xref: /openbmc/linux/drivers/md/dm-table.c (revision bb0eb050)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 
24 #define DM_MSG_PREFIX "table"
25 
26 #define MAX_DEPTH 16
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 struct dm_table {
32 	struct mapped_device *md;
33 	enum dm_queue_mode type;
34 
35 	/* btree table */
36 	unsigned int depth;
37 	unsigned int counts[MAX_DEPTH];	/* in nodes */
38 	sector_t *index[MAX_DEPTH];
39 
40 	unsigned int num_targets;
41 	unsigned int num_allocated;
42 	sector_t *highs;
43 	struct dm_target *targets;
44 
45 	struct target_type *immutable_target_type;
46 
47 	bool integrity_supported:1;
48 	bool singleton:1;
49 	bool all_blk_mq:1;
50 	unsigned integrity_added:1;
51 
52 	/*
53 	 * Indicates the rw permissions for the new logical
54 	 * device.  This should be a combination of FMODE_READ
55 	 * and FMODE_WRITE.
56 	 */
57 	fmode_t mode;
58 
59 	/* a list of devices used by this table */
60 	struct list_head devices;
61 
62 	/* events get handed up using this callback */
63 	void (*event_fn)(void *);
64 	void *event_context;
65 
66 	struct dm_md_mempools *mempools;
67 
68 	struct list_head target_callbacks;
69 };
70 
71 /*
72  * Similar to ceiling(log_size(n))
73  */
74 static unsigned int int_log(unsigned int n, unsigned int base)
75 {
76 	int result = 0;
77 
78 	while (n > 1) {
79 		n = dm_div_up(n, base);
80 		result++;
81 	}
82 
83 	return result;
84 }
85 
86 /*
87  * Calculate the index of the child node of the n'th node k'th key.
88  */
89 static inline unsigned int get_child(unsigned int n, unsigned int k)
90 {
91 	return (n * CHILDREN_PER_NODE) + k;
92 }
93 
94 /*
95  * Return the n'th node of level l from table t.
96  */
97 static inline sector_t *get_node(struct dm_table *t,
98 				 unsigned int l, unsigned int n)
99 {
100 	return t->index[l] + (n * KEYS_PER_NODE);
101 }
102 
103 /*
104  * Return the highest key that you could lookup from the n'th
105  * node on level l of the btree.
106  */
107 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
108 {
109 	for (; l < t->depth - 1; l++)
110 		n = get_child(n, CHILDREN_PER_NODE - 1);
111 
112 	if (n >= t->counts[l])
113 		return (sector_t) - 1;
114 
115 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
116 }
117 
118 /*
119  * Fills in a level of the btree based on the highs of the level
120  * below it.
121  */
122 static int setup_btree_index(unsigned int l, struct dm_table *t)
123 {
124 	unsigned int n, k;
125 	sector_t *node;
126 
127 	for (n = 0U; n < t->counts[l]; n++) {
128 		node = get_node(t, l, n);
129 
130 		for (k = 0U; k < KEYS_PER_NODE; k++)
131 			node[k] = high(t, l + 1, get_child(n, k));
132 	}
133 
134 	return 0;
135 }
136 
137 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
138 {
139 	unsigned long size;
140 	void *addr;
141 
142 	/*
143 	 * Check that we're not going to overflow.
144 	 */
145 	if (nmemb > (ULONG_MAX / elem_size))
146 		return NULL;
147 
148 	size = nmemb * elem_size;
149 	addr = vzalloc(size);
150 
151 	return addr;
152 }
153 EXPORT_SYMBOL(dm_vcalloc);
154 
155 /*
156  * highs, and targets are managed as dynamic arrays during a
157  * table load.
158  */
159 static int alloc_targets(struct dm_table *t, unsigned int num)
160 {
161 	sector_t *n_highs;
162 	struct dm_target *n_targets;
163 
164 	/*
165 	 * Allocate both the target array and offset array at once.
166 	 * Append an empty entry to catch sectors beyond the end of
167 	 * the device.
168 	 */
169 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
170 					  sizeof(sector_t));
171 	if (!n_highs)
172 		return -ENOMEM;
173 
174 	n_targets = (struct dm_target *) (n_highs + num);
175 
176 	memset(n_highs, -1, sizeof(*n_highs) * num);
177 	vfree(t->highs);
178 
179 	t->num_allocated = num;
180 	t->highs = n_highs;
181 	t->targets = n_targets;
182 
183 	return 0;
184 }
185 
186 int dm_table_create(struct dm_table **result, fmode_t mode,
187 		    unsigned num_targets, struct mapped_device *md)
188 {
189 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
190 
191 	if (!t)
192 		return -ENOMEM;
193 
194 	INIT_LIST_HEAD(&t->devices);
195 	INIT_LIST_HEAD(&t->target_callbacks);
196 
197 	if (!num_targets)
198 		num_targets = KEYS_PER_NODE;
199 
200 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
201 
202 	if (!num_targets) {
203 		kfree(t);
204 		return -ENOMEM;
205 	}
206 
207 	if (alloc_targets(t, num_targets)) {
208 		kfree(t);
209 		return -ENOMEM;
210 	}
211 
212 	t->type = DM_TYPE_NONE;
213 	t->mode = mode;
214 	t->md = md;
215 	*result = t;
216 	return 0;
217 }
218 
219 static void free_devices(struct list_head *devices, struct mapped_device *md)
220 {
221 	struct list_head *tmp, *next;
222 
223 	list_for_each_safe(tmp, next, devices) {
224 		struct dm_dev_internal *dd =
225 		    list_entry(tmp, struct dm_dev_internal, list);
226 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
227 		       dm_device_name(md), dd->dm_dev->name);
228 		dm_put_table_device(md, dd->dm_dev);
229 		kfree(dd);
230 	}
231 }
232 
233 void dm_table_destroy(struct dm_table *t)
234 {
235 	unsigned int i;
236 
237 	if (!t)
238 		return;
239 
240 	/* free the indexes */
241 	if (t->depth >= 2)
242 		vfree(t->index[t->depth - 2]);
243 
244 	/* free the targets */
245 	for (i = 0; i < t->num_targets; i++) {
246 		struct dm_target *tgt = t->targets + i;
247 
248 		if (tgt->type->dtr)
249 			tgt->type->dtr(tgt);
250 
251 		dm_put_target_type(tgt->type);
252 	}
253 
254 	vfree(t->highs);
255 
256 	/* free the device list */
257 	free_devices(&t->devices, t->md);
258 
259 	dm_free_md_mempools(t->mempools);
260 
261 	kfree(t);
262 }
263 
264 /*
265  * See if we've already got a device in the list.
