1 /* 2 * Copyright (C) 2001 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 10 #include <linux/module.h> 11 #include <linux/vmalloc.h> 12 #include <linux/blkdev.h> 13 #include <linux/namei.h> 14 #include <linux/ctype.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/mutex.h> 18 #include <linux/delay.h> 19 #include <asm/atomic.h> 20 21 #define DM_MSG_PREFIX "table" 22 23 #define MAX_DEPTH 16 24 #define NODE_SIZE L1_CACHE_BYTES 25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) 26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) 27 28 /* 29 * The table has always exactly one reference from either mapped_device->map 30 * or hash_cell->new_map. This reference is not counted in table->holders. 31 * A pair of dm_create_table/dm_destroy_table functions is used for table 32 * creation/destruction. 33 * 34 * Temporary references from the other code increase table->holders. A pair 35 * of dm_table_get/dm_table_put functions is used to manipulate it. 36 * 37 * When the table is about to be destroyed, we wait for table->holders to 38 * drop to zero. 39 */ 40 41 struct dm_table { 42 struct mapped_device *md; 43 atomic_t holders; 44 45 /* btree table */ 46 unsigned int depth; 47 unsigned int counts[MAX_DEPTH]; /* in nodes */ 48 sector_t *index[MAX_DEPTH]; 49 50 unsigned int num_targets; 51 unsigned int num_allocated; 52 sector_t *highs; 53 struct dm_target *targets; 54 55 /* 56 * Indicates the rw permissions for the new logical 57 * device. This should be a combination of FMODE_READ 58 * and FMODE_WRITE. 59 */ 60 fmode_t mode; 61 62 /* a list of devices used by this table */ 63 struct list_head devices; 64 65 /* 66 * These are optimistic limits taken from all the 67 * targets, some targets will need smaller limits. 68 */ 69 struct io_restrictions limits; 70 71 /* events get handed up using this callback */ 72 void (*event_fn)(void *); 73 void *event_context; 74 }; 75 76 /* 77 * Similar to ceiling(log_size(n)) 78 */ 79 static unsigned int int_log(unsigned int n, unsigned int base) 80 { 81 int result = 0; 82 83 while (n > 1) { 84 n = dm_div_up(n, base); 85 result++; 86 } 87 88 return result; 89 } 90 91 /* 92 * Returns the minimum that is _not_ zero, unless both are zero. 93 */ 94 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) 95 96 /* 97 * Combine two io_restrictions, always taking the lower value. 98 */ 99 static void combine_restrictions_low(struct io_restrictions *lhs, 100 struct io_restrictions *rhs) 101 { 102 lhs->max_sectors = 103 min_not_zero(lhs->max_sectors, rhs->max_sectors); 104 105 lhs->max_phys_segments = 106 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments); 107 108 lhs->max_hw_segments = 109 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments); 110 111 lhs->hardsect_size = max(lhs->hardsect_size, rhs->hardsect_size); 112 113 lhs->max_segment_size = 114 min_not_zero(lhs->max_segment_size, rhs->max_segment_size); 115 116 lhs->max_hw_sectors = 117 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors); 118 119 lhs->seg_boundary_mask = 120 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask); 121 122 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn); 123 124 lhs->no_cluster |= rhs->no_cluster; 125 } 126 127 /* 128 * Calculate the index of the child node of the n'th node k'th key. 129 */ 130 static inline unsigned int get_child(unsigned int n, unsigned int k) 131 { 132 return (n * CHILDREN_PER_NODE) + k; 133 } 134 135 /* 136 * Return the n'th node of level l from table t. 137 */ 138 static inline sector_t *get_node(struct dm_table *t, 139 unsigned int l, unsigned int n) 140 { 141 return t->index[l] + (n * KEYS_PER_NODE); 142 } 143 144 /* 145 * Return the highest key that you could lookup from the n'th 146 * node on level l of the btree. 