xref: /openbmc/linux/drivers/md/dm-table.c (revision b9f0bfd1)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/namei.h>
15 #include <linux/ctype.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/mount.h>
24 #include <linux/dax.h>
25 
26 #define DM_MSG_PREFIX "table"
27 
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31 
32 /*
33  * Similar to ceiling(log_size(n))
34  */
35 static unsigned int int_log(unsigned int n, unsigned int base)
36 {
37 	int result = 0;
38 
39 	while (n > 1) {
40 		n = dm_div_up(n, base);
41 		result++;
42 	}
43 
44 	return result;
45 }
46 
47 /*
48  * Calculate the index of the child node of the n'th node k'th key.
49  */
50 static inline unsigned int get_child(unsigned int n, unsigned int k)
51 {
52 	return (n * CHILDREN_PER_NODE) + k;
53 }
54 
55 /*
56  * Return the n'th node of level l from table t.
57  */
58 static inline sector_t *get_node(struct dm_table *t,
59 				 unsigned int l, unsigned int n)
60 {
61 	return t->index[l] + (n * KEYS_PER_NODE);
62 }
63 
64 /*
65  * Return the highest key that you could lookup from the n'th
66  * node on level l of the btree.
67  */
68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
69 {
70 	for (; l < t->depth - 1; l++)
71 		n = get_child(n, CHILDREN_PER_NODE - 1);
72 
73 	if (n >= t->counts[l])
74 		return (sector_t) - 1;
75 
76 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
77 }
78 
79 /*
80  * Fills in a level of the btree based on the highs of the level
81  * below it.
82  */
83 static int setup_btree_index(unsigned int l, struct dm_table *t)
84 {
85 	unsigned int n, k;
86 	sector_t *node;
87 
88 	for (n = 0U; n < t->counts[l]; n++) {
89 		node = get_node(t, l, n);
90 
91 		for (k = 0U; k < KEYS_PER_NODE; k++)
92 			node[k] = high(t, l + 1, get_child(n, k));
93 	}
94 
95 	return 0;
96 }
97 
98 /*
99  * highs, and targets are managed as dynamic arrays during a
100  * table load.
101  */
102 static int alloc_targets(struct dm_table *t, unsigned int num)
103 {
104 	sector_t *n_highs;
105 	struct dm_target *n_targets;
106 
107 	/*
108 	 * Allocate both the target array and offset array at once.
109 	 */
110 	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
111 			   GFP_KERNEL);
112 	if (!n_highs)
113 		return -ENOMEM;
114 
115 	n_targets = (struct dm_target *) (n_highs + num);
116 
117 	memset(n_highs, -1, sizeof(*n_highs) * num);
118 	kvfree(t->highs);
119 
120 	t->num_allocated = num;
121 	t->highs = n_highs;
122 	t->targets = n_targets;
123 
124 	return 0;
125 }
126 
127 int dm_table_create(struct dm_table **result, fmode_t mode,
128 		    unsigned num_targets, struct mapped_device *md)
129 {
130 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
131 
132 	if (!t)
133 		return -ENOMEM;
134 
135 	INIT_LIST_HEAD(&t->devices);
136 
137 	if (!num_targets)
138 		num_targets = KEYS_PER_NODE;
139 
140 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
141 
142 	if (!num_targets) {
143 		kfree(t);
144 		return -ENOMEM;
145 	}
146 
147 	if (alloc_targets(t, num_targets)) {
148 		kfree(t);
149 		return -ENOMEM;
150 	}
151 
152 	t->type = DM_TYPE_NONE;
153 	t->mode = mode;
154 	t->md = md;
155 	*result = t;
156 	return 0;
157 }
158 
159 static void free_devices(struct list_head *devices, struct mapped_device *md)
160 {
161 	struct list_head *tmp, *next;
162 
163 	list_for_each_safe(tmp, next, devices) {
164 		struct dm_dev_internal *dd =
165 		    list_entry(tmp, struct dm_dev_internal, list);
166 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
167 		       dm_device_name(md), dd->dm_dev->name);
168 		dm_put_table_device(md, dd->dm_dev);
169 		kfree(dd);
170 	}
171 }
172 
173 static void dm_table_destroy_crypto_profile(struct dm_table *t);
174 
175 void dm_table_destroy(struct dm_table *t)
176 {
177 	unsigned int i;
178 
179 	if (!t)
180 		return;
181 
182 	/* free the indexes */
183 	if (t->depth >= 2)
184 		kvfree(t->index[t->depth - 2]);
185 
186 	/* free the targets */
187 	for (i = 0; i < t->num_targets; i++) {
188 		struct dm_target *tgt = t->targets + i;
189 
190 		if (tgt->type->dtr)
191 			tgt->type->dtr(tgt);
192 
193 		dm_put_target_type(tgt->type);
194 	}
195 
196 	kvfree(t->highs);
197 
198 	/* free the device list */
199 	free_devices(&t->devices, t->md);
200 
201 	dm_free_md_mempools(t->mempools);
202 
203 	dm_table_destroy_crypto_profile(t);
204 
205 	kfree(t);
206 }
207 
208 /*
209  * See if we've already got a device in the list.
210  */
211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
212 {
213 	struct dm_dev_internal *dd;
214 
215 	list_for_each_entry (dd, l, list)
216 		if (dd->dm_dev->bdev->bd_dev == dev)
217 			return dd;
218 
219 	return NULL;
220 }
221 
222 /*
223  * If possible, this checks an area of a destination device is invalid.
224  */
225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
226 				  sector_t start, sector_t len, void *data)
227 {
228 	struct queue_limits *limits = data;
229 	struct block_device *bdev = dev->bdev;
230 	sector_t dev_size = bdev_nr_sectors(bdev);
231 	unsigned short logical_block_size_sectors =
232 		limits->logical_block_size >> SECTOR_SHIFT;
233 	char b[BDEVNAME_SIZE];
234 
235 	if (!dev_size)
236 		return 0;
237 
238 	if ((start >= dev_size) || (start + len > dev_size)) {
239 		DMWARN("%s: %s too small for target: "
240 		       "start=%llu, len=%llu, dev_size=%llu",
241 		       dm_device_name(ti->table->md), bdevname(bdev, b),
242 		       (unsigned long long)start,
243 		       (unsigned long long)len,
244 		       (unsigned long long)dev_size);
245 		return 1;
246 	}
247 
248 	/*
249 	 * If the target is mapped to zoned block device(s), check
250 	 * that the zones are not partially mapped.
251 	 */
252 	if (bdev_is_zoned(bdev)) {
253 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
254 
255 		if (start & (zone_sectors - 1)) {
256 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
257 			       dm_device_name(ti->table->md),
258 			       (unsigned long long)start,
259 			       zone_sectors, bdevname(bdev, b));
260 			return 1;
261 		}
262 
263 		/*
264 		 * Note: The last zone of a zoned block device may be smaller
265 		 * than other zones. So for a target mapping the end of a
266 		 * zoned block device with such a zone, len would not be zone
267 		 * aligned. We do not allow such last smaller zone to be part
268 		 * of the mapping here to ensure that mappings with multiple
269 		 * devices do not end up with a smaller zone in the middle of
270 		 * the sector range.
271 		 */
272 		if (len & (zone_sectors - 1)) {
273 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
274 			       dm_device_name(ti->table->md),
275 			       (unsigned long long)len,
276 			       zone_sectors, bdevname(bdev, b));
277 			return 1;
278 		}
279 	}
280 
281 	if (logical_block_size_sectors <= 1)
282 		return 0;
283 
284 	if (start & (logical_block_size_sectors - 1)) {
285 		DMWARN("%s: start=%llu not aligned to h/w "
286 		       "logical block size %u of %s",
287 		       dm_device_name(ti->table->md),
288 		       (unsigned long long)start,
289 		       limits->logical_block_size, bdevname(bdev, b));
290 		return 1;
291 	}
292 
293 	if (len & (logical_block_size_sectors - 1)) {
294 		DMWARN("%s: len=%llu not aligned to h/w "
295 		       "logical block size %u of %s",
296 		       dm_device_name(ti->table->md),
297 		       (unsigned long long)len,
298 		       limits->logical_block_size, bdevname(bdev, b));
299 		return 1;
300 	}
301 
302 	return 0;
303 }
304 
305 /*
306  * This upgrades the mode on an already open dm_dev, being
307  * careful to leave things as they were if we fail to reopen the
308  * device and not to touch the existing bdev field in case
309  * it is accessed concurrently.
