1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/mutex.h> 18 #include <linux/delay.h> 19 #include <asm/atomic.h> 20 21 #define DM_MSG_PREFIX "table" 22 23 #define MAX_DEPTH 16 24 #define NODE_SIZE L1_CACHE_BYTES 25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 27 28 /* 29 * The table has always exactly one reference from either mapped_device->map 30 * or hash_cell->new_map. This reference is not counted in table->holders. 31 * A pair of dm_create_table/dm_destroy_table functions is used for table 32 * creation/destruction. 33 * 34 * Temporary references from the other code increase table->holders. A pair 35 * of dm_table_get/dm_table_put functions is used to manipulate it. 36 * 37 * When the table is about to be destroyed, we wait for table->holders to 38 * drop to zero. 39 */ 40 41 struct dm_table { 42 struct mapped_device *md; 43 atomic_t holders; 44 45 /* btree table */ 46 unsigned int depth; 47 unsigned int counts[MAX_DEPTH]; /* in nodes */ 48 sector_t *index[MAX_DEPTH]; 49 50 unsigned int num_targets; 51 unsigned int num_allocated; 52 sector_t *highs; 53 struct dm_target *targets; 54 55 unsigned barriers_supported:1; 56 57 /* 58 * Indicates the rw permissions for the new logical 59 * device. This should be a combination of FMODE_READ 60 * and FMODE_WRITE. 61 */ 62 fmode_t mode; 63 64 /* a list of devices used by this table */ 65 struct list_head devices; 66 67 /* 68 * These are optimistic limits taken from all the 69 * targets, some targets will need smaller limits. 70 */ 71 struct io_restrictions limits; 72 73 /* events get handed up using this callback */ 74 void (*event_fn)(void *); 75 void *event_context; 76 }; 77 78 /* 79 * Similar to ceiling(log_size(n)) 80 */ 81 static unsigned int int_log(unsigned int n, unsigned int base) 82 { 83 int result = 0; 84 85 while (n > 1) { 86 n = dm_div_up(n, base); 87 result++; 88 } 89 90 return result; 91 } 92 93 /* 94 * Returns the minimum that is _not_ zero, unless both are zero. 95 */ 96 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 97 98 /* 99 * Combine two io_restrictions, always taking the lower value. 100 */ 101 static void combine_restrictions_low(struct io_restrictions *lhs, 102 struct io_restrictions *rhs) 103 { 104 lhs->max_sectors = 105 min_not_zero(lhs->max_sectors, rhs->max_sectors); 106 107 lhs->max_phys_segments = 108 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); 109 110 lhs->max_hw_segments = 111 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); 112 113 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); 114 115 lhs->max_segment_size = 116 min_not_zero(lhs->max_segment_size, rhs->max_segment_size); 117 118 lhs->max_hw_sectors = 119 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors); 120 121 lhs->seg_boundary_mask = 122 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); 123 124 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn); 125 126 lhs->no_cluster |= rhs->no_cluster; 127 } 128 129 /* 130 * Calculate the index of the child node of the n'th node k'th key. 131 */ 132 static inline unsigned int get_child(unsigned int n, unsigned int k) 133 { 134 return (n * CHILDREN_PER_NODE) + k; 135 } 136 137 /* 138 * Return the n'th node of level l from table t. 139 */ 140 static inline sector_t *get_node(struct dm_table *t, 141 unsigned int l, unsigned int n) 142 { 143 return t->index[l] + (n * KEYS_PER_NODE); 144 } 145 146 /* 147 * Return the highest key that you could lookup from the n'th 148 * node on level l of the btree. 