1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 #include <linux/blk-mq.h> 22 #include <linux/mount.h> 23 24 #define DM_MSG_PREFIX "table" 25 26 #define MAX_DEPTH 16 27 #define NODE_SIZE L1_CACHE_BYTES 28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 30 31 struct dm_table { 32 struct mapped_device *md; 33 enum dm_queue_mode type; 34 35 /* btree table */ 36 unsigned int depth; 37 unsigned int counts[MAX_DEPTH]; /* in nodes */ 38 sector_t *index[MAX_DEPTH]; 39 40 unsigned int num_targets; 41 unsigned int num_allocated; 42 sector_t *highs; 43 struct dm_target *targets; 44 45 struct target_type *immutable_target_type; 46 47 bool integrity_supported:1; 48 bool singleton:1; 49 bool all_blk_mq:1; 50 unsigned integrity_added:1; 51 52 /* 53 * Indicates the rw permissions for the new logical 54 * device. This should be a combination of FMODE_READ 55 * and FMODE_WRITE. 56 */ 57 fmode_t mode; 58 59 /* a list of devices used by this table */ 60 struct list_head devices; 61 62 /* events get handed up using this callback */ 63 void (*event_fn)(void *); 64 void *event_context; 65 66 struct dm_md_mempools *mempools; 67 68 struct list_head target_callbacks; 69 }; 70 71 /* 72 * Similar to ceiling(log_size(n)) 73 */ 74 static unsigned int int_log(unsigned int n, unsigned int base) 75 { 76 int result = 0; 77 78 while (n > 1) { 79 n = dm_div_up(n, base); 80 result++; 81 } 82 83 return result; 84 } 85 86 /* 87 * Calculate the index of the child node of the n'th node k'th key. 88 */ 89 static inline unsigned int get_child(unsigned int n, unsigned int k) 90 { 91 return (n * CHILDREN_PER_NODE) + k; 92 } 93 94 /* 95 * Return the n'th node of level l from table t. 96 */ 97 static inline sector_t *get_node(struct dm_table *t, 98 unsigned int l, unsigned int n) 99 { 100 return t->index[l] + (n * KEYS_PER_NODE); 101 } 102 103 /* 104 * Return the highest key that you could lookup from the n'th 105 * node on level l of the btree. 106 */ 107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 108 { 109 for (; l < t->depth - 1; l++) 110 n = get_child(n, CHILDREN_PER_NODE - 1); 111 112 if (n >= t->counts[l]) 113 return (sector_t) - 1; 114 115 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 116 } 117 118 /* 119 * Fills in a level of the btree based on the highs of the level 120 * below it. 121 */ 122 static int setup_btree_index(unsigned int l, struct dm_table *t) 123 { 124 unsigned int n, k; 125 sector_t *node; 126 127 for (n = 0U; n < t->counts[l]; n++) { 128 node = get_node(t, l, n); 129 130 for (k = 0U; k < KEYS_PER_NODE; k++) 131 node[k] = high(t, l + 1, get_child(n, k)); 132 } 133 134 return 0; 135 } 136 137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 138 { 139 unsigned long size; 140 void *addr; 141 142 /* 143 * Check that we're not going to overflow. 144 */ 145 if (nmemb > (ULONG_MAX / elem_size)) 146 return NULL; 147 148 size = nmemb * elem_size; 149 addr = vzalloc(size); 150 151 return addr; 152 } 153 EXPORT_SYMBOL(dm_vcalloc); 154 155 /* 156 * highs, and targets are managed as dynamic arrays during a 157 * table load. 158 */ 159 static int alloc_targets(struct dm_table *t, unsigned int num) 160 { 161 sector_t *n_highs; 162 struct dm_target *n_targets; 163 164 /* 165 * Allocate both the target array and offset array at once. 166 * Append an empty entry to catch sectors beyond the end of 167 * the device. 168 */ 169 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 170 sizeof(sector_t)); 171 if (!n_highs) 172 return -ENOMEM; 173 174 n_targets = (struct dm_target *) (n_highs + num); 175 176 memset(n_highs, -1, sizeof(*n_highs) * num); 177 vfree(t->highs); 178 179 t->num_allocated = num; 180 t->highs = n_highs; 181 t->targets = n_targets; 182 183 return 0; 184 } 185 186 int dm_table_create(struct dm_table **result, fmode_t mode, 187 unsigned num_targets, struct mapped_device *md) 188 { 189 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 190 191 if (!t) 192 return -ENOMEM; 193 194 INIT_LIST_HEAD(&t->devices); 195 INIT_LIST_HEAD(&t->target_callbacks); 196 197 if (!num_targets) 198 num_targets = KEYS_PER_NODE; 199 200 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 201 202 if (!num_targets) { 203 kfree(t); 204 return -ENOMEM; 205 } 206 207 if (alloc_targets(t, num_targets)) { 208 kfree(t); 209 return -ENOMEM; 210 } 211 212 t->type = DM_TYPE_NONE; 213 t->mode = mode; 214 t->md = md; 215 *result = t; 216 return 0; 217 } 218 219 static void free_devices(struct list_head *devices, struct mapped_device *md) 220 { 221 struct list_head *tmp, *next; 222 223 list_for_each_safe(tmp, next, devices) { 224 struct dm_dev_internal *dd = 225 list_entry(tmp, struct dm_dev_internal, list); 226 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", 227 dm_device_name(md), dd->dm_dev->name); 228 dm_put_table_device(md, dd->dm_dev); 229 kfree(dd); 230 } 231 } 232 233 void dm_table_destroy(struct dm_table *t) 234 { 235 unsigned int i; 236 237 if (!t) 238 return; 239 240 /* free the indexes */ 241 if (t->depth >= 2) 242 vfree(t->index[t->depth - 2]); 243 244 /* free the targets */ 245 for (i = 0; i < t->num_targets; i++) { 246 struct dm_target *tgt = t->targets + i; 247 248 if (tgt->type->dtr) 249 tgt->type->dtr(tgt); 250 251 dm_put_target_type(tgt->type); 252 } 253 254 vfree(t->highs); 255 256 /* free the device list */ 257 free_devices(&t->devices, t->md); 258 259 dm_free_md_mempools(t->mempools); 260 261 kfree(t); 262 } 263 264 /* 265 * See if we've already got a device in the list. 266 */ 267 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 268 { 269 struct dm_dev_internal *dd; 270 271 list_for_each_entry (dd, l, list) 272 if (dd->dm_dev->bdev->bd_dev == dev) 273 return dd; 274 275 return NULL; 276 } 277 278 /* 279 * If possible, this checks an area of a destination device is invalid. 