xref: /openbmc/linux/drivers/md/dm-table.c (revision b6dcefde)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <asm/atomic.h>
21 
22 #define DM_MSG_PREFIX "table"
23 
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
28 
29 /*
30  * The table has always exactly one reference from either mapped_device->map
31  * or hash_cell->new_map. This reference is not counted in table->holders.
32  * A pair of dm_create_table/dm_destroy_table functions is used for table
33  * creation/destruction.
34  *
35  * Temporary references from the other code increase table->holders. A pair
36  * of dm_table_get/dm_table_put functions is used to manipulate it.
37  *
38  * When the table is about to be destroyed, we wait for table->holders to
39  * drop to zero.
40  */
41 
42 struct dm_table {
43 	struct mapped_device *md;
44 	atomic_t holders;
45 	unsigned type;
46 
47 	/* btree table */
48 	unsigned int depth;
49 	unsigned int counts[MAX_DEPTH];	/* in nodes */
50 	sector_t *index[MAX_DEPTH];
51 
52 	unsigned int num_targets;
53 	unsigned int num_allocated;
54 	sector_t *highs;
55 	struct dm_target *targets;
56 
57 	/*
58 	 * Indicates the rw permissions for the new logical
59 	 * device.  This should be a combination of FMODE_READ
60 	 * and FMODE_WRITE.
61 	 */
62 	fmode_t mode;
63 
64 	/* a list of devices used by this table */
65 	struct list_head devices;
66 
67 	/* events get handed up using this callback */
68 	void (*event_fn)(void *);
69 	void *event_context;
70 
71 	struct dm_md_mempools *mempools;
72 };
73 
74 /*
75  * Similar to ceiling(log_size(n))
76  */
77 static unsigned int int_log(unsigned int n, unsigned int base)
78 {
79 	int result = 0;
80 
81 	while (n > 1) {
82 		n = dm_div_up(n, base);
83 		result++;
84 	}
85 
86 	return result;
87 }
88 
89 /*
90  * Calculate the index of the child node of the n'th node k'th key.
91  */
92 static inline unsigned int get_child(unsigned int n, unsigned int k)
93 {
94 	return (n * CHILDREN_PER_NODE) + k;
95 }
96 
97 /*
98  * Return the n'th node of level l from table t.
99  */
100 static inline sector_t *get_node(struct dm_table *t,
101 				 unsigned int l, unsigned int n)
102 {
103 	return t->index[l] + (n * KEYS_PER_NODE);
104 }
105 
106 /*
107  * Return the highest key that you could lookup from the n'th
108  * node on level l of the btree.
109  */
110 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
111 {
112 	for (; l < t->depth - 1; l++)
113 		n = get_child(n, CHILDREN_PER_NODE - 1);
114 
115 	if (n >= t->counts[l])
116 		return (sector_t) - 1;
117 
118 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
119 }
120 
121 /*
122  * Fills in a level of the btree based on the highs of the level
123  * below it.
124  */
125 static int setup_btree_index(unsigned int l, struct dm_table *t)
126 {
127 	unsigned int n, k;
128 	sector_t *node;
129 
130 	for (n = 0U; n < t->counts[l]; n++) {
131 		node = get_node(t, l, n);
132 
133 		for (k = 0U; k < KEYS_PER_NODE; k++)
134 			node[k] = high(t, l + 1, get_child(n, k));
135 	}
136 
137 	return 0;
138 }
139 
140 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
141 {
142 	unsigned long size;
143 	void *addr;
144 
145 	/*
146 	 * Check that we're not going to overflow.
147 	 */
148 	if (nmemb > (ULONG_MAX / elem_size))
149 		return NULL;
150 
151 	size = nmemb * elem_size;
152 	addr = vmalloc(size);
153 	if (addr)
154 		memset(addr, 0, size);
155 
156 	return addr;
157 }
158 
159 /*
160  * highs, and targets are managed as dynamic arrays during a
161  * table load.
162  */
163 static int alloc_targets(struct dm_table *t, unsigned int num)
164 {
165 	sector_t *n_highs;
166 	struct dm_target *n_targets;
167 	int n = t->num_targets;
168 
169 	/*
170 	 * Allocate both the target array and offset array at once.
171 	 * Append an empty entry to catch sectors beyond the end of
172 	 * the device.