266  */
267 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
268 {
269 	struct dm_dev_internal *dd;
270 
271 	list_for_each_entry (dd, l, list)
272 		if (dd->dm_dev->bdev->bd_dev == dev)
273 			return dd;
274 
275 	return NULL;
276 }
277 
278 /*
279  * If possible, this checks an area of a destination device is invalid.
280  */
281 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
282 				  sector_t start, sector_t len, void *data)
283 {
284 	struct request_queue *q;
285 	struct queue_limits *limits = data;
286 	struct block_device *bdev = dev->bdev;
287 	sector_t dev_size =
288 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
289 	unsigned short logical_block_size_sectors =
290 		limits->logical_block_size >> SECTOR_SHIFT;
291 	char b[BDEVNAME_SIZE];
292 
293 	/*
294 	 * Some devices exist without request functions,
295 	 * such as loop devices not yet bound to backing files.
296 	 * Forbid the use of such devices.
297 	 */
298 	q = bdev_get_queue(bdev);
299 	if (!q || !q->make_request_fn) {
300 		DMWARN("%s: %s is not yet initialised: "
301 		       "start=%llu, len=%llu, dev_size=%llu",
302 		       dm_device_name(ti->table->md), bdevname(bdev, b),
303 		       (unsigned long long)start,
304 		       (unsigned long long)len,
305 		       (unsigned long long)dev_size);
306 		return 1;
307 	}
308 
309 	if (!dev_size)
310 		return 0;
311 
312 	if ((start >= dev_size) || (start + len > dev_size)) {
313 		DMWARN("%s: %s too small for target: "
314 		       "start=%llu, len=%llu, dev_size=%llu",
315 		       dm_device_name(ti->table->md), bdevname(bdev, b),
316 		       (unsigned long long)start,
317 		       (unsigned long long)len,
318 		       (unsigned long long)dev_size);
319 		return 1;
320 	}
321 
322 	if (logical_block_size_sectors <= 1)
323 		return 0;
324 
325 	if (start & (logical_block_size_sectors - 1)) {
326 		DMWARN("%s: start=%llu not aligned to h/w "
327 		       "logical block size %u of %s",
328 		       dm_device_name(ti->table->md),
329 		       (unsigned long long)start,
330 		       limits->logical_block_size, bdevname(bdev, b));
331 		return 1;
332 	}
333 
334 	if (len & (logical_block_size_sectors - 1)) {
335 		DMWARN("%s: len=%llu not aligned to h/w "
336 		       "logical block size %u of %s",
337 		       dm_device_name(ti->table->md),
338 		       (unsigned long long)len,
339 		       limits->logical_block_size, bdevname(bdev, b));
340 		return 1;
341 	}
342 
343 	return 0;
344 }
345 
346 /*
347  * This upgrades the mode on an already open dm_dev, being
348  * careful to leave things as they were if we fail to reopen the
349  * device and not to touch the existing bdev field in case
350  * it is accessed concurrently inside dm_table_any_congested().
351  */
352 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
353 			struct mapped_device *md)
354 {
355 	int r;
356 	struct dm_dev *old_dev, *new_dev;
357 
358 	old_dev = dd->dm_dev;
359 
360 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
361 				dd->dm_dev->mode | new_mode, &new_dev);
362 	if (r)
363 		return r;
364 
365 	dd->dm_dev = new_dev;
366 	dm_put_table_device(md, old_dev);
367 
368 	return 0;
369 }
370 
371 /*
372  * Convert the path to a device
373  */
374 dev_t dm_get_dev_t(const char *path)
375 {
376 	dev_t dev;
377 	struct block_device *bdev;
378 
379 	bdev = lookup_bdev(path);
380 	if (IS_ERR(bdev))
381 		dev = name_to_dev_t(path);
382 	else {
383 		dev = bdev->bd_dev;
384 		bdput(bdev);
385 	}
386 
387 	return dev;
388 }
389 EXPORT_SYMBOL_GPL(dm_get_dev_t);
390 
391 /*
392  * Add a device to the list, or just increment the usage count if
393  * it's already present.
394  */
395 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
396 		  struct dm_dev **result)
397 {
398 	int r;
399 	dev_t dev;
400 	struct dm_dev_internal *dd;
401 	struct dm_table *t = ti->table;
402 
403 	BUG_ON(!t);
404 
405 	dev = dm_get_dev_t(path);
406 	if (!dev)
407 		return -ENODEV;
408 
409 	dd = find_device(&t->devices, dev);
410 	if (!dd) {
411 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
412 		if (!dd)
413 			return -ENOMEM;
414 
415 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
416 			kfree(dd);
417 			return r;
418 		}
419 
420 		atomic_set(&dd->count, 0);
421 		list_add(&dd->list, &t->devices);
422 
423 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
424 		r = upgrade_mode(dd, mode, t->md);
425 		if (r)
426 			return r;
427 	}
428 	atomic_inc(&dd->count);
429 
430 	*result = dd->dm_dev;
431 	return 0;
432 }
433 EXPORT_SYMBOL(dm_get_device);
434 
435 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
436 				sector_t start, sector_t len, void *data)
437 {
438 	struct queue_limits *limits = data;
439 	struct block_device *bdev = dev->bdev;
440 	struct request_queue *q = bdev_get_queue(bdev);
441 	char b[BDEVNAME_SIZE];
442 
443 	if (unlikely(!q)) {
444 		DMWARN("%s: Cannot set limits for nonexistent device %s",
445 		       dm_device_name(ti->table->md), bdevname(bdev, b));
446 		return 0;
447 	}
448 
449 	if (bdev_stack_limits(limits, bdev, start) < 0)
450 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
451 		       "physical_block_size=%u, logical_block_size=%u, "
452 		       "alignment_offset=%u, start=%llu",
453 		       dm_device_name(ti->table->md), bdevname(bdev, b),
454 		       q->limits.physical_block_size,
455 		       q->limits.logical_block_size,
456 		       q->limits.alignment_offset,
457 		       (unsigned long long) start << SECTOR_SHIFT);
458 
459 	return 0;
460 }
461 
462 /*
463  * Decrement a device's use count and remove it if necessary.
464  */
465 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
466 {
467 	int found = 0;
468 	struct list_head *devices = &ti->table->devices;
469 	struct dm_dev_internal *dd;
470 
471 	list_for_each_entry(dd, devices, list) {
472 		if (dd->dm_dev == d) {
473 			found = 1;
474 			break;
475 		}
476 	}
477 	if (!found) {
478 		DMWARN("%s: device %s not in table devices list",
479 		       dm_device_name(ti->table->md), d->name);
480 		return;
481 	}
482 	if (atomic_dec_and_test(&dd->count)) {
483 		dm_put_table_device(ti->table->md, d);
484 		list_del(&dd->list);
485 		kfree(dd);
486 	}
487 }
488 EXPORT_SYMBOL(dm_put_device);
489 
490 /*
491  * Checks to see if the target joins onto the end of the table.