280 */ 281 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 282 sector_t start, sector_t len, void *data) 283 { 284 struct request_queue *q; 285 struct queue_limits *limits = data; 286 struct block_device *bdev = dev->bdev; 287 sector_t dev_size = 288 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 289 unsigned short logical_block_size_sectors = 290 limits->logical_block_size >> SECTOR_SHIFT; 291 char b[BDEVNAME_SIZE]; 292 293 /* 294 * Some devices exist without request functions, 295 * such as loop devices not yet bound to backing files. 296 * Forbid the use of such devices. 297 */ 298 q = bdev_get_queue(bdev); 299 if (!q || !q->make_request_fn) { 300 DMWARN("%s: %s is not yet initialised: " 301 "start=%llu, len=%llu, dev_size=%llu", 302 dm_device_name(ti->table->md), bdevname(bdev, b), 303 (unsigned long long)start, 304 (unsigned long long)len, 305 (unsigned long long)dev_size); 306 return 1; 307 } 308 309 if (!dev_size) 310 return 0; 311 312 if ((start >= dev_size) || (start + len > dev_size)) { 313 DMWARN("%s: %s too small for target: " 314 "start=%llu, len=%llu, dev_size=%llu", 315 dm_device_name(ti->table->md), bdevname(bdev, b), 316 (unsigned long long)start, 317 (unsigned long long)len, 318 (unsigned long long)dev_size); 319 return 1; 320 } 321 322 if (logical_block_size_sectors <= 1) 323 return 0; 324 325 if (start & (logical_block_size_sectors - 1)) { 326 DMWARN("%s: start=%llu not aligned to h/w " 327 "logical block size %u of %s", 328 dm_device_name(ti->table->md), 329 (unsigned long long)start, 330 limits->logical_block_size, bdevname(bdev, b)); 331 return 1; 332 } 333 334 if (len & (logical_block_size_sectors - 1)) { 335 DMWARN("%s: len=%llu not aligned to h/w " 336 "logical block size %u of %s", 337 dm_device_name(ti->table->md), 338 (unsigned long long)len, 339 limits->logical_block_size, bdevname(bdev, b)); 340 return 1; 341 } 342 343 return 0; 344 } 345 346 /* 347 * This upgrades the mode on an already open dm_dev, being 348 * careful to leave things as they were if we fail to reopen the 349 * device and not to touch the existing bdev field in case 350 * it is accessed concurrently inside dm_table_any_congested(). 351 */ 352 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 353 struct mapped_device *md) 354 { 355 int r; 356 struct dm_dev *old_dev, *new_dev; 357 358 old_dev = dd->dm_dev; 359 360 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, 361 dd->dm_dev->mode | new_mode, &new_dev); 362 if (r) 363 return r; 364 365 dd->dm_dev = new_dev; 366 dm_put_table_device(md, old_dev); 367 368 return 0; 369 } 370 371 /* 372 * Convert the path to a device 373 */ 374 dev_t dm_get_dev_t(const char *path) 375 { 376 dev_t dev; 377 struct block_device *bdev; 378 379 bdev = lookup_bdev(path); 380 if (IS_ERR(bdev)) 381 dev = name_to_dev_t(path); 382 else { 383 dev = bdev->bd_dev; 384 bdput(bdev); 385 } 386 387 return dev; 388 } 389 EXPORT_SYMBOL_GPL(dm_get_dev_t); 390 391 /* 392 * Add a device to the list, or just increment the usage count if 393 * it's already present. 394 */ 395 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 396 struct dm_dev **result) 397 { 398 int r; 399 dev_t dev; 400 struct dm_dev_internal *dd; 401 struct dm_table *t = ti->table; 402 403 BUG_ON(!t); 404 405 dev = dm_get_dev_t(path); 406 if (!dev) 407 return -ENODEV; 408 409 dd = find_device(&t->devices, dev); 410 if (!dd) { 411 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 412 if (!dd) 413 return -ENOMEM; 414 415 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) { 416 kfree(dd); 417 return r; 418 } 419 420 atomic_set(&dd->count, 0); 421 list_add(&dd->list, &t->devices); 422 423 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { 424 r = upgrade_mode(dd, mode, t->md); 425 if (r) 426 return r; 427 } 428 atomic_inc(&dd->count); 429 430 *result = dd->dm_dev; 431 return 0; 432 } 433 EXPORT_SYMBOL(dm_get_device); 434 435 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 436 sector_t start, sector_t len, void *data) 437 { 438 struct queue_limits *limits = data; 439 struct block_device *bdev = dev->bdev; 440 struct request_queue *q = bdev_get_queue(bdev); 441 char b[BDEVNAME_SIZE]; 442 443 if (unlikely(!q)) { 444 DMWARN("%s: Cannot set limits for nonexistent device %s", 445 dm_device_name(ti->table->md), bdevname(bdev, b)); 446 return 0; 447 } 448 449 if (bdev_stack_limits(limits, bdev, start) < 0) 450 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 451 "physical_block_size=%u, logical_block_size=%u, " 452 "alignment_offset=%u, start=%llu", 453 dm_device_name(ti->table->md), bdevname(bdev, b), 454 q->limits.physical_block_size, 455 q->limits.logical_block_size, 456 q->limits.alignment_offset, 457 (unsigned long long) start << SECTOR_SHIFT); 458 459 return 0; 460 } 461 462 /* 463 * Decrement a device's use count and remove it if necessary. 464 */ 465 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 466 { 467 int found = 0; 468 struct list_head *devices = &ti->table->devices; 469 struct dm_dev_internal *dd; 470 471 list_for_each_entry(dd, devices, list) { 472 if (dd->dm_dev == d) { 473 found = 1; 474 break; 475 } 476 } 477 if (!found) { 478 DMWARN("%s: device %s not in table devices list", 479 dm_device_name(ti->table->md), d->name); 480 return; 481 } 482 if (atomic_dec_and_test(&dd->count)) { 483 dm_put_table_device(ti->table->md, d); 484 list_del(&dd->list); 485 kfree(dd); 486 } 487 } 488 EXPORT_SYMBOL(dm_put_device); 489 490 /* 491 * Checks to see if the target joins onto the end of the table. 492 */ 493 static int adjoin(struct dm_table *table, struct dm_target *ti) 494 { 495 struct dm_target *prev; 496 497 if (!table->num_targets) 498 return !ti->begin; 499 500 prev = &table->targets[table->num_targets - 1]; 501 return (ti->begin == (prev->begin + prev->len)); 502 } 503 504 /* 505 * Used to dynamically allocate the arg array. 