173 	 */
174 	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
175 					  sizeof(sector_t));
176 	if (!n_highs)
177 		return -ENOMEM;
178 
179 	n_targets = (struct dm_target *) (n_highs + num);
180 
181 	if (n) {
182 		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
183 		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
184 	}
185 
186 	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
187 	vfree(t->highs);
188 
189 	t->num_allocated = num;
190 	t->highs = n_highs;
191 	t->targets = n_targets;
192 
193 	return 0;
194 }
195 
196 int dm_table_create(struct dm_table **result, fmode_t mode,
197 		    unsigned num_targets, struct mapped_device *md)
198 {
199 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
200 
201 	if (!t)
202 		return -ENOMEM;
203 
204 	INIT_LIST_HEAD(&t->devices);
205 	atomic_set(&t->holders, 0);
206 
207 	if (!num_targets)
208 		num_targets = KEYS_PER_NODE;
209 
210 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
211 
212 	if (alloc_targets(t, num_targets)) {
213 		kfree(t);
214 		t = NULL;
215 		return -ENOMEM;
216 	}
217 
218 	t->mode = mode;
219 	t->md = md;
220 	*result = t;
221 	return 0;
222 }
223 
224 static void free_devices(struct list_head *devices)
225 {
226 	struct list_head *tmp, *next;
227 
228 	list_for_each_safe(tmp, next, devices) {
229 		struct dm_dev_internal *dd =
230 		    list_entry(tmp, struct dm_dev_internal, list);
231 		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
232 		       dd->dm_dev.name);
233 		kfree(dd);
234 	}
235 }
236 
237 void dm_table_destroy(struct dm_table *t)
238 {
239 	unsigned int i;
240 
241 	if (!t)
242 		return;
243 
244 	while (atomic_read(&t->holders))
245 		msleep(1);
246 	smp_mb();
247 
248 	/* free the indexes (see dm_table_complete) */
249 	if (t->depth >= 2)
250 		vfree(t->index[t->depth - 2]);
251 
252 	/* free the targets */
253 	for (i = 0; i < t->num_targets; i++) {
254 		struct dm_target *tgt = t->targets + i;
255 
256 		if (tgt->type->dtr)
257 			tgt->type->dtr(tgt);
258 
259 		dm_put_target_type(tgt->type);
260 	}
261 
262 	vfree(t->highs);
263 
264 	/* free the device list */
265 	if (t->devices.next != &t->devices)
266 		free_devices(&t->devices);
267 
268 	dm_free_md_mempools(t->mempools);
269 
270 	kfree(t);
271 }
272 
273 void dm_table_get(struct dm_table *t)
274 {
275 	atomic_inc(&t->holders);
276 }
277 
278 void dm_table_put(struct dm_table *t)
279 {
280 	if (!t)
281 		return;
282 
283 	smp_mb__before_atomic_dec();
284 	atomic_dec(&t->holders);
285 }
286 
287 /*
288  * Checks to see if we need to extend highs or targets.
289  */
290 static inline int check_space(struct dm_table *t)
291 {
292 	if (t->num_targets >= t->num_allocated)
293 		return alloc_targets(t, t->num_allocated * 2);
294 
295 	return 0;
296 }
297 
298 /*
299  * See if we've already got a device in the list.
300  */
301 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
302 {
303 	struct dm_dev_internal *dd;
304 
305 	list_for_each_entry (dd, l, list)
306 		if (dd->dm_dev.bdev->bd_dev == dev)
307 			return dd;
308 
309 	return NULL;
310 }
311 
312 /*
313  * Open a device so we can use it as a map destination.
314  */
315 static int open_dev(struct dm_dev_internal *d, dev_t dev,
316 		    struct mapped_device *md)
317 {
318 	static char *_claim_ptr = "I belong to device-mapper";
319 	struct block_device *bdev;
320 
321 	int r;
322 
323 	BUG_ON(d->dm_dev.bdev);
324 
325 	bdev = open_by_devnum(dev, d->dm_dev.mode);
326 	if (IS_ERR(bdev))
327 		return PTR_ERR(bdev);
328 	r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
329 	if (r)
330 		blkdev_put(bdev, d->dm_dev.mode);
331 	else
332 		d->dm_dev.bdev = bdev;
333 	return r;
334 }
335 
336 /*
337  * Close a device that we've been using.
338  */
339 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
340 {
341 	if (!d->dm_dev.bdev)
342 		return;
343 
344 	bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
345 	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
346 	d->dm_dev.bdev = NULL;
347 }
348 
349 /*
350  * If possible, this checks an area of a destination device is invalid.