310  */
311 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
312 			struct mapped_device *md)
313 {
314 	int r;
315 	struct dm_dev *old_dev, *new_dev;
316 
317 	old_dev = dd->dm_dev;
318 
319 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
320 				dd->dm_dev->mode | new_mode, &new_dev);
321 	if (r)
322 		return r;
323 
324 	dd->dm_dev = new_dev;
325 	dm_put_table_device(md, old_dev);
326 
327 	return 0;
328 }
329 
330 /*
331  * Convert the path to a device
332  */
333 dev_t dm_get_dev_t(const char *path)
334 {
335 	dev_t dev;
336 
337 	if (lookup_bdev(path, &dev))
338 		dev = name_to_dev_t(path);
339 	return dev;
340 }
341 EXPORT_SYMBOL_GPL(dm_get_dev_t);
342 
343 /*
344  * Add a device to the list, or just increment the usage count if
345  * it's already present.
346  */
347 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
348 		  struct dm_dev **result)
349 {
350 	int r;
351 	dev_t dev;
352 	unsigned int major, minor;
353 	char dummy;
354 	struct dm_dev_internal *dd;
355 	struct dm_table *t = ti->table;
356 
357 	BUG_ON(!t);
358 
359 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
360 		/* Extract the major/minor numbers */
361 		dev = MKDEV(major, minor);
362 		if (MAJOR(dev) != major || MINOR(dev) != minor)
363 			return -EOVERFLOW;
364 	} else {
365 		dev = dm_get_dev_t(path);
366 		if (!dev)
367 			return -ENODEV;
368 	}
369 
370 	dd = find_device(&t->devices, dev);
371 	if (!dd) {
372 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 		if (!dd)
374 			return -ENOMEM;
375 
376 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
377 			kfree(dd);
378 			return r;
379 		}
380 
381 		refcount_set(&dd->count, 1);
382 		list_add(&dd->list, &t->devices);
383 		goto out;
384 
385 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
386 		r = upgrade_mode(dd, mode, t->md);
387 		if (r)
388 			return r;
389 	}
390 	refcount_inc(&dd->count);
391 out:
392 	*result = dd->dm_dev;
393 	return 0;
394 }
395 EXPORT_SYMBOL(dm_get_device);
396 
397 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
398 				sector_t start, sector_t len, void *data)
399 {
400 	struct queue_limits *limits = data;
401 	struct block_device *bdev = dev->bdev;
402 	struct request_queue *q = bdev_get_queue(bdev);
403 	char b[BDEVNAME_SIZE];
404 
405 	if (unlikely(!q)) {
406 		DMWARN("%s: Cannot set limits for nonexistent device %s",
407 		       dm_device_name(ti->table->md), bdevname(bdev, b));
408 		return 0;
409 	}
410 
411 	if (blk_stack_limits(limits, &q->limits,
412 			get_start_sect(bdev) + start) < 0)
413 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
414 		       "physical_block_size=%u, logical_block_size=%u, "
415 		       "alignment_offset=%u, start=%llu",
416 		       dm_device_name(ti->table->md), bdevname(bdev, b),
417 		       q->limits.physical_block_size,
418 		       q->limits.logical_block_size,
419 		       q->limits.alignment_offset,
420 		       (unsigned long long) start << SECTOR_SHIFT);
421 	return 0;
422 }
423 
424 /*
425  * Decrement a device's use count and remove it if necessary.
426  */
427 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
428 {
429 	int found = 0;
430 	struct list_head *devices = &ti->table->devices;
431 	struct dm_dev_internal *dd;
432 
433 	list_for_each_entry(dd, devices, list) {
434 		if (dd->dm_dev == d) {
435 			found = 1;
436 			break;
437 		}
438 	}
439 	if (!found) {
440 		DMWARN("%s: device %s not in table devices list",
441 		       dm_device_name(ti->table->md), d->name);
442 		return;
443 	}
444 	if (refcount_dec_and_test(&dd->count)) {
445 		dm_put_table_device(ti->table->md, d);
446 		list_del(&dd->list);
447 		kfree(dd);
448 	}
449 }
450 EXPORT_SYMBOL(dm_put_device);
451 
452 /*
453  * Checks to see if the target joins onto the end of the table.
454  */
455 static int adjoin(struct dm_table *table, struct dm_target *ti)
456 {
457 	struct dm_target *prev;
458 
459 	if (!table->num_targets)
460 		return !ti->begin;
461 
462 	prev = &table->targets[table->num_targets - 1];
463 	return (ti->begin == (prev->begin + prev->len));
464 }
465 
466 /*
467  * Used to dynamically allocate the arg array.
468  *
469  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
470  * process messages even if some device is suspended. These messages have a
471  * small fixed number of arguments.
472  *
473  * On the other hand, dm-switch needs to process bulk data using messages and
474  * excessive use of GFP_NOIO could cause trouble.
475  */
476 static char **realloc_argv(unsigned *size, char **old_argv)
477 {
478 	char **argv;
479 	unsigned new_size;
480 	gfp_t gfp;
481 
482 	if (*size) {
483 		new_size = *size * 2;
484 		gfp = GFP_KERNEL;
485 	} else {
486 		new_size = 8;
487 		gfp = GFP_NOIO;
488 	}
489 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
490 	if (argv && old_argv) {
491 		memcpy(argv, old_argv, *size * sizeof(*argv));
492 		*size = new_size;
493 	}
494 
495 	kfree(old_argv);
496 	return argv;
497 }
498 
499 /*
500  * Destructively splits up the argument list to pass to ctr.
501  */
502 int dm_split_args(int *argc, char ***argvp, char *input)
503 {
504 	char *start, *end = input, *out, **argv = NULL;
505 	unsigned array_size = 0;
506 
507 	*argc = 0;
508 
509 	if (!input) {
510 		*argvp = NULL;
511 		return 0;
512 	}
513 
514 	argv = realloc_argv(&array_size, argv);
515 	if (!argv)
516 		return -ENOMEM;
517 
518 	while (1) {
519 		/* Skip whitespace */
520 		start = skip_spaces(end);
521 
522 		if (!*start)
523 			break;	/* success, we hit the end */
524 
525 		/* 'out' is used to remove any back-quotes */
526 		end = out = start;
527 		while (*end) {
528 			/* Everything apart from '\0' can be quoted */
529 			if (*end == '\\' && *(end + 1)) {
530 				*out++ = *(end + 1);
531 				end += 2;
532 				continue;
533 			}
534 
535 			if (isspace(*end))
536 				break;	/* end of token */
537 
538 			*out++ = *end++;
539 		}
540 
541 		/* have we already filled the array ? */
542 		if ((*argc + 1) > array_size) {
543 			argv = realloc_argv(&array_size, argv);
544 			if (!argv)
545 				return -ENOMEM;
546 		}
547 
548 		/* we know this is whitespace */
549 		if (*end)
550 			end++;
551 
552 		/* terminate the string and put it in the array */
553 		*out = '\0';
554 		argv[*argc] = start;
555 		(*argc)++;
556 	}
557 
558 	*argvp = argv;
559 	return 0;
560 }
561 
562 /*
563  * Impose necessary and sufficient conditions on a devices's table such
564  * that any incoming bio which respects its logical_block_size can be
565  * processed successfully.  If it falls across the boundary between
566  * two or more targets, the size of each piece it gets split into must
567  * be compatible with the logical_block_size of the target processing it.
568  */
569 static int validate_hardware_logical_block_alignment(struct dm_table *table,
570 						 struct queue_limits *limits)
571 {
572 	/*
573 	 * This function uses arithmetic modulo the logical_block_size
574 	 * (in units of 512-byte sectors).