506 * 507 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must 508 * process messages even if some device is suspended. These messages have a 509 * small fixed number of arguments. 510 * 511 * On the other hand, dm-switch needs to process bulk data using messages and 512 * excessive use of GFP_NOIO could cause trouble. 513 */ 514 static char **realloc_argv(unsigned *array_size, char **old_argv) 515 { 516 char **argv; 517 unsigned new_size; 518 gfp_t gfp; 519 520 if (*array_size) { 521 new_size = *array_size * 2; 522 gfp = GFP_KERNEL; 523 } else { 524 new_size = 8; 525 gfp = GFP_NOIO; 526 } 527 argv = kmalloc(new_size * sizeof(*argv), gfp); 528 if (argv) { 529 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 530 *array_size = new_size; 531 } 532 533 kfree(old_argv); 534 return argv; 535 } 536 537 /* 538 * Destructively splits up the argument list to pass to ctr. 539 */ 540 int dm_split_args(int *argc, char ***argvp, char *input) 541 { 542 char *start, *end = input, *out, **argv = NULL; 543 unsigned array_size = 0; 544 545 *argc = 0; 546 547 if (!input) { 548 *argvp = NULL; 549 return 0; 550 } 551 552 argv = realloc_argv(&array_size, argv); 553 if (!argv) 554 return -ENOMEM; 555 556 while (1) { 557 /* Skip whitespace */ 558 start = skip_spaces(end); 559 560 if (!*start) 561 break; /* success, we hit the end */ 562 563 /* 'out' is used to remove any back-quotes */ 564 end = out = start; 565 while (*end) { 566 /* Everything apart from '\0' can be quoted */ 567 if (*end == '\\' && *(end + 1)) { 568 *out++ = *(end + 1); 569 end += 2; 570 continue; 571 } 572 573 if (isspace(*end)) 574 break; /* end of token */ 575 576 *out++ = *end++; 577 } 578 579 /* have we already filled the array ? */ 580 if ((*argc + 1) > array_size) { 581 argv = realloc_argv(&array_size, argv); 582 if (!argv) 583 return -ENOMEM; 584 } 585 586 /* we know this is whitespace */ 587 if (*end) 588 end++; 589 590 /* terminate the string and put it in the array */ 591 *out = '\0'; 592 argv[*argc] = start; 593 (*argc)++; 594 } 595 596 *argvp = argv; 597 return 0; 598 } 599 600 /* 601 * Impose necessary and sufficient conditions on a devices's table such 602 * that any incoming bio which respects its logical_block_size can be 603 * processed successfully. If it falls across the boundary between 604 * two or more targets, the size of each piece it gets split into must 605 * be compatible with the logical_block_size of the target processing it. 606 */ 607 static int validate_hardware_logical_block_alignment(struct dm_table *table, 608 struct queue_limits *limits) 609 { 610 /* 611 * This function uses arithmetic modulo the logical_block_size 612 * (in units of 512-byte sectors). 613 */ 614 unsigned short device_logical_block_size_sects = 615 limits->logical_block_size >> SECTOR_SHIFT; 616 617 /* 618 * Offset of the start of the next table entry, mod logical_block_size. 619 */ 620 unsigned short next_target_start = 0; 621 622 /* 623 * Given an aligned bio that extends beyond the end of a 624 * target, how many sectors must the next target handle? 625 */ 626 unsigned short remaining = 0; 627 628 struct dm_target *uninitialized_var(ti); 629 struct queue_limits ti_limits; 630 unsigned i; 631 632 /* 633 * Check each entry in the table in turn. 634 */ 635 for (i = 0; i < dm_table_get_num_targets(table); i++) { 636 ti = dm_table_get_target(table, i); 637 638 blk_set_stacking_limits(&ti_limits); 639 640 /* combine all target devices' limits */ 641 if (ti->type->iterate_devices) 642 ti->type->iterate_devices(ti, dm_set_device_limits, 643 &ti_limits); 644 645 /* 646 * If the remaining sectors fall entirely within this 647 * table entry are they compatible with its logical_block_size? 648 */ 649 if (remaining < ti->len && 650 remaining & ((ti_limits.logical_block_size >> 651 SECTOR_SHIFT) - 1)) 652 break; /* Error */ 653 654 next_target_start = 655 (unsigned short) ((next_target_start + ti->len) & 656 (device_logical_block_size_sects - 1)); 657 remaining = next_target_start ? 658 device_logical_block_size_sects - next_target_start : 0; 659 } 660 661 if (remaining) { 662 DMWARN("%s: table line %u (start sect %llu len %llu) " 663 "not aligned to h/w logical block size %u", 664 dm_device_name(table->md), i, 665 (unsigned long long) ti->begin, 666 (unsigned long long) ti->len, 667 limits->logical_block_size); 668 return -EINVAL; 669 } 670 671 return 0; 672 } 673 674 int dm_table_add_target(struct dm_table *t, const char *type, 675 sector_t start, sector_t len, char *params) 676 { 677 int r = -EINVAL, argc; 678 char **argv; 679 struct dm_target *tgt; 680 681 if (t->singleton) { 682 DMERR("%s: target type %s must appear alone in table", 683 dm_device_name(t->md), t->targets->type->name); 684 return -EINVAL; 685 } 686 687 BUG_ON(t->num_targets >= t->num_allocated); 688 689 tgt = t->targets + t->num_targets; 690 memset(tgt, 0, sizeof(*tgt)); 691 692 if (!len) { 693 DMERR("%s: zero-length target", dm_device_name(t->md)); 694 return -EINVAL; 695 } 696 697 tgt->type = dm_get_target_type(type); 698 if (!tgt->type) { 699 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); 700 return -EINVAL; 701 } 702 703 if (dm_target_needs_singleton(tgt->type)) { 704 if (t->num_targets) { 705 tgt->error = "singleton target type must appear alone in table"; 706 goto bad; 707 } 708 t->singleton = true; 709 } 710 711 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 712 tgt->error = "target type may not be included in a read-only table"; 713 goto bad; 714 } 715 716 if (t->immutable_target_type) { 717 if (t->immutable_target_type != tgt->type) { 718 tgt->error = "immutable target type cannot be mixed with other target types"; 719 goto bad; 720 } 721 } else if (dm_target_is_immutable(tgt->type)) { 722 if (t->num_targets) { 723 tgt->error = "immutable target type cannot be mixed with other target types"; 724 goto bad; 725 } 726 t->immutable_target_type = tgt->type; 727 } 728 729 if (dm_target_has_integrity(tgt->type)) 730 t->integrity_added = 1; 731 732 tgt->table = t; 733 tgt->begin = start; 734 tgt->len = len; 735 tgt->error = "Unknown error"; 736 737 /* 738 * Does this target adjoin the previous one ? 