1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/slab.h> 17 #include <linux/interrupt.h> 18 #include <linux/mutex.h> 19 #include <linux/delay.h> 20 #include <linux/atomic.h> 21 22 #define DM_MSG_PREFIX "table" 23 24 #define MAX_DEPTH 16 25 #define NODE_SIZE L1_CACHE_BYTES 26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 28 29 /* 30 * The table has always exactly one reference from either mapped_device->map 31 * or hash_cell->new_map. This reference is not counted in table->holders. 32 * A pair of dm_create_table/dm_destroy_table functions is used for table 33 * creation/destruction. 34 * 35 * Temporary references from the other code increase table->holders. A pair 36 * of dm_table_get/dm_table_put functions is used to manipulate it. 37 * 38 * When the table is about to be destroyed, we wait for table->holders to 39 * drop to zero. 40 */ 41 42 struct dm_table { 43 struct mapped_device *md; 44 atomic_t holders; 45 unsigned type; 46 47 /* btree table */ 48 unsigned int depth; 49 unsigned int counts[MAX_DEPTH]; /* in nodes */ 50 sector_t *index[MAX_DEPTH]; 51 52 unsigned int num_targets; 53 unsigned int num_allocated; 54 sector_t *highs; 55 struct dm_target *targets; 56 57 struct target_type *immutable_target_type; 58 unsigned integrity_supported:1; 59 unsigned singleton:1; 60 61 /* 62 * Indicates the rw permissions for the new logical 63 * device. This should be a combination of FMODE_READ 64 * and FMODE_WRITE. 65 */ 66 fmode_t mode; 67 68 /* a list of devices used by this table */ 69 struct list_head devices; 70 71 /* events get handed up using this callback */ 72 void (*event_fn)(void *); 73 void *event_context; 74 75 struct dm_md_mempools *mempools; 76 77 struct list_head target_callbacks; 78 }; 79 80 /* 81 * Similar to ceiling(log_size(n)) 82 */ 83 static unsigned int int_log(unsigned int n, unsigned int base) 84 { 85 int result = 0; 86 87 while (n > 1) { 88 n = dm_div_up(n, base); 89 result++; 90 } 91 92 return result; 93 } 94 95 /* 96 * Calculate the index of the child node of the n'th node k'th key. 97 */ 98 static inline unsigned int get_child(unsigned int n, unsigned int k) 99 { 100 return (n * CHILDREN_PER_NODE) + k; 101 } 102 103 /* 104 * Return the n'th node of level l from table t. 105 */ 106 static inline sector_t *get_node(struct dm_table *t, 107 unsigned int l, unsigned int n) 108 { 109 return t->index[l] + (n * KEYS_PER_NODE); 110 } 111 112 /* 113 * Return the highest key that you could lookup from the n'th 114 * node on level l of the btree. 115 */ 116 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 117 { 118 for (; l < t->depth - 1; l++) 119 n = get_child(n, CHILDREN_PER_NODE - 1); 120 121 if (n >= t->counts[l]) 122 return (sector_t) - 1; 123 124 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 125 } 126 127 /* 128 * Fills in a level of the btree based on the highs of the level 129 * below it. 130 */ 131 static int setup_btree_index(unsigned int l, struct dm_table *t) 132 { 133 unsigned int n, k; 134 sector_t *node; 135 136 for (n = 0U; n < t->counts[l]; n++) { 137 node = get_node(t, l, n); 138 139 for (k = 0U; k < KEYS_PER_NODE; k++) 140 node[k] = high(t, l + 1, get_child(n, k)); 141 } 142 143 return 0; 144 } 145 146 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 147 { 148 unsigned long size; 149 void *addr; 150 151 /* 152 * Check that we're not going to overflow. 153 */ 154 if (nmemb > (ULONG_MAX / elem_size)) 155 return NULL; 156 157 size = nmemb * elem_size; 158 addr = vzalloc(size); 159 160 return addr; 161 } 162 EXPORT_SYMBOL(dm_vcalloc); 163 164 /* 165 * highs, and targets are managed as dynamic arrays during a 166 * table load. 167 */ 168 static int alloc_targets(struct dm_table *t, unsigned int num) 169 { 170 sector_t *n_highs; 171 struct dm_target *n_targets; 172 int n = t->num_targets; 173 174 /* 175 * Allocate both the target array and offset array at once. 176 * Append an empty entry to catch sectors beyond the end of 177 * the device. 178 */ 179 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 180 sizeof(sector_t)); 181 if (!n_highs) 182 return -ENOMEM; 183 184 n_targets = (struct dm_target *) (n_highs + num); 185 186 if (n) { 187 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 188 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 189 } 190 191 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 192 vfree(t->highs); 193 194 t->num_allocated = num; 195 t->highs = n_highs; 196 t->targets = n_targets; 197 198 return 0; 199 } 200 201 int dm_table_create(struct dm_table **result, fmode_t mode, 202 unsigned num_targets, struct mapped_device *md) 203 { 204 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 205 206 if (!t) 207 return -ENOMEM; 208 209 INIT_LIST_HEAD(&t->devices); 210 INIT_LIST_HEAD(&t->target_callbacks); 211 atomic_set(&t->holders, 0); 212 213 if (!num_targets) 214 num_targets = KEYS_PER_NODE; 215 216 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 217 218 if (alloc_targets(t, num_targets)) { 219 kfree(t); 220 t = NULL; 221 return -ENOMEM; 222 } 223 224 t->mode = mode; 225 t->md = md; 226 *result = t; 227 return 0; 228 } 229 230 static void free_devices(struct list_head *devices) 231 { 232 struct list_head *tmp, *next; 233 234 list_for_each_safe(tmp, next, devices) { 235 struct dm_dev_internal *dd = 236 list_entry(tmp, struct dm_dev_internal, list); 237 DMWARN("dm_table_destroy: dm_put_device call missing for %s", 238 dd->dm_dev.name); 239 kfree(dd); 240 } 241 } 242 243 void dm_table_destroy(struct dm_table *t) 244 { 245 unsigned int i; 246 247 if (!t) 248 return; 249 250 while (atomic_read(&t->holders)) 251 msleep(1); 252 smp_mb(); 253 254 /* free the indexes */ 255 if (t->depth >= 2) 256 vfree(t->index[t->depth - 2]); 257 258 /* free the targets */ 259 for (i = 0; i < t->num_targets; i++) { 260 struct dm_target *tgt = t->targets + i; 261 262 if (tgt->type->dtr) 263 tgt->type->dtr(tgt); 264 265 dm_put_target_type(tgt->type); 266 } 267 268 vfree(t->highs); 269 270 /* free the device list */ 271 free_devices(&t->devices); 272 273 dm_free_md_mempools(t->mempools); 274 275 kfree(t); 276 } 277 278 void dm_table_get(struct dm_table *t) 279 { 280 atomic_inc(&t->holders); 281 } 282 EXPORT_SYMBOL(dm_table_get); 283 284 void dm_table_put(struct dm_table *t) 285 { 286 if (!t) 287 return; 288 289 smp_mb__before_atomic_dec(); 290 atomic_dec(&t->holders); 291 } 292 EXPORT_SYMBOL(dm_table_put); 293 294 /* 295 * Checks to see if we need to extend highs or targets. 296 */ 297 static inline int check_space(struct dm_table *t) 298 { 299 if (t->num_targets >= t->num_allocated) 300 return alloc_targets(t, t->num_allocated * 2); 301 302 return 0; 303 } 304 305 /* 306 * See if we've already got a device in the list. 307 */ 308 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 309 { 310 struct dm_dev_internal *dd; 311 312 list_for_each_entry (dd, l, list) 313 if (dd->dm_dev.bdev->bd_dev == dev) 314 return dd; 315 316 return NULL; 317 } 318 319 /* 320 * Open a device so we can use it as a map destination. 321 */ 322 static int open_dev(struct dm_dev_internal *d, dev_t dev, 323 struct mapped_device *md) 324 { 325 static char *_claim_ptr = "I belong to device-mapper"; 326 struct block_device *bdev; 327 328 int r; 329 330 BUG_ON(d->dm_dev.bdev); 331 332 bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr); 333 if (IS_ERR(bdev)) 334 return PTR_ERR(bdev); 335 336 r = bd_link_disk_holder(bdev, dm_disk(md)); 337 if (r) { 338 blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL); 339 return r; 340 } 341 342 d->dm_dev.bdev = bdev; 343 return 0; 344 } 345 346 /* 347 * Close a device that we've been using. 348 */ 349 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 350 { 351 if (!d->dm_dev.bdev) 352 return; 353 354 bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md)); 355 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL); 356 d->dm_dev.bdev = NULL; 357 } 358 359 /* 360 * If possible, this checks an area of a destination device is invalid. 361 */ 362 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, 363 sector_t start, sector_t len, void *data) 364 { 365 struct request_queue *q; 366 struct queue_limits *limits = data; 367 struct block_device *bdev = dev->bdev; 368 sector_t dev_size = 369 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 370 unsigned short logical_block_size_sectors = 371 limits->logical_block_size >> SECTOR_SHIFT; 372 char b[BDEVNAME_SIZE]; 373 374 /* 375 * Some devices exist without request functions, 376 * such as loop devices not yet bound to backing files. 377 * Forbid the use of such devices. 378 */ 379 q = bdev_get_queue(bdev); 380 if (!q || !q->make_request_fn) { 381 DMWARN("%s: %s is not yet initialised: " 382 "start=%llu, len=%llu, dev_size=%llu", 383 dm_device_name(ti->table->md), bdevname(bdev, b), 384 (unsigned long long)start, 385 (unsigned long long)len, 386 (unsigned long long)dev_size); 387 return 1; 388 } 389 390 if (!dev_size) 391 return 0; 392 393 if ((start >= dev_size) || (start + len > dev_size)) { 394 DMWARN("%s: %s too small for target: " 395 "start=%llu, len=%llu, dev_size=%llu", 396 dm_device_name(ti->table->md), bdevname(bdev, b), 397 (unsigned long long)start, 398 (unsigned long long)len, 399 (unsigned long long)dev_size); 400 return 1; 401 } 402 403 if (logical_block_size_sectors <= 1) 404 return 0; 405 406 if (start & (logical_block_size_sectors - 1)) { 407 DMWARN("%s: start=%llu not aligned to h/w " 408 "logical block size %u of %s", 409 dm_device_name(ti->table->md), 410 (unsigned long long)start, 411 limits->logical_block_size, bdevname(bdev, b)); 412 return 1; 413 } 414 415 if (len & (logical_block_size_sectors - 1)) { 416 DMWARN("%s: len=%llu not aligned to h/w " 417 "logical block size %u of %s", 418 dm_device_name(ti->table->md), 419 (unsigned long long)len, 420 limits->logical_block_size, bdevname(bdev, b)); 421 return 1; 422 } 423 424 return 0; 425 } 426 427 /* 428 * This upgrades the mode on an already open dm_dev, being 429 * careful to leave things as they were if we fail to reopen the 430 * device and not to touch the existing bdev field in case 431 * it is accessed concurrently inside dm_table_any_congested(). 432 */ 433 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 434 struct mapped_device *md) 435 { 436 int r; 437 struct dm_dev_internal dd_new, dd_old; 438 439 dd_new = dd_old = *dd; 440 441 dd_new.dm_dev.mode |= new_mode; 442 dd_new.dm_dev.bdev = NULL; 443 444 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 445 if (r) 446 return r; 447 448 dd->dm_dev.mode |= new_mode; 449 close_dev(&dd_old, md); 450 451 return 0; 452 } 453 454 /* 455 * Add a device to the list, or just increment the usage count if 456 * it's already present. 