147 */ 148 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) 149 { 150 for (; l < t->depth - 1; l++) 151 n = get_child(n, CHILDREN_PER_NODE - 1); 152 153 if (n >= t->counts[l]) 154 return (sector_t) - 1; 155 156 return get_node(t, l, n)[KEYS_PER_NODE - 1]; 157 } 158 159 /* 160 * Fills in a level of the btree based on the highs of the level 161 * below it. 162 */ 163 static int setup_btree_index(unsigned int l, struct dm_table *t) 164 { 165 unsigned int n, k; 166 sector_t *node; 167 168 for (n = 0U; n < t->counts[l]; n++) { 169 node = get_node(t, l, n); 170 171 for (k = 0U; k < KEYS_PER_NODE; k++) 172 node[k] = high(t, l + 1, get_child(n, k)); 173 } 174 175 return 0; 176 } 177 178 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size) 179 { 180 unsigned long size; 181 void *addr; 182 183 /* 184 * Check that we're not going to overflow. 185 */ 186 if (nmemb > (ULONG_MAX / elem_size)) 187 return NULL; 188 189 size = nmemb * elem_size; 190 addr = vmalloc(size); 191 if (addr) 192 memset(addr, 0, size); 193 194 return addr; 195 } 196 197 /* 198 * highs, and targets are managed as dynamic arrays during a 199 * table load. 200 */ 201 static int alloc_targets(struct dm_table *t, unsigned int num) 202 { 203 sector_t *n_highs; 204 struct dm_target *n_targets; 205 int n = t->num_targets; 206 207 /* 208 * Allocate both the target array and offset array at once. 209 * Append an empty entry to catch sectors beyond the end of 210 * the device. 211 */ 212 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) + 213 sizeof(sector_t)); 214 if (!n_highs) 215 return -ENOMEM; 216 217 n_targets = (struct dm_target *) (n_highs + num); 218 219 if (n) { 220 memcpy(n_highs, t->highs, sizeof(*n_highs) * n); 221 memcpy(n_targets, t->targets, sizeof(*n_targets) * n); 222 } 223 224 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n)); 225 vfree(t->highs); 226 227 t->num_allocated = num; 228 t->highs = n_highs; 229 t->targets = n_targets; 230 231 return 0; 232 } 233 234 int dm_table_create(struct dm_table **result, fmode_t mode, 235 unsigned num_targets, struct mapped_device *md) 236 { 237 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL); 238 239 if (!t) 240 return -ENOMEM; 241 242 INIT_LIST_HEAD(&t->devices); 243 atomic_set(&t->holders, 0); 244 245 if (!num_targets) 246 num_targets = KEYS_PER_NODE; 247 248 num_targets = dm_round_up(num_targets, KEYS_PER_NODE); 249 250 if (alloc_targets(t, num_targets)) { 251 kfree(t); 252 t = NULL; 253 return -ENOMEM; 254 } 255 256 t->mode = mode; 257 t->md = md; 258 *result = t; 259 return 0; 260 } 261 262 static void free_devices(struct list_head *devices) 263 { 264 struct list_head *tmp, *next; 265 266 list_for_each_safe(tmp, next, devices) { 267 struct dm_dev_internal *dd = 268 list_entry(tmp, struct dm_dev_internal, list); 269 kfree(dd); 270 } 271 } 272 273 void dm_table_destroy(struct dm_table *t) 274 { 275 unsigned int i; 276 277 while (atomic_read(&t->holders)) 278 msleep(1); 279 smp_mb(); 280 281 /* free the indexes (see dm_table_complete) */ 282 if (t->depth >= 2) 283 vfree(t->index[t->depth - 2]); 284 285 /* free the targets */ 286 for (i = 0; i < t->num_targets; i++) { 287 struct dm_target *tgt = t->targets + i; 288 289 if (tgt->type->dtr) 290 tgt->type->dtr(tgt); 291 292 dm_put_target_type(tgt->type); 293 } 294 295 vfree(t->highs); 296 297 /* free the device list */ 298 if (t->devices.next != &t->devices) { 299 DMWARN("devices still present during destroy: " 300 "dm_table_remove_device calls missing"); 301 302 free_devices(&t->devices); 303 } 304 305 kfree(t); 306 } 307 308 void dm_table_get(struct dm_table *t) 309 { 310 atomic_inc(&t->holders); 311 } 312 313 void dm_table_put(struct dm_table *t) 314 { 315 if (!t) 316 return; 317 318 smp_mb__before_atomic_dec(); 319 atomic_dec(&t->holders); 320 } 321 322 /* 323 * Checks to see if we need to extend highs or targets. 