739 */ 740 if (!adjoin(t, tgt)) { 741 tgt->error = "Gap in table"; 742 goto bad; 743 } 744 745 r = dm_split_args(&argc, &argv, params); 746 if (r) { 747 tgt->error = "couldn't split parameters (insufficient memory)"; 748 goto bad; 749 } 750 751 r = tgt->type->ctr(tgt, argc, argv); 752 kfree(argv); 753 if (r) 754 goto bad; 755 756 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 757 758 if (!tgt->num_discard_bios && tgt->discards_supported) 759 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", 760 dm_device_name(t->md), type); 761 762 return 0; 763 764 bad: 765 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 766 dm_put_target_type(tgt->type); 767 return r; 768 } 769 770 /* 771 * Target argument parsing helpers. 772 */ 773 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 774 unsigned *value, char **error, unsigned grouped) 775 { 776 const char *arg_str = dm_shift_arg(arg_set); 777 char dummy; 778 779 if (!arg_str || 780 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 781 (*value < arg->min) || 782 (*value > arg->max) || 783 (grouped && arg_set->argc < *value)) { 784 *error = arg->error; 785 return -EINVAL; 786 } 787 788 return 0; 789 } 790 791 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 792 unsigned *value, char **error) 793 { 794 return validate_next_arg(arg, arg_set, value, error, 0); 795 } 796 EXPORT_SYMBOL(dm_read_arg); 797 798 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 799 unsigned *value, char **error) 800 { 801 return validate_next_arg(arg, arg_set, value, error, 1); 802 } 803 EXPORT_SYMBOL(dm_read_arg_group); 804 805 const char *dm_shift_arg(struct dm_arg_set *as) 806 { 807 char *r; 808 809 if (as->argc) { 810 as->argc--; 811 r = *as->argv; 812 as->argv++; 813 return r; 814 } 815 816 return NULL; 817 } 818 EXPORT_SYMBOL(dm_shift_arg); 819 820 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 821 { 822 BUG_ON(as->argc < num_args); 823 as->argc -= num_args; 824 as->argv += num_args; 825 } 826 EXPORT_SYMBOL(dm_consume_args); 827 828 static bool __table_type_bio_based(enum dm_queue_mode table_type) 829 { 830 return (table_type == DM_TYPE_BIO_BASED || 831 table_type == DM_TYPE_DAX_BIO_BASED); 832 } 833 834 static bool __table_type_request_based(enum dm_queue_mode table_type) 835 { 836 return (table_type == DM_TYPE_REQUEST_BASED || 837 table_type == DM_TYPE_MQ_REQUEST_BASED); 838 } 839 840 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) 841 { 842 t->type = type; 843 } 844 EXPORT_SYMBOL_GPL(dm_table_set_type); 845 846 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev, 847 sector_t start, sector_t len, void *data) 848 { 849 struct request_queue *q = bdev_get_queue(dev->bdev); 850 851 return q && blk_queue_dax(q); 852 } 853 854 static bool dm_table_supports_dax(struct dm_table *t) 855 { 856 struct dm_target *ti; 857 unsigned i; 858 859 /* Ensure that all targets support DAX. */ 860 for (i = 0; i < dm_table_get_num_targets(t); i++) { 861 ti = dm_table_get_target(t, i); 862 863 if (!ti->type->direct_access) 864 return false; 865 866 if (!ti->type->iterate_devices || 867 !ti->type->iterate_devices(ti, device_supports_dax, NULL)) 868 return false; 869 } 870 871 return true; 872 } 873 874 static int dm_table_determine_type(struct dm_table *t) 875 { 876 unsigned i; 877 unsigned bio_based = 0, request_based = 0, hybrid = 0; 878 unsigned sq_count = 0, mq_count = 0; 879 struct dm_target *tgt; 880 struct dm_dev_internal *dd; 881 struct list_head *devices = dm_table_get_devices(t); 882 enum dm_queue_mode live_md_type = dm_get_md_type(t->md); 883 884 if (t->type != DM_TYPE_NONE) { 885 /* target already set the table's type */ 886 if (t->type == DM_TYPE_BIO_BASED) 887 return 0; 888 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); 889 goto verify_rq_based; 890 } 891 892 for (i = 0; i < t->num_targets; i++) { 893 tgt = t->targets + i; 894 if (dm_target_hybrid(tgt)) 895 hybrid = 1; 896 else if (dm_target_request_based(tgt)) 897 request_based = 1; 898 else 899 bio_based = 1; 900 901 if (bio_based && request_based) { 902 DMWARN("Inconsistent table: different target types" 903 " can't be mixed up"); 904 return -EINVAL; 905 } 906 } 907 908 if (hybrid && !bio_based && !request_based) { 909 /* 910 * The targets can work either way. 911 * Determine the type from the live device. 912 * Default to bio-based if device is new. 913 */ 914 if (__table_type_request_based(live_md_type)) 915 request_based = 1; 916 else 917 bio_based = 1; 918 } 919 920 if (bio_based) { 921 /* We must use this table as bio-based */ 922 t->type = DM_TYPE_BIO_BASED; 923 if (dm_table_supports_dax(t) || 924 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) 925 t->type = DM_TYPE_DAX_BIO_BASED; 926 return 0; 927 } 928 929 BUG_ON(!request_based); /* No targets in this table */ 930 931 /* 932 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by 933 * having a compatible target use dm_table_set_type. 934 */ 935 t->type = DM_TYPE_REQUEST_BASED; 936 937 verify_rq_based: 938 /* 939 * Request-based dm supports only tables that have a single target now. 940 * To support multiple targets, request splitting support is needed, 941 * and that needs lots of changes in the block-layer. 942 * (e.g. request completion process for partial completion.) 