457 */ 458 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode, 459 struct dm_dev **result) 460 { 461 int r; 462 dev_t uninitialized_var(dev); 463 struct dm_dev_internal *dd; 464 unsigned int major, minor; 465 struct dm_table *t = ti->table; 466 char dummy; 467 468 BUG_ON(!t); 469 470 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { 471 /* Extract the major/minor numbers */ 472 dev = MKDEV(major, minor); 473 if (MAJOR(dev) != major || MINOR(dev) != minor) 474 return -EOVERFLOW; 475 } else { 476 /* convert the path to a device */ 477 struct block_device *bdev = lookup_bdev(path); 478 479 if (IS_ERR(bdev)) 480 return PTR_ERR(bdev); 481 dev = bdev->bd_dev; 482 bdput(bdev); 483 } 484 485 dd = find_device(&t->devices, dev); 486 if (!dd) { 487 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 488 if (!dd) 489 return -ENOMEM; 490 491 dd->dm_dev.mode = mode; 492 dd->dm_dev.bdev = NULL; 493 494 if ((r = open_dev(dd, dev, t->md))) { 495 kfree(dd); 496 return r; 497 } 498 499 format_dev_t(dd->dm_dev.name, dev); 500 501 atomic_set(&dd->count, 0); 502 list_add(&dd->list, &t->devices); 503 504 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 505 r = upgrade_mode(dd, mode, t->md); 506 if (r) 507 return r; 508 } 509 atomic_inc(&dd->count); 510 511 *result = &dd->dm_dev; 512 return 0; 513 } 514 EXPORT_SYMBOL(dm_get_device); 515 516 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, 517 sector_t start, sector_t len, void *data) 518 { 519 struct queue_limits *limits = data; 520 struct block_device *bdev = dev->bdev; 521 struct request_queue *q = bdev_get_queue(bdev); 522 char b[BDEVNAME_SIZE]; 523 524 if (unlikely(!q)) { 525 DMWARN("%s: Cannot set limits for nonexistent device %s", 526 dm_device_name(ti->table->md), bdevname(bdev, b)); 527 return 0; 528 } 529 530 if (bdev_stack_limits(limits, bdev, start) < 0) 531 DMWARN("%s: adding target device %s caused an alignment inconsistency: " 532 "physical_block_size=%u, logical_block_size=%u, " 533 "alignment_offset=%u, start=%llu", 534 dm_device_name(ti->table->md), bdevname(bdev, b), 535 q->limits.physical_block_size, 536 q->limits.logical_block_size, 537 q->limits.alignment_offset, 538 (unsigned long long) start << SECTOR_SHIFT); 539 540 /* 541 * Check if merge fn is supported. 542 * If not we'll force DM to use PAGE_SIZE or 543 * smaller I/O, just to be safe. 544 */ 545 if (dm_queue_merge_is_compulsory(q) && !ti->type->merge) 546 blk_limits_max_hw_sectors(limits, 547 (unsigned int) (PAGE_SIZE >> 9)); 548 return 0; 549 } 550 EXPORT_SYMBOL_GPL(dm_set_device_limits); 551 552 /* 553 * Decrement a device's use count and remove it if necessary. 554 */ 555 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 556 { 557 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 558 dm_dev); 559 560 if (atomic_dec_and_test(&dd->count)) { 561 close_dev(dd, ti->table->md); 562 list_del(&dd->list); 563 kfree(dd); 564 } 565 } 566 EXPORT_SYMBOL(dm_put_device); 567 568 /* 569 * Checks to see if the target joins onto the end of the table. 570 */ 571 static int adjoin(struct dm_table *table, struct dm_target *ti) 572 { 573 struct dm_target *prev; 574 575 if (!table->num_targets) 576 return !ti->begin; 577 578 prev = &table->targets[table->num_targets - 1]; 579 return (ti->begin == (prev->begin + prev->len)); 580 } 581 582 /* 583 * Used to dynamically allocate the arg array. 584 */ 585 static char **realloc_argv(unsigned *array_size, char **old_argv) 586 { 587 char **argv; 588 unsigned new_size; 589 590 new_size = *array_size ? *array_size * 2 : 64; 591 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 592 if (argv) { 593 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 594 *array_size = new_size; 595 } 596 597 kfree(old_argv); 598 return argv; 599 } 600 601 /* 602 * Destructively splits up the argument list to pass to ctr. 603 */ 604 int dm_split_args(int *argc, char ***argvp, char *input) 605 { 606 char *start, *end = input, *out, **argv = NULL; 607 unsigned array_size = 0; 608 609 *argc = 0; 610 611 if (!input) { 612 *argvp = NULL; 613 return 0; 614 } 615 616 argv = realloc_argv(&array_size, argv); 617 if (!argv) 618 return -ENOMEM; 619 620 while (1) { 621 /* Skip whitespace */ 622 start = skip_spaces(end); 623 624 if (!*start) 625 break; /* success, we hit the end */ 626 627 /* 'out' is used to remove any back-quotes */ 628 end = out = start; 629 while (*end) { 630 /* Everything apart from '\0' can be quoted */ 631 if (*end == '\\' && *(end + 1)) { 632 *out++ = *(end + 1); 633 end += 2; 634 continue; 635 } 636 637 if (isspace(*end)) 638 break; /* end of token */ 639 640 *out++ = *end++; 641 } 642 643 /* have we already filled the array ? */ 644 if ((*argc + 1) > array_size) { 645 argv = realloc_argv(&array_size, argv); 646 if (!argv) 647 return -ENOMEM; 648 } 649 650 /* we know this is whitespace */ 651 if (*end) 652 end++; 653 654 /* terminate the string and put it in the array */ 655 *out = '\0'; 656 argv[*argc] = start; 657 (*argc)++; 658 } 659 660 *argvp = argv; 661 return 0; 662 } 663 664 /* 665 * Impose necessary and sufficient conditions on a devices's table such 666 * that any incoming bio which respects its logical_block_size can be 667 * processed successfully. If it falls across the boundary between 668 * two or more targets, the size of each piece it gets split into must 669 * be compatible with the logical_block_size of the target processing it. 670 */ 671 static int validate_hardware_logical_block_alignment(struct dm_table *table, 672 struct queue_limits *limits) 673 { 674 /* 675 * This function uses arithmetic modulo the logical_block_size 676 * (in units of 512-byte sectors). 