devices are non-rotational. */ 1598 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1599 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1600 else 1601 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1602 1603 if (!dm_table_supports_write_same(t)) 1604 q->limits.max_write_same_sectors = 0; 1605 1606 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge)) 1607 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1608 else 1609 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1610 1611 dm_table_verify_integrity(t); 1612 1613 /* 1614 * Determine whether or not this queue's I/O timings contribute 1615 * to the entropy pool, Only request-based targets use this. 1616 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1617 * have it set. 1618 */ 1619 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1620 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1621 1622 /* 1623 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1624 * visible to other CPUs because, once the flag is set, incoming bios 1625 * are processed by request-based dm, which refers to the queue 1626 * settings. 1627 * Until the flag set, bios are passed to bio-based dm and queued to 1628 * md->deferred where queue settings are not needed yet. 1629 * Those bios are passed to request-based dm at the resume time. 1630 */ 1631 smp_mb(); 1632 if (dm_table_request_based(t)) 1633 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1634 } 1635 1636 unsigned int dm_table_get_num_targets(struct dm_table *t) 1637 { 1638 return t->num_targets; 1639 } 1640 1641 struct list_head *dm_table_get_devices(struct dm_table *t) 1642 { 1643 return &t->devices; 1644 } 1645 1646 fmode_t dm_table_get_mode(struct dm_table *t) 1647 { 1648 return t->mode; 1649 } 1650 EXPORT_SYMBOL(dm_table_get_mode); 1651 1652 enum suspend_mode { 1653 PRESUSPEND, 1654 PRESUSPEND_UNDO, 1655 POSTSUSPEND, 1656 }; 1657 1658 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1659 { 1660 int i = t->num_targets; 1661 struct dm_target *ti = t->targets; 1662 1663 while (i--) { 1664 switch (mode) { 1665 case PRESUSPEND: 1666 if (ti->type->presuspend) 1667 ti->type->presuspend(ti); 1668 break; 1669 case PRESUSPEND_UNDO: 1670 if (ti->type->presuspend_undo) 1671 ti->type->presuspend_undo(ti); 1672 break; 1673 case POSTSUSPEND: 1674 if (ti->type->postsuspend) 1675 ti->type->postsuspend(ti); 1676 break; 1677 } 1678 ti++; 1679 } 1680 } 1681 1682 void dm_table_presuspend_targets(struct dm_table *t) 1683 { 1684 if (!t) 1685 return; 1686 1687 suspend_targets(t, PRESUSPEND); 1688 } 1689 1690 void dm_table_presuspend_undo_targets(struct dm_table *t) 1691 { 1692 if (!t) 1693 return; 1694 1695 suspend_targets(t, PRESUSPEND_UNDO); 1696 } 1697 1698 void dm_table_postsuspend_targets(struct dm_table *t) 1699 { 1700 if (!t) 1701 return; 1702 1703 suspend_targets(t, POSTSUSPEND); 1704 } 1705 1706 int dm_table_resume_targets(struct dm_table *t) 1707 { 1708 int i, r = 0; 1709 1710 for (i = 0; i < t->num_targets; i++) { 1711 struct dm_target *ti = t->targets + i; 1712 1713 if (!ti->type->preresume) 1714 continue; 1715 1716 r = ti->type->preresume(ti); 1717 if (r) { 1718 DMERR("%s: %s: preresume failed, error = %d", 1719 dm_device_name(t->md), ti->type->name, r); 1720 return r; 1721 } 1722 } 1723 1724 for (i = 0; i < t->num_targets; i++) { 1725 struct dm_target *ti = t->targets + i; 1726 1727 if (ti->type->resume) 1728 ti->type->resume(ti); 1729 } 1730 1731 return 0; 1732 } 1733 1734 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1735 { 1736 list_add(&cb->list, &t->target_callbacks); 1737 } 1738 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1739 1740 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1741 { 1742 struct dm_dev_internal *dd; 1743 struct list_head *devices = dm_table_get_devices(t); 1744 struct dm_target_callbacks *cb; 1745 int r = 0; 1746 1747 list_for_each_entry(dd, devices, list) { 1748 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 1749 char b[BDEVNAME_SIZE]; 1750 1751 if (likely(q)) 1752 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1753 else 1754 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1755 dm_device_name(t->md), 1756 bdevname(dd->dm_dev->bdev, b)); 1757 } 1758 1759 list_for_each_entry(cb, &t->target_callbacks, list) 1760 if (cb->congested_fn) 1761 r |= cb->congested_fn(cb, bdi_bits); 1762 1763 return r; 1764 } 1765 1766 struct mapped_device *dm_table_get_md(struct dm_table *t) 1767 { 1768 return t->md; 1769 } 1770 EXPORT_SYMBOL(dm_table_get_md); 1771 1772 void dm_table_run_md_queue_async(struct dm_table *t) 1773 { 1774 struct mapped_device *md; 1775 struct request_queue *queue; 1776 unsigned long flags; 1777 1778 if (!dm_table_request_based(t)) 1779 return; 1780 1781 md = dm_table_get_md(t); 1782 queue = dm_get_md_queue(md); 1783 if (queue) { 1784 if (queue->mq_ops) 1785 blk_mq_run_hw_queues(queue, true); 1786 else { 1787 spin_lock_irqsave(queue->queue_lock, flags); 1788 blk_run_queue_async(queue); 1789 spin_unlock_irqrestore(queue->queue_lock, flags); 1790 } 1791 } 1792 } 1793 EXPORT_SYMBOL(dm_table_run_md_queue_async); 1794 1795