492  */
493 static int adjoin(struct dm_table *table, struct dm_target *ti)
494 {
495 	struct dm_target *prev;
496 
497 	if (!table->num_targets)
498 		return !ti->begin;
499 
500 	prev = &table->targets[table->num_targets - 1];
501 	return (ti->begin == (prev->begin + prev->len));
502 }
503 
504 /*
505  * Used to dynamically allocate the arg array.
506  *
507  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
508  * process messages even if some device is suspended. These messages have a
509  * small fixed number of arguments.
510  *
511  * On the other hand, dm-switch needs to process bulk data using messages and
512  * excessive use of GFP_NOIO could cause trouble.
513  */
514 static char **realloc_argv(unsigned *array_size, char **old_argv)
515 {
516 	char **argv;
517 	unsigned new_size;
518 	gfp_t gfp;
519 
520 	if (*array_size) {
521 		new_size = *array_size * 2;
522 		gfp = GFP_KERNEL;
523 	} else {
524 		new_size = 8;
525 		gfp = GFP_NOIO;
526 	}
527 	argv = kmalloc(new_size * sizeof(*argv), gfp);
528 	if (argv) {
529 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
530 		*array_size = new_size;
531 	}
532 
533 	kfree(old_argv);
534 	return argv;
535 }
536 
537 /*
538  * Destructively splits up the argument list to pass to ctr.
539  */
540 int dm_split_args(int *argc, char ***argvp, char *input)
541 {
542 	char *start, *end = input, *out, **argv = NULL;
543 	unsigned array_size = 0;
544 
545 	*argc = 0;
546 
547 	if (!input) {
548 		*argvp = NULL;
549 		return 0;
550 	}
551 
552 	argv = realloc_argv(&array_size, argv);
553 	if (!argv)
554 		return -ENOMEM;
555 
556 	while (1) {
557 		/* Skip whitespace */
558 		start = skip_spaces(end);
559 
560 		if (!*start)
561 			break;	/* success, we hit the end */
562 
563 		/* 'out' is used to remove any back-quotes */
564 		end = out = start;
565 		while (*end) {
566 			/* Everything apart from '\0' can be quoted */
567 			if (*end == '\\' && *(end + 1)) {
568 				*out++ = *(end + 1);
569 				end += 2;
570 				continue;
571 			}
572 
573 			if (isspace(*end))
574 				break;	/* end of token */
575 
576 			*out++ = *end++;
577 		}
578 
579 		/* have we already filled the array ? */
580 		if ((*argc + 1) > array_size) {
581 			argv = realloc_argv(&array_size, argv);
582 			if (!argv)
583 				return -ENOMEM;
584 		}
585 
586 		/* we know this is whitespace */
587 		if (*end)
588 			end++;
589 
590 		/* terminate the string and put it in the array */
591 		*out = '\0';
592 		argv[*argc] = start;
593 		(*argc)++;
594 	}
595 
596 	*argvp = argv;
597 	return 0;
598 }
599 
600 /*
601  * Impose necessary and sufficient conditions on a devices's table such
602  * that any incoming bio which respects its logical_block_size can be
603  * processed successfully.  If it falls across the boundary between
604  * two or more targets, the size of each piece it gets split into must
605  * be compatible with the logical_block_size of the target processing it.
606  */
607 static int validate_hardware_logical_block_alignment(struct dm_table *table,
608 						 struct queue_limits *limits)
609 {
610 	/*
611 	 * This function uses arithmetic modulo the logical_block_size
612 	 * (in units of 512-byte sectors).
613 	 */
614 	unsigned short device_logical_block_size_sects =
615 		limits->logical_block_size >> SECTOR_SHIFT;
616 
617 	/*
618 	 * Offset of the start of the next table entry, mod logical_block_size.
619 	 */
620 	unsigned short next_target_start = 0;
621 
622 	/*
623 	 * Given an aligned bio that extends beyond the end of a
624 	 * target, how many sectors must the next target handle?
625 	 */
626 	unsigned short remaining = 0;
627 
628 	struct dm_target *uninitialized_var(ti);
629 	struct queue_limits ti_limits;
630 	unsigned i;
631 
632 	/*
633 	 * Check each entry in the table in turn.
634 	 */
635 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
636 		ti = dm_table_get_target(table, i);
637 
638 		blk_set_stacking_limits(&ti_limits);
639 
640 		/* combine all target devices' limits */
641 		if (ti->type->iterate_devices)
642 			ti->type->iterate_devices(ti, dm_set_device_limits,
643 						  &ti_limits);
644 
645 		/*
646 		 * If the remaining sectors fall entirely within this
647 		 * table entry are they compatible with its logical_block_size?
648 		 */
649 		if (remaining < ti->len &&
650 		    remaining & ((ti_limits.logical_block_size >>
651 				  SECTOR_SHIFT) - 1))
652 			break;	/* Error */
653 
654 		next_target_start =
655 		    (unsigned short) ((next_target_start + ti->len) &
656 				      (device_logical_block_size_sects - 1));
657 		remaining = next_target_start ?