677 */ 678 unsigned short device_logical_block_size_sects = 679 limits->logical_block_size >> SECTOR_SHIFT; 680 681 /* 682 * Offset of the start of the next table entry, mod logical_block_size. 683 */ 684 unsigned short next_target_start = 0; 685 686 /* 687 * Given an aligned bio that extends beyond the end of a 688 * target, how many sectors must the next target handle? 689 */ 690 unsigned short remaining = 0; 691 692 struct dm_target *uninitialized_var(ti); 693 struct queue_limits ti_limits; 694 unsigned i = 0; 695 696 /* 697 * Check each entry in the table in turn. 698 */ 699 while (i < dm_table_get_num_targets(table)) { 700 ti = dm_table_get_target(table, i++); 701 702 blk_set_stacking_limits(&ti_limits); 703 704 /* combine all target devices' limits */ 705 if (ti->type->iterate_devices) 706 ti->type->iterate_devices(ti, dm_set_device_limits, 707 &ti_limits); 708 709 /* 710 * If the remaining sectors fall entirely within this 711 * table entry are they compatible with its logical_block_size? 712 */ 713 if (remaining < ti->len && 714 remaining & ((ti_limits.logical_block_size >> 715 SECTOR_SHIFT) - 1)) 716 break; /* Error */ 717 718 next_target_start = 719 (unsigned short) ((next_target_start + ti->len) & 720 (device_logical_block_size_sects - 1)); 721 remaining = next_target_start ? 722 device_logical_block_size_sects - next_target_start : 0; 723 } 724 725 if (remaining) { 726 DMWARN("%s: table line %u (start sect %llu len %llu) " 727 "not aligned to h/w logical block size %u", 728 dm_device_name(table->md), i, 729 (unsigned long long) ti->begin, 730 (unsigned long long) ti->len, 731 limits->logical_block_size); 732 return -EINVAL; 733 } 734 735 return 0; 736 } 737 738 int dm_table_add_target(struct dm_table *t, const char *type, 739 sector_t start, sector_t len, char *params) 740 { 741 int r = -EINVAL, argc; 742 char **argv; 743 struct dm_target *tgt; 744 745 if (t->singleton) { 746 DMERR("%s: target type %s must appear alone in table", 747 dm_device_name(t->md), t->targets->type->name); 748 return -EINVAL; 749 } 750 751 if ((r = check_space(t))) 752 return r; 753 754 tgt = t->targets + t->num_targets; 755 memset(tgt, 0, sizeof(*tgt)); 756 757 if (!len) { 758 DMERR("%s: zero-length target", dm_device_name(t->md)); 759 return -EINVAL; 760 } 761 762 tgt->type = dm_get_target_type(type); 763 if (!tgt->type) { 764 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 765 type); 766 return -EINVAL; 767 } 768 769 if (dm_target_needs_singleton(tgt->type)) { 770 if (t->num_targets) { 771 DMERR("%s: target type %s must appear alone in table", 772 dm_device_name(t->md), type); 773 return -EINVAL; 774 } 775 t->singleton = 1; 776 } 777 778 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) { 779 DMERR("%s: target type %s may not be included in read-only tables", 780 dm_device_name(t->md), type); 781 return -EINVAL; 782 } 783 784 if (t->immutable_target_type) { 785 if (t->immutable_target_type != tgt->type) { 786 DMERR("%s: immutable target type %s cannot be mixed with other target types", 787 dm_device_name(t->md), t->immutable_target_type->name); 788 return -EINVAL; 789 } 790 } else if (dm_target_is_immutable(tgt->type)) { 791 if (t->num_targets) { 792 DMERR("%s: immutable target type %s cannot be mixed with other target types", 793 dm_device_name(t->md), tgt->type->name); 794 return -EINVAL; 795 } 796 t->immutable_target_type = tgt->type; 797 } 798 799 tgt->table = t; 800 tgt->begin = start; 801 tgt->len = len; 802 tgt->error = "Unknown error"; 803 804 /* 805 * Does this target adjoin the previous one ? 806 */ 807 if (!adjoin(t, tgt)) { 808 tgt->error = "Gap in table"; 809 r = -EINVAL; 810 goto bad; 811 } 812 813 r = dm_split_args(&argc, &argv, params); 814 if (r) { 815 tgt->error = "couldn't split parameters (insufficient memory)"; 816 goto bad; 817 } 818 819 r = tgt->type->ctr(tgt, argc, argv); 820 kfree(argv); 821 if (r) 822 goto bad; 823 824 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 825 826 if (!tgt->num_discard_requests && tgt->discards_supported) 827 DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.", 828 dm_device_name(t->md), type); 829 830 return 0; 831 832 bad: 833 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 834 dm_put_target_type(tgt->type); 835 return r; 836 } 837 838 /* 839 * Target argument parsing helpers. 840 */ 841 static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 842 unsigned *value, char **error, unsigned grouped) 843 { 844 const char *arg_str = dm_shift_arg(arg_set); 845 char dummy; 846 847 if (!arg_str || 848 (sscanf(arg_str, "%u%c", value, &dummy) != 1) || 849 (*value < arg->min) || 850 (*value > arg->max) || 851 (grouped && arg_set->argc < *value)) { 852 *error = arg->error; 853 return -EINVAL; 854 } 855 856 return 0; 857 } 858 859 int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set, 860 unsigned *value, char **error) 861 { 862 return validate_next_arg(arg, arg_set, value, error, 0); 863 } 864 EXPORT_SYMBOL(dm_read_arg); 865 866 int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set, 867 unsigned *value, char **error) 868 { 869 return validate_next_arg(arg, arg_set, value, error, 1); 870 } 871 EXPORT_SYMBOL(dm_read_arg_group); 872 873 const char *dm_shift_arg(struct dm_arg_set *as) 874 { 875 char *r; 876 