351  */
352 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
353 				  sector_t start, sector_t len, void *data)
354 {
355 	struct queue_limits *limits = data;
356 	struct block_device *bdev = dev->bdev;
357 	sector_t dev_size =
358 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
359 	unsigned short logical_block_size_sectors =
360 		limits->logical_block_size >> SECTOR_SHIFT;
361 	char b[BDEVNAME_SIZE];
362 
363 	if (!dev_size)
364 		return 0;
365 
366 	if ((start >= dev_size) || (start + len > dev_size)) {
367 		DMWARN("%s: %s too small for target: "
368 		       "start=%llu, len=%llu, dev_size=%llu",
369 		       dm_device_name(ti->table->md), bdevname(bdev, b),
370 		       (unsigned long long)start,
371 		       (unsigned long long)len,
372 		       (unsigned long long)dev_size);
373 		return 1;
374 	}
375 
376 	if (logical_block_size_sectors <= 1)
377 		return 0;
378 
379 	if (start & (logical_block_size_sectors - 1)) {
380 		DMWARN("%s: start=%llu not aligned to h/w "
381 		       "logical block size %u of %s",
382 		       dm_device_name(ti->table->md),
383 		       (unsigned long long)start,
384 		       limits->logical_block_size, bdevname(bdev, b));
385 		return 1;
386 	}
387 
388 	if (len & (logical_block_size_sectors - 1)) {
389 		DMWARN("%s: len=%llu not aligned to h/w "
390 		       "logical block size %u of %s",
391 		       dm_device_name(ti->table->md),
392 		       (unsigned long long)len,
393 		       limits->logical_block_size, bdevname(bdev, b));
394 		return 1;
395 	}
396 
397 	return 0;
398 }
399 
400 /*
401  * This upgrades the mode on an already open dm_dev, being
402  * careful to leave things as they were if we fail to reopen the
403  * device and not to touch the existing bdev field in case
404  * it is accessed concurrently inside dm_table_any_congested().
405  */
406 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
407 			struct mapped_device *md)
408 {
409 	int r;
410 	struct dm_dev_internal dd_new, dd_old;
411 
412 	dd_new = dd_old = *dd;
413 
414 	dd_new.dm_dev.mode |= new_mode;
415 	dd_new.dm_dev.bdev = NULL;
416 
417 	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
418 	if (r)
419 		return r;
420 
421 	dd->dm_dev.mode |= new_mode;
422 	close_dev(&dd_old, md);
423 
424 	return 0;
425 }
426 
427 /*
428  * Add a device to the list, or just increment the usage count if
429  * it's already present.
430  */
431 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
432 			      const char *path, sector_t start, sector_t len,
433 			      fmode_t mode, struct dm_dev **result)
434 {
435 	int r;
436 	dev_t uninitialized_var(dev);
437 	struct dm_dev_internal *dd;
438 	unsigned int major, minor;
439 
440 	BUG_ON(!t);
441 
442 	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
443 		/* Extract the major/minor numbers */
444 		dev = MKDEV(major, minor);
445 		if (MAJOR(dev) != major || MINOR(dev) != minor)
446 			return -EOVERFLOW;
447 	} else {
448 		/* convert the path to a device */
449 		struct block_device *bdev = lookup_bdev(path);
450 
451 		if (IS_ERR(bdev))
452 			return PTR_ERR(bdev);
453 		dev = bdev->bd_dev;
454 		bdput(bdev);
455 	}
456 
457 	dd = find_device(&t->devices, dev);
458 	if (!dd) {
459 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
460 		if (!dd)
461 			return -ENOMEM;
462 
463 		dd->dm_dev.mode = mode;
464 		dd->dm_dev.bdev = NULL;
465 
466 		if ((r = open_dev(dd, dev, t->md))) {
467 			kfree(dd);
468 			return r;
469 		}
470 
471 		format_dev_t(dd->dm_dev.name, dev);
472 
473 		atomic_set(&dd->count, 0);
474 		list_add(&dd->list, &t->devices);
475 
476 	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
477 		r = upgrade_mode(dd, mode, t->md);
478 		if (r)
479 			return r;
480 	}
481 	atomic_inc(&dd->count);
482 
483 	*result = &dd->dm_dev;
484 	return 0;
485 }
486 
487 /*
488  * Returns the minimum that is _not_ zero, unless both are zero.