658 		    device_logical_block_size_sects - next_target_start : 0;
659 	}
660 
661 	if (remaining) {
662 		DMWARN("%s: table line %u (start sect %llu len %llu) "
663 		       "not aligned to h/w logical block size %u",
664 		       dm_device_name(table->md), i,
665 		       (unsigned long long) ti->begin,
666 		       (unsigned long long) ti->len,
667 		       limits->logical_block_size);
668 		return -EINVAL;
669 	}
670 
671 	return 0;
672 }
673 
674 int dm_table_add_target(struct dm_table *t, const char *type,
675 			sector_t start, sector_t len, char *params)
676 {
677 	int r = -EINVAL, argc;
678 	char **argv;
679 	struct dm_target *tgt;
680 
681 	if (t->singleton) {
682 		DMERR("%s: target type %s must appear alone in table",
683 		      dm_device_name(t->md), t->targets->type->name);
684 		return -EINVAL;
685 	}
686 
687 	BUG_ON(t->num_targets >= t->num_allocated);
688 
689 	tgt = t->targets + t->num_targets;
690 	memset(tgt, 0, sizeof(*tgt));
691 
692 	if (!len) {
693 		DMERR("%s: zero-length target", dm_device_name(t->md));
694 		return -EINVAL;
695 	}
696 
697 	tgt->type = dm_get_target_type(type);
698 	if (!tgt->type) {
699 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
700 		return -EINVAL;
701 	}
702 
703 	if (dm_target_needs_singleton(tgt->type)) {
704 		if (t->num_targets) {
705 			tgt->error = "singleton target type must appear alone in table";
706 			goto bad;
707 		}
708 		t->singleton = true;
709 	}
710 
711 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
712 		tgt->error = "target type may not be included in a read-only table";
713 		goto bad;
714 	}
715 
716 	if (t->immutable_target_type) {
717 		if (t->immutable_target_type != tgt->type) {
718 			tgt->error = "immutable target type cannot be mixed with other target types";
719 			goto bad;
720 		}
721 	} else if (dm_target_is_immutable(tgt->type)) {
722 		if (t->num_targets) {
723 			tgt->error = "immutable target type cannot be mixed with other target types";
724 			goto bad;
725 		}
726 		t->immutable_target_type = tgt->type;
727 	}
728 
729 	if (dm_target_has_integrity(tgt->type))
730 		t->integrity_added = 1;
731 
732 	tgt->table = t;
733 	tgt->begin = start;
734 	tgt->len = len;
735 	tgt->error = "Unknown error";
736 
737 	/*
738 	 * Does this target adjoin the previous one ?
739 	 */
740 	if (!adjoin(t, tgt)) {
741 		tgt->error = "Gap in table";
742 		goto bad;
743 	}
744 
745 	r = dm_split_args(&argc, &argv, params);
746 	if (r) {
747 		tgt->error = "couldn't split parameters (insufficient memory)";
748 		goto bad;
749 	}
750 
751 	r = tgt->type->ctr(tgt, argc, argv);
752 	kfree(argv);
753 	if (r)
754 		goto bad;
755 
756 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
757 
758 	if (!tgt->num_discard_bios && tgt->discards_supported)
759 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
760 		       dm_device_name(t->md), type);
761 
762 	return 0;
763 
764  bad:
765 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
766 	dm_put_target_type(tgt->type);
767 	return r;
768 }
769 
770 /*
771  * Target argument parsing helpers.
772  */
773 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
774 			     unsigned *value, char **error, unsigned grouped)
775 {
776 	const char *arg_str = dm_shift_arg(arg_set);
777 	char dummy;
778 
779 	if (!arg_str ||
780 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
781 	    (*value < arg->min) ||
782 	    (*value > arg->max) ||
783 	    (grouped && arg_set->argc < *value)) {
784 		*error = arg->error;
785 		return -EINVAL;
786 	}
787 
788 	return 0;
789 }
790 
791 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
792 		unsigned *value, char **error)
793 {
794 	return validate_next_arg(arg, arg_set, value, error, 0);
795 }
796 EXPORT_SYMBOL(dm_read_arg);
797 
798 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
799 		      unsigned *value, char **error)
800 {
801 	return validate_next_arg(arg, arg_set, value, error, 1);
802 }
803 EXPORT_SYMBOL(dm_read_arg_group);
804 
805 const char *dm_shift_arg(struct dm_arg_set *as)
806 {
807 	char *r;
808 
809 	if (as->argc) {
810 		as->argc--;
811 		r = *as->argv;
812 		as->argv++;
813 		return r;
814 	}
815 
816 	return NULL;
817 }
818 EXPORT_SYMBOL(dm_shift_arg);
819 
820 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
821 {
822 	BUG_ON(as->argc < num_args);
823 	as->argc -= num_args;
824 	as->argv += num_args;
825 }
826 EXPORT_SYMBOL(dm_consume_args);
827 
828 static bool __table_type_bio_based(enum dm_queue_mode table_type)
829 {
830 	return (table_type == DM_TYPE_BIO_BASED ||
831 		table_type == DM_TYPE_DAX_BIO_BASED);
832 }
833 
834 static bool __table_type_request_based(enum dm_queue_mode table_type)
835 {
836 	return (table_type == DM_TYPE_REQUEST_BASED ||
837 		table_type == DM_TYPE_MQ_REQUEST_BASED);
838 }
839 
840 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
841 {
842 	t->type = type;
843 }
844 EXPORT_SYMBOL_GPL(dm_table_set_type);
845 
846 static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
847 			       sector_t start, sector_t len, void *data)
848 {
849 	struct request_queue *q = bdev_get_queue(dev->bdev);
850 
851 	return q && blk_queue_dax(q);
852 }
853 
854 static bool dm_table_supports_dax(struct dm_table *t)
855 {
856 	struct dm_target *ti;
857 	unsigned i;
858 
859 	/* Ensure that all targets support DAX. */
860 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
861 		ti = dm_table_get_target(t, i);
862 
863 		if (!ti->type->direct_access)
864 			return false;
865 
866 		if (!ti->type->iterate_devices ||
867 		    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
868 			return false;
869 	}
870 
871 	return true;
872 }
873 
874 static int dm_table_determine_type(struct dm_table *t)
875 {
876 	unsigned i;
877 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
878 	unsigned sq_count = 0, mq_count = 0;
879 	struct dm_target *tgt;
880 	struct dm_dev_internal *dd;
881 	struct list_head *devices = dm_table_get_devices(t);
882 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
883 
884 	if (t->type != DM_TYPE_NONE) {
885 		/* target already set the table's type */
886 		if (t->type == DM_TYPE_BIO_BASED)
887 			return 0;
888 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
889 		goto verify_rq_based;
890 	}
891 
892 	for (i = 0; i < t->num_targets; i++) {
893 		tgt = t->targets + i;
894 		if (dm_target_hybrid(tgt))
895 			hybrid = 1;
896 		else if (dm_target_request_based(tgt))
897 			request_based = 1;
898 		else
899 			bio_based = 1;
900 
901 		if (bio_based && request_based) {
902 			DMWARN("Inconsistent table: different target types"
903 			       " can't be mixed up");
904 			return -EINVAL;
905 		}
906 	}
907 
908 	if (hybrid && !bio_based && !request_based) {
909 		/*
910 		 * The targets can work either way.
911 		 * Determine the type from the live device.
912 		 * Default to bio-based if device is new.
913 		 */
914 		if (__table_type_request_based(live_md_type))
915 			request_based = 1;
916 		else
917 			bio_based = 1;
918 	}
919 
920 	if (bio_based) {
921 		/* We must use this table as bio-based */
922 		t->type = DM_TYPE_BIO_BASED;
923 		if (dm_table_supports_dax(t) ||
924 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
925 			t->type = DM_TYPE_DAX_BIO_BASED;
926 		return 0;
927 	}
928 
929 	BUG_ON(!request_based); /* No targets in this table */
930 
931 	/*
932 	 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
933 	 * having a compatible target use dm_table_set_type.