575 	 */
576 	unsigned short device_logical_block_size_sects =
577 		limits->logical_block_size >> SECTOR_SHIFT;
578 
579 	/*
580 	 * Offset of the start of the next table entry, mod logical_block_size.
581 	 */
582 	unsigned short next_target_start = 0;
583 
584 	/*
585 	 * Given an aligned bio that extends beyond the end of a
586 	 * target, how many sectors must the next target handle?
587 	 */
588 	unsigned short remaining = 0;
589 
590 	struct dm_target *ti;
591 	struct queue_limits ti_limits;
592 	unsigned i;
593 
594 	/*
595 	 * Check each entry in the table in turn.
596 	 */
597 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
598 		ti = dm_table_get_target(table, i);
599 
600 		blk_set_stacking_limits(&ti_limits);
601 
602 		/* combine all target devices' limits */
603 		if (ti->type->iterate_devices)
604 			ti->type->iterate_devices(ti, dm_set_device_limits,
605 						  &ti_limits);
606 
607 		/*
608 		 * If the remaining sectors fall entirely within this
609 		 * table entry are they compatible with its logical_block_size?
610 		 */
611 		if (remaining < ti->len &&
612 		    remaining & ((ti_limits.logical_block_size >>
613 				  SECTOR_SHIFT) - 1))
614 			break;	/* Error */
615 
616 		next_target_start =
617 		    (unsigned short) ((next_target_start + ti->len) &
618 				      (device_logical_block_size_sects - 1));
619 		remaining = next_target_start ?
620 		    device_logical_block_size_sects - next_target_start : 0;
621 	}
622 
623 	if (remaining) {
624 		DMWARN("%s: table line %u (start sect %llu len %llu) "
625 		       "not aligned to h/w logical block size %u",
626 		       dm_device_name(table->md), i,
627 		       (unsigned long long) ti->begin,
628 		       (unsigned long long) ti->len,
629 		       limits->logical_block_size);
630 		return -EINVAL;
631 	}
632 
633 	return 0;
634 }
635 
636 int dm_table_add_target(struct dm_table *t, const char *type,
637 			sector_t start, sector_t len, char *params)
638 {
639 	int r = -EINVAL, argc;
640 	char **argv;
641 	struct dm_target *tgt;
642 
643 	if (t->singleton) {
644 		DMERR("%s: target type %s must appear alone in table",
645 		      dm_device_name(t->md), t->targets->type->name);
646 		return -EINVAL;
647 	}
648 
649 	BUG_ON(t->num_targets >= t->num_allocated);
650 
651 	tgt = t->targets + t->num_targets;
652 	memset(tgt, 0, sizeof(*tgt));
653 
654 	if (!len) {
655 		DMERR("%s: zero-length target", dm_device_name(t->md));
656 		return -EINVAL;
657 	}
658 
659 	tgt->type = dm_get_target_type(type);
660 	if (!tgt->type) {
661 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
662 		return -EINVAL;
663 	}
664 
665 	if (dm_target_needs_singleton(tgt->type)) {
666 		if (t->num_targets) {
667 			tgt->error = "singleton target type must appear alone in table";
668 			goto bad;
669 		}
670 		t->singleton = true;
671 	}
672 
673 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
674 		tgt->error = "target type may not be included in a read-only table";
675 		goto bad;
676 	}
677 
678 	if (t->immutable_target_type) {
679 		if (t->immutable_target_type != tgt->type) {
680 			tgt->error = "immutable target type cannot be mixed with other target types";
681 			goto bad;
682 		}
683 	} else if (dm_target_is_immutable(tgt->type)) {
684 		if (t->num_targets) {
685 			tgt->error = "immutable target type cannot be mixed with other target types";
686 			goto bad;
687 		}
688 		t->immutable_target_type = tgt->type;
689 	}
690 
691 	if (dm_target_has_integrity(tgt->type))
692 		t->integrity_added = 1;
693 
694 	tgt->table = t;
695 	tgt->begin = start;
696 	tgt->len = len;
697 	tgt->error = "Unknown error";
698 
699 	/*
700 	 * Does this target adjoin the previous one ?
701 	 */
702 	if (!adjoin(t, tgt)) {
703 		tgt->error = "Gap in table";
704 		goto bad;
705 	}
706 
707 	r = dm_split_args(&argc, &argv, params);
708 	if (r) {
709 		tgt->error = "couldn't split parameters";
710 		goto bad;
711 	}
712 
713 	r = tgt->type->ctr(tgt, argc, argv);
714 	kfree(argv);
715 	if (r)
716 		goto bad;
717 
718 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
719 
720 	if (!tgt->num_discard_bios && tgt->discards_supported)
721 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
722 		       dm_device_name(t->md), type);
723 
724 	return 0;
725 
726  bad:
727 	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r));
728 	dm_put_target_type(tgt->type);
729 	return r;
730 }
731 
732 /*
733  * Target argument parsing helpers.
734  */
735 static int validate_next_arg(const struct dm_arg *arg,
736 			     struct dm_arg_set *arg_set,
737 			     unsigned *value, char **error, unsigned grouped)
738 {
739 	const char *arg_str = dm_shift_arg(arg_set);
740 	char dummy;
741 
742 	if (!arg_str ||
743 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
744 	    (*value < arg->min) ||
745 	    (*value > arg->max) ||
746 	    (grouped && arg_set->argc < *value)) {
747 		*error = arg->error;
748 		return -EINVAL;
749 	}
750 
751 	return 0;
752 }
753 
754 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
755 		unsigned *value, char **error)
756 {
757 	return validate_next_arg(arg, arg_set, value, error, 0);
758 }
759 EXPORT_SYMBOL(dm_read_arg);
760 
761 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
762 		      unsigned *value, char **error)
763 {
764 	return validate_next_arg(arg, arg_set, value, error, 1);
765 }
766 EXPORT_SYMBOL(dm_read_arg_group);
767 
768 const char *dm_shift_arg(struct dm_arg_set *as)
769 {
770 	char *r;
771 
772 	if (as->argc) {
773 		as->argc--;
774 		r = *as->argv;
775 		as->argv++;
776 		return r;
777 	}
778 
779 	return NULL;
780 }
781 EXPORT_SYMBOL(dm_shift_arg);
782 
783 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
784 {
785 	BUG_ON(as->argc < num_args);
786 	as->argc -= num_args;
787 	as->argv += num_args;
788 }
789 EXPORT_SYMBOL(dm_consume_args);
790 
791 static bool __table_type_bio_based(enum dm_queue_mode table_type)
792 {
793 	return (table_type == DM_TYPE_BIO_BASED ||
794 		table_type == DM_TYPE_DAX_BIO_BASED);
795 }
796 
797 static bool __table_type_request_based(enum dm_queue_mode table_type)
798 {
799 	return table_type == DM_TYPE_REQUEST_BASED;
800 }
801 
802 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
803 {
804 	t->type = type;
805 }
806 EXPORT_SYMBOL_GPL(dm_table_set_type);
807 
808 /* validate the dax capability of the target device span */
809 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
810 			sector_t start, sector_t len, void *data)
811 {
812 	int blocksize = *(int *) data;
813 
814 	return !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
815 }
816 
817 /* Check devices support synchronous DAX */
818 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
819 					      sector_t start, sector_t len, void *data)
820 {
821 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
822 }
823 
824 bool dm_table_supports_dax(struct dm_table *t,
825 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
826 {
827 	struct dm_target *ti;
828 	unsigned i;
829 
830 	/* Ensure that all targets support DAX. */
831 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
832 		ti = dm_table_get_target(t, i);
833 
834 		if (!ti->type->direct_access)
835 			return false;
836 
837 		if (!ti->type->iterate_devices ||
838 		    ti->type->iterate_devices(ti, iterate_fn, blocksize))
839 			return false;
840 	}
841 
842 	return true;
843 }
844 
845 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
846 				  sector_t start, sector_t len, void *data)
847 {
848 	struct block_device *bdev = dev->bdev;
849 	struct request_queue *q = bdev_get_queue(bdev);
850 
851 	/* request-based cannot stack on partitions! */
852 	if (bdev_is_partition(bdev))
853 		return false;
854 
855 	return queue_is_mq(q);
856 }
857 
858 static int dm_table_determine_type(struct dm_table *t)
859 {
860 	unsigned i;
861 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
862 	struct dm_target *tgt;
863 	struct list_head *devices = dm_table_get_devices(t);
864 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
865 	int page_size = PAGE_SIZE;
866 
867 	if (t->type != DM_TYPE_NONE) {
868 		/* target already set the table's type */
869 		if (t->type == DM_TYPE_BIO_BASED) {
870 			/* possibly upgrade to a variant of bio-based */
871 			goto verify_bio_based;
872 		}
873 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
874 		goto verify_rq_based;
875 	}
876 
877 	for (i = 0; i < t->num_targets; i++) {
878 		tgt = t->targets + i;
879 		if (dm_target_hybrid(tgt))
880 			hybrid = 1;
881 		else if (dm_target_request_based(tgt))
882 			request_based = 1;
883 		else
884 			bio_based = 1;
885 
886 		if (bio_based && request_based) {
887 			DMERR("Inconsistent table: different target types"
888 			      " can't be mixed up");
889 			return -EINVAL;
890 		}
891 	}
892 
893 	if (hybrid && !bio_based && !request_based) {
894 		/*
895 		 * The targets can work either way.