489  */
490 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
491 
492 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
493 			 sector_t start, sector_t len, void *data)
494 {
495 	struct queue_limits *limits = data;
496 	struct block_device *bdev = dev->bdev;
497 	struct request_queue *q = bdev_get_queue(bdev);
498 	char b[BDEVNAME_SIZE];
499 
500 	if (unlikely(!q)) {
501 		DMWARN("%s: Cannot set limits for nonexistent device %s",
502 		       dm_device_name(ti->table->md), bdevname(bdev, b));
503 		return 0;
504 	}
505 
506 	if (bdev_stack_limits(limits, bdev, start) < 0)
507 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
508 		       "physical_block_size=%u, logical_block_size=%u, "
509 		       "alignment_offset=%u, start=%llu",
510 		       dm_device_name(ti->table->md), bdevname(bdev, b),
511 		       q->limits.physical_block_size,
512 		       q->limits.logical_block_size,
513 		       q->limits.alignment_offset,
514 		       (unsigned long long) start << SECTOR_SHIFT);
515 
516 	/*
517 	 * Check if merge fn is supported.
518 	 * If not we'll force DM to use PAGE_SIZE or
519 	 * smaller I/O, just to be safe.
520 	 */
521 
522 	if (q->merge_bvec_fn && !ti->type->merge)
523 		limits->max_sectors =
524 			min_not_zero(limits->max_sectors,
525 				     (unsigned int) (PAGE_SIZE >> 9));
526 	return 0;
527 }
528 EXPORT_SYMBOL_GPL(dm_set_device_limits);
529 
530 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
531 		  sector_t len, fmode_t mode, struct dm_dev **result)
532 {
533 	return __table_get_device(ti->table, ti, path,
534 				  start, len, mode, result);
535 }
536 
537 
538 /*
539  * Decrement a devices use count and remove it if necessary.
540  */
541 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
542 {
543 	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
544 						  dm_dev);
545 
546 	if (atomic_dec_and_test(&dd->count)) {
547 		close_dev(dd, ti->table->md);
548 		list_del(&dd->list);
549 		kfree(dd);
550 	}
551 }
552 
553 /*
554  * Checks to see if the target joins onto the end of the table.
555  */
556 static int adjoin(struct dm_table *table, struct dm_target *ti)
557 {
558 	struct dm_target *prev;
559 
560 	if (!table->num_targets)
561 		return !ti->begin;
562 
563 	prev = &table->targets[table->num_targets - 1];
564 	return (ti->begin == (prev->begin + prev->len));
565 }
566 
567 /*
568  * Used to dynamically allocate the arg array.
569  */
570 static char **realloc_argv(unsigned *array_size, char **old_argv)
571 {
572 	char **argv;
573 	unsigned new_size;
574 
575 	new_size = *array_size ? *array_size * 2 : 64;
576 	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
577 	if (argv) {
578 		memcpy(argv, old_argv, *array_size * sizeof(*argv));
579 		*array_size = new_size;
580 	}
581 
582 	kfree(old_argv);
583 	return argv;
584 }
585 
586 /*
587  * Destructively splits up the argument list to pass to ctr.
588  */
589 int dm_split_args(int *argc, char ***argvp, char *input)
590 {
591 	char *start, *end = input, *out, **argv = NULL;
592 	unsigned array_size = 0;
593 
594 	*argc = 0;
595 
596 	if (!input) {
597 		*argvp = NULL;
598 		return 0;
599 	}
600 
601 	argv = realloc_argv(&array_size, argv);
602 	if (!argv)
603 		return -ENOMEM;
604 
605 	while (1) {
606 		/* Skip whitespace */
607 		start = skip_spaces(end);
608 
609 		if (!*start)
610 			break;	/* success, we hit the end */
611 
612 		/* 'out' is used to remove any back-quotes */
613 		end = out = start;
614 		while (*end) {
615 			/* Everything apart from '\0' can be quoted */
616 			if (*end == '\\' && *(end + 1)) {
617 				*out++ = *(end + 1);
618 				end += 2;
619 				continue;
620 			}
621 
622 			if (isspace(*end))
623 				break;	/* end of token */
624 
625 			*out++ = *end++;
626 		}
627 
628 		/* have we already filled the array ? */
629 		if ((*argc + 1) > array_size) {
630 			argv = realloc_argv(&array_size, argv);
631 			if (!argv)
632 				return -ENOMEM;
633 		}
634 
635 		/* we know this is whitespace */
636 		if (*end)
637 			end++;
638 
639 		/* terminate the string and put it in the array */
640 		*out = '\0';
641 		argv[*argc] = start;
642 		(*argc)++;
643 	}
644 
645 	*argvp = argv;
646 	return 0;
647 }
648 
649 /*
650  * Impose necessary and sufficient conditions on a devices's table such
651  * that any incoming bio which respects its logical_block_size can be
652  * processed successfully.  If it falls across the boundary between
653  * two or more targets, the size of each piece it gets split into must
654  * be compatible with the logical_block_size of the target processing it.