324 */ 325 static inline int check_space(struct dm_table *t) 326 { 327 if (t->num_targets >= t->num_allocated) 328 return alloc_targets(t, t->num_allocated * 2); 329 330 return 0; 331 } 332 333 /* 334 * See if we've already got a device in the list. 335 */ 336 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) 337 { 338 struct dm_dev_internal *dd; 339 340 list_for_each_entry (dd, l, list) 341 if (dd->dm_dev.bdev->bd_dev == dev) 342 return dd; 343 344 return NULL; 345 } 346 347 /* 348 * Open a device so we can use it as a map destination. 349 */ 350 static int open_dev(struct dm_dev_internal *d, dev_t dev, 351 struct mapped_device *md) 352 { 353 static char *_claim_ptr = "I belong to device-mapper"; 354 struct block_device *bdev; 355 356 int r; 357 358 BUG_ON(d->dm_dev.bdev); 359 360 bdev = open_by_devnum(dev, d->dm_dev.mode); 361 if (IS_ERR(bdev)) 362 return PTR_ERR(bdev); 363 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md)); 364 if (r) 365 blkdev_put(bdev, d->dm_dev.mode); 366 else 367 d->dm_dev.bdev = bdev; 368 return r; 369 } 370 371 /* 372 * Close a device that we've been using. 373 */ 374 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md) 375 { 376 if (!d->dm_dev.bdev) 377 return; 378 379 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md)); 380 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode); 381 d->dm_dev.bdev = NULL; 382 } 383 384 /* 385 * If possible, this checks an area of a destination device is valid. 386 */ 387 static int check_device_area(struct dm_dev_internal *dd, sector_t start, 388 sector_t len) 389 { 390 sector_t dev_size = dd->dm_dev.bdev->bd_inode->i_size >> SECTOR_SHIFT; 391 392 if (!dev_size) 393 return 1; 394 395 return ((start < dev_size) && (len <= (dev_size - start))); 396 } 397 398 /* 399 * This upgrades the mode on an already open dm_dev, being 400 * careful to leave things as they were if we fail to reopen the 401 * device and not to touch the existing bdev field in case 402 * it is accessed concurrently inside dm_table_any_congested(). 403 */ 404 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode, 405 struct mapped_device *md) 406 { 407 int r; 408 struct dm_dev_internal dd_new, dd_old; 409 410 dd_new = dd_old = *dd; 411 412 dd_new.dm_dev.mode |= new_mode; 413 dd_new.dm_dev.bdev = NULL; 414 415 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md); 416 if (r) 417 return r; 418 419 dd->dm_dev.mode |= new_mode; 420 close_dev(&dd_old, md); 421 422 return 0; 423 } 424 425 /* 426 * Add a device to the list, or just increment the usage count if 427 * it's already present. 428 */ 429 static int __table_get_device(struct dm_table *t, struct dm_target *ti, 430 const char *path, sector_t start, sector_t len, 431 fmode_t mode, struct dm_dev **result) 432 { 433 int r; 434 dev_t uninitialized_var(dev); 435 struct dm_dev_internal *dd; 436 unsigned int major, minor; 437 438 BUG_ON(!t); 439 440 if (sscanf(path, "%u:%u", &major, &minor) == 2) { 441 /* Extract the major/minor numbers */ 442 dev = MKDEV(major, minor); 443 if (MAJOR(dev) != major || MINOR(dev) != minor) 444 return -EOVERFLOW; 445 } else { 446 /* convert the path to a device */ 447 struct block_device *bdev = lookup_bdev(path); 448 449 if (IS_ERR(bdev)) 450 return PTR_ERR(bdev); 451 dev = bdev->bd_dev; 452 bdput(bdev); 453 } 454 455 dd = find_device(&t->devices, dev); 456 if (!dd) { 457 dd = kmalloc(sizeof(*dd), GFP_KERNEL); 458 if (!dd) 459 return -ENOMEM; 460 461 dd->dm_dev.mode = mode; 462 dd->dm_dev.bdev = NULL; 463 464 if ((r = open_dev(dd, dev, t->md))) { 465 kfree(dd); 466 return r; 467 } 468 469 format_dev_t(dd->dm_dev.name, dev); 470 471 atomic_set(&dd->count, 0); 472 list_add(&dd->list, &t->devices); 473 474 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) { 475 r = upgrade_mode(dd, mode, t->md); 476 if (r) 477 return r; 478 } 479 atomic_inc(&dd->count); 480 481 if (!check_device_area(dd, start, len)) { 482 DMWARN("device %s too small for target", path); 483 dm_put_device(ti, &dd->dm_dev); 484 return -EINVAL; 485 } 486 487 *result = &dd->dm_dev; 488 489 return 0; 490 } 491 492 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev) 493 { 494 struct request_queue *q = bdev_get_queue(bdev); 495 struct io_restrictions *rs = &ti->limits; 496 char b[BDEVNAME_SIZE]; 497 498 if (unlikely(!q)) { 499 DMWARN("%s: Cannot set limits for nonexistent device %s", 500 dm_device_name(ti->table->md), bdevname(bdev, b)); 501 return; 502 } 503 504 /* 505 * Combine the device limits low. 506 * 507 * FIXME: if we move an io_restriction struct 508 * into q this would just be a call to 509 * combine_restrictions_low() 510 */ 511 rs->max_sectors = 512 min_not_zero(rs->max_sectors, q->max_sectors); 513 514 /* 515 * Check if merge fn is supported. 516 * If not we'll force DM to use PAGE_SIZE or 517 * smaller I/O, just to be safe. 518 */ 519 520 if (q->merge_bvec_fn && !ti->type->merge) 521 rs->max_sectors = 522 min_not_zero(rs->max_sectors, 523 (unsigned int) (PAGE_SIZE >> 9)); 524 525 rs->max_phys_segments = 526 min_not_zero(rs->max_phys_segments, 527 q->max_phys_segments); 528 529 rs->max_hw_segments = 530 min_not_zero(rs->max_hw_segments, q->max_hw_segments); 531 532 rs->hardsect_size = max(rs->hardsect_size, q->hardsect_size); 533 534 rs->max_segment_size = 535 min_not_zero(rs->max_segment_size, q->max_segment_size); 536 537 rs->max_hw_sectors = 538 min_not_zero(rs->max_hw_sectors, q->max_hw_sectors); 539 540 rs->seg_boundary_mask = 541 min_not_zero(rs->seg_boundary_mask, 542 q->seg_boundary_mask); 543 544 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, q->bounce_pfn); 545 546 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags); 547 } 548 EXPORT_SYMBOL_GPL(dm_set_device_limits); 549 550 int dm_get_device(struct dm_target *ti, const char *path, sector_t start, 551 sector_t len, fmode_t mode, struct dm_dev **result) 552 { 553 int r = __table_get_device(ti->table, ti, path, 554 start, len, mode, result); 555 556 if (!r) 557 dm_set_device_limits(ti, (*result)->bdev); 558 559 return r; 560 } 561 562 /* 563 * Decrement a devices use count and remove it if necessary. 564 */ 565 void dm_put_device(struct dm_target *ti, struct dm_dev *d) 566 { 567 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal, 568 dm_dev); 569 570 if (atomic_dec_and_test(&dd->count)) { 571 close_dev(dd, ti->table->md); 572 list_del(&dd->list); 573 kfree(dd); 574 } 575 } 576 577 /* 578 * Checks to see if the target joins onto the end of the table. 579 */ 580 static int adjoin(struct dm_table *table, struct dm_target *ti) 581 { 582 struct dm_target *prev; 583 584 if (!table->num_targets) 585 return !ti->begin; 586 587 prev = &table->targets[table->num_targets - 1]; 588 return (ti->begin == (prev->begin + prev->len)); 589 } 590 591 /* 592 * Used to dynamically allocate the arg array. 