877 if (as->argc) { 878 as->argc--; 879 r = *as->argv; 880 as->argv++; 881 return r; 882 } 883 884 return NULL; 885 } 886 EXPORT_SYMBOL(dm_shift_arg); 887 888 void dm_consume_args(struct dm_arg_set *as, unsigned num_args) 889 { 890 BUG_ON(as->argc < num_args); 891 as->argc -= num_args; 892 as->argv += num_args; 893 } 894 EXPORT_SYMBOL(dm_consume_args); 895 896 static int dm_table_set_type(struct dm_table *t) 897 { 898 unsigned i; 899 unsigned bio_based = 0, request_based = 0; 900 struct dm_target *tgt; 901 struct dm_dev_internal *dd; 902 struct list_head *devices; 903 904 for (i = 0; i < t->num_targets; i++) { 905 tgt = t->targets + i; 906 if (dm_target_request_based(tgt)) 907 request_based = 1; 908 else 909 bio_based = 1; 910 911 if (bio_based && request_based) { 912 DMWARN("Inconsistent table: different target types" 913 " can't be mixed up"); 914 return -EINVAL; 915 } 916 } 917 918 if (bio_based) { 919 /* We must use this table as bio-based */ 920 t->type = DM_TYPE_BIO_BASED; 921 return 0; 922 } 923 924 BUG_ON(!request_based); /* No targets in this table */ 925 926 /* Non-request-stackable devices can't be used for request-based dm */ 927 devices = dm_table_get_devices(t); 928 list_for_each_entry(dd, devices, list) { 929 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) { 930 DMWARN("table load rejected: including" 931 " non-request-stackable devices"); 932 return -EINVAL; 933 } 934 } 935 936 /* 937 * Request-based dm supports only tables that have a single target now. 938 * To support multiple targets, request splitting support is needed, 939 * and that needs lots of changes in the block-layer. 940 * (e.g. request completion process for partial completion.) 941 */ 942 if (t->num_targets > 1) { 943 DMWARN("Request-based dm doesn't support multiple targets yet"); 944 return -EINVAL; 945 } 946 947 t->type = DM_TYPE_REQUEST_BASED; 948 949 return 0; 950 } 951 952 unsigned dm_table_get_type(struct dm_table *t) 953 { 954 return t->type; 955 } 956 957 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) 958 { 959 return t->immutable_target_type; 960 } 961 962 bool dm_table_request_based(struct dm_table *t) 963 { 964 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED; 965 } 966 967 int dm_table_alloc_md_mempools(struct dm_table *t) 968 { 969 unsigned type = dm_table_get_type(t); 970 unsigned per_bio_data_size = 0; 971 struct dm_target *tgt; 972 unsigned i; 973 974 if (unlikely(type == DM_TYPE_NONE)) { 975 DMWARN("no table type is set, can't allocate mempools"); 976 return -EINVAL; 977 } 978 979 if (type == DM_TYPE_BIO_BASED) 980 for (i = 0; i < t->num_targets; i++) { 981 tgt = t->targets + i; 982 per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size); 983 } 984 985 t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size); 986 if (!t->mempools) 987 return -ENOMEM; 988 989 return 0; 990 } 991 992 void dm_table_free_md_mempools(struct dm_table *t) 993 { 994 dm_free_md_mempools(t->mempools); 995 t->mempools = NULL; 996 } 997 998 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t) 999 { 1000 return t->mempools; 1001 } 1002 1003 static int setup_indexes(struct dm_table *t) 1004 { 1005 int i; 1006 unsigned int total = 0; 1007 sector_t *indexes; 1008 1009 /* allocate the space for *all* the indexes */ 1010 for (i = t->depth - 2; i >= 0; i--) { 1011 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 1012 total += t->counts[i]; 1013 } 1014 1015 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 1016 if (!indexes) 1017 return -ENOMEM; 1018 1019 /* set up internal nodes, bottom-up */ 1020 for (i = t->depth - 2; i >= 0; i--) { 1021 t->index[i] = indexes; 1022 indexes += (KEYS_PER_NODE * t->counts[i]); 1023 setup_btree_index(i, t); 1024 } 1025 1026 return 0; 1027 } 1028 1029 /* 1030 * Builds the btree to index the map. 1031 */ 1032 static int dm_table_build_index(struct dm_table *t) 1033 { 1034 int r = 0; 1035 unsigned int leaf_nodes; 1036 1037 /* how many indexes will the btree have ? */ 1038 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 1039 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 1040 1041 /* leaf layer has already been set up */ 1042 t->counts[t->depth - 1] = leaf_nodes; 1043 t->index[t->depth - 1] = t->highs; 1044 1045 if (t->depth >= 2) 1046 r = setup_indexes(t); 1047 1048 return r; 1049 } 1050 1051 /* 1052 * Get a disk whose integrity profile reflects the table's profile. 1053 * If %match_all is true, all devices' profiles must match. 1054 * If %match_all is false, all devices must at least have an 1055 * allocated integrity profile; but uninitialized is ok. 1056 * Returns NULL if integrity support was inconsistent or unavailable. 1057 */ 1058 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t, 1059 bool match_all) 1060 { 1061 struct list_head *devices = dm_table_get_devices(t); 1062 struct dm_dev_internal *dd = NULL; 1063 struct gendisk *prev_disk = NULL, *template_disk = NULL; 1064 1065 list_for_each_entry(dd, devices, list) { 1066 template_disk = dd->dm_dev.bdev->bd_disk; 1067 if (!blk_get_integrity(template_disk)) 1068 goto no_integrity; 1069 if (!match_all && !blk_integrity_is_initialized(template_disk)) 1070 continue; /* skip uninitialized profiles */ 1071 else if (prev_disk && 1072 blk_integrity_compare(prev_disk, template_disk) < 0) 1073 goto no_integrity; 1074 prev_disk = template_disk; 1075 } 1076 1077 return template_disk; 1078 1079 no_integrity: 1080 if (prev_disk) 1081 DMWARN("%s: integrity not set: %s and %s profile mismatch", 1082 dm_device_name(t->md), 1083 prev_disk->disk_name, 1084 template_disk->disk_name); 1085 return NULL; 1086 } 1087 1088 /* 1089 * Register the mapped device for blk_integrity support if 1090 * the underlying devices have an integrity profile. But all devices 1091 * may not have matching profiles (checking all devices isn't reliable 1092 * during table load because this table may use other DM device(s) which 1093 * must be resumed before they will have an initialized integity profile). 