149 */ 150 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 151 { 152 for (; l < t->depth - 1; l++) 153 n = get_child(n, CHILDREN_PER_NODE - 1); 154 155 if (n >= t->counts[l]) 156 return (sector_t) - 1; 157 158 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 159 } 160 161 /* 162 * Fills in a level of the btree based on the highs of the level 163 * below it. 164 */ 165 static int setup_btree_index(unsigned int l, struct dm_table *t) 166 { 167 unsigned int n, k; 168 sector_t *node; 169 170 for (n = 0U; n < t->counts[l]; n++) { 171 node = get_node(t, l, n); 172 173 for (k = 0U; k < KEYS_PER_NODE; k++) 174 node[k] = high(t, l + 1, get_child(n, k)); 175 } 176 177 return 0; 178 } 179 180 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 181 { 182 unsigned long size; 183 void *addr; 184 185 /* 186 * Check that we're not going to overflow. 187 */ 188 if (nmemb > (ULONG_MAX / elem_size)) 189 return NULL; 190 191 size = nmemb * elem_size; 192 addr = vmalloc(size); 193 if (addr) 194 memset(addr, 0, size); 195 196 return addr; 197 } 198 199 /* 200 * highs, and targets are managed as dynamic arrays during a 201 * table load. 202 */ 203 static int alloc_targets(struct dm_table *t, unsigned int num) 204 { 205 sector_t *n_highs; 206 struct dm_target *n_targets; 207 int n = t->num_targets; 208 209 /* 210 * Allocate both the target array and offset array at once. 211 * Append an empty entry to catch sectors beyond the end of 212 * the device. 213 */ 214 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 215 sizeof(sector_t)); 216 if (!n_highs) 217 return -ENOMEM; 218 219 n_targets = (struct dm_target *) (n_highs + num); 220 221 if (n) { 222 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 223 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 224 } 225 226 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 227 vfree(t->highs); 228 229 t->num_allocated = num; 230 t->highs = n_highs; 231 t->targets = n_targets; 232 233 return 0; 234 } 235 236 int dm_table_create(struct dm_table **result, fmode_t mode, 237 unsigned num_targets, struct mapped_device *md) 238 { 239 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 240 241 if (!t) 242 return -ENOMEM; 243 244 INIT_LIST_HEAD(&t->devices); 245 atomic_set(&t->holders, 0); 246 t->barriers_supported = 1; 247 248 if (!num_targets) 249 num_targets = KEYS_PER_NODE; 250 251 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 252 253 if (alloc_targets(t, num_targets)) { 254 kfree(t); 255 t = NULL; 256 return -ENOMEM; 257 } 258 259 t->mode = mode; 260 t->md = md; 261 *result = t; 262 return 0; 263 } 264 265 static void free_devices(struct list_head *devices) 266 { 267 struct list_head *tmp, *next; 268 269 list_for_each_safe(tmp, next, devices) { 270 struct dm_dev_internal *dd = 271 list_entry(tmp, struct dm_dev_internal, list); 272 kfree(dd); 273 } 274 } 275 276 void dm_table_destroy(struct dm_table *t) 277 { 278 unsigned int i; 279 280 while (atomic_read(&t->holders)) 281 msleep(1); 282 smp_mb(); 283 284 /* free the indexes (see dm_table_complete) */ 285 if (t->depth >= 2) 286 vfree(t->index[t->depth - 2]); 287 288 /* free the targets */ 289 for (i = 0; i < t->num_targets; i++) { 290 struct dm_target *tgt = t->targets + i; 291 292 if (tgt->type->dtr) 293 tgt->type->dtr(tgt); 294 295 dm_put_target_type(tgt->type); 296 } 297 298 vfree(t->highs); 299 300 /* free the device list */ 301 if (t->devices.next != &t->devices) { 302 DMWARN("devices still present during destroy: " 303 "dm_table_remove_device calls missing"); 304 305 free_devices(&t->devices); 306 } 307 308 kfree(t); 309 } 310 311 void dm_table_get(struct dm_table *t) 312 { 313 atomic_inc(&t->holders); 314 } 315 316 void dm_table_put(struct dm_table *t) 317 { 318 if (!t) 319 return; 320 321 smp_mb__before_atomic_dec(); 322 atomic_dec(&t->holders); 323 } 324 325 /* 326 * Checks to see if we need to extend highs or targets. 