934 	 */
935 	t->type = DM_TYPE_REQUEST_BASED;
936 
937 verify_rq_based:
938 	/*
939 	 * Request-based dm supports only tables that have a single target now.
940 	 * To support multiple targets, request splitting support is needed,
941 	 * and that needs lots of changes in the block-layer.
942 	 * (e.g. request completion process for partial completion.)
943 	 */
944 	if (t->num_targets > 1) {
945 		DMWARN("Request-based dm doesn't support multiple targets yet");
946 		return -EINVAL;
947 	}
948 
949 	if (list_empty(devices)) {
950 		int srcu_idx;
951 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
952 
953 		/* inherit live table's type and all_blk_mq */
954 		if (live_table) {
955 			t->type = live_table->type;
956 			t->all_blk_mq = live_table->all_blk_mq;
957 		}
958 		dm_put_live_table(t->md, srcu_idx);
959 		return 0;
960 	}
961 
962 	/* Non-request-stackable devices can't be used for request-based dm */
963 	list_for_each_entry(dd, devices, list) {
964 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
965 
966 		if (!blk_queue_stackable(q)) {
967 			DMERR("table load rejected: including"
968 			      " non-request-stackable devices");
969 			return -EINVAL;
970 		}
971 
972 		if (q->mq_ops)
973 			mq_count++;
974 		else
975 			sq_count++;
976 	}
977 	if (sq_count && mq_count) {
978 		DMERR("table load rejected: not all devices are blk-mq request-stackable");
979 		return -EINVAL;
980 	}
981 	t->all_blk_mq = mq_count > 0;
982 
983 	if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
984 		DMERR("table load rejected: all devices are not blk-mq request-stackable");
985 		return -EINVAL;
986 	}
987 
988 	return 0;
989 }
990 
991 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
992 {
993 	return t->type;
994 }
995 
996 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
997 {
998 	return t->immutable_target_type;
999 }
1000 
1001 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1002 {
1003 	/* Immutable target is implicitly a singleton */
1004 	if (t->num_targets > 1 ||
1005 	    !dm_target_is_immutable(t->targets[0].type))
1006 		return NULL;
1007 
1008 	return t->targets;
1009 }
1010 
1011 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1012 {
1013 	struct dm_target *ti;
1014 	unsigned i;
1015 
1016 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1017 		ti = dm_table_get_target(t, i);
1018 		if (dm_target_is_wildcard(ti->type))
1019 			return ti;
1020 	}
1021 
1022 	return NULL;
1023 }
1024 
1025 bool dm_table_bio_based(struct dm_table *t)
1026 {
1027 	return __table_type_bio_based(dm_table_get_type(t));
1028 }
1029 
1030 bool dm_table_request_based(struct dm_table *t)
1031 {
1032 	return __table_type_request_based(dm_table_get_type(t));
1033 }
1034 
1035 bool dm_table_all_blk_mq_devices(struct dm_table *t)
1036 {
1037 	return t->all_blk_mq;
1038 }
1039 
1040 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1041 {
1042 	enum dm_queue_mode type = dm_table_get_type(t);
1043 	unsigned per_io_data_size = 0;
1044 	struct dm_target *tgt;
1045 	unsigned i;
1046 
1047 	if (unlikely(type == DM_TYPE_NONE)) {
1048 		DMWARN("no table type is set, can't allocate mempools");
1049 		return -EINVAL;
1050 	}
1051 
1052 	if (__table_type_bio_based(type))
1053 		for (i = 0; i < t->num_targets; i++) {
1054 			tgt = t->targets + i;
1055 			per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1056 		}
1057 
1058 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1059 	if (!t->mempools)
1060 		return -ENOMEM;
1061 
1062 	return 0;
1063 }
1064 
1065 void dm_table_free_md_mempools(struct dm_table *t)
1066 {
1067 	dm_free_md_mempools(t->mempools);
1068 	t->mempools = NULL;
1069 }
1070 
1071 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1072 {
1073 	return t->mempools;
1074 }
1075 
1076 static int setup_indexes(struct dm_table *t)
1077 {
1078 	int i;
1079 	unsigned int total = 0;
1080 	sector_t *indexes;
1081 
1082 	/* allocate the space for *all* the indexes */
1083 	for (i = t->depth - 2; i >= 0; i--) {
1084 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1085 		total += t->counts[i];
1086 	}
1087 
1088 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1089 	if (!indexes)
1090 		return -ENOMEM;
1091 
1092 	/* set up internal nodes, bottom-up */
1093 	for (i = t->depth - 2; i >= 0; i--) {
1094 		t->index[i] = indexes;
1095 		indexes += (KEYS_PER_NODE * t->counts[i]);
1096 		setup_btree_index(i, t);
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Builds the btree to index the map.
1104  */
1105 static int dm_table_build_index(struct dm_table *t)
1106 {
1107 	int r = 0;
1108 	unsigned int leaf_nodes;
1109 
1110 	/* how many indexes will the btree have ? */
1111 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1112 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1113 
1114 	/* leaf layer has already been set up */
1115 	t->counts[t->depth - 1] = leaf_nodes;
1116 	t->index[t->depth - 1] = t->highs;
1117 
1118 	if (t->depth >= 2)
1119 		r = setup_indexes(t);
1120 
1121 	return r;
1122 }
1123 
1124 static bool integrity_profile_exists(struct gendisk *disk)
1125 {
1126 	return !!blk_get_integrity(disk);
1127 }
1128 
1129 /*
1130  * Get a disk whose integrity profile reflects the table's profile.
1131  * Returns NULL if integrity support was inconsistent or unavailable.
1132  */
1133 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1134 {
1135 	struct list_head *devices = dm_table_get_devices(t);
1136 	struct dm_dev_internal *dd = NULL;
1137 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1138 	unsigned i;
1139 
1140 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1141 		struct dm_target *ti = dm_table_get_target(t, i);
1142 		if (!dm_target_passes_integrity(ti->type))
1143 			goto no_integrity;
1144 	}
1145 
1146 	list_for_each_entry(dd, devices, list) {
1147 		template_disk = dd->dm_dev->bdev->bd_disk;
1148 		if (!integrity_profile_exists(template_disk))
1149 			goto no_integrity;
1150 		else if (prev_disk &&
1151 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1152 			goto no_integrity;
1153 		prev_disk = template_disk;
1154 	}
1155 
1156 	return template_disk;
1157 
1158 no_integrity:
1159 	if (prev_disk)
1160 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1161 		       dm_device_name(t->md),
1162 		       prev_disk->disk_name,
1163 		       template_disk->disk_name);
1164 	return NULL;
1165 }
1166 
1167 /*
1168  * Register the mapped device for blk_integrity support if the
1169  * underlying devices have an integrity profile.  But all devices may
1170  * not have matching profiles (checking all devices isn't reliable
1171  * during table load because this table may use other DM device(s) which
1172  * must be resumed before they will have an initialized integity
1173  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1174  * profile validation: First pass during table load, final pass during
1175  * resume.