1094 * Stacked DM devices force a 2 stage integrity profile validation: 1095 * 1 - during load, validate all initialized integrity profiles match 1096 * 2 - during resume, validate all integrity profiles match 1097 */ 1098 static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md) 1099 { 1100 struct gendisk *template_disk = NULL; 1101 1102 template_disk = dm_table_get_integrity_disk(t, false); 1103 if (!template_disk) 1104 return 0; 1105 1106 if (!blk_integrity_is_initialized(dm_disk(md))) { 1107 t->integrity_supported = 1; 1108 return blk_integrity_register(dm_disk(md), NULL); 1109 } 1110 1111 /* 1112 * If DM device already has an initalized integrity 1113 * profile the new profile should not conflict. 1114 */ 1115 if (blk_integrity_is_initialized(template_disk) && 1116 blk_integrity_compare(dm_disk(md), template_disk) < 0) { 1117 DMWARN("%s: conflict with existing integrity profile: " 1118 "%s profile mismatch", 1119 dm_device_name(t->md), 1120 template_disk->disk_name); 1121 return 1; 1122 } 1123 1124 /* Preserve existing initialized integrity profile */ 1125 t->integrity_supported = 1; 1126 return 0; 1127 } 1128 1129 /* 1130 * Prepares the table for use by building the indices, 1131 * setting the type, and allocating mempools. 1132 */ 1133 int dm_table_complete(struct dm_table *t) 1134 { 1135 int r; 1136 1137 r = dm_table_set_type(t); 1138 if (r) { 1139 DMERR("unable to set table type"); 1140 return r; 1141 } 1142 1143 r = dm_table_build_index(t); 1144 if (r) { 1145 DMERR("unable to build btrees"); 1146 return r; 1147 } 1148 1149 r = dm_table_prealloc_integrity(t, t->md); 1150 if (r) { 1151 DMERR("could not register integrity profile."); 1152 return r; 1153 } 1154 1155 r = dm_table_alloc_md_mempools(t); 1156 if (r) 1157 DMERR("unable to allocate mempools"); 1158 1159 return r; 1160 } 1161 1162 static DEFINE_MUTEX(_event_lock); 1163 void dm_table_event_callback(struct dm_table *t, 1164 void (*fn)(void *), void *context) 1165 { 1166 mutex_lock(&_event_lock); 1167 t->event_fn = fn; 1168 t->event_context = context; 1169 mutex_unlock(&_event_lock); 1170 } 1171 1172 void dm_table_event(struct dm_table *t) 1173 { 1174 /* 1175 * You can no longer call dm_table_event() from interrupt 1176 * context, use a bottom half instead. 1177 */ 1178 BUG_ON(in_interrupt()); 1179 1180 mutex_lock(&_event_lock); 1181 if (t->event_fn) 1182 t->event_fn(t->event_context); 1183 mutex_unlock(&_event_lock); 1184 } 1185 EXPORT_SYMBOL(dm_table_event); 1186 1187 sector_t dm_table_get_size(struct dm_table *t) 1188 { 1189 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 1190 } 1191 EXPORT_SYMBOL(dm_table_get_size); 1192 1193 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 1194 { 1195 if (index >= t->num_targets) 1196 return NULL; 1197 1198 return t->targets + index; 1199 } 1200 1201 /* 1202 * Search the btree for the correct target. 1203 * 1204 * Caller should check returned pointer with dm_target_is_valid() 1205 * to trap I/O beyond end of device. 1206 */ 1207 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 1208 { 1209 unsigned int l, n = 0, k = 0; 1210 sector_t *node; 1211 1212 for (l = 0; l < t->depth; l++) { 1213 n = get_child(n, k); 1214 node = get_node(t, l, n); 1215 1216 for (k = 0; k < KEYS_PER_NODE; k++) 1217 if (node[k] >= sector) 1218 break; 1219 } 1220 1221 return &t->targets[(KEYS_PER_NODE * n) + k]; 1222 } 1223 1224 static int count_device(struct dm_target *ti, struct dm_dev *dev, 1225 sector_t start, sector_t len, void *data) 1226 { 1227 unsigned *num_devices = data; 1228 1229 (*num_devices)++; 1230 1231 return 0; 1232 } 1233 1234 /* 1235 * Check whether a table has no data devices attached using each 1236 * target's iterate_devices method. 1237 * Returns false if the result is unknown because a target doesn't 1238 * support iterate_devices. 1239 */ 1240 bool dm_table_has_no_data_devices(struct dm_table *table) 1241 { 1242 struct dm_target *uninitialized_var(ti); 1243 unsigned i = 0, num_devices = 0; 1244 1245 while (i < dm_table_get_num_targets(table)) { 1246 ti = dm_table_get_target(table, i++); 1247 1248 if (!ti->type->iterate_devices) 1249 return false; 1250 1251 ti->type->iterate_devices(ti, count_device, &num_devices); 1252 if (num_devices) 1253 return false; 1254 } 1255 1256 return true; 1257 } 1258 1259 /* 1260 * Establish the new table's queue_limits and validate them. 1261 */ 1262 int dm_calculate_queue_limits(struct dm_table *table, 1263 struct queue_limits *limits) 1264 { 1265 struct dm_target *uninitialized_var(ti); 1266 struct queue_limits ti_limits; 1267 unsigned i = 0; 1268 1269 blk_set_stacking_limits(limits); 1270 1271 while (i < dm_table_get_num_targets(table)) { 1272 blk_set_stacking_limits(&ti_limits); 1273 1274 ti = dm_table_get_target(table, i++); 1275 1276 if (!ti->type->iterate_devices) 1277 goto combine_limits; 1278 1279 /* 1280 * Combine queue limits of all the devices this target uses. 1281 */ 1282 ti->type->iterate_devices(ti, dm_set_device_limits, 1283 &ti_limits); 1284 1285 /* Set I/O hints portion of queue limits */ 1286 if (ti->type->io_hints) 1287 ti->type->io_hints(ti, &ti_limits); 1288 1289 /* 1290 * Check each device area is consistent with the target's 1291 * overall queue limits. 