327 */ 328 static inline int check_space(struct dm_table *t) 329 { 330 if (t->num_targets >= t->num_allocated) 331 return alloc_targets(t, t->num_allocated * 2); 332 333 return 0; 334 } 335 336 /* 337 * See if we've already got a device in the list. 338 */ 339 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 340 { 341 struct dm_dev_internal *dd; 342 343 list_for_each_entry (dd, l, list) 344 if (dd->dm_dev.bdev->bd_dev == dev) 345 return dd; 346 347 return NULL; 348 } 349 350 /* 351 * Open a device so we can use it as a map destination. 352 */ 353 static int open_dev(struct dm_dev_internal *d, dev_t dev, 354 struct mapped_device *md) 355 { 356 static char *_claim_ptr = "I belong to device-mapper"; 357 struct block_device *bdev; 358 359 int r; 360 361 BUG_ON(d->dm_dev.bdev); 362 363 bdev = open_by_devnum(dev, d->dm_dev.mode); 364 if (IS_ERR(bdev)) 365 return PTR_ERR(bdev); 366 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 367 if (r) 368 blkdev_put(bdev, d->dm_dev.mode); 369 else 370 d->dm_dev.bdev = bdev; 371 return r; 372 } 373 374 /* 375 * Close a device that we've been using. 376 */ 377 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 378 { 379 if (!d->dm_dev.bdev) 380 return; 381 382 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md)); 383 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode); 384 d->dm_dev.bdev = NULL; 385 } 386 387 /* 388 * If possible, this checks an area of a destination device is valid. 389 */ 390 static int check_device_area(struct dm_dev_internal *dd, sector_t start, 391 sector_t len) 392 { 393 sector_t dev_size = dd->dm_dev.bdev->bd_inode->i_size >> SECTOR_SHIFT; 394 395 if (!dev_size) 396 return 1; 397 398 return ((start < dev_size) && (len <= (dev_size - start))); 399 } 400 401 /* 402 * This upgrades the mode on an already open dm_dev. Being 403 * careful to leave things as they were if we fail to reopen the 404 * device. 405 */ 406 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 407 struct mapped_device *md) 408 { 409 int r; 410 struct dm_dev_internal dd_copy; 411 dev_t dev = dd->dm_dev.bdev->bd_dev; 412 413 dd_copy = *dd; 414 415 dd->dm_dev.mode |= new_mode; 416 dd->dm_dev.bdev = NULL; 417 r = open_dev(dd, dev, md); 418 if (!r) 419 close_dev(&dd_copy, md); 420 else 421 *dd = dd_copy; 422 423 return r; 424 } 425 426 /* 427 * Add a device to the list, or just increment the usage count if 428 * it's already present. 429 */ 430 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 431 const char *path, sector_t start, sector_t len, 432 fmode_t mode, struct dm_dev **result) 433 { 434 int r; 435 dev_t uninitialized_var(dev); 436 struct dm_dev_internal *dd; 437 unsigned int major, minor; 438 439 BUG_ON(!t); 440 441 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 442 /* Extract the major/minor numbers */ 443 dev = MKDEV(major, minor); 444 if (MAJOR(dev) != major || MINOR(dev) != minor) 445 return -EOVERFLOW; 446 } else { 447 /* convert the path to a device */ 448 struct block_device *bdev = lookup_bdev(path); 449 450 if (IS_ERR(bdev)) 451 return PTR_ERR(bdev); 452 dev = bdev->bd_dev; 453 bdput(bdev); 454 } 455 456 dd = find_device(&t->devices, dev); 457 if (!dd) { 458 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 459 if (!dd) 460 return -ENOMEM; 461 462 dd->dm_dev.mode = mode; 463 dd->dm_dev.bdev = NULL; 464 465 if ((r = open_dev(dd, dev, t->md))) { 466 kfree(dd); 467 return r; 468 } 469 470 format_dev_t(dd->dm_dev.name, dev); 471 472 atomic_set(&dd->count, 0); 473 list_add(&dd->list, &t->devices); 474 475 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 476 r = upgrade_mode(dd, mode, t->md); 477 if (r) 478 return r; 479 } 480 atomic_inc(&dd->count); 481 482 if (!check_device_area(dd, start, len)) { 483 DMWARN("device %s too small for target", path); 484 dm_put_device(ti, &dd->dm_dev); 485 return -EINVAL; 486 } 487 488 *result = &dd->dm_dev; 489 490 return 0; 491 } 492 493 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev) 494 { 495 struct request_queue *q = bdev_get_queue(bdev); 496 struct io_restrictions *rs = &ti->limits; 497 char b[BDEVNAME_SIZE]; 498 499 if (unlikely(!q)) { 500 DMWARN("%s: Cannot set limits for nonexistent device %s", 501 dm_device_name(ti->table->md), bdevname(bdev, b)); 502 return; 503 } 504 505 /* 506 * Combine the device limits low. 507 * 508 * FIXME: if we move an io_restriction struct 509 * into q this would just be a call to 510 * combine_restrictions_low() 511 */ 512 rs->max_sectors = 513 min_not_zero(rs->max_sectors, q->max_sectors); 514 515 /* 516 * Check if merge fn is supported. 517 * If not we'll force DM to use PAGE_SIZE or 518 * smaller I/O, just to be safe. 519 */ 520 521 if (q->merge_bvec_fn && !ti->type->merge) 522 rs->max_sectors = 523 min_not_zero(rs->max_sectors, 524 (unsigned int) (PAGE_SIZE >> 9)); 525 526 rs->max_phys_segments = 527 min_not_zero(rs->max_phys_segments, 528 q->max_phys_segments); 529 530 rs->max_hw_segments = 531 min_not_zero(rs->max_hw_segments, q->max_hw_segments); 532 533 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); 534 535 rs->max_segment_size = 536 min_not_zero(rs->max_segment_size, q->max_segment_size); 537 538 rs->max_hw_sectors = 539 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors); 540 541 rs->seg_boundary_mask = 542 min_not_zero(rs->seg_boundary_mask, 543 q->seg_boundary_mask); 544 545 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn); 546 547 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 548 } 549 EXPORT_SYMBOL_GPL(dm_set_device_limits); 550 551 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 552 sector_t len, fmode_t mode, struct dm_dev **result) 553 { 554 int r = __table_get_device(ti->table, ti, path, 555 start, len, mode, result); 556 557 if (!r) 558 dm_set_device_limits(ti, (*result)->bdev); 559 560 return r; 561 } 562 563 /* 564 * Decrement a devices use count and remove it if necessary. 565 */ 566 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 567 { 568 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 569 dm_dev); 570 571 if (atomic_dec_and_test(&dd->count)) { 572 close_dev(dd, ti->table->md); 573 list_del(&dd->list); 574 kfree(dd); 575 } 576 } 577 578 /* 579 * Checks to see if the target joins onto the end of the table. 580 */ 581 static int adjoin(struct dm_table *table, struct dm_target *ti) 582 { 583 struct dm_target *prev; 584 585 if (!table->num_targets) 586 return !ti->begin; 587 588 prev = &table->targets[table->num_targets - 1]; 589 return (ti->begin == (prev->begin + prev->len)); 590 } 591 592 /* 593 * Used to dynamically allocate the arg array. 