896 		 * Determine the type from the live device.
897 		 * Default to bio-based if device is new.
898 		 */
899 		if (__table_type_request_based(live_md_type))
900 			request_based = 1;
901 		else
902 			bio_based = 1;
903 	}
904 
905 	if (bio_based) {
906 verify_bio_based:
907 		/* We must use this table as bio-based */
908 		t->type = DM_TYPE_BIO_BASED;
909 		if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
910 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
911 			t->type = DM_TYPE_DAX_BIO_BASED;
912 		}
913 		return 0;
914 	}
915 
916 	BUG_ON(!request_based); /* No targets in this table */
917 
918 	t->type = DM_TYPE_REQUEST_BASED;
919 
920 verify_rq_based:
921 	/*
922 	 * Request-based dm supports only tables that have a single target now.
923 	 * To support multiple targets, request splitting support is needed,
924 	 * and that needs lots of changes in the block-layer.
925 	 * (e.g. request completion process for partial completion.)
926 	 */
927 	if (t->num_targets > 1) {
928 		DMERR("request-based DM doesn't support multiple targets");
929 		return -EINVAL;
930 	}
931 
932 	if (list_empty(devices)) {
933 		int srcu_idx;
934 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
935 
936 		/* inherit live table's type */
937 		if (live_table)
938 			t->type = live_table->type;
939 		dm_put_live_table(t->md, srcu_idx);
940 		return 0;
941 	}
942 
943 	tgt = dm_table_get_immutable_target(t);
944 	if (!tgt) {
945 		DMERR("table load rejected: immutable target is required");
946 		return -EINVAL;
947 	} else if (tgt->max_io_len) {
948 		DMERR("table load rejected: immutable target that splits IO is not supported");
949 		return -EINVAL;
950 	}
951 
952 	/* Non-request-stackable devices can't be used for request-based dm */
953 	if (!tgt->type->iterate_devices ||
954 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
955 		DMERR("table load rejected: including non-request-stackable devices");
956 		return -EINVAL;
957 	}
958 
959 	return 0;
960 }
961 
962 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
963 {
964 	return t->type;
965 }
966 
967 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
968 {
969 	return t->immutable_target_type;
970 }
971 
972 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
973 {
974 	/* Immutable target is implicitly a singleton */
975 	if (t->num_targets > 1 ||
976 	    !dm_target_is_immutable(t->targets[0].type))
977 		return NULL;
978 
979 	return t->targets;
980 }
981 
982 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
983 {
984 	struct dm_target *ti;
985 	unsigned i;
986 
987 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
988 		ti = dm_table_get_target(t, i);
989 		if (dm_target_is_wildcard(ti->type))
990 			return ti;
991 	}
992 
993 	return NULL;
994 }
995 
996 bool dm_table_bio_based(struct dm_table *t)
997 {
998 	return __table_type_bio_based(dm_table_get_type(t));
999 }
1000 
1001 bool dm_table_request_based(struct dm_table *t)
1002 {
1003 	return __table_type_request_based(dm_table_get_type(t));
1004 }
1005 
1006 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1007 {
1008 	enum dm_queue_mode type = dm_table_get_type(t);
1009 	unsigned per_io_data_size = 0;
1010 	unsigned min_pool_size = 0;
1011 	struct dm_target *ti;
1012 	unsigned i;
1013 
1014 	if (unlikely(type == DM_TYPE_NONE)) {
1015 		DMWARN("no table type is set, can't allocate mempools");
1016 		return -EINVAL;
1017 	}
1018 
1019 	if (__table_type_bio_based(type))
1020 		for (i = 0; i < t->num_targets; i++) {
1021 			ti = t->targets + i;
1022 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1023 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1024 		}
1025 
1026 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1027 					   per_io_data_size, min_pool_size);
1028 	if (!t->mempools)
1029 		return -ENOMEM;
1030 
1031 	return 0;
1032 }
1033 
1034 void dm_table_free_md_mempools(struct dm_table *t)
1035 {
1036 	dm_free_md_mempools(t->mempools);
1037 	t->mempools = NULL;
1038 }
1039 
1040 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1041 {
1042 	return t->mempools;
1043 }
1044 
1045 static int setup_indexes(struct dm_table *t)
1046 {
1047 	int i;
1048 	unsigned int total = 0;
1049 	sector_t *indexes;
1050 
1051 	/* allocate the space for *all* the indexes */
1052 	for (i = t->depth - 2; i >= 0; i--) {
1053 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1054 		total += t->counts[i];
1055 	}
1056 
1057 	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1058 	if (!indexes)
1059 		return -ENOMEM;
1060 
1061 	/* set up internal nodes, bottom-up */
1062 	for (i = t->depth - 2; i >= 0; i--) {
1063 		t->index[i] = indexes;
1064 		indexes += (KEYS_PER_NODE * t->counts[i]);
1065 		setup_btree_index(i, t);
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 /*
1072  * Builds the btree to index the map.
1073  */
1074 static int dm_table_build_index(struct dm_table *t)
1075 {
1076 	int r = 0;
1077 	unsigned int leaf_nodes;
1078 
1079 	/* how many indexes will the btree have ? */
1080 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1081 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1082 
1083 	/* leaf layer has already been set up */
1084 	t->counts[t->depth - 1] = leaf_nodes;
1085 	t->index[t->depth - 1] = t->highs;
1086 
1087 	if (t->depth >= 2)
1088 		r = setup_indexes(t);
1089 
1090 	return r;
1091 }
1092 
1093 static bool integrity_profile_exists(struct gendisk *disk)
1094 {
1095 	return !!blk_get_integrity(disk);
1096 }
1097 
1098 /*
1099  * Get a disk whose integrity profile reflects the table's profile.
1100  * Returns NULL if integrity support was inconsistent or unavailable.
1101  */
1102 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1103 {
1104 	struct list_head *devices = dm_table_get_devices(t);
1105 	struct dm_dev_internal *dd = NULL;
1106 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1107 	unsigned i;
1108 
1109 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1110 		struct dm_target *ti = dm_table_get_target(t, i);
1111 		if (!dm_target_passes_integrity(ti->type))
1112 			goto no_integrity;
1113 	}
1114 
1115 	list_for_each_entry(dd, devices, list) {
1116 		template_disk = dd->dm_dev->bdev->bd_disk;
1117 		if (!integrity_profile_exists(template_disk))
1118 			goto no_integrity;
1119 		else if (prev_disk &&
1120 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1121 			goto no_integrity;
1122 		prev_disk = template_disk;
1123 	}
1124 
1125 	return template_disk;
1126 
1127 no_integrity:
1128 	if (prev_disk)
1129 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1130 		       dm_device_name(t->md),
1131 		       prev_disk->disk_name,
1132 		       template_disk->disk_name);
1133 	return NULL;
1134 }
1135 
1136 /*
1137  * Register the mapped device for blk_integrity support if the
1138  * underlying devices have an integrity profile.  But all devices may
1139  * not have matching profiles (checking all devices isn't reliable
1140  * during table load because this table may use other DM device(s) which
1141  * must be resumed before they will have an initialized integity
1142  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1143  * profile validation: First pass during table load, final pass during
1144  * resume.