943 */ 944 if (t->num_targets > 1) { 945 DMWARN("Request-based dm doesn't support multiple targets yet"); 946 return -EINVAL; 947 } 948 949 if (list_empty(devices)) { 950 int srcu_idx; 951 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); 952 953 /* inherit live table's type and all_blk_mq */ 954 if (live_table) { 955 t->type = live_table->type; 956 t->all_blk_mq = live_table->all_blk_mq; 957 } 958 dm_put_live_table(t->md, srcu_idx); 959 return 0; 960 } 961 962 /* Non-request-stackable devices can't be used for request-based dm */ 963 list_for_each_entry(dd, devices, list) { 964 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 965 966 if (!blk_queue_stackable(q)) { 967 DMERR("table load rejected: including" 968 " non-request-stackable devices"); 969 return -EINVAL; 970 } 971 972 if (q->mq_ops) 973 mq_count++; 974 else 975 sq_count++; 976 } 977 if (sq_count && mq_count) { 978 DMERR("table load rejected: not all devices are blk-mq request-stackable"); 979 return -EINVAL; 980 } 981 t->all_blk_mq = mq_count > 0; 982 983 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) { 984 DMERR("table load rejected: all devices are not blk-mq request-stackable"); 985 return -EINVAL; 986 } 987 988 return 0; 989 } 990 991 enum dm_queue_mode dm_table_get_type(struct dm_table *t) 992 { 993 return t->type; 994 } 995 996 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 997 { 998 return t->immutable_target_type; 999 } 1000 1001 struct dm_target *dm_table_get_immutable_target(struct dm_table *t) 1002 { 1003 /* Immutable target is implicitly a singleton */ 1004 if (t->num_targets > 1 || 1005 !dm_target_is_immutable(t->targets[0].type)) 1006 return NULL; 1007 1008 return t->targets; 1009 } 1010 1011 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) 1012 { 1013 struct dm_target *ti; 1014 unsigned i; 1015 1016 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1017 ti = dm_table_get_target(t, i); 1018 if (dm_target_is_wildcard(ti->type)) 1019 return ti; 1020 } 1021 1022 return NULL; 1023 } 1024 1025 bool dm_table_bio_based(struct dm_table *t) 1026 { 1027 return __table_type_bio_based(dm_table_get_type(t)); 1028 } 1029 1030 bool dm_table_request_based(struct dm_table *t) 1031 { 1032 return __table_type_request_based(dm_table_get_type(t)); 1033 } 1034 1035 bool dm_table_all_blk_mq_devices(struct dm_table *t) 1036 { 1037 return t->all_blk_mq; 1038 } 1039 1040 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) 1041 { 1042 enum dm_queue_mode type = dm_table_get_type(t); 1043 unsigned per_io_data_size = 0; 1044 struct dm_target *tgt; 1045 unsigned i; 1046 1047 if (unlikely(type == DM_TYPE_NONE)) { 1048 DMWARN("no table type is set, can't allocate mempools"); 1049 return -EINVAL; 1050 } 1051 1052 if (__table_type_bio_based(type)) 1053 for (i = 0; i < t->num_targets; i++) { 1054 tgt = t->targets + i; 1055 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size); 1056 } 1057 1058 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size); 1059 if (!t->mempools) 1060 return -ENOMEM; 1061 1062 return 0; 1063 } 1064 1065 void dm_table_free_md_mempools(struct dm_table *t) 1066 { 1067 dm_free_md_mempools(t->mempools); 1068 t->mempools = NULL; 1069 } 1070 1071 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 1072 { 1073 return t->mempools; 1074 } 1075 1076 static int setup_indexes(struct dm_table *t) 1077 { 1078 int i; 1079 unsigned int total = 0; 1080 sector_t *indexes; 1081 1082 /* allocate the space for *all* the indexes */ 1083 for (i = t->depth - 2; i >= 0; i--) { 1084 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1085 total += t->counts[i]; 1086 } 1087 1088 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1089 if (!indexes) 1090 return -ENOMEM; 1091 1092 /* set up internal nodes, bottom-up */ 1093 for (i = t->depth - 2; i >= 0; i--) { 1094 t->index[i] = indexes; 1095 indexes += (KEYS_PER_NODE * t->counts[i]); 1096 setup_btree_index(i, t); 1097 } 1098 1099 return 0; 1100 } 1101 1102 /* 1103 * Builds the btree to index the map. 1104 */ 1105 static int dm_table_build_index(struct dm_table *t) 1106 { 1107 int r = 0; 1108 unsigned int leaf_nodes; 1109 1110 /* how many indexes will the btree have ? */ 1111 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1112 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1113 1114 /* leaf layer has already been set up */ 1115 t->counts[t->depth - 1] = leaf_nodes; 1116 t->index[t->depth - 1] = t->highs; 1117 1118 if (t->depth >= 2) 1119 r = setup_indexes(t); 1120 1121 return r; 1122 } 1123 1124 static bool integrity_profile_exists(struct gendisk *disk) 1125 { 1126 return !!blk_get_integrity(disk); 1127 } 1128 1129 /* 1130 * Get a disk whose integrity profile reflects the table's profile. 1131 * Returns NULL if integrity support was inconsistent or unavailable. 1132 */ 1133 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t) 1134 { 1135 struct list_head *devices = dm_table_get_devices(t); 1136 struct dm_dev_internal *dd = NULL; 1137 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1138 unsigned i; 1139 1140 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1141 struct dm_target *ti = dm_table_get_target(t, i); 1142 if (!dm_target_passes_integrity(ti->type)) 1143 goto no_integrity; 1144 } 1145 1146 list_for_each_entry(dd, devices, list) { 1147 template_disk = dd->dm_dev->bdev->bd_disk; 1148 if (!integrity_profile_exists(template_disk)) 1149 goto no_integrity; 1150 else if (prev_disk && 1151 blk_integrity_compare(prev_disk, template_disk) < 0) 1152 goto no_integrity; 1153 prev_disk = template_disk; 1154 } 1155 1156 return template_disk; 1157 1158 no_integrity: 1159 if (prev_disk) 1160 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1161 dm_device_name(t->md), 1162 prev_disk->disk_name, 1163 template_disk->disk_name); 1164 return NULL; 1165 } 1166 1167 /* 1168 * Register the mapped device for blk_integrity support if the 1169 * underlying devices have an integrity profile. But all devices may 1170 * not have matching profiles (checking all devices isn't reliable 1171 * during table load because this table may use other DM device(s) which 1172 * must be resumed before they will have an initialized integity 1173 * profile). Consequently, stacked DM devices force a 2 stage integrity 1174 * profile validation: First pass during table load, final pass during 1175 * resume. 