594 */ 595 static char **realloc_argv(unsigned *array_size, char **old_argv) 596 { 597 char **argv; 598 unsigned new_size; 599 600 new_size = *array_size ? *array_size * 2 : 64; 601 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 602 if (argv) { 603 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 604 *array_size = new_size; 605 } 606 607 kfree(old_argv); 608 return argv; 609 } 610 611 /* 612 * Destructively splits up the argument list to pass to ctr. 613 */ 614 int dm_split_args(int *argc, char ***argvp, char *input) 615 { 616 char *start, *end = input, *out, **argv = NULL; 617 unsigned array_size = 0; 618 619 *argc = 0; 620 621 if (!input) { 622 *argvp = NULL; 623 return 0; 624 } 625 626 argv = realloc_argv(&array_size, argv); 627 if (!argv) 628 return -ENOMEM; 629 630 while (1) { 631 start = end; 632 633 /* Skip whitespace */ 634 while (*start && isspace(*start)) 635 start++; 636 637 if (!*start) 638 break; /* success, we hit the end */ 639 640 /* 'out' is used to remove any back-quotes */ 641 end = out = start; 642 while (*end) { 643 /* Everything apart from '\0' can be quoted */ 644 if (*end == '\\' && *(end + 1)) { 645 *out++ = *(end + 1); 646 end += 2; 647 continue; 648 } 649 650 if (isspace(*end)) 651 break; /* end of token */ 652 653 *out++ = *end++; 654 } 655 656 /* have we already filled the array ? */ 657 if ((*argc + 1) > array_size) { 658 argv = realloc_argv(&array_size, argv); 659 if (!argv) 660 return -ENOMEM; 661 } 662 663 /* we know this is whitespace */ 664 if (*end) 665 end++; 666 667 /* terminate the string and put it in the array */ 668 *out = '\0'; 669 argv[*argc] = start; 670 (*argc)++; 671 } 672 673 *argvp = argv; 674 return 0; 675 } 676 677 static void check_for_valid_limits(struct io_restrictions *rs) 678 { 679 if (!rs->max_sectors) 680 rs->max_sectors = SAFE_MAX_SECTORS; 681 if (!rs->max_hw_sectors) 682 rs->max_hw_sectors = SAFE_MAX_SECTORS; 683 if (!rs->max_phys_segments) 684 rs->max_phys_segments = MAX_PHYS_SEGMENTS; 685 if (!rs->max_hw_segments) 686 rs->max_hw_segments = MAX_HW_SEGMENTS; 687 if (!rs->hardsect_size) 688 rs->hardsect_size = 1 << SECTOR_SHIFT; 689 if (!rs->max_segment_size) 690 rs->max_segment_size = MAX_SEGMENT_SIZE; 691 if (!rs->seg_boundary_mask) 692 rs->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 693 if (!rs->bounce_pfn) 694 rs->bounce_pfn = -1; 695 } 696 697 int dm_table_add_target(struct dm_table *t, const char *type, 698 sector_t start, sector_t len, char *params) 699 { 700 int r = -EINVAL, argc; 701 char **argv; 702 struct dm_target *tgt; 703 704 if ((r = check_space(t))) 705 return r; 706 707 tgt = t->targets + t->num_targets; 708 memset(tgt, 0, sizeof(*tgt)); 709 710 if (!len) { 711 DMERR("%s: zero-length target", dm_device_name(t->md)); 712 return -EINVAL; 713 } 714 715 tgt->type = dm_get_target_type(type); 716 if (!tgt->type) { 717 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 718 type); 719 return -EINVAL; 720 } 721 722 tgt->table = t; 723 tgt->begin = start; 724 tgt->len = len; 725 tgt->error = "Unknown error"; 726 727 /* 728 * Does this target adjoin the previous one ? 729 */ 730 if (!adjoin(t, tgt)) { 731 tgt->error = "Gap in table"; 732 r = -EINVAL; 733 goto bad; 734 } 735 736 r = dm_split_args(&argc, &argv, params); 737 if (r) { 738 tgt->error = "couldn't split parameters (insufficient memory)"; 739 goto bad; 740 } 741 742 r = tgt->type->ctr(tgt, argc, argv); 743 kfree(argv); 744 if (r) 745 goto bad; 746 747 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 748 749 /* FIXME: the plan is to combine high here and then have 750 * the merge fn apply the target level restrictions. */ 751 combine_restrictions_low(&t->limits, &tgt->limits); 752 753 if (!