1145  */
1146 static int dm_table_register_integrity(struct dm_table *t)
1147 {
1148 	struct mapped_device *md = t->md;
1149 	struct gendisk *template_disk = NULL;
1150 
1151 	/* If target handles integrity itself do not register it here. */
1152 	if (t->integrity_added)
1153 		return 0;
1154 
1155 	template_disk = dm_table_get_integrity_disk(t);
1156 	if (!template_disk)
1157 		return 0;
1158 
1159 	if (!integrity_profile_exists(dm_disk(md))) {
1160 		t->integrity_supported = true;
1161 		/*
1162 		 * Register integrity profile during table load; we can do
1163 		 * this because the final profile must match during resume.
1164 		 */
1165 		blk_integrity_register(dm_disk(md),
1166 				       blk_get_integrity(template_disk));
1167 		return 0;
1168 	}
1169 
1170 	/*
1171 	 * If DM device already has an initialized integrity
1172 	 * profile the new profile should not conflict.
1173 	 */
1174 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1175 		DMWARN("%s: conflict with existing integrity profile: "
1176 		       "%s profile mismatch",
1177 		       dm_device_name(t->md),
1178 		       template_disk->disk_name);
1179 		return 1;
1180 	}
1181 
1182 	/* Preserve existing integrity profile */
1183 	t->integrity_supported = true;
1184 	return 0;
1185 }
1186 
1187 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1188 
1189 struct dm_crypto_profile {
1190 	struct blk_crypto_profile profile;
1191 	struct mapped_device *md;
1192 };
1193 
1194 struct dm_keyslot_evict_args {
1195 	const struct blk_crypto_key *key;
1196 	int err;
1197 };
1198 
1199 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1200 				     sector_t start, sector_t len, void *data)
1201 {
1202 	struct dm_keyslot_evict_args *args = data;
1203 	int err;
1204 
1205 	err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1206 	if (!args->err)
1207 		args->err = err;
1208 	/* Always try to evict the key from all devices. */
1209 	return 0;
1210 }
1211 
1212 /*
1213  * When an inline encryption key is evicted from a device-mapper device, evict
1214  * it from all the underlying devices.
1215  */
1216 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1217 			    const struct blk_crypto_key *key, unsigned int slot)
1218 {
1219 	struct mapped_device *md =
1220 		container_of(profile, struct dm_crypto_profile, profile)->md;
1221 	struct dm_keyslot_evict_args args = { key };
1222 	struct dm_table *t;
1223 	int srcu_idx;
1224 	int i;
1225 	struct dm_target *ti;
1226 
1227 	t = dm_get_live_table(md, &srcu_idx);
1228 	if (!t)
1229 		return 0;
1230 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1231 		ti = dm_table_get_target(t, i);
1232 		if (!ti->type->iterate_devices)
1233 			continue;
1234 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1235 	}
1236 	dm_put_live_table(md, srcu_idx);
1237 	return args.err;
1238 }
1239 
1240 static int
1241 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1242 				     sector_t start, sector_t len, void *data)
1243 {
1244 	struct blk_crypto_profile *parent = data;
1245 	struct blk_crypto_profile *child =
1246 		bdev_get_queue(dev->bdev)->crypto_profile;
1247 
1248 	blk_crypto_intersect_capabilities(parent, child);
1249 	return 0;
1250 }
1251 
1252 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1253 {
1254 	struct dm_crypto_profile *dmcp = container_of(profile,
1255 						      struct dm_crypto_profile,
1256 						      profile);
1257 
1258 	if (!profile)
1259 		return;
1260 
1261 	blk_crypto_profile_destroy(profile);
1262 	kfree(dmcp);
1263 }
1264 
1265 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1266 {
1267 	dm_destroy_crypto_profile(t->crypto_profile);
1268 	t->crypto_profile = NULL;
1269 }
1270 
1271 /*
1272  * Constructs and initializes t->crypto_profile with a crypto profile that
1273  * represents the common set of crypto capabilities of the devices described by
1274  * the dm_table.  However, if the constructed crypto profile doesn't support all
1275  * crypto capabilities that are supported by the current mapped_device, it
1276  * returns an error instead, since we don't support removing crypto capabilities
1277  * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1278  * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1279  */
1280 static int dm_table_construct_crypto_profile(struct dm_table *t)
1281 {
1282 	struct dm_crypto_profile *dmcp;
1283 	struct blk_crypto_profile *profile;
1284 	struct dm_target *ti;
1285 	unsigned int i;
1286 	bool empty_profile = true;
1287 
1288 	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1289 	if (!dmcp)
1290 		return -ENOMEM;
1291 	dmcp->md = t->md;
1292 
1293 	profile = &dmcp->profile;
1294 	blk_crypto_profile_init(profile, 0);
1295 	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1296 	profile->max_dun_bytes_supported = UINT_MAX;
1297 	memset(profile->modes_supported, 0xFF,
1298 	       sizeof(profile->modes_supported));
1299 
1300 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1301 		ti = dm_table_get_target(t, i);
1302 
1303 		if (!dm_target_passes_crypto(ti->type)) {
1304 			blk_crypto_intersect_capabilities(profile, NULL);
1305 			break;
1306 		}
1307 		if (!ti->type->iterate_devices)
1308 			continue;
1309 		ti->type->iterate_devices(ti,
1310 					  device_intersect_crypto_capabilities,
1311 					  profile);
1312 	}
1313 
1314 	if (t->md->queue &&
1315 	    !blk_crypto_has_capabilities(profile,
1316 					 t->md->queue->crypto_profile)) {
1317 		DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1318 		dm_destroy_crypto_profile(profile);
1319 		return -EINVAL;
1320 	}
1321 
1322 	/*
1323 	 * If the new profile doesn't actually support any crypto capabilities,
1324 	 * we may as well represent it with a NULL profile.
1325 	 */
1326 	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1327 		if (profile->modes_supported[i]) {
1328 			empty_profile = false;
1329 			break;
1330 		}
1331 	}
1332 
1333 	if (empty_profile) {
1334 		dm_destroy_crypto_profile(profile);
1335 		profile = NULL;
1336 	}
1337 
1338 	/*
1339 	 * t->crypto_profile is only set temporarily while the table is being
1340 	 * set up, and it gets set to NULL after the profile has been
1341 	 * transferred to the request_queue.
1342 	 */
1343 	t->crypto_profile = profile;
1344 
1345 	return 0;
1346 }
1347 
1348 static void dm_update_crypto_profile(struct request_queue *q,
1349 				     struct dm_table *t)
1350 {
1351 	if (!t->crypto_profile)
1352 		return;
1353 
1354 	/* Make the crypto profile less restrictive. */
1355 	if (!q->crypto_profile) {
1356 		blk_crypto_register(t->crypto_profile, q);
1357 	} else {
1358 		blk_crypto_update_capabilities(q->crypto_profile,
1359 					       t->crypto_profile);
1360 		dm_destroy_crypto_profile(t->crypto_profile);
1361 	}
1362 	t->crypto_profile = NULL;
1363 }
1364 
1365 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1366 
1367 static int dm_table_construct_crypto_profile(struct dm_table *t)
1368 {
1369 	return 0;
1370 }
1371 
1372 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1373 {
1374 }
1375 
1376 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1377 {
1378 }
1379 
1380 static void dm_update_crypto_profile(struct request_queue *q,
1381 				     struct dm_table *t)
1382 {
1383 }
1384 
1385 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1386 
1387 /*
1388  * Prepares the table for use by building the indices,
1389  * setting the type, and allocating mempools.