1176 */ 1177 static int dm_table_register_integrity(struct dm_table *t) 1178 { 1179 struct mapped_device *md = t->md; 1180 struct gendisk *template_disk = NULL; 1181 1182 /* If target handles integrity itself do not register it here. */ 1183 if (t->integrity_added) 1184 return 0; 1185 1186 template_disk = dm_table_get_integrity_disk(t); 1187 if (!template_disk) 1188 return 0; 1189 1190 if (!integrity_profile_exists(dm_disk(md))) { 1191 t->integrity_supported = true; 1192 /* 1193 * Register integrity profile during table load; we can do 1194 * this because the final profile must match during resume. 1195 */ 1196 blk_integrity_register(dm_disk(md), 1197 blk_get_integrity(template_disk)); 1198 return 0; 1199 } 1200 1201 /* 1202 * If DM device already has an initialized integrity 1203 * profile the new profile should not conflict. 1204 */ 1205 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1206 DMWARN("%s: conflict with existing integrity profile: " 1207 "%s profile mismatch", 1208 dm_device_name(t->md), 1209 template_disk->disk_name); 1210 return 1; 1211 } 1212 1213 /* Preserve existing integrity profile */ 1214 t->integrity_supported = true; 1215 return 0; 1216 } 1217 1218 /* 1219 * Prepares the table for use by building the indices, 1220 * setting the type, and allocating mempools. 1221 */ 1222 int dm_table_complete(struct dm_table *t) 1223 { 1224 int r; 1225 1226 r = dm_table_determine_type(t); 1227 if (r) { 1228 DMERR("unable to determine table type"); 1229 return r; 1230 } 1231 1232 r = dm_table_build_index(t); 1233 if (r) { 1234 DMERR("unable to build btrees"); 1235 return r; 1236 } 1237 1238 r = dm_table_register_integrity(t); 1239 if (r) { 1240 DMERR("could not register integrity profile."); 1241 return r; 1242 } 1243 1244 r = dm_table_alloc_md_mempools(t, t->md); 1245 if (r) 1246 DMERR("unable to allocate mempools"); 1247 1248 return r; 1249 } 1250 1251 static DEFINE_MUTEX(_event_lock); 1252 void dm_table_event_callback(struct dm_table *t, 1253 void (*fn)(void *), void *context) 1254 { 1255 mutex_lock(&_event_lock); 1256 t->event_fn = fn; 1257 t->event_context = context; 1258 mutex_unlock(&_event_lock); 1259 } 1260 1261 void dm_table_event(struct dm_table *t) 1262 { 1263 /* 1264 * You can no longer call dm_table_event() from interrupt 1265 * context, use a bottom half instead. 1266 */ 1267 BUG_ON(in_interrupt()); 1268 1269 mutex_lock(&_event_lock); 1270 if (t->event_fn) 1271 t->event_fn(t->event_context); 1272 mutex_unlock(&_event_lock); 1273 } 1274 EXPORT_SYMBOL(dm_table_event); 1275 1276 sector_t dm_table_get_size(struct dm_table *t) 1277 { 1278 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1279 } 1280 EXPORT_SYMBOL(dm_table_get_size); 1281 1282 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1283 { 1284 if (index >= t->num_targets) 1285 return NULL; 1286 1287 return t->targets + index; 1288 } 1289 1290 /* 1291 * Search the btree for the correct target. 1292 * 1293 * Caller should check returned pointer with dm_target_is_valid() 1294 * to trap I/O beyond end of device. 1295 */ 1296 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1297 { 1298 unsigned int l, n = 0, k = 0; 1299 sector_t *node; 1300 1301 for (l = 0; l < t->depth; l++) { 1302 n = get_child(n, k); 1303 node = get_node(t, l, n); 1304 1305 for (k = 0; k < KEYS_PER_NODE; k++) 1306 if (node[k] >= sector) 1307 break; 1308 } 1309 1310 return &t->targets[(KEYS_PER_NODE * n) + k]; 1311 } 1312 1313 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1314 sector_t start, sector_t len, void *data) 1315 { 1316 unsigned *num_devices = data; 1317 1318 (*num_devices)++; 1319 1320 return 0; 1321 } 1322 1323 /* 1324 * Check whether a table has no data devices attached using each 1325 * target's iterate_devices method. 1326 * Returns false if the result is unknown because a target doesn't 1327 * support iterate_devices. 1328 */ 1329 bool dm_table_has_no_data_devices(struct dm_table *table) 1330 { 1331 struct dm_target *ti; 1332 unsigned i, num_devices; 1333 1334 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1335 ti = dm_table_get_target(table, i); 1336 1337 if (!ti->type->iterate_devices) 1338 return false; 1339 1340 num_devices = 0; 1341 ti->type->iterate_devices(ti, count_device, &num_devices); 1342 if (num_devices) 1343 return false; 1344 } 1345 1346 return true; 1347 } 1348 1349 /* 1350 * Establish the new table's queue_limits and validate them. 1351 */ 1352 int dm_calculate_queue_limits(struct dm_table *table, 1353 struct queue_limits *limits) 1354 { 1355 struct dm_target *ti; 1356 struct queue_limits ti_limits; 1357 unsigned i; 1358 1359 blk_set_stacking_limits(limits); 1360 1361 for (i = 0; i < dm_table_get_num_targets(table); i++) { 1362 blk_set_stacking_limits(&ti_limits); 1363 1364 ti = dm_table_get_target(table, i); 1365 1366 if (!ti->type->iterate_devices) 1367 goto combine_limits; 1368 1369 /* 1370 * Combine queue limits of all the devices this target uses. 1371 */ 1372 ti->type->iterate_devices(ti, dm_set_device_limits, 1373 &ti_limits); 1374 1375 /* Set I/O hints portion of queue limits */ 1376 if (ti->type->io_hints) 1377 ti->type->io_hints(ti, &ti_limits); 1378 1379 /* 1380 * Check each device area is consistent with the target's 1381 * overall queue limits. 1382 */ 1383 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1384 &ti_limits)) 1385 return -EINVAL; 1386 1387 combine_limits: 1388 /* 1389 * Merge this target's queue limits into the overall limits 1390 * for the table. 