(tgt->type->features & DM_TARGET_SUPPORTS_BARRIERS)) 754 t->barriers_supported = 0; 755 756 return 0; 757 758 bad: 759 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 760 dm_put_target_type(tgt->type); 761 return r; 762 } 763 764 static int setup_indexes(struct dm_table *t) 765 { 766 int i; 767 unsigned int total = 0; 768 sector_t *indexes; 769 770 /* allocate the space for *all* the indexes */ 771 for (i = t->depth - 2; i >= 0; i--) { 772 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 773 total += t->counts[i]; 774 } 775 776 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 777 if (!indexes) 778 return -ENOMEM; 779 780 /* set up internal nodes, bottom-up */ 781 for (i = t->depth - 2; i >= 0; i--) { 782 t->index[i] = indexes; 783 indexes += (KEYS_PER_NODE * t->counts[i]); 784 setup_btree_index(i, t); 785 } 786 787 return 0; 788 } 789 790 /* 791 * Builds the btree to index the map. 792 */ 793 int dm_table_complete(struct dm_table *t) 794 { 795 int r = 0; 796 unsigned int leaf_nodes; 797 798 check_for_valid_limits(&t->limits); 799 800 /* 801 * We only support barriers if there is exactly one underlying device. 802 */ 803 if (!list_is_singular(&t->devices)) 804 t->barriers_supported = 0; 805 806 /* how many indexes will the btree have ? */ 807 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 808 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 809 810 /* leaf layer has already been set up */ 811 t->counts[t->depth - 1] = leaf_nodes; 812 t->index[t->depth - 1] = t->highs; 813 814 if (t->depth >= 2) 815 r = setup_indexes(t); 816 817 return r; 818 } 819 820 static DEFINE_MUTEX(_event_lock); 821 void dm_table_event_callback(struct dm_table *t, 822 void (*fn)(void *), void *context) 823 { 824 mutex_lock(&_event_lock); 825 t->event_fn = fn; 826 t->event_context = context; 827 mutex_unlock(&_event_lock); 828 } 829 830 void dm_table_event(struct dm_table *t) 831 { 832 /* 833 * You can no longer call dm_table_event() from interrupt 834 * context, use a bottom half instead. 835 */ 836 BUG_ON(in_interrupt()); 837 838 mutex_lock(&_event_lock); 839 if (t->event_fn) 840 t->event_fn(t->event_context); 841 mutex_unlock(&_event_lock); 842 } 843 844 sector_t dm_table_get_size(struct dm_table *t) 845 { 846 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 847 } 848 849 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 850 { 851 if (index >= t->num_targets) 852 return NULL; 853 854 return t->targets + index; 855 } 856 857 /* 858 * Search the btree for the correct target. 859 * 860 * Caller should check returned pointer with dm_target_is_valid() 861 * to trap I/O beyond end of device. 862 */ 863 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 864 { 865 unsigned int l, n = 0, k = 0; 866 sector_t *node; 867 868 for (l = 0; l < t->depth; l++) { 869 n = get_child(n, k); 870 node = get_node(t, l, n); 871 872 for (k = 0; k < KEYS_PER_NODE; k++) 873 if (node[k] >= sector) 874 break; 875 } 876 877 return &t->targets[(KEYS_PER_NODE * n) + k]; 878 } 879 880 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) 881 { 882 /* 883 * Make sure we obey the optimistic sub devices 884 * restrictions. 