593 */ 594 static char **realloc_argv(unsigned *array_size, char **old_argv) 595 { 596 char **argv; 597 unsigned new_size; 598 599 new_size = *array_size ? *array_size * 2 : 64; 600 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL); 601 if (argv) { 602 memcpy(argv, old_argv, *array_size * sizeof(*argv)); 603 *array_size = new_size; 604 } 605 606 kfree(old_argv); 607 return argv; 608 } 609 610 /* 611 * Destructively splits up the argument list to pass to ctr. 612 */ 613 int dm_split_args(int *argc, char ***argvp, char *input) 614 { 615 char *start, *end = input, *out, **argv = NULL; 616 unsigned array_size = 0; 617 618 *argc = 0; 619 620 if (!input) { 621 *argvp = NULL; 622 return 0; 623 } 624 625 argv = realloc_argv(&array_size, argv); 626 if (!argv) 627 return -ENOMEM; 628 629 while (1) { 630 start = end; 631 632 /* Skip whitespace */ 633 while (*start && isspace(*start)) 634 start++; 635 636 if (!*start) 637 break; /* success, we hit the end */ 638 639 /* 'out' is used to remove any back-quotes */ 640 end = out = start; 641 while (*end) { 642 /* Everything apart from '\0' can be quoted */ 643 if (*end == '\\' && *(end + 1)) { 644 *out++ = *(end + 1); 645 end += 2; 646 continue; 647 } 648 649 if (isspace(*end)) 650 break; /* end of token */ 651 652 *out++ = *end++; 653 } 654 655 /* have we already filled the array ? */ 656 if ((*argc + 1) > array_size) { 657 argv = realloc_argv(&array_size, argv); 658 if (!argv) 659 return -ENOMEM; 660 } 661 662 /* we know this is whitespace */ 663 if (*end) 664 end++; 665 666 /* terminate the string and put it in the array */ 667 *out = '\0'; 668 argv[*argc] = start; 669 (*argc)++; 670 } 671 672 *argvp = argv; 673 return 0; 674 } 675 676 static void check_for_valid_limits(struct io_restrictions *rs) 677 { 678 if (!rs->max_sectors) 679 rs->max_sectors = SAFE_MAX_SECTORS; 680 if (!rs->max_hw_sectors) 681 rs->max_hw_sectors = SAFE_MAX_SECTORS; 682 if (!rs->max_phys_segments) 683 rs->max_phys_segments = MAX_PHYS_SEGMENTS; 684 if (!rs->max_hw_segments) 685 rs->max_hw_segments = MAX_HW_SEGMENTS; 686 if (!rs->hardsect_size) 687 rs->hardsect_size = 1 << SECTOR_SHIFT; 688 if (!rs->max_segment_size) 689 rs->max_segment_size = MAX_SEGMENT_SIZE; 690 if (!rs->seg_boundary_mask) 691 rs->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK; 692 if (!rs->bounce_pfn) 693 rs->bounce_pfn = -1; 694 } 695 696 int dm_table_add_target(struct dm_table *t, const char *type, 697 sector_t start, sector_t len, char *params) 698 { 699 int r = -EINVAL, argc; 700 char **argv; 701 struct dm_target *tgt; 702 703 if ((r = check_space(t))) 704 return r; 705 706 tgt = t->targets + t->num_targets; 707 memset(tgt, 0, sizeof(*tgt)); 708 709 if (!len) { 710 DMERR("%s: zero-length target", dm_device_name(t->md)); 711 return -EINVAL; 712 } 713 714 tgt->type = dm_get_target_type(type); 715 if (!tgt->type) { 716 DMERR("%s: %s: unknown target type", dm_device_name(t->md), 717 type); 718 return -EINVAL; 719 } 720 721 tgt->table = t; 722 tgt->begin = start; 723 tgt->len = len; 724 tgt->error = "Unknown error"; 725 726 /* 727 * Does this target adjoin the previous one ? 728 */ 729 if (!adjoin(t, tgt)) { 730 tgt->error = "Gap in table"; 731 r = -EINVAL; 732 goto bad; 733 } 734 735 r = dm_split_args(&argc, &argv, params); 736 if (r) { 737 tgt->error = "couldn't split parameters (insufficient memory)"; 738 goto bad; 739 } 740 741 r = tgt->type->ctr(tgt, argc, argv); 742 kfree(argv); 743 if (r) 744 goto bad; 745 746 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1; 747 748 /* FIXME: the plan is to combine high here and then have 749 * the merge fn apply the target level restrictions. */ 750 combine_restrictions_low(&t->limits, &tgt->limits); 751 return 0; 752 753 bad: 754 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error); 755 dm_put_target_type(tgt->type); 756 return r; 757 } 758 759 static int