1390  */
1391 int dm_table_complete(struct dm_table *t)
1392 {
1393 	int r;
1394 
1395 	r = dm_table_determine_type(t);
1396 	if (r) {
1397 		DMERR("unable to determine table type");
1398 		return r;
1399 	}
1400 
1401 	r = dm_table_build_index(t);
1402 	if (r) {
1403 		DMERR("unable to build btrees");
1404 		return r;
1405 	}
1406 
1407 	r = dm_table_register_integrity(t);
1408 	if (r) {
1409 		DMERR("could not register integrity profile.");
1410 		return r;
1411 	}
1412 
1413 	r = dm_table_construct_crypto_profile(t);
1414 	if (r) {
1415 		DMERR("could not construct crypto profile.");
1416 		return r;
1417 	}
1418 
1419 	r = dm_table_alloc_md_mempools(t, t->md);
1420 	if (r)
1421 		DMERR("unable to allocate mempools");
1422 
1423 	return r;
1424 }
1425 
1426 static DEFINE_MUTEX(_event_lock);
1427 void dm_table_event_callback(struct dm_table *t,
1428 			     void (*fn)(void *), void *context)
1429 {
1430 	mutex_lock(&_event_lock);
1431 	t->event_fn = fn;
1432 	t->event_context = context;
1433 	mutex_unlock(&_event_lock);
1434 }
1435 
1436 void dm_table_event(struct dm_table *t)
1437 {
1438 	mutex_lock(&_event_lock);
1439 	if (t->event_fn)
1440 		t->event_fn(t->event_context);
1441 	mutex_unlock(&_event_lock);
1442 }
1443 EXPORT_SYMBOL(dm_table_event);
1444 
1445 inline sector_t dm_table_get_size(struct dm_table *t)
1446 {
1447 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1448 }
1449 EXPORT_SYMBOL(dm_table_get_size);
1450 
1451 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1452 {
1453 	if (index >= t->num_targets)
1454 		return NULL;
1455 
1456 	return t->targets + index;
1457 }
1458 
1459 /*
1460  * Search the btree for the correct target.
1461  *
1462  * Caller should check returned pointer for NULL
1463  * to trap I/O beyond end of device.
1464  */
1465 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1466 {
1467 	unsigned int l, n = 0, k = 0;
1468 	sector_t *node;
1469 
1470 	if (unlikely(sector >= dm_table_get_size(t)))
1471 		return NULL;
1472 
1473 	for (l = 0; l < t->depth; l++) {
1474 		n = get_child(n, k);
1475 		node = get_node(t, l, n);
1476 
1477 		for (k = 0; k < KEYS_PER_NODE; k++)
1478 			if (node[k] >= sector)
1479 				break;
1480 	}
1481 
1482 	return &t->targets[(KEYS_PER_NODE * n) + k];
1483 }
1484 
1485 /*
1486  * type->iterate_devices() should be called when the sanity check needs to
1487  * iterate and check all underlying data devices. iterate_devices() will
1488  * iterate all underlying data devices until it encounters a non-zero return
1489  * code, returned by whether the input iterate_devices_callout_fn, or
1490  * iterate_devices() itself internally.
1491  *
1492  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1493  * iterate multiple underlying devices internally, in which case a non-zero
1494  * return code returned by iterate_devices_callout_fn will stop the iteration
1495  * in advance.
1496  *
1497  * Cases requiring _any_ underlying device supporting some kind of attribute,
1498  * should use the iteration structure like dm_table_any_dev_attr(), or call
1499  * it directly. @func should handle semantics of positive examples, e.g.
1500  * capable of something.
1501  *
1502  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1503  * should use the iteration structure like dm_table_supports_nowait() or
1504  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1505  * uses an @anti_func that handle semantics of counter examples, e.g. not
1506  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1507  */
1508 static bool dm_table_any_dev_attr(struct dm_table *t,
1509 				  iterate_devices_callout_fn func, void *data)
1510 {
1511 	struct dm_target *ti;
1512 	unsigned int i;
1513 
1514 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1515 		ti = dm_table_get_target(t, i);
1516 
1517 		if (ti->type->iterate_devices &&
1518 		    ti->type->iterate_devices(ti, func, data))
1519 			return true;
1520         }
1521 
1522 	return false;
1523 }
1524 
1525 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1526 			sector_t start, sector_t len, void *data)
1527 {
1528 	unsigned *num_devices = data;
1529 
1530 	(*num_devices)++;
1531 
1532 	return 0;
1533 }
1534 
1535 /*
1536  * Check whether a table has no data devices attached using each
1537  * target's iterate_devices method.
1538  * Returns false if the result is unknown because a target doesn't
1539  * support iterate_devices.
1540  */
1541 bool dm_table_has_no_data_devices(struct dm_table *table)
1542 {
1543 	struct dm_target *ti;
1544 	unsigned i, num_devices;
1545 
1546 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1547 		ti = dm_table_get_target(table, i);
1548 
1549 		if (!ti->type->iterate_devices)
1550 			return false;
1551 
1552 		num_devices = 0;
1553 		ti->type->iterate_devices(ti, count_device, &num_devices);
1554 		if (num_devices)
1555 			return false;
1556 	}
1557 
1558 	return true;
1559 }
1560 
1561 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1562 				  sector_t start, sector_t len, void *data)
1563 {
1564 	struct request_queue *q = bdev_get_queue(dev->bdev);
1565 	enum blk_zoned_model *zoned_model = data;
1566 
1567 	return blk_queue_zoned_model(q) != *zoned_model;
1568 }
1569 
1570 /*
1571  * Check the device zoned model based on the target feature flag. If the target
1572  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1573  * also accepted but all devices must have the same zoned model. If the target
1574  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1575  * zoned model with all zoned devices having the same zone size.
1576  */
1577 static bool dm_table_supports_zoned_model(struct dm_table *t,
1578 					  enum blk_zoned_model zoned_model)
1579 {
1580 	struct dm_target *ti;
1581 	unsigned i;
1582 
1583 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1584 		ti = dm_table_get_target(t, i);
1585 
1586 		if (dm_target_supports_zoned_hm(ti->type)) {
1587 			if (!ti->type->iterate_devices ||
1588 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1589 						      &zoned_model))
1590 				return false;
1591 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1592 			if (zoned_model == BLK_ZONED_HM)
1593 				return false;
1594 		}
1595 	}
1596 
1597 	return true;
1598 }
1599 
1600 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1601 					   sector_t start, sector_t len, void *data)
1602 {
1603 	struct request_queue *q = bdev_get_queue(dev->bdev);
1604 	unsigned int *zone_sectors = data;
1605 
1606 	if (!blk_queue_is_zoned(q))
1607 		return 0;
1608 
1609 	return blk_queue_zone_sectors(q) != *zone_sectors;
1610 }
1611 
1612 /*
1613  * Check consistency of zoned model and zone sectors across all targets. For
1614  * zone sectors, if the destination device is a zoned block device, it shall
1615  * have the specified zone_sectors.
1616  */
1617 static int validate_hardware_zoned_model(struct dm_table *table,
1618 					 enum blk_zoned_model zoned_model,
1619 					 unsigned int zone_sectors)
1620 {
1621 	if (zoned_model == BLK_ZONED_NONE)
1622 		return 0;
1623 
1624 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1625 		DMERR("%s: zoned model is not consistent across all devices",
1626 		      dm_device_name(table->md));
1627 		return -EINVAL;
1628 	}
1629 
1630 	/* Check zone size validity and compatibility */
1631 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1632 		return -EINVAL;
1633 
1634 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1635 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1636 		      dm_device_name(table->md));
1637 		return -EINVAL;
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 /*
1644  * Establish the new table's queue_limits and validate them.