655  */
656 static int validate_hardware_logical_block_alignment(struct dm_table *table,
657 						 struct queue_limits *limits)
658 {
659 	/*
660 	 * This function uses arithmetic modulo the logical_block_size
661 	 * (in units of 512-byte sectors).
662 	 */
663 	unsigned short device_logical_block_size_sects =
664 		limits->logical_block_size >> SECTOR_SHIFT;
665 
666 	/*
667 	 * Offset of the start of the next table entry, mod logical_block_size.
668 	 */
669 	unsigned short next_target_start = 0;
670 
671 	/*
672 	 * Given an aligned bio that extends beyond the end of a
673 	 * target, how many sectors must the next target handle?
674 	 */
675 	unsigned short remaining = 0;
676 
677 	struct dm_target *uninitialized_var(ti);
678 	struct queue_limits ti_limits;
679 	unsigned i = 0;
680 
681 	/*
682 	 * Check each entry in the table in turn.
683 	 */
684 	while (i < dm_table_get_num_targets(table)) {
685 		ti = dm_table_get_target(table, i++);
686 
687 		blk_set_default_limits(&ti_limits);
688 
689 		/* combine all target devices' limits */
690 		if (ti->type->iterate_devices)
691 			ti->type->iterate_devices(ti, dm_set_device_limits,
692 						  &ti_limits);
693 
694 		/*
695 		 * If the remaining sectors fall entirely within this
696 		 * table entry are they compatible with its logical_block_size?
697 		 */
698 		if (remaining < ti->len &&
699 		    remaining & ((ti_limits.logical_block_size >>
700 				  SECTOR_SHIFT) - 1))
701 			break;	/* Error */
702 
703 		next_target_start =
704 		    (unsigned short) ((next_target_start + ti->len) &
705 				      (device_logical_block_size_sects - 1));
706 		remaining = next_target_start ?
707 		    device_logical_block_size_sects - next_target_start : 0;
708 	}
709 
710 	if (remaining) {
711 		DMWARN("%s: table line %u (start sect %llu len %llu) "
712 		       "not aligned to h/w logical block size %u",
713 		       dm_device_name(table->md), i,
714 		       (unsigned long long) ti->begin,
715 		       (unsigned long long) ti->len,
716 		       limits->logical_block_size);
717 		return -EINVAL;
718 	}
719 
720 	return 0;
721 }
722 
723 int dm_table_add_target(struct dm_table *t, const char *type,
724 			sector_t start, sector_t len, char *params)
725 {
726 	int r = -EINVAL, argc;
727 	char **argv;
728 	struct dm_target *tgt;
729 
730 	if ((r = check_space(t)))
731 		return r;
732 
733 	tgt = t->targets + t->num_targets;
734 	memset(tgt, 0, sizeof(*tgt));
735 
736 	if (!len) {
737 		DMERR("%s: zero-length target", dm_device_name(t->md));
738 		return -EINVAL;
739 	}
740 
741 	tgt->type = dm_get_target_type(type);
742 	if (!tgt->type) {
743 		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
744 		      type);
745 		return -EINVAL;
746 	}
747 
748 	tgt->table = t;
749 	tgt->begin = start;
750 	tgt->len = len;
751 	tgt->error = "Unknown error";
752 
753 	/*
754 	 * Does this target adjoin the previous one ?
755 	 */
756 	if (!adjoin(t, tgt)) {
757 		tgt->error = "Gap in table";
758 		r = -EINVAL;
759 		goto bad;
760 	}
761 
762 	r = dm_split_args(&argc, &argv, params);
763 	if (r) {
764 		tgt->error = "couldn't split parameters (insufficient memory)";
765 		goto bad;
766 	}
767 
768 	r = tgt->type->ctr(tgt, argc, argv);
769 	kfree(argv);
770 	if (r)
771 		goto bad;
772 
773 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
774 
775 	return 0;
776 
777  bad:
778 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
779 	dm_put_target_type(tgt->type);
780 	return r;
781 }
782 
783 int dm_table_set_type(struct dm_table *t)
784 {
785 	unsigned i;
786 	unsigned bio_based = 0, request_based = 0;
787 	struct dm_target *tgt;
788 	struct dm_dev_internal *dd;
789 	struct list_head *devices;
790 
791 	for (i = 0; i < t->num_targets; i++) {
792 		tgt = t->targets + i;
793 		if (dm_target_request_based(tgt))
794 			request_based = 1;
795 		else
796 			bio_based = 1;
797 
798 		if (bio_based && request_based) {
799 			DMWARN("Inconsistent table: different target types"
800 			       " can't be mixed up");
801 			return -EINVAL;
802 		}
803 	}
804 
805 	if (bio_based) {
806 		/* We must use this table as bio-based */
807 		t->type = DM_TYPE_BIO_BASED;
808 		return 0;
809 	}
810 
811 	BUG_ON(!request_based); /* No targets in this table */
812 
813 	/* Non-request-stackable devices can't be used for request-based dm */
814 	devices = dm_table_get_devices(t);
815 	list_for_each_entry(dd, devices, list) {
816 		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
817 			DMWARN("table load rejected: including"
818 			       " non-request-stackable devices");
819 			return -EINVAL;
820 		}
821 	}
822 
823 	/*
824 	 * Request-based dm supports only tables that have a single target now.