885 */ 886 blk_queue_max_sectors(q, t->limits.max_sectors); 887 q->max_phys_segments = t->limits.max_phys_segments; 888 q->max_hw_segments = t->limits.max_hw_segments; 889 q->hardsect_size = t->limits.hardsect_size; 890 q->max_segment_size = t->limits.max_segment_size; 891 q->max_hw_sectors = t->limits.max_hw_sectors; 892 q->seg_boundary_mask = t->limits.seg_boundary_mask; 893 q->bounce_pfn = t->limits.bounce_pfn; 894 895 if (t->limits.no_cluster) 896 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 897 else 898 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); 899 900 } 901 902 unsigned int dm_table_get_num_targets(struct dm_table *t) 903 { 904 return t->num_targets; 905 } 906 907 struct list_head *dm_table_get_devices(struct dm_table *t) 908 { 909 return &t->devices; 910 } 911 912 fmode_t dm_table_get_mode(struct dm_table *t) 913 { 914 return t->mode; 915 } 916 917 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 918 { 919 int i = t->num_targets; 920 struct dm_target *ti = t->targets; 921 922 while (i--) { 923 if (postsuspend) { 924 if (ti->type->postsuspend) 925 ti->type->postsuspend(ti); 926 } else if (ti->type->presuspend) 927 ti->type->presuspend(ti); 928 929 ti++; 930 } 931 } 932 933 void dm_table_presuspend_targets(struct dm_table *t) 934 { 935 if (!t) 936 return; 937 938 suspend_targets(t, 0); 939 } 940 941 void dm_table_postsuspend_targets(struct dm_table *t) 942 { 943 if (!t) 944 return; 945 946 suspend_targets(t, 1); 947 } 948 949 int dm_table_resume_targets(struct dm_table *t) 950 { 951 int i, r = 0; 952 953 for (i = 0; i < t->num_targets; i++) { 954 struct dm_target *ti = t->targets + i; 955 956 if (!ti->type->preresume) 957 continue; 958 959 r = ti->type->preresume(ti); 960 if (r) 961 return r; 962 } 963 964 for (i = 0; i < t->num_targets; i++) { 965 struct dm_target *ti = t->targets + i; 966 967 if (ti->type->resume) 968 ti->type->resume(ti); 969 } 970 971 return 0; 972 } 973 974 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 975 { 976 struct dm_dev_internal *dd; 977 struct list_head *devices = dm_table_get_devices(t); 978 int r = 0; 979 980 list_for_each_entry(dd, devices, list) { 981 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 982 char b[BDEVNAME_SIZE]; 983 984 if (likely(q)) 985 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 986 else 987 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 988 dm_device_name(t->md), 989 bdevname(dd->dm_dev.bdev, b)); 990 } 991 992 return r; 993 } 994 995 void dm_table_unplug_all(struct dm_table *t) 996 { 997 struct dm_dev_internal *dd; 998 struct list_head *devices = dm_table_get_devices(t); 999 1000 list_for_each_entry(dd, devices, list) { 1001 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1002 char b[BDEVNAME_SIZE]; 1003 1004 if (likely(q)) 1005 blk_unplug(q); 1006 else 1007 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s", 1008 dm_device_name(t->md), 1009 bdevname(dd->dm_dev.bdev, b)); 1010 } 1011 } 1012 1013 struct mapped_device *dm_table_get_md(struct dm_table *t) 1014 { 1015 dm_get(t->md); 1016 1017 return t->md; 1018 } 1019 1020 int dm_table_barrier_ok(struct dm_table *t) 1021 { 1022 return t->barriers_supported; 1023 } 1024 EXPORT_SYMBOL(dm_table_barrier_ok); 1025 1026 EXPORT_SYMBOL(dm_vcalloc); 1027 EXPORT_SYMBOL(dm_get_device); 1028 EXPORT_SYMBOL(dm_put_device); 1029 EXPORT_SYMBOL(dm_table_event); 1030 EXPORT_SYMBOL(dm_table_get_size); 1031 EXPORT_SYMBOL(dm_table_get_mode); 1032 EXPORT_SYMBOL(dm_table_get_md); 1033 EXPORT_SYMBOL(dm_table_put); 1034 EXPORT_SYMBOL(dm_table_get); 1035 EXPORT_SYMBOL(dm_table_unplug_all); 1036