1645  */
1646 int dm_calculate_queue_limits(struct dm_table *table,
1647 			      struct queue_limits *limits)
1648 {
1649 	struct dm_target *ti;
1650 	struct queue_limits ti_limits;
1651 	unsigned i;
1652 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1653 	unsigned int zone_sectors = 0;
1654 
1655 	blk_set_stacking_limits(limits);
1656 
1657 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1658 		blk_set_stacking_limits(&ti_limits);
1659 
1660 		ti = dm_table_get_target(table, i);
1661 
1662 		if (!ti->type->iterate_devices)
1663 			goto combine_limits;
1664 
1665 		/*
1666 		 * Combine queue limits of all the devices this target uses.
1667 		 */
1668 		ti->type->iterate_devices(ti, dm_set_device_limits,
1669 					  &ti_limits);
1670 
1671 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1672 			/*
1673 			 * After stacking all limits, validate all devices
1674 			 * in table support this zoned model and zone sectors.
1675 			 */
1676 			zoned_model = ti_limits.zoned;
1677 			zone_sectors = ti_limits.chunk_sectors;
1678 		}
1679 
1680 		/* Set I/O hints portion of queue limits */
1681 		if (ti->type->io_hints)
1682 			ti->type->io_hints(ti, &ti_limits);
1683 
1684 		/*
1685 		 * Check each device area is consistent with the target's
1686 		 * overall queue limits.
1687 		 */
1688 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1689 					      &ti_limits))
1690 			return -EINVAL;
1691 
1692 combine_limits:
1693 		/*
1694 		 * Merge this target's queue limits into the overall limits
1695 		 * for the table.
1696 		 */
1697 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1698 			DMWARN("%s: adding target device "
1699 			       "(start sect %llu len %llu) "
1700 			       "caused an alignment inconsistency",
1701 			       dm_device_name(table->md),
1702 			       (unsigned long long) ti->begin,
1703 			       (unsigned long long) ti->len);
1704 	}
1705 
1706 	/*
1707 	 * Verify that the zoned model and zone sectors, as determined before
1708 	 * any .io_hints override, are the same across all devices in the table.
1709 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1710 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1711 	 * BUT...
1712 	 */
1713 	if (limits->zoned != BLK_ZONED_NONE) {
1714 		/*
1715 		 * ...IF the above limits stacking determined a zoned model
1716 		 * validate that all of the table's devices conform to it.
1717 		 */
1718 		zoned_model = limits->zoned;
1719 		zone_sectors = limits->chunk_sectors;
1720 	}
1721 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1722 		return -EINVAL;
1723 
1724 	return validate_hardware_logical_block_alignment(table, limits);
1725 }
1726 
1727 /*
1728  * Verify that all devices have an integrity profile that matches the
1729  * DM device's registered integrity profile.  If the profiles don't
1730  * match then unregister the DM device's integrity profile.
1731  */
1732 static void dm_table_verify_integrity(struct dm_table *t)
1733 {
1734 	struct gendisk *template_disk = NULL;
1735 
1736 	if (t->integrity_added)
1737 		return;
1738 
1739 	if (t->integrity_supported) {
1740 		/*
1741 		 * Verify that the original integrity profile
1742 		 * matches all the devices in this table.
1743 		 */
1744 		template_disk = dm_table_get_integrity_disk(t);
1745 		if (template_disk &&
1746 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1747 			return;
1748 	}
1749 
1750 	if (integrity_profile_exists(dm_disk(t->md))) {
1751 		DMWARN("%s: unable to establish an integrity profile",
1752 		       dm_device_name(t->md));
1753 		blk_integrity_unregister(dm_disk(t->md));
1754 	}
1755 }
1756 
1757 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1758 				sector_t start, sector_t len, void *data)
1759 {
1760 	unsigned long flush = (unsigned long) data;
1761 	struct request_queue *q = bdev_get_queue(dev->bdev);
1762 
1763 	return (q->queue_flags & flush);
1764 }
1765 
1766 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1767 {
1768 	struct dm_target *ti;
1769 	unsigned i;
1770 
1771 	/*
1772 	 * Require at least one underlying device to support flushes.
1773 	 * t->devices includes internal dm devices such as mirror logs
1774 	 * so we need to use iterate_devices here, which targets
1775 	 * supporting flushes must provide.
1776 	 */
1777 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1778 		ti = dm_table_get_target(t, i);
1779 
1780 		if (!ti->num_flush_bios)
1781 			continue;
1782 
1783 		if (ti->flush_supported)
1784 			return true;
1785 
1786 		if (ti->type->iterate_devices &&
1787 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1788 			return true;
1789 	}
1790 
1791 	return false;
1792 }
1793 
1794 static int device_dax_write_cache_enabled(struct dm_target *ti,
1795 					  struct dm_dev *dev, sector_t start,
1796 					  sector_t len, void *data)
1797 {
1798 	struct dax_device *dax_dev = dev->dax_dev;
1799 
1800 	if (!dax_dev)
1801 		return false;
1802 
1803 	if (dax_write_cache_enabled(dax_dev))
1804 		return true;
1805 	return false;
1806 }
1807 
1808 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1809 				sector_t start, sector_t len, void *data)
1810 {
1811 	struct request_queue *q = bdev_get_queue(dev->bdev);
1812 
1813 	return !blk_queue_nonrot(q);
1814 }
1815 
1816 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1817 			     sector_t start, sector_t len, void *data)
1818 {
1819 	struct request_queue *q = bdev_get_queue(dev->bdev);
1820 
1821 	return !blk_queue_add_random(q);
1822 }
1823 
1824 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1825 					 sector_t start, sector_t len, void *data)
1826 {
1827 	struct request_queue *q = bdev_get_queue(dev->bdev);
1828 
1829 	return !q->limits.max_write_same_sectors;
1830 }
1831 
1832 static bool dm_table_supports_write_same(struct dm_table *t)
1833 {
1834 	struct dm_target *ti;
1835 	unsigned i;
1836 
1837 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1838 		ti = dm_table_get_target(t, i);
1839 
1840 		if (!ti->num_write_same_bios)
1841 			return false;
1842 
1843 		if (!ti->type->iterate_devices ||
1844 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1845 			return false;
1846 	}
1847 
1848 	return true;
1849 }
1850 
1851 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1852 					   sector_t start, sector_t len, void *data)
1853 {
1854 	struct request_queue *q = bdev_get_queue(dev->bdev);
1855 
1856 	return !q->limits.max_write_zeroes_sectors;
1857 }
1858 
1859 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1860 {
1861 	struct dm_target *ti;
1862 	unsigned i = 0;
1863 
1864 	while (i < dm_table_get_num_targets(t)) {
1865 		ti = dm_table_get_target(t, i++);
1866 
1867 		if (!ti->num_write_zeroes_bios)
1868 			return false;
1869 
1870 		if (!ti->type->iterate_devices ||
1871 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1872 			return false;
1873 	}
1874 
1875 	return true;
1876 }
1877 
1878 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1879 				     sector_t start, sector_t len, void *data)
1880 {
1881 	struct request_queue *q = bdev_get_queue(dev->bdev);
1882 
1883 	return !blk_queue_nowait(q);
1884 }
1885 
1886 static bool dm_table_supports_nowait(struct dm_table *t)
1887 {
1888 	struct dm_target *ti;
1889 	unsigned i = 0;
1890 
1891 	while (i < dm_table_get_num_targets(t)) {
1892 		ti = dm_table_get_target(t, i++);
1893 
1894 		if (!dm_target_supports_nowait(ti->type))
1895 			return false;
1896 
1897 		if (!ti->type->iterate_devices ||
1898 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1899 			return false;
1900 	}
1901 
1902 	return true;
1903 }
1904 
1905 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1906 				      sector_t start, sector_t len, void *data)
1907 {
1908 	struct request_queue *q = bdev_get_queue(dev->bdev);
1909 
1910 	return !blk_queue_discard(q);
1911 }
1912 
1913 static bool dm_table_supports_discards(struct dm_table *t)
1914 {
1915 	struct dm_target *ti;
1916 	unsigned i;
1917 
1918 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1919 		ti = dm_table_get_target(t, i);
1920 
1921 		if (!ti->num_discard_bios)
1922 			return false;
1923 
1924 		/*
1925 		 * Either the target provides discard support (as implied by setting
1926 		 * 'discards_supported') or it relies on _all_ data devices having
1927 		 * discard support.