1176  */
1177 static int dm_table_register_integrity(struct dm_table *t)
1178 {
1179 	struct mapped_device *md = t->md;
1180 	struct gendisk *template_disk = NULL;
1181 
1182 	/* If target handles integrity itself do not register it here. */
1183 	if (t->integrity_added)
1184 		return 0;
1185 
1186 	template_disk = dm_table_get_integrity_disk(t);
1187 	if (!template_disk)
1188 		return 0;
1189 
1190 	if (!integrity_profile_exists(dm_disk(md))) {
1191 		t->integrity_supported = true;
1192 		/*
1193 		 * Register integrity profile during table load; we can do
1194 		 * this because the final profile must match during resume.
1195 		 */
1196 		blk_integrity_register(dm_disk(md),
1197 				       blk_get_integrity(template_disk));
1198 		return 0;
1199 	}
1200 
1201 	/*
1202 	 * If DM device already has an initialized integrity
1203 	 * profile the new profile should not conflict.
1204 	 */
1205 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1206 		DMWARN("%s: conflict with existing integrity profile: "
1207 		       "%s profile mismatch",
1208 		       dm_device_name(t->md),
1209 		       template_disk->disk_name);
1210 		return 1;
1211 	}
1212 
1213 	/* Preserve existing integrity profile */
1214 	t->integrity_supported = true;
1215 	return 0;
1216 }
1217 
1218 /*
1219  * Prepares the table for use by building the indices,
1220  * setting the type, and allocating mempools.
1221  */
1222 int dm_table_complete(struct dm_table *t)
1223 {
1224 	int r;
1225 
1226 	r = dm_table_determine_type(t);
1227 	if (r) {
1228 		DMERR("unable to determine table type");
1229 		return r;
1230 	}
1231 
1232 	r = dm_table_build_index(t);
1233 	if (r) {
1234 		DMERR("unable to build btrees");
1235 		return r;
1236 	}
1237 
1238 	r = dm_table_register_integrity(t);
1239 	if (r) {
1240 		DMERR("could not register integrity profile.");
1241 		return r;
1242 	}
1243 
1244 	r = dm_table_alloc_md_mempools(t, t->md);
1245 	if (r)
1246 		DMERR("unable to allocate mempools");
1247 
1248 	return r;
1249 }
1250 
1251 static DEFINE_MUTEX(_event_lock);
1252 void dm_table_event_callback(struct dm_table *t,
1253 			     void (*fn)(void *), void *context)
1254 {
1255 	mutex_lock(&_event_lock);
1256 	t->event_fn = fn;
1257 	t->event_context = context;
1258 	mutex_unlock(&_event_lock);
1259 }
1260 
1261 void dm_table_event(struct dm_table *t)
1262 {
1263 	/*
1264 	 * You can no longer call dm_table_event() from interrupt
1265 	 * context, use a bottom half instead.
1266 	 */
1267 	BUG_ON(in_interrupt());
1268 
1269 	mutex_lock(&_event_lock);
1270 	if (t->event_fn)
1271 		t->event_fn(t->event_context);
1272 	mutex_unlock(&_event_lock);
1273 }
1274 EXPORT_SYMBOL(dm_table_event);
1275 
1276 sector_t dm_table_get_size(struct dm_table *t)
1277 {
1278 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1279 }
1280 EXPORT_SYMBOL(dm_table_get_size);
1281 
1282 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1283 {
1284 	if (index >= t->num_targets)
1285 		return NULL;
1286 
1287 	return t->targets + index;
1288 }
1289 
1290 /*
1291  * Search the btree for the correct target.
1292  *
1293  * Caller should check returned pointer with dm_target_is_valid()
1294  * to trap I/O beyond end of device.
1295  */
1296 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1297 {
1298 	unsigned int l, n = 0, k = 0;
1299 	sector_t *node;
1300 
1301 	for (l = 0; l < t->depth; l++) {
1302 		n = get_child(n, k);
1303 		node = get_node(t, l, n);
1304 
1305 		for (k = 0; k < KEYS_PER_NODE; k++)
1306 			if (node[k] >= sector)
1307 				break;
1308 	}
1309 
1310 	return &t->targets[(KEYS_PER_NODE * n) + k];
1311 }
1312 
1313 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1314 			sector_t start, sector_t len, void *data)
1315 {
1316 	unsigned *num_devices = data;
1317 
1318 	(*num_devices)++;
1319 
1320 	return 0;
1321 }
1322 
1323 /*
1324  * Check whether a table has no data devices attached using each
1325  * target's iterate_devices method.
1326  * Returns false if the result is unknown because a target doesn't
1327  * support iterate_devices.
1328  */
1329 bool dm_table_has_no_data_devices(struct dm_table *table)
1330 {
1331 	struct dm_target *ti;
1332 	unsigned i, num_devices;
1333 
1334 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1335 		ti = dm_table_get_target(table, i);
1336 
1337 		if (!ti->type->iterate_devices)
1338 			return false;
1339 
1340 		num_devices = 0;
1341 		ti->type->iterate_devices(ti, count_device, &num_devices);
1342 		if (num_devices)
1343 			return false;
1344 	}
1345 
1346 	return true;
1347 }
1348 
1349 /*
1350  * Establish the new table's queue_limits and validate them.
1351  */
1352 int dm_calculate_queue_limits(struct dm_table *table,
1353 			      struct queue_limits *limits)
1354 {
1355 	struct dm_target *ti;
1356 	struct queue_limits ti_limits;
1357 	unsigned i;
1358 
1359 	blk_set_stacking_limits(limits);
1360 
1361 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1362 		blk_set_stacking_limits(&ti_limits);
1363 
1364 		ti = dm_table_get_target(table, i);
1365 
1366 		if (!ti->type->iterate_devices)
1367 			goto combine_limits;
1368 
1369 		/*
1370 		 * Combine queue limits of all the devices this target uses.
1371 		 */
1372 		ti->type->iterate_devices(ti, dm_set_device_limits,
1373 					  &ti_limits);
1374 
1375 		/* Set I/O hints portion of queue limits */
1376 		if (ti->type->io_hints)
1377 			ti->type->io_hints(ti, &ti_limits);
1378 
1379 		/*
1380 		 * Check each device area is consistent with the target's
1381 		 * overall queue limits.