setup_indexes(struct dm_table *t) 760 { 761 int i; 762 unsigned int total = 0; 763 sector_t *indexes; 764 765 /* allocate the space for *all* the indexes */ 766 for (i = t->depth - 2; i >= 0; i--) { 767 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); 768 total += t->counts[i]; 769 } 770 771 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE); 772 if (!indexes) 773 return -ENOMEM; 774 775 /* set up internal nodes, bottom-up */ 776 for (i = t->depth - 2; i >= 0; i--) { 777 t->index[i] = indexes; 778 indexes += (KEYS_PER_NODE * t->counts[i]); 779 setup_btree_index(i, t); 780 } 781 782 return 0; 783 } 784 785 /* 786 * Builds the btree to index the map. 787 */ 788 int dm_table_complete(struct dm_table *t) 789 { 790 int r = 0; 791 unsigned int leaf_nodes; 792 793 check_for_valid_limits(&t->limits); 794 795 /* how many indexes will the btree have ? */ 796 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); 797 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); 798 799 /* leaf layer has already been set up */ 800 t->counts[t->depth - 1] = leaf_nodes; 801 t->index[t->depth - 1] = t->highs; 802 803 if (t->depth >= 2) 804 r = setup_indexes(t); 805 806 return r; 807 } 808 809 static DEFINE_MUTEX(_event_lock); 810 void dm_table_event_callback(struct dm_table *t, 811 void (*fn)(void *), void *context) 812 { 813 mutex_lock(&_event_lock); 814 t->event_fn = fn; 815 t->event_context = context; 816 mutex_unlock(&_event_lock); 817 } 818 819 void dm_table_event(struct dm_table *t) 820 { 821 /* 822 * You can no longer call dm_table_event() from interrupt 823 * context, use a bottom half instead. 824 */ 825 BUG_ON(in_interrupt()); 826 827 mutex_lock(&_event_lock); 828 if (t->event_fn) 829 t->event_fn(t->event_context); 830 mutex_unlock(&_event_lock); 831 } 832 833 sector_t dm_table_get_size(struct dm_table *t) 834 { 835 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; 836 } 837 838 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index) 839 { 840 if (index >= t->num_targets) 841 return NULL; 842 843 return t->targets + index; 844 } 845 846 /* 847 * Search the btree for the correct target. 848 * 849 * Caller should check returned pointer with dm_target_is_valid() 850 * to trap I/O beyond end of device. 851 */ 852 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) 853 { 854 unsigned int l, n = 0, k = 0; 855 sector_t *node; 856 857 for (l = 0; l < t->depth; l++) { 858 n = get_child(n, k); 859 node = get_node(t, l, n); 860 861 for (k = 0; k < KEYS_PER_NODE; k++) 862 if (node[k] >= sector) 863 break; 864 } 865 866 return &t->targets[(KEYS_PER_NODE * n) + k]; 867 } 868 869 /* 870 * Set the integrity profile for this device if all devices used have 871 * matching profiles. 872 */ 873 static void dm_table_set_integrity(struct dm_table *t) 874 { 875 struct list_head *devices = dm_table_get_devices(t); 876 struct dm_dev_internal *prev = NULL, *dd = NULL; 877 878 if (!blk_get_integrity(dm_disk(t->md))) 879 return; 880 881 list_for_each_entry(dd, devices, list) { 882 if (prev && 883 blk_integrity_compare(prev->dm_dev.bdev->bd_disk, 884 dd->dm_dev.bdev->bd_disk) < 0) { 885 DMWARN("%s: integrity not set: %s and %s mismatch", 886 dm_device_name(t->md), 887 prev->dm_dev.bdev->bd_disk->disk_name, 888 dd->dm_dev.bdev->bd_disk->disk_name); 889 goto no_integrity; 890 } 891 prev = dd; 892 } 893 894 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev)) 895 goto no_integrity; 896 897 blk_integrity_register(dm_disk(t->md), 898 bdev_get_integrity(prev->dm_dev.bdev)); 899 900 return; 901 902 no_integrity: 903 blk_integrity_register(dm_disk(t->md), NULL); 904 905 return; 906 } 907 908 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q) 909 { 910 /* 911 * Make sure we obey the optimistic sub devices 912 * restrictions. 