1391 */ 1392 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1393 DMWARN("%s: adding target device " 1394 "(start sect %llu len %llu) " 1395 "caused an alignment inconsistency", 1396 dm_device_name(table->md), 1397 (unsigned long long) ti->begin, 1398 (unsigned long long) ti->len); 1399 } 1400 1401 return validate_hardware_logical_block_alignment(table, limits); 1402 } 1403 1404 /* 1405 * Verify that all devices have an integrity profile that matches the 1406 * DM device's registered integrity profile. If the profiles don't 1407 * match then unregister the DM device's integrity profile. 1408 */ 1409 static void dm_table_verify_integrity(struct dm_table *t) 1410 { 1411 struct gendisk *template_disk = NULL; 1412 1413 if (t->integrity_added) 1414 return; 1415 1416 if (t->integrity_supported) { 1417 /* 1418 * Verify that the original integrity profile 1419 * matches all the devices in this table. 1420 */ 1421 template_disk = dm_table_get_integrity_disk(t); 1422 if (template_disk && 1423 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) 1424 return; 1425 } 1426 1427 if (integrity_profile_exists(dm_disk(t->md))) { 1428 DMWARN("%s: unable to establish an integrity profile", 1429 dm_device_name(t->md)); 1430 blk_integrity_unregister(dm_disk(t->md)); 1431 } 1432 } 1433 1434 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1435 sector_t start, sector_t len, void *data) 1436 { 1437 unsigned long flush = (unsigned long) data; 1438 struct request_queue *q = bdev_get_queue(dev->bdev); 1439 1440 return q && (q->queue_flags & flush); 1441 } 1442 1443 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) 1444 { 1445 struct dm_target *ti; 1446 unsigned i; 1447 1448 /* 1449 * Require at least one underlying device to support flushes. 1450 * t->devices includes internal dm devices such as mirror logs 1451 * so we need to use iterate_devices here, which targets 1452 * supporting flushes must provide. 1453 */ 1454 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1455 ti = dm_table_get_target(t, i); 1456 1457 if (!ti->num_flush_bios) 1458 continue; 1459 1460 if (ti->flush_supported) 1461 return true; 1462 1463 if (ti->type->iterate_devices && 1464 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) 1465 return true; 1466 } 1467 1468 return false; 1469 } 1470 1471 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1472 sector_t start, sector_t len, void *data) 1473 { 1474 struct request_queue *q = bdev_get_queue(dev->bdev); 1475 1476 return q && blk_queue_nonrot(q); 1477 } 1478 1479 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1480 sector_t start, sector_t len, void *data) 1481 { 1482 struct request_queue *q = bdev_get_queue(dev->bdev); 1483 1484 return q && !blk_queue_add_random(q); 1485 } 1486 1487 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev, 1488 sector_t start, sector_t len, void *data) 1489 { 1490 struct request_queue *q = bdev_get_queue(dev->bdev); 1491 1492 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags); 1493 } 1494 1495 static bool dm_table_all_devices_attribute(struct dm_table *t, 1496 iterate_devices_callout_fn func) 1497 { 1498 struct dm_target *ti; 1499 unsigned i; 1500 1501 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1502 ti = dm_table_get_target(t, i); 1503 1504 if (!ti->type->iterate_devices || 1505 !ti->type->iterate_devices(ti, func, NULL)) 1506 return false; 1507 } 1508 1509 return true; 1510 } 1511 1512 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1513 sector_t start, sector_t len, void *data) 1514 { 1515 struct request_queue *q = bdev_get_queue(dev->bdev); 1516 1517 return q && !q->limits.max_write_same_sectors; 1518 } 1519 1520 static bool dm_table_supports_write_same(struct dm_table *t) 1521 { 1522 struct dm_target *ti; 1523 unsigned i; 1524 1525 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1526 ti = dm_table_get_target(t, i); 1527 1528 if (!ti->num_write_same_bios) 1529 return false; 1530 1531 if (!ti->type->iterate_devices || 1532 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1533 return false; 1534 } 1535 1536 return true; 1537 } 1538 1539 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, 1540 sector_t start, sector_t len, void *data) 1541 { 1542 struct request_queue *q = bdev_get_queue(dev->bdev); 1543 1544 return q && !q->limits.max_write_zeroes_sectors; 1545 } 1546 1547 static bool dm_table_supports_write_zeroes(struct dm_table *t) 1548 { 1549 struct dm_target *ti; 1550 unsigned i = 0; 1551 1552 while (i < dm_table_get_num_targets(t)) { 1553 ti = dm_table_get_target(t, i++); 1554 1555 if (!ti->num_write_zeroes_bios) 1556 return false; 1557 1558 if (!ti->type->iterate_devices || 1559 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) 1560 return false; 1561 } 1562 1563 return true; 1564 } 1565 1566 1567 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1568 sector_t start, sector_t len, void *data) 1569 { 1570 struct request_queue *q = bdev_get_queue(dev->bdev); 1571 1572 return q && blk_queue_discard(q); 1573 } 1574 1575 static bool dm_table_supports_discards(struct dm_table *t) 1576 { 1577 struct dm_target *ti; 1578 unsigned i; 1579 1580 /* 1581 * Unless any target used by the table set discards_supported, 1582 * require at least one underlying device to support discards. 1583 * t->devices includes internal dm devices such as mirror logs 1584 * so we need to use iterate_devices here, which targets 1585 * supporting discard selectively must provide. 