1382 		 */
1383 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1384 					      &ti_limits))
1385 			return -EINVAL;
1386 
1387 combine_limits:
1388 		/*
1389 		 * Merge this target's queue limits into the overall limits
1390 		 * for the table.
1391 		 */
1392 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1393 			DMWARN("%s: adding target device "
1394 			       "(start sect %llu len %llu) "
1395 			       "caused an alignment inconsistency",
1396 			       dm_device_name(table->md),
1397 			       (unsigned long long) ti->begin,
1398 			       (unsigned long long) ti->len);
1399 	}
1400 
1401 	return validate_hardware_logical_block_alignment(table, limits);
1402 }
1403 
1404 /*
1405  * Verify that all devices have an integrity profile that matches the
1406  * DM device's registered integrity profile.  If the profiles don't
1407  * match then unregister the DM device's integrity profile.
1408  */
1409 static void dm_table_verify_integrity(struct dm_table *t)
1410 {
1411 	struct gendisk *template_disk = NULL;
1412 
1413 	if (t->integrity_added)
1414 		return;
1415 
1416 	if (t->integrity_supported) {
1417 		/*
1418 		 * Verify that the original integrity profile
1419 		 * matches all the devices in this table.
1420 		 */
1421 		template_disk = dm_table_get_integrity_disk(t);
1422 		if (template_disk &&
1423 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1424 			return;
1425 	}
1426 
1427 	if (integrity_profile_exists(dm_disk(t->md))) {
1428 		DMWARN("%s: unable to establish an integrity profile",
1429 		       dm_device_name(t->md));
1430 		blk_integrity_unregister(dm_disk(t->md));
1431 	}
1432 }
1433 
1434 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1435 				sector_t start, sector_t len, void *data)
1436 {
1437 	unsigned long flush = (unsigned long) data;
1438 	struct request_queue *q = bdev_get_queue(dev->bdev);
1439 
1440 	return q && (q->queue_flags & flush);
1441 }
1442 
1443 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1444 {
1445 	struct dm_target *ti;
1446 	unsigned i;
1447 
1448 	/*
1449 	 * Require at least one underlying device to support flushes.
1450 	 * t->devices includes internal dm devices such as mirror logs
1451 	 * so we need to use iterate_devices here, which targets
1452 	 * supporting flushes must provide.
1453 	 */
1454 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1455 		ti = dm_table_get_target(t, i);
1456 
1457 		if (!ti->num_flush_bios)
1458 			continue;
1459 
1460 		if (ti->flush_supported)
1461 			return true;
1462 
1463 		if (ti->type->iterate_devices &&
1464 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1465 			return true;
1466 	}
1467 
1468 	return false;
1469 }
1470 
1471 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1472 			    sector_t start, sector_t len, void *data)
1473 {
1474 	struct request_queue *q = bdev_get_queue(dev->bdev);
1475 
1476 	return q && blk_queue_nonrot(q);
1477 }
1478 
1479 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1480 			     sector_t start, sector_t len, void *data)
1481 {
1482 	struct request_queue *q = bdev_get_queue(dev->bdev);
1483 
1484 	return q && !blk_queue_add_random(q);
1485 }
1486 
1487 static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1488 				   sector_t start, sector_t len, void *data)
1489 {
1490 	struct request_queue *q = bdev_get_queue(dev->bdev);
1491 
1492 	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1493 }
1494 
1495 static bool dm_table_all_devices_attribute(struct dm_table *t,
1496 					   iterate_devices_callout_fn func)
1497 {
1498 	struct dm_target *ti;
1499 	unsigned i;
1500 
1501 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1502 		ti = dm_table_get_target(t, i);
1503 
1504 		if (!ti->type->iterate_devices ||
1505 		    !ti->type->iterate_devices(ti, func, NULL))
1506 			return false;
1507 	}
1508 
1509 	return true;
1510 }
1511 
1512 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1513 					 sector_t start, sector_t len, void *data)
1514 {
1515 	struct request_queue *q = bdev_get_queue(dev->bdev);
1516 
1517 	return q && !q->limits.max_write_same_sectors;
1518 }
1519 
1520 static bool dm_table_supports_write_same(struct dm_table *t)
1521 {
1522 	struct dm_target *ti;
1523 	unsigned i;
1524 
1525 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1526 		ti = dm_table_get_target(t, i);
1527 
1528 		if (!ti->num_write_same_bios)
1529 			return false;
1530 
1531 		if (!ti->type->iterate_devices ||
1532 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1533 			return false;
1534 	}
1535 
1536 	return true;
1537 }
1538 
1539 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1540 					   sector_t start, sector_t len, void *data)
1541 {
1542 	struct request_queue *q = bdev_get_queue(dev->bdev);
1543 
1544 	return q && !q->limits.max_write_zeroes_sectors;
1545 }
1546 
1547 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1548 {
1549 	struct dm_target *ti;
1550 	unsigned i = 0;
1551 
1552 	while (i < dm_table_get_num_targets(t)) {
1553 		ti = dm_table_get_target(t, i++);
1554 
1555 		if (!ti->num_write_zeroes_bios)
1556 			return false;
1557 
1558 		if (!ti->type->iterate_devices ||
1559 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1560 			return false;
1561 	}
1562 
1563 	return true;
1564 }
1565 
1566 
1567 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1568 				  sector_t start, sector_t len, void *data)
1569 {
1570 	struct request_queue *q = bdev_get_queue(dev->bdev);
1571 
1572 	return q && blk_queue_discard(q);
1573 }
1574 
1575 static bool dm_table_supports_discards(struct dm_table *t)
1576 {
1577 	struct dm_target *ti;
1578 	unsigned i;
1579 
1580 	/*
1581 	 * Unless any target used by the table set discards_supported,
1582 	 * require at least one underlying device to support discards.
1583 	 * t->devices includes internal dm devices such as mirror logs
1584 	 * so we need to use iterate_devices here, which targets
1585 	 * supporting discard selectively must provide.