1928 		 */
1929 		if (!ti->discards_supported &&
1930 		    (!ti->type->iterate_devices ||
1931 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1932 			return false;
1933 	}
1934 
1935 	return true;
1936 }
1937 
1938 static int device_not_secure_erase_capable(struct dm_target *ti,
1939 					   struct dm_dev *dev, sector_t start,
1940 					   sector_t len, void *data)
1941 {
1942 	struct request_queue *q = bdev_get_queue(dev->bdev);
1943 
1944 	return !blk_queue_secure_erase(q);
1945 }
1946 
1947 static bool dm_table_supports_secure_erase(struct dm_table *t)
1948 {
1949 	struct dm_target *ti;
1950 	unsigned int i;
1951 
1952 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1953 		ti = dm_table_get_target(t, i);
1954 
1955 		if (!ti->num_secure_erase_bios)
1956 			return false;
1957 
1958 		if (!ti->type->iterate_devices ||
1959 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1960 			return false;
1961 	}
1962 
1963 	return true;
1964 }
1965 
1966 static int device_requires_stable_pages(struct dm_target *ti,
1967 					struct dm_dev *dev, sector_t start,
1968 					sector_t len, void *data)
1969 {
1970 	struct request_queue *q = bdev_get_queue(dev->bdev);
1971 
1972 	return blk_queue_stable_writes(q);
1973 }
1974 
1975 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1976 			      struct queue_limits *limits)
1977 {
1978 	bool wc = false, fua = false;
1979 	int page_size = PAGE_SIZE;
1980 	int r;
1981 
1982 	/*
1983 	 * Copy table's limits to the DM device's request_queue
1984 	 */
1985 	q->limits = *limits;
1986 
1987 	if (dm_table_supports_nowait(t))
1988 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1989 	else
1990 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1991 
1992 	if (!dm_table_supports_discards(t)) {
1993 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1994 		/* Must also clear discard limits... */
1995 		q->limits.max_discard_sectors = 0;
1996 		q->limits.max_hw_discard_sectors = 0;
1997 		q->limits.discard_granularity = 0;
1998 		q->limits.discard_alignment = 0;
1999 		q->limits.discard_misaligned = 0;
2000 	} else
2001 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2002 
2003 	if (dm_table_supports_secure_erase(t))
2004 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2005 
2006 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2007 		wc = true;
2008 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2009 			fua = true;
2010 	}
2011 	blk_queue_write_cache(q, wc, fua);
2012 
2013 	if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2014 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2015 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2016 			set_dax_synchronous(t->md->dax_dev);
2017 	}
2018 	else
2019 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2020 
2021 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2022 		dax_write_cache(t->md->dax_dev, true);
2023 
2024 	/* Ensure that all underlying devices are non-rotational. */
2025 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2026 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2027 	else
2028 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2029 
2030 	if (!dm_table_supports_write_same(t))
2031 		q->limits.max_write_same_sectors = 0;
2032 	if (!dm_table_supports_write_zeroes(t))
2033 		q->limits.max_write_zeroes_sectors = 0;
2034 
2035 	dm_table_verify_integrity(t);
2036 
2037 	/*
2038 	 * Some devices don't use blk_integrity but still want stable pages
2039 	 * because they do their own checksumming.
2040 	 * If any underlying device requires stable pages, a table must require
2041 	 * them as well.  Only targets that support iterate_devices are considered:
2042 	 * don't want error, zero, etc to require stable pages.
2043 	 */
2044 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2045 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2046 	else
2047 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2048 
2049 	/*
2050 	 * Determine whether or not this queue's I/O timings contribute
2051 	 * to the entropy pool, Only request-based targets use this.
2052 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2053 	 * have it set.
2054 	 */
2055 	if (blk_queue_add_random(q) &&
2056 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2057 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2058 
2059 	/*
2060 	 * For a zoned target, setup the zones related queue attributes
2061 	 * and resources necessary for zone append emulation if necessary.
2062 	 */
2063 	if (blk_queue_is_zoned(q)) {
2064 		r = dm_set_zones_restrictions(t, q);
2065 		if (r)
2066 			return r;
2067 	}
2068 
2069 	dm_update_crypto_profile(q, t);
2070 	disk_update_readahead(t->md->disk);
2071 
2072 	return 0;
2073 }
2074 
2075 unsigned int dm_table_get_num_targets(struct dm_table *t)
2076 {
2077 	return t->num_targets;
2078 }
2079 
2080 struct list_head *dm_table_get_devices(struct dm_table *t)
2081 {
2082 	return &t->devices;
2083 }
2084 
2085 fmode_t dm_table_get_mode(struct dm_table *t)
2086 {
2087 	return t->mode;
2088 }
2089 EXPORT_SYMBOL(dm_table_get_mode);
2090 
2091 enum suspend_mode {
2092 	PRESUSPEND,
2093 	PRESUSPEND_UNDO,
2094 	POSTSUSPEND,
2095 };
2096 
2097 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2098 {
2099 	int i = t->num_targets;
2100 	struct dm_target *ti = t->targets;
2101 
2102 	lockdep_assert_held(&t->md->suspend_lock);
2103 
2104 	while (i--) {
2105 		switch (mode) {
2106 		case PRESUSPEND:
2107 			if (ti->type->presuspend)
2108 				ti->type->presuspend(ti);
2109 			break;
2110 		case PRESUSPEND_UNDO:
2111 			if (ti->type->presuspend_undo)
2112 				ti->type->presuspend_undo(ti);
2113 			break;
2114 		case POSTSUSPEND:
2115 			if (ti->type->postsuspend)
2116 				ti->type->postsuspend(ti);
2117 			break;
2118 		}
2119 		ti++;
2120 	}
2121 }
2122 
2123 void dm_table_presuspend_targets(struct dm_table *t)
2124 {
2125 	if (!t)
2126 		return;
2127 
2128 	suspend_targets(t, PRESUSPEND);
2129 }
2130 
2131 void dm_table_presuspend_undo_targets(struct dm_table *t)
2132 {
2133 	if (!t)
2134 		return;
2135 
2136 	suspend_targets(t, PRESUSPEND_UNDO);
2137 }
2138 
2139 void dm_table_postsuspend_targets(struct dm_table *t)
2140 {
2141 	if (!t)
2142 		return;
2143 
2144 	suspend_targets(t, POSTSUSPEND);
2145 }
2146 
2147 int dm_table_resume_targets(struct dm_table *t)
2148 {
2149 	int i, r = 0;
2150 
2151 	lockdep_assert_held(&t->md->suspend_lock);
2152 
2153 	for (i = 0; i < t->num_targets; i++) {
2154 		struct dm_target *ti = t->targets + i;
2155 
2156 		if (!ti->type->preresume)
2157 			continue;
2158 
2159 		r = ti->type->preresume(ti);
2160 		if (r) {
2161 			DMERR("%s: %s: preresume failed, error = %d",
2162 			      dm_device_name(t->md), ti->type->name, r);
2163 			return r;
2164 		}
2165 	}
2166 
2167 	for (i = 0; i < t->num_targets; i++) {
2168 		struct dm_target *ti = t->targets + i;
2169 
2170 		if (ti->type->resume)
2171 			ti->type->resume(ti);
2172 	}
2173 
2174 	return 0;
2175 }
2176 
2177 struct mapped_device *dm_table_get_md(struct dm_table *t)
2178 {
2179 	return t->md;
2180 }
2181 EXPORT_SYMBOL(dm_table_get_md);
2182 
2183 const char *dm_table_device_name(struct dm_table *t)
2184 {
2185 	return dm_device_name(t->md);
2186 }
2187 EXPORT_SYMBOL_GPL(dm_table_device_name);
2188 
2189 void dm_table_run_md_queue_async(struct dm_table *t)
2190 {
2191 	if (!dm_table_request_based(t))
2192 		return;
2193 
2194 	if (t->md->queue)
2195 		blk_mq_run_hw_queues(t->md->queue, true);
2196 }
2197 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2198 
2199