825 	 * To support multiple targets, request splitting support is needed,
826 	 * and that needs lots of changes in the block-layer.
827 	 * (e.g. request completion process for partial completion.)
828 	 */
829 	if (t->num_targets > 1) {
830 		DMWARN("Request-based dm doesn't support multiple targets yet");
831 		return -EINVAL;
832 	}
833 
834 	t->type = DM_TYPE_REQUEST_BASED;
835 
836 	return 0;
837 }
838 
839 unsigned dm_table_get_type(struct dm_table *t)
840 {
841 	return t->type;
842 }
843 
844 bool dm_table_request_based(struct dm_table *t)
845 {
846 	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
847 }
848 
849 int dm_table_alloc_md_mempools(struct dm_table *t)
850 {
851 	unsigned type = dm_table_get_type(t);
852 
853 	if (unlikely(type == DM_TYPE_NONE)) {
854 		DMWARN("no table type is set, can't allocate mempools");
855 		return -EINVAL;
856 	}
857 
858 	t->mempools = dm_alloc_md_mempools(type);
859 	if (!t->mempools)
860 		return -ENOMEM;
861 
862 	return 0;
863 }
864 
865 void dm_table_free_md_mempools(struct dm_table *t)
866 {
867 	dm_free_md_mempools(t->mempools);
868 	t->mempools = NULL;
869 }
870 
871 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
872 {
873 	return t->mempools;
874 }
875 
876 static int setup_indexes(struct dm_table *t)
877 {
878 	int i;
879 	unsigned int total = 0;
880 	sector_t *indexes;
881 
882 	/* allocate the space for *all* the indexes */
883 	for (i = t->depth - 2; i >= 0; i--) {
884 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
885 		total += t->counts[i];
886 	}
887 
888 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
889 	if (!indexes)
890 		return -ENOMEM;
891 
892 	/* set up internal nodes, bottom-up */
893 	for (i = t->depth - 2; i >= 0; i--) {
894 		t->index[i] = indexes;
895 		indexes += (KEYS_PER_NODE * t->counts[i]);
896 		setup_btree_index(i, t);
897 	}
898 
899 	return 0;
900 }
901 
902 /*
903  * Builds the btree to index the map.
904  */
905 int dm_table_complete(struct dm_table *t)
906 {
907 	int r = 0;
908 	unsigned int leaf_nodes;
909 
910 	/* how many indexes will the btree have ? */
911 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
912 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
913 
914 	/* leaf layer has already been set up */
915 	t->counts[t->depth - 1] = leaf_nodes;
916 	t->index[t->depth - 1] = t->highs;
917 
918 	if (t->depth >= 2)
919 		r = setup_indexes(t);
920 
921 	return r;
922 }
923 
924 static DEFINE_MUTEX(_event_lock);
925 void dm_table_event_callback(struct dm_table *t,
926 			     void (*fn)(void *), void *context)
927 {
928 	mutex_lock(&_event_lock);
929 	t->event_fn = fn;
930 	t->event_context = context;
931 	mutex_unlock(&_event_lock);
932 }
933 
934 void dm_table_event(struct dm_table *t)
935 {
936 	/*
937 	 * You can no longer call dm_table_event() from interrupt
938 	 * context, use a bottom half instead.
939 	 */
940 	BUG_ON(in_interrupt());
941 
942 	mutex_lock(&_event_lock);
943 	if (t->event_fn)
944 		t->event_fn(t->event_context);
945 	mutex_unlock(&_event_lock);
946 }
947 
948 sector_t dm_table_get_size(struct dm_table *t)
949 {
950 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
951 }
952 
953 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
954 {
955 	if (index >= t->num_targets)
956 		return NULL;
957 
958 	return t->targets + index;
959 }
960 
961 /*
962  * Search the btree for the correct target.