913 */ 914 blk_queue_max_sectors(q, t->limits.max_sectors); 915 q->max_phys_segments = t->limits.max_phys_segments; 916 q->max_hw_segments = t->limits.max_hw_segments; 917 q->hardsect_size = t->limits.hardsect_size; 918 q->max_segment_size = t->limits.max_segment_size; 919 q->max_hw_sectors = t->limits.max_hw_sectors; 920 q->seg_boundary_mask = t->limits.seg_boundary_mask; 921 q->bounce_pfn = t->limits.bounce_pfn; 922 923 if (t->limits.no_cluster) 924 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q); 925 else 926 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q); 927 928 dm_table_set_integrity(t); 929 } 930 931 unsigned int dm_table_get_num_targets(struct dm_table *t) 932 { 933 return t->num_targets; 934 } 935 936 struct list_head *dm_table_get_devices(struct dm_table *t) 937 { 938 return &t->devices; 939 } 940 941 fmode_t dm_table_get_mode(struct dm_table *t) 942 { 943 return t->mode; 944 } 945 946 static void suspend_targets(struct dm_table *t, unsigned postsuspend) 947 { 948 int i = t->num_targets; 949 struct dm_target *ti = t->targets; 950 951 while (i--) { 952 if (postsuspend) { 953 if (ti->type->postsuspend) 954 ti->type->postsuspend(ti); 955 } else if (ti->type->presuspend) 956 ti->type->presuspend(ti); 957 958 ti++; 959 } 960 } 961 962 void dm_table_presuspend_targets(struct dm_table *t) 963 { 964 if (!t) 965 return; 966 967 suspend_targets(t, 0); 968 } 969 970 void dm_table_postsuspend_targets(struct dm_table *t) 971 { 972 if (!t) 973 return; 974 975 suspend_targets(t, 1); 976 } 977 978 int dm_table_resume_targets(struct dm_table *t) 979 { 980 int i, r = 0; 981 982 for (i = 0; i < t->num_targets; i++) { 983 struct dm_target *ti = t->targets + i; 984 985 if (!ti->type->preresume) 986 continue; 987 988 r = ti->type->preresume(ti); 989 if (r) 990 return r; 991 } 992 993 for (i = 0; i < t->num_targets; i++) { 994 struct dm_target *ti = t->targets + i; 995 996 if (ti->type->resume) 997 ti->type->resume(ti); 998 } 999 1000 return 0; 1001 } 1002 1003 int dm_table_any_congested(struct dm_table *t, int bdi_bits) 1004 { 1005 struct dm_dev_internal *dd; 1006 struct list_head *devices = dm_table_get_devices(t); 1007 int r = 0; 1008 1009 list_for_each_entry(dd, devices, list) { 1010 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1011 char b[BDEVNAME_SIZE]; 1012 1013 if (likely(q)) 1014 r |= bdi_congested(&q->backing_dev_info, bdi_bits); 1015 else 1016 DMWARN_LIMIT("%s: any_congested: nonexistent device %s", 1017 dm_device_name(t->md), 1018 bdevname(dd->dm_dev.bdev, b)); 1019 } 1020 1021 return r; 1022 } 1023 1024 void dm_table_unplug_all(struct dm_table *t) 1025 { 1026 struct dm_dev_internal *dd; 1027 struct list_head *devices = dm_table_get_devices(t); 1028 1029 list_for_each_entry(dd, devices, list) { 1030 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev); 1031 char b[BDEVNAME_SIZE]; 1032 1033 if (likely(q)) 1034 blk_unplug(q); 1035 else 1036 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s", 1037 dm_device_name(t->md), 1038 bdevname(dd->dm_dev.bdev, b)); 1039 } 1040 } 1041 1042 struct mapped_device *dm_table_get_md(struct dm_table *t) 1043 { 1044 dm_get(t->md); 1045 1046 return t->md; 1047 } 1048 1049 EXPORT_SYMBOL(dm_vcalloc); 1050 EXPORT_SYMBOL(dm_get_device); 1051 EXPORT_SYMBOL(dm_put_device); 1052 EXPORT_SYMBOL(dm_table_event); 1053 EXPORT_SYMBOL(dm_table_get_size); 1054 EXPORT_SYMBOL(dm_table_get_mode); 1055 EXPORT_SYMBOL(dm_table_get_md); 1056 EXPORT_SYMBOL(dm_table_put); 1057 EXPORT_SYMBOL(dm_table_get); 1058 EXPORT_SYMBOL(dm_table_unplug_all); 1059