1586 */ 1587 for (i = 0; i < dm_table_get_num_targets(t); i++) { 1588 ti = dm_table_get_target(t, i); 1589 1590 if (!ti->num_discard_bios) 1591 continue; 1592 1593 if (ti->discards_supported) 1594 return true; 1595 1596 if (ti->type->iterate_devices && 1597 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1598 return true; 1599 } 1600 1601 return false; 1602 } 1603 1604 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1605 struct queue_limits *limits) 1606 { 1607 bool wc = false, fua = false; 1608 1609 /* 1610 * Copy table's limits to the DM device's request_queue 1611 */ 1612 q->limits = *limits; 1613 1614 if (!dm_table_supports_discards(t)) 1615 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1616 else 1617 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1618 1619 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { 1620 wc = true; 1621 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) 1622 fua = true; 1623 } 1624 blk_queue_write_cache(q, wc, fua); 1625 1626 /* Ensure that all underlying devices are non-rotational. */ 1627 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1628 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1629 else 1630 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1631 1632 if (!dm_table_supports_write_same(t)) 1633 q->limits.max_write_same_sectors = 0; 1634 if (!dm_table_supports_write_zeroes(t)) 1635 q->limits.max_write_zeroes_sectors = 0; 1636 1637 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge)) 1638 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1639 else 1640 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); 1641 1642 dm_table_verify_integrity(t); 1643 1644 /* 1645 * Determine whether or not this queue's I/O timings contribute 1646 * to the entropy pool, Only request-based targets use this. 1647 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1648 * have it set. 1649 */ 1650 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1651 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1652 1653 /* 1654 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1655 * visible to other CPUs because, once the flag is set, incoming bios 1656 * are processed by request-based dm, which refers to the queue 1657 * settings. 1658 * Until the flag set, bios are passed to bio-based dm and queued to 1659 * md->deferred where queue settings are not needed yet. 1660 * Those bios are passed to request-based dm at the resume time. 1661 */ 1662 smp_mb(); 1663 if (dm_table_request_based(t)) 1664 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1665 } 1666 1667 unsigned int dm_table_get_num_targets(struct dm_table *t) 1668 { 1669 return t->num_targets; 1670 } 1671 1672 struct list_head *dm_table_get_devices(struct dm_table *t) 1673 { 1674 return &t->devices; 1675 } 1676 1677 fmode_t dm_table_get_mode(struct dm_table *t) 1678 { 1679 return t->mode; 1680 } 1681 EXPORT_SYMBOL(dm_table_get_mode); 1682 1683 enum suspend_mode { 1684 PRESUSPEND, 1685 PRESUSPEND_UNDO, 1686 POSTSUSPEND, 1687 }; 1688 1689 static void suspend_targets(struct dm_table *t, enum suspend_mode mode) 1690 { 1691 int i = t->num_targets; 1692 struct dm_target *ti = t->targets; 1693 1694 lockdep_assert_held(&t->md->suspend_lock); 1695 1696 while (i--) { 1697 switch (mode) { 1698 case PRESUSPEND: 1699 if (ti->type->presuspend) 1700 ti->type->presuspend(ti); 1701 break; 1702 case PRESUSPEND_UNDO: 1703 if (ti->type->presuspend_undo) 1704 ti->type->presuspend_undo(ti); 1705 break; 1706 case POSTSUSPEND: 1707 if (ti->type->postsuspend) 1708 ti->type->postsuspend(ti); 1709 break; 1710 } 1711 ti++; 1712 } 1713 } 1714 1715 void dm_table_presuspend_targets(struct dm_table *t) 1716 { 1717 if (!t) 1718 return; 1719 1720 suspend_targets(t, PRESUSPEND); 1721 } 1722 1723 void dm_table_presuspend_undo_targets(struct dm_table *t) 1724 { 1725 if (!t) 1726 return; 1727 1728 suspend_targets(t, PRESUSPEND_UNDO); 1729 } 1730 1731 void dm_table_postsuspend_targets(struct dm_table *t) 1732 { 1733 if (!t) 1734 return; 1735 1736 suspend_targets(t, POSTSUSPEND); 1737 } 1738 1739 int dm_table_resume_targets(struct dm_table *t) 1740 { 1741 int i, r = 0; 1742 1743 lockdep_assert_held(&t->md->suspend_lock); 1744 1745 for (i = 0; i < t->num_targets; i++) { 1746 struct dm_target *ti = t->targets + i; 1747 1748 if (!ti->type->preresume) 1749 continue; 1750 1751 r = ti->type->preresume(ti); 1752 if (r) { 1753 DMERR("%s: %s: preresume failed, error = %d", 1754 dm_device_name(t->md), ti->type->name, r); 1755 return r; 1756 } 1757 } 1758 1759 for (i = 0; i < t->num_targets; i++) { 1760 struct dm_target *ti = t->targets + i; 1761 1762 if (ti->type->resume) 1763 ti->type->resume(ti); 1764 } 1765 1766 return 0; 1767 } 1768 1769 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1770 { 1771 list_add(&cb->list, &t->target_callbacks); 1772 } 1773 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1774 1775 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1776 { 1777 struct dm_dev_internal *dd; 1778 struct list_head *devices = dm_table_get_devices(t); 1779 struct dm_target_callbacks *cb; 1780 int r = 0; 1781 1782 list_for_each_entry(dd, devices, list) { 1783 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev); 1784 char b[BDEVNAME_SIZE]; 1785 1786 if (likely(q)) 1787 r |= bdi_congested(q->backing_dev_info, bdi_bits); 1788 else 1789 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1790 dm_device_name(t->md), 1791 bdevname(dd->dm_dev->bdev, b)); 1792 } 1793 1794 list_for_each_entry(cb, &t->target_callbacks, list) 1795 if (cb->congested_fn) 1796 r |= cb->congested_fn(cb, bdi_bits); 1797 1798 return r; 1799 } 1800 1801 struct mapped_device *dm_table_get_md(struct dm_table *t) 1802 { 1803 return t->md; 1804 } 1805 EXPORT_SYMBOL(dm_table_get_md); 1806 1807 void dm_table_run_md_queue_async(struct dm_table *t) 1808 { 1809 struct mapped_device *md; 1810 struct request_queue *queue; 1811 unsigned long flags; 1812 1813 if (!dm_table_request_based(t)) 1814 return; 1815 1816 md = dm_table_get_md(t); 1817 queue = dm_get_md_queue(md); 1818 if (queue) { 1819 if (queue->mq_ops) 1820 blk_mq_run_hw_queues(queue, true); 1821 else { 1822 spin_lock_irqsave(queue->queue_lock, flags); 1823 blk_run_queue_async(queue); 1824 spin_unlock_irqrestore(queue->queue_lock, flags); 1825 } 1826 } 1827 } 1828 EXPORT_SYMBOL(dm_table_run_md_queue_async); 1829 1830