963  *
964  * Caller should check returned pointer with dm_target_is_valid()
965  * to trap I/O beyond end of device.
966  */
967 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
968 {
969 	unsigned int l, n = 0, k = 0;
970 	sector_t *node;
971 
972 	for (l = 0; l < t->depth; l++) {
973 		n = get_child(n, k);
974 		node = get_node(t, l, n);
975 
976 		for (k = 0; k < KEYS_PER_NODE; k++)
977 			if (node[k] >= sector)
978 				break;
979 	}
980 
981 	return &t->targets[(KEYS_PER_NODE * n) + k];
982 }
983 
984 /*
985  * Establish the new table's queue_limits and validate them.
986  */
987 int dm_calculate_queue_limits(struct dm_table *table,
988 			      struct queue_limits *limits)
989 {
990 	struct dm_target *uninitialized_var(ti);
991 	struct queue_limits ti_limits;
992 	unsigned i = 0;
993 
994 	blk_set_default_limits(limits);
995 
996 	while (i < dm_table_get_num_targets(table)) {
997 		blk_set_default_limits(&ti_limits);
998 
999 		ti = dm_table_get_target(table, i++);
1000 
1001 		if (!ti->type->iterate_devices)
1002 			goto combine_limits;
1003 
1004 		/*
1005 		 * Combine queue limits of all the devices this target uses.
1006 		 */
1007 		ti->type->iterate_devices(ti, dm_set_device_limits,
1008 					  &ti_limits);
1009 
1010 		/* Set I/O hints portion of queue limits */
1011 		if (ti->type->io_hints)
1012 			ti->type->io_hints(ti, &ti_limits);
1013 
1014 		/*
1015 		 * Check each device area is consistent with the target's
1016 		 * overall queue limits.
1017 		 */
1018 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1019 					      &ti_limits))
1020 			return -EINVAL;
1021 
1022 combine_limits:
1023 		/*
1024 		 * Merge this target's queue limits into the overall limits
1025 		 * for the table.
1026 		 */
1027 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1028 			DMWARN("%s: adding target device "
1029 			       "(start sect %llu len %llu) "
1030 			       "caused an alignment inconsistency",
1031 			       dm_device_name(table->md),
1032 			       (unsigned long long) ti->begin,
1033 			       (unsigned long long) ti->len);
1034 	}
1035 
1036 	return validate_hardware_logical_block_alignment(table, limits);
1037 }
1038 
1039 /*
1040  * Set the integrity profile for this device if all devices used have
1041  * matching profiles.
1042  */
1043 static void dm_table_set_integrity(struct dm_table *t)
1044 {
1045 	struct list_head *devices = dm_table_get_devices(t);
1046 	struct dm_dev_internal *prev = NULL, *dd = NULL;
1047 
1048 	if (!blk_get_integrity(dm_disk(t->md)))
1049 		return;
1050 
1051 	list_for_each_entry(dd, devices, list) {
1052 		if (prev &&
1053 		    blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
1054 					  dd->dm_dev.bdev->bd_disk) < 0) {
1055 			DMWARN("%s: integrity not set: %s and %s mismatch",
1056 			       dm_device_name(t->md),
1057 			       prev->dm_dev.bdev->bd_disk->disk_name,
1058 			       dd->dm_dev.bdev->bd_disk->disk_name);
1059 			goto no_integrity;
1060 		}
1061 		prev = dd;
1062 	}
1063 
1064 	if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
1065 		goto no_integrity;
1066 
1067 	blk_integrity_register(dm_disk(t->md),
1068 			       bdev_get_integrity(prev->dm_dev.bdev));
1069 
1070 	return;
1071 
1072 no_integrity:
1073 	blk_integrity_register(dm_disk(t->md), NULL);
1074 
1075 	return;
1076 }
1077 
1078 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1079 			       struct queue_limits *limits)
1080 {
1081 	/*
1082 	 * Copy table's limits to the DM device's request_queue
1083 	 */
1084 	q->limits = *limits;
1085 
1086 	if (limits->no_cluster)
1087 		queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1088 	else
1089 		queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
1090 
1091 	dm_table_set_integrity(t);
1092 
1093 	/*
1094 	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1095 	 * visible to other CPUs because, once the flag is set, incoming bios
1096 	 * are processed by request-based dm, which refers to the queue
1097 	 * settings.