1292 */ 1293 if (ti->type->iterate_devices(ti, device_area_is_invalid, 1294 &ti_limits)) 1295 return -EINVAL; 1296 1297 combine_limits: 1298 /* 1299 * Merge this target's queue limits into the overall limits 1300 * for the table. 1301 */ 1302 if (blk_stack_limits(limits, &ti_limits, 0) < 0) 1303 DMWARN("%s: adding target device " 1304 "(start sect %llu len %llu) " 1305 "caused an alignment inconsistency", 1306 dm_device_name(table->md), 1307 (unsigned long long) ti->begin, 1308 (unsigned long long) ti->len); 1309 } 1310 1311 return validate_hardware_logical_block_alignment(table, limits); 1312 } 1313 1314 /* 1315 * Set the integrity profile for this device if all devices used have 1316 * matching profiles. We're quite deep in the resume path but still 1317 * don't know if all devices (particularly DM devices this device 1318 * may be stacked on) have matching profiles. Even if the profiles 1319 * don't match we have no way to fail (to resume) at this point. 1320 */ 1321 static void dm_table_set_integrity(struct dm_table *t) 1322 { 1323 struct gendisk *template_disk = NULL; 1324 1325 if (!blk_get_integrity(dm_disk(t->md))) 1326 return; 1327 1328 template_disk = dm_table_get_integrity_disk(t, true); 1329 if (template_disk) 1330 blk_integrity_register(dm_disk(t->md), 1331 blk_get_integrity(template_disk)); 1332 else if (blk_integrity_is_initialized(dm_disk(t->md))) 1333 DMWARN("%s: device no longer has a valid integrity profile", 1334 dm_device_name(t->md)); 1335 else 1336 DMWARN("%s: unable to establish an integrity profile", 1337 dm_device_name(t->md)); 1338 } 1339 1340 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, 1341 sector_t start, sector_t len, void *data) 1342 { 1343 unsigned flush = (*(unsigned *)data); 1344 struct request_queue *q = bdev_get_queue(dev->bdev); 1345 1346 return q && (q->flush_flags & flush); 1347 } 1348 1349 static bool dm_table_supports_flush(struct dm_table *t, unsigned flush) 1350 { 1351 struct dm_target *ti; 1352 unsigned i = 0; 1353 1354 /* 1355 * Require at least one underlying device to support flushes. 1356 * t->devices includes internal dm devices such as mirror logs 1357 * so we need to use iterate_devices here, which targets 1358 * supporting flushes must provide. 1359 */ 1360 while (i < dm_table_get_num_targets(t)) { 1361 ti = dm_table_get_target(t, i++); 1362 1363 if (!ti->num_flush_requests) 1364 continue; 1365 1366 if (ti->flush_supported) 1367 return 1; 1368 1369 if (ti->type->iterate_devices && 1370 ti->type->iterate_devices(ti, device_flush_capable, &flush)) 1371 return 1; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static bool dm_table_discard_zeroes_data(struct dm_table *t) 1378 { 1379 struct dm_target *ti; 1380 unsigned i = 0; 1381 1382 /* Ensure that all targets supports discard_zeroes_data. */ 1383 while (i < dm_table_get_num_targets(t)) { 1384 ti = dm_table_get_target(t, i++); 1385 1386 if (ti->discard_zeroes_data_unsupported) 1387 return 0; 1388 } 1389 1390 return 1; 1391 } 1392 1393 static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev, 1394 sector_t start, sector_t len, void *data) 1395 { 1396 struct request_queue *q = bdev_get_queue(dev->bdev); 1397 1398 return q && blk_queue_nonrot(q); 1399 } 1400 1401 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, 1402 sector_t start, sector_t len, void *data) 1403 { 1404 struct request_queue *q = bdev_get_queue(dev->bdev); 1405 1406 return q && !blk_queue_add_random(q); 1407 } 1408 1409 static bool dm_table_all_devices_attribute(struct dm_table *t, 1410 iterate_devices_callout_fn func) 1411 { 1412 struct dm_target *ti; 1413 unsigned i = 0; 1414 1415 while (i < dm_table_get_num_targets(t)) { 1416 ti = dm_table_get_target(t, i++); 1417 1418 if (!ti->type->iterate_devices || 1419 !ti->type->iterate_devices(ti, func, NULL)) 1420 return 0; 1421 } 1422 1423 return 1; 1424 } 1425 1426 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev, 1427 sector_t start, sector_t len, void *data) 1428 { 1429 struct request_queue *q = bdev_get_queue(dev->bdev); 1430 1431 return q && !q->limits.max_write_same_sectors; 1432 } 1433 1434 static bool dm_table_supports_write_same(struct dm_table *t) 1435 { 1436 struct dm_target *ti; 1437 unsigned i = 0; 1438 1439 while (i < dm_table_get_num_targets(t)) { 1440 ti = dm_table_get_target(t, i++); 1441 1442 if (!ti->num_write_same_requests) 1443 return false; 1444 1445 if (!ti->type->iterate_devices || 1446 !ti->type->iterate_devices(ti, device_not_write_same_capable, NULL)) 1447 return false; 1448 } 1449 1450 return true; 1451 } 1452 1453 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, 1454 struct queue_limits *limits) 1455 { 1456 unsigned flush = 0; 1457 1458 /* 1459 * Copy table's limits to the DM device's request_queue 1460 */ 1461 q->limits = *limits; 1462 1463 if (!dm_table_supports_discards(t)) 1464 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 1465 else 1466 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 1467 1468 if (dm_table_supports_flush(t, REQ_FLUSH)) { 