1586 	 */
1587 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1588 		ti = dm_table_get_target(t, i);
1589 
1590 		if (!ti->num_discard_bios)
1591 			continue;
1592 
1593 		if (ti->discards_supported)
1594 			return true;
1595 
1596 		if (ti->type->iterate_devices &&
1597 		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1598 			return true;
1599 	}
1600 
1601 	return false;
1602 }
1603 
1604 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1605 			       struct queue_limits *limits)
1606 {
1607 	bool wc = false, fua = false;
1608 
1609 	/*
1610 	 * Copy table's limits to the DM device's request_queue
1611 	 */
1612 	q->limits = *limits;
1613 
1614 	if (!dm_table_supports_discards(t))
1615 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1616 	else
1617 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1618 
1619 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1620 		wc = true;
1621 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1622 			fua = true;
1623 	}
1624 	blk_queue_write_cache(q, wc, fua);
1625 
1626 	/* Ensure that all underlying devices are non-rotational. */
1627 	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1628 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1629 	else
1630 		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1631 
1632 	if (!dm_table_supports_write_same(t))
1633 		q->limits.max_write_same_sectors = 0;
1634 	if (!dm_table_supports_write_zeroes(t))
1635 		q->limits.max_write_zeroes_sectors = 0;
1636 
1637 	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1638 		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1639 	else
1640 		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1641 
1642 	dm_table_verify_integrity(t);
1643 
1644 	/*
1645 	 * Determine whether or not this queue's I/O timings contribute
1646 	 * to the entropy pool, Only request-based targets use this.
1647 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1648 	 * have it set.
1649 	 */
1650 	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1651 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1652 
1653 	/*
1654 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1655 	 * visible to other CPUs because, once the flag is set, incoming bios
1656 	 * are processed by request-based dm, which refers to the queue
1657 	 * settings.
1658 	 * Until the flag set, bios are passed to bio-based dm and queued to
1659 	 * md->deferred where queue settings are not needed yet.
1660 	 * Those bios are passed to request-based dm at the resume time.
1661 	 */
1662 	smp_mb();
1663 	if (dm_table_request_based(t))
1664 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1665 }
1666 
1667 unsigned int dm_table_get_num_targets(struct dm_table *t)
1668 {
1669 	return t->num_targets;
1670 }
1671 
1672 struct list_head *dm_table_get_devices(struct dm_table *t)
1673 {
1674 	return &t->devices;
1675 }
1676 
1677 fmode_t dm_table_get_mode(struct dm_table *t)
1678 {
1679 	return t->mode;
1680 }
1681 EXPORT_SYMBOL(dm_table_get_mode);
1682 
1683 enum suspend_mode {
1684 	PRESUSPEND,
1685 	PRESUSPEND_UNDO,
1686 	POSTSUSPEND,
1687 };
1688 
1689 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1690 {
1691 	int i = t->num_targets;
1692 	struct dm_target *ti = t->targets;
1693 
1694 	lockdep_assert_held(&t->md->suspend_lock);
1695 
1696 	while (i--) {
1697 		switch (mode) {
1698 		case PRESUSPEND:
1699 			if (ti->type->presuspend)
1700 				ti->type->presuspend(ti);
1701 			break;
1702 		case PRESUSPEND_UNDO:
1703 			if (ti->type->presuspend_undo)
1704 				ti->type->presuspend_undo(ti);
1705 			break;
1706 		case POSTSUSPEND:
1707 			if (ti->type->postsuspend)
1708 				ti->type->postsuspend(ti);
1709 			break;
1710 		}
1711 		ti++;
1712 	}
1713 }
1714 
1715 void dm_table_presuspend_targets(struct dm_table *t)
1716 {
1717 	if (!t)
1718 		return;
1719 
1720 	suspend_targets(t, PRESUSPEND);
1721 }
1722 
1723 void dm_table_presuspend_undo_targets(struct dm_table *t)
1724 {
1725 	if (!t)
1726 		return;
1727 
1728 	suspend_targets(t, PRESUSPEND_UNDO);
1729 }
1730 
1731 void dm_table_postsuspend_targets(struct dm_table *t)
1732 {
1733 	if (!t)
1734 		return;
1735 
1736 	suspend_targets(t, POSTSUSPEND);
1737 }
1738 
1739 int dm_table_resume_targets(struct dm_table *t)
1740 {
1741 	int i, r = 0;
1742 
1743 	lockdep_assert_held(&t->md->suspend_lock);
1744 
1745 	for (i = 0; i < t->num_targets; i++) {
1746 		struct dm_target *ti = t->targets + i;
1747 
1748 		if (!ti->type->preresume)
1749 			continue;
1750 
1751 		r = ti->type->preresume(ti);
1752 		if (r) {
1753 			DMERR("%s: %s: preresume failed, error = %d",
1754 			      dm_device_name(t->md), ti->type->name, r);
1755 			return r;
1756 		}
1757 	}
1758 
1759 	for (i = 0; i < t->num_targets; i++) {
1760 		struct dm_target *ti = t->targets + i;
1761 
1762 		if (ti->type->resume)
1763 			ti->type->resume(ti);
1764 	}
1765 
1766 	return 0;
1767 }
1768 
1769 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1770 {
1771 	list_add(&cb->list, &t->target_callbacks);
1772 }
1773 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1774 
1775 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1776 {
1777 	struct dm_dev_internal *dd;
1778 	struct list_head *devices = dm_table_get_devices(t);
1779 	struct dm_target_callbacks *cb;
1780 	int r = 0;
1781 
1782 	list_for_each_entry(dd, devices, list) {
1783 		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1784 		char b[BDEVNAME_SIZE];
1785 
1786 		if (likely(q))
1787 			r |= bdi_congested(q->backing_dev_info, bdi_bits);
1788 		else
1789 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1790 				     dm_device_name(t->md),
1791 				     bdevname(dd->dm_dev->bdev, b));
1792 	}
1793 
1794 	list_for_each_entry(cb, &t->target_callbacks, list)
1795 		if (cb->congested_fn)
1796 			r |= cb->congested_fn(cb, bdi_bits);
1797 
1798 	return r;
1799 }
1800 
1801 struct mapped_device *dm_table_get_md(struct dm_table *t)
1802 {
1803 	return t->md;
1804 }
1805 EXPORT_SYMBOL(dm_table_get_md);
1806 
1807 void dm_table_run_md_queue_async(struct dm_table *t)
1808 {
1809 	struct mapped_device *md;
1810 	struct request_queue *queue;
1811 	unsigned long flags;
1812 
1813 	if (!dm_table_request_based(t))
1814 		return;
1815 
1816 	md = dm_table_get_md(t);
1817 	queue = dm_get_md_queue(md);
1818 	if (queue) {
1819 		if (queue->mq_ops)
1820 			blk_mq_run_hw_queues(queue, true);
1821 		else {
1822 			spin_lock_irqsave(queue->queue_lock, flags);
1823 			blk_run_queue_async(queue);
1824 			spin_unlock_irqrestore(queue->queue_lock, flags);
1825 		}
1826 	}
1827 }
1828 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1829 
1830