1098 	 * Until the flag set, bios are passed to bio-based dm and queued to
1099 	 * md->deferred where queue settings are not needed yet.
1100 	 * Those bios are passed to request-based dm at the resume time.
1101 	 */
1102 	smp_mb();
1103 	if (dm_table_request_based(t))
1104 		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1105 }
1106 
1107 unsigned int dm_table_get_num_targets(struct dm_table *t)
1108 {
1109 	return t->num_targets;
1110 }
1111 
1112 struct list_head *dm_table_get_devices(struct dm_table *t)
1113 {
1114 	return &t->devices;
1115 }
1116 
1117 fmode_t dm_table_get_mode(struct dm_table *t)
1118 {
1119 	return t->mode;
1120 }
1121 
1122 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1123 {
1124 	int i = t->num_targets;
1125 	struct dm_target *ti = t->targets;
1126 
1127 	while (i--) {
1128 		if (postsuspend) {
1129 			if (ti->type->postsuspend)
1130 				ti->type->postsuspend(ti);
1131 		} else if (ti->type->presuspend)
1132 			ti->type->presuspend(ti);
1133 
1134 		ti++;
1135 	}
1136 }
1137 
1138 void dm_table_presuspend_targets(struct dm_table *t)
1139 {
1140 	if (!t)
1141 		return;
1142 
1143 	suspend_targets(t, 0);
1144 }
1145 
1146 void dm_table_postsuspend_targets(struct dm_table *t)
1147 {
1148 	if (!t)
1149 		return;
1150 
1151 	suspend_targets(t, 1);
1152 }
1153 
1154 int dm_table_resume_targets(struct dm_table *t)
1155 {
1156 	int i, r = 0;
1157 
1158 	for (i = 0; i < t->num_targets; i++) {
1159 		struct dm_target *ti = t->targets + i;
1160 
1161 		if (!ti->type->preresume)
1162 			continue;
1163 
1164 		r = ti->type->preresume(ti);
1165 		if (r)
1166 			return r;
1167 	}
1168 
1169 	for (i = 0; i < t->num_targets; i++) {
1170 		struct dm_target *ti = t->targets + i;
1171 
1172 		if (ti->type->resume)
1173 			ti->type->resume(ti);
1174 	}
1175 
1176 	return 0;
1177 }
1178 
1179 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1180 {
1181 	struct dm_dev_internal *dd;
1182 	struct list_head *devices = dm_table_get_devices(t);
1183 	int r = 0;
1184 
1185 	list_for_each_entry(dd, devices, list) {
1186 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1187 		char b[BDEVNAME_SIZE];
1188 
1189 		if (likely(q))
1190 			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1191 		else
1192 			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1193 				     dm_device_name(t->md),
1194 				     bdevname(dd->dm_dev.bdev, b));
1195 	}
1196 
1197 	return r;
1198 }
1199 
1200 int dm_table_any_busy_target(struct dm_table *t)
1201 {
1202 	unsigned i;
1203 	struct dm_target *ti;
1204 
1205 	for (i = 0; i < t->num_targets; i++) {
1206 		ti = t->targets + i;
1207 		if (ti->type->busy && ti->type->busy(ti))
1208 			return 1;
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 void dm_table_unplug_all(struct dm_table *t)
1215 {
1216 	struct dm_dev_internal *dd;
1217 	struct list_head *devices = dm_table_get_devices(t);
1218 
1219 	list_for_each_entry(dd, devices, list) {
1220 		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1221 		char b[BDEVNAME_SIZE];
1222 
1223 		if (likely(q))
1224 			blk_unplug(q);
1225 		else
1226 			DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1227 				     dm_device_name(t->md),
1228 				     bdevname(dd->dm_dev.bdev, b));
1229 	}
1230 }
1231 
1232 struct mapped_device *dm_table_get_md(struct dm_table *t)
1233 {
1234 	dm_get(t->md);
1235 
1236 	return t->md;
1237 }
1238 
1239 EXPORT_SYMBOL(dm_vcalloc);
1240 EXPORT_SYMBOL(dm_get_device);
1241 EXPORT_SYMBOL(dm_put_device);
1242 EXPORT_SYMBOL(dm_table_event);
1243 EXPORT_SYMBOL(dm_table_get_size);
1244 EXPORT_SYMBOL(dm_table_get_mode);
1245 EXPORT_SYMBOL(dm_table_get_md);
1246 EXPORT_SYMBOL(dm_table_put);
1247 EXPORT_SYMBOL(dm_table_get);
1248 EXPORT_SYMBOL(dm_table_unplug_all);
1249