1469 flush |= REQ_FLUSH; 1470 if (dm_table_supports_flush(t, REQ_FUA)) 1471 flush |= REQ_FUA; 1472 } 1473 blk_queue_flush(q, flush); 1474 1475 if (!dm_table_discard_zeroes_data(t)) 1476 q->limits.discard_zeroes_data = 0; 1477 1478 /* Ensure that all underlying devices are non-rotational. */ 1479 if (dm_table_all_devices_attribute(t, device_is_nonrot)) 1480 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 1481 else 1482 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q); 1483 1484 if (!dm_table_supports_write_same(t)) 1485 q->limits.max_write_same_sectors = 0; 1486 1487 dm_table_set_integrity(t); 1488 1489 /* 1490 * Determine whether or not this queue's I/O timings contribute 1491 * to the entropy pool, Only request-based targets use this. 1492 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not 1493 * have it set. 1494 */ 1495 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random)) 1496 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 1497 1498 /* 1499 * QUEUE_FLAG_STACKABLE must be set after all queue settings are 1500 * visible to other CPUs because, once the flag is set, incoming bios 1501 * are processed by request-based dm, which refers to the queue 1502 * settings. 1503 * Until the flag set, bios are passed to bio-based dm and queued to 1504 * md->deferred where queue settings are not needed yet. 1505 * Those bios are passed to request-based dm at the resume time. 1506 */ 1507 smp_mb(); 1508 if (dm_table_request_based(t)) 1509 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q); 1510 } 1511 1512 unsigned int dm_table_get_num_targets(struct dm_table *t) 1513 { 1514 return t->num_targets; 1515 } 1516 1517 struct list_head *dm_table_get_devices(struct dm_table *t) 1518 { 1519 return &t->devices; 1520 } 1521 1522 fmode_t dm_table_get_mode(struct dm_table *t) 1523 { 1524 return t->mode; 1525 } 1526 EXPORT_SYMBOL(dm_table_get_mode); 1527 1528 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 1529 { 1530 int i = t->num_targets; 1531 struct dm_target *ti = t->targets; 1532 1533 while (i--) { 1534 if (postsuspend) { 1535 if (ti->type->postsuspend) 1536 ti->type->postsuspend(ti); 1537 } else if (ti->type->presuspend) 1538 ti->type->presuspend(ti); 1539 1540 ti++; 1541 } 1542 } 1543 1544 void dm_table_presuspend_targets(struct dm_table *t) 1545 { 1546 if (!t) 1547 return; 1548 1549 suspend_targets(t, 0); 1550 } 1551 1552 void dm_table_postsuspend_targets(struct dm_table *t) 1553 { 1554 if (!t) 1555 return; 1556 1557 suspend_targets(t, 1); 1558 } 1559 1560 int dm_table_resume_targets(struct dm_table *t) 1561 { 1562 int i, r = 0; 1563 1564 for (i = 0; i < t->num_targets; i++) { 1565 struct dm_target *ti = t->targets + i; 1566 1567 if (!ti->type->preresume) 1568 continue; 1569 1570 r = ti->type->preresume(ti); 1571 if (r) 1572 return r; 1573 } 1574 1575 for (i = 0; i < t->num_targets; i++) { 1576 struct dm_target *ti = t->targets + i; 1577 1578 if (ti->type->resume) 1579 ti->type->resume(ti); 1580 } 1581 1582 return 0; 1583 } 1584 1585 void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb) 1586 { 1587 list_add(&cb->list, &t->target_callbacks); 1588 } 1589 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks); 1590 1591 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1592 { 1593 struct dm_dev_internal *dd; 1594 struct list_head *devices = dm_table_get_devices(t); 1595 struct dm_target_callbacks *cb; 1596 int r = 0; 1597 1598 list_for_each_entry(dd, devices, list) { 1599 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1600 char b[BDEVNAME_SIZE]; 1601 1602 if (likely(q)) 1603 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1604 else 1605 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1606 dm_device_name(t->md), 1607 bdevname(dd->dm_dev.bdev, b)); 1608 } 1609 1610 list_for_each_entry(cb, &t->target_callbacks, list) 1611 if (cb->congested_fn) 1612 r |= cb->congested_fn(cb, bdi_bits); 1613 1614 return r; 1615 } 1616 1617 int dm_table_any_busy_target(struct dm_table *t) 1618 { 1619 unsigned i; 1620 struct dm_target *ti; 1621 1622 for (i = 0; i < t->num_targets; i++) { 1623 ti = t->targets + i; 1624 if (ti->type->busy && ti->type->busy(ti)) 1625 return 1; 1626 } 1627 1628 return 0; 1629 } 1630 1631 struct mapped_device *dm_table_get_md(struct dm_table *t) 1632 { 1633 return t->md; 1634 } 1635 EXPORT_SYMBOL(dm_table_get_md); 1636 1637 static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev, 1638 sector_t start, sector_t len, void *data) 1639 { 1640 struct request_queue *q = bdev_get_queue(dev->bdev); 1641 1642 return q && blk_queue_discard(q); 1643 } 1644 1645 bool dm_table_supports_discards(struct dm_table *t) 1646 { 1647 struct dm_target *ti; 1648 unsigned i = 0; 1649 1650 /* 1651 * Unless any target used by the table set discards_supported, 1652 * require at least one underlying device to support discards. 1653 * t->devices includes internal dm devices such as mirror logs 1654 * so we need to use iterate_devices here, which targets 1655 * supporting discard selectively must provide. 1656 */ 1657 while (i < dm_table_get_num_targets(t)) { 1658 ti = dm_table_get_target(t, i++); 1659 1660 if (!ti->num_discard_requests) 1661 continue; 1662 1663 if (ti->discards_supported) 1664 return 1; 1665 1666 if (ti->type->iterate_devices && 1667 ti->type->iterate_devices(ti, device_discard_capable, NULL)) 1668 return 1; 1669 } 1670 1671 return 0; 1672 } 1673